WO2013057451A2 - Process for manufacturing, by mechanosynthesis, a powder of cztse, the use thereof for forming a thin layer - Google Patents

Process for manufacturing, by mechanosynthesis, a powder of cztse, the use thereof for forming a thin layer Download PDF

Info

Publication number
WO2013057451A2
WO2013057451A2 PCT/FR2012/052398 FR2012052398W WO2013057451A2 WO 2013057451 A2 WO2013057451 A2 WO 2013057451A2 FR 2012052398 W FR2012052398 W FR 2012052398W WO 2013057451 A2 WO2013057451 A2 WO 2013057451A2
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing
powder
znsnse
grinding
compound
Prior art date
Application number
PCT/FR2012/052398
Other languages
French (fr)
Other versions
WO2013057451A3 (en
Inventor
Fabrice LEGENDRE
Anne CARO-VERRON
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2013057451A2 publication Critical patent/WO2013057451A2/en
Publication of WO2013057451A3 publication Critical patent/WO2013057451A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/04Alloys containing less than 50% by weight of each constituent containing tin or lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/045Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention is in the field of photovoltaic cells based on a thin layer.
  • it relates to a method of manufacturing by mechanosynthesis of a powder of the compound Cu 2 ZnSnSe 4 , and its use to make a thin layer.
  • This conversion requires the use of photovoltaic cells that are composed of a semi conductor material ⁇ , generally silicon.
  • the thin layers composing these new photovoltaic cells are for example based on CdTe (cadmium telluride), Culn 0 , 7 Gao, 3 Se (CIGS) or Cu 2 nSnSe 4 (CZTSe).
  • CdTe cadmium telluride
  • Culn 0 , 7 Gao, 3 Se Culn 0 , 7 Gao, 3 Se
  • CZTSe Cu 2 nSnSe 4
  • Cu 2 ZnSnSe 4 is particularly interesting because it has neither the toxicity of CdTe nor the high cost of Culno, 7 Gao, 3 Se.
  • the compound Cu 2 ZnSnSe 4 can be deposited in the form of thin layers by vacuum or liquid methods.
  • the implementation of these thin-film deposition processes most often requires the Cu 2 ZnSnSe 4 to be in the form of a powder, possibly formed into a solid form following a sintering or melting operation.
  • the powder obtained has secondary phases, especially phases consisting of CuSe, Zn, Sn, Se, CuSe 2 , SnSe, Cu 2 Se, Cu 2 SnSe 3 , Cu 5 Zn 8 , ZnSe or Cui, sSe.
  • a powder corresponding to the Cu 2 ZnSnSe 4 stoichiometry is therefore not really obtained.
  • One of the aims of the invention is therefore to avoid or mitigate the disadvantages described above, by proposing a process which makes it possible in particular to manufacture a Cu 2 ZnSnSe 4 powder whose degree of purity is improved without this requiring an annealing step.
  • the present invention thus relates to a method of manufacturing by mechanosynthesis of a powder of the compound Cu 2 ZnSnSe 4 , the process comprising a step in which a grinding of a mixture containing:
  • the manufacturing process of the invention is characterized in particular by the presence of ZnSe in the mixture to be milled.
  • This precursor makes it possible to obtain a Cu 2 ZnSnSe 4 powder with improved degree of purity while avoiding an additional annealing step.
  • the invention also relates to the use of the manufacturing method for producing a thin layer, which enters, for example, into the composition of a photovoltaic cell.
  • the thin layer may be produced by means of a vacuum deposition process such as, for example, sputtering or evaporation; or a liquid deposition process such as for example screen printing ("screen- printing "), spin coating (“ spin coating ”) or tape casting.
  • a vacuum deposition process such as, for example, sputtering or evaporation
  • a liquid deposition process such as for example screen printing ("screen- printing "), spin coating (“ spin coating ”) or tape casting.
  • the chemical elements Cu, Sn and Se are in elemental form, that is to say in the pure state or practically pure (ie typically more than 99% pure).
  • ZnSe precursor can occur, independently of each other, in the form of powder or nugget, it being understood that the nugget is converted to powder during grinding.
  • the chemical elements Cu, Sn, Se and / or the precursor ZnSe when they are in powder form, have grains with an average size of between 100 nm and 3 mm, for example measured using a laser granulometer in the dry or liquid process.
  • mechanosynthesis also called high energy milling (or “high energy lease milling”), it is an alloy synthesis process well known to those skilled in the art. It is described for example in the document “Nanomaterials - Structure and Development, Paul Costa, Engineering Techniques, reference NM 3.010, chapter 3.3".
  • Mechanosynthesis essentially consists in using the mechanical energy resulting from grinding to induce chemical reactions between the components of the mixture to be ground. These reactions usually occur at low temperatures. Mechanosynthesis can therefore be carried out without the addition of thermal energy. In practice, the mechanosynthesis consists of violently stirring the mixture to effect grinding in the presence of one or more movable bodies such as for example a ball or a ball.
  • the moving bodies are generally composed of a dense material and of high hardness (tungsten carbide, steel, ).
  • the stirring of the moving bodies can be carried out using different means which vary according to the type of mill used.
  • the grinding of the mixture can thus be carried out using a grinder conventionally used to carry out a mechanosynthesis, for example chosen from a vertical vibration mill, a ball mill, a planetary mill or an attritor.
  • the constituents of the mixture to be ground undergo shocks occurring between the moving bodies moving at high speed, or between these movable bodies and the walls of the tank.
  • the frequency and power of the shocks affect the intensity and power of the grinding, and can be increased by increasing the size or number of moving bodies, stirring intensity, or decreasing the amount of powder to be milled.
  • the duration of grinding also influences the mechanosynthesis. Although it depends on the grinding conditions, the grinding time is generally at least 24 hours, for example between 24 hours and 144 hours, preferably between 24 hours and 72 hours.
  • the grinding may be carried out under vacuum or in a chemically inert atmosphere, in particular with respect to the constituents of the mixture and the compound Cu 2 ZnSnSe 4 in order to limit oxidation and / or contamination by any other substance.
  • the chemically inert atmosphere includes, for example, a gas such as nitrogen or argon.
  • an additive may be added to the mixture to be milled in order to carry out "wet” milling.
  • the mixture does not contain any additive, so as to carry out grinding said "dry".
  • the grains obtained are alternately deformed, fractured and welded to each other.
  • the resulting crystal structure modification allows the diffusion of the chemical elements, which leads to the formation of a powder of a new alloy.
  • the powder of the Cu 2 ZnSnSe 4 compound obtained at the end of grinding is nanostructured, since it consists of nanocrystallites (possibly aggregated and / or agglomerated), that is to say of crystallites of average size, for example between 5 nm and 15 nm.
  • the crystallites of the compound Cu 2 ZnSnSe 4 can be of different crystalline forms (polymorphism) or identical.
  • the crystalline structure is for example of the stannite type.
  • This powder has a good degree of purity, which results, for example, in an X-ray diffraction pattern and / or in a Raman spectrum which has no peak (s) of secondary phase (s) which is easily detectable.
  • the degree of purity may be greater than 98%, preferably 99%, even more preferentially 99.5%. It can for example be measured by calculating the ratio, multiplied by 100, between the amplitude of the diffraction peak of greater amplitude characteristic of the compound Cu 2 ZnSnSe 4 and the amplitude of the diffraction peak of greater amplitude characteristic of the impurity maj oritaire.
  • the production process of the invention makes it possible to obtain large quantities of powder of the compound Cu 2 ZnSnSe 4 , for example several tens to several hundreds of grams, using in particular a ball mill.
  • the powder of the compound Cu 2 nSnSe 4 synthesized can be used as such, in the form of ink or also in the form of compact material.
  • the compact material may for example be obtained using the manufacturing method of the invention further comprising, after the grinding step, a step in which the powder of the Cu 2 ZnSnSe 4 compound is then hot-compacted, or cold compacted and sintered.
  • the compact material can be used to make a target for sputtering.
  • Figures 1 and 2 show the X-ray diffraction pattern of a powder of Cu 2 ZnSnSe 4 obtained respectively using a vertical vibration mill and a ball mill. The characteristic crystallographic planes of Cu 2 ZnSnSe 4 are shown in the diagrams.
  • the "Pulveriser PO" crusher comprises an enclosure which can be sealed with a gasket which is covered with a cover sealed by screw-nuts. This cover is provided with a valve allowing to make the vacuum if necessary or to control the atmosphere inside the enclosure.
  • a crucible is placed in the enclosure. It is intended to receive the mixture to grind, as well as a ball of 500 grams and diameter 50 mm.
  • the crucible and the ball are made of 100C6 steel. Thermocouples make it possible to measure the outside temperature, as a reference, and the walls of the crucible which is placed in the enclosure.
  • a vibrating tray supports the speaker to make it vibrate vertically and the ball contained in the crucible.
  • the intensity of the grinding can be modulated according to the amplitude of the vertical vibrations according to the following formula:
  • M p mass of the mixture to be ground (in powder form, nugget, 3)
  • V max maximum speed of the vibratory plate, which corresponds to the product of the amplitude of vibration and the pulsation of the vibratory plate (fixed at 2 ⁇ x 50 Hz).
  • shock frequency that can be measured with a differential transducer on the top of the enclosure.
  • the mixture and the ball are then introduced into the crucible of the mill. After sealing the lid of 1 'enclosure, the valve is closed to preserve an atmosphere of argon.
  • the mill is extracted from the glove box and fixed on the vibratory plate whose amplitude of vibration is fixed at 1.3 mm.
  • the Cu 2 ZnSnSe 4 powder obtained is extracted from the mill for later analysis.
  • a mixture of 400 g is prepared from the following constituents present in the stoichiometric proportions of the Cu 2 ZnSnSe 4 compound to be synthesized:
  • the mixture is introduced under air into the steel tank of a large-capacity ball mill (model BB6 marketed by LESSINES).
  • the tank contains 83 steel balls with a diameter of 25.40 mm which represent a total weight of 5.5 kg.
  • the atmosphere of the tank is replaced by an argon atmosphere.
  • the declogging phase allows the balls to be dragged along the walls of the crucible to detach the powder.
  • X-ray emission tube made of cobalt emitting radiation with a wavelength of 1.78897 A;
  • Example 1 The X-ray diffraction patterns obtained in Example 1 and 2 are respectively reproduced in FIGS. 1 and 2.
  • the average crystallite size of Cu 2 ZnSnSe 4 powders is calculated using the Scherrer relation.
  • the form factor "K" is set at 0.89 considering that the crystallites are spherical.
  • the average sizes calculated are about 10 nm for the powders of Examples 1 and 2.
  • the powders obtained also have a very high degree of purity as evidenced by the absence of parasitic peaks on the X-ray diffraction patterns, and the Raman spectra not reproduced here.
  • the optical properties of the compound Cu 2 ZnSnSe 4 were determined from the calculation of the gap energy.
  • the absorbance was measured by dispersion in ethanol then exposure to an incident radiation scan of between 200 nm and 1200 nm.
  • the curve a 2 is then plotted (absorption coefficient determined from the absorbance) as a function of the energy of the incident radiation.
  • the linear part of this curve is then extrapolated to determine the value of the energy for which the absorbance is zero. This value corresponds to that of the gap energy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Photovoltaic Devices (AREA)
  • Powder Metallurgy (AREA)

