WO2013056630A1 - 基站、服务处理方法和云计算系统 - Google Patents

基站、服务处理方法和云计算系统 Download PDF

Info

Publication number
WO2013056630A1
WO2013056630A1 PCT/CN2012/082750 CN2012082750W WO2013056630A1 WO 2013056630 A1 WO2013056630 A1 WO 2013056630A1 CN 2012082750 W CN2012082750 W CN 2012082750W WO 2013056630 A1 WO2013056630 A1 WO 2013056630A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
cloud
service
wireless network
wireless
Prior art date
Application number
PCT/CN2012/082750
Other languages
English (en)
French (fr)
Inventor
刘晟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12842180.7A priority Critical patent/EP2770800B1/en
Publication of WO2013056630A1 publication Critical patent/WO2013056630A1/zh
Priority to US14/256,212 priority patent/US10039136B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/40Support for services or applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1097Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/04Protocols for data compression, e.g. ROHC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/60Subscription-based services using application servers or record carriers, e.g. SIM application toolkits

Definitions

  • Embodiments of the present invention relate to the field of communication technologies, and more particularly, to a base station, a service processing method, and a cloud computing system. Background technique
  • the mobile internet network based on the traditional mobile communication system is composed of a radio access network (RAN) and a mobile core network (CN, Core Network).
  • the RAN is responsible for providing wireless access to the user equipment (UE, User Equipment), and the CN provides a fixed Internet Protocol (IP) access point for the user equipment through mobility management.
  • IP Internet Protocol
  • the user equipment accesses the external IP network through the mobile communication network, and accesses the application server (AS, Application Server) through the external IP network.
  • AS Application Server
  • ISP Internet Service Provider
  • server hosting and bandwidth lease The ISP directly leases servers and network bandwidth, or ISPs. Purchase the server and its supporting software yourself, and then lease the network bandwidth to provide application services.
  • the mobile Internet application also needs a large number of storage services and computing services, wherein the storage service refers to saving user data, including pictures, videos, data files, emails, etc. Formatting data, computing services means providing office software
  • a major problem with mobile internet based on traditional mobile communication systems is that the mobile communication system
  • the system is fully pipelined, that is, it only provides a channel for IP access, and can not directly obtain application-related information from the application server, such as application service attributes (service type, maximum rate, average rate, etc.)
  • QoS Quality of Service
  • source coded information of services such as video streaming services, etc.
  • the application is separated from the pipeline, and the RAN network element such as the base station only provides the access layer function, the application layer and the transport layer (TCP/UDP, Transmission Control Protocol/User Datagram Protocol) and the access layer.
  • TCP/UDP Transmission Control Protocol/User Datagram Protocol
  • Cross-layer optimization is difficult to implement. Summary of the invention
  • the embodiments of the present invention provide a base station, a service processing method, and a cloud computing system, which can improve system performance.
  • a base station including: a wireless network function module, configured to establish a wireless network bearer channel with a UE; and a receiving module, configured to receive a service request of the UE by using a wireless network bearer channel;
  • the request content in the service request of the UE is parsed, the cloud service access request is generated according to the content that needs to be processed by the cloud server in the requested content, the cloud service access request is sent to the cloud server, and the corresponding processing result of the cloud server is passed through the wireless network.
  • the bearer channel is returned to the UE.
  • a service processing method including: establishing a radio network bearer channel with the UE; receiving a service request of the UE by using the radio network bearer channel; parsing the request content in the service request of the UE, according to the content in the request content Generating a cloud service access request by the content processed by the cloud server; sending a cloud service access request to the cloud server, and returning the corresponding processing result of the cloud server to the UE through the wireless network bearer channel.
  • a cloud computing system comprising a plurality of cloud server terminals, wherein a plurality of cloud server terminals are connected to each other, and each cloud server terminal is connected to one or more base stations as described above.
  • the radio network bearer channel is established between the base station and the user equipment in the embodiment of the present invention, thereby terminating the access layer protocol of the user equipment.
  • the base station of the embodiment of the present invention does not forward the service request of the user equipment, but parses the request content in the service request, and processes the request according to the requested content or for the cloud server.
  • the transport layer protocol and the access layer protocol on the user equipment side are terminated in the base station. Therefore, the embodiment of the present invention can implement cross-layer optimization of the transport layer and the access layer.
  • FIG. 1 is a schematic structural diagram of a cloud computing system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a base station in accordance with an embodiment of the present invention.
  • FIG. 3 is a block diagram of a base station according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram showing an internal functional structure of a base station according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a cloud computing architecture according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a cloud computing system according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of mobility management in a cloud computing system according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a cloud computing system according to another embodiment of the present invention.
  • FIG. 9 is a flow chart of a service processing method according to an embodiment of the present invention. detailed description
  • User-specific storage services and computing services are primarily provided by the user equipment itself, but are significantly limited by the very limited computing and storage capabilities of user equipment such as mobile phones. There is also a trend to offer such services through cloud computing.
  • Cloud computing is the business operating mode of shared network delivery information services.
  • the cloud portrays the infrastructure of information services, including networking, computing, and storage, and the sum of related operating systems, application platforms, Web services, and applications.
  • the software and hardware of the system are virtualized and encapsulated as services.
  • User devices can be accessed and used through the network.
  • the users of the cloud service only see the service itself, instead of caring about the specific implementation of the relevant infrastructure, including Address location, resource allocation and management, hardware and software platforms, and more.
  • the hardware infrastructure of cloud computing is typically the data center. (Data Center), or multiple data centers connected to each other, or a server cluster composed of computers distributed in different geographical locations.
  • the cloud computing software infrastructure is responsible for virtualization of the hardware infrastructure, resource management and monitoring, security and billing management, etc., thereby encapsulating the hardware and software infrastructure as a service to the user.
  • FIG. 1 is a schematic block diagram of a cloud computing system 10 in accordance with an embodiment of the present invention.
  • the cloud server side (or "central cloud”) 11 typically runs on a high performance data center or multiple interconnected data centers.
  • the eNB+ 12a, 12b, 12c are enhanced base stations according to an embodiment of the present invention, and perform functions for all wireless networks of the user equipments 13a, 13b, 13c, including access layer and non-access stratum functions.
  • the eNB+ and the cloud server 11 are connected by a high speed broadband IP (Internet Protocol) line (collectively referred to as interface Z).
  • the logical interface between eNB+ 12a, 12b, 12c is X2+, which is used to support mobility management across eNB+.
  • cloud computing system 10 may include one or more cloud server terminals 11, each of which may be connected to one or more eNB+s, and each eNB+ may serve one or more UEs.
  • the base station 20 of the figure is an example of the eNB+ of FIG. 1, and includes a receiving module 21, a first processing module 22, and a wireless network function module 24.
  • the wireless network function module 24 establishes a wireless network bearer channel with the UE (e.g., user equipment 13a, 13b, 13c of Figure 1).
  • UE e.g., user equipment 13a, 13b, 13c of Figure 1.
  • base station 20 can terminate the access layer protocol of the UE.
  • the receiving module 21 receives the UE service request through the radio network bearer channel.
  • the receiving module 21 can be implemented as an antenna or the like on the base station 20.
  • the first processing module 22 parses the request content in the service request of the UE, generates a cloud service access request according to the content that needs to be processed by the cloud server in the request content, and sends a cloud service access request to the cloud server (for example, the cloud in FIG. 1
  • the server 11 returns the corresponding processing result of the cloud server to the UE through the wireless network bearer channel.
  • the first processing module 22 can be implemented as a baseband processing unit or the like on the base station 20.
  • the base station After parsing the requested content, the base station decides how to handle it. For example, for content that the base station can handle itself, such as cross-layer optimization, joint coding processing, data compression/sinking/buffering, etc., these processing can be performed by the base station. For content that needs to be processed by the cloud server, such as data storage/computing, the base station may send a cloud service access request to the corresponding cloud server to request the cloud server to perform corresponding processing. In this way, from the perspective of the user equipment, it is like the application server is at the base station. Medium. The user equipment directly makes a service request to the base station, that is, the base station terminates the transport layer protocol of the user equipment.
  • the user equipment makes a service request to the application server, and the base station does not parse the request content in the service request, but only according to the destination address and other information of the service request (the information is generally in the packet header of the service request packet), Look up the route and forward the service request.
  • the base station and the user equipment in the embodiment of the present invention establish a radio network bearer channel, thereby terminating the access layer protocol of the user equipment.
  • the base station in the embodiment of the present invention does not forward the service request of the user equipment, but parses the request content in the service request, and processes or requests the cloud server according to the requested content. The processing is facilitated, so that the transport layer protocol and the access layer protocol on the user equipment side are terminated in the base station. Therefore, the embodiment of the present invention can implement cross-layer optimization of the transport layer and the access layer.
  • FIG. 3 is a block diagram of a base station according to another embodiment of the present invention.
  • the base station 30 of FIG. 3 is an example of the eNB+ of FIG. 1, which is different from the base station 20 of FIG. 2 in that, in addition to the wireless network function module 24, the receiving module 21, and the first processing module 22, a second processing is included. At least one of the module 23, the third processing module 25, and the mobility management module 26.
  • the second processing module 23 is connected to the cloud server, and obtains a function control service of the wireless network bearer channel from the cloud server through the cloud computing mode.
  • the function control service of the foregoing wireless network bearer channel may include: a location service, such as location calculation, etc.; user subscription data storage and query, including HLR (Home Location Register) / HSS (Home Subscriber Server, Home Subscriber Server) Functions such as server, AAA (Authentication, Authorization, Accounting, Authentication, Authorization, and Accounting), policy control, and accounting functions.
  • the wireless network function module 24 is connected to the first processing module 22 and the second processing module 23, and establishes one or more wireless network bearers with the UE by implementing an access layer protocol and a non-access stratum protocol of the existing wireless network. aisle.
  • the wireless access layer typically includes a physical layer (PHY, Physical Layer), a Media Access Control (MAC), a Radio Link Control (RLC), and a Packet Data Convergence Layer (PDCP). Protocol functions such as Packet Data Convergence Protocol) are used to transmit user IP data packets through air interfaces.
  • the wireless non-access stratum function typically includes an L3 protocol and a packet data gateway (PDN-GW or PGW, Packet Data Network Gateway) function, where the L3 protocol corresponds to the L3 protocol on the UE side of the user equipment, and is used to control the radio access bearer.
  • PDN-GW or PGW, Packet Data Network Gateway Packet Data Network Gateway
  • the operation of establishing, modifying, and deleting, the packet data gateway provides IP gateway functions, such as IP address allocation, network address translation (NAT, Network Address Transform), number of users.
  • NAT Network Address Transform
  • the interface on the wireless non-access stratum is an IP interface. Therefore, the wireless network function module 24 can exchange application related information with the first processing module 22; the wireless network function module 24 can exchange wireless network control related information with the second processing module 23.
  • the first processing module 22 may obtain application-related information such as application attribute information and/or source coding information of the service for which the service request is directed. For example, in a case where the service request of the UE may carry the application attribute information and/or the source coding information of the service for which the service request is directed, the first processing module 22 may, when parsing the requested content in the service request of the UE, Get information about these apps. Alternatively, the first processing module 22 may also obtain application-related information from other sources (for example, a cloud server or a cloud service entity corresponding to the application), which is not limited by the embodiment of the present invention.
  • the wireless network function module 24 may obtain application attribute information and/or source coded information from the first processing module 22, and implement QoS guarantee using the application attribute information and/or the source coded information.
  • the wireless network function module 24 can obtain application-related information such as the wireless link on the wireless network bearer channel and/or real-time status information of the wireless resource.
  • the wireless network function module 24 can obtain real-time status information of the wireless link and/or the wireless resource in any existing manner, which is not limited by the present invention.
  • the first processing module 22 may also obtain real-time status information of the radio link and/or the radio resource from the wireless network function module 24, and complete the transport layer and the access layer according to the real-time status information of the radio link and/or the radio resource. Cross-layer joint optimization.
  • the wireless network function module 24 when the wireless network function module 24 establishes a wireless network bearer channel with the UE, it can also refer to the information related to the above application.
  • the base station 30 can implement cross-layer joint optimization of the transport layer and the access layer.
  • the first processing module 22 may also provide real-time status information of the wireless link and/or the wireless resource to the third-party application, so that the third-party application utilizes the real-time of the wireless link and/or the wireless resource. Status information is optimized across layers.
