WO2013056511A1 - 有线、无线和无缆三合一数字地震仪 - Google Patents

有线、无线和无缆三合一数字地震仪 Download PDF

Info

Publication number
WO2013056511A1
WO2013056511A1 PCT/CN2012/001394 CN2012001394W WO2013056511A1 WO 2013056511 A1 WO2013056511 A1 WO 2013056511A1 CN 2012001394 W CN2012001394 W CN 2012001394W WO 2013056511 A1 WO2013056511 A1 WO 2013056511A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless
station
data
seismograph
module
Prior art date
Application number
PCT/CN2012/001394
Other languages
English (en)
French (fr)
Inventor
郭建
刘光鼎
许璟华
Original Assignee
中国科学院地质与地球物理研究所
北京吉奥菲斯科技有限责任公司
北京通特科技有限公司
北京通特润华科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110313366.0A external-priority patent/CN102628958B/zh
Priority claimed from CN201110327291.1A external-priority patent/CN102628959B/zh
Priority claimed from CN201110341047.0A external-priority patent/CN102628963B/zh
Priority claimed from CN201210252267.0A external-priority patent/CN102768364B/zh
Priority claimed from CN2012103370054A external-priority patent/CN102866419A/zh
Priority claimed from CN2012103370374A external-priority patent/CN102866420A/zh
Application filed by 中国科学院地质与地球物理研究所, 北京吉奥菲斯科技有限责任公司, 北京通特科技有限公司, 北京通特润华科技有限公司 filed Critical 中国科学院地质与地球物理研究所
Priority to US14/352,242 priority Critical patent/US20140254309A1/en
Priority to EP12842393.6A priority patent/EP2770343A4/en
Publication of WO2013056511A1 publication Critical patent/WO2013056511A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/22Transmitting seismic signals to recording or processing apparatus
    • G01V1/223Radioseismic systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/22Transmitting seismic signals to recording or processing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/24Recording seismic data
    • G01V1/247Digital recording of seismic data, e.g. in acquisition units or nodes