Abstract

Process for manufacturing, by mechanosynthesis, a powder of the compound Cu2ZnSnSe4, the process comprising a step in which the milling of a mixture is carried out, said mixture containing: - the chemical elements Cu, Sn and Se in elemental form; a ZnSe precursor; the mixture containing Cu, Zn, Sn and Se in the stoichiometric proportions in which they are found in the compound Cu2ZnSnSe4. The invention also relates to the use of the process for producing a thin layer, which is incorporated in particular into the composition of a photovoltaic cell.

Description

PROCEDE DE FABRICATION PAR MECANOSYNTHESE D'UNE POUDRE DE CZTSE, SON UTILISATION POUR FORMER UNE COUCHE MINCE.  PROCESS FOR THE MANUFACTURE BY MECANOSYNTHESIS OF A CZTSE POWDER, ITS USE FOR FORMING A THIN LAYER
DESCRIPTION  DESCRIPTION
DOMAINE TECHNIQUE TECHNICAL AREA
La présente invention se situe dans le domaine des cellules photovoltaïques à base de couche mince. The present invention is in the field of photovoltaic cells based on a thin layer.
Elle concerne en particulier un procédé de fabrication par mécanosynthèse d'une poudre du composé Cu2ZnSnSe4, et son utilisation pour fabriquer une couche mince. In particular, it relates to a method of manufacturing by mechanosynthesis of a powder of the compound Cu 2 ZnSnSe 4 , and its use to make a thin layer.
ARRIERE-PLAN TECHNIQUE TECHNICAL BACKGROUND
L'épuisement des combustibles fossiles incite à développer les énergies renouvelables. The depletion of fossil fuels encourages the development of renewable energies.
Parmi ces énergies, la production d'électricité par la conversion de la lumière du soleil est une voie prometteuse.  Among these energies, the production of electricity by the conversion of sunlight is a promising way.
Cette conversion nécessite l'utilisation de cellules photovoltaïques qui sont composées d'un matériau semi¬ conducteur, généralement le silicium. This conversion requires the use of photovoltaic cells that are composed of a semi conductor material ¬, generally silicon.
Néanmoins, depuis quelques années, apparaît une nouvelle génération de cellules photovoltaïques à base de couche mince ne comportant pas de silicium. Ces cellules ont notamment pour avantages de présenter un faible coût de fabrication, tout en offrant un rendement acceptable, des performances sur le long terme et une structure légère et flexible permettant leur mise en œuvre dans un grand nombre de configurations.  Nevertheless, in recent years, a new generation of thin-film-based photovoltaic cells does not include silicon. These cells have the particular advantages of having a low manufacturing cost, while offering acceptable performance, long-term performance and a light and flexible structure for their implementation in a large number of configurations.
Les couches minces composant ces nouvelles cellules photovoltaïques sont par exemple à base de CdTe (tellure de cadmium), Culn0, 7Gao, 3Se (CIGS) ou Cu2 nSnSe4 (CZTSe) . Parmi ces composés, le Cu2ZnSnSe4 est particulièrement intéressant car il ne présente ni la toxicité du CdTe ni le coût élevé du Culno, 7Gao, 3Se . The thin layers composing these new photovoltaic cells are for example based on CdTe (cadmium telluride), Culn 0 , 7 Gao, 3 Se (CIGS) or Cu 2 nSnSe 4 (CZTSe). Among these compounds, Cu 2 ZnSnSe 4 is particularly interesting because it has neither the toxicity of CdTe nor the high cost of Culno, 7 Gao, 3 Se.
Le composé Cu2ZnSnSe4 peut être déposé sous forme de couches minces à l'aide de procédés sous vide ou par voie liquide . The compound Cu 2 ZnSnSe 4 can be deposited in the form of thin layers by vacuum or liquid methods.
La mise en œuvre de ces procédés de dépôt de couches minces nécessite le plus souvent de disposer du Cu2ZnSnSe4 sous forme d'une poudre, éventuellement mise sous forme massive suite à une opération de frittage ou de fusion. The implementation of these thin-film deposition processes most often requires the Cu 2 ZnSnSe 4 to be in the form of a powder, possibly formed into a solid form following a sintering or melting operation.
Afin de disposer d'une telle poudre, les auteurs de l'article « R. Adhi Wibowo et al., Synthesis of Cu2ZnSnSe4 compound powders by solid state reaction using elemental powders, Journal of Physics and Chemistry of Solids 71 (2010) 1702-1706) » ont proposé d'obtenir une poudre de Cu2ZnSnSe4 en réalisant la mécanosynthèse d'un mélange de poudres élémentaires de Cu, Zn, Sn et Se. In order to have such a powder, the authors of the article "R. Adhi Wibowo et al., Synthesis of Cu 2 ZnSnSe 4 compound powders by solid state reaction using elemental powders, Journal of Physics and Chemistry of Solids 71 (2010). ) 1702-1706) "have proposed to obtain a powder of Cu 2 ZnSnSe 4 by performing the mechanosynthesis of a mixture of elemental powders of Cu, Zn, Sn and Se.
Toutefois, la poudre obtenue présente des phases secondaires, notamment des phases composées de CuSe, Zn, Sn, Se, CuSe2, SnSe, Cu2Se, Cu2SnSe3, Cu5Zn8, ZnSe ou Cui,sSe. Une poudre correspondant à la stœchiométrie Cu2ZnSnSe4 n'est donc pas réellement obtenue. However, the powder obtained has secondary phases, especially phases consisting of CuSe, Zn, Sn, Se, CuSe 2 , SnSe, Cu 2 Se, Cu 2 SnSe 3 , Cu 5 Zn 8 , ZnSe or Cui, sSe. A powder corresponding to the Cu 2 ZnSnSe 4 stoichiometry is therefore not really obtained.
Or, la présence de phases secondaires doit être évitée au mieux afin d'optimiser les performances des cellules photovoltaïques à base de couches minces constituées de Cu2ZnSnSe4. However, the presence of secondary phases should be avoided at best in order to optimize the performance of photovoltaic cells based on thin layers made of Cu 2 ZnSnSe 4 .
Afin d'éliminer autant que possible ces impuretés, les auteurs effectuent des recuits jusqu'à 700 °C.  In order to eliminate as much as possible these impurities, the authors anneal up to 700 ° C.
Ces recuits ne permettent toujours pas d'obtenir une poudre de Cu2ZnSnSe4 stœchiométrique et ont tendance à augmenter la taille des grains (et/ou des cristallites ) de la poudre, ce qui peut être défavorable à la qualité de la couche mince réalisée à partir de cette poudre, en particulier lorsque le dépôt de la couche mince est réalisé par voie liquide. These anneals still do not make it possible to obtain a stoichiometric Cu 2 ZnSnSe 4 powder and tend to increase the size of the grains (and / or crystallites) of the powder, which may be unfavorable to the quality of the thin layer produced. from this powder, in particularly when the deposition of the thin layer is performed by a liquid route.
EXPOSE DE L' INVENTION Un des buts de l'invention est donc d'éviter ou d'atténuer les inconvénients décrits ci-dessus, en proposant un procédé permettant en particulier de fabriquer une poudre de Cu2ZnSnSe4 dont le degré de pureté est amélioré, sans que cela nécessite pour autant une étape de recuit. SUMMARY OF THE INVENTION One of the aims of the invention is therefore to avoid or mitigate the disadvantages described above, by proposing a process which makes it possible in particular to manufacture a Cu 2 ZnSnSe 4 powder whose degree of purity is improved without this requiring an annealing step.