  • the third-party application can be an application running on a data center and a corresponding software platform provided by the operator, or an application from a data center of another operator and a corresponding software platform, or a data center of some large companies. The present invention does not limit the application on the corresponding software platform.
  • the third processing module 25 provides proxy services for cloud computing applications on the UE. Specifically, the third processing module 25 may aggregate, compress, or cache data between the UE and the corresponding cloud service entity; When the UE sends a request for the data to the cloud service entity, the data is sent to the UE, and the request is forwarded to the cloud service entity.
  • the third processing module 25 is specific to certain cloud computing applications on the UE. In such cloud computing applications, UE local storage services and computing services, such as user private data, including storage of formatted data such as pictures, videos, data files, emails, and local large-scale application software, such as office software, Software such as CAD/CAM/CAE, online games, etc., may be provided by cloud computing.
  • the third processing module 25 integrated in the base station 30 functions as a proxy server, including terminating the transport layer protocol (TCP/UDP) of the UE side cloud tenant, and implementing the cross layer of the transport control protocol layer and the radio access layer. Joint optimization, or for aggregating, compressing, and/or caching data between the cloud tenant on the UE and the corresponding cloud service entity.
  • TCP/UDP transport layer protocol
  • the mobility management module 26 is in the first processing module of the current base station (assumed to be labeled 22a) when the UE performs radio access layer handover and/or wireless non-access stratum migration across the base station. While serving the UE, the first processing module 22a is activated in the first processing module of the target base station (assumed to be labeled 22b), and the first processing module 22a and the first processing module 22b are synchronized to the corresponding one in the cloud server. Applications. If the communication of the UE at the current base station involves other modules, such as the second processing module 23, the wireless network function module 24, the third processing module 25, etc., the handover or migration operation is similarly performed.
  • the application and the pipeline are separated.
  • the RAN network element such as the base station only provides the access layer function, and the cross-layer optimization of the application layer and the transport layer (TCP/UDP) and the access layer is difficult to implement, and the service cannot be provided. Effective QoS guarantee.
  • the mobile Internet architecture based on the traditional mobile communication system enables the mobile operator to only provide access services for the pipeline, thereby limiting the service range of the mobile operator and making the mobile operator at the lower end of the entire industry value chain. .
  • the base station 30 in the embodiment of the present invention completes the access layer and non-access stratum functions, and terminates the transport layer protocol of the UE side application, thereby realizing the organic combination of the pipeline and the cloud, and facilitating the implementation of the cross-layer optimization technology and the QoS management on the one hand.
  • it also expands the scope of mobile operators' services, enabling mobile operators to provide not only pipeline services, but also information services such as storage and computing.
  • the base station 30 can parse the request of the video service to obtain related requested content information, such as video identification, required resolution, and the like.
  • the base station 30 can request to transmit the video to the cloud server that stores the video.
  • the base station 30 can also request the cloud server capable of processing the video to process the video to meet the resolution required by the user equipment.
  • the base station 30 then returns the processed video to the user equipment.
  • the above processing is controlled by the base station 30, thus facilitating the implementation of cross-layer optimization techniques and QoS management.
  • the base station 30 can be adjusted accordingly.
  • the base station 40 of FIG. 4 is an example of the eNB+ of FIG. 1, and is a specific implementation form of the base stations 20 and 30.
  • the wireless network function module 44 of the base station 40 is an example of the wireless network function module 24 of FIG. 3, including a wireless access layer unit 441 and a wireless non-access stratum unit 442.
  • the functions of the radio access layer unit 441 typically include protocol functions such as PHY, MAC, RLC, and PDCP for transmitting user IP data packets over the air interface.
  • the function of the wireless non-access stratum unit 442 typically includes an L3 protocol and a PGW function, where the L3 protocol corresponds to the L3 protocol of the UE side of the user equipment, and is used to control operations such as establishment, modification, and deletion of the radio access bearer.
  • the PGW provides IP gateway functions such as IP address allocation, network address translation (NAT), and supervisory control of user data.
  • the interface above the wireless non-access stratum unit 442 is an IP interface.
  • the wireless non-access stratum unit 442 includes three functional entities, namely, an application server cloud tenant (ASCT), a wireless network function cloud tenant (WNFCT), and a terminal application.
  • ASCT application server cloud tenant
  • WNFCT wireless network function cloud tenant
  • TACTP Terminal Application Cloud Tenant Proxy
  • the cloud tenant agent TACTP is taken as an example of the first processing module 22, the second processing module 23, and the third processing module 25 of FIG. 3, respectively.
  • WNFCT wireless network function related services from the central cloud through cloud computing, such as location service (location calculation, etc.), user subscription data storage and query (including functions of HLR/HSS, AAA server, etc.), policy control and Billing function, etc.
  • location service location calculation, etc.
  • user subscription data storage and query including functions of HLR/HSS, AAA server, etc.
  • policy control and Billing function etc.
  • these functions are all performed by specific network elements.
  • these functions are implemented in a cloud computing manner, and are completed by a data center through a virtual server (Virtual Server) or the like.
  • Integrated in the base station 40 is the cloud of these functions, and the base station 40 obtains the above wireless network function from the central cloud through the WNFCT.
  • Related control services are provided.
  • the functions of the ASCT may include a cloud computing method, and the functions of the application server (AS, Application Server) are provided by the data center through a virtual server or the like through the cloud of the application server integrated in the base station 40.
  • the transport layer (TCP/UDP) of the Client side (client) of the mobile broadband application on the UE side terminates the ASCT function entity in the base station 40.
  • the application server is in the base station 40. Since the ASCT function is integrated in the base station 40, the wireless network function module 44 in the base station 40 can obtain application-related information, such as service application attributes (service type, maximum rate, average rate, etc.), through an internal interface with the ASCT.
  • service application attributes service type, maximum rate, average rate, etc.
  • the ASCT terminates the transport layer protocol of the UE side mobile broadband application client, and can obtain the real-time wireless link and radio resource status information (such as the coded modulation information of the radio link) from the radio network function module 44 in the base station 40.
  • the radio channel condition, the air interface load status, and the like) therefore, the base station 40 can implement cross-layer joint optimization of the transport layer (TCP/UDP) and the radio access layer to fully utilize radio resources and maximize system throughput.
  • the ASCT can also obtain the real-time status information of the radio link and the radio resource of the radio network bearer channel from the radio network function module 44 in the base station 40, and implement the channel source for the service including the video, the image, and the like.
  • Joint coding that is, based on real-time radio link state information (such as signal to interference/noise power ratio SINR), based on the principle of maximum system throughput and ensuring the same user experience, jointly select the optimal video, image and other media coding. Mode and coding rate, channel coding mode and modulation mode of the radio link, and the like.
  • the selection of the channel coding modulation mode of the wireless link in the prior art and the coding mode and rate selection of the video, image and other media are completely independent, and the air interface resources cannot be effectively utilized to maximize the system capacity.
  • the joint coding technology of the channel source in the wireless network reference may be made to a large number of existing technologies, such as 0. Oyman and J. Foerster, Distortion-Aware MIMO Link Adaptation for Enhanced Multimedia Communications, WiMAGIC-Huawei Workshop, Towards IMT-A And Beyond, PIMRC 2010.
  • the WNFCT and ASCT functions are used to store part of the data stored in the wireless network in the prior art (such as subscription service subscription information, user account information, user bits). Set information, etc.) and calculation functions (such as database search and query, data encryption, etc.), such as the original
  • HLR/HSS Policy and Charging Rules Function
  • Location Server Location Server
  • Presence Server Presence Server
  • AAA server etc.
  • storage in the application server at the application layer eg Video sources, web application data, etc.
  • computing functions such as video coding, dynamic web page generation, various application information organization/management and processing, etc.
  • TACTP is specifically targeted at certain cloud computing applications on user devices.
  • UE local storage services and computing services such as user private data, including the storage of formatted data such as pictures, videos, data files, emails, and local large-scale applications, such as office software, CAD/ Software such as CAM/CAE, online games, etc.
  • SaaS Software as a Server
  • PaaS PaaS (Platform as a Server).
  • the TACTP integrated in the base station 40 functions as a proxy server, including terminating the transport layer protocol (TCP/UDP) of the UE side cloud tenant, compressing and caching the UE side cloud tenant and the cloud server (for example, the cloud server side) The data between the corresponding cloud service entities).
  • the TACTP may aggregate, compress, or cache data between the UE and the corresponding cloud service entity; when receiving the request for the data sent by the UE to the cloud service entity, send the data to the UE, and terminate the cloud The service entity forwards the request.
  • the TACTP terminates the transport layer protocol (TCP/UDP) of the UE side cloud so that the base station 40 can implement cross-layer joint optimization of the transmission control protocol layer and the radio access layer to fully utilize radio resources and maximize system throughput.
  • TACTP sink/compress/cache The number of UE-side cloud tenant and corresponding cloud service entity speeds up the response of the system to the UE-side cloud tenant, thereby improving the user's experience of obtaining services such as SaaS or PaaS. For example, the end user uses cloud storage to save his picture and video data. For some frequently used pictures and video clips, TACTP can be cached to speed up the user's access to the data and improve the user experience.
  • FIG. 5 is a schematic structural diagram of a cloud computing architecture according to an embodiment of the present invention.
  • the central cloud adopts the Platform Cloud (PaaS) approach.
  • PaaS Platform Cloud
  • a wireless network function application 51 As shown in FIG. 5, there are three types of applications on the platform cloud 50, namely, a wireless network function application 51, a third-party application 52, and a terminal cloud application 53, which respectively correspond to the WNFCT, ASCT, and TACTP cloud functions in the eNB+, and provide server-side functions.
  • the wireless network function application 51 and the third party application 52 support multi-tenant, that is, one virtual server can support multiple UEs at the same time.
  • the wireless network function application 51 is typically provided by a mobile network equipment vendor, while the latter two types of applications 52 and 53 are provided by a mobile broadband content provider.
  • the Platform Cloud 50 provides a rich software development kit (SDK) for the development and operation of applications. Typically, it includes programming languages, software frameworks, data storage models, function libraries, application development and debugging tools, and more.
  • SDK software development kit
  • the platform layer 55 which is responsible for providing a virtual server-based runtime environment (Runtime Environment), a web application development framework, and a Web 2.0 application interface.
  • the Wireless Network API Application Programming Interface
  • the Cloud Computing Infrastructure API 57 which provide application programming interfaces related to the wireless network for the platform layer 55 and the upper layer, respectively, and the cloud with the data center.
  • Computing infrastructure-related application programming interfaces are examples of computing infrastructure-related application programming interfaces.
  • One of the functions of the wireless network API 56 is to provide an API for the wireless network function application 51, so that the central cloud can complete wireless network related data storage (such as subscription user service subscription information, user account information, user location information, etc.) and computing functions ( Functions such as database search and query, data encryption, etc., that is, functions of network elements such as HLR/HSS, PCRF, Location Server, Presence Server, and AAA Server.
  • wireless network related data storage such as subscription user service subscription information, user account information, user location information, etc.
  • computing functions Functions such as database search and query, data encryption, etc., that is, functions of network elements such as HLR/HSS, PCRF, Location Server, Presence Server, and AAA Server.
  • Another function of the wireless network API 56 is to provide the third party application 52 with wireless network related information obtained from the eNB+, such as radio link instantaneous SINR, coded modulation mode, wireless channel conditions (average path loss, average SINR, etc.), Information such as air interface load status, so that third-party applications 52 can use this underlying information for cross-layer optimization, such as channel source joint coding.
  • the third-party application 52 can also transmit application-related information, such as service type and QoS, to the wireless network API 56, so that the eNB+ can also obtain the information related to the application through the Z2 interface, thereby optimizing the wireless transmission channel.
  • the application provides an effective QoS guarantee.
  • ASCT and TACTP are integrated in eNB+, they directly terminate the transport layer protocol (TCP/UDP) on the UE side, so that the cross-layer joint optimization of the transport control protocol layer and the radio access layer can be directly completed. Without the need for a central cloud to participate.
  • the TACTP has a pressure and is independently autonomously completed by TACTP.
  • the implementation of effective QoS guarantee, channel source joint coding, etc., is performed by the central cloud and the eNB+ through the above-mentioned application interface of the wireless network.
  • the following describes how the UE accesses the wireless communication network and uses the MBB (Mobile Broadband) service and the terminal cloud service in the network architecture proposed by the present invention.
  • MBB Mobile Broadband
  • the UE is at In the coverage area of the eNB+, one or more wireless network bearer channels are established between the UE and the eNB+ wireless network function entity (including the access layer and the non-access stratum function) through the existing wireless air interface access process, thereby An IP transmission channel is established between the application layer of the UE and the upper layer functional entity of the eNB+ (application server cloud tenant ASCT and terminal application cloud tenant agent TACTP).
  • application server cloud tenant ASCT application server cloud tenant ASCT and terminal application cloud tenant agent TACTP