Definitions

  • the present invention generally relates to a seismograph, and more particularly to a wired, wireless and cableless three-in-one digital seismograph.
  • BACKGROUND OF THE INVENTION High-precision digital seismographs are geological exploration instruments used to record artificial or natural seismic signals and then search for oil, gas, coal and other mineral resources based on the records of these seismic signals, and can be used to detect the internal structure of the earth and carry out engineering. And geological disaster prediction. Seismic exploration is still the main means of oil and gas exploration on land and sea. It is also an important exploration method for other mineral resources, and is widely used in the study of internal structure of the earth, engineering exploration and detection, and prediction of geological disasters.
  • Digital seismographs using geophysical exploration of mineral resources can be classified into three categories according to data transmission methods: wired telemetry seismographs, wireless telemetry seismographs, and cableless storage seismographs.
  • a wired telemetry seismometer is characterized by the complete transmission of instructions and transmission of acquisition data by the cable system. It has a dominant position in the field of field applications, occupying the majority of the world seismograph market. Commonly used are Sercel's 408/428 series, ION's System IV, Scorpion and Aries II systems, and Germany's DMT's Summit. System, UniQ system of WesternGeco Company of the United States, etc.
  • wireless telemetry seismometer An instrument that uses wireless systems to send commands and transmit collected data is called a wireless telemetry seismometer. It is generally used for construction under special surface conditions and also has a certain market. Fairfield's BOX system and Wireless Seismic's Wireless Seismic system are wireless telemetry digital seismographs. However, these instruments have problems such as the limitation of the number of instruments due to insufficient bandwidth of wireless data transmission, so they are less practical.
  • the cableless storage seismograph is a special type of seismograph, which is characterized in that there is no large line and no seismic data transmission; each collection station automatically stores the data after receiving the shot data, and then uses a special data recovery system to put all the shot data. It is taken out from the collection station; some instruments use the wireless system to send commands such as synchronous shooting to the collection station used, but do not receive data, and do not monitor the working status of the collection station.
  • the instrument is characterized by relatively light weight and simple layout. However, since there is no real-time recovery of data, the data quality cannot be monitored in real time, and it is not universally accepted by the industry. Another disadvantage of this type of instrument is that each channel needs to be powered separately, meaning that a large amount of battery management effort is required.
  • GPS geophones from Eastern Geophysical Corporation, submarine seismographs of the Institute of Geology and Geophysics of the Chinese Academy of Sciences, and cableless storage seismographs for metal exploration, and cableless telemetry seismographs of the College of Earth Exploration Science and Technology of Jilin University.
  • ION company's FireFly no Cable Seismic Acquisition System Unite System of Sercel Company of France, Ultra Cableless Land Seismic Acquisition System of Ascend Geo Company of USA, GSR System of 0Y0 Geospace Company of USA, Z System of Fairfield Company of USA, SIGMA System of Seismic Source Company of USA.
  • Wireless telemetry seismographs are favored by geophysical exploration experts because of their light weight and simple layout, but their Achilles heel is that wireless signal transmission is affected by various obstacles (such as trees, rocks, mountains, buildings, etc.). This makes the signal transmission capability greatly reduced or even completely interrupted.
  • Wireless telemetry seismographs require that there are no obstacles between the seismograph center station and the acquisition station that hinder the propagation of wireless signals, which is difficult to do in the wild. That is, wireless telemetry instruments are widely used in geophysical exploration and other fields. Under the conditions of flat and wide surface conditions, wireless telemetry instruments can work well, but the transmission of wireless telemetry instruments is blocked by mountains, trees and tall buildings. Machines and receivers become "invisible” and wireless signals will not be able to traverse these obstacles. At this time, wireless telemetry instruments cannot perform normal work, and geophysical work often needs to be in areas with large surface fluctuations, which is the biggest problem in the development of wireless telemetry instruments.
  • Tethered balloon radio communications have been around for decades.
  • the two biggest problems in limiting the development of balloon technology are the danger of hydrogen and the lack of ideal spherical materials.
  • the rational use of many technologies such as measurement and control technology, optical fiber communication and computer has created conditions for the improvement of the tethered balloon technology.
  • the tethered balloon is essentially a kind of vehicle. It can enhance the long-wave communication antenna by using its buoyancy function, and it can also form an air platform that loads a variety of equipment.
  • the US and the Soviet Union even have space shuttles, satellites, and various types of aviation vehicles.
  • the research and application of the tethered balloon technology has not been abandoned, and the tethered balloon is regarded as an important supplementary and emergency means.
  • the service area of the tethered balloon is not limited to communication. In other military and civilian applications. There are a wide range of uses, and the captive balloon has established its own development status with its economical, reliability, flexibility and simplicity.
  • the balloon is a lighter-air aerospace vehicle without propulsion, which is lifted by the static buoyancy generated by the buoyant gas.
  • the so-called captive balloon uses a cable to tether and hover the balloon and its carrying equipment to a certain position in space.
  • the mooring balloon is distinguished from the freestyle balloon, which is unrestricted after being lifted up and can drift with the wind.
  • Tethered balloon communication systems generally consist of tethered balloons, tethered cables, tethered facilities, payloads, monitoring controls and logistics It is composed of several parts such as security equipment.
  • the tethered balloon is filled with hydrogen or helium gas that is less dense than air, providing sufficient buoyancy according to the job requirements.
  • the shape of the sphere is generally spherical, water droplet type and airship type.
  • Modern mooring balloons are designed to be streamlined in the shape of an airship.
  • the arrangement is in the form of "ten", "Y” and inverted "Y”.
  • This streamlined tethered balloon with a tail can always face the wind direction, minimizing windage and reducing ground tethering loads.
  • the volume of foreign tethered balloons ranges from tens to tens of thousands of cubic meters, and the length is several meters to more than 70 meters.
  • the maximum diameter of the sphere is generally not more than 20 meters.
  • the working space of the tethered balloon is the troposphere, and the height is increased by hundreds to Six kilometers.
  • the purpose of the tethered cable is to tie the balloon so that the balloon hovers over the air to a certain degree and combines functions of transmitting information and supplying power.
  • the tethered facility is the operational, control, and maintenance center of the system. Due to the different scale and erection requirements of the mooring facilities, they can be divided into fixed and mobile, and mobile is divided into two types: vehicle and ship.
  • the payload refers to the equipment carried by the balloon to perform different tasks, but various acoustic, optical, electrical, and magnetic devices, and the payload is suspended in the windshield under the balloon.
  • the payloads used for communication are mainly communication antennas, transceivers, and repeaters.
  • Monitoring and control equipment is used to monitor and control the meteorological environment around the balloon, the attitude of the balloon, and the working state of the payload. It includes a variety of sensors, executive control components, display recording and automatic management devices for telemetry and remote control via wired and wireless channels.
  • Logistics support equipment includes electricity, gas supply and maintenance tools, and requires means and capabilities to provide weather forecasts and to communicate within and outside the network. In addition to being built as a fixed method, the support equipment can also be fully built to improve the maneuverability of the system.
  • the tethered balloon system has many advantages such as large coverage area, low investment, high efficiency, convenient operation and protection and strong survivability. Its outstanding characteristics compared with aircraft, airships, and remote-controlled aircraft, as a vehicle supported by its own buoyancy, are long-lasting, can perform tasks around the clock, and provide a means of continuous work.
  • the captive balloon also has its own weaknesses and limitations. Due to severe weather and environmental conditions, it must have reliable recharge guarantees and is suitable for working in fixed or mobile areas.
  • the practical application of the tethered balloon system has not yet been seen in the geophysical field.
  • wireless telemetry instruments have had great glory.
  • the Seismic system is a wireless telemetry digital seismograph.
  • measures such as using an overhead antenna and erecting an antenna at a high mountain are used, but only To solve some problems, you need to put the antenna frame to a more awkward place.
  • the wired, wireless and cableless three-in-one digital seismograph of the present invention optimizes and combines three instruments of wired telemetry digital seismograph, wireless telemetry digital seismograph and cableless digital seismograph, and constitutes a kind of new digital seismograph, divided into four parts: a central control operating system (instrument Cart) CCOS (central control operation system), and a wired telemetry acquisition stations AS (Acqui S iti 0n station) equipped with its acquisition of wireless telemetry station WAS (Wireless Acquisition Station) and Cable-less Acquisition Station (CAS), the central control operating system CC0S is connected to the wired communication node RU (Root Unit), the wireless communication root node WRU (Wireless Root Unit) and the network through the network cable.
  • instrument Cart instrument Cart
  • AS Acqui S iti 0n station
  • WAS Wireless Acquisition Station
  • CAS Cable-less Acquisition Station
  • Cable data collection unit CDU (Cable-less Data Unit) connection; and control and connection of wired telemetry acquisition station through wired communication root node RU, control and connection of wireless telemetry acquisition station through wireless communication root node WRU, through cableless data recovery unit CDU Recover data from cableless collection stations.
  • CDU Cable-less Data Unit
  • the invention is a novel digital seismograph system based on wired telemetry, wireless telemetry and cableless "three in one", and three seismic instruments of wired telemetry digital seismograph, wireless telemetry digital seismograph and cableless digital seismograph are carried out. Optimization and combination. Taking full advantage of wired telemetry, wireless telemetry and cableless, the new digital seismograph system is suitable for a variety of complex surface and terrain, achieving the best optimization of the construction plan and cost of seismic survey measurement. As an optimization, the central control operating system CCOS is a control center and a data recovery center of the entire instrument, and implements functions such as human-computer interaction, alignment control, acquisition synchronization, data recovery, and quality control.
  • the central control operating system CCOS is placed on the instrument vehicle and is the main control unit of the whole digital seismograph.
  • the hardware part is composed of computer server Server, network switch Switer, client computer terminal PC, storage device storage device and drawing device Plotting equipment.
  • the software consists of operating system software and control operating software.
  • the central control operating system CCOS is connected to the wired communication node RU (Root Unit), the wireless communication root node WRU (Wireless Root Unit), and the cableless data recovery unit CDU (Cable-less Data Unit) through the network cable;
  • the node RU controls and connects the wired telemetry collecting station, controls and connects the wireless telemetry collecting station through the wireless communication root node WRU, and recovers the data of the cableless collecting station through the cableless data recovery unit CDU.
  • the wired communication root node is composed of a high speed switching module SM (Switch module) control module CM, a power module PM, and a GPS module.
  • the root node RU is connected to the central control operating system CCOS through a network cable, and provides an optical cable interface or a dedicated communication interface to connect with field devices such as a collection station according to the requirements of the instrument capacity.
  • High The speed switching module SM provides a data exchange function; the control module CM implements control of the high speed switching module SM according to the instruction of the central control operating system CCOS; the power module PM provides power support for each module.
  • the GPS module provides location information and also supports time synchronization.
  • the wireless communication root node WRU is composed of a control module C, a power module PM, a wireless transmitter Transmitter, a wireless receiver Receiver and a GPS module, and the wireless communication root node WRU is connected to the central control operating system CCOS through a network cable.
  • the single-channel wireless transmitter Transmitter sends a control command to the wireless collection station, and uses the multi-channel wireless receiver Receiver to receive the data of the wireless collection station;
  • the control module CM implements the wireless transmitter Transmitter and the wireless receiver Receiver according to the instruction of the central control operating system CCOS.
  • the power module PM provides power support for each module.
  • the GPS module provides location information and also supports time synchronization.
  • the cableless data recovery unit CDU is composed of an idle switching module SM, a control module CM, a power module PM, and a data interface Interface.
  • the cableless data recovery unit CDU is connected to the central control operating system CCOS through the network cable, and provides the data interface Interface to recover the data of the cableless collection station CAS.
  • the data interface interface can be in various ways, such as Ethernet, USB, WiFi, and the like.
  • the high-speed switching module SM, the control module CM, and the power module PM are sequentially connected, and the high-speed switching module SM is connected to the SM data interface Interface which is connected in series (or cascaded), and the high-speed switching module SM is also connected to the central control operating system CCOS.
  • the wired telemetry acquisition station AS is composed of a control module CM (Control Module), a power module PM (Power Module) ⁇ (digital) seismic sensor Sensor, and a GPS module.
  • the control module CM has two dedicated communication interfaces respectively connected to the upper and lower level acquisition stations AS, and has a dedicated interface for connecting a conventional detector or a sensor sensor such as a MEMS; one or several collection stations AS and a wired communication root node
  • the RU is directly connected to establish a communication channel for wired telemetry.
  • the control module CM is respectively connected to a power module PM (Power Module), a (digital) seismic sensor Sensor and a GPS module, and the control module CM is also used for serially connecting other wired telemetry acquisition stations AS.
  • the wireless telemetry acquisition station WAS is composed of a control module CM, a power module PM, a seismic sensor Sensor, a wireless communication device WU (Wireless Unit), and a GPS module.
  • the wireless communication device WU provides single channel data reception and transmission, and establishes a connection with the central control operating system CCOS; the GPS module provides location information and also supports time synchronization.
  • the control module CM is respectively connected to the power module PM, the seismic sensor Sensor, the wireless communication device WU (Wireless Unit), and the GPS module.
  • the cableless collection station CAS is composed of a control module CM, a power module PM, a seismic sensor, a GPS module, and the like.
  • the wireless telemetry acquisition station WAS and the cableless acquisition station CAS we can design them as one, that is, according to the wireless telemetry acquisition station WAS design and installation, when the wireless telemetry acquisition station WAS wireless communication device WU can not When communicating with the central control operating system CCOS, the wireless communication device WU component is automatically turned off, and the data is collected and received as a cableless collection station CAS.
  • the central control operating system CCOS is used for GPS timing synchronization, and then GPS synchronization is performed on the wireless telemetry acquisition station WAS and the cableless acquisition station CAS, and on the wired telemetry acquisition station AS (or the wired telemetry instrument part).
  • Two synchronization schemes are used: one is to use GPS timing synchronization; the other is to use the IEEE1588 protocol and use the budget time difference for synchronization.
  • the wired, wireless and cableless three-in-one digital seismograph of the invention optimizes and combines three seismographs of wired telemetry digital seismograph, wireless telemetry digital seismograph and cableless digital seismograph, and fully utilizes
  • the advantages of wired telemetry, wireless telemetry and cablelessness make the new digital seismograph system suitable for a variety of complex surface and terrain, achieving the best optimization of the construction plan and cost of seismic survey measurement. It can be widely used in oil exploration, resource mineral exploration, geological engineering exploration, geological disaster monitoring, etc. in oil, natural gas and coal fields.
  • the object of the present invention is to overcome the above-mentioned deficiencies of the prior art and to provide a seismic gathering station which can be applied to various field situations and which significantly improves the practicability of the instrument and combines wireless and cableless functions.
  • the present invention combines a wireless and cableless seismic acquisition station, which is characterized in that a wireless acquisition station WAS (Wireless Acquisition Station) and a cable-free acquisition station (CAS) are combined.
  • Seismic collection station there are six major components: Control Unit CU (Control Unit), Wireless Communication Unit (WCU), Data Acquisition Unit AU (Acquisition Unit), Data Storage Unit SU (Storage Unit), GPS Module and The power unit PU (Power Unit);
  • the control unit CU is an embedded CPU, which is the heart of the seismic acquisition station, and completes detection and control of the wireless communication unit WCU, the data acquisition unit AU, the storage unit SU, the GPS module and the power supply unit.
  • the wireless communication unit WCU is a wireless transceiver, connected with the control unit CU, completes the data communication between the collection station and the central station of the seismic instrument, realizes the control and management of the collection station;
  • the unit AU is composed of a sensor and an A/D conversion chip, etc., and is connected to the control unit CU according to the reference of the control unit CU Completing the data collection;
  • the storage unit SU is a non-volatile memory, and is connected to the control unit CU;
  • the GPS module is used for timing to realize data synchronization, and also provides location information of the collection point;
  • the power unit PU is controlled
  • the unit CU, the wireless communication unit WCU, the data acquisition unit AU, the data storage unit SU and the GPS module provide power support.
  • the control unit CU sets the collection station to the wireless collection station mode; when the wireless communication unit WCU is not working normally, the control unit CU sets the collection station to the cableless collection station mode.
  • the storage unit su is in a closed state when the collection station is set to the wireless mode; when the collection station is set as a cableless collection station, as a data storage, the non-volatile memory consumes a large amount of energy, so as to save The power consumption is normally turned off. Only when the collected data reaches a certain amount, the storage unit SU is turned on for centralized data storage.
  • the wireless communication unit WCU is used to establish command control and data transfer with the seismic instrument central station.
  • the wireless communication unit WCU consumes a large amount of energy
  • the following measures are taken to reduce the energy consumption:
  • the wireless communication unit WCU is turned on periodically, the next work plan is obtained, and the opening time of the wireless communication unit WCU is determined according to the work plan, so as to be minimized.
  • the power unit PU can increase the duration of the power supply, and can externally connect a new energy source such as a power source battery and a fuel battery.
  • the seismic collection station communicates with the central station of the seismic instrument. If it can be contacted, it is set to the wireless collection station mode, accepts the instructions of the central control operating system and completes the work; if it cannot be contacted, it is set to cableless collection. Station mode
  • the seismic acquisition station combining the wireless and cableless functions of the present invention has the advantages that it can be applied to various field situations, and can ensure the normal recording of data and the practicality of the instrument.
  • the wireless extension device of the wired telemetry seismograph of the present invention comprises two major units: a wireless extended relay station WR (Wireless Router) and a wireless collection station WAS (Wireless Acquisition Station); the wireless extended relay station uses a dedicated hundred The mega network cable is connected to the power station of the wired telemetry seismograph, and the wireless extension relay station WR can wirelessly connect several wireless collection stations WAS.
  • the advantage of the device of the invention is that a wireless extended relay station and a wireless collection station are added to the wired telemetry seismograph, and the advantage is that the introduction of a part of the wireless collection station improves the ability of the wired telemetry seismic instrument to adapt to complex terrain.
  • the wireless extended relay station WR is composed of a control module CM, a power module PM, a single-channel wireless transmitter T, and a multi-channel wireless receiver R and a GPS module.
  • the control module CM controls the single-channel wireless transmitter T and the multi-channel wireless receiver R according to the power station command, and is connected to the power station PU of the wired telemetry seismograph through a dedicated 100-megabit network cable; the multi-channel wireless receiver R Receiving data from the wireless collection station WAS, the single channel wireless transmitter T transmits an instruction from the power station to control the wireless collection station WAS for data acquisition.
  • the wireless extended relay station WR can be connected to any power station PU of the wired telemetry seismograph through a dedicated 100M network cable for wireless expansion, which enhances the ability of the wired telemetry seismic instrument to adapt to complex terrain.
  • the wireless extension relay station WR receives the command from the host Mainframe through the power station PU and controls the wireless collection station WAS for data acquisition, and transmits the data to the host Mainframe through the power station PU, as an optimization, the dedicated 100M network cable is a customized network cable. At the same time as the 100M network cable function, it has the function of supplying power to the wireless extension relay station WR.
  • the acquisition station WAS is composed of a controller CM, a seismic sensor sensor, a wireless communication unit WU, and a GPS module; wherein the wireless communication unit WU provides single channel data reception and transmission; the GPS module provides location information, and sometimes supports time. Synchronize.
  • the power module PM provides power support (as shown in Figure 2).
  • the object of the present invention is to overcome the above-mentioned deficiencies of the prior art, and to provide an obstacle that can be used normally when there is an obstacle between the center station of the seismograph and the collection station, and the wireless terrain is highly adaptable to the complex terrain.
  • Wireless telemetry seismographs that improve data communication capabilities. It can be applied to energy exploration and resource mineral exploration such as petroleum, natural gas and coal fields, geological engineering exploration, geological disaster monitoring, etc. It is an instrument device for detecting artificial and natural seismic signals and converting them into digital signals and recording them. Seismic exploration and seismic detection.
  • the wireless telemetry seismograph using the wireless relay method to improve the data communication capability is composed of three major units: a central station CS (Central System), a wireless routing node WR (MWreless Router), and a wireless collection station AN (Acquisition).
  • the central station CS is the heart of the entire seismic instrument and is responsible for controlling the working state of the entire digital seismograph;
  • the wireless routing node WR has a router and switch function, and automatically forwards the command of the central station CS and the wireless collection station AN Data;
  • the collection station AN may be connected to the central station CS in a wireless manner, or may be connected in a wireless multi-hop manner through the wireless routing node WR.
  • the device of the invention is characterized in that a routing node having the function of transmitting and receiving signals is added on the basis of the wireless telemetry seismograph, and each node can directly communicate with a plurality of collection stations to extract data by means of wireless relay. Communication ability.
  • the feature of the seismograph of the invention is that the wireless relay method is used to improve the data communication capability, and the complex terrain adaptability of the wireless telemetry instrument is improved.
  • the central station of the seismograph and the acquisition station that hinders the propagation of wireless signals, it can still be used normally, and the complex terrain has strong adaptability.
  • a wireless routing relay station WR is set up in a higher terrain, and there may be several such wireless routing relay stations. That is, according to the terrain fluctuation characteristic of the exploration area, the present invention sets up a wireless routing relay station WR in a higher terrain area, and there may be several such wireless routing relay stations, ensuring that the wireless signal covers all the wireless collection stations, and solves the wireless signal of the undulating surface. Transfer problem.
  • a wireless routing node WR with the function of transmitting and receiving signals is added on the basis of the wireless telemetry seismograph, and each wireless routing node WR and the central station CS are connected by wireless, and can be combined with multiple acquisitions.
  • the station AN performs direct communication and uses wireless relay to improve data communication capabilities.
  • the following steps are established between the wireless collection station AN and the central station CS to establish communication links: 1
  • the collection station AN searches for the central station CS, and if found, establishes a communication connection with it, if not found, proceeds to step 2;
  • the acquisition station AN looks for the wireless routing node WR, if found, and establishes communication with it, if not found, then proceeds to step 1.
  • the wireless routing node WR is composed of a control module O power module PM, a multi-channel wireless transmitter T, a multi-channel wireless receiver R and a GPS module, etc.; the control module CM implements multi-channel wireless according to the instruction of the central station CS.
  • the collection station A is composed of a controller OI, a seismic sensor Seri SO r, a wireless communication unit WU, a GPS module, and the like; wherein the wireless communication unit WU provides single channel data reception and transmission; the GPS module provides location information, Time synchronization is sometimes supported. Controller CM to other components seismic sensor Sensor, wireless communication component WU and GPS module, etc.
  • the power module PM provides power support (as shown in Figure 2).
  • the wireless telemetry seismograph using the wireless relay method to improve the data communication capability improves the data communication capability by using the wireless relay mode, and improves the complex terrain adaptability of the wireless telemetry instrument.
  • the utility model can still be used normally, and the complex terrain has strong adaptability.
  • the mooring-mounted wireless telemetry seismograph system of the present invention is composed of three major parts: a central control operating system CCOS (Central Control & Operation System), a tethered balloon equipped with a wireless transmitting/receiving station TRCB (Transmitter & Receiver) On Captive Balloon) and the wireless acquisition station WAS (Wireless Acquisition Station); the tethered balloon is connected to the tethered facility platform by a mooring cable with a copper wire as a power supply line for wirelessly mounted on the tethered balloon
  • the transmitting/receiving station TRCB provides electrical energy; the optical fiber is embedded in the gap of the conductor as a data transmission channel between the central control operating system CC0S and the wireless transmitting/receiving station TRCB on the
  • the working height is 600 to 6000 m and the coverage radius is 87 to 277 km, and the coverage area is 2.4 to 240,000 square kilometers.
  • the tethered balloon communication system is flexible in layout, low in investment, relatively simple in technology, and easy to maintain. Because the airborne wave propagation loss is smaller than the ground, relative to the same range of action, a transmitter on the captive balloon can act as a number of transmitters on the ground.
  • the tethered balloon is equipped with a wireless transmitting/receiving station TRCB transmission command wireless collection station WAS, and the wireless collection station WAS transmits the collected seismic data to the tethered balloon equipped with the wireless transmitting/receiving station TRCB.
  • the biggest feature of the system is that the transmitting station and the receiving station of the ordinary wireless telemetry instrument are installed on the high-altitude mooring balloon, so that the access station WAS becomes barrier-free "visible", which improves the effective coverage provided by the data communication.
  • the wireless telemetry technology of complex surface is realized, and the wireless telemetry digital seismograph realizes real-time data collection and recovery on complex surface.
  • the wireless transmitting/receiving station TRCB equipped with the tethered balloon is composed of a control module CM, a power module PM, a wireless transmitter T (Transmitter), a multi-channel wireless receiver R (Receiver), a GPS module, and the like;
  • the control module CM is The central control operating system CC0S command implements control of the wireless transmitter T and the multi-channel wireless receiver R.
  • the wireless receiver R receives the command from the central control operating system CC0S and the data of the wireless collection station WAS, and the wireless transmitter T transmits the wireless
  • the acquisition station WAS transmits instructions from the central control operating system CCOS.
  • GPS module for obtaining and providing Position the data.
  • the power module supplies power to the above loads.
  • the control module CM is respectively connected to the power module PM, the wireless transmitter T (Transmitter), and the multi-channel wireless receiver R (Receiver) and the GPS module.
  • the multi-channel wireless receiver R is a VHF multi-channel receiver.
  • the central control operating system CC0S is placed on the instrument vehicle or placed on the tethered facility platform, and the software and hardware are combined to control the working state of the entire digital seismograph. That is, the central control operating system CC0S in the device-equipped balloon-mounted wireless telemetry seismograph system of the present invention is placed on the instrument vehicle (can also be placed on a mooring platform, such as a vehicle-mounted vehicle platform), and the entire digital earthquake is controlled. The working state of the instrument.
  • the hardware part of the central control operating system CC0S is composed of a computer server server, a network switch, a client computer terminal PC, a storage device storage, a drawing device Plotting and a GPS module, etc., to realize human-computer interaction, arrangement control, acquisition synchronization, and data.
  • Functions such as recycling and quality control;
  • the mooring facility platform is preferably a vehicle-mounted vehicle platform.
  • the network switch Switch and the computer server Server GPS module are connected in turn, and the network switch Switch is connected to the storage device storage, the drawing device Plotting, the client computer terminal PC, and the computer server Server is connected to the tethered balloon to carry the wireless transmitting/receiving station TRCB.