La présente invention concerne ainsi un procédé de fabrication par mécanosynthèse d'une poudre du composé Cu2ZnSnSe4, le procédé comprenant une étape dans laquelle on réalise un broyage d'un mélange contenant : The present invention thus relates to a method of manufacturing by mechanosynthesis of a powder of the compound Cu 2 ZnSnSe 4 , the process comprising a step in which a grinding of a mixture containing:
- les éléments chimiques Cu, Sn et Se sous forme élémentaire ;  the chemical elements Cu, Sn and Se in elemental form;
un précurseur ZnSe;  a precursor ZnSe;
le mélange contenant Cu, Zn, Sn et Se selon les proportions stœchiométriques dans lesquelles ils se trouvent dans le composé Cu2ZnSnSe4. the mixture containing Cu, Zn, Sn and Se according to the stoichiometric proportions in which they are in the Cu 2 ZnSnSe 4 compound.
Le procédé de fabrication de l'invention se caractérise notamment par la présence de ZnSe dans le mélange à broyer. L'utilisation de ce précurseur permet d'obtenir une poudre de Cu2ZnSnSe4 au degré de pureté amélioré tout en évitant une étape supplémentaire de recuit. The manufacturing process of the invention is characterized in particular by the presence of ZnSe in the mixture to be milled. The use of this precursor makes it possible to obtain a Cu 2 ZnSnSe 4 powder with improved degree of purity while avoiding an additional annealing step.
L'invention concerne également l'utilisation du procédé de fabrication pour réaliser une couche mince, qui entre par exemple dans la composition d'une cellule photovoltaïque .  The invention also relates to the use of the manufacturing method for producing a thin layer, which enters, for example, into the composition of a photovoltaic cell.
On peut réaliser la couche mince à l'aide d'un procédé de dépôt sous vide tel que par exemple la pulvérisation cathodique ou 1 ' évaporation ; ou un procédé de dépôt par voie liquide tel que par exemple la sérigraphie (« screen- printing ») , le dépôt à la tournette (« spin coating ») ou le coulage en bande (« tape casting ») . The thin layer may be produced by means of a vacuum deposition process such as, for example, sputtering or evaporation; or a liquid deposition process such as for example screen printing ("screen- printing "), spin coating (" spin coating ") or tape casting.
EXPOSE DETAILLE DE L' INVENTION Afin de réaliser la poudre de Cu2ZnSnSe4 à l'aide du procédé de fabrication de l'invention, on broie un mélange contenant les éléments chimiques Cu, Sn et Se et le précurseur ZnSe afin de réaliser une mécanosynthèse . DETAILED DESCRIPTION OF THE INVENTION In order to produce the Cu 2 ZnSnSe 4 powder using the manufacturing method of the invention, a mixture containing the Cu, Sn and Se chemical elements and the ZnSe precursor is ground in order to produce a mechanosynthesis.
Les éléments chimiques Cu, Sn et Se sont sous forme élémentaire, c'est-à-dire à l'état pur ou pratiquement pur (à savoir typiquement pur à plus de 99 %) .  The chemical elements Cu, Sn and Se are in elemental form, that is to say in the pure state or practically pure (ie typically more than 99% pure).
Ces éléments chimiques ou le précurseur ZnSe peuvent se présenter, indépendamment les uns des autres, sous forme de poudre ou de pépite, étant entendu que la pépite est transformée en poudre au cours du broyage.  These chemical elements or the ZnSe precursor can occur, independently of each other, in the form of powder or nugget, it being understood that the nugget is converted to powder during grinding.
Par exemple, lorsqu'ils se présentent sous forme de poudre, les éléments chimiques Cu, Sn, Se et/ou le précurseur ZnSe ont des grains d'une taille moyenne comprise entre 100 nm et 3 mm, mesurée par exemple à l'aide d'un granulomètre laser en voie sèche ou liquide.  For example, when they are in powder form, the chemical elements Cu, Sn, Se and / or the precursor ZnSe have grains with an average size of between 100 nm and 3 mm, for example measured using a laser granulometer in the dry or liquid process.
Concernant la mécanosynthèse, appelée également broyage haute énergie (ou « High energy bail milling » selon le terme anglais), il s'agit d'un procédé de synthèse d'alliage bien connu de l'homme du métier. Il est décrit par exemple dans le document « Nanomatériaux - Structure et élaboration, Paul Costa, Techniques de l'ingénieur, référence NM 3 010, chapitre 3.3 ».  Regarding mechanosynthesis, also called high energy milling (or "high energy lease milling"), it is an alloy synthesis process well known to those skilled in the art. It is described for example in the document "Nanomaterials - Structure and Development, Paul Costa, Engineering Techniques, reference NM 3.010, chapter 3.3".
La mécanosynthèse consiste essentiellement à utiliser l'énergie mécanique issue du broyage pour induire des réactions chimiques entre les composants du mélange à broyer. Ces réactions se produisent généralement à basse température. La mécanosynthèse peut donc être menée sans apport d'énergie thermique. En pratique, la mécanosynthèse consiste à agiter violemment le mélange pour effectuer un broyage en présence d'un ou plusieurs corps mobile (s) tel (s) que par exemple une bille ou un boulet. Mechanosynthesis essentially consists in using the mechanical energy resulting from grinding to induce chemical reactions between the components of the mixture to be ground. These reactions usually occur at low temperatures. Mechanosynthesis can therefore be carried out without the addition of thermal energy. In practice, the mechanosynthesis consists of violently stirring the mixture to effect grinding in the presence of one or more movable bodies such as for example a ball or a ball.
Les corps mobiles sont généralement composés d'un matériau dense et de haute dureté (carbure de tungstène, acier, ...) .  The moving bodies are generally composed of a dense material and of high hardness (tungsten carbide, steel, ...).
L'agitation des corps mobiles peut être réalisée à l'aide de différents moyens qui varient selon le type de broyeur utilisé. Le broyage du mélange peut ainsi être réalisé à l'aide d'un broyeur classiquement utilisé pour réaliser une mécanosynthèse, par exemple choisi parmi un broyeur à vibrations verticales, un broyeur à boulets, un broyeur planétaire ou un attriteur.  The stirring of the moving bodies can be carried out using different means which vary according to the type of mill used. The grinding of the mixture can thus be carried out using a grinder conventionally used to carry out a mechanosynthesis, for example chosen from a vertical vibration mill, a ball mill, a planetary mill or an attritor.
Sous l'action du broyage, les constituants du mélange à broyer subissent les chocs se produisant entre les corps mobiles se déplaçant à grande vitesse, ou entre ces corps mobiles et les parois de la cuve.  Under the action of grinding, the constituents of the mixture to be ground undergo shocks occurring between the moving bodies moving at high speed, or between these movable bodies and the walls of the tank.
La fréquence et la puissance des chocs influent sur l'intensité et la puissance du broyage, et peuvent être accentuées en augmentant la taille ou le nombre de corps mobiles, l'intensité d'agitation, ou en diminuant la quantité de poudre à broyer.  The frequency and power of the shocks affect the intensity and power of the grinding, and can be increased by increasing the size or number of moving bodies, stirring intensity, or decreasing the amount of powder to be milled.