  • the eNB+ wireless network function cloud tenant WNFCT functional entity obtains the wireless network function related control service from the central cloud through the cloud computing manner, such as User subscription data query, user authentication, policy control for wireless network bearer channels, billing, etc.
  • the transport layer (TCP/UDP) of the client side of the mobile broadband application on the UE side terminates the ASCT function entity in the eNB+, and the ASCT adopts the cloud computing mode, and is integrated in the eNB+.
  • the data center provides the application server function in the prior art through a virtual server or the like.
  • the application server in the prior art is in the eNB+.
  • the third-party application located in the data center is responsible for transmitting information such as service type and QoS to the application programming interface related to the wireless network
  • the ASCT function entity in the eNB+ obtains the information related to the application through the Z2 interface, in the eNB+
  • the wireless network function entity obtains the information related to the application through an internal interface with the ASCT, thereby providing an effective QoS guarantee for the service.
  • ASCT terminates the transport layer protocol of the UE side mobile broadband application Client, and can obtain real-time wireless link and radio resource status information (such as radio link code modulation information, wireless) from the eNB+ wireless network function entity. Channel conditions, air port load status, etc.).
  • the eNB+ can implement cross-layer joint optimization of the transmission control protocol layer and the radio access layer to fully utilize radio resources and maximize system throughput.
  • the ASCT can also obtain real-time status information of the wireless link and the wireless resource from the wireless network function entity in the eNB+, and transmit the status information to the wireless network related application programming interface of the data center through the Z2 interface, thereby
  • the application APP provides information related to the wireless network obtained from the eNB+, such as radio link instantaneous SINR, code modulation mode, wireless channel condition (average path loss, average SINR, etc.), air port load status, etc., thereby facilitating third party application APP utilization.
  • joint coding of channel sources that is, for services including media such as video and images
  • joint coding of channel sources is implemented, that is, according to real-time wireless link state information (such as signal and interference/ Noise power ratio (SINR), based on the principle of maximizing system throughput and ensuring the user experience, jointly select the optimal encoding and encoding rate of media such as video and image, channel coding mode and modulation mode of the wireless link.
  • SINR signal and interference/ Noise power ratio
  • the TACTP integrated in the eNB+ functions as a proxy server, including terminating the transport layer protocol of the UE side cloud (TCP/UDP compression and buffering the UE side cloud and the corresponding cloud service entity)
  • TCP/UDP transport layer protocol of the UE side cloud
  • the data between the end of the UE side cloud (TCP/UDP) enables the eNB+ to implement cross-layer joint optimization of the transport layer (TCP/UDP) and the radio access layer, making full use of radio resources and maximizing the system.
  • Throughput/compression/cache data between the UE side cloud and the corresponding cloud service entity can reduce the data transmission delay and data rate between the UE side cloud and the corresponding cloud service entity, and accelerate the response speed of the system to the UE side cloud. This improves the user experience of services such as SaaS or PaaS.
  • the third-party application 52 and the terminal cloud application 53 may be applications running on an operator-provided data center and a corresponding software platform (for example, the platform cloud shown in FIG. 5), or may be data centers from other operators.
  • the application on the corresponding software platform, or the application of the data center of the large IT company and the corresponding software platform, for this, the interconnection between different types of clouds can be realized through the Y1 interface shown in FIG. 5.
  • FIG. 6 is a schematic block diagram of a cloud computing system in accordance with one embodiment of the present invention.
  • the cloud computing system 60 of Figure 6 includes a plurality of cloud server ends 61a, 61b, and 61c, each of which is coupled to a respective enhanced base station eNB+. It should be noted that the number of each network element in FIG. 6 is merely illustrative and does not limit the scope of the embodiments of the present invention.
  • An Application Server Cloud Tenant is activated in the eNB+ connected to the cloud server side 61a, and its corresponding virtual server is in the cloud server side 61a, that is, VM1 shown in FIG. VM1 does not directly provide the application, because this application is not directly provided by the cloud server 61a, but is provided by the cloud server 61c. Therefore, the VM1 is equivalent to a back-to-back proxy, that is, the eNB+ connected to the cloud server 61a is a virtual server running the corresponding application, but the virtual server VM2 in the cloud server 61c that actually runs the application. Words, equivalent to a cloud tenant. In this way, VM1 can obtain the corresponding cloud service from VM2 and deliver the corresponding service to the corresponding ASCT function of eNB+ in cloud server 61a.
  • ASCT Application Server Cloud Tenant
  • FIG. 7 is a schematic diagram of mobility management in a cloud computing system according to an embodiment of the present invention.
  • Fig. 7 the same or similar portions as those of Fig. 1 use the same reference numerals.
  • the X2+ interface is directly connected between the eNB+12a and the 12b, the X2+ interface can be used to complete the handover (Handover) of the radio access layer across the eNB+ (Inter-eNB+) and the relocation of the wireless non-access layer (Relocation).
  • the handover process is similar to the radio access layer handover of the inter-eNB based on the X2 interface in the existing LTE technology, and the difference is that in the existing LTE technology, the wireless non-access layer functional entity is located in the core network, and therefore The radio access layer switching does not directly lead to the migration of the wireless non-access stratum, but in the embodiment of the present invention, since the radio access layer and the non-access stratum are simultaneously integrated in the eNB+, the radio non-access stratum is migrated. It is performed simultaneously with the radio access layer switching across eNB+. At this time, the IP address of the UE will also be reconfigured with the migration of the wireless non-access stratum across the eNB+.
  • the WNFCT, ASCT, and TACTP cloud tenant handovers are also performed simultaneously with the radio access layer switching across the eNB+.
  • the entity running the application itself is a virtual server located in the data center. Therefore, the switching of the cloud tenant corresponding to one UE does not affect the running status of the corresponding wireless network function application, the third-party application, and the terminal cloud application. In this way, for the application, when the UE moves across the eNB+, only the cloud tenant corresponding to the UE switches, and the application running on the central cloud virtual server is not affected. Therefore, WNFCT, ASCT, and TACTP cloud tenant switching can be performed in a similar "soft handoff" manner.
  • the source eNB+12a runs the cloud tenant of the UE, and starts the cloud tenant of the UE in the target eNB+12b. Copy, the two cloud tenants are fully synchronized to the corresponding application in the central cloud. In this way, the application layer seamless mobility of the UE can be ensured, and when the entire cross-eNB+ mobile process is completed, the cloud tenant of the UE in the source eNB+12a is stopped.
  • FIG. 8 is a schematic structural diagram of a cloud computing system according to another embodiment of the present invention.
  • the cloud computing system 80 of Figure 8 is a network architecture in which a wireless cloud (Wireless Cloud) is integrated with an application cloud.
  • Wireless cloud also known as C-RAN (Cloud RAN)
  • C-RAN Cloud RAN
  • the main feature of this architecture is to separate the baseband processing unit (BBU) of the traditional base station from the radio unit.
  • BBUs of a plurality of base stations are grouped together to form one or more wireless clouds 81a, 81b, and are connected to a remote radio unit (RRU) via a broadband transmission line such as an optical fiber.
  • RRU remote radio unit
  • the wireless clouds 81a, 81b perform all functions of the wireless cellular system (radio access layer functions such as PHY/M AC/RLC/PDCP, and non-access stratum functions such as L3 protocol, PDN gateway, etc.).
  • the wireless cloud 81a, 81b may also include three functional entities above the wireless non-access stratum shown in FIG. 4, namely WNFCT, ASCT and TACTP, and through the Z1, Z2 and Z3 interfaces and the cloud server end (or called the center).
  • Cloud Cloud
  • the wireless clouds 81a and 81b are interconnected by an X3 interface, which is similar to the X2+ interface in FIG. 4, and is used to support mobility between wireless clouds.
  • the receiving module 21 is located in the RRU, and the first processing module 22 is located in the BBU (i.e., in the wireless cloud 81a or 81b formed by the BBU).
  • BBU concentration facilitates the use of cloud computing technology to virtualize baseband processing resources, thereby enabling flexible baseband processing resource sharing, addressing the tidal effects of traffic distribution, and enabling joint signal processing between multiple cells to eliminate inter-cell interference. , increase system capacity.
  • the embodiments of the present invention enable a mobile operator to provide a unified service platform for the pipeline and the cloud, thereby expanding the service scope of the mobile operator, so that the mobile operator can provide not only the pipeline service but also the information service such as storage and calculation.
  • the embodiment of the present invention facilitates cross-layer optimization of the application layer/transport layer and the wireless bearer layer to improve system performance, and is convenient for obtaining QoS information of the application, so that the system can provide end-to-end QoS guarantee for various applications.
  • FIG. 9 is a flow chart of a service processing method according to an embodiment of the present invention.
  • the method of Figure 9 is performed by a base station, such as eNB+ in Figure 1 or base station 20-40 described above.
  • the above wireless network bearer channel can be established by implementing an access layer protocol and a non-access stratum protocol of an existing wireless network.
  • the base station After parsing the requested content, the base station decides how to handle it. For example, for content that the base station can handle itself, such as cross-layer optimization, joint encoding processing, data compression/sinking/buffering, etc., these processing can be performed by the base station. For content that needs to be processed by the cloud server, such as data storage/calculation, the base station may send a cloud service access request to the corresponding cloud server to request the cloud server to perform corresponding processing.
  • the user equipment it is like an application server in the base station.
  • the user equipment directly makes a service request to the base station (as in the prior art, the user equipment goes to the application server)
  • the base station simply forwards the service request at the access layer, that is, the base station terminates the transport layer protocol of the user equipment.
  • the user equipment makes a service request to the application server, and the base station does not parse the request content in the service request, but only according to the destination address and other information of the service request (the information is generally in the packet header of the service request packet). Look up the route and forward the service request.
  • the radio network bearer channel is established between the base station and the user equipment in the embodiment of the present invention, thereby terminating the access layer protocol of the user equipment.
  • the base station in the embodiment of the present invention does not forward the service request of the user equipment, but parses the request content in the service request, and processes or requests the cloud server according to the requested content. The processing is facilitated, so that the transport layer protocol and the access layer protocol on the user equipment side are terminated in the base station. Therefore, the embodiment of the present invention can implement cross-layer optimization of the transport layer and the access layer. Other processes of the line.
  • the base station 30 of Fig. 3 will be exemplified below.
  • the wireless network function module can implement an access layer protocol and a non-access stratum protocol of the wireless network, and establish one or more network 7
  • the first processing module 22 may obtain application-related information such as application attribute information and/or source coding information of the service for which the service request is directed.
  • the first processing module 22 may obtain the information related to the application when parsing the requested content in the service request of the UE; or the first processing module 22 may also be from another source (for example, the cloud server corresponding to the application or The cloud service entity) obtains application-related information.
  • the wireless network function module 24 can also obtain application attribute information and/or source coded information from the first processing module 22, and implement service quality assurance by using the application attribute information and/or the source coded information.
  • the wireless network function module 24 may obtain application-related information such as a wireless link on the wireless network bearer channel and/or real-time status information of the wireless resource.
  • the wireless network information is not limited by the present invention.
  • the first processing module 22 may also obtain real-time status information of the wireless link and/or the wireless resource from the wireless network function module 24, and complete the transmission control protocol layer and the wireless connection according to the real-time status information of the wireless link and/or the wireless resource. Cross-layer joint optimization of inbound layers.
  • the first processing module 22 may also provide real-time status information of the wireless link and/or the wireless resource to the third-party application, so that the third-party application performs cross-layer optimization using the real-time status information of the wireless link and/or the wireless resource.
  • the wireless network function module 24 may also refer to the information related to the foregoing application.
  • the third processing module 25 may aggregate, compress, or cache data between the UE and the corresponding cloud service entity; when receiving the request for the data sent by the UE to the cloud service entity Sending the above data to the UE and terminating forwarding the request to the cloud service entity.
  • the mobility management module 26 may be the UE in the first processing module of the current base station when the UE performs radio access layer handover and/or wireless non-access stratum migration across the base station. Simultaneously, the first processing module of the current base station is activated in the first processing module of the target base station, and the first processing module of the current base station and the first processing module of the target base station are synchronized to the cloud server. The corresponding application.
  • a cloud computing system may include a plurality of cloud server terminals (e.g., 61a, 61b, and 61c of FIG. 6), and a plurality of cloud server terminals are connected to each other.
  • Each cloud server side is connected to one or more of the above base stations 20-40.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interface, indirect coupling or communication of the device or unit. It can be electrical, mechanical or other form.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium. , including a plurality of instructions for causing a computer device (which may be a personal computer, a server, a storage medium including: a USB flash drive, a removable hard disk, a read-only memory (ROM), a random access memory (RAM, Random) Access Memory ), a variety of media such as a disk or a disc that can store program code.
  • a computer device which may be a personal computer, a server, a storage medium including: a USB flash drive, a removable hard disk, a read-only memory (ROM), a random access memory (RAM, Random) Access Memory
  • a variety of media such as a disk or a disc that can store program code.