  • the wireless telemetry acquisition station WAS is composed of a control module CM, a power module PM, a seismic sensor Sen SO r, a wireless communication device WU (Wireless Unit), and a GPS module; wherein the wireless communication device WU provides single channel data.
  • the control module CM is responsible for the control and management of the entire collection station; the wireless communication device WU provides single channel data reception and transmission, and the connection between the wireless control transmitting/receiving station TRCB and the central control operating system CC0S is established by the tethered balloon; the seismic sensor Responsible for seismic signal acquisition.
  • the control module CM is respectively connected to the power module PM, the seismic sensor Sensor, the wireless communication device WU (Wireless Unit) and the GPS module.
  • the mooring balloon is in the shape of a ball type, a water drop type, and an airship type.
  • the tethered balloon can be equipped with a power device that is useful to maintain the stability of the balloon position.
  • the mooring cable has a copper wire as a power supply line, and an optical fiber is embedded in the gap of the wire as a channel for data transmission, and the outer bread has a bearing fiber and a metal mesh for guiding lightning, and the outermost layer is sealed and wear-resistant.
  • the tethered cable and the end to which they are connected need to be equipped with an opto-electric rotary connector; the upper connector allows the balloon to move relative to the tethered cable without introducing any torque into the cable; the lower connector is mounted on the cable In the winch of the cable On the mandrel, the cable connected to the winch is not twisted by the movement of the winch.
  • the role of the connector must ensure low loss, high reliability of the various functional lines of the mooring cable.
  • the mooring balloon-mounted wireless telemetry seismograph system of the present invention makes full use of the high-altitude tethered balloon communication technology and the VHF multi-channel receiving technology, so that the access station WAS becomes barrier-free "visible" and improves.
  • the effective coverage provided by data communication enables the implementation of complex surface wireless telemetry technology, and enables wireless telemetry digital seismographs to achieve real-time data collection and recovery on complex surface.
  • the present invention is directed to overcoming the above-discussed deficiencies of the prior art and provides an apparatus for an aircraft to be equipped with a wireless relay station for data transmission of a wireless telemetry instrument.
  • the device of the present invention equipped with a wireless relay station for wireless telemetry instrument data transmission is to establish a wireless relay station WR (Wirele SS Repeater) at a high altitude for wireless data communication and transmission of a wireless telemetry data acquisition instrument, so that
  • the central control operating system CCOS Central Control Operation System
  • the wireless relay station WR, the wireless relay station WR and the wireless acquisition station WAS become barrier-free "visible", enhancing the obstacle crossing capability of the wireless telemetry instrument.
  • the utility model has the advantages that the central control operating system CCOS and the wireless relay station W, the wireless relay station W and the wireless collection station WAS of the instrument become barrier-free "visible", and the obstacle crossing capability of the wireless telemetry instrument is enhanced.
  • the wireless relay station is suspended below the aircraft, and an aircraft provides power to the wireless relay station WR; the central control operating system CCOS is mounted on the instrument vehicle. Since these aircraft stay in the air and need to consume oil, the wireless relay station WR is required to be light in weight and consume less energy, which is convenient for extending the air time of the aircraft.
  • the wireless relay station W is composed of a control module CM, a power module PM, a multi-channel wireless transmitter Transmitter, and a multi-channel wireless receiver Receiver and a GPS module; the control module C implements a plurality of commands according to a central control operating system CCOS.
  • Control of channel wireless transmitter Transmitter and multi-channel wireless receiver Receiver, multi-channel wireless receiver Receiver receives data from central control operating system CCOS and wireless acquisition station WAS, multi-channel wireless transmitter Transmitter transmission from central control operating system CCOS instructions and data from the wireless acquisition station WAS.
  • the wireless relay station WR adopts the following workflow: a: the wireless relay station W establishes a connection with the central control operating system CCOS; b: the wireless relay station WR receives an instruction from the central control operating system CCOS and forwards it to the wireless collection station. WAS; c: The wireless collection station WAS receives the corresponding data and transmits the corresponding data to the wireless relay station WR; d: After receiving the data, the wireless relay station WR forwards the data to the central control operating system CC0S.
  • the GPS module is used to obtain and provide positioning data.
  • the wireless telemetry instrument is a wireless telemetry seismograph.
  • the aircraft equipped with the wireless relay station WR includes a helicopter, or an airship, or a fixed-wing aircraft.
  • the hovering mode is adopted; when the aircraft is a fixed-wing aircraft, the wireless relay station WR and the wireless collecting station WAS are "visible" by adopting a method of spiraling within a certain range.
  • the helicopter is a human or unmanned helicopter, and the airship is a human or an unmanned airship.
  • the helicopter can also be an electric unmanned helicopter that is powered by a ground-connected cable. In this way, a lot of power costs can be saved.
  • the electric unmanned helicopter can also be equipped with a large-capacity electrical energy storage device for use in the event of a wired power failure, and the stored power can at least support the safe landing of the helicopter.
  • FIG. 1 is a schematic block diagram of a wired, wireless and cableless three-in-one digital seismograph of the present invention
  • FIG. 2 is a block diagram of a central control operating system CC0S of the digital seismograph of the present invention
  • FIG. 3 is a digital seismograph of the present invention.
  • FIG. 4 is a schematic block diagram of a wireless collection station WAS and a cableless collection station CAS in the digital seismograph of the present invention
  • FIG. 5 is a schematic block diagram of a wired communication root node RU in the digital seismograph of the present invention
  • FIG. 7 is a block diagram of a CDU of a stepless data recovery unit in the digital seismograph of the present invention.
  • Figure 8 is a block diagram showing the principle of a seismic acquisition station combining wireless and cableless functions of the present invention.
  • 9 is a schematic block diagram of a wireless extension device of a wired telemetry seismograph of the present invention.
  • FIG. 10 is a block diagram of a wireless extension relay station WR in a wireless extension device of a wired telemetry seismograph of the present invention
  • FIG. 11 is a wireless diagram of a wired telemetry seismograph of the present invention
  • FIG. 12 is a schematic block diagram of a wireless telemetry seismograph for improving data communication capability by using a wireless relay method
  • FIG. 13 is a block diagram of a wireless routing node WR in a wireless telemetry seismograph using a wireless relay method for improving data communication capability
  • Figure 15 is a schematic diagram of a tethered balloon-mounted wireless telemetry seismograph system of the present invention
  • Figure 16 is a block diagram of a wireless transmitting/receiving station TRCB mounted on a mooring balloon in the seismograph system of the present invention
  • Figure 17 is a seismograph system of the present invention The central control system CC0S block diagram.
  • Figure 18 is a schematic diagram showing the operation of the apparatus for carrying the data transmission of the wireless telemetry instrument by the wireless relay station of the present invention
  • Figure 19 is a block diagram showing the principle of the wireless relay station WR in the apparatus of the present invention.
  • the wired, wireless and cableless three-in-one digital seismograph of the present invention is more specifically a wired digital telemetry, wireless telemetry and cableless "three in one" new digital seismograph system, which is wired
  • the three instruments of telemetry digital seismograph, wireless telemetry digital seismograph and cableless digital seismograph are optimized and combined.
  • the biggest feature of this system is to make full use of the advantages of wired telemetry, wireless telemetry and cableless, making the new digital seismograph system suitable for a variety of complex surface and terrain, to achieve the best optimization of seismic exploration construction plan and cost.
  • the system can be divided into four parts (Figure 1): Central control operating system (instrument vehicle) CC0S, wired telemetry acquisition station AS (Acquisition Station), wireless telemetry acquisition station WAS (Wireless Acqui sition Station) and cableless acquisition station CAS ( Cable- less Acquisition Station) »
  • the central control operating system CC0S (see Figure 2) in the digital seismograph system of the present invention is the control center and data recovery center of the entire instrument, achieving human-computer interaction, permutation control, acquisition synchronization, data recovery, and quality. Control and other functions.
  • the central control operating system CC0S is placed on the instrument vehicle and is the main control unit of the whole digital seismograph.
  • the hardware part is composed of computer server Server, network switch Switch, client computer terminal PC, storage device storage device and drawing device Plotting equipment.
  • the software consists of operating system software and control operating software.
  • Computer service Server Server can use Dawning PHPC200 high-performance computer, standard with 5 sets of PHPC200 computing module, 10 multi-core CPU, 160G memory, 5 146G SAS hard disk, and can realize 3+1 redundant power supply configuration.
  • the network switch Switch uses a 12-port high-performance network switch.
  • the client computer terminal PC uses an industrial control-grade computer and uses a 24-inch LCD screen.
  • the disk array uses a 10T RAID5 small disk array, and the tape drive can use the IBM3590 tape drive.
  • the central control operating system CC0S communicates with the wired communication node RU (Root Unit), the wireless communication root node WRU (Wireless Root Unit) and the cableless data recovery unit CDU (Cable-less Data Unit) through the network cable. )connection. And controlling and connecting the wired telemetry collecting station through the wired communication root node RU, controlling and connecting the wireless telemetry collecting station through the wireless communication root node WRU, and recovering the data of the cableless collecting station through the cableless data recovery unit CDU.
  • the wired telemetry acquisition station AS (Fig.
  • control module CM Control Module
  • power module PM Power Module
  • seismic sensor Sensor a GPS module
  • the control module CM has two dedicated communication interfaces are connected to an upper and a lower set Bian station AS, having a dedicated interface connected geophones or other conventional MEMS sensor Seri SO r.
  • One or several collection stations AS are directly connected to the wired communication root node RU (see FIG. 1), and a wired telemetry communication channel is established.
  • the wireless telemetry acquisition station S (see FIG.
  • the digital seismograph system of the present invention is composed of a control module CM, a power module PM, a seismic sensor Sensor, a wireless communication device WU (Wireless Unit), and a GPS module.
  • the wireless communication device WU provides single channel data reception and transmission, and establishes a connection with the central control operating system CC0S; the GPS module provides location information and also supports time synchronization.
  • the cableless collection station CAS (see FIG. 4) in the digital seismic seismograph system of the present invention is composed of a control module CM, a power module P, a seismic sensor, and a GPS module. Compared to the wireless telemetry acquisition station WAS, only the wireless communication device WU is missing.
  • the wired communication root node RU in the digital seismic seismograph system of the present invention is composed of a high speed switching module SM (Switch module), a control module CM, a power module PM and a GPS module.
  • the root node RU is connected to the central control operating system CC0S through the network cable, and provides an optical cable interface (or a dedicated communication interface) to connect with field devices such as the collection station according to the requirements of the instrument capacity.
  • High-speed switching module SM provides data exchange function; control module CM is based on central control operating system
  • the CCOS instruction implements control of the high speed switching module SM; the power module PM provides power support for each module.
  • the wireless communication root node WRU (see FIG. 6) in the digital seismograph system of the present invention is composed of a control module CM, a power module PM, a wireless transmitter Transmitter, a wireless receiver Receiver and a GPS module.
  • the wireless communication root node WRU is connected to the central control operating system CC0S through the network cable, and transmits a control command to the wireless collection station by using the single-channel wireless transmitter Transmitter, and receives the data of the wireless collection station by using the multi-channel wireless receiver Receiver.
  • the control module CM implements control of the wireless transmitter Transmitter and the wireless receiver Receiver according to the instruction of the central control operating system CC0S; the power module PM provides power support for each module.
  • the cableless data recovery unit CDU (see FIG. 7) in the digital seismic seismograph system of the present invention is composed of a high speed switching module SM, a control module CM, a power module PM, and a data interface Interface.
  • the cableless data recovery unit CDU is connected to the central control operating system CCOS through the network cable, and provides the data interface Interface to recover the data of the cableless collection station CAS.
  • the data interface interface can be in various ways, such as Ethernet, USB, WiFi, Bluetooth, and the like.
  • the novel digital seismograph system of the wired telemetry, wireless telemetry and cableless "three in one" of the invention adopts the central control operating system CC0S to perform GPS timing synchronization, and then adopts GPS timing on the wireless telemetry acquisition station WAS and the cableless collection station CAS.
  • the device of the invention is a seismic acquisition station combining wireless and cableless functions. As shown in Fig. 8, the system has six major components: a control unit CU (Control Unit) and a wireless communication unit WCU (Wireless Communication Unit).
  • a control unit CU Control Unit
  • WCU Wireless Communication Unit
  • the new seismic acquisition station of the device of the present invention is characterized by a wireless acquisition station WAS (Wireless Acquisition Station) and The cable-less acquisition station CAS (Cable-less Acquisition Station) can be combined into a variety of different field situations to ensure that TH often records data.
  • the seismic acquisition station combining the wireless and cableless functions of the device of the present invention implements the following workflows: (1) Deploying according to the requirements of the design of the observation system; (2) The seismic collection station communicates wirelessly with the central station of the seismic instrument. If it can be contacted, it is set to the wireless collection station mode, accepts the instructions of the central control operating system and completes the work; if it cannot be contacted, it is set to cableless collection. Station mode
  • the control unit CU in the seismic acquisition station combining the wireless and cableless functions is an embedded CPU, which is the heart of the seismic acquisition station, completes the wireless communication unit WCU, the data acquisition unit AU, the storage unit SU, the GPS Detection and control of modules and power supply units, and management of collected data.
  • the control unit CU can adopt OMAP3530 or OMAPL138, and is responsible for the control and management of the entire collection station.
  • the wireless communication unit WCU in the seismic acquisition station combining the wireless and cableless functions is a wireless transceiver, and is connected to the control unit CU.
  • the data acquisition unit AU in the seismic acquisition station combining the wireless and cableless functions is composed of a sensor and an A/D conversion chip, etc., and is connected to the control unit CU to complete data collection according to the instruction of the control unit CU.
  • the storage unit SU in the seismic acquisition station combining the wireless and cableless functions is a non-volatile memory, which is connected to the control unit CU, and is in a closed state when the collection station is set to the wireless mode.
  • the collection station is set as a cableless collection station, as a data memory, since the non-volatile memory consumes a large amount of energy, in order to save power consumption, it is normally turned off, and the storage unit SU is turned on only when the collected data reaches a certain amount. Perform centralized data storage.
  • the device of the present invention is a wireless communication unit WCU in a seismic acquisition station combining wireless and cableless functions for establishing command control and data transfer with a seismic instrument central station.
  • the wireless communication unit WCU Due to the large energy consumption of the wireless communication unit WCU, we use the following measures to reduce energy consumption: Timely turn on the wireless communication unit WCU, get the next work plan, and determine the turn-on time of the wireless communication unit WCU according to the work plan, so as to minimize wireless communication. The turn-on time of the unit WCU.
  • the GPS module of the seismic acquisition station combining the wireless and cableless functions is used for timing to realize data synchronization, and also provides location information of the collection point.
  • the GPS module can be equipped with Fastrax IT03 OEM GPS receiver module, featuring small size (22x23x2.7mm), ultra-low power consumption ( ⁇ 95mW @ 2.7V:), very high sensitivity (-156dBm (tracking)), accurate 1PPS timing Signal output can achieve RMS20nS accuracy and low price
  • the power supply unit in the seismic acquisition station combining the wireless and cableless functions provides power supply support for the control unit cu, the wireless communication unit WCU, the data acquisition unit AU, the data storage unit SU and the GPS module. In order to increase the duration of the power supply, it is possible to connect external power sources such as batteries and fuel cells.
  • the advantage of the device of the invention is that a wireless extended relay station and a wireless collection station are added to the wired telemetry seismograph, and the advantage is that the introduction of a part of the wireless collection station improves the ability of the wired telemetry seismic instrument to adapt to complex terrain.
  • the wireless extension technology and apparatus for the wired telemetry seismograph of the present invention is characterized by two major units (see FIG. 9): a wireless extension relay station TO (Wireless Router) and a wireless collection station WAS (Wireless Acquisition Station).
  • the device of the invention belongs to an extension device of a wired telemetry seismograph, which is called a wireless extended relay station, and is connected to a power station of a wired telemetry seismograph by a dedicated 100 Mbps network cable.
  • a wireless extended relay station WR a plurality of wireless collection stations WAS can be wirelessly connected ( See Figure 9).
  • the wireless extension technology of the wired telemetry seismograph of the device and the wireless extended relay station WR of the device see FIG. 10
  • the control module CM the power module PM
  • the single channel wireless transmitter T the multi-channel wireless receiver R and the GPS module, etc. composition.
  • the control module CM controls the single-channel wireless transmitter T and the multi-channel wireless receiver R according to the power station command, and is connected to the power station PU of the wired telemetry seismograph through a dedicated 100-megabit network cable.
  • the multi-channel wireless receiver R receives data from the wireless collection station WAS, and the single-channel wireless transmitter T transmits an instruction from the power supply station to control the wireless collection station WAS for data acquisition.
  • the wireless extension relay station WR (see FIG. 9) of the wireless extension technology and device of the wired telemetry seismograph of the present invention can be connected to any power station PU of the wired telemetry seismograph through a dedicated 100 Mbps network cable for wireless expansion and enhancement.
  • the wireless extension relay station W (see FIG. 9) of the wireless extension technology and device of the wired telemetry seismograph of the present invention receives an instruction from the host Mainframe through the power station PU and controls the wireless collection station WAS to perform data collection, and passes the power station PU The data is transferred to the host Mainframe.
  • the wireless extension technology and the dedicated 100M network cable of the wired telemetry seismograph of the device of the invention are customized network cables, and have the function of providing power to the wireless extended relay station WR while having the function of 100M network cable.
  • the wireless extension technology of the wired telemetry seismograph of the present invention and the acquisition station MS (see FIG.
  • the 11) of the device are composed of a controller CM, a seismic sensor, a wireless communication unit WU, a GPS module, and the like.
  • the wireless communication unit WU provides single channel data reception and transmission; the GPS module provides location information, and sometimes also supports time synchronization.
  • the invention sets up a wireless routing relay station in a higher terrain area, and solves the wireless signal transmission problem of the undulating surface.
  • the device of the invention is a wireless telemetry seismograph which improves the data communication capability by using the wireless relay method, and is composed of three major units.
  • the wireless telemetry seismograph capable of improving data communication capability by using the wireless relay method comprises a wireless routing node WR having the function of transmitting and receiving signals, and each wireless routing node WR and the center is added to the wireless telemetry seismograph.
  • the stations CS are connected by wireless, and can directly communicate with multiple collection stations AN, and use wireless relay to improve data communication capabilities.
  • the device of the present invention utilizes a wireless relay method to improve the data communication capability of the wireless telemetry seismograph.
  • the collection station AN can be connected to the central station CS in a wireless manner, or can be connected in a wireless multi-hop manner through the wireless routing node WR.
  • the wireless telemetry seismograph for improving the data communication capability by the wireless relay mode of the device of the present invention establishes a communication link between the wireless collection station AN and the central station CS by the following procedure: 1
  • the collection station AN searches for the central station CS, and if found, establishes with it Communication contact, if not found, go to step 2; 2 Collect station AN to find wireless routing node WR, if found, and establish communication with it, if not found, go to step 1.
  • the wireless routing node m see FIG.
  • the 13) in the device of the present invention is composed of a control module CM, a power module PM, a multi-channel wireless transmitter T, a multi-channel wireless receiver R, and a GPS module.
  • the control module CM implements control of the multi-channel wireless transmitter T and the multi-channel wireless receiver R according to the instruction of the central station CS, and the multi-channel wireless receiver R receives the command from the central station CS and the data of the wireless collection station A, multi-channel
  • the wireless transmitter T transmits the command from the central station CS and the data of the wireless hub station AN.
  • the wireless routing node W in the device of the present invention ? With router and switch functions, it automatically forwards the instructions of the central station CS and the data of the wireless collection station AN.
  • the central station CS in the apparatus of the present invention is the heart of the entire seismic instrument and is responsible for controlling the operational state of the entire digital seismograph.
  • the device collection station AN (see Fig. 14) of the present invention is composed of a controller CM, a seismic sensor sensor, a wireless communication unit WU, a GPS module, and the like.
  • the wireless communication unit WU provides single channel data reception and transmission; the GPS module provides location information, and sometimes also supports time synchronization.
  • the tethered balloon-mounted wireless telemetry seismograph system of the present invention is a wireless telemetry digital seismograph system based on a tethered balloon carrying a transmitting station and a receiving station (see Figure 15).
  • the three components are: Central Control Operating System (Instrument Vehicle) CCOS (Central Control & Operation System), Tethered Balloon 1 equipped with Transmitter & Receiver on Captive Balloon (TRCB) and Wireless Acquisition Station WAS (Wireless Acquisition Station) ).
  • CCOS Central Control & Operation System
  • Wireless Acquisition Station WAS Wireless Acquisition Station
  • the biggest feature of the system is that the transmitting station and the receiving station of the ordinary wireless telemetry instrument are installed on the high-altitude mooring balloon, so that the access station WAS becomes barrier-free "visible", which improves the effective coverage provided by the data communication.
  • the wireless telemetry technology of complex surface is realized, and the wireless telemetry digital seismograph realizes real-time data acquisition and recovery on complex surface.
  • the tethered balloon 1 is connected to the tethering facility platform (such as a vehicle-mounted car platform) by the mooring cable 2, and the tethered cable 2 has a copper wire as a power supply line for wireless transmission on the tethered balloon 1
  • the receiving station TRCB provides power.
  • the optical fiber is embedded in the gap of the wire as a data transmission channel between the central control operating system CC0S and the wireless transmitting/receiving station TRCB on the tethered balloon.
  • the tethered balloon 1 communication system is flexible in layout, low in investment, relatively simple in technology, and easy to maintain.
  • the wireless transmitting/receiving station TRCB (see FIG. 16) carried by the tethered balloon is composed of a control module CM, a power module PM, a wireless transmitter T (Transmitter), a multi-channel wireless receiver R (Receiver), and a GPS module.
  • the control module CM implements control of the wireless transmitter T and the multi-channel wireless receiver R according to an instruction of the central control operating system CC0S, and the wireless receiver R receives the command from the central control operating system CC0S and the data of the wireless collection station WAS, and wirelessly transmits
  • the machine T transmits an instruction from the central control operating system CC0S to the wireless hub station WAS.
  • the central control operating system CC0S (see Figure 17) is placed on the instrument vehicle (can also be placed on a mooring platform, such as a vehicle-mounted vehicle platform) to control the working state of the entire digital seismograph, software and hardware. Combine.
  • the hardware part is composed of computer server server, network switch, client computer terminal PC: storage device, storage device Plotting and GPS module, which realizes functions such as human-computer interaction, alignment control, synchronization, data recovery and quality control.
  • the computer server Server can use a high-performance computer.
  • the network switch Switch uses a 12-port high-performance network switch, and the client computer terminal PC selects an industrial control-grade computer and uses a 24-inch LCD screen.
  • the storage device Storage can use a 10T RAID5 small disk array or an IBM3590 tape drive.
  • the wireless telemetry acquisition station WAS (see Fig. 1) is composed of a control module CM, a power module PM, a seismic sensor Sen SOr ,
  • the wireless communication device WU (Wireless Unit) and the GPS module are composed.
  • the wireless communication device WU provides single channel data reception and transmission, and establishes a connection with the wireless transmitting/receiving station TRCB on the piggybacked balloon:
  • the GPS module provides location information and also supports time synchronization.
  • the mooring cable has a copper wire as a power supply line, and an optical fiber is embedded in the gap of the wire as a channel for data transmission, and the outer bread has a bearing fiber and a metal mesh for guiding lightning, and the outermost layer is sealed, wear-resistant, and resistant. A sheath for aging. As the balloon changes its orientation in the air, the winch produces a rotational motion during operation, and the optical cable is attached to the end to which the cable is attached.
  • the upper connector allows the balloon to move relative to the tethered cable without any twisting of the cable into the cable; the lower connector is mounted on the central axis of the winch so that the cable attached to the winch does not twist due to the movement of the winch.
  • the role of the connector must ensure that the functional lines of the tethered cable have low loss and high reliability.
  • the tethered balloon can be modified by the CCA-D series of Hangzhou Qianye Aircraft Technology Co., Ltd. and the C-series of the "Sentinel" Tethered Airship and Feiyu Aviation developed by China Aviation Industry No. 605.
  • the captive balloon may be in the shape of a ball, a drop, and an airship, and may have a certain power device to maintain the positional stability of the balloon.
  • the aircraft of the present invention equipped with a wireless relay station for data transmission of a wireless telemetry instrument is an aircraft (helicopter) 21 that establishes a wireless relay station WR at a high altitude for wireless data communication and transmission of a wireless telemetry data acquisition instrument. , making the central control operating system CC0S of the instrument and the wireless relay station WR, the wireless relay station WR and the wireless collection station WAS become "visible", enhancing the obstacle crossing capability of the wireless telemetry instrument.
  • the wireless relay station WR is suspended below the aircraft 21 (see Fig. 18), and the aircraft 21 provides power to the wireless relay station WR.
  • the wireless relay station WR Since these aircraft stay in the air and need to consume oil, the wireless relay station WR is required to be light in weight and consume less energy, which is convenient for extending the air-to-air time of the aircraft.
  • Barrier is an obstacle (mountain).
  • the central control operating system CCOS is fitted to the instrument vehicle.
  • the wireless relay station WR is composed of a control module CM, a power module PM, a multi-channel wireless transmitter Transmitter, a multi-channel wireless receiver Receiver and a GPS module, etc.; the control module CM implements multi-channel wireless transmission according to a command of the central control operating system CC0S.
  • the multi-channel wireless receiver Receiver receives the command from the central control operating system CC0S and the data of the wireless acquisition station WAS, and the multi-channel wireless transmitter Transmitter transmits the command from the central control operating system CC0S. And data from the wireless acquisition station WAS.
  • the GPS module is used to obtain and provide positioning data.
  • the wireless telemetry instrument is a wireless telemetry seismograph.
  • the aircraft 21 carried by the wireless relay station R may be an (unmanned) helicopter, an (unmanned) airship, or a fixed-wing aircraft.
  • the wireless relay station WR uses the following workflow: a: the wireless relay station WR establishes a connection with the central control operating system CCOS; b: the wireless relay station receives an instruction from the central control operating system CC0S and forwards it to the wireless collection station
  • the apparatus of the present invention is a wireless relay station apparatus mounted on aircraft 21 for wireless data communication and transmission of data acquisition instruments.
  • the instrument's central control operating system (instrument vehicle) CCOS and wireless relay station, wireless relay station and instrument acquisition station become barrier-free "visible", which enhances the obstacle crossing capability of wireless telemetry instruments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种有线、无线和无缆三合一数字地震仪,把有线遥测数字地震仪、无线遥测数字地震仪和无缆数字地震仪三种仪器进行优化和组合,并且分为四大部分:中央控制操作系统CCOS、有线遥测采集站AS、无线遥测采集站WAS和无缆采集站CAS;中央控制操作系统CCOS通过网线分别与有线通信根节点RU、无线通信根节点WRU和无缆数据回收单元CDU连接,并通过有线通信根节点RU控制和连接有线遥测采集站AS,通过无线通信根节点WRU控制和连接无线遥测采集站WAS,通过无缆数据回收单元CDU回收无缆采集站CAS的数据。该有线、无线和无缆三合一数字地震仪充分利用了有线遥测、无线遥测和无缆的优势,能够适用于各种复杂地表和地形,达到了地震勘探测量的施工方案和成本的最佳优化。

