WO2013057767A1 - Motor drive device and roller conveyer device utilizing same - Google Patents

Motor drive device and roller conveyer device utilizing same Download PDF

Info

Publication number
WO2013057767A1
WO2013057767A1 PCT/JP2011/005890 JP2011005890W WO2013057767A1 WO 2013057767 A1 WO2013057767 A1 WO 2013057767A1 JP 2011005890 W JP2011005890 W JP 2011005890W WO 2013057767 A1 WO2013057767 A1 WO 2013057767A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
input
drive device
motor drive
control parameters
Prior art date
Application number
PCT/JP2011/005890
Other languages
French (fr)
Japanese (ja)
Inventor
守幸 豊田
Original Assignee
株式会社協和製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社協和製作所 filed Critical 株式会社協和製作所
Priority to PCT/JP2011/005890 priority Critical patent/WO2013057767A1/en
Publication of WO2013057767A1 publication Critical patent/WO2013057767A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P31/00Arrangements for regulating or controlling electric motors not provided for in groups H02P1/00 - H02P5/00, H02P7/00 or H02P21/00 - H02P29/00

Definitions

  • the present invention relates to a motor driving device for driving a motor and a roller conveyor device using the motor driving device, for example, a DC brushless motor driving device suitably used for the roller conveyor device and the roller conveyor device.
  • the motor drive device has many additional functions in addition to the function of simply rotating the corresponding roller conveyor device at a constant speed. Yes. There are various additional functions such as soft start / stop, sensor interlocking (train mode for continuously transporting the object to be transported, gap train mode for adjusting the interval in the train mode, etc.), and gear position switching.
  • the setting is also complicated.
  • the characteristics of the motor corresponding to (to be driven by) the motor driving device are set, it is usually unnecessary to change the setting.
  • the motor is changed or the line is reconfigured and the motor corresponding to the motor drive device is changed, it is necessary to change the setting, and there are many setting items. It is complicated.
  • Patent Document 1 A motor driving device of the roller conveyor device is disclosed in Patent Document 1, for example.
  • a host device that performs overall control of a large number of motors in a large-scale production line or the like, from the host device to the drive device of each motor.
  • an appropriate control parameter value corresponding to the production status or the like is set as appropriate, and no input / output terminal or operation input terminal is provided except for the communication interface with the host device.
  • FIG. 5 and FIG. 2 of Patent Document 1 for example, in the case of a motor drive device that is mainly used alone, that is, can be driven by a so-called stand-alone without such a host device, A dip switch, a rotary switch, or the like serving as the operation input terminal is mounted, and a connector or the like serving as the input / output terminal is mounted. The operator operates the input / output terminal or the operation input terminal one by one. There was a need to change the parameters.
  • the present invention has been made in view of the above circumstances, and its object is to provide a motor drive device capable of expanding the range of function selection without increasing the number of input / output terminals and operation input terminals. And it is providing the roller conveyor apparatus using the same.
  • a plurality of control parameters are set in advance for the control parameters of items relating to at least a part of one or more input / output terminals and operation input terminals.
  • the control parameters of the items related to at least a part of the stored parameters can be selected alternatively from the plurality of control parameters, and the motor is driven using the selected control parameters. Therefore, the motor drive device according to the present invention and the roller conveyor device using the motor drive device expand the range of function selection and improve convenience and versatility without increasing the number of input / output terminals and operation input terminals. can do.
  • FIG. 2 is an electric circuit diagram specifically showing an interface around a control microcomputer in the motor drive device shown in FIG. 1.
  • FIG. 2 is a block diagram showing an electrical configuration of the motor drive device shown in FIG. 1. It is a figure which shows an example of the checker screen which displayed the content of CPU of the said control microcomputer. It is a figure which shows an example of the checker screen of a motor parameter.
  • FIG. 1 is a schematic front view of a circuit board of a motor driving device shown with a casing of the motor driving device according to the embodiment removed.
  • This motor drive device 1 is housed in a predetermined recess in an I-type or H-type frame to which a number of conveyor rollers are attached in a roller conveyor device. Therefore, the motor driving device 1 has a long shape, and connectors CN1 to CN6 are mounted on both short sides of the board 2.
  • a control microcomputer 10 dip switches DIP1, DIP2, rotary A large number of electronic components necessary to function as the motor driving device 1 such as the switches RS1, RS2, RS3, the connector CN7, and predetermined elements are mounted.
  • the connector CN1 is for driving a DC brushless motor built in the conveyor roller, and has a hall IC signal as a rotation position signal and a terminal (pin) for output of a three-phase drive current and control power. A terminal (pin) for receiving from the IC is provided.
  • the function assignment for each pin in the connector CN1 is as shown in Table 1. That is, each function shown in Table 1 is assigned in advance to each pin in connector CN1.
  • the conveyor roller usually includes a driving roller driven by a motor and a driven rotor that is rotated by the driving roller or by the passage of a conveyed product that is moved by the driving roller.
  • the motor built-in type driving roller has a known structure, and is disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-027849 and Japanese Patent Application Laid-Open No. 2006-027860.
  • the connector CN2 is for power input of the motor drive device 1, and the function assignment to each pin is as shown in Table 2.
  • Connector CN3 is an input / output terminal for operation control of the conveyor roller, and function assignment is as shown in Table 3. The connector CN3 and the next connector CN4 will be described in detail later.
  • Connector CN4 is for a sensor such as a photosensor that detects the passage of a conveyed product conveyed on the conveyor roller, and the function assignment for each pin is as shown in Table 4.
  • Connectors CN5 and CN6 are for sensor signal transmission / reception with the adjacent motor drive device 1, and the function assignment to each pin is as shown in Table 5.
  • the above-described train mode or the like can be interlocked with each other, and each of the connectors CN5 and CN6 is provided on each short side of the board 2 so that the adjacent motor driving device 1 can be connected. It becomes easy to route the cable.
  • Connector CN7 is a connector for communication with an external information processing apparatus such as a personal computer.
  • the connector CN7 is normally covered with the casing, and on the other hand, items related to at least a part of the input / output end and the operation input end after shipping inspection of the motor driving device 1 described later or after installation.
  • the housing is removed, and the connector CN7 is connected to the external information processing apparatus. Therefore, as described later, after the manufacturer sets and ships for the customer, the housing is removed and the connector CN7 has few opportunities to be used.
  • the motor drive device 1 operates in a so-called stand-alone manner.
  • FIG. 2 is a diagram schematically showing an example of wiring outside the connector CN3 for operation in the motor drive device shown in FIG.
  • pin 1 (terminal with pin number 1) of this connector CN3 is a common input (GND).
  • the switch S1 When the switch S1 is connected between the pin 1 and the pin 2, the switch S1 controls the operation / stop in the basic setting (default setting) as will be described later, and the control microcomputer 10 does so.
  • the switch S2 controls forward / reverse rotation in the basic setting.
  • the pin 4 is for error signal output.
  • NPN output for current sink as shown in FIG. 2A, the light emitting diode D1 is connected to the pin 1 of the connector CN2 to which DC24V is supplied and the pin. 4, the light emitting diode D ⁇ b> 1 is turned on by sucking current.
  • the pin 4 is a PNP output for current discharge, as shown in FIG. 2B, the light emitting diode D1 is connected between the pin 2 and the pin 4 of the connector CN2 grounded (GND, 0V). And the light emitting diode D1 is turned on by supplying a current.
  • the mode of error is displayed by the mode of blinking of the light emitting diode D1. Switching between the NPN output and the PNP output is performed by automatic recognition of the control microcomputer 10.
  • Pin 5 of connector CN3 is a terminal for outputting a pulse as a speed signal from control microcomputer 10.
  • Pin 6 of connector CN3 is a terminal for outputting a sensor signal input from connector CN4.
  • the pin 7 of the connector CN3 becomes effective when the switch SW2 of the DIP switch DIP1 is OFF (low speed) and the scale of the rotary switch RS1 is at the minimum 0, and the control microcomputer 10 recognizes the pin 7 of the connector CN3.
  • the motor of the conveyor roller is driven at a speed corresponding to the input voltage (0 to 10 V) from the external power source E1.
  • FIG. 3 is an electric circuit diagram specifically showing an interface around the control microcomputer 10 in the motor driving apparatus shown in FIG.
  • portions relating to the motor input / output connector CN1 and the external information processing apparatus connection connector CN7 are omitted.
  • the DC24V power input from the connector CN2 is input via a noise removing capacitor C1, a smoothing capacitor C2, a fuse FS and a capacitor C3, and is stabilized at 5V by the DC-DC converter 21. , And supplied to each circuit on the substrate 2.
  • the connectors CN5 and CN6 for transmitting and receiving sensor signals with the adjacent motor drive device 1 have a common pin (GND), and each line L1 corresponding to each of the signal pins 1 to 3 is shown in Table 5.
  • Each is connected to a pull-up resistor R1, a noise removing capacitor C11, and an overvoltage absorbing Zener diode ZD1 and an input / output resistor R2. Since an off-the-shelf chip component is used, FIG. 3 also shows a non-use element (for example, one resistance element among chip components having four resistors R1).
  • the connector CN4 is for a sensor such as a photosensor. Between the pins 1 and 3 for power output, DC24V from the connector CN2 is supplied, and the signal input from the pin 2 is connected to the photocoupler PC1. Via the control microcomputer 10.
  • pin 1 is a common input (GND), and pins 2 and 3 for switch S1 and S2 input are connected to the control microcomputer 10 via photocouplers PC2 and PC3. It is connected.
  • high / open outputs are given to the signal output pins 4 and 6 from the control microcomputer 10 via the two-stage buffer circuits B1 and B2.
  • the pin 5 outputs a motor speed signal (pulse), and a pulse from the control microcomputer 10 is given low / open via the buffer circuit B3.
  • the pin 7 receives an input voltage from the external power source E1, and the input voltage is given from the noise removing capacitor C12 to the capacitor C13 via the input resistor R11 and is taken into the control microcomputer 10.
  • a discharge resistor R13 and an overvoltage-preventing Zener diode ZD2 are connected.
  • the DIP switch DIP1 includes 10-pole switches SW1 to SW10, and the DIP switch DIP2 includes 6-pole switches SW11 to SW16.
  • Table 6 shows the function assignment of basic settings of the DIP switch DIP1.
  • the switch SW1 sets the rotation direction of the motor, and when viewed from the cable input side to the motor, the clockwise direction is forward rotation and the counterclockwise direction is reverse direction.
  • the switch SW2 sets the rotational speed of the motor in two stages, high speed and low speed. Whether the switch SW3 detects the dark side where the photo sensor is shielded by the conveyed object or the light side not covered by the conveyed object with respect to the output of the photo sensor connected to the connector CN4. Is set.
  • the switch SW4 sets whether the return condition after stopping due to an error is automatic or manual.
  • the switch SW5 indicates an operation in response to the sensor detection result, and sets whether to drive or stop the motor by sensor detection.
  • the switches SW9 and SW10 are used to set the brake system. As shown in Table 8, the regenerative brake that brakes by consuming the generated power, and the regenerative current becomes a predetermined current value, for example, 0.5A. There are three types of servo lock that controls the motor and free with no brake.
  • Table 9 shows the function assignment of basic settings of the DIP switch DIP2.
  • the switch SW11 sets a ZPA (zero pressure accumulation) mode, and can be set to a single mode in which a transported object is handled alone and a train mode in which it is handled as being continuous at a predetermined interval.
  • the switch SW12 sets whether or not to use the ZPA function. In the standard mode in which the ZPA function is not used, the roller conveyor device (DC brushless motor of the conveyor roller) is continuously operated.
  • the switch SW13 switches whether to perform the same operation using a common sensor.
  • this switch SW13 is set to ON, one motor drive device transfers the signal from the sensor input from the connector CN4 from the connector CN5 or CN6 to the other adjacent motor drive device, An operation synchronized with the other adjacent motor drive device is performed, and when set to OFF, the motor drive device performs a normal operation alone.
  • the switch SW14 sets the time during which the motor is moved after passing through the sensor, and can be switched between 0.5 seconds and 1 second.
  • the switch SW15 selects whether or not to use the gap train mode, and can be switched between not using the gap train mode or using the gap train in 0.5 seconds.
  • the switch SW16 selects whether or not to idle for a predetermined time when the operation is started after stopping the driving of the motor by an emergency stop or the like.
  • the rotary switches RS1, RS2, and RS3 are for setting the motor rotation speed, the soft start time, and the soft stop time, respectively, in the basic settings.
  • Tables 10 to 12 show the set values of 16 steps for each rotary switch RS1, RS2, and RS3.
  • the basic setting of the rotary switch RS1 is used in combination with the switch SW2 of the dip switch DIP1, and can be switched between high speed and low speed in the setting of the switch SW2.
  • the rotation speed of the motor is set to the pin 7 of the connector CN3. It is controlled in proportion to the input voltage.
  • Table 10 although the setting value of the rotational speed for four motors of different types (characteristics) is shown, there are eight types of motor characteristics that are preset in the motor driving device 1 in advance. In Table 10, four units are omitted. The default motor characteristics will be described later.
  • Table 11 and Table 12 set the soft start time and soft stop time. As the scale becomes larger, each of the soft start time and soft stop time is set to a longer time, that is, each of the start and stop is set to be soft.
  • the motor drive device 1 controls the motor so that the scale increases and the speed is gradually increased from the stop speed to the target speed as the scale increases. Further, in the soft stop, the motor driving device 1 controls the motor so that the scale becomes larger as the scale becomes larger, and it is applied for a long time from the speed at the start of the stop to the stop speed.
  • FIG. 4 is a block diagram showing an electrical configuration of the motor drive device shown in FIG. FIG. 4 shows the control microcomputer 10 in more detail.
  • the control microcomputer 10 includes a CPU (Central Processing Unit) 11 and an EEPROM (Electrically Erasable Programmable Read Only Memory) 12, but an input / output circuit, an analog / digital conversion circuit, a ROM It is assumed that auxiliary circuits such as (Read Only Memory), RAM (Random Access Memory), etc. that are built in a normal microcomputer are also incorporated.
  • CPU Central Processing Unit
  • EEPROM Electrical Erasable Programmable Read Only Memory
  • the CPU 11 controls the rotation of the motor 14 of the conveyor roller via the inverter 13 in response to the setting state in the EEPROM 12 and sensor input.
  • the CPU 11 corresponds to the selection unit in the claims as an example, and corresponds to the drive unit together with the inverter 13. As shown in Table 1, three-phase signals for driving are output from pins 3 to 5 of connector CN1.
  • the motor 14 is supplied with a power voltage of + 5V from pins 2 and 1 of the connector CN1, so that the positions of the motor 11 to the pins 6 to 8 of the connector CN1 are detected from the three-phase Hall ICs. The result is entered. In response to this, the CPU 11 performs rotation speed control and stop position control of the motor 14.
  • the EEPROM 12 corresponding to the storage unit in the claims includes tables T1 to T9.
  • the table T2 stores an operation mode for the input of the pin 3 of the photocoupler PC3, that is, the connector CN3.
  • the CPU 11 performs the default setting rotation switching operation as shown in FIG. 2 for the input from the pin 3, and the input of the pin 3 is turned on. Rotate in the forward direction and reverse in the OFF position.
  • the flag of the table T2 is set to a value other than 0, the CPU 11 performs a preset operation from an external information processing apparatus such as the personal computer.
  • the flag of the table T2 represents an operation mode with respect to the input of the pin 3 of the connector CN3, and indicates the type of control parameter changed from the basic setting in the pin 3 of the connector CN3 and changed to the pin 3 of the connector CN3. It is an identifier.
  • the table T3 stores the operation mode for the input of the pin 2 of the photocoupler PC1, that is, the connector CN4.
  • the flag of the table T3 is set to 0, the pin 2 becomes a default sensor input.
  • the input of the pin 2 is the switching operation of the two gears, and when the flag is set to 2, the pin 2
  • the input of ⁇ ⁇ ⁇ is a switching operation to enable or disable the brake.
  • the flag of the table T3 represents the operation mode for the input of the pin 2 of the connector CN4, and indicates the type of the control parameter that is changed from the basic setting in the pin 2 of the connector CN4 and changed to the pin 2 of the connector CN4. It is an identifier.
  • the tables T4 to T6 store operation modes for the inputs of the rotary switches RS1, RS2, and RS3, respectively.
  • the flag in the table T4 is set to 0, the default setting speed switching operation as shown in Table 10 is performed, and the larger the scale, the faster the speed setting.
  • the flag of the table T4 is set to 1
  • an operation corresponding to the setting from an external information processing apparatus such as a personal computer is performed.
  • the flag of the table T5 is set to 0, the default soft start time switching operation as shown in Table 11 is performed.
  • the flag of the table T6 is set to 0, as shown in Table 12. The default setting soft stop time is switched, and the longer the scale, the longer the time.
  • the flags of the tables T5 and T6 are set to 1
  • an operation corresponding to the setting from an external information processing apparatus such as a personal computer is performed.
  • the flags in the tables T4 to T6 represent the operation modes for the inputs of the rotary switches RS1, RS2, and RS3, respectively, and are changed from the basic settings of the rotary switches RS1, RS2, and RS3. It is an identifier indicating each type of each control parameter that is changed and set in RS1, RS2, and RS3.
  • Tables T7 and T8 store operation modes for inputs of the DIP switches DIP1 and DIP2. If the flag of the table T7 is set to 0, the default setting value of the DIP switch DIP1 as shown in Table 6 is valid, and the flag of the table T7 is set to 1 on the contrary. If so, the setting from an external information processing apparatus such as a personal computer becomes effective. Similarly, when the flag of the table T8 is set to 0, the default setting value of the DIP switch DIP2 as shown in Table 9 becomes valid, and the flag of the table T8 is set to 1 in contrast thereto. The setting from an external information processing apparatus such as a personal computer becomes effective.
  • the flags of the tables T7 and T8 represent the operation modes for the inputs of the dip switches DIP1 and DIP2, respectively, and are changed from the basic settings in the dip switches DIP1 and DIP2 and are changed and set in the dip switches DIP1 and DIP2. It is an identifier indicating the type of.
  • the table T9 stores detailed control parameters of the motor, which will be described later.
  • control parameters for eight types of motors are set in advance by default settings.
  • an arbitrary control parameter can be set from an external information processing apparatus such as a personal computer. And use its control parameters.
  • the table T1 stores the remaining common control parameters that are not set in the tables T2 to T9.
  • the CPU 11 is provided with a motor drive table reading unit 11a for reading the tables T1 to T3, and is provided with a mode setting reading unit 11b for reading the tables T4 to T8, for reading the table T9.
  • a motor setting reading unit 11c is provided.
  • Tables 13 and 14 show examples of specific stored contents of the table T9.
  • the table T9 stores detailed control parameters of the motor as described above.
  • the number of control parameters per motor is 17 items, and up to 8 types of motors can be stored as described above. Therefore, the total number of control parameters for the motor is 136.
  • Table 15 shows the functional description of each control parameter.
  • the parameter numbers (items) 0 to 16 are the first type motor (Company A 1, rating 28 W), and 17 to 33 are the second type motor.
  • 34 to 50 are the third type motor (Company A 2, rating 20W)
  • 51 to 67 are the fourth type motor
  • 68 ⁇ 84 is a fifth type motor (Company D1, rated 50W)
  • 85 ⁇ 101 are sixth type motors (Company E1, rated 22W)
  • 102 ⁇ 118 are seventh type motors.
  • Company D, rating 35 W and 119 to 135 respectively indicate the eighth type of motor (Company A 3, rating 40 W).
  • the motor setting reading unit 11c of the CPU 11 reads out which motor control parameter is read in advance by switches SW6 to SW8 of the DIP switch DIP1, as shown in Table 7. Is set. In Table 13 and Table 14, the upper limit value and the lower limit value that can be set for each control parameter are common, and are shown only for the first type of motor.
  • Table 16 shows an example of specific storage contents of the remaining tables T1 to T8.
  • the control parameters of these tables T1 to T8 are the same regardless of the type of motor, that is, whichever motor is used.
  • the settings by these DIP switches DIP1, DIP2 and rotary switches RS1, RS2, RS3 realize different functions in hardware setting and software setting, such as pin 3 of connector CN3 and pin 2 of connector CN4. Rather, realize the same function. That is, in the hardware setting mode, for example, the CPU 11 causes the motor 14 to rotate forward when the switch SW1 of the dip switch DIP1 is set to ON, and reversely operates when the switch 11 is set to OFF.
  • the software setting mode regardless of whether the switch SW1 of the DIP switch DIP1 is ON or OFF, if the software setting is ON, the forward operation is performed, and if it is OFF, the reverse operation is performed. Become.
  • 137 stores the software setting of the DIP switch DIP1, that is, stores the setting contents in the flag 1 of the table T7.
  • 138 stores the software setting of the dip switch DIP2, that is, stores the setting contents in the flag 1 of the table T8.
  • the parameter numbers 139, 140, and 141 store the software settings of the rotary switches RS1, RS2, and RS3, that is, the setting contents in the flag 1 of the tables T4, T5, and T6.
  • the rotary switches RS1, RS2, and RS3 are 16 scales of 0 to 15, and are 0X0000 to 0X000F in hexadecimal display.
  • parameter numbers 142 to 150 are used for storing the setting contents of the table T1.
  • the parameter number 143 stores the gap time in the train mode corresponding to the switch SW15 of the dip switch DIP2.
  • the parameter number 150 stores the contents set in the flags 1 to 6 of the table T2 corresponding to the pin 3 of the connector CN3.
  • the setting contents of the flags 1 to 6 are as described above.
  • the parameter number 151 stores the contents set in the flags 1 to 6 of the table T3 corresponding to the pin 2 of the connector CN4.
  • the setting contents of the flags 1 to 6 are as described above.
  • the parameter number 152 switches the setting of the switch SW2 of the DIP1 and the rotary switches RS2 and RS3.
  • the standard setting as described above that is, the speed switching, soft start and soft stop is performed.
  • the time is set.
  • it is a speed setting for two-speed shifting using the switches SW12 and SW13 of DIP2.
  • the rotary switch RS2 is commonly used for setting the soft start and soft stop times
  • the vacant rotary switch RS3 is used for setting the speed for two-stage shifting.
  • the speed is set from an external information processing apparatus.
  • the CPU 11 displays the self-diagnosed error state by the blinking mode of the light emitting diode D1 connected to the pin 4 of the connector CN3.
  • Table 18 shows an example of the flashing mode, error contents, detection conditions, and return conditions.
  • FIG. 5 is a diagram showing an example of a checker screen displaying the contents of the CPU 11 of the control microcomputer 10 in the external information processing apparatus such as the personal computer.
  • a screen display in the external information processing apparatus can be realized by using a general-purpose program and a GUI function that read and rewrite the contents of the control microcomputer 10 as appropriate.
  • the example 6 is merely an example of a GUI (Graphical User Interface) screen.
  • the general-purpose program for example, HyperTerminal, which is communication software (terminal emulator) installed in the Windows (registered trademark) series of Microsoft Corporation, is used.
  • the GUI screen is roughly divided into an I command, an A command, an S command, a D command, and a PW command.
  • the A command displays the analog output state (voltage, current, speed command) related to the motor 14 in the area A0.
  • the S command displays the state of the motor 14 (operation state, set rotational speed, actual rotational speed, output%, abnormal state) in the area A1.
  • the region A1 indicates that the motor 14 is currently in operation and is rotating in the opposite direction slightly slower than the set rotational speed. Further, in the area A1, if the vehicle is stopped, “stopped” is displayed, and if an abnormality has occurred, what kind of abnormality has occurred is displayed.
  • the D command displays the operation operation screen of the motor 14 in the area A2.
  • a button on the operation screen in this area A2 it is possible to instruct the operation of the motor 14 by remote operation.
  • the PW command displays a screen for changing the settings of the tables T1 to T9 in the EEPROM 12 of the control microcomputer 10 in the area A7.
  • the operation by the PW command will be described in detail with reference to FIG. 6, which is an example of a motor parameter checker screen.
  • the I command is input to the area A10 including the areas A3 to A6 from the operation input ends of the DIP switches DIP1, DIP2 and the rotary switches RS1, RS2, RS3, and the input / output ends of the connectors CN1, CN3, CN4, CN5, CN6, etc. Displays the input status. More specifically, the setting of the scales of the rotary switches RS1, RS2, and RS3 and the actual control parameters based on the scales are displayed in the area A3. In the case of the above-described software setting, the scale display is, for example, “-” indicating that, and only the setting contents are displayed.
  • the settings of the switches SW1 to SW10 in the DIP switch DIP1 and the actual control parameters according to the settings are displayed.
  • the setting display is, for example, “ ⁇ ” indicating that, and only the setting content is displayed.
  • settings of the switches SW11 to SW16 in the DIP switch DIP2 and actual control parameters according to the settings are displayed.
  • external input is shown, and sensor input from the connector CN4 of the own device, sensor signal transfer input of the adjacent motor drive device from the connectors CN5 and CN6, error input, and the like are displayed.
  • an operator can appropriately rewrite the flags and contents of the above-described tables T2 to T8 in the software mode. Further, as shown in FIG. 6, the operator can also change the motor parameters. In the example of FIG. 6, the operator is trying to change the speed control gain at the minimum speed of the motor of company B from the parameter number 25, that is, from Table 13, as indicated by area A71.
  • select batch acquisition of area A72 to acquire all motor control parameters in a text data format, for example. It is possible to perform update setting in the EEPROM 12 by selecting the batch setting of the area A73 after changing the necessary part.
  • the contents of the control table T1 storing other control parameters can be appropriately rewritten.
  • the motor drive device 1 can drive the motor 14 associated with the own device in advance, one or a plurality of input / output terminals (I / O including sensor input / output) or In the motor drive device having an operation input terminal, when the CPU 11 drives the motor 14 via the inverter 13, at least a part of the control parameters of various items used for the drive and stored in the EEPROM 12. Are stored in a plurality of types, and the CPU 11 as a selection means selects them alternatively.
  • the CPU 11 drives the motor 14 based on various items of control parameters stored in the EEPROM 12, such as motor characteristics, sensor input / output, operation input / output, and control mode.
  • control parameters stored in the EEPROM 12, such as motor characteristics, sensor input / output, operation input / output, and control mode.
  • the parameters at least a part of input / output terminals (in the example shown in FIG. 4, pin 3 of connector CN3 and pin 2 of connector CN4) or operation input terminals (in the example shown in FIG.
  • DIP switches DIP1, DIP2 and rotary Regarding the control parameters of items relating to the switches RS1, RS2, RS3, etc. a plurality of types (for example, a plurality of types of control parameters having different attributes) are stored in advance in the tables T2 to T8, and the CPU 11 determines which Depending on whether the flag is set, it is selected alternatively.
  • the CPU 11 uses the input from the open / low photocouplers PC1 and PC3, and in the default setting (flag 0), the input from the photocoupler PC1 is the sensor input, and from the photocoupler PC3. While the input is handled as an input for switching between forward and reverse rotation directions, the other setting (flag 1) is handled as an input for changing the speed between 1st and 2nd. Further, the CPU 11 reads the ON / OFF states of the dip switches DIP1 and DIP2 and the scales of the rotary switches RS1, RS2, and RS3 as they are in the default setting (flag 0), while corresponding to other settings (flag 1). The stored contents of tables T4 to T8 are followed.
  • the motor drive device 1 can change the function assignment of at least some of the input / output terminals or the operation input terminals, thereby reducing the number of input / output terminals and operation input terminals. Without increasing, it is possible to widen the range of function selection and improve convenience and versatility. Therefore, in the case of a motor driving device that includes the input / output end or the operation input end and can be driven by a so-called stand alone, that is, without a host device that performs overall control of a large number of motors.
  • the motor drive device can be suitably implemented.
  • the switch parameter corresponding to the flag 0 is not stored in the EEPROM 12, and the flag in the tables T4 to T8 is set to 0 when the CPU 11 reads the setting. If this is the case, the settings of the DIP switches DIP1 and DIP2 and the rotary switches RS1, RS2 and RS3 are confirmed directly, but the motor drive device 1 is configured so that the settings are read in advance and stored in the EEPROM 12. Also good.
  • the CPU 11 since the CPU 11 is connected to an external information processing apparatus via the communication connector CN7 and the control parameter is changed using the GUI function of the information processing apparatus, the input of the photocouplers PC1 and PC3 It is easy to change the function assignment, and it is also easy to enable / disable the functions of the DIP switches DIP1 and DIP2 and the rotary switches RS1, RS2, and RS3 that are minute parts for operation input.
  • the motor drive device having such a configuration can easily perform fine adjustments (setting of the control parameters) for each customer by using the GUI screen as a shipment inspection screen of the motor drive device 1. Can do.
  • roller conveyor device a relatively small-scale roller roller is driven by a motor drive device that is associated in advance. , Several, or in some cases, several tens or more. For this reason, by configuring the roller conveyor device by including the motor driving device 1 as described above and a conveyor roller whose internal motor is driven by the motor driving device 1, the roller conveyor device having such a configuration is As described above, the function assignment of the input / output terminal or the operation input terminal can be easily changed, which is preferable.
  • a motor drive device is a motor drive device including a drive unit that drives a motor associated with the own device in advance based on a plurality of items of control parameters set in the own device.
  • the input / output end or the operation input end of each of the items and the control parameters of each of the items are stored, and a plurality of controls are performed on the control parameters of the items relating to at least a part of the one or more input / output ends and the operation input end.
  • a storage unit that stores parameters
  • a selection unit that selectively selects the control parameters of the items related to the at least part of the storage unit from among the plurality of control parameters
  • the drive unit includes: Among the control parameters for each item necessary for driving the motor, items for which the plurality of control parameters exist are selected by the selection unit. Using a control parameter to drive the motor.
  • control parameters that are the basis of the drive can be changed.
  • the drive unit drives the motor based on control parameters of various items stored in the storage unit, for example, motor characteristics, sensor input / output, operation input / output, and control mode.
  • control parameters of each item stored in the storage unit one or a plurality of input / output terminals (I / O including sensor input / output) and operation input terminals are items related to at least a part.
  • control parameters a plurality of types of control parameters are stored and are alternatively selected by the selection unit. That is, the function assignment of at least a part of the one or more input / output terminals and the operation input terminal can be changed.
  • the input end corresponding to the forward / reverse rotation direction switching for the high / low input corresponds to the 1st / 2nd speed shift.
  • the motor driving device having such a configuration can expand the range of function selection and improve convenience and versatility without increasing the number of input / output terminals and operation input terminals.
  • At least a part of the one or more input / output terminals and the operation input terminal is an input terminal by a connector.
  • the motor drive device having such a configuration an input end by a connector is used as the partial input / output end or operation input end capable of changing the function assignment.
  • the motor drive device having such a configuration is to attach a switch that is easy to operate, such as a slightly larger switch, or pull out the operation part to another place with a cable. Therefore, it is possible to easily switch functions with different assignments.
  • At least a part of the one or more input / output terminals and the operation input terminal is a photosensor input and a photocoupler input that detects a switch operation. Either one.
  • the degree of freedom of components connected to the connector is increased by being a photocoupler input. Is preferred.
  • the selection unit is connected to an external information processing device via an input / output terminal for communication, and uses the GUI function of the information processing device.
  • the control parameter is changed.
  • the selection unit is connected to an external information processing device such as a personal computer via a communication input / output terminal, and uses the GUI function of the information processing device.
  • the control parameter can be changed. Therefore, the motor drive device having such a configuration can easily change the function assignment to the input / output terminals such as the photocoupler input and the operation input terminals such as the dip switch and the rotary switch.
  • the GUI screen is used as a shipment inspection screen of the motor drive device.
  • the motor drive device having such a configuration since the setting state of the control parameter can be confirmed on the GUI screen, the setting state of the input / output terminal and the operation input terminal can be easily confirmed. It is particularly suitable for the case of minute parts such as the dip switch and rotary switch. Therefore, the motor drive device having such a configuration can easily perform fine adjustments (setting of the control parameters) for each customer by using the GUI screen as a shipment inspection screen of the motor drive device. .
  • a roller conveyor apparatus includes any of the above-described motor driving apparatuses and a conveyor roller in which a built-in motor is driven by the motor driving apparatus.
  • roller conveyor device there are several conveyor rollers and motor drive device pairs (sets), and in some cases, several tens or more. Therefore, in the roller conveyor device having such a configuration, it is preferable that the motor drive device can easily change the function assignment of the input / output end or the operation input end as described above.