Abstract

本发明实施例提供一种基站、服务处理方法和云计算系统。该基站包括:与UE之间建立无线网络承载通道;通过无线网络承载通道接收UE的服务请求;解析UE的服务请求中的请求内容,根据请求内容中需要由云服务器端处理的内容生成云服务访问请求;发送云服务访问请求到所述云服务器端,并将云服务器端的相应处理结果通过无线网络承载通道返回给UE。从而使得用户设备侧的传输层协议和接入层协议终结于基站,因此本发明实施例实现跨层优化。

Description

基站、 服务处理方法和云计算系统 本申请要求于 2011 年 10 月 21 日提交中国专利局、 申请号为 201110323739.2, 发明名称为 "基站、 月良务处理方法和云计算系统 ", 上述专 利的全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域, 并且更具体地, 涉及基站、 服务处理 方法和云计算系统。 背景技术
基于传统移动通信系统的移动互联网络由无线接入网 (RAN , Radio Access Network )和移动核心网 ( CN, Core Network )组成。 RAN负责为用户 设备 ( UE , User Equipment )提供无线接入, CN则通过移动性管理为用户设 备提供固定的互联网协议( IP , Internet Protocol )接入点。 这样, 用户设备通 过移动通信网络接入到外部 IP网络,并通过外部 IP网络访问应用服务器( AS, Application Server )„ 用户设备通常提供客户端 (Client )功能, 应用服务器的 应用则由应用提供商提供。
从应用提供商 (ISP, Internet Service Provider ) 的角度来看, 大量的中小 型 ISP还是采用服务器托管和带宽租用等方式对外提供应用服务, 其中, 或者 是 ISP直接租用服务器和网络带宽,或者是 ISP自己购买服务器及其配套软件, 再租用网络带宽对外提供应用服务。
从终端用户的角度来看, 移动互联网应用除了需要管道的接入服务外, 还大量需要存储服务和计算服务, 其中存储服务是指保存用户的数据, 包括图 片、 视频、 数据文件、 电子邮件等格式化数据, 计算服务是指提供办公类软件
(如字处理软件)、 CAD/CAM/CAE等软件、 网络游戏等。 目前, 用户特定的 存储服务和计算服务主要由用户设备自身提供,但明显受限于手机等用户设备 非常有限的计算和存储能力。
基于传统移动通信系统的移动互联网的一个主要问题在于, 移动通信系 统被完全管道化, 即仅仅提供一个 IP接入的通道, 而不能直接从应用服务器 获取应用相关的信息, 如应用的业务属性(业务类型、 最大速率、 平均速率等
QoS ( Quality of Service, 业务质量)信息)、 业务的信源编码信息 (如视频流 业务等)等。 这样, 应用与管道分离, 基站等 RAN网元只提供接入层功能, 应用层和传输层 ( TCP/UDP , Transmission Control Protocol/ User Datagram Protocol, 传输控制协议 /用户数据包协议) 与接入层的跨层优化很难实施。 发明内容
本发明实施例提供一种基站、 服务处理方法和云计算系统, 能够提升系 统性能。
一方面, 提供了一种基站, 包括: 无线网络功能模块, 用于与 UE之间建 立无线网络承载通道; 接收模块, 用于通过无线网络承载通道接收 UE的服务 请求; 第一处理模块, 用于解析 UE的服务请求中的请求内容, 根据请求内容 中需要由云服务器端处理的内容生成云服务访问请求,发送云服务访问请求到 云服务器端, 并将云服务器端的相应处理结果通过无线网络承载通道返回给 UE。
另一方面, 提供了一种服务处理方法, 包括: 与 UE之间建立无线网络承 载通道; 通过无线网络承载通道接收 UE的服务请求; 解析 UE的服务请求中 的请求内容,根据请求内容中需要由云服务器端处理的内容生成云服务访问请 求; 发送云服务访问请求到所述云服务器端, 并将云服务器端的相应处理结果 通过无线网络承载通道返回给 UE。
另一方面, 提供了一种云计算系统, 包括多个云服务器端, 多个云服务 器端之间相互连接, 每个云服务器端与一个或多个如上所述的基站连接。
本发明实施例的基站与用户设备之间建立无线网络承载通道, 从而终结 了用户设备的接入层协议。 另外, 从传输层协议的层面来看, 本发明实施例的 基站不是筒单地转发用户设备的服务请求, 而是解析服务请求中的请求内容, 并根据请求内容自己进行处理或针对需要云服务器端处理的内容请求云服务 器端协助进行处理,从而由基站终结了该用户设备的传输层协议。这样使得用 户设备侧的传输层协议和接入层协议均终结于基站,因此本发明实施例能够实 现传输层和接入层的跨层优化。 附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术 描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动 的前提下, 还可以根据这些附图获得其他的附图。
图 1是基于本发明实施例的云计算系统的示意结构图。
图 2是本发明一个实施例的基站的框图。
图 3是本发明另一实施例的基站的框图。
图 4是说明本发明一个实施例的基站的内部功能结构的示意结构图。 图 5是本发明一个实施例的云计算架构的示意结构图。
图 6是本发明一个实施例的云计算系统的示意结构图。
图 7是本发明一个实施例的云计算系统中移动性管理的示意图。
图 8是本发明另一实施例的云计算系统的示意结构图。
图 9是本发明一个实施例的服务处理方法的流程图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全 部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造性 劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
用户特定的存储服务和计算服务主要由用户设备自身提供, 但明显受限 于手机等用户设备非常有限的计算和存储能力。现在也开始出现通过云计算方 式提供此类服务的趋势。
云计算是共享的网络交付信息服务的业务运行模式。 云形象地描绘了包 括网络、 计算和存储等在内的信息服务的基础设施, 以及相关的操作系统、 应 用平台、 Web (网络)服务和应用等软件的总和。 在云计算中, 系统的软硬件 都被虚拟化并封装为服务, 用户设备可以通过网络访问和使用, 云服务的使用 者看到的只有服务本身,而不用关心相关基础设施的具体实现,包括地址位置、 资源分配和管理、 软硬件平台等等。 云计算的硬件基础设施典型是数据中心 ( Data Center ), 或者互联的多个数据中心, 或者是分布在不同地理位置的计 算机组成的服务器集群等。云计算的软件基础设施则负责硬件基础设施的虚拟 化、 资源的管理与监控、 安全与计费管理等, 从而将软硬件基础设施封装为服 务提供给用户。
图 1是基于本发明实施例的云计算系统 10的示意结构图。 图 1中, 云服 务器端(或者称为 "中心云") 11典型地运行在高性能数据中心或多个互联的 数据中心之上。 eNB+ 12a、 12b、 12c是根据本发明实施例的增强型基站, 完 成针对用户设备 13a、 13b、 13c所有无线网络的功能, 包括接入层和非接入层 功能。 eNB+与云服务器端 11通过高速宽带 IP ( Internet Protocol, 互联网协议) 线路相连(统称为接口 Z )。 eNB+ 12a、 12b、 12c之间的逻辑接口为 X2+, 用 于支持跨 eNB+的移动性管理。
图 1 中所示各种网元的数目只是示例性的, 不对本发明实施例的范围构 成限制。 例如, 云计算系统 10可包括一个或多个云服务器端 11 , 每个云服务 器端可连接一个或多个 eNB+, 每个 eNB+可以月良务一个或多个 UE。
图 2是本发明一个实施例的基站的框图。 图 的基站 20是图 1的 eNB+ 的一个例子, 包括接收模块 21、 第一处理模块 22和无线网络功能模块 24。
无线网络功能模块 24与 UE (例如, 图 1的用户设备 13a、 13b、 13c )之 间建立无线网络承载通道。 这样, 基站 20能够终结 UE的接入层协议。
接收模块 21通过无线网络承载通道接收 UE服务请求。 例如, 接收模块 21可以实现为基站 20上的天线等。
第一处理模块 22解析 UE的服务请求中的请求内容, 根据所述请求内容 中需要由云服务器端处理的内容生成云服务访问请求,发送云服务访问请求到 云服务器端(例如图 1的云服务端 11 ), 并将云服务器端的相应处理结果通过 无线网络承载通道返回给 UE。 例如, 第一处理模块 22可以实现为基站 20上 的基带处理单元等。
在解析得到请求内容之后, 基站自己决定如何进行处理。 例如, 对于基 站自己能够处理的内容, 如跨层优化、联合编码处理、数据压缩 /汇¾ /緩存等, 则可以由基站执行这些处理。 对于需要云服务器处理的内容, 如数据存储 /计 算等, 则基站可向相应的云服务器端发送云服务访问请求, 以请求云服务器端 进行相应的处理。 这样, 从用户设备的角度来看, 犹如应用服务器就处于基站 中。用户设备直接向基站进行服务请求, 即由基站终结了该用户设备的传输层 协议。 而现有技术中, 用户设备向应用服务器进行服务请求, 基站不会解析服 务请求中的请求内容, 只是根据服务请求的目的地址等信息(这些信息一般在 服务请求包的包头中 ), 筒单地查找路由并转发该服务请求。
综上所述, 本发明实施例的基站与用户设备之间建立无线网络承载通道, 从而终结了用户设备的接入层协议。 另外, 从传输层协议的层面来看, 本发明 实施例的基站不是筒单地转发用户设备的服务请求,而是解析服务请求中的请 求内容, 并根据请求内容自己进行处理或请求云服务器端协助进行处理,使得 用户设备侧的传输层协议和接入层协议均终结于基站,因此本发明实施例能够 实现传输层和接入层的跨层优化。
图 3是本发明另一实施例的基站的框图。 图 3的基站 30是图 1的 eNB+ 的一个例子, 与图 2的基站 20的不同之处在于, 除了无线网络功能模块 24、 接收模块 21和第一处理模块 22之外, 还包括第二处理模块 23、 第三处理模 块 25和移动性管理模块 26中的至少一个。
第二处理模块 23与云服务器连接, 通过云计算方式, 从云服务器端获得 无线网络承载通道的功能控制服务。例如, 上述无线网络承载通道的功能控制 服务可包括: 定位服务, 如位置计算等; 用户签约数据存储和查询, 包括 HLR ( Home Location Register, 归属位置寄存器 ) /HSS ( Home Subscriber Server, 归属用户月良务器)、 AAA ( Authentication, Authorization, Accounting, 验证、 授权和记账)服务器等的功能、 策略控制与计费功能等。
无线网络功能模块 24与第一处理模块 22和第二处理模块 23连接, 通过 实现现有的无线网络的接入层协议和非接入层协议, 与 UE之间建立一个或多 个无线网络承载通道。 无线接入层典型地功能包括物理层 (PHY, Physical Layer )、 媒体接入控制层( MAC, Media Access Control )、 无线链路层 ( RLC, Radio Link Control ), 以及分组数据汇聚层( PDCP, Packet Data Convergence Protocol )等协议功能, 用于通过空口传输用户 IP数据分组。 无线非接入层功 能典型地包括 L3协议和分组数据网关( PDN-GW或 PGW, Packet Data Network Gateway ) 功能, 其中 L3协议与用户设备 UE侧的 L3协议相对应, 用于控制 无线接入承载的建立、 修改和删除等操作, 分组数据网关提供 IP网关功能, 如 IP地址分配、 网络地址转换(NAT, Network Address Transform ), 用户数 据的监管控制 (Policing Control )等功能, 这样, 无线非接入层之上的接口为 IP接口。 因此, 无线网络功能模块 24可以与第一处理模块 22之间交换应用 相关的信息;无线网络功能模块 24可以与第二处理模块 23之间交换无线网络 控制相关的信息。
作为一个可选的实施例, 第一处理模块 22可以获取服务请求所针对的业 务的应用属性信息和 /或信源编码信息等应用相关的信息。例如,在 UE的服务 请求可携带有该服务请求所针对的业务的应用属性信息和 /或信源编码信息的 情况下, 第一处理模块 22可以在解析 UE的服务请求中的请求内容时, 获取 这些应用相关的信息。 或者, 第一处理模块 22也可以从其他源 (例如, 与应 用相应的云服务器端或云服务实体)获取应用相关的信息, 本发明实施例对此 不作限制。无线网络功能模块 24可以从第一处理模块 22获取应用属性信息和 /或信源编码信息, 并利用应用属性信息和 /或信源编码信息实现 QoS保证。
另一方面, 无线网络功能模块 24可以获得无线网络承载通道上的无线链 路和 /或无线资源的实时状态信息等应用相关的信息。 无线网络功能模块 24可 以按照任何现有方式获取无线链路和 /或无线资源的实时状态信息, 本发明对 此不作限制。第一处理模块 22也可以从无线网络功能模块 24获得无线链路和 /或无线资源的实时状态信息,并根据无线链路和 /或无线资源的实时状态信息, 完成传输层与接入层的跨层联合优化。
此外, 无线网络功能模块 24在与 UE之间建立无线网络承载通道时, 也 可以参考上述应用相关的信息。
这样, 由于 UE侧的传输层协议和接入层协议均在基站 30中终结, 因此 基站 30能够实现传输层与接入层的跨层联合优化。
作为另一可选的实施例,第一处理模块 22还可将无线链路和 /或无线资源 的实时状态信息提供给第三方应用, 以便第三方应用利用无线链路和 /或无线 资源的实时状态信息进行跨层优化。第三方应用可以是运行在运营商提供的数 据中心及相应的软件平台上的应用,也可以是来自其它运营商的数据中心及相 应的软件平台上的应用,或者是一些大型公司的数据中心及相应的软件平台上 的应用, 本发明对此不做限制。