Description

有线、 无线和无缆三合一数字地震仪 技术领域 本发明涉及一种地震仪, 特别是涉及一种有线、 无线和无缆三合一数字地震仪。 技术背景 高精度数字地震仪是用来记录人工或天然地震信号, 然后根据这些地震信号的记录来寻 找油、气、煤和其他矿产资源的地质勘探仪器, 并可用于探测地球内部结构、进行工程及地 质灾害预测等。 地震勘探法目前仍然是在陆地和海洋勘探石油和天然气的主要手段, 同时也是其他矿产 资源的重要勘探方法, 并广泛应用于研究地球内部结构、工程勘探和检测、地质灾害预测等 等方面。
用矿产资源地球物理勘探的数字地震仪按照数据传输方式可以分为三类: 有线遥测地震 仪、 无线遥测地震仪、 无缆存储式地震仪。
有线遥测地震仪的特征是完全由有线系统发送指令和传送采集数据。在目前的野外实际 应用中占有主导地位, 占据世界地震仪市场的绝大部分份额, 常用的有 Sercel 公司的 408/428系列、 ION公司的 System IV、 Scorpion和 Aries II系统、 德国 DMT公司的 Summit 系统、 美国 WesternGeco公司的 Uni Q系统等。
利用无线系统发送指令和传送采集数据的仪器称为无线遥测地震仪, 一般用于特殊地表 条件下施工, 也占有一定市场。 Fairfield公司的 BOX系统和 Wireless Seismic 公司的 Wireless Seismic系统均为无线遥测数字地震仪。 但这些仪器均存在由于无线数据传输带 宽不足而限制了仪器道数等问题, 所以较少投入实际使用。
无缆存储式地震仪是一种特殊类型的地震仪,其特征是:没有大线,没有地震数据传输; 每个采集站接收放炮数据后自动存储,再用专门的数据回收系统把所有放炮数据从采集站中 取出来; 有部分仪器利用无线系统对所用的采集站发送同步放炮等命令, 但不接收数据, 不 监视采集站的工作状态。这种仪器的特点是重量相对较轻、布设简单, 但由于没有数据的实 时回收, 不能实时对数据质量进行监控, 还不能被工业界普遍接受。这类仪器的另一个缺点 是每道需要单独供电,意味着需要大量的电池管理工作量。 目前主要有东方地球物理公司的 GPS授时地震仪、中国科学院地质与地球物理研究所的海底地震仪和金属矿勘探无缆存储式 地震仪、吉林大学地球探测科学与技术学院的无缆遥测地震仪、美国 ION公司的 FireFly无 缆地震采集系统、 法国 Sercel公司的 Unite系统、 美国 Ascend Geo公司的 Ultra无缆陆地 地震采集系统、 美国 0Y0 Geospace公司的 GSR系统、 美国 Fairfield公司的 Z系统、 美国 Seismic Source公司的 SIGMA系统。
由于油气和矿产勘探的精度要求越来越高、 勘探的地表和地下地质构造条件越来越复 杂, 勘探的面积也越来越大、要求地震仪器的道数越来越多, 用上述单一的有线、无线或无 缆地震勘探仪器均不能满足复杂地区的油气地震勘探要求。
无线遥测地震仪因为重量较轻、 布设简单而受到地球物理勘探专家的青睐, 但其致命弱 点是无线信号传送会受到各种障碍物(如树木、 岩石、 山峰、 建筑物等等)的影响, 使得信 号传送能力大大下降, 甚至完全中断。
任何利用无线遥测仪器的优势, 扩展有线遥测地震仪以提高适应复杂地形的能力是地球 物理学家一直努力的目标。
无线遥测地震仪要求地震仪中心站与采集站之间要求没有阻碍无线信号传播的障碍物, 这在野外很难做到。 即, 无线遥测仪器广泛用于地球物理勘探及其他领域, 在平坦广阔的地 表条件下, 无线遥测仪器可以很好地工作, 但有山川、树林及高大建筑物阻挡情况下, 无线 遥测仪器的发射机和接收机成为 "不可见", 无线信号将无法穿越这些障碍物。 这时, 无线 遥测仪器就无法开展正常工作,而开展地球物理工作往往需在地表起伏较大地区,这是无线 遥测仪器发展中的最大难题。
系留气球无线电通信已有几十年的历史。 限制气球技术发展的两个最大难题是氢气的危 险性和没有理想的球体材料, 随着高分子复合材料的研制成功和大量氦气源的开发利用, 为系留气球技术的发展和应用带来了生机。测控技术、光纤通信及计算机等多项技术的合理 采用, 又为系留气球技术的日趋完善创造了条件。 系留气球从本质上讲是一种运载工具, 利用它的浮力作用可以提升长波通信天线, 也可构成加载多种设备的空中平台, 美、苏即使 在具有航天飞机、 卫星、 各类航空飞行器等强大空问优势的情况下, 仍没有放弃系留气球 技术的研究和应用, 并把系留气球视为重要的补充和应急手段. 系留气球的服务领域不仅 限于通信.在其它军事和民用方面均有广泛的用途,系留气球以其经济性、可靠性、灵活性、 简易性等优点确立了自身的发展地位。
气球是一种无推进装置的轻于空气的航空飞行器, 它靠浮升气体产生的静浮力升空。 所谓系留气球即利用缆索将升空的气球及其携带的设备系留、悬停在空间一定的位置上。系 留气球区别于自由式气球, 后者升空后不受限制, 可随风飘移。
系留气球通信系统一般由系留气球、 系留缆索、 系留设施、有效载荷、 监测控制和后勤 保障设备等若干部分组成。
系留气球囊体内充以密度比空气小的氢气或氦气, 根据工作要求提供足够的浮力。 球体 的外型一般有球型、水滴型和飞艇型。现代的系留气球多设计成飞艇样的流线型, 尾部有三 或四个尾翼, 也称稳定器, 排列形式有 "十"字型、 "Y"型和倒 "Y"型几种。 这种流线型 带尾翼的系留气球能始终迎着风向,最大限度地减小风阻, 从而减小地面系留载荷。 目前, 国外系留气球的容积由几十至上万立方米, 长度几米至七十余米, 球体的最大直径一般不 超过二十米, 系留气球的工作空间为对流层, 升高高度数百至六千米。
系留缆索的作用是栓系气球, 使气球悬停在空中一定髙度上并兼有传输信息和供应电力 等功能。
系留设施是系统的操作、 控制和维护中心。 因系留设施的规模和架设要求不同, 可分为 固定式和移动式两种, 移动式又分为车载和船载两种形式。
有效载荷指由气球携带用来执行不同任务的设备, 可是各种声、 光、 电、 磁装置, 有效 载荷悬挂于气球下方的防风罩内。用于通信的有效载荷主要是通信天线、收发信机和转发器 等。
监测控制设备用来对气球周围气象环境、气球飞行姿态和有效载荷工作状态进行监测和 控制。包括各种传感器、执行控制部件、显示记录和自动管理设备, 通过有线和无线信道来 实行遥测与遥控。
后勤保障设备包括电力, 气源供应及维修工具等, 并要求有提供气象预报和实现网内 外通信联系的手段和能力。保障设备除建为固定方式外, 也可全部建成运载式的, 以提高系 统的机动性能。
系留气球系统具有覆盖面积大、 投资少、 效率高、 操作护方便和生存能力较强等许多优 点。其作为依靠自身浮力支撑的运载工具,与飞机、飞艇、遥控飞行器等相比的突出特点是, 留空时间长, 可全天候执行任务, 提供了一种连续工作的手段。但系留气球也存在自身的弱 点和局限性, 受恶劣气象和环境条件的限制, 必须有可靠的补给保障, 适合于在定点或机动 性强的区域工作。
目前在地球物理领域还未见系留气球系统的实际应用。 如在地震勘探领域,无线遥测仪器曾经有过辉煌,美国 0PSEIS公司的 0PSEIS无线地震 记录系统、美国 FAIRFIELD公司的 TELSEIS和 BOX无线遥测地震仪、法国 CGG公司的 YRIASEIS 无线遥测仪、 Wireless Seismic公司的 Wireless Seismic系统均为无线遥测数字地震仪。 为了解决起伏地表的无线信号传送, 采用了高架天线、在较高山峰架设天线等措施, 但均只 解决部分问题, 需要把天线架到更髙的地方。 发明內容 本发明目的在于克服现有技术的上述缺陷, 提供一种有线、 无线和无缆三合一数字地震 仪。 所以我们需要研制有线、 无线和无缆 "三合一"的数字地震仪器系统。
为实现上述目标,本发明有线、无线和无缆三合一数字地震仪是把有线遥测数字地震仪、 无线遥测数字地震仪和无缆数字地震仪三种仪器进行优化和组合,构成了一种全新的数字地 震仪系统, 分为四大部分: 中央控制操作系统(仪器车) CCOS (Central Control Operation System ) 以及与其配用的有线遥测采集站 AS(AcquiSiti0n Station ) 无线遥测采集站 WAS(Wireless Acquisition Station)和无缆采集站 CAS(Cable-less Acquisition Station),中央控制 操作系统 CC0S通过网线分别与有线通信根节点 RU (Root Unit )、 无线通信根节点 WRU (Wireless Root Unit)和无缆数据回收单元 CDU (Cable-less Data Unit)连接; 并通过 有线通信根节点 RU控制和连接有线遥测采集站, 通过无线通信根节点 WRU控制和连接无线 遥测采集站, 通过无缆数据回收单元 CDU回收无缆采集站的数据。
本发明为一种基于有线遥测、无线遥测和无缆 "三合一"的新型数字地震仪系统,把有 线遥测数字地震仪、 无线遥测数字地震仪和无缆数字地震仪三种地震仪进行了优化和组合。 充分利用了有线遥测、无线遥测和无缆的优势,使得新型数字地震仪系统适用于各种复杂地 表和地形, 达到了地震勘探测量的施工方案和成本的最佳优化。 作为优化, 所述中央控制操作系统 CCOS是整个仪器的控制中心和数据回收中心, 实 现人机交互、 排列控制、 采集同步、 数据回收、 质量控制等功能。 中央控制操作系统 CCOS 置于仪器车上, 是整个数字地震仪的主要控制单元, 硬件部分由计算机服务器 Server、 网络 交换机 Switeh、客户计算机终端 PC、存储设备 Storage device和绘图设备 Plotting equipment 等组成。软件由操作系统软件和控制操作软件等组成。中央控制操作系统 CCOS通过网线分 别与有线通信根节点 RU (Root Unit)、 无线通信根节点 WRU (Wireless Root Unit)和无缆 数据回收单元 CDU (Cable-less Data Unit)连接; 并通过有线通信根节点 RU控制和连接有 线遥测采集站, 通过无线通信根节点 WRU控制和连接无线遥测采集站, 通过无缆数据回收 单元 CDU回收无缆采集站的数据。 作为优化, 所述有线通信根节点 由高速交换模块 SM (Switch module) 控制模块 CM、 电源模块 PM和 GPS模块等组成。 根节点 RU通过网线与中央控制操作系统 CCOS连 接,并根据仪器容量的要求提供光缆接口或专用通信接口与采集站等野外地面设备连接。高 速交换模块 SM提供数据交换功能;控制模块 CM根据中央控制操作系统 CCOS的指令实现 对高速交换模块 SM的控制;电源模块 PM为各模块提供电源支持。 GPS模块提供位置信息, 也支持时间同步。 作为优化, 所述无线通信根节点 WRU 由控制模块 C , 电源模块 PM、 无线发射机 Transmitter和无线接收机 Receiver和 GPS模块等组成;无线通信根节点 WRU通过网线与中 央控制操作系统 CCOS连接, 利用单通道无线发射机 Transmitter向无线采集站发送控制命 令,利用多通道无线接收机 Receiver接收无线采集站的数据;控制模块 CM根据中央控制操 作系统 CCOS的指令实现对无线发射机 Transmitter和无线接收机 Receiver的控制; 电源模 块 PM为各模块提供电源支持。 GPS模块提供位置信息, 也支持时间同步。 作为优化, 所述无缆数据回收单元 CDU由髙速交换模块 SM、 控制模块 CM、 电源模块 PM和数据接口 Interface等组成。 无缆数据回收单元 CDU通过网线与中央控制操作系统 CCOS连接, 并提供数据接口 Interface回收无缆采集站 CAS的数据, 数据接口 Interface可 以有多种方式, 如以太网、 USB、 WiFi 蓝牙等。 高速交换模块 SM、 控制模块 CM、 电源模 块 PM依次相连, 高速交换模块 SM连接相互串接(或者级连) 的 SM数据接口 Interface, 高速交换模块 SM还向外连接中央控制操作系统 CCOS。 作为优化, 所述有线遥测采集站 AS由控制模块 CM (Control module), 电源模块 PM (Power Module)^ (数字)地震传感器 Sensor和 GPS模块等组成。控制模块 CM具有 2个专 用通信接口分别连接上一级和下一级采集站 AS, 具有一个专用接口连接常规检波器或 MEMS等传感器 Sensor; 其中有一个或若干个采集站 AS与有线通信根节点 RU直接连接, 建立有线遥测的通信通道。控制模块 CM分别连接电源模块 PM (Power Module), (数字)地 震传感器 Sensor和 GPS模块, 控制模块 CM还用于串接其它有线遥测采集站 AS。 作为优化,所述无线遥测采集站 WAS由控制模块 CM、电源模块 PM、地震传感器 Sensor、 无线通信设备 WU (Wireless Unit)和 GPS模块等组成。其中的无线通信设备 WU提供单信 道的数据接收和发送, 建立与中央控制操作系统 CCOS之间的联系; GPS模块提供位置信 息, 也支持时间同步。控制模块 CM分别连接电源模块 PM、地震传感器 Sensor、无线通信设 备 WU (Wireless Unit )和 GPS模块。 作为优化, 所述无缆采集站 CAS由控制模块 CM、 电源模块 PM、 地震传感器 Sensor 和 GPS模块等组成。 与无线遥测采集站 WAS相比, 只是少了无线通信设备 WU。 作为优化,所述无线遥测采集站 WAS和无缆采集站 CAS,我们可以把他们设计为一体, 即按无线遥测采集站 WAS进行设计和安装,当无线遥测采集站 WAS中的无线通信设备 WU 无法与中央控制操作系统 CCOS通信时, 自动关闭无线通信设备 WU部件, 作为无缆采集 站 CAS采集和接收数据。 作为优化, 采用中央控制操作系统 CCOS统一进行 GPS授时同步, 然后在无线遥测采 集站 WAS和无缆采集站 CAS上采用 GPS授时进行同步, 而在有线遥测采集站 AS上(或 者有线遥测仪器部分)采用二种同步方案:一是采用 GPS授时同步;二是采用 IEEE1588协 议和利用预算时差进行同步。 采用上述技术方案后, 本发明有线、 无线和无缆三合一数字地震仪把有线遥测数字地震 仪、无线遥测数字地震仪和无缆数字地震仪三种地震仪进行了优化和组合,充分利用了有线 遥测、无线遥测和无缆的优势, 使得新型数字地震仪系统适用于各种复杂地表和地形, 达到 了地震勘探测量的施工方案和成本的最佳优化。可广泛用于石油、天然气和煤田等能源勘探 和资源矿产勘探、 地质工程勘察、 地质灾害监测等方面。 本发明目的在于克服现有技术的上述缺陷,提供一种能应用于各种不同的野外场合,显 著提髙仪器实用性的组合了无线和无缆功能的地震釆集站。
为实现上述目的, 本发明组合了无线和无缆功能的地震采集站, 其特征在于是把无线采 集站 WAS ( Wireless Acquisition Station)和无缆采集站 CAS ( Cable-less Acquisition Station) 组合成一体的地震釆集站; 有六大部分组成: 控制单元 CU (Control Unit)、 无线通讯单元 WCU (Wireless Communication Unit )、数据采集单元 AU (Acquisition Unit )、数据存储单元 SU (Storage Unit), GPS模块和电源单元 PU (Power Unit);所述控制单元 CU为嵌入式 CPU, 是地震采集站的心脏, 完成对无线通讯单元 WCU、数据采集单元 AU、存储单元 SU、 GPS模块 和电源单元的检测和控制, 并完成采集数据的管理; 无线通讯单元 WCU为无线收发机, 与控 制单元 CU相连, 完成采集站与地震仪器中央站之间的数据通信, 实现对采集站的控制和管 理; 所述数据采集单元 AU由传感器和 A/D转换芯片等组成, 连接到控制单元 CU, 根据控制 单元 CU的指令完成数据的采集;所述存储单元 SU为非易失性存储器,与控制单元 CU相连; 所述 GPS模块用于授时以实现数据同步, 也提供采集点的位置信息; 所述电源单元 PU为控 制单元 CU、 无线通讯单元 WCU、 数据采集单元 AU、 数据存储单元 SU和 GPS模块提供电源支 持。其涉及石油、天然气和煤田等能源勘探和资源矿产勘探、地质工程勘察、地貭灾害监测 等方面,是一种检测人工或天然地震信号并将其转换成数字信号并记录的仪器装置,属于地 震勘探与地震检测领域。其具有可应用于各种不同的野外场合, 能确保正常记录数据和显著 提高仪器的实用性的优点。 作为优化, 当无线通讯单元 WCU ΪΗ常工作时, 控制单元 CU把采集站设置为无线采集站 模式; 当无线通讯单元 WCU不能正常工作时,控制单元 CU把采集站设置为无缆采集站模式。 作为优化, 所述存储单元 su, 当采集站设置为无线模式时, 处于关闭状态; 当采集站 设置为无缆采集站时,作为数据存储器,由于非易失性存储器耗能较大,为了节约电源消耗, 平时处于关闭状态, 只有当采集数据达到一定数量时, 才开启存储单元 SU进行集中式数据 存储。 作为优化, 所述无线通讯单元 WCU用于建立与地震仪器中央站之间的指令控制和数 据传送。 作为优化, 由于无线通讯单元 WCU耗能较大, 采用如下措施降低能耗: 定时开启无 线通讯单元 WCU, 获得下一步工作计划, 并根据工作计划确定无线通讯单元 WCU的开启 时间, 这样可以尽量减少无线通讯单元 WCU的开启时间。 作为优化, 所述电源单元 PU为提高电源的持续时间, 可以外接电源能电池、 燃料电池 等新型能源。 作为优化, 实施如下工作流程:
(1)根据观测系统设计的要求进行布设 ,·
(2)地震采集站与地震仪器中央站进行无线联络,若能联系上,则设置为无线采集站模式, 接受中央控制操作系统的指令并完成工作; 若不能联系上, 则设置为无缆采集站模式;
(3)在工作 n (n为事先设定)小时后, 再与地震仪器中央站进行无线联络, 重复第 (2)步。 采用上述技术方案后, 本发明组合了无线和无缆功能的地震采集站具有可应用于各种不 同的野外场合, 能确保正常记录数据和显著提髙仪器实用性的优点。