Abstract

In the motor drive device and the roller conveyer device utilizing the motor drive device pertaining to the present invention, multiple control parameters are stored in, for example, an EEPROM (12) with regard to control parameters for at least some of items pertaining to one or multiple input/output terminals and operation input terminals, and the control parameters for said some items are enabled to be alternatively selected from among the multiple control parameters, whereby the motor (14) is driven by using said selected control parameter. Thus, the motor drive device and the roller conveyer device utilizing the motor drive device pertaining to the present invention enables a function selection range to be expanded, and convenience and versatility to be improved, without increasing the number of the input/output terminals and the operation input terminals.

Description

モータ駆動装置およびこれを用いたローラコンベア装置Motor drive device and roller conveyor device using the same
 本発明は、モータを駆動するモータ駆動装置およびこれを用いたローラコンベア装置に関し、例えばローラコンベア装置に好適に用いられるDCブラシレスモータのモータ駆動装置および該ローラコンベア装置に関する。 The present invention relates to a motor driving device for driving a motor and a roller conveyor device using the motor driving device, for example, a DC brushless motor driving device suitably used for the roller conveyor device and the roller conveyor device.
 ローラコンベア装置は、生産現場等で多数使用されており、現在では、そのモータ駆動装置には、対応するローラコンベア装置を単純に定速回転させる機能だけでなく、多くの付加機能が搭載されている。その付加機能は、例えば、ソフトスタート/ストップ、センサ連動(搬送物を連続搬送するトレインモード、そのトレインモードでの間隔を調整するギャップトレインモード等)、および、変速段切換え等、多様であり、またその設定も煩雑である。また、モータ駆動装置に対応する(駆動すべき)モータの特性は、1度設定すると、通常、設定の変更は、必要ない。しかしながら、希に、モータを交換したり、ラインを作り替えて、前記モータ駆動装置に対応するモータが変わったりした場合に、その設定の変更が必要となり、その設定項目が多く、設定変更は、煩雑である。 A large number of roller conveyor devices are used at production sites and the like. At present, the motor drive device has many additional functions in addition to the function of simply rotating the corresponding roller conveyor device at a constant speed. Yes. There are various additional functions such as soft start / stop, sensor interlocking (train mode for continuously transporting the object to be transported, gap train mode for adjusting the interval in the train mode, etc.), and gear position switching. The setting is also complicated. In addition, once the characteristics of the motor corresponding to (to be driven by) the motor driving device are set, it is usually unnecessary to change the setting. However, in rare cases, when the motor is changed or the line is reconfigured and the motor corresponding to the motor drive device is changed, it is necessary to change the setting, and there are many setting items. It is complicated.
 前記ローラコンベア装置のモータ駆動装置は、例えば特許文献1で示されている。ここで、例えばその特許文献1の図4で示すように、大規模な生産ライン等で、多数のモータを統括制御する上位装置が存在する場合には、その上位装置から各モータの駆動装置には、適宜生産状況等に応じた適切な制御パラメータ値が設定され、前記上位装置との通信インタフェイスを除き、入出力端や操作入力端が設けられない場合がある。 A motor driving device of the roller conveyor device is disclosed in Patent Document 1, for example. Here, for example, as shown in FIG. 4 of Patent Document 1, when there is a host device that performs overall control of a large number of motors in a large-scale production line or the like, from the host device to the drive device of each motor. In some cases, an appropriate control parameter value corresponding to the production status or the like is set as appropriate, and no input / output terminal or operation input terminal is provided except for the communication interface with the host device.
 しかしながら、例えばその特許文献1の図5や図2で示すように、主に単独で使用され、すなわちそのような上位装置無しに所謂スタンドアローンで駆動することができるモータ駆動装置の場合には、前記操作入力端となるディップスイッチやロータリースイッチ等が搭載され、また前記入出力端となるコネクタ等が搭載され、作業者は、それらの入出力端や操作入力端を用いて1台ずつ操作することによって、パラメータを変更する必要があった。 However, as shown in FIG. 5 and FIG. 2 of Patent Document 1, for example, in the case of a motor drive device that is mainly used alone, that is, can be driven by a so-called stand-alone without such a host device, A dip switch, a rotary switch, or the like serving as the operation input terminal is mounted, and a connector or the like serving as the input / output terminal is mounted. The operator operates the input / output terminal or the operation input terminal one by one. There was a need to change the parameters.
 したがって、上述の従来技術では、パラメータの変更に手間が掛かってしまう。また、多くの制御パラメータを変更可能にするには、前記入出力端や操作入力端の数を増加する必要がある。 Therefore, in the above-described conventional technology, it takes time to change the parameters. Further, in order to be able to change many control parameters, it is necessary to increase the number of input / output terminals and operation input terminals.
特許第3632060号公報Japanese Patent No. 3632060
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、入出力端や操作入力端の数を無闇に増加することなく、機能選択の幅を広げることができるモータ駆動装置およびそれを用いるローラコンベア装置を提供することである。 The present invention has been made in view of the above circumstances, and its object is to provide a motor drive device capable of expanding the range of function selection without increasing the number of input / output terminals and operation input terminals. And it is providing the roller conveyor apparatus using the same.
 本発明にかかるモータ駆動装置およびこのモータ駆動装置を用いたローラコンベア装置では、1または複数の入出力端および操作入力端の内の少なくとも一部に関する項目の制御パラメータについて、複数の制御パラメータが予め記憶されており、前記少なくとも一部に関する項目の制御パラメータは、前記複数の制御パラメータの中から択一的に選択可能とされ、この選択された制御パラメータを使用してモータの駆動が行われる。したがって、本発明にかかるモータ駆動装置およびこれを用いたローラコンベア装置は、入出力端や操作入力端の数を無闇に増加することなく、機能選択の幅を広げ、利便性および汎用性を向上することができる。 In the motor drive device according to the present invention and the roller conveyor device using the motor drive device, a plurality of control parameters are set in advance for the control parameters of items relating to at least a part of one or more input / output terminals and operation input terminals. The control parameters of the items related to at least a part of the stored parameters can be selected alternatively from the plurality of control parameters, and the motor is driven using the selected control parameters. Therefore, the motor drive device according to the present invention and the roller conveyor device using the motor drive device expand the range of function selection and improve convenience and versatility without increasing the number of input / output terminals and operation input terminals. can do.
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
実施形態にかかるモータ駆動装置の筐体を外して示すモータ駆動装置の回路基板における概略正面図である。It is a schematic front view in the circuit board of the motor drive device shown by removing the housing of the motor drive device according to the embodiment. 図1に示すモータ駆動装置における運転用のコネクタから外側の配線例を模式的に示す図である。It is a figure which shows typically the example of wiring outside from the connector for a driving | operation in the motor drive device shown in FIG. 図1に示すモータ駆動装置における制御マイコン回りのインタフェイスを具体的に示す電気回路図である。FIG. 2 is an electric circuit diagram specifically showing an interface around a control microcomputer in the motor drive device shown in FIG. 1. 図1に示すモータ駆動装置の電気的構成を示すブロック図である。FIG. 2 is a block diagram showing an electrical configuration of the motor drive device shown in FIG. 1. 前記制御マイコンのCPUの内容を表示したチェッカー画面の一例を示す図である。It is a figure which shows an example of the checker screen which displayed the content of CPU of the said control microcomputer. モータパラメータのチェッカー画面の一例を示す図である。It is a figure which shows an example of the checker screen of a motor parameter.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。また、本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. Further, in this specification, when referring generically, it is indicated by a reference symbol without a suffix, and when referring to an individual configuration, it is indicated by a reference symbol with a suffix.
 図1は、実施形態にかかるモータ駆動装置の筐体を外して示すモータ駆動装置の回路基板における概略正面図である。このモータ駆動装置1は、ローラコンベア装置において、多数のコンベアローラが取付けられるI型またはH型のフレームにおける所定の凹部に収納される。そのため、このモータ駆動装置1は、長手状であり、基板2の両短辺には、コネクタCN1~CN6が搭載されるとともに、基板2上には、制御マイコン10、ディップスイッチDIP1、DIP2、ロータリースイッチRS1、RS2、RS3、コネクタCN7および所定の素子等の、モータ駆動装置1として機能するために必要な多数の電子部品が搭載される。 FIG. 1 is a schematic front view of a circuit board of a motor driving device shown with a casing of the motor driving device according to the embodiment removed. This motor drive device 1 is housed in a predetermined recess in an I-type or H-type frame to which a number of conveyor rollers are attached in a roller conveyor device. Therefore, the motor driving device 1 has a long shape, and connectors CN1 to CN6 are mounted on both short sides of the board 2. On the board 2, a control microcomputer 10, dip switches DIP1, DIP2, rotary A large number of electronic components necessary to function as the motor driving device 1 such as the switches RS1, RS2, RS3, the connector CN7, and predetermined elements are mounted.
 コネクタCN1は、前記コンベアローラに内蔵されるDCブラシレスモータの駆動用であり、3相の駆動電流や制御電源の出力用の端子(ピン)、および、回転位置の信号であるホールIC信号をホールICから受信するための端子(ピン)を備えている。このコネクタCN1における各ピンに対する機能割り当ては、表1に示す通りである。すなわち、コネクタCN1における各ピンには、表1に示す各機能がそれぞれ予め割り当てられている。 The connector CN1 is for driving a DC brushless motor built in the conveyor roller, and has a hall IC signal as a rotation position signal and a terminal (pin) for output of a three-phase drive current and control power. A terminal (pin) for receiving from the IC is provided. The function assignment for each pin in the connector CN1 is as shown in Table 1. That is, each function shown in Table 1 is assigned in advance to each pin in connector CN1.
 なお、コンベアローラには、通常、モータによって駆動される駆動用のローラと、該駆動用のローラによって、あるいは、該駆動用のローラによって運動する搬送物の通過によって回る従動用のロータとがある。また、モータ内蔵型の駆動用のローラは、公知の構造で構成されており、例えば、日本国の特開2006-027849号公報や特開2006-027860号公報等に開示されている。 The conveyor roller usually includes a driving roller driven by a motor and a driven rotor that is rotated by the driving roller or by the passage of a conveyed product that is moved by the driving roller. . Further, the motor built-in type driving roller has a known structure, and is disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-027849 and Japanese Patent Application Laid-Open No. 2006-027860.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 コネクタCN2は、このモータ駆動装置1の電源入力用であり、各ピンに対する機能割り当ては、表2に示す通りである。 The connector CN2 is for power input of the motor drive device 1, and the function assignment to each pin is as shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 コネクタCN3は、前記コンベアローラの運転制御用の入出力端であり、機能割り当ては、表3に示す通りである。このコネクタCN3および次のコネクタCN4については、後に詳述する。 Connector CN3 is an input / output terminal for operation control of the conveyor roller, and function assignment is as shown in Table 3. The connector CN3 and the next connector CN4 will be described in detail later.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 コネクタCN4は、前記コンベアローラ上を搬送される搬送物の通過を検出するフォトセンサ等のセンサ用であり、各ピンに対する機能割り当ては、表4に示す通りである。 Connector CN4 is for a sensor such as a photosensor that detects the passage of a conveyed product conveyed on the conveyor roller, and the function assignment for each pin is as shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 コネクタCN5,CN6は、隣接するモータ駆動装置1とのセンサ信号送受信用であり、各ピンに対する機能割り当ては、表5に示す通りである。このコネクタCN5,CN6が、基板2に設けられることによって、前述のトレインモード等のセンサ連動が可能になり、またそれぞれ基板2の各短辺に設けられることで、前記隣接するモータ駆動装置1とのケーブル引き回しが容易になる。 Connectors CN5 and CN6 are for sensor signal transmission / reception with the adjacent motor drive device 1, and the function assignment to each pin is as shown in Table 5. By providing the connectors CN5 and CN6 on the board 2, the above-described train mode or the like can be interlocked with each other, and each of the connectors CN5 and CN6 is provided on each short side of the board 2 so that the adjacent motor driving device 1 can be connected. It becomes easy to route the cable.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 コネクタCN7は、パーソナルコンピュータ等の外部の情報処理装置との通信用のコネクタである。コネクタCN7は、通常は、前記筐体に覆われており、一方、当該モータ駆動装置1の後述する出荷検査時や、設置後に、入出力端および操作入力端の内の少なくとも一部に関する項目の制御パラメータの書き替えの必要が生じた場合等に、前記筐体が外され、コネクタCN7は、前記外部の情報処理装置に接続される。したがって、後述するようにして、メーカにおいて、顧客向けの設定が成されて出荷された後は、前記筐体が外されて、このコネクタCN7が使用される機会は少なく、前述のような上位装置に常時接続されたままのモータ駆動装置とは異なり、このモータ駆動装置1は、所謂スタンドアローンで動作する。 Connector CN7 is a connector for communication with an external information processing apparatus such as a personal computer. The connector CN7 is normally covered with the casing, and on the other hand, items related to at least a part of the input / output end and the operation input end after shipping inspection of the motor driving device 1 described later or after installation. When the control parameter needs to be rewritten, the housing is removed, and the connector CN7 is connected to the external information processing apparatus. Therefore, as described later, after the manufacturer sets and ships for the customer, the housing is removed and the connector CN7 has few opportunities to be used. Unlike the motor drive device that is always connected to the motor drive device 1, the motor drive device 1 operates in a so-called stand-alone manner.
 図2は、図1に示すモータ駆動装置における運転用のコネクタCN3から外側の配線例を模式的に示す図である。前記表3に示す通り、このコネクタCN3のピン1(ピン番号1の端子)は、コモン入力(GND)である。そのピン1とピン2との間にスイッチS1が接続されると、そのスイッチS1は、後述する通り、基本設定(デフォルト設定)では、運転/停止を制御するものとなり、制御マイコン10がそのように認識する。同様に、前記ピン1とピン3との間にスイッチS2が接続されると、そのスイッチS2は、基本設定では、正転/逆転を制御するものとなる。 FIG. 2 is a diagram schematically showing an example of wiring outside the connector CN3 for operation in the motor drive device shown in FIG. As shown in Table 3, pin 1 (terminal with pin number 1) of this connector CN3 is a common input (GND). When the switch S1 is connected between the pin 1 and the pin 2, the switch S1 controls the operation / stop in the basic setting (default setting) as will be described later, and the control microcomputer 10 does so. To recognize. Similarly, when a switch S2 is connected between the pin 1 and the pin 3, the switch S2 controls forward / reverse rotation in the basic setting.