第三处理模块 25为 UE上的云计算应用提供代理服务。 具体地, 第三处 理模块 25可汇聚、 压缩或緩存 UE与对应云服务实体之间的数据; 在接收到 UE向该云服务实体发送的针对该数据的请求时, 向 UE发送该数据, 并终止 向该云服务实体转发该请求。 例如, 第三处理模块 25专门针对 UE上的某些 云计算应用。 在这类云计算应用中, UE本地的存储服务和计算服务, 如用户 私人数据, 包括图片、 视频、 数据文件、 电子邮件等格式化数据的存储, 以及 本地大型应用软件, 如办公类软件、 CAD/CAM/CAE等软件、 网络游戏等, 可能采用云计算方式来提供。 典型地可以采用 SaaS ( Software as a Server, 软 件即服务)、 PaaS ( Platform as a Server, 平台即服务)等形式。 这时, 集成在 基站 30中的第三处理模块 25起到代理服务器的功能, 包括终结 UE侧云租户 端的传输层协议(TCP/UDP ), 实现传输控制协议层与无线接入层的跨层联合 优化,或者用于汇聚、压缩和 /或緩存 UE上的所述云租户端与对应云服务实体 之间的数据。
作为另一可选的实施例, 移动性管理模块 26在 UE发生跨基站的无线接 入层切换和 /或无线非接入层迁移时, 在当前基站的第一处理模块(假设标记 为 22a ) 为 UE服务的同时, 在目标基站的第一处理模块(假设标记为 22b ) 中启动第一处理模块 22a的拷贝,将第一处理模块 22a和第一处理模块 22b同 步到云服务器端中的相应的应用。 如果 UE在当前基站的通信涉及其他模块, 如第二处理模块 23、 无线网络功能模块 24、 第三处理模块 25等, 也类似地进 行切换或迁移操作。
现有移动通信网络中应用与管道分离, 基站等 RAN网元只提供接入层功 能, 应用层和传输层(TCP/UDP )与接入层的跨层优化很难实施, 也无法对业 务提供有效的 QoS保证。 另外, 基于传统移动通信系统的移动互联网架构, 使得移动运营商只能提供管道的接入服务, 从而限制了移动运营商的业务范 围, 使移动运营商在整个产业价值链中处于较低端的位置。
本发明实施例的基站 30完成了接入层、 非接入层功能, 并且终结 UE侧 应用的传输层协议, 实现管道和云的有机结合, 一方面便于跨层优化技术和 QoS管理的实施, 另一方面也拓展了移动运营商的业务范围,使移动运营商不 但能提供管道服务, 还可以提供存储、 计算等信息服务。
例如, 当用户设备请求视频服务时, 基站 30可解析视频服务的请求, 得 到相关的请求内容信息, 如视频标识、 要求的分辨率等信息。 基站 30可向存 储该视频的云服务器请求传输该视频。当接收到的视频的分辨率不符合上述要 求的分辨率时, 基站 30还可以请求能够处理该视频的云服务器对该视频进行 处理, 以符合用户设备要求的分辨率。 然后, 基站 30将处理后的视频返回给 用户设备。 上述处理均由基站 30进行控制, 因此便于跨层优化技术和 QoS管 理的实施。 但是应注意, 上述例子仅仅描述了实施本发明的一种可能的方式, 而不是限制性的;按照基站 30和云服务端之间的云服务网络架构或交互机制, 可相应地调整基站 30自己能够处理的内容和处理方式。
下面结合具体例子, 更加详细地描述本发明的实施例。
图 4是说明本发明一个实施例的基站的内部功能结构的示意结构图。图 4 的基站 40是图 1的 eNB+的一个例子, 并且是基站 20和 30的一个具体实现 形式。
如图 4所示, 基站 40的无线网络功能模块 44是图 3的无线网络功能模 块 24的一个例子, 包括无线接入层单元 441和无线非接入层单元 442。
无线接入层单元 441的功能典型地包括 PHY、 MAC, RLC以及 PDCP等 协议功能, 用于通过空口传输用户 IP数据分组。 无线非接入层单元 442的功 能典型地包括 L3协议和 PGW功能, 其中 L3协议与用户设备 UE侧的 L3协 议相对应, 用于控制无线接入承载的建立、 修改和删除等操作。 PGW提供 IP 网关功能, 如 IP地址分配、 网络地址转换(NAT )、 用户数据的监管控制等功 能。 这样, 无线非接入层单元 442之上的接口为 IP接口。
如图 4所示, 无线非接入层单元 442之上包含 3个功能实体, 即应用服 务器云租户 ASCT ( Application Server Cloud Tenant ), 无线网络功能云租户 WNFCT ( Wireless Network Function Cloud Tenant ) 和终端应用云租户代理 TACTP ( Terminal Application Cloud Tenant Proxy ), 分别作为图 3的第一处理 模块 22、 第二处理模块 23和第三处理模块 25的实例。
WNFCT、 ASCT和 TACTP与云服务器端 (中心云) 的接口分别为 Zl、 Z2和 Z3。 其中, WNFCT通过云计算方式, 从中心云获得无线网络功能相关 的服务,如定位服务(位置计算等)、用户签约数据存储和查询(包括 HLR/HSS、 AAA服务器等的功能)、 策略控制与计费功能等。 在现有技术中, 这些功能都 是由特定的网元完成的,而在本发明实施例中,这些功能都采用云计算的方式, 由数据中心通过虚拟服务器(Virtual Server )等形式完成。 集成在基站 40中 的是这些功能的云端, 基站 40通过 WNFCT从中心云获得上述无线网络功能 相关控制服务。
ASCT的功能可包括采用云计算的方式, 通过集成在基站 40中的应用服 务器的云端, 由数据中心通过虚拟服务器等形式提供应用服务器 (AS , Application Server )的功能。这样, UE侧的移动宽带应用的 Client端(客户端 ) 的传输层(TCP/UDP ), 终结在基站 40中的 ASCT功能实体。 从 UE看来, 应 用服务器就处于基站 40中。 由于 ASCT功能集成在基站 40中, 因此, 基站 40中的无线网络功能模块 44可以通过与 ASCT的内部接口, 获取应用相关的 信息, 如业务的应用属性(业务类型、 最大速率、 平均速率等 QoS信息)、 业 务的信源编码信息(如视频流业务等)等, 从而对业务提供有效的 QoS保证。 同时, 由于 ASCT终结了 UE侧移动宽带应用 Client端的传输层协议, 并且可 以从基站 40中的无线网络功能模块 44获得实时的无线链路和无线资源的状态 信息(如无线链路的编码调制信息、 无线信道条件、 空口负载状态等), 因此, 基站 40可以实施传输层(TCP/UDP ) 与无线接入层的跨层联合优化, 充分利 用无线资源, 最大化系统吞吐量。 关于传输层(TCP/UDP )与无线接入层的跨 层联合优化, 可以参考大量的现有技术, 如张海霞等编著的《无线通信跨层设 计——从原理到应用》( ISBN 978-7-115-22781-2 )。
另夕卜, ASCT还能利用从基站 40中的无线网络功能模块 44获得无线网络 承载通道的无线链路和无线资源的实时状态信息,对包含视频、 图像等媒体的 业务, 实施信道信源的联合编码, 即根据实时的无线链路状态信息(如信号与 干扰 /噪声功率比 SINR ), 基于系统吞吐量最大和保证用户体验不变的原则, 联合选择最优的视频、 图像等媒体的编码方式和编码速率、无线链路的信道编 码方式和调制方式等。相比之下,现有技术中无线链路的信道编码调制方式的 选择和视频、 图像等媒体的编码方式与速率的选择是完全独立的, 不能有效利 用空口资源实现系统容量的最大化。 关于无线网络中信道信源的联合编码技 术, 具体可以参考大量的现有技术, 如 0. Oyman and J. Foerster, Distortion- Aware MIMO Link Adaptation for Enhanced Multimedia Communications, WiMAGIC-Huawei Workshop, Towards IMT-A and Beyond, PIMRC 2010。
可见, WNFCT和 ASCT功能是通过云计算的方式, 将现有技术中位于无 线网络中的部分数据存储(如签约用户业务订购信息、 用户帐号信息、 用户位 置信息等) 和计算功能 (如数据库搜索和查询、 数据加密等), 如原来的
HLR/HSS、 策略与计费规则功能( PCRF, Policy and Charging Rules Function)、 位置服务器(Location Server ), 呈现服务器(Presence Server ), AAA服务器 等, 以及位于应用层的应用服务器中的存储(如视频源、 Web应用数据等)与 计算功能(如视频编码、 动态网页生成、 各种应用信息组织 /管理与处理等), 都通过云计算的方式提供。
TACTP 专门针对某些在用户设备上的云计算应用。 在这类应用中, UE 本地的存储服务和计算服务, 如用户私人数据, 包括图片、 视频、 数据文件、 电子邮件等格式化数据的存储, 以及本地大型应用软件, 如办公类软件、 CAD/CAM/CAE等软件、 网络游戏等, 可能采用云计算方式来提供, 典型地 可以采用 SaaS ( Software as a Server,软件即服务)、 PaaS ( Platform as a Server, 平台即服务)等形式。这时,集成在基站 40的 TACTP起到代理服务器的功能, 包括终结 UE侧云租户端的传输层协议(TCP/UDP )、 压缩和緩存 UE侧云租 户端与云服务器端(例如, 云服务器端中的对应云服务实体)之间的数据。 具 体地, TACTP可汇聚、 压缩或緩存 UE与对应云服务实体之间的数据; 在接 收到 UE向该云服务实体发送的针对该数据的请求时, 向 UE发送该数据, 并 终止向该云良务实体转发该请求。
TACTP终结 UE侧云端的传输层协议( TCP/UDP )使得基站 40可以实施 传输控制协议层与无线接入层的跨层联合优化, 充分利用无线资源, 最大化系 统吞吐量。 TACTP汇^ /压缩 /緩存 UE侧云租户端与对应云服务实体之间的数 加快系统对 UE侧云租户端的响应速度,从而改善用户获得 SaaS或 PaaS等服 务的体验。 例如, 终端用户使用云存储方式保存他的图片和视频数据, 对于一 些经常使用的图片和视频片段, TACTP可以进行緩存, 从而加快用户获取这 些数据的速度, 提升用户体验。
图 5是本发明一个实施例的云计算架构的示意结构图。 图 5的架构中, 中心云采用平台云 ( Platform Cloud, 即 PaaS ) 方式。
如图 5所示, 平台云 50上有 3类应用, 即无线网络功能应用 51、 第三方 应用 52和终端云应用 53, 分别与 eNB+中的 WNFCT、 ASCT和 TACTP云端 功能对应, 提供服务器端的功能。 无线网络功能应用 51和第三方应用 52支持多租户 (Multi-tenant ), 即一 个虚拟服务器可以同时支持多个 UE。典型地,无线网络功能应用 51典型地由 移动网络设备商提供, 而后两类应用 52和 53则由移动宽带内容提供商提供。
平台云 50 为应用的开发和运行提供了丰富的软件开发工具包(SDK, Software Development Kit ) 54, 典型地包括编程语言、 软件框架、 数据存储模 型、 函数库、 应用开发与调试工具等等。 在 SDK之下是平台层 55, 负责为应 用提供基于虚拟服务器的运行环境(Runtime Environment ), 网络应用开发框 架、 Web2.0 应用接口等。 平台层 55 之下为无线网络 API ( Application Programming Interface, 应用编程接口) 56和云计算基础设施 API 57, 分别为 平台层 55及上层提供与无线网络相关的应用编程接口, 以及与数据中心等云 计算基础设施相关的应用编程接口。
无线网络 API 56的一个作用是为无线网络功能应用 51提供 API,从而使 得中心云可以完成无线网络相关的数据存储(如签约用户业务订购信息、用户 帐号信息、用户位置信息等)和计算功能(如数据库搜索和查询、数据加密等) 功能, 即 HLR/HSS、 PCRF、 Location Server, Presence Server, AAA Server等 网元的功能。 无线网络 API 56的另外一个作用是, 向第三方应用 52提供从 eNB+获得的无线网络相关的信息, 如无线链路瞬时 SINR、 编码调制方式、 无 线信道条件(平均路损、 平均 SINR等)、 空口负载状态等信息, 从而便于第 三方应用 52利用这个底层信息进行跨层优化, 如进行信道信源联合编码等。 同时, 第三方应用 52也可以将应用相关的信息, 如业务类型、 QoS等信息, 传递给无线网络 API 56, 这样 eNB+也可以通过 Z2接口获得这些应用相关的 信息, 从而优化无线传输通道, 为应用提供有效的 QoS保证。
如前所述, 由于 ASCT和 TACTP集成在 eNB+中, 因此, 它们直接终结 和 UE侧的传输层协议( TCP/UDP ), 因此可以直接完成传输控制协议层与无 线接入层的跨层联合优化, 而不需要中心云参与。 另外, TACTP所具有的压 与, 而由 TACTP自主完成。 而实施有效的 QoS保证、 信道信源联合编码等, 则通过上述无线网络相关的应用编程接口, 由中心云和 eNB+共同完成。
下面进一步说明 UE在本发明提出的网络架构中如何接入无线通信网络 并使用 MBB ( Mobile Broadband, 移动宽带)业务和终端云业务。 当 UE处于 eNB+的覆盖区时, 通过现有的无线空口接入过程, UE和 eNB+的无线网络功 能实体(包括接入层和非接入层功能 )之间建立起一个或多个无线网络承载通 道, 从而在 UE的应用层和 eNB+的上层功能实体(应用服务器云租户 ASCT 和终端应用云租户代理 TACTP )之间建立起 IP传输通道。其中,在 UE和 eNB+ 的无线网络功能实体之间建立无线网络承载通道的过程中, eNB+的无线网络 功能云租户 WNFCT功能实体通过云计算方式,从中心云获得无线网络功能相 关的控制服务, 如用户签约数据的查询、 用户鉴权、 对无线网络承载通道的策 略控制、 计费等。