本发明目的在于克服现有技术的上述缺陷,提供一种能够提髙适应复杂地形能力的有线 遥测地震仪的无线扩展装置。其可用于石油、天然气和煤田等能源勘探和资源矿产勘探、地 质工程勘察、地质灾害监测等方面,是一种检测人工或天然地震信号并将其转换成数字信号 并记录的仪器装置, 属于地震勘探与地震检测领域。 为实现上述目的,本发明有线遥测地震仪的无线扩展装置由二大单元组成:无线扩展中 继站 WR (Wireless Router)和无线采集站 WAS (Wireless Acquisition Station); 所述无 线扩展中继站,用一条专用百兆网线连接到有线遥测地震仪的电源站上,作为无线扩展中继 站 WR可以无线连接若干个无线采集站 WAS。 本发明装置的优势是在有线遥测地震仪上增加 了无线扩展中继站和无线采集站,其优点是通过引入了部分无线采集站,提升了有线遥测地 震仪器适应复杂地形的能力。 优化优化, 无线扩展中继站 WR由控制模块 CM、 电源模块 PM、单通道无线发射机 T和多 通道无线接收机 R和 GPS模块等组成。 控制模块 CM根据电源站指令实现对单通道无线发射 机 T和多通道无线接收机 R的控制,并通过一条专用百兆网线连接到有线遥测地震仪的电源 站 PU上; 多通道无线接收机 R接收来自无线采集站 WAS的数据, 单通道无线发射机 T发射 来自电源站的指令, 控制无线采集站 WAS进行数据采集。 作为优化,无线扩展中继站 WR可以通过一条专用百兆网线连接到有线遥测地震仪的任 一电源站 PU上, 进行无线扩展, 提升了有线遥测地震仪器适应复杂地形的能力。 作为优化, 无线扩展中继站 WR通过电源站 PU接收来自主机 Mainframe的指令并控制 无线采集站 WAS进行数据采集, 并通过电源站 PU把数据传送到主机 Mainframe, 作为优化, 专用百兆网线为定制网线具有百兆网线功能的同时, 具有为无线扩展中继 站 WR供电的功能。 作为优化, 采集站 WAS由控制器 CM、 地震传感器 Sensor、 无线通信部件 WU和 GPS模 块等组成; 其中的无线通信部件 WU提供单信道的数据接收和发送; GPS模块提供位置信息, 有时也支持时间同步。 电源模块 PM提供电源支持(如图 2所示)。 采用上述技术方案后,本发明有线遥测地震仪的无线扩展装置是在有线遥测地震仪上增 加了无线扩展中继站和无线采集站,其优点是通过引入了部分无线采集站,提升了有线遥测 地震仪器适应复杂地形的能力。 本发明目的在于克服现有技术的上述缺陷, 提供一种地震仪中心站与采集站之间有阻碍 无线信号传播的障碍物时,仍能正常使用,复杂地形适应性强的利用无线中继方式提高数据 通讯能力的无线遥测地震仪。 其可应用于石油、 天然气和煤田等能源勘探和资源矿产勘探、 地质工程勘察、地质灾害监测等方面,是一种检测人工或天然地震信号并将其转换成数字信 号并记录的仪器装置, 属于地震勘探与地震检测领域。 为实现上述目的, 本发明利用无线中继方式提高数据通讯能力的无线遥测地震仪由三大 单元组成: 中心站 CS (Central System), 无线路由节点 WR (MWreless Router)和无线采集 站 AN (Acquisition Node); 所述中心站 CS是整个地震仪器的心脏, 负责控制整个数字地震 仪的工作状态; 所述无线路由节点 WR具有路由器和交换机功能, 自动转发中心站 CS的指 令和无线采集站 AN的数据; 所述采集站 AN既可以与中心站 CS之间以无线方式相连接, 也可以通过无线路由节点 WR以无线多跳方式进行连接。本发明装置的特征是在无线遥测地 震仪基础上增加了一种具有可以发送和接收信号功能的路由节点,每个节点都可以与多个采 集站进行直接通信, 以无线中继方式提髙数据通讯能力。
本发明地震仪的特点是利用无线中继方式提高了数据通讯能力, 提升了无线遥测仪器的 复杂地形适应性。具有地震仪中心站与采集站之间有阻碍无线信号传播的障碍物时,仍能正 常使用, 复杂地形适应性强的优点。
作为优化, 在地势较高地区架设无线路由中继站 WR, 并且这种无线路由中继站可以有 若干个。 即, 本发明根据勘探区的地形起伏特点, 在地势较高地区架设无线路由中继站 WR, 并且这种无线路由中继站可以有若干个,确保无线信号覆盖所有无线采集站,解决了起伏地 表的无线信号传送问题。 作为优化,在无线遥测地震仪基础上增加了一种具有可以发送和接收信号功能的无线路 由节点 WR, 每个无线路由节点 WR与中心站 CS之间通过无线方式连接, 并可以与多个采集 站 AN进行直接通信, 利用无线中继方式提高数据通讯能力。 作为优化, 无线采集站 AN与中心站 CS之间采用如下流程建立通讯联系: ①采集站 AN 寻找中心站 CS, 若找到, 则与之建立通讯联系, 若没有找到, 则进入第②步; ②采集站 AN 寻找无线路由节点 WR, 若找到, 并与之建立通讯联系, 若没有找到, 则进入第①步。 作为优化, 所述无线路由节点 WR由控制模块 O 电源模块 PM、 多通道无线发射机 T 和多通道无线接收机 R和 GPS模块等组成;控制模块 CM根据中心站 CS的指令实现对多通道 无线发射机 T和多通道无线接收机 R的控制, 多通道无线接收机 R接收来自中心站 CS的指 令和无线采集站 AN的数据, 多通道无线发射机 T发射来自中心站 CS的指令和无线采集站 AN的数据。 作为优化, 所述采集站 A 由控制器 OI、 地震传感器 SeriSOr、 无线通信部件 WU和 GPS 模块等组成; 其中的无线通信部件 WU提供单信道的数据接收和发送; GPS模块提供位置信 息, 有时也支持时间同步。 控制器 CM对其它部件地震传感器 Sensor、 无线通信部件 WU和 GPS模块等。 电源模块 PM提供电源支持(如图 2所示)。 采用上述技术方案后, 本发明利用无线中继方式提高数据通讯能力的无线遥测地震仪利 用无线中继方式提高了数据通讯能力,提升了无线遥测仪器的复杂地形适应性。具有地震仪 中心站与采集站之间有阻碍无线信号传播的障碍物时,仍能正常使用,复杂地形适应性强的 优点。 本发明目的在于克服现有技术的上述缺陷, 提供一种系留气球搭载型无线遥测地震仪系 统。 更确切是一种基于系留气球搭载发射站和接收站的无线遥测数字地震仪系统。 为实现上述目的, 本发明系留气球搭载型无线遥测地震仪系统由三大部分组成: 中央控 制操作系统 CCOS (Central Control & Operation System), 系留气球搭载无线发射 /接收 站 TRCB (Transmitter & Receiver on Captive Balloon)和无线采集站 WAS (Wireless Acquisition Station) ; 系留气球通过系留缆索连接到系留设施平台上, 系留缆索具有铜导 线作为电力供应线,给搭载在系留气球上的无线发射 /接收站 TRCB提供电能;在导线的空隙 处嵌入光纤, 作为中央控制操作系统 CC0S和搭载系留气球上的无线发射 /接收站 TRCB之间 的数据传输通道。 系留气球为 VHF/UHF通信提供的有效覆盖范围, 可以近似地用公式 S(km)=3. 57H1/2(m)来计算。工作高度 600至 6000m的覆盖半径为 87至 277km,覆盖面积则为 2. 4至 24万平方公里。 系留气球通信系统布置灵活, 投资少, 技术相对简单, 便于维修。 因为空中电波传播损耗比地面小,相对同一作用范围,系留气球上一台发射机可相当地面若 干台发射机的作用。 系留气球搭载无线发射 /接收站 TRCB传送指令无线采集站 WAS, 无线采 集站 WAS向系留气球搭载无线发射 /接收站 TRCB传输采集到的地震数据。 本系统的最大特点是把普通无线遥测仪器的发射站和接收站安装在高空系留气球上, 使 得与采集站 WAS之间成为无障碍 "可见", 提高了数据通信提供的有效覆盖范围。 实现了复 杂地表的无线遥测技术, 并使无线遥测数字地震仪实现了在复杂地表的实时数据采集和回 收。 作为优化, 系留气球搭载的无线发射 /接收站 TRCB由控制模块 CM、 电源模块 PM、 无线 发射机 T (Transmitter)和多通道无线接收机 R (Receiver)和 GPS模块等组成; 控制模块 CM根据中央控制操作系统 CC0S的指令实现对无线发射机 T和多通道无线接收机 R的控制, 无线接收机 R接收来自中央控制操作系统 CC0S的指令和无线采集站 WAS的数据, 无线发射 机 T向无线采集站 WAS发射来自中央控制操作系统 CCOS的指令。 GPS模块用于获得和提供 定位数据。 电源模块为上述负载提供供电。其中: 控制模块 CM分别连接电源模块 PM、无线 发射机 T (Transmitter)和多通道无线接收机 R (Receiver)和 GPS模块。 作为优化, 多通道无线接收机 R为 VHF多信道接收机。 作为优化,中央控制操作系统 CC0S置于仪器车上或者置于系留设施平台上,软件和硬 件相结合,控制整个数字地震仪的工作状态。即本发明装置系留气球搭载型无线遥测地震仪 系统中的中央控制操作系统 CC0S置于仪器车上(也可以置于系留设施平台上, 如车载式的 汽车平台上), 控制整个数字地震仪的工作状态。 作为优化, 中央控制操作系统 CC0S 的硬件部分由计算机服务器 Server, 网络交换机 Switch, 客户计算机终端 PC、 存储设备 Storage、 绘图设备 Plotting和 GPS模块等组成, 实现人机交互、排列控制、采集同步、数据回收和质量控制等功能; 所述系留设施平台优选 为车载式的汽车平台。 其中网络交换机 Switch、 计算机服务器 Server GPS模块依次相连, 网络交换机 Switch再共同连接存储设备 Storage、绘图设备 Plotting、客户计算机终端 PC, 计算机服务器 Server对外连接系留气球搭载无线发射 /接收站 TRCB。 作为优化,所述无线遥测采集站 WAS由控制模块 CM、电源模块 PM、地震传感器 SenSOr、 无线通信设备 WU (Wireless Unit)和 GPS模块等组成; 其中的无线通信设备 WU提供单信 道的数据接收和发送, 建立与搭载系留气球上无线发射 /接收站 TRCB之间的联系; GPS模块 提供位置信息, 也支持时间同步。 控制模块 CM负责整个采集站的控制和管理; 无线通信设 备 WU提供单信道的数据接收和发送, 通过系留气球搭载无线发射 /接收站 TRCB建立与中央 控制操作系统 CC0S之间的联系;地震传感器负责地震信号采集。其是控制模块 CM分别连接 电源模块 PM、 地震传感器 Sensor、 无线通信设备 WU (Wireless Unit)和 GPS模块。 作为优化, 所述系留气球为球型、 水滴型和飞艇型等形状。 作为优化, 所述系留气球可以配有用以保持气球位置稳定性的动力装置。 作为优化,系留缆索具有铜导线作为电力供应线,在导线的空隙处嵌入光纤作为数据传 输的通道, 外面包有承力纤维和引导雷电的金属网, 最外层为起密封、耐磨、防老化作用的 护套。 作为优化,所述系留缆索与它们连接的端部都需加装光电旋转连接器;上端连接器可使 气球相对系留缆索而运动,不会将任何扭力引入缆索;下端连接器安装在系留缆索的绞盘中 心轴上, 使接至绞盘的缆索不因绞盘的运动产生扭转。总之, 连接器的作用, 必须保证系留 缆索的各功能线路低损耗、 高可靠的通联。 采用上述技术方案后, 本发明系留气球搭载型无线遥测地震仪系统充分利用了高空系留 气球通信技术和 VHF多信道接收技术, 使得与采集站 WAS之间成为无障碍 "可见", 提高了 数据通信提供的有效覆盖范围,实现了复杂地表的无线遥测技术,并使无线遥测数字地震仪 实现了在复杂地表的实时数据采集和回收。 本发明目的在于克服现有技术的上述缺陷, 提供一种飞行器搭载无线中继站用于无线遥 测仪器数据传输的装置。
为实现上述目的,本发明飞行器搭载无线中继站用于无线遥测仪器数据传输的装置是利 用飞行器在高空建立无线中继站 WR(WireleSS Repeater) , 用于无线遥测数据采集仪器的无 线数据通信和传送, 使得仪器的中央控制操作系统 CCOS (Central Control Operation System)和无线中继站 WR、无线中继站 WR和无线釆集站 WAS(Wireless Acquisition Station) 之间成为无障碍 "可见", 增强无线遥测仪器的障碍物穿越能力。 具有能使得仪器的中央控 制操作系统 CCOS和无线中继站 W、 无线中继站 W和无线采集站 WAS之间成为无障碍 "可 见", 增强无线遥测仪器的障碍物穿越能力的优点。 作为优化, 无线中继站 悬挂在飞行器下面, 并有飞行器为无线中继站 WR提供电源; 所述中央控制操作系统 CCOS配装在仪器车上。 由于这些飞行器均在空中停留, 需要消耗油 料, 要求无线中继站 WR重量要轻、 能耗要小, 便于延长飞行器的空中停留时间。 作为优化, 所述无线中继站 W 由控制模块 CM, 电源模块 PM、 多通道无线发射机 Transmitter和多通道无线接收机 Receiver和 GPS模块等组成; 控制模块 C 根据中央控制 操作系统 CCOS的指令实现对多通道无线发射机 Transmitter和多通道无线接收机 Receiver 的控制,多通道无线接收机 Receiver接收来自中央控制操作系统 CCOS的指令和无线采集站 WAS的数据, 多通道无线发射机 Transmitter发射来自中央控制操作系统 CCOS的指令和无 线采集站 WAS的数据。 作为优化, 所述无线中继站 WR采用如下工作流程: a: 无线中继站 W 与中央控制操作系统 CCOS建立连接; b: 无线中继站 WR接收来自中央控制操作系统 CCOS的指令, 并转发给无线采集站 WAS; c: 无线采集站 WAS收到指令后采集相应数据发射给无线中继站 WR; d: 无线中继站 WR收到数据后, 把数据转发给中央控制操作系统 CC0S。 作为优化, GPS模块用于获得和提供定位数据。 作为优化, 所述无线遥测仪器为无线遥测地震仪。 作为优化,所述搭载无线中继站 WR的飞行器包括直升机、或者飞艇、或者固定翼飞机。 作为优化, 当飞行器为直升机或者飞艇时, 采用悬停方式; 当飞行器为固定翼飞机时, 采用在一定范围内盘旋的方式, 使得无线中继站 WR与无线采集站 WAS "可见"。 作为优化, 所述直升机为有人或者无人直升机、 所述飞艇为有人或者无人飞艇。 作为优化, 所述直升机也可以为由连接地面的电缆提供电源的电动无人直升机。 这样, 可以节省大量动力成本。 电动无人直升机还可以配有大容量电能存储设备,以备有线电源故 障时使用,储存电量至少能够支持直升机安全着陆。
采用上述技术方案后,本发明飞行器搭载无线中继站用于无线遥测仪器数据传输的装置 具有能使得仪器的中央控制操作系统 CC0S和无线中继站 WR、 无线中继站 WR和无线采集站 WAS之间成为无障碍 "可见", 增强无线遥测仪器的障碍物穿越能力的优点。 附图说明 图 1是本发明有线、 无线和无缆三合一数字地震仪的原理框图; 图 2是本发明数字地震仪的中央控制操作系统 CC0S原理框图; 图 3是本发明数字地震仪中有线采集站 AS原理框图; 图 4是本发明数字地震仪中无线采集站 WAS和无缆采集站 CAS原理框图; 图 5是本发明数字地震仪中有线通信根节点 RU原理框图; 图 6是本发明数字地震仪中无线通信根节点 WRU原理框图; 图 7是本发明数字地震仪中无级数据回收单元 CDU原理框图。 图 8是本发明组合了无线和无缆功能的地震采集站原理框图。 图 9是本发明有线遥测地震仪的无线扩展装置的原理框图; 图 10是本发明有线遥测地震仪的无线扩展装置中的无线扩展中继站 WR原理框图; 图 11是本发明有线遥测地震仪的无线扩展装置中的无线采集站 WAS原理框图。 图 12是利用无线中继方式提高数据通讯能力的无线遥测地震仪原理框图; 图 13是利用无线中继方式提高数据通讯能力的无线遥测地震仪中无线路由节点 WR原理 框图; 图 14是利用无线中继方式提高数据通讯能力的无线遥测地震仪中采集站 AN原理框图。 图 15是本发明系留气球搭载型无线遥测地震仪系统的示意图; 图 16是本发明地震仪系统中系留气球搭载的无线发射 /接收站 TRCB原理框图; 图 17是本发明地震仪系统中的中央控制操作系统 CC0S原理框图。 图 18是本发明飞行器搭载无线中继站用于无线遥测仪器数据传输的装置的工作原理示 意图; 图 19是本发明装置中无线中继站 WR的原理框图。 具体实施方式 如图所示, 本发明有线、 无线和无缆三合一数字地震仪更确切地说是有线遥测、 无线遥 测和无缆 "三合一"的新型数字地震仪系统, 是把有线遥测数字地震仪、无线遥测数字地震 仪和无缆数字地震仪三种仪器进行了优化和组合。 本系统的最大特点是充分利用了有线遥 测、无线遥测和无缆的优势, 使得新型数字地震仪系统适用于各种复杂地表和地形, 达到了 地震勘探施工方案和成本的最佳优化。 系统可以分为四大部分(图 1 ): 中央控制操作系统 (仪器车) CC0S、有线遥测采集站 AS (Acquisition Station )、无线遥测采集站 WAS (Wireless Acqui sition Station)和无缆采集站 CAS (Cable- less Acquisition Station) » 本发明数字地震仪系统中中央控制操作系统 CC0S (见图 2 )是整个仪器的控制中心和 数据回收中心, 实现人机交互、排列控制、采集同步、数据回收、质量控制等功能。 中央控 制操作系统 CC0S置于仪器车上, 是整个数字地震仪的主要控制单元, 硬件部分由计算机服 务器 Server、 网络交换机 Switch、 客户计算机终端 PC、 存储设备 Storage device和绘图 设备 Plotting equipment等组成。 软件由操作系统软件和控制操作软件等组成。 计算机服 务器 Server可以采用曙光 PHPC200高性能计算机, 标配拥有 PHPC200计算模块 5套, 10个 多核 CPU, 160G内存, 5块 146G SAS硬盘,并可以实现 3+1冗余电源配置。网络交换机 Switch 选用 12口的高性能网络交换机, 客户计算机终端 PC选用工业控制级计算机, 釆用 24吋液 晶屏。 磁盘阵列采用 10T的 RAID5小型磁盘阵列, 磁带机可以选用 IBM3590磁带机。 本发明数宇地震仪系统中中央控制操作系统 CC0S通过网线分别与有线通信根节点 RU ( Root Unit ), 无线通信根节点 WRU (Wireless Root Unit ) 和无缆数据回收单元 CDU (Cable-less Data Unit)连接。 并通过有线通信根节点 RU控制和连接有线遥测采集站, 通过无线通信根节点 WRU控制和连接无线遥测采集站,通过无缆数据回收单元 CDU回收无缆 采集站的数据。 