 一方、ピン4は、エラー信号出力用であり、電流吸い込み用のNPN出力の場合、図2(A)で示すように、発光ダイオードD1が、DC24Vが給電されるコネクタCN2のピン1と該ピン4との間に接続され、電流を吸い込むことで発光ダイオードD1が点灯される。また、ピン4が電流流し出し用のPNP出力の場合、図2(B)で示すように、発光ダイオードD1が、接地(GND、0V)されるコネクタCN2のピン2と該ピン4との間に接続され、電流を流し出すことで発光ダイオードD1が点灯される。この発光ダイオードD1の点滅の態様によって、エラーの態様が表示される。NPN出力とPNP出力との切換えは、制御マイコン10の自動認識で行われる。 On the other hand, the pin 4 is for error signal output. In the case of NPN output for current sink, as shown in FIG. 2A, the light emitting diode D1 is connected to the pin 1 of the connector CN2 to which DC24V is supplied and the pin. 4, the light emitting diode D <b> 1 is turned on by sucking current. When the pin 4 is a PNP output for current discharge, as shown in FIG. 2B, the light emitting diode D1 is connected between the pin 2 and the pin 4 of the connector CN2 grounded (GND, 0V). And the light emitting diode D1 is turned on by supplying a current. The mode of error is displayed by the mode of blinking of the light emitting diode D1. Switching between the NPN output and the PNP output is performed by automatic recognition of the control microcomputer 10.
 コネクタCN3のピン5は、制御マイコン10から、速度信号としてのパルスを出力する端子である。コネクタCN3のピン6は、コネクタCN4から入力されたセンサ信号を出力する端子である。コネクタCN3のピン7は、ディップスイッチDIP1のスイッチSW2がOFF(低速)で、かつロータリースイッチRS1の目盛りが最低の0の状態で有効となって、制御マイコン10が認識し、該制御マイコン10は、外部電源E1からの入力電圧(0~10V)に対応した速度で、コンベアローラのモータを駆動する。 Pin 5 of connector CN3 is a terminal for outputting a pulse as a speed signal from control microcomputer 10. Pin 6 of connector CN3 is a terminal for outputting a sensor signal input from connector CN4. The pin 7 of the connector CN3 becomes effective when the switch SW2 of the DIP switch DIP1 is OFF (low speed) and the scale of the rotary switch RS1 is at the minimum 0, and the control microcomputer 10 recognizes the pin 7 of the connector CN3. The motor of the conveyor roller is driven at a speed corresponding to the input voltage (0 to 10 V) from the external power source E1.
 図3は、図1に示すモータ駆動装置における制御マイコン10回りのインタフェイスを具体的に示す電気回路図である。この図3においては、モータ入出力用のコネクタCN1および外部の情報処理装置接続用のコネクタCN7に関連する部分は、省略されている。コネクタCN2からのDC24Vの電源入力は、ノイズ除去用のコンデンサC1、平滑コンデンサC2、ヒューズFSおよびコンデンサC3を介して入力され、DC-DCコンバータ21において5Vに安定化され、制御マイコン10を始めとして、基板2上の各回路に供給される。 FIG. 3 is an electric circuit diagram specifically showing an interface around the control microcomputer 10 in the motor driving apparatus shown in FIG. In FIG. 3, portions relating to the motor input / output connector CN1 and the external information processing apparatus connection connector CN7 are omitted. The DC24V power input from the connector CN2 is input via a noise removing capacitor C1, a smoothing capacitor C2, a fuse FS and a capacitor C3, and is stabilized at 5V by the DC-DC converter 21. , And supplied to each circuit on the substrate 2.
 隣接するモータ駆動装置1とのセンサ信号送受信用のコネクタCN5,CN6は、表5で示すように、ピン4がコモン(GND)であり、信号用の各ピン1~3に対応する各ラインL1には、それぞれ、プルアップ用の抵抗R1、ノイズ除去用のコンデンサC11および過電圧吸収用のツェナダイオードZD1が接続されるとともに、入出力の抵抗R2が介在されている。なお、既製チップ部品を使用しているため、この図3には、不使用素子(例えば、抵抗R1を4つ備えるチップ部品の内の1つの抵抗素子)も示されている。 As shown in Table 5, the connectors CN5 and CN6 for transmitting and receiving sensor signals with the adjacent motor drive device 1 have a common pin (GND), and each line L1 corresponding to each of the signal pins 1 to 3 is shown in Table 5. Each is connected to a pull-up resistor R1, a noise removing capacitor C11, and an overvoltage absorbing Zener diode ZD1 and an input / output resistor R2. Since an off-the-shelf chip component is used, FIG. 3 also shows a non-use element (for example, one resistance element among chip components having four resistors R1).
 コネクタCN4は、前述のようにフォトセンサ等のセンサ用であり、電源出力用のピン1、3間には、コネクタCN2からのDC24Vが供給され、ピン2からの信号入力は、フォトカプラPC1を介して制御マイコン10に与えられる。 As described above, the connector CN4 is for a sensor such as a photosensor. Between the pins 1 and 3 for power output, DC24V from the connector CN2 is supplied, and the signal input from the pin 2 is connected to the photocoupler PC1. Via the control microcomputer 10.
 運転用のコネクタCN3において、表3に示す通り、ピン1は、コモン入力(GND)であり、スイッチS1、S2入力用のピン2、3は、フォトカプラPC2、PC3を介して制御マイコン10に接続されている。一方、制御マイコン10からの信号出力用のピン4、6には、2段のバッファ回路B1、B2を介して、ハイ/オープンの出力が与えられる。また、ピン5は、モータの速度信号(パルス)を出力するものであり、制御マイコン10からのパルスが、バッファ回路B3を介して、ロー/オープンで与えられる。ピン7は、外部電源E1からの入力電圧を受け付けるもので、入力電圧は、ノイズ除去用のコンデンサC12から入力抵抗R11を介してコンデンサC13に与えられ、制御マイコン10に取り込まれる。コンデンサC13には並列に、放電抵抗R13および過電圧防止用のツェナダイオードZD2が接続されている。 In the connector CN3 for operation, as shown in Table 3, pin 1 is a common input (GND), and pins 2 and 3 for switch S1 and S2 input are connected to the control microcomputer 10 via photocouplers PC2 and PC3. It is connected. On the other hand, high / open outputs are given to the signal output pins 4 and 6 from the control microcomputer 10 via the two-stage buffer circuits B1 and B2. Further, the pin 5 outputs a motor speed signal (pulse), and a pulse from the control microcomputer 10 is given low / open via the buffer circuit B3. The pin 7 receives an input voltage from the external power source E1, and the input voltage is given from the noise removing capacitor C12 to the capacitor C13 via the input resistor R11 and is taken into the control microcomputer 10. In parallel with the capacitor C13, a discharge resistor R13 and an overvoltage-preventing Zener diode ZD2 are connected.
 図1に戻って、ディップスイッチDIP1は、10極のスイッチSW1~SW10を備えており、ディップスイッチDIP2は、6極のスイッチSW11~SW16を備えている。表6には、ディップスイッチDIP1の基本設定の機能割り付けが示されている。 Returning to FIG. 1, the DIP switch DIP1 includes 10-pole switches SW1 to SW10, and the DIP switch DIP2 includes 6-pole switches SW11 to SW16. Table 6 shows the function assignment of basic settings of the DIP switch DIP1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 スイッチSW1は、モータの回転方向を設定するものであり、モータへのケーブル入力側から見て時計回りを正転、反時計回りを逆転としている。スイッチSW2は、モータの回転速度を、高速と低速との2段で設定するものである。スイッチSW3は、コネクタCN4に接続されるフォトセンサの出力に対して、該フォトセンサが搬送物で遮蔽されたダーク側を検知とするか、搬送物で覆われていないライト側を検知とするかを設定するものである。スイッチSW4は、エラーによる停止後の復帰条件を、自動と手動とのどちらとするかを設定するものである。スイッチSW5は、センサ検知結果に応答した動作を示すもので、センサ検知でモータを駆動するか、停止するかを設定するものである。 The switch SW1 sets the rotation direction of the motor, and when viewed from the cable input side to the motor, the clockwise direction is forward rotation and the counterclockwise direction is reverse direction. The switch SW2 sets the rotational speed of the motor in two stages, high speed and low speed. Whether the switch SW3 detects the dark side where the photo sensor is shielded by the conveyed object or the light side not covered by the conveyed object with respect to the output of the photo sensor connected to the connector CN4. Is set. The switch SW4 sets whether the return condition after stopping due to an error is automatic or manual. The switch SW5 indicates an operation in response to the sensor detection result, and sets whether to drive or stop the motor by sensor detection.
 スイッチSW6~SW8は、モータの種類を設定するもので、2=8通りのモータの選択を可能にしている。具体的な設定の態様は、表7に示す通りである。 The switches SW6 to SW8 set the type of motor, and 2 3 = 8 types of motors can be selected. Specific setting modes are as shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 スイッチSW9、SW10は、ブレーキの方式を設定するもので、表8に示す通り、発電電力を消費することで制動を行う回生ブレーキ、その回生電流が所定の電流値、例えば0.5Aとなるように制御するサーボロック、および、ブレーキ無しのフリーの3通りである。 The switches SW9 and SW10 are used to set the brake system. As shown in Table 8, the regenerative brake that brakes by consuming the generated power, and the regenerative current becomes a predetermined current value, for example, 0.5A. There are three types of servo lock that controls the motor and free with no brake.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 一方、表9には、ディップスイッチDIP2の基本設定の機能割り付けが示されている。 On the other hand, Table 9 shows the function assignment of basic settings of the DIP switch DIP2.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 スイッチSW11は、ZPA(ゼロ・プレッシャー・アキュームレーション)のモードを設定するもので、搬送物を単体で扱うシングルモードと、所定間隔で連続しているものとして扱うトレインモードとに設定可能である。スイッチSW12は、前記ZPA機能を使用するか否かを設定するもので、前記ZPA機能を使用しない標準モードでは、ローラコンベア装置(コンベアローラのDCブラシレスモータ)は、連続運転となる。 The switch SW11 sets a ZPA (zero pressure accumulation) mode, and can be set to a single mode in which a transported object is handled alone and a train mode in which it is handled as being continuous at a predetermined interval. The switch SW12 sets whether or not to use the ZPA function. In the standard mode in which the ZPA function is not used, the roller conveyor device (DC brushless motor of the conveyor roller) is continuously operated.
 スイッチSW13は、共通のセンサを使用した同一運転を行うか否かの切換えを行うものである。そして、このスイッチSW13がONに設定されると、一方のモータ駆動装置は、コネクタCN4から入力されたセンサからの信号を、コネクタCN5またはCN6から、隣接する他方のモータ駆動装置に転送して、隣接する他方のモータ駆動装置と同期した動作を行うことになり、OFFに設定されると、モータ駆動装置は、単体での通常運転を行う。 The switch SW13 switches whether to perform the same operation using a common sensor. When this switch SW13 is set to ON, one motor drive device transfers the signal from the sensor input from the connector CN4 from the connector CN5 or CN6 to the other adjacent motor drive device, An operation synchronized with the other adjacent motor drive device is performed, and when set to OFF, the motor drive device performs a normal operation alone.
 スイッチSW14は、センサ通過後にモータを動かしている時間を設定するもので、0.5秒と1秒とに切換え可能である。スイッチSW15は、ギャップトレインモードを使用するか否かを選択するものであり、ギャップトレインモードを使用しないか、或いはギャップ0.5秒で使用するかに切換え可能である。スイッチSW16は、非常停止等でモータの駆動を停止した後、運転を開始する際に、所定時間空回転させるか否かを選択するものである。 The switch SW14 sets the time during which the motor is moved after passing through the sensor, and can be switched between 0.5 seconds and 1 second. The switch SW15 selects whether or not to use the gap train mode, and can be switched between not using the gap train mode or using the gap train in 0.5 seconds. The switch SW16 selects whether or not to idle for a predetermined time when the operation is started after stopping the driving of the motor by an emergency stop or the like.
 次に、ロータリースイッチRS1、RS2、RS3について説明する。ロータリースイッチRS1、RS2、RS3は、基本設定では、それぞれ、モータ回転速度、ソフトスタート時間およびソフトストップ時間を設定するものである。表10~表12は、各ロータリースイッチRS1、RS2、RS3の16ステップの設定値を示すものである。 Next, the rotary switches RS1, RS2, and RS3 will be described. The rotary switches RS1, RS2, and RS3 are for setting the motor rotation speed, the soft start time, and the soft stop time, respectively, in the basic settings. Tables 10 to 12 show the set values of 16 steps for each rotary switch RS1, RS2, and RS3.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 前述のように、ロータリースイッチRS1の基本設定は、ディップスイッチDIP1のスイッチSW2と組み合わせて使用され、スイッチSW2の設定において、高速と低速とに切換え可能である。そして、目盛りが大きくなる程に高速に設定され、スイッチSW2がOFFの低速設定において、ディップスイッチDIP1の目盛りが最小の0である場合には、モータの回転速度は、コネクタCN3のピン7への入力電圧に比例して制御される。なお、表10では、種類(特性)の異なるモータ4台分の回転速度の設定値を示しているが、このモータ駆動装置1に予めデフォルト設定されるモータの特性は、8種類であり、この表10では4台分が省略されている。前記デフォルト設定されるモータの特性については、後述する。 As described above, the basic setting of the rotary switch RS1 is used in combination with the switch SW2 of the dip switch DIP1, and can be switched between high speed and low speed in the setting of the switch SW2. When the scale is set to high speed and the switch SW2 is set to low speed and the scale of the DIP switch DIP1 is 0 which is the minimum, the rotation speed of the motor is set to the pin 7 of the connector CN3. It is controlled in proportion to the input voltage. In addition, in Table 10, although the setting value of the rotational speed for four motors of different types (characteristics) is shown, there are eight types of motor characteristics that are preset in the motor driving device 1 in advance. In Table 10, four units are omitted. The default motor characteristics will be described later.
 表11および表12は、ソフトスタート時間およびソフトストップ時間を設定するものである。目盛りが大きくなる程に、ソフトスタート時間およびソフトストップ時間のそれぞれは、長時間、すなわち、スタートおよびストップのそれぞれは、ソフトに設定される。言い換えれば、ソフトスタートでは、目盛りが大きくなる程に、停止速度から目標速度に至るまで長時間掛けられ、緩やかに増速するように、モータ駆動装置1は、モータを制御する。また、ソフトストップでは、目盛りが大きくなる程に、ストップ開始時の速度から停止速度に至るまで長時間掛けられ、緩やかに減速するように、モータ駆動装置1は、モータを制御する。 Table 11 and Table 12 set the soft start time and soft stop time. As the scale becomes larger, each of the soft start time and soft stop time is set to a longer time, that is, each of the start and stop is set to be soft. In other words, in the soft start, the motor drive device 1 controls the motor so that the scale increases and the speed is gradually increased from the stop speed to the target speed as the scale increases. Further, in the soft stop, the motor driving device 1 controls the motor so that the scale becomes larger as the scale becomes larger, and it is applied for a long time from the speed at the start of the stop to the stop speed.
 図4は、図1に示すモータ駆動装置の電気的構成を示すブロック図である。この図4は、制御マイコン10をより詳しく示すものであり、この図4において、基板2上の多くの補助的な搭載部品は、省略されている。制御マイコン10は、この図4では、CPU(Central Processing Unit)11と、EEPROM(Electrically Erasable Programmable Read Only Memory)12とを備えて示されているが、入出力回路、アナログ/デジタル変換回路、ROM(Read Only Memory)、RAM(Random Access Memory)等の通常のマイクロコンピュータに内蔵されている補助的な回路も内蔵しているものとする。 FIG. 4 is a block diagram showing an electrical configuration of the motor drive device shown in FIG. FIG. 4 shows the control microcomputer 10 in more detail. In FIG. 4, many auxiliary mounting parts on the substrate 2 are omitted. In FIG. 4, the control microcomputer 10 includes a CPU (Central Processing Unit) 11 and an EEPROM (Electrically Erasable Programmable Read Only Memory) 12, but an input / output circuit, an analog / digital conversion circuit, a ROM It is assumed that auxiliary circuits such as (Read Only Memory), RAM (Random Access Memory), etc. that are built in a normal microcomputer are also incorporated.
 CPU11は、EEPROM12での設定状態やセンサ入力等に応答して、インバータ13を介して、コンベアローラのモータ14を回転制御する。このCPU11は、一例として請求の範囲における選択部に対応し、またインバータ13と合わせて駆動部に対応する。その駆動のための3相の信号は、表1に示す通り、コネクタCN1のピン3~5から出力される。一方、モータ14には、コネクタCN1のピン2、1から+5Vの電源電圧が与えられており、これによってモータ11からコネクタCN1のピン6~8には、3相の各ホールICからの位置検出結果が入力される。これに応答して、CPU11は、モータ14の回転速度制御や停止位置制御を行う。 The CPU 11 controls the rotation of the motor 14 of the conveyor roller via the inverter 13 in response to the setting state in the EEPROM 12 and sensor input. The CPU 11 corresponds to the selection unit in the claims as an example, and corresponds to the drive unit together with the inverter 13. As shown in Table 1, three-phase signals for driving are output from pins 3 to 5 of connector CN1. On the other hand, the motor 14 is supplied with a power voltage of + 5V from pins 2 and 1 of the connector CN1, so that the positions of the motor 11 to the pins 6 to 8 of the connector CN1 are detected from the three-phase Hall ICs. The result is entered. In response to this, the CPU 11 performs rotation speed control and stop position control of the motor 14.