当 UE的应用层运行通常的 MBB业务时, UE侧的移动宽带应用的 Client 端的传输层 ( TCP/UDP ), 终结在 eNB+中的 ASCT功能实体, ASCT则采用 云计算的方式, 通过集成在 eNB+中的应用服务器的云端, 由数据中心通过虚 拟服务器等形式提供现有技术中的应用服务器功能。 这样, 从 UE看来, 现有 技术中的应用服务器就处于 eNB+中。 如前所述, 位于数据中心的第三方应用 负责将业务类型、 QoS等信息传递给无线网络相关的应用编程接口, eNB+中 的 ASCT功能实体则通过 Z2接口获得这些应用相关的信息, eNB+中的无线网 络功能实体则通过与 ASCT的内部接口,获取所述应用相关的信息,从而对业 务提供有效的 QoS保证。 同时, 由于 ASCT终结了 UE侧移动宽带应用 Client 端的传输层协议, 并且可以从 eNB+中的无线网络功能实体获得实时的无线链 路和无线资源的状态信息(如无线链路的编码调制信息、 无线信道条件、 空口 负载状态等)。 因此, eNB+可以实施传输控制协议层与无线接入层的跨层联合 优化, 充分利用无线资源, 最大化系统吞吐量。 另夕卜, ASCT还能利用从 eNB+ 中的无线网络功能实体获得实时的无线链路和无线资源的状态信息, 并通过 Z2接口传递到数据中心的无线网络相关的应用编程接口, 从而向第三方应用 APP提供从 eNB+获得的无线网络相关的信息, 如无线链路瞬时 SINR、 编码 调制方式、 无线信道条件(平均路损、 平均 SINR等)、 空口负载状态等信息, 从而便于第三方应用 APP利用这个底层信息进行跨层优化, 如进行信道信源 联合编码, 即对包含视频、 图像等媒体的业务, 实施信道信源的联合编码, 即 根据实时的无线链路状态信息 (如信号与干扰 /噪声功率比 SINR ), 基于系统 吞吐量最大和保证用户体验不变的原则,联合选择最优的视频、 图像等媒体的 编码方式和编码速率、 无线链路的信道编码方式和调制方式等。 当 UE直接通过 SaaS、 PaaS等形式获得云服务时,集成在 eNB+的 TACTP 起到代理服务器的功能, 包括终结 UE侧云端的传输层协议(TCP/UDP 压 缩和緩存 UE侧云端与对应云服务实体之间的数据。 其中, 终结 UE侧云端的 传输层协议(TCP/UDP )使得 eNB+可以实施传输层 ( TCP/UDP )与无线接入 层的跨层联合优化, 充分利用无线资源, 最大化系统吞吐量。 汇聚 /压缩 /緩存 UE侧云端与对应云服务实体之间的数据可以降低 UE侧云端与对应云服务实 体之间的数据传输延迟和数据率, 加快系统对 UE侧云端的响应速度, 从而改 善用户获得 SaaS或 PaaS等服务的体验。
第三方应用 52和终端云应用 53 可以是运行在运营商提供的数据中心及 相应的软件平台 (例如, 图 5所示的平台云)上的应用, 也可以是来自其它运 营商的数据中心及相应的软件平台上的应用, 或者是一些大型 IT公司的数据 中心及相应的软件平台上的应用, 为此, 可以通过图 5所示的 Y1接口实现不 同类型云之间的互联。
一种较筒单的云间互联的方式是使用代理服务器机制。 图 6是本发明一 个实施例的云计算系统的示意结构图。 图 6的云计算系统 60包括多个云服务 器端 61a、 61b和 61c, 每个云服务器端 61a、 61b和 61c和各自的增强型基站 eNB+连接。 应注意, 图 6中各个网元的数目只是示意性的, 不对本发明实施 例的范围构成限制。
连接到云服务器端 61a的 eNB+中激活了一个应用服务器云租户( ASCT ), 它对应的虚拟服务器在云服务器端 61a中, 即图 6中所示的 VM1。 VM1并不 直接提供应用, 因为这个应用并不是由云服务器端 61a直接提供的, 而是由云 服务器端 61c提供的。 因此, VM1相当于一个背靠背 (Back-to-Back )代理, 即对连接到云服务器端 61a的 eNB+是运行相应应用的虚拟服务器, 但对实际 运行应用的云服务器端 61c中的虚拟服务器 VM2而言, 相当于一个云租户。 这样 VM1 可以从 VM2获得相应的云服务, 并将相应的服务传递到云服务器 端 61a中的 eNB+的相应 ASCT功能。
图 7是本发明一个实施例的云计算系统中移动性管理的示意图。 图 7中, 与图 1相同或相似的部分使用相同的附图标记。
下面结合图 1描述移动性管理的详细过程。 当 UE从一个 eNB+ 12a的覆 盖范围移动到另外一个 eNB+ 12b的覆盖范围时, 将发生两个层次的切换, 即 无线空口切换和云租户端的切换。由于 eNB+ 12a和 12b之间直接有 X2+接口, 因此, 可以利用该 X2+接口完成跨 eNB+ ( Inter-eNB+ ) 的无线接入层的切换 ( Handover )和无线非接入层的迁移(Relocation ), 具体的切换过程, 与现有 LTE技术中基于 X2接口的跨 eNB的无线接入层切换类似, 区别之处在于,在 现有 LTE技术中无线非接入层功能实体位于核心网, 因此跨 eNB的无线接入 层切换并不直接导致无线非接入层的迁移,但在本发明实施例中, 由于无线接 入层和非接入层同时集成在 eNB+中,因此,无线非接入层的迁移是和跨 eNB+ 的无线接入层切换同时进行的。 这时, UE的 IP地址也将随跨 eNB+的无线非 接入层的迁移重新配置。
WNFCT、 ASCT和 TACTP云租户端的切换也和跨 eNB+的无线接入层切 换同时进行。 由于采用云计算, 实际运行应用的实体本身是位于数据中心的虚 拟服务器, 因此一个 UE对应的云租户端的切换, 不影响对应的无线网络功能 应用、 第三方应用和终端云应用的运行状态。 这样, 对应用而言, 当 UE发生 跨 eNB+的移动时, 仅仅是 UE对应的云租户端发生切换, 而运行于中心云虚 拟服务器上的应用并不受影响。 因此, 可以以采用类似"软切换 "方式进行 WNFCT、 ASCT和 TACTP云租户端的切换。
具体来说, UE发生跨 eNB+的无线接入层切换和 /或无线非接入层迁移时, 在源 eNB+ 12a运行该 UE的云租户端的同时, 在目标 eNB+ 12b中启动该 UE 的云租户端的拷贝,这两个云租户端完全同步到中心云中的相应的应用。这样, 就能保证该 UE的应用层无缝的移动性, 当整个跨 eNB+的移动过程完成后, 再停止源 eNB+ 12a中的该 UE的云租户端。
图 8是本发明另一实施例的云计算系统的示意结构图。 图 8的云计算系 统 80是无线云 (Wireless Cloud ) 与应用云集成的网络架构。 无线云又称为 C-RAN ( Cloud RAN, 云接入网), 是最近关注较多的一个无线接入网架构。 该架构的主要特征是将传统基站的基带处理单元(BBU, Base Band Unit )和 射频单元分离。 例如, 多个基站的 BBU集中在一起, 组成一个或多个无线云 81a、 81b, 并通过光纤等宽带传输线路与远程射频单元(RRU, Radio Remote Unit )相连。
无线云 81a、 81b 完成无线蜂窝系统的所有功能 (无线接入层功能如 PHY/M AC/RLC/PDCP , 以及非接入层功能如 L3协议、 PDN网关等)。 另夕卜, 无线云 81a、 81b还可以包括图 4所示无线非接入层之上的三个功能实体, 即 WNFCT、 ASCT和 TACTP, 并分别通过 Zl、 Z2和 Z3接口与云服务器端(或 者称为中心云) 82相连。 无线云 81a、 81b之间采用 X3接口互联, 该接口类 似图 4中的 X2+接口, 用于支持无线云间的移动性。
对应到图 2的基站, 在图 8的实施例中, 接收模块 21位于 RRU中, 第 一处理模块 22位于 BBU (即位于 BBU组成的无线云 81a或 81b ) 中。 BBU 集中有利于利用云计算技术实现基带处理资源的虚拟化,从而实现灵活的基带 处理资源共享,解决业务量分布的潮汐效应, 并可实现多小区之间的联合信号 处理, 消除小区间的干扰, 提高系统容量。
本发明实施例使移动运营商能够提供管道和云的统一业务平台, 从而拓 展移动运营商的业务范围,使移动运营商不但能提供管道服务,还可以提供存 储、 计算等信息服务。 另外, 本发明实施例便于实施应用层 /传输层与无线承 载底层的跨层优化, 从而提升系统性能, 并且便于获知应用的 QoS信息, 使 系统能够为各类应用提供端到端的 QoS保证。
图 9是本发明一个实施例的服务处理方法的流程图。 图 9的方法由基站 执行, 例如图 1中的 eNB+或上述基站 20-40等。
91 , 与 UE之间建立无线网络承载通道。 例如, 可通过实现现有的无线网 络的接入层协议和非接入层协议, 建立上述无线网络承载通道。
92, 通过无线网络承载通道接收 UE的服务请求。
93, 解析 UE的服务请求中的请求内容,根据请求内容中需要由云服务器 端处理的内容生成云服务访问请求。
在解析得到请求内容之后, 基站自主决定如何进行处理。 例如, 对于基 站自己能够处理的内容, 如跨层优化、联合编码处理、数据压缩 /汇¾ /緩存等, 则可以由基站执行这些处理。 对于需要云服务器处理的内容, 如数据存储 /计 算等, 则基站可向相应的云服务器端发送云服务访问请求, 以请求云服务器端 进行相应的处理。
94, 发送云服务访问请求到云服务器端, 并将云服务器端的相应处理结 果通过无线网络承载通道返回给 UE。
这样, 从用户设备的角度来看, 犹如应用服务器就处于基站中。 用户设 备直接向基站进行服务请求(而非现有技术中那样, 用户设备向应用服务器进 行服务请求, 基站只是筒单地在接入层转发该服务请求), 即由基站终结了该 用户设备的传输层协议。而现有技术中,用户设备向应用服务器进行服务请求, 基站不会解析服务请求中的请求内容, 只是根据服务请求的目的地址等信息 (这些信息一般在服务请求包的包头中),筒单地查找路由并转发该服务请求。
本发明实施例的基站与用户设备之间建立无线网络承载通道, 从而终结 了用户设备的接入层协议。 另外, 从传输层协议的层面来看, 本发明实施例的 基站不是筒单地转发用户设备的服务请求, 而是解析服务请求中的请求内容, 并根据请求内容自己进行处理或请求云服务器端协助进行处理,使得用户设备 侧的传输层协议和接入层协议均终结于基站,因此本发明实施例能够实现传输 层和接入层的跨层优化。 行的其他过程。 下面结合图 3的基站 30举例说明。 例如, 无线网络功能模块 可实现无线网络的接入层协议和非接入层协议,与 UE之间建立一个或多个网 络 7|载通道。
可选地, 作为另一实施例, 第一处理模块 22可以获取服务请求所针对的 业务的应用属性信息和 /或信源编码信息等应用相关的信息。 例如, 第一处理 模块 22可以在解析 UE的服务请求中的请求内容时, 获取这些应用相关的信 息; 或者, 第一处理模块 22也可以从其他源 (例如, 与应用相应的云服务器 端或云服务实体)获取应用相关的信息。 无线网络功能模块 24还可以从第一 处理模块 22获取应用属性信息和 /或信源编码信息, 并利用应用属性信息和 / 或信源编码信息实现业务质量保证。
可选地, 作为另一实施例, 无线网络功能模块 24可以获得无线网络承载 通道上的无线链路和 /或无线资源的实时状态信息等应用相关的信息。 无线网 信息, 本发明对此不作限制。 第一处理模块 22还可以从无线网络功能模块 24 获无线链路和 /或无线资源的实时状态信息, 并根据无线链路和 /或无线资源的 实时状态信息, 完成传输控制协议层与无线接入层的跨层联合优化。 另外, 第 一处理模块 22还可以将无线链路和 /或无线资源的实时状态信息提供给第三方 应用, 以便第三方应用利用无线链路和 /或无线资源的实时状态信息进行跨层 优化。 此外, 无线网络功能模块 24在与 UE之间建立无线网络承载通道时, 也 可以参考上述应用相关的信息。
可选地, 作为另一实施例, 第三处理模块 25可以汇聚、 压缩或緩存 UE 与对应云服务实体之间的数据; 在接收到该 UE向该云服务实体发送的针对上 述数据的请求时, 向该 UE发送上述数据, 并终止向该云服务实体转发上述请 求。
可选地, 作为另一实施例, 移动性管理模块 26可以当 UE发生跨所述基 站的无线接入层切换和 /或无线非接入层迁移时, 在当前基站的第一处理模块 为 UE服务的同时,在目标基站的第一处理模块中启动上述当前基站的第一处 理模块的拷贝,将上述当前基站的第一处理模块和上述目标基站的第一处理模 块同步到云服务器端中的相应的应用。
根据本发明实施例的云计算系统可包括多个云服务器端(例如图 6的 61a、 61b和 61c ), 多个云服务器端之间相互连接。每个云服务器端与一个或多个上 述基站 20-40连接。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现, 为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地 描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决 于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用 来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范 围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的系统、装置和单元的具体工作过程, 可以参考前述方法实施例中的对应过 程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意 性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有 另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或 直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合或通信连 接, 可以是电性, 机械或其它的形式。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或 者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全 部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元 中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的 形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时, 可以存储在一个计算机可读取存储介质中。基于这样的理解, 本发 明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全 部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储 介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器, 的存储介质包括: U盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory ), 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可以 存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想 到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围 应所述以权利要求的保护范围为准。

Claims

权 利 要 求
1、 一种基站, 其特征在于, 包括:
无线网络功能模块, 用于与用户设备 UE之间建立无线网络承载通道; 接收模块, 用于通过所述无线网络承载通道接收所述 UE的服务请求; 第一处理模块, 用于解析所述 UE的服务请求中的请求内容,根据所述请 求内容中需要由云服务器端处理的内容生成云服务访问请求,发送所述云服务 访问请求到所述云服务器端,并将所述云服务器端的相应处理结果通过所述无 线网络承载通道返回给所述 UE。
2、 如权利要求 1所述的基站, 其特征在于, 所述基站还包括: 第二处理模块, 与所述云服务器端连接, 用于通过云计算方式, 从所述 云服务器端获得所述无线网络承载通道的功能控制服务。
3、 如权利要求 1所述的基站, 其特征在于, 所述基站还包括: 所述无线网络功能模块, 具体用于通过实现无线网络的接入层协议和非 接入层协议, 与所述 UE之间建立所述无线网络承载通道。
4、 如权利要求 3所述的基站, 其特征在于, 所述 UE的服务请求携带有 所述服务请求所针对的业务的应用属性信息和 /或信源编码信息;
所述第一处理模块, 还用于通过解析所述 UE的服务请求,得到所述应用 属性信息和 /或信源编码信息;
所述无线网络功能模块, 还用于从所述第一处理模块获取所述应用属性 信息和 /或信源编码信息, 并利用所述应用属性信息和 /或信源编码信息实现业 务质量保证。
5、 如权利要求 3或 4所述的基站, 其特征在于,
所述无线网络功能模块, 还用于获得所述无线网络承载通道上的无线链 路和 /或无线资源的实时状态信息;
所述第一处理模块还用于, 从所述无线网络功能模块获得所述无线链路 和 /或无线资源的实时状态信息, 并根据所述无线链路和 /或无线资源的实时状 态信息, 完成传输控制协议层与无线接入层的跨层联合优化。
6、 如权利要求 5所述的基站, 其特征在于,
所述第一处理模块还用于, 将所述无线链路和 /或无线资源的实时状态信 息提供给第三方应用, 以便所述第三方应用利用所述无线链路和 /或无线资源 的实时状态信息进行跨层优化。
7、 如权利要求 1所述的基站, 其特征在于, 所述基站还包括:
第三处理模块, 用于为所述 UE上的云计算应用提供代理服务。
8、如权利要求 7所述的基站, 其特征在于, 所述第三处理模块具体用于, 汇聚、 压缩或緩存所述 UE与对应云服务实体之间的数据; 在接收到所述 UE 向所述云服务实体发送的针对所述数据的请求时, 向所述 UE发送所述数据, 并终止向所述云服务实体转发所述请求。
9、 如权利要求 1所述的基站, 其特征在于, 所述基站还包括:
移动性管理模块, 用于当 UE发生跨所述基站的无线接入层切换和 /或无 线非接入层迁移时, 在当前基站的第一处理模块为所述 UE服务的同时, 在目 标基站的第一处理模块中启动所述当前基站的第一处理模块的拷贝 ,将所述当 前基站的第一处理模块和所述目标基站的第一处理模块同步到云服务器端中 的相应的应用。
10、 如权利要求 1 所述的基站, 其特征在于, 所述接收模块位于所述基 站的远程射频单元, 所述第一处理模块位于所述基站的基带处理单元。
11、 一种服务处理方法, 其特征在于, 包括:
与用户设备 UE之间建立无线网络承载通道;
通过所述无线网络承载通道接收所述 UE的服务请求;
解析所述 UE的服务请求中的请求内容,根据所述请求内容中需要由云服 务器端处理的内容生成云服务访问请求;
发送所述云服务访问请求到所述云服务器端, 并将所述云服务器端的相 应处理结果通过所述无线网络承载通道返回给所述 UE。
12、 如权利要求 11所述的方法, 其特征在于, 所述与用户设备 UE之间 建立无线网络 载通道, 包括:
通过实现无线网络的接入层协议和非接入层协议,与所述 UE之间建立所 述网络承载通道。
13、 如权利要求 11所述的方法, 其特征在于, 所述方法还包括: 通过解析所述 UE的服务请求,得到所述服务请求所针对的业务的应用属 性信息和 /或信源编码信息, 并利用所述应用属性信息和 /或信源编码信息实现 业务质量保证。
14、 如权利要求 12或 13所述的方法, 其特征在于, 所述方法还包括: 获得所述无线网络承载通道上的无线链路和 /或无线资源的实时状态信 息, 并根据所述无线链路和 /或无线资源的实时状态信息, 完成传输控制协议 层与无线接入层的跨层联合优化。
15、 如权利要求 14所述的方法, 其特征在于, 所述方法还包括: 将所述无线链路和 /或无线资源的实时状态信息提供给第三方应用, 以便 所述第三方应用利用所述无线链路和 /或无线资源的实时状态信息进行跨层优 化。
16、 如权利要求 11所述的方法, 其特征在于, 所述方法还包括: 汇聚、 压缩或緩存所述 UE与对应云服务实体之间的数据; 述 UE发送所述数据, 并终止向所述云服务实体转发所述请求。
17、 一种云计算系统, 其特征在于, 包括多个云服务器端, 所述多个云 服务器端之间相互连接, 每个云服务器端和多个如权利要求 1-10任一项所述 的基站连接。
PCT/CN2012/082750 2011-10-21 2012-10-11 基站、服务处理方法和云计算系统 WO2013056630A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12842180.7A EP2770800B1 (en) 2011-10-21 2012-10-11 Base station, service processing method and cloud computing system
US14/256,212 US10039136B2 (en) 2011-10-21 2014-04-18 Base station, service processing method, and cloud computing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110323739.2A CN103067428B (zh) 2011-10-21 2011-10-21 基站、服务处理方法和云计算系统
CN201110323739.2 2011-10-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/256,212 Continuation US10039136B2 (en) 2011-10-21 2014-04-18 Base station, service processing method, and cloud computing system

Publications (1)

Publication Number Publication Date
WO2013056630A1 true WO2013056630A1 (zh) 2013-04-25

Family

ID=48109887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082750 WO2013056630A1 (zh) 2011-10-21 2012-10-11 基站、服务处理方法和云计算系统

Country Status (4)

Country Link
US (1) US10039136B2 (zh)
EP (1) EP2770800B1 (zh)
CN (1) CN103067428B (zh)
WO (1) WO2013056630A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015026315A1 (en) 2013-08-19 2015-02-26 Nokia Siemens Networks Oy Radio access network (ran) transport evolved packet core (epc) synergy
US20150180948A1 (en) * 2012-07-06 2015-06-25 Zte Corporation United cloud disk client, server, system and united cloud disk serving method
WO2017004858A1 (zh) * 2015-07-08 2017-01-12 重庆邮电大学 一种5g网络中基于用户标签的分流方法和系统