本发明数字地震仪系统中有线遥测采集站 AS (图 3)由控制模块 CM (Control module)、 电源模块 PM (Power Module), 地震传感器 Sensor和 GPS模块等组成。 控制模块 CM具有 2 个专用通信接口分别连接上一级和下一级釆集站 AS, 具有一个专用接口连接常规检波器或 MEMS等传感器 SeriSOr。 其中有一个或若干个采集站 AS与有线通信根节点 RU直接连接(见 图 1 ), 建立有线遥测的通信通道。 本发明数字地震仪系统中无线遥測采集站 S (见图 4) 由控制模块 CM、 电源模块 PM、 地震传感器 Sensor、 无线通信设备 WU (Wireless Unit)和 GPS模块等组成。 其中的无线通 信设备 WU提供单信道的数据接收和发送, 建立与中央控制操作系统 CC0S之间的联系; GPS 模块提供位置信息, 也支持时间同步。 本发明数宇地震仪系统中无缆采集站 CAS (见图 4)由控制模块 CM、 电源模块 P、地震 传感器 Sensor和 GPS模块等组成。与无线遥测采集站 WAS相比,只是少了无线通信设备 WU。 所以对于无线遥測釆集站 WAS和无缆采集站 CAS, 我们可以把他们设计为一体, 即按无线遥 测采集站 WAS进行设计和安装, 当无线遥测采集站 WAS中的无线通信设备 WU无法与中央控 制操作系统 CC0S通信时, 自动关闭无线通信设备 WU部件,作为无缆釆集站 CAS釆集和接收 数据。 本发明数宇地震仪系统中有线通信根节点 RU (见图 5) 由高速交换模块 SM (Switch module), 控制模块 CM、 电源模块 PM和 GPS模块等组成。 根节点 RU通过网线与中央控制操 作系统 CC0S连接, 并根据仪器容量的要求提供光缆接口 (或专用通信接口)与采集站等野 外地面设备连接。高速交换模块 SM提供数据交换功能;控制模块 CM根据中央控制操作系统 CCOS的指令实现对高速交换模块 SM的控制; 电源模块 PM为各模块提供电源支持。 本发明数字地震仪系统中无线通信根节点 WRU (见图 6)由控制模块 CM、 电源模块 PM、 无线发射机 Transmitter和无线接收机 Receiver和 GPS模块等组成。 无线通信根节点 WRU 通过网线与中央控制操作系统 CC0S连接, 利用单通道无线发射机 Transmitter向无线采集 站发送控制命令,利用多通道无线接收机 Receiver接收无线采集站的数据。控制模块 CM根 据中央控制操作系统 CC0S的指令实现对无线发射机 Transmitter和无线接收机 Receiver的 控制; 电源模块 PM为各模块提供电源支持。 本发明数宇地震仪系统中无缆数据回收单元 CDU (见图 7) 由高速交换模块 SM、 控制 模块 CM、 电源模块 PM和数据接口 Interface等组成。无缆数据回收单元 CDU通过网线与中 央控制操作系统 CCOS连接, 并提供数据接口 Interface回收无缆采集站 CAS的数据, 数据 接口 Interface可以有多种方式, 如以太网、 USB、 WiFi、 蓝牙等。 本发明有线遥测、无线遥测和无缆 "三合一"的新型数字地震仪系统采用中央控制操作 系统 CC0S统一进行 GPS授时同步,然后在无线遥测采集站 WAS和无缆采集站 CAS上采用 GPS 授时进行同步, 而在有线遥测仪器釆用二种同步方案: 一是釆用 GPS授时同步; 二是釆用 IEEE1588协议和利用预算时差进行同步。 无线遥测地震仪因为重量较轻、布设简单而受到地球物理勘探专家的青睐, 但其致命弱 点是无线信号传送会受到各种障碍物(如树木、岩石、 山峰、建筑物等等)的影响, 使得信 号传送能力大大下降, 甚至完全中断。 本发明装置为一种组合了无线和无缆功能的地震采集站, 如图 8所示, 其系统有六大部 分组成: 控制单元 CU (Control Unit)、无线通讯单元 WCU ( Wireless Communication Unit ) . 数据采集单元 AU (Acquisition Unit)>数据存储单元 SU (Storage Unit )、 GPS模块和电源单 元 PU (Power Unit) 本发明装置新型地震采集站的特点是把无线釆集站 WAS (Wireless Acquisition Station) 和无缆采集站 CAS (Cable-less Acquisition Station)组合成一体, 可以应用于各种不同的野 外场合, 确保 TH常记录数据。 本发明装置一种组合了无线和无缆功能的地震采集站实施如下工作流程: (1) 据观测系统设计的要求进行布设; (2) 地震采集站与地震仪器中央站进行无线联络, 若能联系上, 则设置为无线采集站模 式, 接受中央控制操作系统的指令并完成工作; 若不能联系上, 则设置为无缆采集站模式;
(3) 在工作 n (n为事先设定)小时后, 再与地震仪器中央站进行无线联络, 重复第 (2) 步。 本发明装置一种组合了无线和无缆功能的地震采集站中的控制单元 CU为嵌入式 CPU, 是地震采集站的心脏, 完成对无线通讯单元 WCU、 数据采集单元 AU、 存储单元 SU、 GPS 模块和电源单元的检测和控制,并完成采集数据的管理。控制单元 CU可以采用 OMAP3530 或 OMAPL138, 负责整个采集站的控制和管理 本发明装置一种组合了无线和无缆功能的地震采集站中的无线通讯单元 WCU为无线收 发机, 与控制单元 CU相连, 完成采集站与地震仪器中央站之间的数据通信, 实现对采集站 的控制和管理。 当无线通讯单元 WCU TH常工作时, 控制单元 CU把釆集站设置为无线采集 站模式; 当无线通讯单元 WCU不能正常工作时, 控制单元 CU把采集站设置为无缆采集站 模式。 本发明装置一种组合了无线和无缆功能的地震采集站中的数据采集单元 AU由传感器和 A/D转换芯片等组成, 连接到控制单元 CU, 根据控制单元 CU的指令完成数据的采集。 本发明装置一种组合了无线和无缆功能的地震采集站中的存储单元 SU为非易失性存储 器, 与控制单元 CU相连, 当采集站设置为无线模式时, 处于关闭状态。 当采集站设置为无 缆采集站时, 作为数据存储器, 由于非易失性存储器耗能较大, 为了节约电源消耗, 平时处 于关闭状态, 只有当采集数据达到一定数量时, 才开启存储单元 SU进行集中式数据存储。 本发明装置一种组合了无线和无缆功能的地震采集站中的无线通讯单元 WCU用于建立 与地震仪器中央站之间的指令控制和数据传送。 由于无线通讯单元 WCU耗能较大, 我们采 用如下措施降低能耗: 定时开启无线通讯单元 WCU, 获得下一步工作计划, 并根据工作计 划确定无线通讯单元 WCU的开启时间,这样可以尽量减少无线通讯单元 WCU的开启时间。 本发明装置一种组合了无线和无缆功能的地震采集站中的 GPS模块用于授时以实现数 据同步, 也提供采集点的位置信息。 GPS模块可以选用 Fastrax公司 IT03 OEM GPS接收模 块, 特点是尺寸小(22x23x2.7mm)、功耗超低(<95mW @ 2.7V:)、灵敏度非常高(-156dBm (跟踪))、 精确的 1PPS授时信号输出可以达到 RMS20nS的精度和价格低廉 本发明装置一种组合了无线和无缆功能的地震采集站中的电源单元 Ρϋ为控制单元 cu、 无线通讯单元 WCU、 数据采集单元 AU、 数据存储单元 SU和 GPS模块提供电源支持。 为提高 电源的持续时间, 可以外接电源能电池、 燃料电池等新型能源。 本发明装置的优势是在有线遥測地震仪上增加了无线扩展中继站和无线采集站, 其优点 是通过引入了部分无线采集站,提升了有线遥测地震仪器适应复杂地形的能力。本发明装置 有线遥测地震仪的无线扩展技术和装置, 其特征在于由二大单元组成 (见图 9): 无线扩展 中继站 TO (Wireless Router)和无线采集站 WAS (Wireless Acquisition Station)。 本发明装置属于有线遥测地震仪的扩展装置, 称为无线扩展中继站, 用一条专用百兆网 线连接到有线遥测地震仪的电源站上, 作为无线扩展中继站 WR可以无线连接若干个无线采 集站 WAS (见图 9)。 本发明装置有线遥测地震仪的无线扩展技术和装置的无线扩展中继站 WR (见图 10), 由 控制模块 CM、电源模块 PM、单通道无线发射机 T和多通道无线接收机 R和 GPS模块等组成。 控制模块 CM根据电源站指令实现对单通道无线发射机 T和多通道无线接收机 R的控制, 并 通过一条专用百兆网线连接到有线遥测地震仪的电源站 PU上。 多通道无线接收机 R接收来 自无线采集站 WAS的数据, 单通道无线发射机 T发射来自电源站的指令, 控制无线釆集站 WAS进行数据采集。 本发明装置有线遥测地震仪的无线扩展技术和装置的无线扩展中继站 WR (见图 9)可以 通过一条专用百兆网线连接到有线遥测地震仪的任一电源站 PU上, 进行无线扩展, 提升了 有线遥测地震仪器适应复杂地形的能力。 本发明装置有线遥测地震仪的无线扩展技术和装置的无线扩展中继站 W (见图 9)通过 电源站 PU接收来自主机 Mainframe的指令并控制无线采集站 WAS进行数据釆集, 并通过电 源站 PU把数据传送到主机 Mainframe。 本发明装置有线遥测地震仪的无线扩展技术和装置的专用百兆网线为定制网线, 具有百 兆网线功能的同时, 具有为无线扩展中继站 WR供电的功能。 本发明装置有线遥测地震仪的无线扩展技术和装置的采集站 MS (见图 11 )由控制器 CM、 地震传感器 Sensor、 无线通信部件 WU和 GPS模块等组成。 其中的无线通信部件 WU提供单 信道的数据接收和发送; GPS模块提供位置信息, 有时也支持时间同步。 本发明根据勘探区的地形起伏特点, 在地势较高地区架设无线路由中继站, 解决了起伏 地表的无线信号传送问题。 本发明装置为利用无线中继方式提高数据通讯能力的无线遥测地震仪, 由三大单元组成
(见图 12): 中心站 CS (Central System), 无线路由节点 WR (Wireless Router)和无线 釆集站 AN (Acquisition Node)。 本发明装置利用无线中继方式提高数据通讯能力的无线遥测地震仪, 在无线遥测地震仪 基础上增加了一种具有可以发送和接收信号功能的无线路由节点 WR, 每个无线路由节点 WR 与中心站 CS之间通过无线方式连接,并可以与多个采集站 AN迸行直接通信,利用无线中继 方式提高数据通讯能力。 本发明装置利用无线中继方式提高数据通讯能力的无线遥测地震仪, 采集站 AN既可以 与中心站 CS之间以无线方式相连接,也可以通过无线路由节点 WR以无线多跳方式进行连接。 本发明装置无线中继方式提高数据通讯能力的无线遥测地震仪, 无线采集站 AN与中心 站 CS之间采用如下流程建立通讯联系: ①采集站 AN寻找中心站 CS, 若找到, 则与之建立 通讯联系, 若没有找到, 则进入第②步; ②采集站 AN寻找无线路由节点 WR, 若找到, 并与 之建立通讯联系, 若没有找到, 则进入第①步。 本发明装置中的无线路由节点 m (见图 13), 由控制模块 CM、 电源模块 PM、 多通道无 线发射机 T和多通道无线接收机 R和 GPS模块等组成。控制模块 CM根据中心站 CS的指令实 现对多通道无线发射机 T和多通道无线接收机 R的控制,多通道无线接收机 R接收来自中心 站 CS的指令和无线采集站 A 的数据, 多通道无线发射机 T发射来自中心站 CS的指令和无 线釆集站 AN的数据。 本发明装置中的无线路由节点 W?, 具有路由器和交换机功能, 自动转发中心站 CS的指 令和无线采集站 AN的数据。 本发明装置中的中心站 CS是整个地震仪器的心脏, 负责控制整个数宇地震仪的工作状 态。 本发明装置采集站 AN (见图 14)由控制器 CM、地震传感器 Sensor、无线通信部件 WU和 GPS模块等组成。其中的无线通信部件 WU提供单信道的数据接收和发送; GPS模块提供位置 信息, 有时也支持时间同步。 如 11、 15- 17图所示, 本发明系留气球搭载型无线遥测地震仪系统为一种基于系留气球 搭载发射站和接收站的无线遥测数字地震仪系统(见图 15), 其由三大部分组成: 中央控制 操作系统(仪器车) CCOS (Central Control & Operation System), 系留气球 1搭载无线 发射 /接收站 TRCB (Transmitter & Receiver on Captive Balloon) 和无线采集站 WAS (Wireless Acquisition Station)。 本系统的最大特点是把普通无线遥測仪器的发射站和接 收站安装在高空系留气球上, 使得与采集站 WAS之间成为无障碍 "可见", 提高了数据通信 提供的有效覆盖范围。实现了复杂地表的无线遥测技术,并使无线遥测数字地震仪实现了在 复杂地表的实时数据采集和回收。 系留气球 1通过系留缆索 2连接到系留设施平台上(如车载式的汽车平台上), 系留缆 索 2具有铜导线作为电力供应线,给搭载在系留气球 1上的无线发射 /接收站 TRCB提供电能。 在导线的空隙处嵌入光纤,作为中央控制操作系统 CC0S和搭载系留气球上的无线发射 /接收 站 TRCB之间的数据传输通道。 系留气球 1通信系统布置灵活, 投资少, 技术相对简单, 便于维修。 因为空中电波传播 损耗比地面小,相对同一作用范围,系留气球上一台发射机可相当地面若干台发射机的作用。 图中 Brrier为障碍物。 所述系留气球搭载的无线发射 /接收站 TRCB (见图 16) 由控制模块 CM、 电源模块 PM、 无线发射机 T (Transmitter)和多通道无线接收机 R (Receiver)和 GPS模块等组成。控制 模块 CM根据中央控制操作系统 CC0S的指令实现对无线发射机 T和多通道无线接收机 R的控 制, 无线接收机 R接收来自中央控制操作系统 CC0S的指令和无线采集站 WAS的数据, 无线 发射机 T向无线釆集站 WAS发射来自中央控制操作系统 CC0S的指令。 所述中央控制操作系统 CC0S (见图 17)置于仪器车上(也可以置于系留设施平台上, 如车载式的汽车平台上), 控制整个数字地震仪的工作状态, 软件和硬件相结合。 硬件部分 由计算机服务器 Server, 网络交换机 Switch、 客户计算机终端 PC:、 存储设备 Storage 绘 图设备 Plotting和 GPS模块等组成, 实现人机交互、 排列控制、 釆集同步、 数据回收和质 量控制等功能。计算机服务器 Server可以釆用曙光高性能计算机。网络交换机 Switch选用 12口的高性能网络交换机, 客户计算机终端 PC选用工业控制级计算机, 采用 24吋液晶屏。 存储设备 Storage可以采用 10T的 RAID5小型磁盘阵列, 也可以选用 IBM3590磁带机。 所述无线遥测采集站 WAS (见图 1】)由控制模块 CM、电源模块 PM、地震传感器 SenSOr、 无线通信设备 WU (Wireless Unit)和 GPS模块等组成。 其中的无线通信设备 WU提供单信 道的数据接收和发送, 建立与搭载系留气球上无线发射 /接收站 TRCB之间的联系: GPS模块 提供位置信息, 也支持时间同步。 所述系留缆索具有铜导线作为电力供应线, 在导线的空隙处嵌入光纤作为数据传输的 通道,外面包有承力纤维和引导雷电的金属网,最外层为起密封、耐磨、防老化作用的护套。 因气球在空中产生方位变化,绞盘在操作中产生旋转运动,系留缆索与它们连接的端部都需 加装光电旋转连接器。上端连接器可使气球相对系留缆索而运动,不会将任何扭力弓 I入缆索; 下端连接器安装在绞盘中心轴上, 使接至绞盘的缆索不因绞盘的运动产生扭转。总之, 连接 器的作用, 必须保证系留缆索的各功能线路低损耗、高可靠的通联。系留气球可以采用杭州 千野飞行器技术有限公司的 CCA-D系列产品、中国航空工业第 605所自行研制的 "哨兵"系 留飞艇和飞宇航空的 C系列产品进行改装。
所述系留气球可以是球型、 水滴型和飞艇型等形状, 也可以具有一定的动力装置以保 持气球的位置稳定性。
如图 18-19所示,本发明飞行器搭载无线中继站用于无线遥测仪器数据传输的装置是利 用飞行器(直升机) 21在高空建立无线中继站 WR, 用于无线遥测数据采集仪器的无线数据 通信和传送, 使得仪器的中央控制操作系统 CC0S和无线中继站 WR、 无线中继站 WR和无线 采集站 WAS之间成为无障碍 "可见", 增强无线遥测仪器的障碍物穿越能力。 所述无线中继站 WR悬挂在飞行器 21下面(见图 18), 并由飞行器 21为无线中继站 WR 提供电源。 由于这些飞行器均在空中停留, 需要消耗油料, 要求无线中继站 WR重量要轻、 能耗要小, 便于延长飞行器均的空中停留时间。 图 18中 Barrier为障碍物(山)。 所述中央控制操作系统 CCOS配装在仪器车上。 所述无线中继站 WR由控制模块 CM、 电 源模块 PM、 多通道无线发射机 Transmitter和多通道无线接收机 Receiver和 GPS模块等组 成; 控制模块 CM根据中央控制操作系统 CC0S的指令实现对多通道无线发射机 Transmitter 和多通道无线接收机 Receiver的控制,多通道无线接收机 Receiver接收来自中央控制操作 系统 CC0S的指令和无线采集站 WAS的数据, 多通道无线发射机 Transmitter发射来自中央 控制操作系统 CC0S的指令和无线采集站 WAS的数据。 GPS模块用于获得和提供定位数据。 所述无线遥测仪器为无线遥测地震仪。 无线中继站 R搭载的飞行器 21可以是(无人)直升机、(无人)飞艇、或固定翼飞机。 当采用 (无人)直升机、 (无人)飞艇时, 可以采用悬停方式; 当采用固定翼飞机时, 可以 采用在一定范围内盘旋的方式, 使得无线中继站 WR与无线釆集站 WAS "可见"。 所述无线中继站 WR釆用如下工作流程: a: 无线中继站 WR与中央控制操作系统 CCOS建立连接; b: 无线中继站 接收来自中央控制操作系统 CC0S的指令, 并转发给无线采集站
WAS; c: 无线采集站 WAS收到指令后采集相应数据发射给无线中继站 WR; d: 无线中继站 WR收到数据后, 把数据转发给中央控制操作系统 CC0S。 总之,本发明装置为一种搭载在飞行器 21上的无线中继站装置,用于数据采集仪器的无 线数据通信和传送。 使得仪器的中央控制操作系统(仪器车) CCOS和无线中继站、无线中 继站和仪器采集站之间成为无障碍 "可见", 增强了无线遥测仪器的障碍物穿越能力。