 また、一例として請求の範囲における記憶部に対応するEEPROM12は、テーブルT1~T9を備えている。テーブルT2は、フォトカプラPC3、すなわちコネクタCN3のピン3の入力に対する動作態様を記憶するものである。そして、該テーブルT2のフラグが0に設定されていると、CPU11は、ピン3からの入力に対して、図2で示すようなデフォルト設定の回転切換え動作を行い、該ピン3の入力がONで正転、OFFで逆転となる。これに対して、前記テーブルT2のフラグが、0を除く他の値に設定されていると、CPU11は、前記パーソナルコンピュータ等の外部の情報処理装置から予め設定された動作を行い、この図4に示す場合、フラグが1に設定されているとピン3の入力が2段の変速段の切換え動作となり、フラグが2に設定されているとピン3の入力がブレーキを有効とするか無効とするかの切換え動作となり、フラグが3に設定されているとピン3の入力がサーボロックするか否かの設定となり、フラグが4および5に設定されているとピン3の入力がパルス運転の機能設定となり、フラグが6に設定されているとピン3の入力がオートスタートするか否かの設定となる。このようにテーブルT2のフラグは、コネクタCN3のピン3の入力に対する動作態様を表し、コネクタCN3のピン3における基本設定から変更され、コネクタCN3のピン3に変更設定される制御パラメータの種類を示す識別子である。 Further, as an example, the EEPROM 12 corresponding to the storage unit in the claims includes tables T1 to T9. The table T2 stores an operation mode for the input of the pin 3 of the photocoupler PC3, that is, the connector CN3. When the flag of the table T2 is set to 0, the CPU 11 performs the default setting rotation switching operation as shown in FIG. 2 for the input from the pin 3, and the input of the pin 3 is turned on. Rotate in the forward direction and reverse in the OFF position. On the other hand, when the flag of the table T2 is set to a value other than 0, the CPU 11 performs a preset operation from an external information processing apparatus such as the personal computer. When the flag is set to 1, the input of pin 3 is a two-speed shift operation, and when the flag is set to 2, the input of pin 3 enables or disables the brake. When the flag is set to 3, it is set whether or not the pin 3 input is servo-locked. When the flag is set to 4 and 5, the pin 3 input is pulse-driven. When the function is set and the flag is set to 6, it is set whether or not the input of pin 3 is auto-started. As described above, the flag of the table T2 represents an operation mode with respect to the input of the pin 3 of the connector CN3, and indicates the type of control parameter changed from the basic setting in the pin 3 of the connector CN3 and changed to the pin 3 of the connector CN3. It is an identifier.
 同様に、テーブルT3は、フォトカプラPC1、すなわちコネクタCN4のピン2の入力に対する動作態様を記憶するものである。そして、該テーブルT3のフラグが0に設定されていると、前記ピン2は、デフォルト設定のセンサ入力となる。これに対して、テーブルT2と同様に、該テーブルT3のフラグが1に設定されているとピン2の入力が2段の変速段の切換え動作となり、フラグが2に設定されているとピン2の入力がブレーキを有効とするか無効とするかの切換え動作となり、フラグが3に設定されているとピン2の入力がサーボロックするか否かの設定となり、フラグが4および5に設定されているとピン2の入力がパルス運転の機能設定となり、フラグが6に設定されているとピン2の入力がオートスタートするか否かの設定となる。このようにテーブルT3のフラグは、コネクタCN4のピン2の入力に対する動作態様を表し、コネクタCN4のピン2における基本設定から変更され、コネクタCN4のピン2に変更設定される制御パラメータの種類を示す識別子である。 Similarly, the table T3 stores the operation mode for the input of the pin 2 of the photocoupler PC1, that is, the connector CN4. When the flag of the table T3 is set to 0, the pin 2 becomes a default sensor input. On the other hand, like the table T2, when the flag of the table T3 is set to 1, the input of the pin 2 is the switching operation of the two gears, and when the flag is set to 2, the pin 2 The input of と な り is a switching operation to enable or disable the brake. If the flag is set to 3, whether the input of pin 2 is servo-locked or not is set, and the flag is set to 4 and 5 When the flag is set to 6, the input of pin 2 is set to function for pulse operation, and when the flag is set to 6, it is set whether or not the input of pin 2 is auto-started. As described above, the flag of the table T3 represents the operation mode for the input of the pin 2 of the connector CN4, and indicates the type of the control parameter that is changed from the basic setting in the pin 2 of the connector CN4 and changed to the pin 2 of the connector CN4. It is an identifier.
 また、テーブルT4~T6は、ロータリースイッチRS1、RS2、RS3の入力に対する動作態様をそれぞれ記憶するものである。そして、テーブルT4のフラグが0に設定されていると、表10で示すようなデフォルト設定の速度切換え動作となり、目盛りが大きくなる程、速い速度設定となる。これに対して、該テーブルT4のフラグが1に設定されていると、パーソナルコンピュータ等の外部の情報処理装置からの設定に応じた動作を行うようになる。同様に、テーブルT5のフラグが0に設定されていると表11で示すようなデフォルト設定のソフトスタート時間の切換え動作となり、テーブルT6のフラグが0に設定されていると表12で示すようなデフォルト設定のソフトストップ時間の切換え動作となり、目盛りが大きくなる程、長い時間となる。これに対して、該テーブルT5、T6の各フラグが1に設定されていると、それぞれ、パーソナルコンピュータ等の外部の情報処理装置からの設定に応じた動作を行うようになる。このようにテーブルT4~T6の各フラグは、これらロータリースイッチRS1、RS2、RS3の入力に対する各動作態様をそれぞれ表し、これらロータリースイッチRS1、RS2、RS3の各基本設定からそれぞれ変更され、これらロータリースイッチRS1、RS2、RS3にそれぞれ変更設定される各制御パラメータの各種類を示す識別子である。 The tables T4 to T6 store operation modes for the inputs of the rotary switches RS1, RS2, and RS3, respectively. When the flag in the table T4 is set to 0, the default setting speed switching operation as shown in Table 10 is performed, and the larger the scale, the faster the speed setting. On the other hand, when the flag of the table T4 is set to 1, an operation corresponding to the setting from an external information processing apparatus such as a personal computer is performed. Similarly, when the flag of the table T5 is set to 0, the default soft start time switching operation as shown in Table 11 is performed. When the flag of the table T6 is set to 0, as shown in Table 12. The default setting soft stop time is switched, and the longer the scale, the longer the time. On the other hand, when the flags of the tables T5 and T6 are set to 1, an operation corresponding to the setting from an external information processing apparatus such as a personal computer is performed. As described above, the flags in the tables T4 to T6 represent the operation modes for the inputs of the rotary switches RS1, RS2, and RS3, respectively, and are changed from the basic settings of the rotary switches RS1, RS2, and RS3. It is an identifier indicating each type of each control parameter that is changed and set in RS1, RS2, and RS3.
 また、テーブルT7、T8は、ディップスイッチDIP1、DIP2の入力に対する動作態様を記憶するものである。そして、テーブルT7のフラグが0に設定されていると、表6で示すようなディップスイッチDIP1のデフォルト設定の設定値が有効になり、これに対して該テーブルT7のフラグが1に設定されていると、パーソナルコンピュータ等の外部の情報処理装置からの設定が有効になる。同様に、テーブルT8のフラグが0に設定されていると、表9で示すようなディップスイッチDIP2のデフォルト設定の設定値が有効になり、これに対して該テーブルT8のフラグが1に設定されていると、パーソナルコンピュータ等の外部の情報処理装置からの設定が有効になる。このようにテーブルT7、T8の各フラグは、ディップスイッチDIP1、DIP2の入力に対する動作態様をそれぞれ表し、ディップスイッチDIP1、DIP2における基本設定から変更され、ディップスイッチDIP1、DIP2に変更設定される制御パラメータの種類を示す識別子である。 Tables T7 and T8 store operation modes for inputs of the DIP switches DIP1 and DIP2. If the flag of the table T7 is set to 0, the default setting value of the DIP switch DIP1 as shown in Table 6 is valid, and the flag of the table T7 is set to 1 on the contrary. If so, the setting from an external information processing apparatus such as a personal computer becomes effective. Similarly, when the flag of the table T8 is set to 0, the default setting value of the DIP switch DIP2 as shown in Table 9 becomes valid, and the flag of the table T8 is set to 1 in contrast thereto. The setting from an external information processing apparatus such as a personal computer becomes effective. As described above, the flags of the tables T7 and T8 represent the operation modes for the inputs of the dip switches DIP1 and DIP2, respectively, and are changed from the basic settings in the dip switches DIP1 and DIP2 and are changed and set in the dip switches DIP1 and DIP2. It is an identifier indicating the type of.
 また、テーブルT9は、後述するモータの詳細な制御パラメータを記憶するものであり、本実施形態では、予め8種類のモータに対する制御パラメータがデフォルト設定で設定されている。そして、ユーザがそのデフォルト設定に無いモータを使用する場合には、このテーブルT9において、例えば特性の最も似ている1つの種類のモータに関して、パーソナルコンピュータ等の外部の情報処理装置から任意に制御パラメータを書き替え、その制御パラメータを使用するようになる。 The table T9 stores detailed control parameters of the motor, which will be described later. In this embodiment, control parameters for eight types of motors are set in advance by default settings. When the user uses a motor that is not in the default setting, in this table T9, for example, regarding one type of motor having the most similar characteristics, an arbitrary control parameter can be set from an external information processing apparatus such as a personal computer. And use its control parameters.
 テーブルT1は、前記の各テーブルT2~T9に設定されない残余の共通制御パラメータを記憶するものである。 The table T1 stores the remaining common control parameters that are not set in the tables T2 to T9.
 そして、CPU11には、テーブルT1~T3の読み出しのため、モータ駆動用テーブル読み出し部11aが設けられ、テーブルT4~T8の読み出しのため、モード設定読み出し部11bが設けられ、テーブルT9の読み出しのため、モータ設定読み出し部11cが設けられる。 The CPU 11 is provided with a motor drive table reading unit 11a for reading the tables T1 to T3, and is provided with a mode setting reading unit 11b for reading the tables T4 to T8, for reading the table T9. A motor setting reading unit 11c is provided.
 表13および表14には、テーブルT9の具体的な記憶内容の一例が示されている。テーブルT9は、前述のようにモータの詳細な制御パラメータを記憶するものであり、モータ1つ当りの制御パラメータ数は、17項目であり、モータの種類は、前述のように8種類まで記憶可能であり、したがってモータに関する全制御パラメータ数は、136である。各制御パラメータの機能説明は、表15に示す。 Tables 13 and 14 show examples of specific stored contents of the table T9. The table T9 stores detailed control parameters of the motor as described above. The number of control parameters per motor is 17 items, and up to 8 types of motors can be stored as described above. Therefore, the total number of control parameters for the motor is 136. Table 15 shows the functional description of each control parameter.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 そして、表13および表14で示すように、パラメータナンバー(項目)で、0~16は、第1の種類のモータ(A社1、定格28W)、17~33は、第2の種類のモータ(B社1、定格40W)、34~50は、第3の種類のモータ(A社2、定格20W)、51~67は、第4の種類のモータ(C社1、定格50W)、68~84は、第5の種類のモータ(D社1、定格50W)、85~101は、第6の種類のモータ(E社1、定格22W)、102~118は、第7の種類のモータ(D社2、定格35W)、そして、119~135は、第8の種類のモータ(A社3、定格40W)を、それぞれ示す。これら8種類の各モータの制御パラメータの内、CPU11のモータ設定読み出し部11cが、いずれのモータの制御パラメータを読み出すかは、表7で示すように、ディップスイッチDIP1のスイッチSW6~SW8によって、予め設定されている。これらの表13および表14において、各制御パラメータに設定可能な上限値および下限値は、共通であり、第1の種類のモータについてのみ示している。 As shown in Tables 13 and 14, the parameter numbers (items) 0 to 16 are the first type motor (Company A 1, rating 28 W), and 17 to 33 are the second type motor. (Company B, rating 40W), 34 to 50 are the third type motor (Company A 2, rating 20W), 51 to 67 are the fourth type motor (Company C 1, rating 50W), 68 ˜84 is a fifth type motor (Company D1, rated 50W), 85˜101 are sixth type motors (Company E1, rated 22W), and 102˜118 are seventh type motors. (Company D, rating 35 W) and 119 to 135 respectively indicate the eighth type of motor (Company A 3, rating 40 W). Of these eight types of motor control parameters, the motor setting reading unit 11c of the CPU 11 reads out which motor control parameter is read in advance by switches SW6 to SW8 of the DIP switch DIP1, as shown in Table 7. Is set. In Table 13 and Table 14, the upper limit value and the lower limit value that can be set for each control parameter are common, and are shown only for the first type of motor.
 表16には、残余のテーブルT1~T8の具体的な記憶内容の一例が示されている。これらのテーブルT1~T8の制御パラメータは、モータの種類に拘わらず、すなわち何れのモータが使用されても、共通である。 Table 16 shows an example of specific storage contents of the remaining tables T1 to T8. The control parameters of these tables T1 to T8 are the same regardless of the type of motor, that is, whichever motor is used.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表16で示すように、パラメータナンバー(項目)で136は、操作入力部であるディップスイッチDIP1、DIP2およびロータリースイッチRS1、RS2、RS3のそれぞれの設定がハードウェア設定によるものか、或いはパーソナルコンピュータ等の外部の情報処理装置によるソフトウェア設定によるものかを示すものである。より具体的には、2進データで、ビット1は、ディップスイッチDIP1、ビット2は、ディップスイッチDIP2、ビット3は、ロータリースイッチRS1、ビット4は、ロータリースイッチRS2、そして、ビット5は、ロータリースイッチRS3を、それぞれ表すものとして、それぞれ、そのビット値が1で有効とされ、すなわち当該スイッチは、ハードウェア設定とされ、一方、そのビット値0で無効とされ、すなわち当該スイッチは、ソフトウェア設定とされ、これらスイッチの設定態様が16進データで表示されている。したがって、2=32の組合せが設定可能であり、16進データで表記すれば、0XFFE0~0XFFFFである。各16進データでの設定内容が、表17に示されている。 As shown in Table 16, the parameter number (item) 136 indicates whether each setting of the DIP switches DIP1, DIP2 and the rotary switches RS1, RS2, RS3, which are operation input units, is based on hardware settings, or a personal computer or the like It is shown whether it is based on the software setting by the external information processing apparatus. More specifically, in binary data, bit 1 is DIP switch DIP1, bit 2 is DIP switch DIP2, bit 3 is rotary switch RS1, bit 4 is rotary switch RS2, and bit 5 is rotary. Each representing the switch RS3, its bit value is enabled at 1, ie, the switch is hardware set, while the bit value is disabled, ie, the switch is software set. The setting mode of these switches is displayed as hexadecimal data. Therefore, combinations of 2 5 = 32 can be set, and 0XFFE0 to 0XFFFF are expressed in hexadecimal data. Table 17 shows the setting contents in each hexadecimal data.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 なお、これらのディップスイッチDIP1、DIP2およびロータリースイッチRS1、RS2、RS3による設定は、コネクタCN3のピン3およびコネクタCN4のピン2のように、ハードウェア設定とソフトウェア設定とで異なる機能を実現するものではなく、同じ機能を実現する。すなわち、CPU11は、ハードウェア設定モードで、例えばディップスイッチDIP1のスイッチSW1が、ONに設定されているとモータ14を正転動作させ、OFFに設定されていると逆転動作させることになることは勿論、ソフトウェア設定モードで、ディップスイッチDIP1のスイッチSW1がONとOFFとの何れになっていても、ソフトウェア設定でONになっていれば正転動作、OFFになっていれば逆転動作させるようになる。 Note that the settings by these DIP switches DIP1, DIP2 and rotary switches RS1, RS2, RS3 realize different functions in hardware setting and software setting, such as pin 3 of connector CN3 and pin 2 of connector CN4. Rather, realize the same function. That is, in the hardware setting mode, for example, the CPU 11 causes the motor 14 to rotate forward when the switch SW1 of the dip switch DIP1 is set to ON, and reversely operates when the switch 11 is set to OFF. Of course, in the software setting mode, regardless of whether the switch SW1 of the DIP switch DIP1 is ON or OFF, if the software setting is ON, the forward operation is performed, and if it is OFF, the reverse operation is performed. Become.
 次のパラメータナンバーで、137は、ディップスイッチDIP1のソフトウェア設定を記憶するもので、すなわちテーブルT7のフラグ1での設定内容を記憶するものである。そして、ディップスイッチDIP1は、前述のように10極のスイッチSW1~SW10を備えており、総ての設定パターンは、210=1024通り存在する。これを16進表記すれば、0X0000~0X03FFである。 In the next parameter number, 137 stores the software setting of the DIP switch DIP1, that is, stores the setting contents in the flag 1 of the table T7. The dip switch DIP1 includes the 10-pole switches SW1 to SW10 as described above, and there are 2 10 = 1024 setting patterns. If this is expressed in hexadecimal, it is 0X0000 to 0X03FF.