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11025475B2 (en) * 2012-12-05 2021-06-01 Origin Wireless, Inc. Method, apparatus, server, and systems of time-reversal technology
KR20130128028A (ko) * 2012-05-16 2013-11-26 삼성전자주식회사 통신 시스템에서 협업 통신을 수행하는 장치 및 방법
CN102869003A (zh) * 2012-08-28 2013-01-09 中兴通讯股份有限公司 一种异构网络下业务内容分发的方法、业务管理平台
CN103634365A (zh) * 2012-08-29 2014-03-12 中兴通讯股份有限公司 一种无线接入网中的第三方应用平台及其通讯方法
CN104429121B (zh) * 2013-05-29 2018-12-14 华为技术有限公司 基站云系统中开展业务的方法及平台
CN104426948A (zh) * 2013-08-28 2015-03-18 北京闹米科技有限公司 一种网络数据共享系统和方法
CN104699521B (zh) * 2013-12-05 2017-12-01 中国移动通信集团公司 一种虚拟机在线迁移的方法、系统及装置
CN105022658B (zh) * 2014-04-30 2019-03-05 中国移动通信集团公司 一种虚拟机迁移方法、系统及相关装置
CN106664439B (zh) * 2014-07-30 2020-04-03 Sk普兰尼特有限公司 云流服务器
WO2016026535A1 (en) * 2014-08-22 2016-02-25 Telefonaktiebolaget Lm Ericsson (Publ) A method, system and device for accessing data storage in a telecommunications network.
US10484913B2 (en) 2015-06-29 2019-11-19 Ntt Docomo, Inc. Communication control method, communication control device, and communication system for causing readiness for movement of a communication terminal
CN105025564B (zh) * 2015-07-03 2018-05-22 广州市奥威亚电子科技有限公司 一种基于云计算的无线网络功率控制系统
CN105120514B (zh) * 2015-07-03 2018-05-29 深圳市纳斯达工贸有限公司 一种基于云计算的无线网络功率控制方法
CN106487836B (zh) * 2015-08-27 2019-12-13 腾讯科技(深圳)有限公司 一种信息处理方法及服务器
WO2017054841A1 (en) * 2015-09-28 2017-04-06 Telefonaktiebolaget Lm Ericsson (Publ) Providing services to a roaming user equipment
KR102048761B1 (ko) * 2015-10-23 2019-11-26 후아웨이 테크놀러지 컴퍼니 리미티드 정보 교환 방법 및 시스템, 그리고 기기
WO2017115003A1 (en) * 2015-12-29 2017-07-06 Nokia Technologies Oy Radio access resource sharing
TWI586194B (zh) * 2016-03-08 2017-06-01 正文科技股份有限公司 Wireless network system with offline operation and its operation method
US10079755B2 (en) * 2016-03-14 2018-09-18 Nokia Of America Corporation Programmable system architecture for routing data packets in virtual base stations
US10904802B2 (en) 2016-03-29 2021-01-26 Telefonaktiebolaget Lm Ericsson (Publ) Service delivery to handed over user equipment (UE) using a software-defined networking (SDN) controller
US10374829B2 (en) 2017-01-13 2019-08-06 Microsoft Technology Licensing, Llc Telecommunications network with data centre deployment
US10498442B2 (en) * 2017-08-04 2019-12-03 T-Mobile Usa, Inc. Wireless delivery of broadcast data
US10694237B2 (en) 2017-08-04 2020-06-23 T-Mobile Usa, Inc. Wireless delivery of broadcast data
CN114968452A (zh) * 2017-09-30 2022-08-30 华为技术有限公司 显示方法、移动终端及图形用户界面
CN108551464B (zh) * 2018-03-08 2020-12-22 网宿科技股份有限公司 一种混合云的连接建立、数据传输方法、装置和系统
US10819786B2 (en) * 2018-10-04 2020-10-27 Sap Se Local thin cloud tenant
US20220377627A1 (en) * 2019-10-31 2022-11-24 Samsung Electronics Co., Ltd. Method for mdas server assisted handover optimization in wireless network
CN114080057A (zh) * 2020-08-17 2022-02-22 华为技术有限公司 一种计算承载的应用方法及装置
CN114189566B (zh) * 2022-02-14 2022-07-19 阿里巴巴达摩院(杭州)科技有限公司 无线通信方法、网关、设备及系统
CN115051999B (zh) * 2022-08-12 2023-01-24 中国电子技术标准化研究院 基于云边协同的能耗最优任务卸载方法、装置及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505307A (zh) * 2009-03-09 2009-08-12 华为技术有限公司 面向服务构架的消息处理方法、网络节点及系统
WO2010128773A2 (en) * 2009-05-05 2010-11-11 Lg Electronics Inc. Server for control plane at mobile communication network and method for controlling establishment of connection thereof
CN102065573A (zh) * 2010-12-28 2011-05-18 北京高信达通信技术有限公司福州分公司 Wap网关代理业务数据处理方法及服务器

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6941338B1 (en) * 1999-09-01 2005-09-06 Nextwave Telecom Inc. Distributed cache for a wireless communication system
US7266593B2 (en) * 2001-02-23 2007-09-04 Nokia Networks Oy IP based service architecture
WO2005086509A1 (en) * 2004-03-04 2005-09-15 Utstarcom Telecom Co., Ltd The loads supporting mehod and system in radio base station
US7957733B2 (en) 2004-07-16 2011-06-07 Sellerbid, Inc. Method and apparatus for multimedia communications with different user terminals
US7680100B1 (en) * 2004-09-30 2010-03-16 Avaya Inc. Internet protocol appliance manager
EP2063578A1 (en) * 2006-09-15 2009-05-27 NEC Corporation Packet distribution system and packet distribution method
CN112929738A (zh) * 2007-02-02 2021-06-08 赛乐得科技(北京)有限公司 具有不同用户终端的多媒体通信中跨层优化的方法和装置
KR20100060800A (ko) * 2008-11-28 2010-06-07 삼성전자주식회사 HeNB에서 단말에게 선택적으로 자원을 할당하기 위한 시스템 및 장치
CN101557551A (zh) * 2009-05-11 2009-10-14 成都市华为赛门铁克科技有限公司 一种移动终端访问云服务的方法、装置和通信系统
CN101998679B (zh) 2009-08-13 2012-11-07 华为技术有限公司 一种传输承载的中继方法、装置和通信系统
US8831014B2 (en) * 2009-09-26 2014-09-09 Cisco Technology, Inc. Providing services at a communication network edge
EP2507964A1 (en) * 2009-11-30 2012-10-10 Nokia Siemens Networks Oy Method and network device establishing a binding between a plurality of separate sessions in a network
EP2362599B1 (en) * 2010-02-25 2012-05-09 NTT DoCoMo, Inc. Method and apparatus for rate shaping
US8504718B2 (en) * 2010-04-28 2013-08-06 Futurewei Technologies, Inc. System and method for a context layer switch
US8997196B2 (en) * 2010-06-14 2015-03-31 Microsoft Corporation Flexible end-point compliance and strong authentication for distributed hybrid enterprises
US20150156814A1 (en) * 2010-07-27 2015-06-04 Humax Holdings Co., Ltd. Cross-layer optimization method in a multimedia transmission system
US8826451B2 (en) * 2010-08-16 2014-09-02 Salesforce.Com, Inc. Mechanism for facilitating communication authentication between cloud applications and on-premise applications
CN101958910B (zh) * 2010-10-18 2013-05-22 清华大学 基于双代理的一体化标识网络个人通信移动管理方法
ES2380983B1 (es) * 2010-10-27 2013-04-15 Vodafone España, S.A.U. Procedimiento y dispositivo para optimizar la carga de señalización en una red de comunicación celular.
US9648006B2 (en) * 2011-05-23 2017-05-09 Twilio, Inc. System and method for communicating with a client application
GB2491196B (en) * 2011-05-27 2015-05-27 Sca Ipla Holdings Inc Mobile communication system, infrastructure equipment, base station and method
US9386077B2 (en) * 2011-11-30 2016-07-05 Verizon Patent And Licensing Inc. Enhanced virtualized mobile gateway in cloud computing environment
US9491801B2 (en) * 2012-09-25 2016-11-08 Parallel Wireless, Inc. Dynamic multi-access wireless network virtualization
US10231120B2 (en) * 2012-10-16 2019-03-12 Cisco Technology, Inc. Offloaded security as a service
US9584615B2 (en) * 2013-11-27 2017-02-28 Adobe Systems Incorporated Redirecting access requests to an authorized server system for a cloud service

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505307A (zh) * 2009-03-09 2009-08-12 华为技术有限公司 面向服务构架的消息处理方法、网络节点及系统
WO2010128773A2 (en) * 2009-05-05 2010-11-11 Lg Electronics Inc. Server for control plane at mobile communication network and method for controlling establishment of connection thereof
CN102065573A (zh) * 2010-12-28 2011-05-18 北京高信达通信技术有限公司福州分公司 Wap网关代理业务数据处理方法及服务器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
O. OYMAN; J. FOERSTER: "Distortion-Aware MIMO Link Adaptation for Enhanced Multimedia Communications, WiMAGIC-Huawei Workshop, Towards IMT-A and Beyond", PIMRC, 2010
See also references of EP2770800A4
ZHANG HAIXIA, WIRELESS COMMUNICATION INTER-LAYER DESIGN - FROM PRINCIPLE TO APPLICATION

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150180948A1 (en) * 2012-07-06 2015-06-25 Zte Corporation United cloud disk client, server, system and united cloud disk serving method
WO2015026315A1 (en) 2013-08-19 2015-02-26 Nokia Siemens Networks Oy Radio access network (ran) transport evolved packet core (epc) synergy
WO2017004858A1 (zh) * 2015-07-08 2017-01-12 重庆邮电大学 一种5g网络中基于用户标签的分流方法和系统

Also Published As

Publication number Publication date
EP2770800A4 (en) 2015-05-06
EP2770800A1 (en) 2014-08-27
CN103067428B (zh) 2016-08-10
US20140226594A1 (en) 2014-08-14
CN103067428A (zh) 2013-04-24
US10039136B2 (en) 2018-07-31
EP2770800B1 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
WO2013056630A1 (zh) 基站、服务处理方法和云计算系统
WO2020259509A1 (zh) 一种应用迁移方法及装置
CN108886825B (zh) 分布式软件定义无线分组核心系统
JP7109044B2 (ja) 改善されたモバイルインターネットの速度およびセキュリティのためのシステム
EP2932657B1 (en) Information centric networking based service centric networking
JP6008467B2 (ja) コンテンツセントリックネットワーク上のセッションマイグレーション
WO2022242507A1 (zh) 通信方法、装置、计算机可读介质、电子设备及程序产品
WO2014117376A1 (zh) 可定制的移动宽带网络系统和定制移动宽带网络的方法
JP6001790B2 (ja) 固定アクセスネットワークとueとにおける動作方法
US10812292B2 (en) Packet processing method and device
US11792688B2 (en) Systems and methods for a scalable heterogeneous network orchestrator
WO2011140910A1 (zh) 业务处理单元和方法以及业务控制网关和负载均衡方法
Dey et al. Addressing response time of cloud-based mobile applications
Mohammadkhan et al. CleanG—Improving the architecture and protocols for future cellular networks with NFV
Magurawalage et al. Aqua computing: Coupling computing and communications
Li et al. 6G cloud-native system: Vision, challenges, architecture framework and enabling technologies
CN110278095A (zh) 一种消息传输方法和装置
Subramanya et al. SDEC: A platform for software defined mobile edge computing research and experimentation
CN111163180B (zh) 一种基于sdn的lte网络高效缓存方法及系统
GB2500374A (en) Optimisation of mobile data communication using byte caching
Liao et al. A dual mode self-adaption handoff for multimedia services in mobile cloud computing environment
Lv et al. Demonstration of vCDN Scheme Based on Multi-Access Edge Computing and 5G Virtualizatin
US11902052B1 (en) Separate PFCP session model for network access by residential gateways
Velazquez-Garcia et al. SOCKMAN: Socket migration for multimedia applications
US20220338095A1 (en) Base station assisted information centric network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012842180

Country of ref document: EP