Claims

权 利 要 求 书
1、 一种有线、 无线和无缆三合一数字地震仪, 其特征在于是把有线遥测数字地震仪、 无线遥测数字地震仪和无缆数字地震仪三种仪器进行优化和组合,分为四大部分: 中央控制 操作系统 CCOS、 有线遥测采集站 AS、 无线遥测采集站 WAS和无缆采集站 CAS; 中央控 制操作系统 CC0S通过网线分别与有线通信根节点 RU、无线通信根节点 WRU和无缆数据回收 单元 CDU连接; 并通过有线通信根节点 RU控制和连接有线遥测采集站, 通过无线通信根节 点 WRU控制和连接无线遥测采集站, 通过无缆数据回收单元 CDU回收无缆采集站的数据。
2、 根据权利要求 1所述地震仪, 其特征在于所述中央控制操作系统 CCOS是整个仪器 的控制中心和数据回收中心, 实现人机交互、排列控制、采集同步、数据回收、质量控制等 功能; 中央控制操作系统 CCOS置于仪器车上,是整个数字地震仪的主要控制单元; 中央控 制操作系统 CCOS通过网线分别与有线通信根节点 RU、 无线通信根节点 WRU和无缆数据 回收单元 CDU连接; 并通过有线通信根节点 RU控制和连接有线遥测采集站, 通过无线通 信根节点 WRU控制和连接无线遥测采集站, 通过无缆数据回收单元 CDU回收无缆采集站 的数据;
3、根据权利要求 1所述地震仪,其特征在于所述有线通信根节点 RU由高速交换模块 SM、控制模块 CM、 电源模块 PM和 GPS模块等组成; 根节点 RU通过网线与中央控制操作 系统 CCOS连接,并根据仪器容量的要求提供光缆接口或专用通信接口、与采集站等野外地 面设备连接; 高速交换模块 SM提供数据交换功能; 控制模块 CM根据中央控制操作系统 CCOS的指令实现对髙速交换模块 SM的控制; 电源模块 PM为各模块提供电源支持。
4、根据权利要求 1所述地震仪,其特征在于所述无线通信根节点 WRU由控制模块 CM、 电源模块 PM、 无线发射机 Transmitter和无线接收机 Receiver和 GPS模块等组成; 无线通 信根节点 WRU 通过网线与中央控制操作系统 CCOS 连接, 利用单通道无线发射机 Transmitter向无线采集站发送控制命令,利用多通道无线接收机 Receiver接收无线采集站的 数据; 控制模块 CM根据中央控制操作系统 CCOS的指令实现对无线发射机 Transmitter和 无线接收机 Receiver的控制; 电源模块 PM为各模块提供电源支持;
5、 根据权利要求 1所述地震仪, 其特征在于所述的无缆数据回收单元 CDU由髙速交 换模块 SM、 控制模块 CM、 电源模块 PM和数据接口 Interface等组成; 无缆数据回收单元 CDU通过网线与中央控制操作系统 CCOS连接, 并提供数据接口 Interface回收无缆采集站 CAS的数据, 数据接口 Interface包括以太网、 USB、 WiFi、 蓝牙等。
6、 根据权利要求 1所述地震仪, 其特征在于所述有线遥测采集站 AS由控制模块 CM、 电源模块 PM、地震传感器 Sensor和 GPS模块等组成; 控制模块 CM具有 2个专用通信接口 分别连接上一级和下一级釆集站 AS,具有一个专用接口连接常规检波器或 MEMS等传感器 Sensor; 其中有一个或若干个采集站 AS与有线通信根节点 RU直接连接, 建立有线遥测的 信通道;
7、根据权利要求 1所述地震仪,其特征在于所述无线遥测采集站 WAS由控制模块 CM、 电源模块 PM、地震传感器 Senso 无线通信设备 WU和 GPS模块等组成;其中的无线通信 设备 WU提供单信道的数据接收和发送,建立与中央控制操作系统 CCOS之间的联系; GPS 模块提供位置信息, 也支持时间同步。 所述无缆釆集站 CAS由控制模块 CM、电源模块 PM、地震传感器 Sensor和 GPS模块 等组成; 与无线遥测采集站 WAS相比, 只是少了无线通信设备 WU。
所述无线遥测釆集站 WAS和无缆采集站 CAS设计为一体,即按无线遥测采集站 WAS 进行设计和安装, 当无线遥测采集站 WAS中的无线通信设备 WU无法与中央控制操作系统 CCOS通信时, 自动关闭无线通信设备 WU部件, 作为无缆采集站 CAS采集和接收数据。
8、 根据权利要求 1或者 2或者 3或者 4或者 5或者 6或者 7所述地震仪, 其特征在于 采用中央控制操作系统 CCOS统一进行 GPS授时同步, 然后在无线遥测采集站 WAS和无 缆采集站 CAS上采用 GPS授时进行同步, 而在有线遥测采集站 AS上釆用二种同步方案: 一是采用 GPS授时同步; 二是采用 IEEE1588协议和利用预算时差进行同步。
9、 根据权利要求 1所述地震仪, 其特征在于所述无线采集站 WAS和所述无缆采集站 CAS组合成一体成野外场合的组合了无线和无缆功能地震采集站; 有六大部分组成: 控制 单元 CU、 无线通讯单元 WCU、 数据采集单元 AU、 数据存储单元 SU、 GPS模块和电源单 元 PU; 所述控制单元 CU为嵌入式 CPU, 是地震采集站的心脏, 完成对无线通讯单元 WCU、 数据采集单元 AU、 存储单元 SU、 GPS模块和电源单元的检测和控制, 并完成采集数据的管 理; 无线通讯单元 WCU为无线收发机, 与控制单元 CU相连, 完成采集站与地震仪器中央站 之间的数据通信, 实现对采集站的控制和管理; 所述数据采集单元 AU由传感器和 A/D转换 芯片等组成, 连接到控制单元 CU, 根据控制单元 CU的指令完成数据的采集; 所述存储单元 SU为非易失性存储器, 与控制单元 CU相连; 所述 GPS模块用于授时以实现数据同步, 也提 供采集点的位置信息; 所述电源单元 Ρϋ为控制单元 CU、 无线通讯单元 ffCU、 数据采集单元 AU、 数据存储单元 SU和 GPS模块提供电源支持; 当无线通讯单元 WCU正常工作时, 控制单 元 CU把采集站设置为无线采集站模式; 当无线通讯单元 WCU不能正常工作时, 控制单元 CU 把采集站设置为无缆采集站模式。
10、 根据权利要求 9所述地震仪, 其特征在于所述存储单元 SU, 当釆集站设置为无线 模式时, 处于关闭状态; 当采集站设置为无缆采集站时, 作为数据存储器, 平时处于关闭状 态, 只有当采集数据达到一定数量时, 才开启存储单元 SU进行集中式数据存储; 所述无线通讯单元 WOJ用于建立与地震仪器中央站之间的指令控制和数据传送; 采用如下措施降低无线通讯单元 WCU能耗: 定时开启无线通讯单元 wcu, 获得下一 步工作计划, 并根据工作计划确定无线通讯单元 WCU的开启时间, 以尽量减少无线通讯单 元 WCU的开启时间; 所述电源单元 PU外接电源能电池、 燃料电池等新型能源, 用于提高电源的持续时间。
11、 根据权利要求 9或者 10所述地震仪, 其特征在于实施如下工作流程:
(1)根据观测系统设计的要求进行布设;
(2)地震采集站与地震仪器中央站进行无线联络,若能联系上,则设置为无线采集站模式, 接受中央控制操作系统的指令并完成工作; 若不能联系上, 则设置为无缆采集站模式;
(3)在工作 n (n为事先设定)小时后, 再与地震仪器中央站进行无线联络, 重复第 (2)步。
12、 根据权利要求 1所述地震仪, 其特征在于所述无线采集站 WAS和无线扩展中继站 WR二大单元组成有线遥测地震仪的无线扩展装置; 所述无线扩展中继站, 用一条专用百兆 网线连接到有线遥測地震仪的电源站上, 作为无线扩展中继站 WR可以无线连接若千个无线 采集站 WAS。
13、 根据权利要求 12所述地震仪, 其特征是无线扩展中继站 WR由控制模块 CM、 电源 模块 PM、 单通道无线发射机 T和多通道无线接收机 R和 GPS模块等组成; 控制模块 CM根据 电源站指令实现对单通道无线发射机 T和多通道无线接收机 R的控制,并通过一条专用百兆 网线连接到有线遥测地震仪的电源站 PU上; 多通道无线接收机 R接收来自无线采集站 WAS 的数据, 单通道无线发射机 T发射来自电源站的指令, 控制无线采集站 WAS进行数据采集。
14、 根据权利要求 12所述地震仪, 其特征是无线扩展中继站 WR通过一条专用百兆网 线连接到有线遥测地震仪的任一电源站 PU上, 进行无线扩展, 提升有线遥测地震仪器适应 复杂地形的能力; 无线扩展中继站 WR通过电源站 PU接收来自主机 Mainframe的指令并控制无线采集站 WAS进行数据采集, 并通过电源站 PU把数据传送到主机 Mainframe; 专用百兆网线为定制网线具有百兆网线功能的同时,具有为无线扩展中继站 WR供电的 功能。
15、根据权利要求 12或者 13或者 14所述地震仪, 其特征是釆集站 WAS由控制器 CM、 地震传感器 Sensor 无线通信部件 WU和 GPS模块等组成; 其中的无线通信部件 WU提供单 信道的数据接收和发送; GPS模块提供位置信息, 有时也支持时间同步。
16、根据权利要求 1所述地震仪,其特 ¾£在于所述无线遥测数字地震仪利用无线中继方 式提高数据通讯能力, 由三大单元组成: 中心站 CS、 无线路由节点 WR和无线采集站 AN; 所述中心站 CS是整个地震仪器的心脏, 负责控制整个数字地震仪的工作状态; 所述无线路 由节点 WR具有路由器和交换机功能, 自动转发中心站 CS的指令和无线采集站 AN的数据; 所述采集站 AN既可以与中心站 CS之间以无线方式相连接, 也可以通过无线路由节点 WR以 无线多跳方式进行连接。
17、 根据权利要求 16所述地震仪, 其特征是在地势较高地区架设无线路由中继站 WR, 并且这种无线路由中继站可以有若千个; 在无线遥测地震仪基础上增加了一种具有可以发送和接收信号功能的无线路由节点 WR, 每个无线路由节点 WR与中心站 CS之间通过无线方式连接, 并可以与多个采集站 AN进 行直接通信, 利用无线中继方式提髙数据通讯能力。
18、 根据权利要求 16所述地震仪, 其特征是无线釆集站 AN与中心站 CS之间采用如下 流程建立通讯联系: ①采集站 AN寻找中心站 CS, 若找到, 则与之建立通讯联系, 若没有找 到, 则进入第②步; ②采集站 AN寻找无线路由节点 WR, 若找到, 并与之建立通讯联系, 若 没有找到, 则进入第①步; 所述无线路由节点 WR由控制模块 CM、电源模块 PM、多通道无线发射机 T和多通道无线 接收机 R和 GPS模块等组成; 控制模块 CM根据中心站 CS的指令实现对多通道无线发射机 T 和多通道无线接收机 R的控制, 多通道无线接收机 R接收来自中心站 CS的指令和无线采集 站 AN的数据, 多通道无线发射机 T发射来自中心站 CS的指令和无线采集站 AN的数据。
19、 根据权利要求 16所述地震仪, 其特征是所述采集站 AN由控制器 CM、 地震传感器 Sensor 无线通信部件 WU和 GPS模块等组成;其中的无线通信部件 WU提供单信道的数据接 收和发送; GPS模块提供位置信息, 有时也支持时间同步。
20、 根据权利要求 1所述地震仪, 其特征是所述无线遥测地震仪是系留气球搭载型系 统, 其由三大部分组成: 中央控制操作系统 CC0S、 系留气球搭载无线发射 /接收站 TRCB和 无线采集站 WAS ; 系留气球通过系留缆索连接到系留设施平台上, 系留缆索具有铜导线作 为电力供应线,给搭载在系留气球上的无线发射 /接收站 TRCB提供电能;在导线的空隙处嵌 入光纤, 作为中央控制操作系统 CCOS和搭载系留气球上的无线发射 /接收站 TRCB之间的数 据传输通道。
21、根据权利 20所述地震仪,其特征在于系留气球搭载的无线发射 /接收站 TRCB由控 制模块 CM、 电源模块 PM、 无线发射机 T和多通道无线接收机 R和 GPS模块等组成; 控制模 块 CM根据中央控制操作系统 CC0S的指令实现对无线发射机 T和多通道无线接收机 R的控制, 无线接收机 R接收来自中央控制操作系统 CC0S的指令和无线采集站 WAS的数据, 无线发射 机 T向无线采集站 WAS发射来自中央控制操作系统 CC0S的指令;多通道无线接收机 R为 VHF 多信道接收机。
22、 根据权利 20所述地震仪, 其特征在于中央控制操作系统 CC0S置于仪器车上或者 置于系留设施平台上, 软件和硬件相结合,控制整个数字地震仪的工作状态; 中央控制操作 系统 CC0S的硬件部分由计算机服务器 Server, 网络交换机 Switch, 客户计算机终端 PC 存储设备 Storage、 绘图设备 Plotting和 GPS模块等组成, 实现人机交互、 排列控制、 采 集同步、 数据回收和质量控制等功能; 所述系留设施平台为车载式的汽车平台; 所述无线遥测采集站 WAS由控制模块 CM、 电源模块 PM、 地震传感器 Sensor, 无线通 信设备 WU和 GPS模块等组成:其中的无线通信设备 WU提供单信道的数据接收和发送,建立 与搭载系留气球上无线发射 /接收站 TRCB之间的联系; GPS模块提供位置信息, 也支持时间 同步; 所述系留气球为球型、 水滴型和飞艇型等形状; 所述系留气球可以配有用以保持气球位置稳定性的动力装置。
23、根据权利 20或者 21或者 22所述地震仪,其特征在于系留缆索具有铜导线作为电 力供应线,在导线的空隙处嵌入光纤作为数据传输的通道,外面包有承力纤维和引导雷电的 金属网, 最外层为起密封、 耐磨、 防老化作用的护套; 所述系留缆索与它们连接的端部都需加装光电旋转连接器;上端连接器可使气球相对系 留缆索而运动, 不会将任何扭力引入缆索; 下端连接器安装在系留缆索的绞盘中心轴上, 使 接至绞盘的缆索不因绞盘的运动产生扭转。
24、 根据权利 1所述地震仪, 其特征在于利用飞行器在高空建立无线中继站 WR, 用于 无线遥测数据采集仪器的无线数据通信和传送, 使得仪器的中央控制操作系统 CC0S和无线 中继站 WR、 无线中继站 WR和无线采集站 WAS之间成为无障碍可见, 增强无线遥测仪器的障 碍物穿越能力。
25、根据权利要求 24所述地震仪,其特征在于无线中继站 WR悬挂在飞行器下面,并有 飞行器为无线中继站 WR提供电源; 所述中央控制操作系统 CC0S配装在仪器车上; 所述无线中继站 WR由控制模块 CM、电源模块 PM、多通道无线发射机 Transmitter和多 通道无线接收机 Receiver和 GPS模块等组成; 控制模块 CM根据中央控制操作系统 CC0S的 指令实现对多通道无线发射机 Transmitter和多通道无线接收机 Receiver的控制, 多通道 无线接收机 Receiver接收来自中央控制操作系统 CC0S的指令和无线采集站 WAS的数据,多 通道无线发射机 Transmitter发射来自中央控制操作系统 CC0S的指令和无线采集站 WAS的 数据; GPS模块用于获得和提供定位数据; 所述无线遥测仪器为无线遥测地震仪。
26、 根据权利要求 25所述地震仪, 其特征在于所述无线中继站 WR采用如下工作流程- a: 无线中继站 WR与中央控制操作系统 CC0S建立连接; b: 无线中继站 WR接收来自中央控制操作系统 CC0S的指令, 并转发给无线采集站
WAS; c: 无线采集站 WAS收到指令后采集相应数据发射给无线中继站 WR; d: 无线中继站 TO收到数据后, 把数据转发给中央控制操作系统 CC0S。
27、根据权利要求 24或者 25或者 26所述地震仪,其特征在于所述搭载无线中继站 WR 的飞行器包括直升机、 或者飞艇、 或者固定翼飞机; 当飞行器为直升机或者飞艇时, 釆用悬停方式; 当飞行器为固定翼飞机时, 采用在一 定范围内盘旋的方式, 使得无线中继站 WR与无线采集站 WAS可见; 所述直升机为有人或者无人直升机、 所述飞艇为有人或者无人飞艇。
28、 根据权利要求 27所述地震仪, 其特征在于所述直升机为由连接地面的电缆提供电 源的电动无人直升机。
PCT/CN2012/001394 2011-10-17 2012-10-16 有线、无线和无缆三合一数字地震仪 WO2013056511A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/352,242 US20140254309A1 (en) 2011-10-17 2012-10-16 Digital seismic recorder including wired, wireless and cable-less telemetry
EP12842393.6A EP2770343A4 (en) 2011-10-17 2012-10-16 DIGITAL ALL-IN-ONE DIGITAL SISMOMETER WIRELESS, WIRELESS AND WITHOUT CABLE