 同様に、次のパラメータナンバーで、138は、ディップスイッチDIP2のソフトウェア設定を記憶するもので、すなわちテーブルT8のフラグ1での設定内容を記憶するものである。そして、ディップスイッチDIP2は、前述のように6極のスイッチSW11~SW16を備えており、総ての設定パターンは、2=64通り存在する。これを16進表記すれば、0X0000~0X003Fである。 Similarly, in the next parameter number, 138 stores the software setting of the dip switch DIP2, that is, stores the setting contents in the flag 1 of the table T8. The dip switch DIP2 includes the 6-pole switches SW11 to SW16 as described above, and there are 2 6 = 64 setting patterns. If this is expressed in hexadecimal, it is 0X0000 to 0X003F.
 さらに、パラメータナンバーで、139、140、141は、ロータリースイッチRS1、RS2、RS3のソフトウェア設定を記憶するもので、すなわちテーブルT4、T5、T6のフラグ1での設定内容を記憶するものである。そして、ロータリースイッチRS1、RS2、RS3は、0~15の16目盛りで、16進表示で0X0000~0X000Fである。 Further, the parameter numbers 139, 140, and 141 store the software settings of the rotary switches RS1, RS2, and RS3, that is, the setting contents in the flag 1 of the tables T4, T5, and T6. The rotary switches RS1, RS2, and RS3 are 16 scales of 0 to 15, and are 0X0000 to 0X000F in hexadecimal display.
 以降、パラメータナンバーで、142~150は、テーブルT1の設定内容を記憶するものである。その内、例えばパラメータナンバー143は、ディップスイッチDIP2のスイッチSW15に対応するトレインモードでのギャップ時間を記憶するものである。 Hereinafter, parameter numbers 142 to 150 are used for storing the setting contents of the table T1. Among them, for example, the parameter number 143 stores the gap time in the train mode corresponding to the switch SW15 of the dip switch DIP2.
 そして、パラメータナンバーで、150は、コネクタCN3のピン3に対応する前記テーブルT2のフラグ1~6での設定内容を記憶するものである。各フラグ1~6での設定内容は、前述の通りである。同様に、パラメータナンバーで、151は、コネクタCN4のピン2に対応する前記テーブルT3のフラグ1~6での設定内容を記憶するものである。各フラグ1~6での設定内容は、前述の通りである。 The parameter number 150 stores the contents set in the flags 1 to 6 of the table T2 corresponding to the pin 3 of the connector CN3. The setting contents of the flags 1 to 6 are as described above. Similarly, the parameter number 151 stores the contents set in the flags 1 to 6 of the table T3 corresponding to the pin 2 of the connector CN4. The setting contents of the flags 1 to 6 are as described above.
 また、パラメータナンバーで、152は、DIP1のスイッチSW2およびロータリースイッチRS2、RS3の設定を切換えるもので、0に設定されていると、前述のような標準設定、すなわち速度切換えならびにソフトスタートおよびソフトストップの時間の設定となる。これに対して、1に設定されていると、DIP2のスイッチSW12、SW13を使用しての2段変速用の速度設定となる。また、2に設定されていると、ロータリースイッチRS2は、ソフトスタートおよびソフトストップの時間の設定に共用となり、空いたロータリースイッチRS3は、2段変速用の速度設定となる。さらにまた、3に設定されていると、外部の情報処理装置からの速度設定となる。 The parameter number 152 switches the setting of the switch SW2 of the DIP1 and the rotary switches RS2 and RS3. When the parameter number is set to 0, the standard setting as described above, that is, the speed switching, soft start and soft stop is performed. The time is set. On the other hand, when it is set to 1, it is a speed setting for two-speed shifting using the switches SW12 and SW13 of DIP2. If it is set to 2, the rotary switch RS2 is commonly used for setting the soft start and soft stop times, and the vacant rotary switch RS3 is used for setting the speed for two-stage shifting. Furthermore, when it is set to 3, the speed is set from an external information processing apparatus.
 以降、必要に応じて、詳細な制御パラメータが定められればよい。この表16では、続くナンバー153の制御パラメータに、2段変速の切換え回転数を設定することが示されている。 Thereafter, detailed control parameters may be determined as necessary. In Table 16, it is shown that the switching rotational speed of the two-stage shift is set to the control parameter of the subsequent number 153.
 上述のように構成されるモータ駆動装置1において、異常発生時には、CPU11は、自己診断したエラーの状態を、コネクタCN3のピン4に接続された発光ダイオードD1の点滅の態様によって表示する。その点滅の態様、エラー内容、検出条件および復帰条件の一例が、表18に示されている。 In the motor drive device 1 configured as described above, when an abnormality occurs, the CPU 11 displays the self-diagnosed error state by the blinking mode of the light emitting diode D1 connected to the pin 4 of the connector CN3. Table 18 shows an example of the flashing mode, error contents, detection conditions, and return conditions.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 その発光ダイオードD1の点滅によって、どのような内容のエラーが発生したのかを、認識することができる。しかしながら、原因が不明でそれを検討する場合等には、筐体は、外され、コネクタCN7にパーソナルコンピュータ等の外部の情報処理装置を接続することによって、EEPROM12に設定されている制御パラメータを確認することができる。またこの機能を利用して、前記外部の情報処理装置から、微小部品であるディップスイッチDIP1、DIP2およびロータリースイッチRS1、RS2、RS3の設定を確認したり、EEPROM12のテーブルT1~T8に記憶されている制御パラメータの書き替えを行うことが可能になる。また、普及していない稀少なモータや新型のモータを使用する場合等では、テーブルT9に記憶されているモータの制御パラメータを書き替えることもできる。これによって、出荷検査時や仕様変更時の利便性を向上することができるようになっている。 It is possible to recognize what kind of error has occurred by the blinking of the light emitting diode D1. However, when the cause is unknown and the case is examined, the case is removed, and the control parameter set in the EEPROM 12 is confirmed by connecting an external information processing device such as a personal computer to the connector CN7. can do. Using this function, the setting of the DIP switches DIP1, DIP2 and the rotary switches RS1, RS2, RS3, which are micro components, can be confirmed from the external information processing apparatus or stored in the tables T1 to T8 of the EEPROM 12. It is possible to rewrite existing control parameters. Further, when using a rare motor or a new motor that is not widely used, the motor control parameters stored in the table T9 can be rewritten. As a result, it is possible to improve the convenience at the time of shipment inspection and specification change.
 図5は、前記パーソナルコンピュータ等の外部の情報処理装置において、制御マイコン10のCPU11の内容を表示したチェッカー画面の一例を示す図である。外部の情報処理装置におけるこのような画面表示は、制御マイコン10の内容を適宜読み出し、書き替えを行う汎用のプログラムおよびGUI機能等を利用して実現することができ、この図5および後述の図6の例は、GUI(Graphical User Interface)の画面の一例に過ぎない。前記汎用のプログラムとして、例えば、Microsoft社のWindows(登録商標)シリーズに搭載された通信用ソフトウェア(ターミナルエミュレータ)であるハイパーターミナル等が用いられる。 FIG. 5 is a diagram showing an example of a checker screen displaying the contents of the CPU 11 of the control microcomputer 10 in the external information processing apparatus such as the personal computer. Such a screen display in the external information processing apparatus can be realized by using a general-purpose program and a GUI function that read and rewrite the contents of the control microcomputer 10 as appropriate. The example 6 is merely an example of a GUI (Graphical User Interface) screen. As the general-purpose program, for example, HyperTerminal, which is communication software (terminal emulator) installed in the Windows (registered trademark) series of Microsoft Corporation, is used.
 図5において、GUI画面は、大別すると、Iコマンド、Aコマンド、Sコマンド、DコマンドおよびPWコマンドを備えている。 In FIG. 5, the GUI screen is roughly divided into an I command, an A command, an S command, a D command, and a PW command.
 Aコマンドは、領域A0に、モータ14に関するアナログ出力状態(電圧、電流、速度指令)を表示する。Sコマンドは、領域A1に、モータ14の状態(運転状態、設定回転数、実回転数、出力%、異常状態)を表示する。図5に示す例では、領域A1には、現在、モータ14が運転中であって逆方向に設定回転数より僅かに遅く回転していることが示されている。また、領域A1において、停止中であれば停止中が表示され、異常が発生していると、どのような異常が発生しているのかが表示される。 The A command displays the analog output state (voltage, current, speed command) related to the motor 14 in the area A0. The S command displays the state of the motor 14 (operation state, set rotational speed, actual rotational speed, output%, abnormal state) in the area A1. In the example shown in FIG. 5, the region A1 indicates that the motor 14 is currently in operation and is rotating in the opposite direction slightly slower than the set rotational speed. Further, in the area A1, if the vehicle is stopped, “stopped” is displayed, and if an abnormality has occurred, what kind of abnormality has occurred is displayed.
 Dコマンドは、領域A2に、モータ14の運転操作画面を表示する。この領域A2の操作画面におけるボタンを操作することによって、遠隔操作で、モータ14の運転指示を行うことができる。例えば、「逆転」ボタンをマウス操作することによって、モータ14に逆転を指示することができる。 The D command displays the operation operation screen of the motor 14 in the area A2. By operating a button on the operation screen in this area A2, it is possible to instruct the operation of the motor 14 by remote operation. For example, it is possible to instruct the motor 14 to perform reverse rotation by operating the “reverse” button with a mouse.
 PWコマンドは、領域A7に、制御マイコン10のEEPROM12における各テーブルT1~T9の設定変更を行う画面を表示する。PWコマンドによる操作は、モータパラメータのチェッカー画面の一例を示す図である図6を用いて詳述する。 The PW command displays a screen for changing the settings of the tables T1 to T9 in the EEPROM 12 of the control microcomputer 10 in the area A7. The operation by the PW command will be described in detail with reference to FIG. 6, which is an example of a motor parameter checker screen.
 Iコマンドは、領域A3~A6を備える領域A10に、ディップスイッチDIP1、DIP2やロータリースイッチRS1、RS2、RS3等の操作入力端およびコネクタCN1、CN3、CN4、CN5、CN6等の入出力端からの入力状態を表示する。より詳しくは、領域A3には、ロータリースイッチRS1、RS2、RS3の目盛りの設定と、その目盛りによる実際の制御パラメータとが表示される。前述のソフトウェア設定となると、目盛りの表示は、そのことを表す例えば「-」となり、設定内容だけが表示される。 The I command is input to the area A10 including the areas A3 to A6 from the operation input ends of the DIP switches DIP1, DIP2 and the rotary switches RS1, RS2, RS3, and the input / output ends of the connectors CN1, CN3, CN4, CN5, CN6, etc. Displays the input status. More specifically, the setting of the scales of the rotary switches RS1, RS2, and RS3 and the actual control parameters based on the scales are displayed in the area A3. In the case of the above-described software setting, the scale display is, for example, “-” indicating that, and only the setting contents are displayed.
 また、領域A4には、ディップスイッチDIP1における各スイッチSW1~SW10の設定と、その設定による実際の制御パラメータとが表示される。前述のソフトウェア設定となると、設定の表示は、そのことを表す例えば「-」となり、設定内容だけが表示される。同様に、領域A5には、ディップスイッチDIP2における各スイッチSW11~SW16の設定と、その設定による実際の制御パラメータとが表示される。領域A6には、外部入力が示され、自機のコネクタCN4からのセンサ入力、コネクタCN5、CN6からの隣接するモータ駆動装置のセンサ信号の転送入力やエラー入力等が表示される。 In the area A4, the settings of the switches SW1 to SW10 in the DIP switch DIP1 and the actual control parameters according to the settings are displayed. In the case of the above-described software setting, the setting display is, for example, “−” indicating that, and only the setting content is displayed. Similarly, in the area A5, settings of the switches SW11 to SW16 in the DIP switch DIP2 and actual control parameters according to the settings are displayed. In the area A6, external input is shown, and sensor input from the connector CN4 of the own device, sensor signal transfer input of the adjacent motor drive device from the connectors CN5 and CN6, error input, and the like are displayed.
 以上のような表示を参照しつつ、作業者(ユーザ、オペレータ)は、ソフトウェアモードで、前述の各テーブルT2~T8のフラグや内容を適宜書き替えることができる。また、作業者は、図6で示すように、モータパラメータも変更することができる。図6の例では、作業者は、領域A71で示すように、パラメータナンバーが25、すなわち表13から、B社のモータの最低速度時における速度制御のゲインを変更しようとしている。一方、1または複数種類のモータに関して、多くの制御パラメータを変更する場合には、領域A72の一括取得を選択することで、総てのモータの制御パラメータを、例えばテキストデータの形式で一括に取得することが可能となり、必要箇所を変更した後、領域A73の一括設定を選択することで、EEPROM12に更新設定することが可能になる。同様に、他の制御パラメータを記憶している制御テーブルT1の内容も、適宜書き替えることができる。 While referring to the display as described above, an operator (user, operator) can appropriately rewrite the flags and contents of the above-described tables T2 to T8 in the software mode. Further, as shown in FIG. 6, the operator can also change the motor parameters. In the example of FIG. 6, the operator is trying to change the speed control gain at the minimum speed of the motor of company B from the parameter number 25, that is, from Table 13, as indicated by area A71. On the other hand, when changing many control parameters for one or more types of motors, select batch acquisition of area A72 to acquire all motor control parameters in a text data format, for example. It is possible to perform update setting in the EEPROM 12 by selecting the batch setting of the area A73 after changing the necessary part. Similarly, the contents of the control table T1 storing other control parameters can be appropriately rewritten.
 以上のように、本実施形態のモータ駆動装置1は、自機に予め対応付けられたモータ14を駆動することができる、1または複数の入出力端(センサ入出力を含むI/O)または操作入力端を有するモータ駆動装置において、CPU11が、インバータ13を介してモータ14を駆動する際に、その駆動に用いられ、EEPROM12に記憶されている種々の項目の制御パラメータの内、少なくとも一部を複数種類記憶しておき、それを選択手段であるCPU11によって択一的に選択するように構成される。 As described above, the motor drive device 1 according to the present embodiment can drive the motor 14 associated with the own device in advance, one or a plurality of input / output terminals (I / O including sensor input / output) or In the motor drive device having an operation input terminal, when the CPU 11 drives the motor 14 via the inverter 13, at least a part of the control parameters of various items used for the drive and stored in the EEPROM 12. Are stored in a plurality of types, and the CPU 11 as a selection means selects them alternatively.
 そのために、CPU11は、モータ特性、センサ入出力、操作入出力、制御態様等のEEPROM12に記憶されている種々の項目の制御パラメータに基づいてモータ14を駆動するが、その際、各項目の制御パラメータの内、少なくとも一部の入出力端(図4に示す例では、コネクタCN3のピン3およびコネクタCN4のピン2)または操作入力端(図4に示す例では、ディップスイッチDIP1、DIP2やロータリースイッチRS1、RS2、RS3等)に関する項目の制御パラメータについては、テーブルT2~T8に複数種類(例えば互いに属性の異なる複数種類の複数の制御パラメータ)を予め記憶しておき、CPU11は、それをどのフラグが設定されているかに応じて、択一的に選択する。 For this purpose, the CPU 11 drives the motor 14 based on various items of control parameters stored in the EEPROM 12, such as motor characteristics, sensor input / output, operation input / output, and control mode. Among the parameters, at least a part of input / output terminals (in the example shown in FIG. 4, pin 3 of connector CN3 and pin 2 of connector CN4) or operation input terminals (in the example shown in FIG. 4, DIP switches DIP1, DIP2 and rotary Regarding the control parameters of items relating to the switches RS1, RS2, RS3, etc., a plurality of types (for example, a plurality of types of control parameters having different attributes) are stored in advance in the tables T2 to T8, and the CPU 11 determines which Depending on whether the flag is set, it is selected alternatively.
 例えば、図4に示す例では、CPU11は、オープン/ローのフォトカプラPC1、PC3からの入力を、デフォルト設定(フラグ0)では、フォトカプラPC1からの入力はセンサ入力として、フォトカプラPC3からの入力は正逆の回転方向の切換えの入力として扱う一方、他の設定(フラグ1)では、1速/2速の変速切換えの入力として扱う。また、CPU11は、ディップスイッチDIP1、DIP2のON/OFF状態やロータリースイッチRS1、RS2、RS3の目盛りも、デフォルト設定(フラグ0)では、そのまま読み込む一方、他の設定(フラグ1)では、対応するテーブルT4~T8の記憶内容に従う。 For example, in the example shown in FIG. 4, the CPU 11 uses the input from the open / low photocouplers PC1 and PC3, and in the default setting (flag 0), the input from the photocoupler PC1 is the sensor input, and from the photocoupler PC3. While the input is handled as an input for switching between forward and reverse rotation directions, the other setting (flag 1) is handled as an input for changing the speed between 1st and 2nd. Further, the CPU 11 reads the ON / OFF states of the dip switches DIP1 and DIP2 and the scales of the rotary switches RS1, RS2, and RS3 as they are in the default setting (flag 0), while corresponding to other settings (flag 1). The stored contents of tables T4 to T8 are followed.
 こうして、本実施形態のモータ駆動装置1は、前記少なくとも一部の入出力端または操作入力端について、その機能割り付けを変えられるようにすることによって、入出力端や操作入力端の数を無闇に増加することなく、機能選択の幅を広げ、利便性および汎用性を向上することができる。したがって、前記入出力端または操作入力端を備え、特に単独で、すなわち多数のモータを統括制御する上位装置無しに、所謂スタンドアローンで駆動することができるモータ駆動装置の場合に、本実施形態のモータ駆動装置は、好適に実施され得る。 Thus, the motor drive device 1 according to the present embodiment can change the function assignment of at least some of the input / output terminals or the operation input terminals, thereby reducing the number of input / output terminals and operation input terminals. Without increasing, it is possible to widen the range of function selection and improve convenience and versatility. Therefore, in the case of a motor driving device that includes the input / output end or the operation input end and can be driven by a so-called stand alone, that is, without a host device that performs overall control of a large number of motors. The motor drive device can be suitably implemented.
 なお、上述の例では、テーブルT4~T8において、フラグ0に対応するスイッチパラメータは、EEPROM12に記憶されておらず、CPU11が、設定を読み込む際に、テーブルT4~T8でのフラグが0になっていると、直接ディップスイッチDIP1、DIP2やロータリースイッチRS1、RS2、RS3の設定を確認しているが、予めその設定が読み込まれて、EEPROM12に記憶されるようにモータ駆動装置1が構成されてもよい。 In the above example, in the tables T4 to T8, the switch parameter corresponding to the flag 0 is not stored in the EEPROM 12, and the flag in the tables T4 to T8 is set to 0 when the CPU 11 reads the setting. If this is the case, the settings of the DIP switches DIP1 and DIP2 and the rotary switches RS1, RS2 and RS3 are confirmed directly, but the motor drive device 1 is configured so that the settings are read in advance and stored in the EEPROM 12. Also good.
 また、上述の機能割り付けの変更が、コネクタCN3、CN4による入力端(コネクタCN3のピン3およびコネクタCN4のピン2)に対して行われる場合において、そのコネクタCN3、CN4から先に、少し大き目のスイッチを取付けたり、ケーブルで別の所へ操作部を引き出したりする等によって、割り付けを変えた機能の切換えを容易に行うことができる。また、このようにコネクタCN3、CN4から先に操作部等を引き出したりする場合において、その引き出されるピンがフォトカプラPC1、PC3の入力である場合、スイッチ等、コネクタに接続する部品の自由度が拡がり、好適である。 In addition, when the above-described change in function allocation is performed on the input ends (pin 3 of connector CN3 and pin 2 of connector CN4) by connectors CN3 and CN4, a little larger is placed ahead of connectors CN3 and CN4. Switching of functions with different assignments can be performed easily by attaching a switch or pulling out the operation unit to another place with a cable. Further, when the operation unit or the like is pulled out from the connectors CN3 and CN4 in this way, when the drawn pins are inputs of the photocouplers PC1 and PC3, the degree of freedom of the components connected to the connector such as a switch is increased. It spreads and is suitable.
 また、CPU11が、通信用のコネクタCN7を介して外部の情報処理装置に接続され、その情報処理装置のGUI機能を利用して前記制御パラメータの変更が行われるので、フォトカプラPC1、PC3の入力の機能割り付けの変更が容易であり、また、操作入力用の微小部品であるディップスイッチDIP1、DIP2やロータリースイッチRS1、RS2、RS3について、その機能の有効/無効の設定が容易になる。 Further, since the CPU 11 is connected to an external information processing apparatus via the communication connector CN7 and the control parameter is changed using the GUI function of the information processing apparatus, the input of the photocouplers PC1 and PC3 It is easy to change the function assignment, and it is also easy to enable / disable the functions of the DIP switches DIP1 and DIP2 and the rotary switches RS1, RS2, and RS3 that are minute parts for operation input.
 また、そのようなGUIの画面では、前記制御パラメータの設定状況が確認可能であり、ディップスイッチDIP1、DIP2やロータリースイッチRS1、RS2、RS3等の微小部品の設定状況を確認することに好都合であることから、このような構成のモータ駆動装置は、前記GUIの画面を該モータ駆動装置1の出荷検査画面として用いることで、顧客毎の細かな調整(前記制御パラメータの設定)を容易に行うことができる。 Further, on such a GUI screen, the setting status of the control parameter can be confirmed, which is convenient for confirming the setting status of minute parts such as the DIP switches DIP1, DIP2 and the rotary switches RS1, RS2, RS3. Therefore, the motor drive device having such a configuration can easily perform fine adjustments (setting of the control parameters) for each customer by using the GUI screen as a shipment inspection screen of the motor drive device 1. Can do.
 また、ローラコンベア装置において、比較的小規模なものでは、コンベアローラは、予め対応付けられたモータ駆動装置によって単独で駆動されるが、前記小規模としても、コンベアローラおよびモータ駆動装置の対は、数台、場合によっては数十台以上設けられる。このため、上述のようなモータ駆動装置1と、そのモータ駆動装置1によって内蔵モータが駆動されるコンベアローラとを備えてローラコンベア装置を構成することによって、このような構成のローラコンベア装置は、前述のように入出力端または操作入力端の機能割り付けの変更を容易に行うことができ、好適である。 Further, in the roller conveyor device, a relatively small-scale roller roller is driven by a motor drive device that is associated in advance. , Several, or in some cases, several tens or more. For this reason, by configuring the roller conveyor device by including the motor driving device 1 as described above and a conveyor roller whose internal motor is driven by the motor driving device 1, the roller conveyor device having such a configuration is As described above, the function assignment of the input / output terminal or the operation input terminal can be easily changed, which is preferable.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかるモータ駆動装置は、自機に予め対応付けられたモータを、自機に設定された複数項目の制御パラメータに基づいて駆動する駆動部を備えるモータ駆動装置であって、1または複数の入出力端または操作入力端と、前記各項目の制御パラメータを記憶しており、前記1または複数の入出力端および操作入力端の内の少なくとも一部に関する項目の制御パラメータについて、複数の制御パラメータを記憶している記憶部と、前記記憶部における前記少なくとも一部に関する項目の制御パラメータについて、前記複数の制御パラメータの中から択一的に選択する選択部とを備え、前記駆動部は、前記モータの駆動に必要な各項目の制御パラメータの内、前記複数の制御パラメータが存在する項目については、前記選択部で選択された制御パラメータを使用してモータを駆動する。 A motor drive device according to one aspect is a motor drive device including a drive unit that drives a motor associated with the own device in advance based on a plurality of items of control parameters set in the own device. The input / output end or the operation input end of each of the items and the control parameters of each of the items are stored, and a plurality of controls are performed on the control parameters of the items relating to at least a part of the one or more input / output ends and the operation input end. A storage unit that stores parameters, and a selection unit that selectively selects the control parameters of the items related to the at least part of the storage unit from among the plurality of control parameters, and the drive unit includes: Among the control parameters for each item necessary for driving the motor, items for which the plurality of control parameters exist are selected by the selection unit. Using a control parameter to drive the motor.
 自機に予め対応付けられたモータを駆動するモータ駆動装置において、1または複数の入出力端または操作入力端を有するモータ駆動装置の場合に、その駆動の基となる制御パラメータが変更可能とされる。 In the case of a motor drive device that drives one or a plurality of input / output terminals or operation input terminals in a motor drive apparatus that drives a motor associated in advance with the own machine, control parameters that are the basis of the drive can be changed. The
 そのため、上記構成のモータ駆動装置では、駆動部は、記憶部に記憶されている種々の項目の制御パラメータ、例えばモータ特性、センサ入出力、操作入出力および制御態様に基づいて、モータを駆動するが、その際、前記記憶部に記憶される各項目の制御パラメータの内、1または複数の入出力端(センサ入出力を含むI/O)および操作入力端の内、少なくとも一部に関する項目の制御パラメータについて、複数種類の制御パラメータが記憶され、選択部によって択一的に選択される。すなわち、前記1または複数の入出力端および操作入力端の少なくとも一部は、その機能割り付けを変更可能とされる。例えばハイ/ローの入力に対して、正逆の回転方向の切換えに対応していた入力端が、1速/2速の変速に対応するようになる。 Therefore, in the motor drive device having the above configuration, the drive unit drives the motor based on control parameters of various items stored in the storage unit, for example, motor characteristics, sensor input / output, operation input / output, and control mode. In this case, among the control parameters of each item stored in the storage unit, one or a plurality of input / output terminals (I / O including sensor input / output) and operation input terminals are items related to at least a part. With respect to the control parameters, a plurality of types of control parameters are stored and are alternatively selected by the selection unit. That is, the function assignment of at least a part of the one or more input / output terminals and the operation input terminal can be changed. For example, the input end corresponding to the forward / reverse rotation direction switching for the high / low input corresponds to the 1st / 2nd speed shift.
 したがって、このような構成のモータ駆動装置は、入出力端や操作入力端の数を無闇に増加することなく、機能選択の幅を広げ、利便性および汎用性を向上することができる。 Therefore, the motor driving device having such a configuration can expand the range of function selection and improve convenience and versatility without increasing the number of input / output terminals and operation input terminals.
 また、他の一態様では、上述のモータ駆動装置において、前記1または複数の入出力端および操作入力端の内の少なくとも一部は、コネクタによる入力端である。 In another aspect, in the motor drive device described above, at least a part of the one or more input / output terminals and the operation input terminal is an input terminal by a connector.
 このような構成のモータ駆動装置では、前記機能割り付けを変更可能な前記一部の入出力端または操作入力端として、コネクタによる入力端が用いられる。これによって、このような構成のモータ駆動装置は、そのコネクタから先に、少し大き目のスイッチ等の操作の容易なスイッチを取付けたり、ケーブルで別の所へ操作部を引き出したりする等を行うことができ、割り付けを変えた機能の切換えを容易に行うことができる。 In the motor drive device having such a configuration, an input end by a connector is used as the partial input / output end or operation input end capable of changing the function assignment. As a result, the motor drive device having such a configuration is to attach a switch that is easy to operate, such as a slightly larger switch, or pull out the operation part to another place with a cable. Therefore, it is possible to easily switch functions with different assignments.
 また、他の一態様では、上述のモータ駆動装置において、前記1または複数の入出力端および操作入力端の内の少なくとも一部は、フォトセンサ入力およびスイッチ操作を検出するフォトカプラ入力のうちのいずれか一方である。 According to another aspect, in the motor drive device described above, at least a part of the one or more input / output terminals and the operation input terminal is a photosensor input and a photocoupler input that detects a switch operation. Either one.
 このような構成のモータ駆動装置では、上述のようにコネクタから先に操作部等を引き出したりする場合に、フォトカプラ入力であることによって、スイッチ等、コネクタに接続する部品の自由度が拡がり、好適である。 In the motor drive device having such a configuration, when the operation unit or the like is first pulled out of the connector as described above, the degree of freedom of components connected to the connector, such as a switch, is increased by being a photocoupler input. Is preferred.
 また、他の一態様では、これら上述のモータ駆動装置において、前記選択部は、通信用の入出力端を介して外部の情報処理装置に接続され、その情報処理装置のGUI機能を利用して前記制御パラメータの変更を行うものである。 According to another aspect, in the above-described motor drive device, the selection unit is connected to an external information processing device via an input / output terminal for communication, and uses the GUI function of the information processing device. The control parameter is changed.
 このような構成のモータ駆動装置では、前記選択部は、通信用の入出力端を介して外部の例えばパーソナルコンピュータ等の情報処理装置に接続され、その情報処理装置のGUI機能を利用して前記制御パラメータの変更を行うことができるようになっている。したがって、このような構成のモータ駆動装置は、例えば前記フォトカプラ入力等の入出力端や、また例えばディップスイッチやロータリースイッチ等の操作入力端に対する機能割り付けの変更を容易に行うことができる。 In the motor drive device having such a configuration, the selection unit is connected to an external information processing device such as a personal computer via a communication input / output terminal, and uses the GUI function of the information processing device. The control parameter can be changed. Therefore, the motor drive device having such a configuration can easily change the function assignment to the input / output terminals such as the photocoupler input and the operation input terminals such as the dip switch and the rotary switch.
 また、他の一態様では、これら上述のモータ駆動装置において、前記GUIの画面は、該モータ駆動装置の出荷検査画面として利用されるものである。 In another aspect, in these motor drive devices described above, the GUI screen is used as a shipment inspection screen of the motor drive device.
 このような構成のモータ駆動装置は、前記GUIの画面は、前記制御パラメータの設定状況が確認可能であることから、前記入出力端や操作入力端の設定状況を容易に確認することができ、特に前記ディップスイッチやロータリースイッチ等の微小部品の場合に好適である。したがって、このような構成のモータ駆動装置は、前記GUIの画面を該モータ駆動装置の出荷検査画面として用いることによって、顧客毎の細かな調整(前記制御パラメータの設定)を容易に行うことができる。 In the motor drive device having such a configuration, since the setting state of the control parameter can be confirmed on the GUI screen, the setting state of the input / output terminal and the operation input terminal can be easily confirmed. It is particularly suitable for the case of minute parts such as the dip switch and rotary switch. Therefore, the motor drive device having such a configuration can easily perform fine adjustments (setting of the control parameters) for each customer by using the GUI screen as a shipment inspection screen of the motor drive device. .
 また、他の一態様にかかるローラコンベア装置は、これら上述のいずれかのモータ駆動装置と、前記モータ駆動装置によって内蔵モータが駆動されるコンベアローラとを備える。 Further, a roller conveyor apparatus according to another aspect includes any of the above-described motor driving apparatuses and a conveyor roller in which a built-in motor is driven by the motor driving apparatus.
 ローラコンベア装置において、コンベアローラおよびモータ駆動装置の対(組)は、数台、場合によっては数十台以上設けられる。したがって、このような構成のローラコンベア装置では、モータ駆動装置が上述のように入出力端または操作入力端の機能割り付けの変更を容易に行うことができることは、好適である。 In a roller conveyor device, there are several conveyor rollers and motor drive device pairs (sets), and in some cases, several tens or more. Therefore, in the roller conveyor device having such a configuration, it is preferable that the motor drive device can easily change the function assignment of the input / output end or the operation input end as described above.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been appropriately and fully described above with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Accordingly, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、モータを駆動するモータ駆動装置およびこれを用いたローラコンベア装置を提供することができる。 According to the present invention, it is possible to provide a motor driving device for driving a motor and a roller conveyor device using the same.

Claims (6)

  1.  自機に予め対応付けられたモータを、自機に設定された複数項目の制御パラメータに基づいて駆動する駆動部を備えるモータ駆動装置において、
     1または複数の入出力端または操作入力端と、
     前記各項目の制御パラメータを記憶しており、前記1または複数の入出力端および操作入力端の内の少なくとも一部に関する項目の制御パラメータについて、複数の制御パラメータを記憶している記憶部と、
     前記記憶部における前記少なくとも一部に関する項目の制御パラメータについて、前記複数の制御パラメータの中から択一的に選択する選択部とを備え、
     前記駆動部は、前記モータの駆動に必要な各項目の制御パラメータの内、前記複数の制御パラメータが存在する項目については、前記選択部で選択された制御パラメータを使用してモータを駆動すること
    を特徴とするモータ駆動装置。
    In a motor drive device including a drive unit that drives a motor associated with the own machine in advance based on a plurality of control parameters set in the own machine,
    One or more input / output terminals or operation input terminals;
    Storing a control parameter of each item, a storage unit storing a plurality of control parameters for the control parameter of the item relating to at least a part of the one or more input / output terminals and the operation input terminal;
    A selection unit that selectively selects from among the plurality of control parameters for the control parameter of the item related to the at least part in the storage unit;
    The drive unit drives the motor using the control parameter selected by the selection unit for the items in which the plurality of control parameters exist among the control parameters of each item necessary for driving the motor. The motor drive device characterized by this.
  2.  前記1または複数の入出力端および操作入力端の内の少なくとも一部は、コネクタによる入力端であること
    を特徴とする請求項1に記載のモータ駆動装置。
    The motor driving apparatus according to claim 1, wherein at least a part of the one or more input / output terminals and the operation input terminal is an input terminal by a connector.
  3.  前記1または複数の入出力端および操作入力端の内の少なくとも一部は、フォトセンサ入力およびスイッチ操作を検出するフォトカプラ入力のうちのいずれか一方であること
    を特徴とする請求項2に記載のモータ駆動装置。
    The at least one of the one or more input / output terminals and the operation input terminal is one of a photosensor input and a photocoupler input that detects a switch operation. Motor drive device.
  4.  前記選択部は、通信用の入出力端を介して外部の情報処理装置に接続され、その情報処理装置のGUI機能を利用して前記制御パラメータの変更を行うこと
    を特徴とする請求項1ないし請求項3のいずれか1項に記載のモータ駆動装置。
    The selection unit is connected to an external information processing apparatus via an input / output terminal for communication, and changes the control parameter using a GUI function of the information processing apparatus. The motor drive device according to claim 3.
  5.  前記GUIの画面は、該モータ駆動装置の出荷検査画面として利用されること
    を特徴とする請求項4に記載のモータ駆動装置。
    The motor drive device according to claim 4, wherein the GUI screen is used as a shipment inspection screen of the motor drive device.
  6.  前記請求項1ないし請求項5のいずれか1項に記載のモータ駆動装置と、
     前記モータ駆動装置によって内蔵モータが駆動されるコンベアローラとを備えること
    を特徴とするローラコンベア装置。
    The motor drive device according to any one of claims 1 to 5,
    A roller conveyor device comprising: a conveyor roller whose built-in motor is driven by the motor driving device.
PCT/JP2011/005890 2011-10-20 2011-10-20 Motor drive device and roller conveyer device utilizing same WO2013057767A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/005890 WO2013057767A1 (en) 2011-10-20 2011-10-20 Motor drive device and roller conveyer device utilizing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/005890 WO2013057767A1 (en) 2011-10-20 2011-10-20 Motor drive device and roller conveyer device utilizing same

Publications (1)

Publication Number Publication Date
WO2013057767A1 true WO2013057767A1 (en) 2013-04-25

Family

ID=48140447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005890 WO2013057767A1 (en) 2011-10-20 2011-10-20 Motor drive device and roller conveyer device utilizing same

Country Status (1)

Country Link
WO (1) WO2013057767A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107030A1 (en) * 2017-11-30 2019-06-06 オムロン株式会社 Motor control device, control method for motor control device, control program, and recording medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05300792A (en) * 1992-04-22 1993-11-12 Hitachi Ltd Inverter device
JP2000139091A (en) * 1998-08-26 2000-05-16 Mitsubishi Electric Corp Motor driving control apparatus and motor driving control method
JP2001286169A (en) * 2000-03-31 2001-10-12 Digital Electronics Corp Parameter setting method for motor control system and its equipment
JP2002272170A (en) * 2001-03-09 2002-09-20 Daikin Ind Ltd Load controller, manipulator, and control device thereof
JP2003250289A (en) * 2003-02-12 2003-09-05 Ito Denki Kk Motor roller controller and conveyor system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05300792A (en) * 1992-04-22 1993-11-12 Hitachi Ltd Inverter device
JP2000139091A (en) * 1998-08-26 2000-05-16 Mitsubishi Electric Corp Motor driving control apparatus and motor driving control method
JP2001286169A (en) * 2000-03-31 2001-10-12 Digital Electronics Corp Parameter setting method for motor control system and its equipment
JP2002272170A (en) * 2001-03-09 2002-09-20 Daikin Ind Ltd Load controller, manipulator, and control device thereof
JP2003250289A (en) * 2003-02-12 2003-09-05 Ito Denki Kk Motor roller controller and conveyor system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107030A1 (en) * 2017-11-30 2019-06-06 オムロン株式会社 Motor control device, control method for motor control device, control program, and recording medium
US11114973B2 (en) 2017-11-30 2021-09-07 Omron Corporation Motor control device, method for controlling motor control device, control program, and storage medium

Similar Documents

Publication Publication Date Title
JP2010033519A (en) Printer and control method thereof
JP5858215B2 (en) Grounding detection circuit for ungrounded circuit
CN107449451B (en) Sensor device
WO2013057767A1 (en) Motor drive device and roller conveyer device utilizing same
CN109783282A (en) Computer installation and abnormity of power supply detection method
US20100037079A1 (en) Built-in system power management circuit and motherboard with thereof
WO2013046700A1 (en) Vehicle data setting system and output setting method thereof
JPH11122947A (en) Inverter device
EP2390425A2 (en) Emergency engine rpm control apparatus for heavy construction equipment
JPWO2013057767A1 (en) Motor drive device and roller conveyor device using the same
US7986119B2 (en) Motor control system
CN105937129A (en) Washing machine and communication control system thereof
US20130148389A1 (en) Power conversion device
CN213715912U (en) Circuit board and vehicle-mounted equipment
KR100317220B1 (en) Opened motor controller based on communication network
JP2009003915A (en) Conversion circuit
JP6511457B2 (en) Multiple communication device
JP5153469B2 (en) Elevator call registration device and elevator device
WO2018155708A1 (en) Control device
JP6609945B2 (en) Vehicle instrument
JP2012168787A (en) Encoder communication circuit
JP6180269B2 (en) Inverter device
KR20150065989A (en) Apparatus for controlling the driving of sun roof using internal network of vehicle
CN212928285U (en) Fire-fighting double-speed fan controller
CN219659735U (en) PLC network expansion middleware and PLC network expansion system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874279

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013539415

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874279

Country of ref document: EP

Kind code of ref document: A1