Il est toutefois à noter que l'homme du métier peut opérer dans une large gamme d'intensité et de puissance de broyage afin de réaliser l'étape de mécanosynthèse.  It should be noted, however, that one skilled in the art can operate in a wide range of intensity and grinding power in order to carry out the mechanosynthesis step.
La durée de broyage influe également sur la mécanosynthèse. Bien que cela dépende des conditions de broyage, la durée du broyage est généralement d'au moins 24 heures, par exemple comprise entre 24 heures et 144 heures, de préférence entre 24 heures et 72 heures.  The duration of grinding also influences the mechanosynthesis. Although it depends on the grinding conditions, the grinding time is generally at least 24 hours, for example between 24 hours and 144 hours, preferably between 24 hours and 72 hours.
Le broyage peut être réalisé sous vide ou dans une atmosphère chimiquement inerte, en particulier vis-à-vis des constituants du mélange et du composé Cu2ZnSnSe4 afin d'en limiter l'oxydation et/ou la contamination par toute autre substance. L'atmosphère chimiquement inerte comprend par exemple un gaz tel que l'azote ou l'argon. The grinding may be carried out under vacuum or in a chemically inert atmosphere, in particular with respect to the constituents of the mixture and the compound Cu 2 ZnSnSe 4 in order to limit oxidation and / or contamination by any other substance. The chemically inert atmosphere includes, for example, a gas such as nitrogen or argon.
Le cas échéant, un additif peut être ajouté au mélange à broyer afin de réaliser un broyage dit par « voie humide ». Toutefois, de préférence, le mélange ne contient pas d'additif, afin de réaliser un broyage dit par « voie sèche ».  If necessary, an additive may be added to the mixture to be milled in order to carry out "wet" milling. However, preferably, the mixture does not contain any additive, so as to carry out grinding said "dry".
Lors du broyage, les grains obtenus sont alternativement déformés, fracturés et soudés les uns aux autres. La modification de la structure cristalline qui s'ensuit permet la diffusion des éléments chimiques, ce qui conduit à la formation d'une poudre d'un nouvel d'alliage.  During grinding, the grains obtained are alternately deformed, fractured and welded to each other. The resulting crystal structure modification allows the diffusion of the chemical elements, which leads to the formation of a powder of a new alloy.
La poudre du composé Cu2ZnSnSe4 obtenue à l'issue du broyage est nanostructurée, puisque composée de nanocristallites (éventuellement agrégés et/ou agglomérés), c'est-à-dire de cristallites d'une taille moyenne comprise par exemple entre 5 nm et 15 nm. The powder of the Cu 2 ZnSnSe 4 compound obtained at the end of grinding is nanostructured, since it consists of nanocrystallites (possibly aggregated and / or agglomerated), that is to say of crystallites of average size, for example between 5 nm and 15 nm.
Les cristallites du composé Cu2ZnSnSe4 peuvent être de formes cristallines différentes (polymorphisme) ou identiques. La structure cristalline est par exemple de type stannite . The crystallites of the compound Cu 2 ZnSnSe 4 can be of different crystalline forms (polymorphism) or identical. The crystalline structure is for example of the stannite type.
Cette poudre présente un bon degré de pureté, ce qui se traduit par exemple par un diagramme de diffraction X et/ou un spectre Raman qui ne présente pas de pic (s) de phase (s) secondaire ( s ) qui est aisément détectable.  This powder has a good degree of purity, which results, for example, in an X-ray diffraction pattern and / or in a Raman spectrum which has no peak (s) of secondary phase (s) which is easily detectable.
Ainsi, le degré de pureté peut être supérieur à 98 %, préférentiellement à 99 %, encore plus préférentiellement à 99,5 %. Il peut par exemple être mesuré en calculant le rapport, multiplié par 100, entre l'amplitude du pic de diffraction de plus grande amplitude caractéristique du composé Cu2ZnSnSe4 et l'amplitude du pic de diffraction de plus grande amplitude caractéristique de l'impureté maj oritaire . Le procédé de fabrication de 1 ' invention permet éventuellement d'obtenir des quantités importantes de poudre du composé Cu2ZnSnSe4, par exemple plusieurs dizaines à plusieurs centaines de grammes, en utilisant notamment un broyeur à boulets. Thus, the degree of purity may be greater than 98%, preferably 99%, even more preferentially 99.5%. It can for example be measured by calculating the ratio, multiplied by 100, between the amplitude of the diffraction peak of greater amplitude characteristic of the compound Cu 2 ZnSnSe 4 and the amplitude of the diffraction peak of greater amplitude characteristic of the impurity maj oritaire. The production process of the invention makes it possible to obtain large quantities of powder of the compound Cu 2 ZnSnSe 4 , for example several tens to several hundreds of grams, using in particular a ball mill.
Concernant sa mise en œuvre, la poudre du composé Cu2 nSnSe4 synthétisée peut être utilisée telle quelle, sous forme d'encre ou également sous forme de matériau compact. Regarding its implementation, the powder of the compound Cu 2 nSnSe 4 synthesized can be used as such, in the form of ink or also in the form of compact material.
Le matériau compact peut par exemple être obtenu à l'aide du procédé de fabrication de l'invention comprenant en outre, après l'étape de broyage, une étape dans laquelle la poudre du composé Cu2ZnSnSe4 est ensuite compactée à chaud, ou compactée à froid puis frittée. The compact material may for example be obtained using the manufacturing method of the invention further comprising, after the grinding step, a step in which the powder of the Cu 2 ZnSnSe 4 compound is then hot-compacted, or cold compacted and sintered.
Le matériau compact peut être utilisé pour réaliser une cible pour la pulvérisation cathodique.  The compact material can be used to make a target for sputtering.
D'autres objets, caractéristiques et avantages de l'invention vont maintenant être précisés dans la description qui suit de modes de réalisation particuliers du procédé de l'invention, donnés à titre illustratif et non limitatif, en référence aux Figures 1 à 2 annexées.  Other objects, features and advantages of the invention will now be specified in the following description of particular embodiments of the method of the invention, given by way of illustration and not limitation, with reference to Figures 1 to 2 attached.
BREVE DESCRIPTION DES FIGURES BRIEF DESCRIPTION OF THE FIGURES
Les Figures 1 et 2 représentent le diagramme de diffraction X d'une poudre du composé Cu2ZnSnSe4 obtenue respectivement à l'aide d'un broyeur à vibrations verticales et d'un broyeur à boulets. Les plans cristallographiques caractéristiques du composé Cu2ZnSnSe4 sont indiqués sur les diagrammes . Figures 1 and 2 show the X-ray diffraction pattern of a powder of Cu 2 ZnSnSe 4 obtained respectively using a vertical vibration mill and a ball mill. The characteristic crystallographic planes of Cu 2 ZnSnSe 4 are shown in the diagrams.
EXPOSE DE MODE DE REALISATIONS PARTICULIERS 1. Synthèse d'une poudre de Cu2ZnSnSe4 à l'aide d'un broyeur à billes de petite capacité. Une poudre de Cu2ZnSnSe4 est fabriquée en réalisant la mécanosynthèse dans un broyeur à vibrations de petite capacité (modèle « Pulvérisette PO » commercialisé par la société Fritsch) . EXAMPLE OF PARTICULAR EMBODIMENTS 1. Synthesis of a Cu 2 ZnSnSe 4 Powder Using a Small Capacity Ball Mill. A Cu 2 ZnSnSe 4 powder is manufactured by carrying out the mechanosynthesis in a small capacity vibratory mill ("PO spray" model marketed by the Fritsch company).
Le broyeur « Pulvérisette PO » comprend une enceinte qui peut être fermée hermétiquement à l'aide d'un joint que l'on recouvre d'un couvercle scellé par des vis-écrous. Ce couvercle est muni d'une vanne permettant de faire si besoin le vide ou de contrôler l'atmosphère à l'intérieur de l'enceinte.  The "Pulveriser PO" crusher comprises an enclosure which can be sealed with a gasket which is covered with a cover sealed by screw-nuts. This cover is provided with a valve allowing to make the vacuum if necessary or to control the atmosphere inside the enclosure.
Un creuset est placé dans l'enceinte. Il est destiné à recevoir le mélange à broyer, ainsi qu'une bille de 500 grammes et de diamètre 50 mm. Le creuset et la bille sont en acier 100C6. Des thermocouples permettent de mesurer la température à l'extérieur, en tant que référence, et aux parois du creuset qui est placé dans l'enceinte.  A crucible is placed in the enclosure. It is intended to receive the mixture to grind, as well as a ball of 500 grams and diameter 50 mm. The crucible and the ball are made of 100C6 steel. Thermocouples make it possible to measure the outside temperature, as a reference, and the walls of the crucible which is placed in the enclosure.
Un plateau vibrant supporte l'enceinte afin de la faire vibrer verticalement ainsi que la bille contenue dans le creuset.  A vibrating tray supports the speaker to make it vibrate vertically and the ball contained in the crucible.
Comme indiqué dans le document « Y. Chen, M. Bibole, As stated in the document "Y. Chen, Mr. Bibole,
R. Lehazif, G. Martin, Phys . Rev. B, vol. 48, pages 14 à 21 (1993) », l'intensité du broyage peut être modulée en fonction de l'amplitude des vibrations verticales selon la formule suivante : R. Lehazif, G. Martin, Phys. Rev. B, vol. 48, pages 14 to 21 (1993), the intensity of the grinding can be modulated according to the amplitude of the vertical vibrations according to the following formula:
I = (Mb.Vmax.f) /Mp I = (M b .V max .f) / M p
, dans laquelle : , in which :
I : intensité de broyage I: grinding intensity
Mb : masse de la bille M b : mass of the ball
Mp : masse du mélange à broyer (sous forme poudre, pépite, ...) Vmax : vitesse maximale du plateau vibrant, qui correspond au produit de l'amplitude de vibration et de la pulsation du plateau vibrant (fixée à 2Π x 50 Hz) . M p : mass of the mixture to be ground (in powder form, nugget, ...) V max : maximum speed of the vibratory plate, which corresponds to the product of the amplitude of vibration and the pulsation of the vibratory plate (fixed at 2Π x 50 Hz).
f : fréquence des chocs qui peut être mesurée avec un transducteur différentiel sur le haut de l'enceinte.  f: shock frequency that can be measured with a differential transducer on the top of the enclosure.
En fonction de l'amplitude choisie, l'intensité est par exemple pour le cas présent où Mb = 500 g et Mp = 5 g : Depending on the amplitude chosen, the intensity is for example the case where M b = 500 g and M p = 5 g:
amplitude de 0,9 mm : 1 = 500 m/s2 amplitude of 0.9 mm: 1 = 500 m / s 2
- amplitude de 1,3 mm : I = 1000 m/s2 - amplitude of 1.3 mm: I = 1000 m / s 2
Une intensité de I = 1000 m/s2 est retenue pour le broyage qui suit. An intensity of I = 1000 m / s 2 is retained for the following grinding.
Dans une boîte à gants sous atmosphère d'argon, on place le broyeur et on élabore un mélange de 5 g à partir des constituants suivants :  In a glove box under an argon atmosphere, the grinder is placed and a mixture of 5 g is prepared from the following constituents:
- 1,01 g de poudre de cuivre (commercialisée par la société GoodFellow sous le numéro CU 06045/10, pureté de 99,8 %) ;  1.01 g of copper powder (marketed by GoodFellow under the number CU 06045/10, purity of 99.8%);
0,95 g de poudre d' étain (commercialisée par la société GoodFellow sous le numéro LS 279681, pureté de 99, 9 %) ;  0.95 g of tin powder (marketed by GoodFellow under the number LS 279681, purity of 99.9%);
1,90 g de poudre sélénium (commercialisée par la société GoodFellow sous le numéro SE 006010/4, pureté de 99, 95 %) ;  1.90 g of selenium powder (sold by the company GoodFellow under the number SE 006010/4, purity of 99.95%);
- 1,14 g d'un précurseur ZnSe sous forme de pépites 1.14 g of a ZnSe precursor in the form of nuggets
(commercialisé par la société Strem Chemicals sous le numéro 93-3041, pureté de 99,99 %) . (marketed by Strem Chemicals under number 93-3041, 99.99% purity).
Les quantités de chaque constituant dans le mélange ainsi obtenu permettent de faire en sorte que Cu, Zn, Sn et Se sont présents selon les proportions stœchiométriques du composé Cu2ZnSnSe4 à synthétiser. The amounts of each constituent in the mixture thus obtained make it possible to ensure that Cu, Zn, Sn and Se are present in the stoichiometric proportions of the Cu 2 ZnSnSe 4 compound to be synthesized.
Le mélange et la bille sont ensuite introduits dans le creuset du broyeur. Après avoir scellé le couvercle de 1' enceinte, la vanne est fermée afin de préserver une atmosphère d'argon. The mixture and the ball are then introduced into the crucible of the mill. After sealing the lid of 1 'enclosure, the valve is closed to preserve an atmosphere of argon.
Le broyeur est extrait de la boîte à gants et fixé sur le plateau vibrant dont l'amplitude de vibration est fixée à 1 , 3 mm .  The mill is extracted from the glove box and fixed on the vibratory plate whose amplitude of vibration is fixed at 1.3 mm.
Les chocs produits lors du broyage n'induisent qu'une très faible augmentation de la température, que l'on peut considérer comme constante.  Shocks produced during grinding only result in a very small increase in temperature, which can be considered constant.
Après 72 heures de broyage, la poudre de Cu2ZnSnSe4 obtenue est extraite du broyeur pour être analysée ultérieurement . After 72 hours of grinding, the Cu 2 ZnSnSe 4 powder obtained is extracted from the mill for later analysis.
2. Synthèse d'une poudre de Cu2ZnSnSe4 à l'aide d'un broyeur à boulets de grande capacité. 2. Synthesis of Cu 2 ZnSnSe 4 powder using a large ball mill.
Dans un flacon placé dans une boîte à gants sous atmosphère d'argon, on réalise un mélange de 400 g à partir des constituants suivants, présents selon les proportions stœchiométriques du composé Cu2ZnSnSe4 à synthétiser : In a flask placed in a glove box under an argon atmosphere, a mixture of 400 g is prepared from the following constituents present in the stoichiometric proportions of the Cu 2 ZnSnSe 4 compound to be synthesized:
- 81,08 g de poudre de cuivre (commercialisé par la société Strem Chemicals sous le numéro B7572032, pureté de 99, 9 %) ;  81.08 g of copper powder (marketed by Strem Chemicals under the number B7572032, 99.9% purity);
75,72 g de poudre d' étain (commercialisé par la société GoodFellow sous le numéro LS 360425, pureté de 99, 9 %) ;  75.72 g of tin powder (marketed by GoodFellow under the number LS 360425, purity of 99.9%);
- 151,12 g de poudre sélénium (commercialisé par la société Strem Chemicals sous le numéro B7518115, pureté de 99, 99 %) .  151.12 g of selenium powder (marketed by Strem Chemicals under the number B7518115, 99.99% purity).
- 92,08 g d'un précurseur ZnSe sous forme de pépites (commercialisé par la société Strem Chemicals sous le numéro 93-3041, pureté de 99,99 %) .  92.08 g of a ZnSe precursor in the form of nuggets (marketed by Strem Chemicals under number 93-3041, purity of 99.99%).
Le mélange est introduit sous air dans la cuve en acier d'un broyeur à boulets de grande capacité (modèle BB6 commercialisé par la société LESSINES) . La cuve contient 83 boulets en acier d'un diamètre de 25,40 mm qui représentent un poids total de 5,5 kg. The mixture is introduced under air into the steel tank of a large-capacity ball mill (model BB6 marketed by LESSINES). The tank contains 83 steel balls with a diameter of 25.40 mm which represent a total weight of 5.5 kg.
Après avoir nettoyé les différents joints d'étanchéité à l'aide d'un chiffon imbibé d'éthanol, l'atmosphère de la cuve est remplacée par une atmosphère d'argon.  After cleaning the various seals with a cloth soaked in ethanol, the atmosphere of the tank is replaced by an argon atmosphere.
On réalise ensuite la mécanosynthèse du mélange en faisant alterner une phase de broyage (vitesse de la cuve = 60 tours/min) avec une phase de décolmatage (vitesse de la cuve = 49 tours/min) . La phase de décolmatage permet d'entraîner les boulets le long des parois du creuset pour en décoller la poudre.  The mechanosynthesis of the mixture is then carried out by alternating a grinding phase (tank speed = 60 rpm) with a declogging phase (tank speed = 49 rpm). The declogging phase allows the balls to be dragged along the walls of the crucible to detach the powder.
Après 72 heures de broyage, l'ouverture de la cuve et la récupération de la poudre de Cu2ZnSnSe4 obtenue se font à l'air. After 72 hours of grinding, the opening of the tank and the recovery of the Cu 2 ZnSnSe 4 powder obtained are done in air.
3. Caractérisation des poudres de Cu2ZnSnSe4 obtenues . 3. Characterization of Cu 2 ZnSnSe 4 powders obtained.
Les deux poudres de Cu2ZnSnSe4 obtenues dans les exemples précédents sont analysées avec un diffractomètre à rayons X (modèle « X' Pert Pro » commercialisée par la société PANalytical) dont les paramètres d'analyse sont les suivants : The two Cu 2 ZnSnSe 4 powders obtained in the preceding examples are analyzed with an X-ray diffractometer (Model "X 'Pert Pro" sold by the company PANalytical) whose analysis parameters are as follows:
- tube d'émission de rayons X (anode) en cobalt émettant une radiation d'une longueur d'onde de 1,78897 A ;  X-ray emission tube (anode) made of cobalt emitting radiation with a wavelength of 1.78897 A;
- fente de divergence = 1 ;  - divergence slot = 1;
- masque = 10 ;  - mask = 10;
- fente anti-diffusion = 2 ;  - anti-diffusion slot = 2;
- fente de réception = 6,6 ;  - receiving slot = 6.6;
- pas de mesure = 0,02° pendant 1000 secondes ;  - no measurement = 0.02 ° for 1000 seconds;
- angles de balayage = 20° < 2Θ < 160° ;  - scanning angles = 20 ° <2Θ <160 °;
- filtres placés en amont de la fente de divergence et en aval de la fente de réception. Les diagrammes de diffraction X obtenus dans l'exemple 1 et 2 sont respectivement reproduits sur les Figures 1 et 2. - filters placed upstream of the divergence slot and downstream of the receiving slot. The X-ray diffraction patterns obtained in Example 1 and 2 are respectively reproduced in FIGS. 1 and 2.
La comparaison des pics identifiés dans ces diagrammes avec ceux de la référence JCPDS 01-070-8930 confirme l'obtention de poudres de Cu2ZnSnSe4 de structure cristalline de type stannite. The comparison of the peaks identified in these diagrams with those of reference JCPDS 01-070-8930 confirms the production of Cu 2 ZnSnSe 4 powders of crystalline structure of stannite type.
A partir de la largeur des pics à mi-hauteur, la taille moyenne des cristallites des poudres de Cu2ZnSnSe4 est calculée à l'aide de la relation de Scherrer. Pour ce calcul, le facteur de forme « K » est fixé à 0,89 en considérant que les cristallites sont sphériques. From the width of the peaks at mid-height, the average crystallite size of Cu 2 ZnSnSe 4 powders is calculated using the Scherrer relation. For this calculation, the form factor "K" is set at 0.89 considering that the crystallites are spherical.
Les tailles moyennes calculées sont d'environ 10 nm pour les poudres de l'exemple 1 et 2.  The average sizes calculated are about 10 nm for the powders of Examples 1 and 2.
Les poudres obtenues présentent par ailleurs un degré de pureté très élevé comme l'atteste l'absence de pics parasites sur les diagrammes de diffraction X, et les spectres Raman non reproduits ici.  The powders obtained also have a very high degree of purity as evidenced by the absence of parasitic peaks on the X-ray diffraction patterns, and the Raman spectra not reproduced here.
Selon la méthode connue de l'homme du métier, les propriétés optiques du composé Cu2ZnSnSe4 ont été déterminées à partir du calcul de l'énergie du gap. Pour cela l'absorbance a été mesurée par dispersion dans l'éthanol puis exposition à un balayage de rayonnement incident compris entre 200 nm à 1200 nm. According to the method known to those skilled in the art, the optical properties of the compound Cu 2 ZnSnSe 4 were determined from the calculation of the gap energy. For this, the absorbance was measured by dispersion in ethanol then exposure to an incident radiation scan of between 200 nm and 1200 nm.
On trace ensuite la courbe a2 (coefficient d'absorption déterminé à partir de l'absorbance) en fonction de l'énergie du rayonnement incident. On extrapole ensuite la partie linéaire de cette courbe pour déterminer la valeur de l'énergie pour laquelle l'absorbance est nulle. Cette valeur correspond à celle de l'énergie de gap. The curve a 2 is then plotted (absorption coefficient determined from the absorbance) as a function of the energy of the incident radiation. The linear part of this curve is then extrapolated to determine the value of the energy for which the absorbance is zero. This value corresponds to that of the gap energy.
L'énergie de gap du composé Cu2ZnSnSe4 ainsi calculée est Egap = 1 ev (valeur théorique de Egap = 1 ev) . Il ressort de la description qui précède que le procédé de fabrication de l'invention permet de fabriquer une poudre nanostructurée de Cu2ZnSnSe4 dont le degré de pureté est amélioré, sans que cela nécessite pour autant une étape de recuit. The gap energy of the compound Cu 2 ZnSnSe 4 thus calculated is Egap = 1 ev (theoretical value of Egap = 1 ev). It follows from the foregoing description that the manufacturing method of the invention makes it possible to manufacture a nanostructured Cu 2 ZnSnSe 4 powder whose degree of purity is improved, without this requiring an annealing step.

Claims

REVENDICATIONS
1) Procédé de fabrication par mécanosynthèse d'une poudre du composé Cu2ZnSnSe4, le procédé comprenant une étape dans laquelle on réalise un broyage d'un mélange contenant : 1) Method of manufacturing by mechanosynthesis of a powder of the compound Cu 2 ZnSnSe 4 , the process comprising a step in which a grinding of a mixture containing:
- les éléments chimiques Cu, Sn et Se sous forme élémentaire ;  the chemical elements Cu, Sn and Se in elemental form;
un précurseur ZnSe ;  a precursor ZnSe;
ledit mélange contenant Cu, Zn, Sn et Se selon les proportions stœchiométriques dans lesquelles ils se trouvent dans le composé Cu2ZnSnSe4. said mixture containing Cu, Zn, Sn and Se according to the stoichiometric proportions in which they are in the Cu 2 ZnSnSe 4 compound.
2) Procédé de fabrication selon la revendication 1, dans lequel les éléments chimiques Cu, Sn, Se ou le précurseur ZnSe se présentent, indépendamment les uns des autres, sous forme de poudre ou de pépite. 2) The manufacturing method according to claim 1, wherein the chemical elements Cu, Sn, Se or the precursor ZnSe are, independently of each other, in the form of powder or nugget.
3) Procédé de fabrication selon la revendication 2, dans lequel, lorsqu'ils se présentent sous forme de poudre, les éléments chimiques Cu, Sn, Se et/ou le précurseur ZnSe ont des grains d'une taille moyenne comprise entre 100 nm et 3 mm. 4) Procédé de fabrication selon l'une quelconque des revendications précédentes, dans lequel le mélange ne contient pas d'additif, afin de réaliser un broyage par voie sèche . 5) Procédé de fabrication selon l'une quelconque des revendications précédentes, dans lequel le broyage du mélange est réalisé à l'aide d'un broyeur choisi parmi un broyeur à vibrations verticales, un broyeur à boulets, un broyeur planétaire ou un attriteur. 6) Procédé de fabrication selon l'une quelconque des revendications précédentes, dans lequel le broyage est réalisé sous vide ou dans une atmosphère chimiquement inerte vis-à-vis des constituants du mélange et du composé Cu2 nSnSe4. 3) The manufacturing method according to claim 2, wherein, when in the form of a powder, the chemical elements Cu, Sn, Se and / or the precursor ZnSe have grains of average size between 100 nm and 3 mm. 4) A method of manufacture according to any one of the preceding claims, wherein the mixture does not contain any additive, in order to achieve a dry grinding. 5) A manufacturing method according to any one of the preceding claims, wherein the grinding of the mixture is carried out using a grinder selected from a vertical vibration mill, a ball mill, a planetary mill or an attritor. 6) A method of manufacture according to any one of the preceding claims, wherein the grinding is carried out under vacuum or in an atmosphere chemically inert vis-à-vis the constituents of the mixture and the compound Cu 2 nSnSe 4 .
7) Procédé de fabrication selon l'une quelconque des revendications précédentes, dans lequel la durée de broyage est d'au moins 24 heures. 7) A manufacturing method according to any one of the preceding claims, wherein the grinding time is at least 24 hours.
8) Procédé de fabrication selon la revendication 7, dans lequel la durée de broyage est comprise entre 24 heures et 144 heures. 8) The manufacturing method according to claim 7, wherein the grinding time is between 24 hours and 144 hours.
9) Procédé de fabrication selon la revendication 8, dans lequel la durée de broyage est comprise entre 24 heures et 72 heures. 10) Procédé de fabrication selon l'une quelconque des revendications précédentes, dans lequel la poudre du composé Cu2ZnSnSe4 est composée de cristallites d'une taille moyenne comprise entre 5 nm et 15 nm. 11) Procédé de fabrication selon l'une quelconque des revendications précédentes, dans lequel, après l'étape de broyage, le procédé comprend en outre une étape dans laquelle la poudre du composé Cu2ZnSnSe4 est compactée à chaud, ou compactée à froid puis frittée. 9) The manufacturing method according to claim 8, wherein the grinding time is between 24 hours and 72 hours. 10) A manufacturing method according to any one of the preceding claims, wherein the powder of the compound Cu 2 ZnSnSe 4 is composed of crystallites with a mean size of between 5 nm and 15 nm. 11) A method of manufacture according to any one of the preceding claims, wherein after the grinding step, the method further comprises a step wherein the powder of the compound Cu 2 ZnSnSe 4 is hot-compacted, or cold-compacted then sintered.
12) Procédé de fabrication selon la revendication 11, dans lequel le matériau compact obtenu est utilisé pour réaliser une cible pour la pulvérisation cathodique. 13) Utilisation du procédé de fabrication tel que défini dans l'une quelconque des revendications 1 à 12, pour réaliser une couche mince. 14) Utilisation selon la revendication 13, dans laquelle on réalise la couche mince à l'aide d'un procédé de dépôt sous vide. 12) The manufacturing method according to claim 11, wherein the compact material obtained is used to achieve a target for sputtering. 13) Use of the manufacturing method as defined in any one of claims 1 to 12, to achieve a thin layer. 14) Use according to claim 13, wherein the thin layer is made using a vacuum deposition process.
15) Utilisation selon la revendication 14, dans laquelle le procédé de dépôt sous vide est la pulvérisation cathodique ou 1 ' évaporation . 15. Use according to claim 14, wherein the vacuum deposition process is sputtering or evaporation.
16) Utilisation selon la revendication 13, dans laquelle on réalise la couche mince à l'aide d'un procédé de dépôt par voie liquide. 16) Use according to claim 13, wherein the thin layer is produced using a liquid deposition process.
17) Utilisation selon la revendication 16, dans laquelle le procédé de dépôt par voie liquide est la sérigraphie, le dépôt à la tournette ou le coulage en bande. 17) Use according to claim 16, wherein the liquid deposition process is screen printing, spin coating or strip casting.
18) Utilisation selon l'une quelconque des revendications 13 à 17, dans laquelle la couche mince entre dans la composition d'une cellule photovoltaïque . 18) Use according to any one of claims 13 to 17, wherein the thin layer is in the composition of a photovoltaic cell.
PCT/FR2012/052398 2011-10-20 2012-10-19 Process for manufacturing, by mechanosynthesis, a powder of cztse, the use thereof for forming a thin layer WO2013057451A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1159529 2011-10-20
FR1159529A FR2981591B1 (en) 2011-10-20 2011-10-20 PROCESS FOR THE MANUFACTURE BY MECANOSYNTHESIS OF A CZTSE POWDER, ITS USE FOR FORMING A THIN LAYER

Publications (2)

Publication Number Publication Date
WO2013057451A2 true WO2013057451A2 (en) 2013-04-25
WO2013057451A3 WO2013057451A3 (en) 2013-08-08

Family

ID=47191965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/052398 WO2013057451A2 (en) 2011-10-20 2012-10-19 Process for manufacturing, by mechanosynthesis, a powder of cztse, the use thereof for forming a thin layer

Country Status (2)

Country Link
FR (1) FR2981591B1 (en)
WO (1) WO2013057451A2 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R. ADHI WIBOWO ET AL.: "Synthesis of Cu2ZnSnSe4 compound powders by solid state reaction using elemental powders", JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, vol. 71, 2010, pages 1702 - 1706, XP027445427, DOI: doi:10.1016/j.jpcs.2010.08.012
Y. CHEN; M. BIBOLE; R. LEHAZIF; G. MARTIN, PHYS. REV. B, vol. 48, 1993, pages 14 - 21

Also Published As

Publication number Publication date
FR2981591B1 (en) 2013-11-29
WO2013057451A3 (en) 2013-08-08
FR2981591A1 (en) 2013-04-26

Similar Documents

Publication Publication Date Title
Banai et al. A review of tin (II) monosulfide and its potential as a photovoltaic absorber
EP2877277B1 (en) Process to prepare colloidal solutions of amorphous particles
Lesnyak et al. Alloyed copper chalcogenide nanoplatelets via partial cation exchange reactions
Cui et al. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts
US8329501B1 (en) High-throughput printing of semiconductor precursor layer from inter-metallic microflake particles
Tiwari et al. Growth and characterization of chalcostibite CuSbSe2 thin films for photovoltaic application
Kumar et al. Tetrahedrite (Cu12Sb4S13) thin films for photovoltaic and thermoelectric applications
JP2009528682A (en) High throughput semiconductor precursor layer printing with intermetallic nanoflakes particles
Engberg et al. Liquid phase assisted grain growth in Cu 2 ZnSnS 4 nanoparticle thin films by alkali element incorporation
EP4172387A1 (en) Method for depositing an inorganic perovskite layer
EP1866976B1 (en) Making thermoelectric materials by mechanosynthesis
Li et al. Fabrication, characterization and application of Cu2ZnSn (S, Se) 4 absorber layer via a hybrid ink containing ball milled powders
KR101874238B1 (en) Manufacturing method of copper chalcogenide using deep eutectic solution
Abdalla et al. Pulsed laser deposition of Zn (O, Se) layers in nitrogen background Pressure
WO2013057452A2 (en) Process for manufacturing, by mechanosynthesis, a powder of czts, the use thereof for forming a thin layer
Verma et al. Heat-up and gram-scale synthesis of Cu-poor CZTS nanocrystals with controllable compositions and shapes
Delmonte et al. An affordable method to produce CuInS2 ‘mechano-targets’ for film deposition
FR2913011A1 (en) Preparing material comprising metal compound, useful in e.g. batteries, comprises extracting portion of leaving compound by e.g. thermal degradation under vacuum and recovering the material that is depleted or devoid of the compound
WO2013057451A2 (en) Process for manufacturing, by mechanosynthesis, a powder of cztse, the use thereof for forming a thin layer
US20160035916A1 (en) Multifunctional Nanostructured Metal-Rich Metal Oxides
Ming et al. Tunable structural, morphological and optical properties of undoped, Mn, Ni and Ag-doped CuInS2 thin films prepared by AACVD
WO2013093383A1 (en) Method of manufacturing a czt powder (s, se) by mechanosynthesis and use thereof for forming a thin layer
WO2019243637A1 (en) Method for synthesising core-shell silicon-germanium nanoparticles by laser pyrolysis, method for producing an electrode for a lithium battery and associated electrode
Moris et al. ELECTRICAL AND OPTICAL PROPERTIES OF P-TYPE Ag 0.3 Cu 0.7 InQ 2 CHALCOPYRITE SEMICONDUCTORS.
Babu et al. Properties of CuInGaSe thin films prepared by chemical spray pyrolysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12787783

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 12787783

Country of ref document: EP

Kind code of ref document: A2