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201110313366.0A CN102628958B (zh) 2011-10-17 2011-10-17 有线、无线和无缆三合一数字地震仪
CN201110313366.0 2011-10-17
CN201110327291.1A CN102628959B (zh) 2011-10-25 2011-10-25 系留气球搭载型无线遥测地震仪系统
CN201110327291.1 2011-10-25
CN201110341047.0 2011-11-02
CN201110341047.0A CN102628963B (zh) 2011-11-02 2011-11-02 飞行器搭载无线中继站用于无线遥测仪器数据传输的装置
CN201210252267.0A CN102768364B (zh) 2012-07-20 2012-07-20 组合了无线和无缆功能的地震采集站
CN201210252267.0 2012-07-20
CN2012103370054A CN102866419A (zh) 2012-09-13 2012-09-13 利用无线中继方式提高数据通讯能力的无线遥测地震仪
CN2012103370374A CN102866420A (zh) 2012-09-13 2012-09-13 有线遥测地震仪的无线扩展技术和装置
CN201210337005.4 2012-09-13
CN201210337037.4 2012-09-13

Publications (1)

Publication Number Publication Date
WO2013056511A1 true WO2013056511A1 (zh) 2013-04-25

Family

ID=48140346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001394 WO2013056511A1 (zh) 2011-10-17 2012-10-16 有线、无线和无缆三合一数字地震仪

Country Status (3)

Country Link
US (1) US20140254309A1 (zh)
EP (1) EP2770343A4 (zh)
WO (1) WO2013056511A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112351399A (zh) * 2020-09-29 2021-02-09 北京空间飞行器总体设计部 一种适用于野外无人值守站的高可靠中继通信系统
CN112946747A (zh) * 2019-12-11 2021-06-11 中国石油天然气集团有限公司 有线仪器与可控震源的同步验证方法
CN113031055A (zh) * 2021-03-25 2021-06-25 浙江大学 基于地震预警的空间钢结构振动响应捕捉监测系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966738A (zh) * 2017-11-02 2018-04-27 中国科学院地质与地球物理研究所 地面电磁法仪器野外作业控制及数据处理方法及系统
CN110231655A (zh) * 2019-06-28 2019-09-13 合肥国为电子有限公司 一种适用于井下槽波地震仪
CN111417150B (zh) * 2020-04-03 2022-09-16 山西科泰航天防务技术股份有限公司 一种遥测发射机实时动态配置方法及设备
CN113138408A (zh) * 2021-04-01 2021-07-20 中国煤炭地质总局勘查研究总院 一种分体式地震数据采集设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905506A (zh) * 2005-07-28 2007-01-31 舍塞尔公司 一种无线及线缆混合式的数据采集网络
US20090234585A1 (en) * 2008-03-17 2009-09-17 Ross Allan A Satellite communications with cableless seismographs
CN101639539A (zh) * 2009-09-09 2010-02-03 中国科学院地质与地球物理研究所 存储式地震信号连续采集系统
CN102213768A (zh) * 2010-04-09 2011-10-12 中国科学院地质与地球物理研究所 基于计算机网络的新型数字地震仪
CN102628959A (zh) * 2011-10-25 2012-08-08 中国科学院地质与地球物理研究所 系留气球搭载型无线遥测地震仪系统
CN102628958A (zh) * 2011-10-17 2012-08-08 中国科学院地质与地球物理研究所 有线、无线和无缆三合一数字地震仪
CN102628963A (zh) * 2011-11-02 2012-08-08 中国科学院地质与地球物理研究所 飞行器搭载无线中继站用于无线遥测仪器数据传输的装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886494A (en) * 1972-11-13 1975-05-27 Exxon Production Research Co System for gathering and recording seismic signals
US4236234A (en) * 1979-07-25 1980-11-25 Fairfield Industries, Inc. Radio frequency seismic gathering system employing an airborne blimp
FR2511772A1 (fr) * 1981-08-24 1983-02-25 Inst Francais Du Petrole Dispositif de transmission sequentielle de signaux par radio ou par cable, entre un systeme central de commande et des appareils d'acquisition de donnees
US4663744A (en) * 1983-08-31 1987-05-05 Terra Marine Engineering, Inc. Real time seismic telemetry system
US5712828A (en) * 1996-08-20 1998-01-27 Syntron, Inc. Hydrophone group sensitivity tester
CA2268939C (en) * 1996-10-23 2006-08-01 Vibration Technology Limited Seismic acquisition system using wireless telemetry
GB2330985A (en) * 1997-11-03 1999-05-05 Wireless Systems Int Ltd A radio repeater comprising two transceivers connected by a data link
US6934219B2 (en) * 2002-04-24 2005-08-23 Ascend Geo, Llc Methods and systems for acquiring seismic data
US7269095B2 (en) * 2002-10-04 2007-09-11 Aram Systems, Ltd. Synchronization of seismic data acquisition systems
WO2004034677A2 (en) * 2002-10-04 2004-04-22 Input/Output, Inc. Wireless communication method, system and apparatus
US7310287B2 (en) * 2003-05-30 2007-12-18 Fairfield Industries Incorporated Method and apparatus for seismic data acquisition
US8228759B2 (en) * 2003-11-21 2012-07-24 Fairfield Industries Incorporated System for transmission of seismic data
US7124028B2 (en) * 2003-11-21 2006-10-17 Fairfield Industries, Inc. Method and system for transmission of seismic data
US7738859B2 (en) * 2005-03-10 2010-06-15 Interdigital Technology Corporation Multi-node communication system and method of requesting, reporting and collecting destination-node-based measurements and route-based measurements
US9128202B2 (en) * 2008-04-22 2015-09-08 Srd Innovations Inc. Wireless data acquisition network and operating methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905506A (zh) * 2005-07-28 2007-01-31 舍塞尔公司 一种无线及线缆混合式的数据采集网络
US20090234585A1 (en) * 2008-03-17 2009-09-17 Ross Allan A Satellite communications with cableless seismographs
CN101639539A (zh) * 2009-09-09 2010-02-03 中国科学院地质与地球物理研究所 存储式地震信号连续采集系统
CN102213768A (zh) * 2010-04-09 2011-10-12 中国科学院地质与地球物理研究所 基于计算机网络的新型数字地震仪
CN102628958A (zh) * 2011-10-17 2012-08-08 中国科学院地质与地球物理研究所 有线、无线和无缆三合一数字地震仪
CN102628959A (zh) * 2011-10-25 2012-08-08 中国科学院地质与地球物理研究所 系留气球搭载型无线遥测地震仪系统
CN102628963A (zh) * 2011-11-02 2012-08-08 中国科学院地质与地球物理研究所 飞行器搭载无线中继站用于无线遥测仪器数据传输的装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAN, XIAOQUAN ET AL.: "Current situation and development trend of seismographs", EQUIPMENT FOR GEOPHYSICAL PROSPECTING, vol. 18, no. 1, February 2008 (2008-02-01), pages 1 - 6, XP008172055 *
WANG, WENLIANG ET AL.: "A full-digital telemetric seismic instrument of I/O SYSTEM FOUR", PETROLEUM INSTRUMENTS, vol. 18, no. 3, June 2004 (2004-06-01), pages 14 - 17 AND 25, XP008172054 *
XIE, MINGPU: "Key Technologies of Large Scale Seismic Survey System Design", BASIC SCIENCES, CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 15 April 2010 (2010-04-15), pages A011 - 8, XP008172047 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112946747A (zh) * 2019-12-11 2021-06-11 中国石油天然气集团有限公司 有线仪器与可控震源的同步验证方法
CN112351399A (zh) * 2020-09-29 2021-02-09 北京空间飞行器总体设计部 一种适用于野外无人值守站的高可靠中继通信系统
CN113031055A (zh) * 2021-03-25 2021-06-25 浙江大学 基于地震预警的空间钢结构振动响应捕捉监测系统

Also Published As

Publication number Publication date
EP2770343A1 (en) 2014-08-27
EP2770343A4 (en) 2016-06-01
US20140254309A1 (en) 2014-09-11

Similar Documents

Publication Publication Date Title
WO2013056511A1 (zh) 有线、无线和无缆三合一数字地震仪
CN102628959B (zh) 系留气球搭载型无线遥测地震仪系统
CN102628963B (zh) 飞行器搭载无线中继站用于无线遥测仪器数据传输的装置
CN107393279A (zh) 一种基于北斗通信的输电线路状态监测系统
CN102466813B (zh) 无线遥测存储式地震仪系统
CN206004706U (zh) 一种数据采集系统
CN109544884A (zh) 地质灾害监测无线传感网络
CN104316900B (zh) 空中无线电监测智能机器人
CN101961532A (zh) 伴随灾情机器人
CN202331181U (zh) 高原冻土隧道冻融圈监测系统
CN104316901B (zh) 用于无线电监测的空中智能机器人
CN111404597A (zh) 一种天基资源网络化智能微小卫星系统
CN104155695B (zh) 潜水式浮标地震数据采集站
CN102768364B (zh) 组合了无线和无缆功能的地震采集站
US20210302613A1 (en) Distributed Airborne Electromagnetic Detection System
CN104316899A (zh) 一种空中无线电监测智能机器人
CN104020779A (zh) 一种分布式飞艇控制系统
CN102628958B (zh) 有线、无线和无缆三合一数字地震仪
CN205721375U (zh) 一种多旋翼无人机通讯和安全监测系统
CN110806207A (zh) 铁路隧道精确定位装置及定位方法
CN204302505U (zh) 分布式地震数据采集系统
CN209642672U (zh) 无人机通信基站以及通信系统
CN102721976B (zh) 无线遥测移动式地震观测仪器
CN204314450U (zh) 空中无线电监测智能机器人
CN209118471U (zh) 山体滑坡监测预警系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842393

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012842393

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14352242

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE