WO2013056148A2 - Methods of using scd1 antagonists - Google Patents
Methods of using scd1 antagonists Download PDFInfo
- Publication number
- WO2013056148A2 WO2013056148A2 PCT/US2012/060094 US2012060094W WO2013056148A2 WO 2013056148 A2 WO2013056148 A2 WO 2013056148A2 US 2012060094 W US2012060094 W US 2012060094W WO 2013056148 A2 WO2013056148 A2 WO 2013056148A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cancer
- cell
- control
- antagonist
- scdl
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 251
- 239000005557 antagonist Substances 0.000 title claims abstract description 195
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 243
- 201000011510 cancer Diseases 0.000 claims abstract description 221
- 102100028897 Stearoyl-CoA desaturase Human genes 0.000 claims abstract description 150
- 101100041816 Homo sapiens SCD gene Proteins 0.000 claims abstract description 108
- 101150097713 SCD1 gene Proteins 0.000 claims abstract description 108
- 238000011282 treatment Methods 0.000 claims abstract description 60
- 239000000090 biomarker Substances 0.000 claims description 182
- 230000014509 gene expression Effects 0.000 claims description 175
- 108090000623 proteins and genes Proteins 0.000 claims description 167
- 239000000523 sample Substances 0.000 claims description 123
- 239000013074 reference sample Substances 0.000 claims description 118
- 239000013068 control sample Substances 0.000 claims description 111
- 150000003384 small molecules Chemical class 0.000 claims description 107
- 102100027842 Fibroblast growth factor receptor 3 Human genes 0.000 claims description 101
- 101710182396 Fibroblast growth factor receptor 3 Proteins 0.000 claims description 101
- 230000027455 binding Effects 0.000 claims description 83
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 82
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 80
- 229920001184 polypeptide Polymers 0.000 claims description 77
- -1 PDSS 1 Proteins 0.000 claims description 74
- 108700039887 Essential Genes Proteins 0.000 claims description 72
- 102000040430 polynucleotide Human genes 0.000 claims description 45
- 108091033319 polynucleotide Proteins 0.000 claims description 45
- 239000002157 polynucleotide Substances 0.000 claims description 45
- 238000011319 anticancer therapy Methods 0.000 claims description 44
- 230000001105 regulatory effect Effects 0.000 claims description 39
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 claims description 36
- 230000003520 lipogenic effect Effects 0.000 claims description 34
- 206010005003 Bladder cancer Diseases 0.000 claims description 32
- 201000005112 urinary bladder cancer Diseases 0.000 claims description 32
- 239000003814 drug Substances 0.000 claims description 31
- 230000008901 benefit Effects 0.000 claims description 29
- 230000002829 reductive effect Effects 0.000 claims description 27
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 23
- 239000000194 fatty acid Substances 0.000 claims description 23
- 229930195729 fatty acid Natural products 0.000 claims description 23
- 150000004665 fatty acids Chemical class 0.000 claims description 22
- 230000004044 response Effects 0.000 claims description 22
- 230000011664 signaling Effects 0.000 claims description 22
- 230000004663 cell proliferation Effects 0.000 claims description 20
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 18
- 201000002528 pancreatic cancer Diseases 0.000 claims description 17
- 102100030431 Fatty acid-binding protein, adipocyte Human genes 0.000 claims description 16
- 101001062864 Homo sapiens Fatty acid-binding protein, adipocyte Proteins 0.000 claims description 16
- 101001098868 Homo sapiens Proprotein convertase subtilisin/kexin type 9 Proteins 0.000 claims description 16
- 208000008839 Kidney Neoplasms Diseases 0.000 claims description 16
- 102100038955 Proprotein convertase subtilisin/kexin type 9 Human genes 0.000 claims description 16
- 206010038389 Renal cancer Diseases 0.000 claims description 16
- 201000010982 kidney cancer Diseases 0.000 claims description 16
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims description 16
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 16
- 229940124597 therapeutic agent Drugs 0.000 claims description 16
- 102100022089 Acyl-[acyl-carrier-protein] hydrolase Human genes 0.000 claims description 14
- 230000001965 increasing effect Effects 0.000 claims description 14
- 206010009944 Colon cancer Diseases 0.000 claims description 13
- 230000006907 apoptotic process Effects 0.000 claims description 13
- 102100036504 Dehydrogenase/reductase SDR family member 9 Human genes 0.000 claims description 12
- 101000928746 Homo sapiens Dehydrogenase/reductase SDR family member 9 Proteins 0.000 claims description 12
- 101001076680 Homo sapiens Insulin-induced gene 1 protein Proteins 0.000 claims description 12
- 101001051093 Homo sapiens Low-density lipoprotein receptor Proteins 0.000 claims description 12
- 101001039207 Homo sapiens Low-density lipoprotein receptor-related protein 8 Proteins 0.000 claims description 12
- 102100025887 Insulin-induced gene 1 protein Human genes 0.000 claims description 12
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 claims description 12
- 102100040705 Low-density lipoprotein receptor-related protein 8 Human genes 0.000 claims description 12
- 108010074436 Sterol Regulatory Element Binding Protein 1 Proteins 0.000 claims description 12
- 208000029742 colonic neoplasm Diseases 0.000 claims description 12
- 230000003247 decreasing effect Effects 0.000 claims description 10
- 230000002401 inhibitory effect Effects 0.000 claims description 10
- 102100024848 Epidermal retinol dehydrogenase 2 Human genes 0.000 claims description 9
- 102100029595 Fatty acyl-CoA reductase 2 Human genes 0.000 claims description 9
- 101000687614 Homo sapiens Epidermal retinol dehydrogenase 2 Proteins 0.000 claims description 9
- 101000917301 Homo sapiens Fatty acyl-CoA reductase 2 Proteins 0.000 claims description 9
- 101001081533 Homo sapiens Isopentenyl-diphosphate Delta-isomerase 1 Proteins 0.000 claims description 9
- 101000896726 Homo sapiens Lanosterol 14-alpha demethylase Proteins 0.000 claims description 9
- 101000878981 Homo sapiens Squalene synthase Proteins 0.000 claims description 9
- 102100027665 Isopentenyl-diphosphate Delta-isomerase 1 Human genes 0.000 claims description 9
- 102100021695 Lanosterol 14-alpha demethylase Human genes 0.000 claims description 9
- 108091007960 PI3Ks Proteins 0.000 claims description 9
- 102100037997 Squalene synthase Human genes 0.000 claims description 9
- 230000025084 cell cycle arrest Effects 0.000 claims description 9
- 235000003441 saturated fatty acids Nutrition 0.000 claims description 9
- 150000004671 saturated fatty acids Chemical class 0.000 claims description 8
- 230000002485 urinary effect Effects 0.000 claims description 8
- 206010014733 Endometrial cancer Diseases 0.000 claims description 7
- 206010014759 Endometrial neoplasm Diseases 0.000 claims description 7
- 206010033128 Ovarian cancer Diseases 0.000 claims description 7
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 7
- 208000014829 head and neck neoplasm Diseases 0.000 claims description 7
- 230000001939 inductive effect Effects 0.000 claims description 7
- 102100029077 3-hydroxy-3-methylglutaryl-coenzyme A reductase Human genes 0.000 claims description 6
- 102100036512 7-dehydrocholesterol reductase Human genes 0.000 claims description 6
- 102100028704 Acetyl-CoA acetyltransferase, cytosolic Human genes 0.000 claims description 6
- 102100032052 Elongation of very long chain fatty acids protein 5 Human genes 0.000 claims description 6
- 102100031375 Endothelial lipase Human genes 0.000 claims description 6
- 101000988577 Homo sapiens 3-hydroxy-3-methylglutaryl-coenzyme A reductase Proteins 0.000 claims description 6
- 101000928720 Homo sapiens 7-dehydrocholesterol reductase Proteins 0.000 claims description 6
- 101000837584 Homo sapiens Acetyl-CoA acetyltransferase, cytosolic Proteins 0.000 claims description 6
- 101000921361 Homo sapiens Elongation of very long chain fatty acids protein 5 Proteins 0.000 claims description 6
- 101000941275 Homo sapiens Endothelial lipase Proteins 0.000 claims description 6
- 101001065660 Homo sapiens Lanosterol synthase Proteins 0.000 claims description 6
- 101000978949 Homo sapiens NADP-dependent malic enzyme Proteins 0.000 claims description 6
- 101000613391 Homo sapiens Protocadherin beta-16 Proteins 0.000 claims description 6
- 101000642613 Homo sapiens Sterol O-acyltransferase 2 Proteins 0.000 claims description 6
- 102100032011 Lanosterol synthase Human genes 0.000 claims description 6
- 102100023175 NADP-dependent malic enzyme Human genes 0.000 claims description 6
- 230000001737 promoting effect Effects 0.000 claims description 6
- 102100028888 Hydroxymethylglutaryl-CoA synthase, cytoplasmic Human genes 0.000 claims description 5
- 102000004232 Mitogen-Activated Protein Kinase Kinases Human genes 0.000 claims description 5
- 108090000744 Mitogen-Activated Protein Kinase Kinases Proteins 0.000 claims description 5
- 108010065917 TOR Serine-Threonine Kinases Proteins 0.000 claims description 5
- 101000652725 Drosophila melanogaster Transcription initiation factor TFIID subunit 5 Proteins 0.000 claims description 4
- 102100035172 Glucose-6-phosphate 1-dehydrogenase Human genes 0.000 claims description 4
- 101000752722 Homo sapiens Apoptosis-stimulating of p53 protein 1 Proteins 0.000 claims description 4
- 101001120056 Homo sapiens Phosphatidylinositol 3-kinase regulatory subunit alpha Proteins 0.000 claims description 4
- 101001120097 Homo sapiens Phosphatidylinositol 3-kinase regulatory subunit beta Proteins 0.000 claims description 4
- 101001116549 Homo sapiens Protein CBFA2T2 Proteins 0.000 claims description 4
- 101001000998 Homo sapiens Protein phosphatase 1 regulatory subunit 12C Proteins 0.000 claims description 4
- 101000927796 Homo sapiens Rho guanine nucleotide exchange factor 7 Proteins 0.000 claims description 4
- 108010011536 PTEN Phosphohydrolase Proteins 0.000 claims description 4
- 102000014160 PTEN Phosphohydrolase Human genes 0.000 claims description 4
- 102100026839 Sterol regulatory element-binding protein 1 Human genes 0.000 claims description 4
- 201000010536 head and neck cancer Diseases 0.000 claims description 4
- 102100026152 1-acyl-sn-glycerol-3-phosphate acyltransferase epsilon Human genes 0.000 claims description 3
- 102100022586 17-beta-hydroxysteroid dehydrogenase type 2 Human genes 0.000 claims description 3
- 102100035623 ATP-citrate synthase Human genes 0.000 claims description 3
- 102100035709 Acetyl-coenzyme A synthetase, cytoplasmic Human genes 0.000 claims description 3
- 102100035984 Adenosine receptor A2b Human genes 0.000 claims description 3
- 102100034082 Alkaline ceramidase 3 Human genes 0.000 claims description 3
- 101000841393 Candida albicans Probable NADPH dehydrogenase Proteins 0.000 claims description 3
- 102100023044 Cytosolic acyl coenzyme A thioester hydrolase Human genes 0.000 claims description 3
- 102100034690 Delta(14)-sterol reductase LBR Human genes 0.000 claims description 3
- 102100038390 Diphosphomevalonate decarboxylase Human genes 0.000 claims description 3
- 101710191461 F420-dependent glucose-6-phosphate dehydrogenase Proteins 0.000 claims description 3
- 102100035111 Farnesyl pyrophosphate synthase Human genes 0.000 claims description 3
- 102100034334 Fatty acid CoA ligase Acsl3 Human genes 0.000 claims description 3
- 101710155861 Glucose-6-phosphate 1-dehydrogenase Proteins 0.000 claims description 3
- 101710174622 Glucose-6-phosphate 1-dehydrogenase, chloroplastic Proteins 0.000 claims description 3
- 101710137456 Glucose-6-phosphate 1-dehydrogenase, cytoplasmic isoform Proteins 0.000 claims description 3
- 102100021192 Glycerophosphocholine phosphodiesterase GPCPD1 Human genes 0.000 claims description 3
- 101000691569 Homo sapiens 1-acyl-sn-glycerol-3-phosphate acyltransferase epsilon Proteins 0.000 claims description 3
- 101001045223 Homo sapiens 17-beta-hydroxysteroid dehydrogenase type 2 Proteins 0.000 claims description 3
- 101000866618 Homo sapiens 3-beta-hydroxysteroid-Delta(8),Delta(7)-isomerase Proteins 0.000 claims description 3
- 101000782969 Homo sapiens ATP-citrate synthase Proteins 0.000 claims description 3
- 101000783232 Homo sapiens Acetyl-coenzyme A synthetase, cytoplasmic Proteins 0.000 claims description 3
- 101000783756 Homo sapiens Adenosine receptor A2b Proteins 0.000 claims description 3
- 101000798828 Homo sapiens Alkaline ceramidase 3 Proteins 0.000 claims description 3
- 101000765010 Homo sapiens Beta-galactosidase Proteins 0.000 claims description 3
- 101000903587 Homo sapiens Cytosolic acyl coenzyme A thioester hydrolase Proteins 0.000 claims description 3
- 101000945982 Homo sapiens Delta(14)-sterol reductase LBR Proteins 0.000 claims description 3
- 101000958922 Homo sapiens Diphosphomevalonate decarboxylase Proteins 0.000 claims description 3
- 101001023007 Homo sapiens Farnesyl pyrophosphate synthase Proteins 0.000 claims description 3
- 101000780194 Homo sapiens Fatty acid CoA ligase Acsl3 Proteins 0.000 claims description 3
- 101001040698 Homo sapiens Glycerophosphocholine phosphodiesterase GPCPD1 Proteins 0.000 claims description 3
- 101000780208 Homo sapiens Long-chain-fatty-acid-CoA ligase 4 Proteins 0.000 claims description 3
- 101001074628 Homo sapiens Phosphatidylinositol-glycan biosynthesis class W protein Proteins 0.000 claims description 3
- 101001098982 Homo sapiens Propionyl-CoA carboxylase beta chain, mitochondrial Proteins 0.000 claims description 3
- 101000742950 Homo sapiens Retinol dehydrogenase 5 Proteins 0.000 claims description 3
- 101000616556 Homo sapiens SH3 domain-containing protein 19 Proteins 0.000 claims description 3
- 101000629597 Homo sapiens Sterol regulatory element-binding protein 1 Proteins 0.000 claims description 3
- 101000871912 Homo sapiens Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 1 Proteins 0.000 claims description 3
- 102100034319 Long-chain-fatty-acid-CoA ligase 4 Human genes 0.000 claims description 3
- 102100022259 Mevalonate kinase Human genes 0.000 claims description 3
- 108700040132 Mevalonate kinases Proteins 0.000 claims description 3
- 102100036253 Phosphatidylinositol-glycan biosynthesis class W protein Human genes 0.000 claims description 3
- 102100039025 Propionyl-CoA carboxylase beta chain, mitochondrial Human genes 0.000 claims description 3
- 102100038053 Retinol dehydrogenase 5 Human genes 0.000 claims description 3
- 102100033637 Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 1 Human genes 0.000 claims description 3
- 108010026102 Vitamin D3 24-Hydroxylase Proteins 0.000 claims description 3
- 101150091791 mvk gene Proteins 0.000 claims description 3
- 208000018634 fetal akinesia deformation sequence Diseases 0.000 claims description 2
- 208000012165 fetal akinesia deformation sequence syndrome Diseases 0.000 claims description 2
- 238000002421 fluorescence-activated droplet sorting Methods 0.000 claims description 2
- 101001056878 Homo sapiens Squalene monooxygenase Proteins 0.000 claims 5
- 102100025560 Squalene monooxygenase Human genes 0.000 claims 5
- 101000839025 Homo sapiens Hydroxymethylglutaryl-CoA synthase, cytoplasmic Proteins 0.000 claims 3
- 102000010400 1-phosphatidylinositol-3-kinase activity proteins Human genes 0.000 claims 2
- 101000824278 Homo sapiens Acyl-[acyl-carrier-protein] hydrolase Proteins 0.000 claims 2
- 102100021987 Apoptosis-stimulating of p53 protein 1 Human genes 0.000 claims 1
- 102100021782 SH3 domain-containing protein 19 Human genes 0.000 claims 1
- 102100023085 Serine/threonine-protein kinase mTOR Human genes 0.000 claims 1
- 102000013387 Vitamin D3 24-Hydroxylase Human genes 0.000 claims 1
- 238000002560 therapeutic procedure Methods 0.000 abstract description 11
- 230000001575 pathological effect Effects 0.000 abstract description 8
- 210000004027 cell Anatomy 0.000 description 412
- 210000001519 tissue Anatomy 0.000 description 242
- 102000004169 proteins and genes Human genes 0.000 description 55
- 235000018102 proteins Nutrition 0.000 description 51
- 229910052739 hydrogen Inorganic materials 0.000 description 40
- 150000007523 nucleic acids Chemical class 0.000 description 40
- 239000001257 hydrogen Substances 0.000 description 39
- 102000039446 nucleic acids Human genes 0.000 description 38
- 108020004707 nucleic acids Proteins 0.000 description 38
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 37
- 108010087894 Fatty acid desaturases Proteins 0.000 description 35
- 239000000427 antigen Substances 0.000 description 34
- 108020004999 messenger RNA Proteins 0.000 description 33
- 125000003275 alpha amino acid group Chemical group 0.000 description 32
- 108091007433 antigens Proteins 0.000 description 32
- 102000036639 antigens Human genes 0.000 description 32
- 239000003112 inhibitor Substances 0.000 description 31
- 108020004459 Small interfering RNA Proteins 0.000 description 30
- 238000003556 assay Methods 0.000 description 26
- 201000010099 disease Diseases 0.000 description 24
- 239000003795 chemical substances by application Substances 0.000 description 23
- 230000000694 effects Effects 0.000 description 22
- 229940002612 prodrug Drugs 0.000 description 21
- 239000000651 prodrug Substances 0.000 description 21
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 19
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 19
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 18
- 239000012634 fragment Substances 0.000 description 18
- 125000003118 aryl group Chemical group 0.000 description 17
- 150000001875 compounds Chemical class 0.000 description 17
- 229940127089 cytotoxic agent Drugs 0.000 description 16
- 238000002823 phage display Methods 0.000 description 16
- 239000004055 small Interfering RNA Substances 0.000 description 16
- 238000004458 analytical method Methods 0.000 description 15
- 125000000753 cycloalkyl group Chemical group 0.000 description 15
- 210000002966 serum Anatomy 0.000 description 15
- 239000002246 antineoplastic agent Substances 0.000 description 14
- 230000006870 function Effects 0.000 description 14
- 125000001072 heteroaryl group Chemical group 0.000 description 14
- 125000000623 heterocyclic group Chemical group 0.000 description 14
- 125000003729 nucleotide group Chemical group 0.000 description 14
- 230000008685 targeting Effects 0.000 description 14
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 13
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 13
- 239000013592 cell lysate Substances 0.000 description 13
- 208000035475 disorder Diseases 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 125000001424 substituent group Chemical group 0.000 description 13
- 238000006467 substitution reaction Methods 0.000 description 13
- 238000001890 transfection Methods 0.000 description 13
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 12
- 108010039731 Fatty Acid Synthases Proteins 0.000 description 12
- 108091027967 Small hairpin RNA Proteins 0.000 description 12
- 125000000217 alkyl group Chemical group 0.000 description 12
- 235000001014 amino acid Nutrition 0.000 description 12
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 12
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 12
- 230000035772 mutation Effects 0.000 description 12
- 125000004043 oxo group Chemical group O=* 0.000 description 12
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 12
- 102000011727 Caspases Human genes 0.000 description 11
- 108010076667 Caspases Proteins 0.000 description 11
- 102000005782 Squalene Monooxygenase Human genes 0.000 description 11
- 108020003891 Squalene monooxygenase Proteins 0.000 description 11
- 102000008078 Sterol Regulatory Element Binding Protein 1 Human genes 0.000 description 11
- 230000001419 dependent effect Effects 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 11
- 238000011534 incubation Methods 0.000 description 11
- 239000002609 medium Substances 0.000 description 11
- 238000003752 polymerase chain reaction Methods 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- QTBSBXVTEAMEQO-HQMMCQRPSA-N acetic acid Chemical compound C[14C](O)=O QTBSBXVTEAMEQO-HQMMCQRPSA-N 0.000 description 10
- 229960003722 doxycycline Drugs 0.000 description 10
- XQTWDDCIUJNLTR-CVHRZJFOSA-N doxycycline monohydrate Chemical compound O.O=C1C2=C(O)C=CC=C2[C@H](C)[C@@H]2C1=C(O)[C@]1(O)C(=O)C(C(N)=O)=C(O)[C@@H](N(C)C)[C@@H]1[C@H]2O XQTWDDCIUJNLTR-CVHRZJFOSA-N 0.000 description 10
- 230000012010 growth Effects 0.000 description 10
- 125000005647 linker group Chemical group 0.000 description 10
- 150000002632 lipids Chemical class 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical class CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 10
- 230000002285 radioactive effect Effects 0.000 description 10
- 108020004414 DNA Proteins 0.000 description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 9
- 241001465754 Metazoa Species 0.000 description 9
- 230000004075 alteration Effects 0.000 description 9
- 230000003321 amplification Effects 0.000 description 9
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 9
- 230000003833 cell viability Effects 0.000 description 9
- 229940079593 drug Drugs 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 150000002431 hydrogen Chemical class 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 238000003199 nucleic acid amplification method Methods 0.000 description 9
- 239000002773 nucleotide Substances 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 238000012216 screening Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 8
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 8
- 238000011529 RT qPCR Methods 0.000 description 8
- 108010074438 Sterol Regulatory Element Binding Protein 2 Proteins 0.000 description 8
- 102100026841 Sterol regulatory element-binding protein 2 Human genes 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 210000004369 blood Anatomy 0.000 description 8
- 239000008280 blood Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000002254 cytotoxic agent Substances 0.000 description 8
- 229960004679 doxorubicin Drugs 0.000 description 8
- 238000009396 hybridization Methods 0.000 description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 8
- 229940127121 immunoconjugate Drugs 0.000 description 8
- 230000001976 improved effect Effects 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- 238000010348 incorporation Methods 0.000 description 8
- 239000008194 pharmaceutical composition Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000003345 scintillation counting Methods 0.000 description 8
- 235000000346 sugar Nutrition 0.000 description 8
- 108700012359 toxins Proteins 0.000 description 8
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 7
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 7
- 102000038030 PI3Ks Human genes 0.000 description 7
- 230000004913 activation Effects 0.000 description 7
- 229940024606 amino acid Drugs 0.000 description 7
- 125000000539 amino acid group Chemical group 0.000 description 7
- 150000001413 amino acids Chemical class 0.000 description 7
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 7
- 230000000295 complement effect Effects 0.000 description 7
- 231100000599 cytotoxic agent Toxicity 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 125000005843 halogen group Chemical group 0.000 description 7
- 229960002897 heparin Drugs 0.000 description 7
- 229920000669 heparin Polymers 0.000 description 7
- 210000004408 hybridoma Anatomy 0.000 description 7
- 125000005020 hydroxyalkenyl group Chemical group 0.000 description 7
- 238000003119 immunoblot Methods 0.000 description 7
- 230000002055 immunohistochemical effect Effects 0.000 description 7
- 238000002493 microarray Methods 0.000 description 7
- 150000002482 oligosaccharides Chemical class 0.000 description 7
- 230000037361 pathway Effects 0.000 description 7
- 210000002381 plasma Anatomy 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 238000010186 staining Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 7
- 239000003053 toxin Substances 0.000 description 7
- 231100000765 toxin Toxicity 0.000 description 7
- 238000001262 western blot Methods 0.000 description 7
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 6
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 6
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 6
- 108060003951 Immunoglobulin Proteins 0.000 description 6
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 6
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 6
- 241000699670 Mus sp. Species 0.000 description 6
- 239000000556 agonist Substances 0.000 description 6
- 125000003342 alkenyl group Chemical group 0.000 description 6
- 230000004540 complement-dependent cytotoxicity Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000003745 diagnosis Methods 0.000 description 6
- 239000012091 fetal bovine serum Substances 0.000 description 6
- 102000018358 immunoglobulin Human genes 0.000 description 6
- 239000003446 ligand Substances 0.000 description 6
- 229960000485 methotrexate Drugs 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- QIQXTHQIDYTFRH-GTFORLLLSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCC[14C](O)=O QIQXTHQIDYTFRH-GTFORLLLSA-N 0.000 description 6
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 6
- 229920001542 oligosaccharide Polymers 0.000 description 6
- 150000002942 palmitic acid derivatives Chemical class 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 238000012552 review Methods 0.000 description 6
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000004809 thin layer chromatography Methods 0.000 description 6
- 229940104230 thymidine Drugs 0.000 description 6
- 229960005486 vaccine Drugs 0.000 description 6
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 101000968916 Homo sapiens Methylsterol monooxygenase 1 Proteins 0.000 description 5
- 102100026120 IgG receptor FcRn large subunit p51 Human genes 0.000 description 5
- 102100021091 Methylsterol monooxygenase 1 Human genes 0.000 description 5
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- 229930012538 Paclitaxel Natural products 0.000 description 5
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 5
- 125000003545 alkoxy group Chemical group 0.000 description 5
- 125000003710 aryl alkyl group Chemical group 0.000 description 5
- 230000004071 biological effect Effects 0.000 description 5
- 239000012472 biological sample Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 239000002299 complementary DNA Substances 0.000 description 5
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 5
- 235000018417 cysteine Nutrition 0.000 description 5
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 238000010494 dissociation reaction Methods 0.000 description 5
- 230000005593 dissociations Effects 0.000 description 5
- 229960003668 docetaxel Drugs 0.000 description 5
- 230000002255 enzymatic effect Effects 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 102000015694 estrogen receptors Human genes 0.000 description 5
- 108010038795 estrogen receptors Proteins 0.000 description 5
- 125000001153 fluoro group Chemical group F* 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 125000004415 heterocyclylalkyl group Chemical group 0.000 description 5
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 5
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 5
- 229960001592 paclitaxel Drugs 0.000 description 5
- 230000009038 pharmacological inhibition Effects 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical group C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- HHJUWIANJFBDHT-ZVTSDNJWSA-N rsa8ko39wh Chemical compound C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 HHJUWIANJFBDHT-ZVTSDNJWSA-N 0.000 description 5
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 239000001509 sodium citrate Substances 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 210000004881 tumor cell Anatomy 0.000 description 5
- 230000004614 tumor growth Effects 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 5
- 229960004528 vincristine Drugs 0.000 description 5
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 5
- 229960004355 vindesine Drugs 0.000 description 5
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 description 4
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 4
- 125000006528 (C2-C6) alkyl group Chemical group 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 4
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 4
- 101710177940 IgG receptor FcRn large subunit p51 Proteins 0.000 description 4
- 229940124647 MEK inhibitor Drugs 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 4
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 4
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 4
- 235000021355 Stearic acid Nutrition 0.000 description 4
- 229930182558 Sterol Natural products 0.000 description 4
- 102000013530 TOR Serine-Threonine Kinases Human genes 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- 229940088710 antibiotic agent Drugs 0.000 description 4
- 239000003886 aromatase inhibitor Substances 0.000 description 4
- 229940046844 aromatase inhibitors Drugs 0.000 description 4
- GZUFKJOJARFQPB-UHFFFAOYSA-N benzamide;piperazine Chemical compound C1CNCCN1.NC(=O)C1=CC=CC=C1 GZUFKJOJARFQPB-UHFFFAOYSA-N 0.000 description 4
- HXCHCVDVKSCDHU-LULTVBGHSA-N calicheamicin Chemical compound C1[C@H](OC)[C@@H](NCC)CO[C@H]1O[C@H]1[C@H](O[C@@H]2C\3=C(NC(=O)OC)C(=O)C[C@](C/3=C/CSSSC)(O)C#C\C=C/C#C2)O[C@H](C)[C@@H](NO[C@@H]2O[C@H](C)[C@@H](SC(=O)C=3C(=C(OC)C(O[C@H]4[C@@H]([C@H](OC)[C@@H](O)[C@H](C)O4)O)=C(I)C=3C)OC)[C@@H](O)C2)[C@@H]1O HXCHCVDVKSCDHU-LULTVBGHSA-N 0.000 description 4
- 229930195731 calicheamicin Natural products 0.000 description 4
- 150000001720 carbohydrates Chemical class 0.000 description 4
- 230000030833 cell death Effects 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 125000004093 cyano group Chemical group *C#N 0.000 description 4
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 description 4
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 4
- 239000012636 effector Substances 0.000 description 4
- 230000004136 fatty acid synthesis Effects 0.000 description 4
- 229960002949 fluorouracil Drugs 0.000 description 4
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000006166 lysate Substances 0.000 description 4
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 239000002953 phosphate buffered saline Substances 0.000 description 4
- 230000026731 phosphorylation Effects 0.000 description 4
- 238000006366 phosphorylation reaction Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000000159 protein binding assay Methods 0.000 description 4
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 4
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 229960002930 sirolimus Drugs 0.000 description 4
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 4
- 239000008117 stearic acid Substances 0.000 description 4
- 150000003432 sterols Chemical class 0.000 description 4
- 235000003702 sterols Nutrition 0.000 description 4
- 208000035458 subtype of a disease Diseases 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 4
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 4
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 4
- JXLYSJRDGCGARV-CFWMRBGOSA-N vinblastine Chemical compound C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-CFWMRBGOSA-N 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 3
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 3
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 3
- 102100026189 Beta-galactosidase Human genes 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 3
- 208000026310 Breast neoplasm Diseases 0.000 description 3
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 3
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 108010087819 Fc receptors Proteins 0.000 description 3
- 102000009109 Fc receptors Human genes 0.000 description 3
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 3
- 102000029749 Microtubule Human genes 0.000 description 3
- 108091022875 Microtubule Proteins 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- OVRNDRQMDRJTHS-RTRLPJTCSA-N N-acetyl-D-glucosamine Chemical compound CC(=O)N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-RTRLPJTCSA-N 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- 206010036790 Productive cough Diseases 0.000 description 3
- 102100024949 Protein CBFA2T2 Human genes 0.000 description 3
- IIDJRNMFWXDHID-UHFFFAOYSA-N Risedronic acid Chemical compound OP(=O)(O)C(P(O)(O)=O)(O)CC1=CC=CN=C1 IIDJRNMFWXDHID-UHFFFAOYSA-N 0.000 description 3
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- 229940123237 Taxane Drugs 0.000 description 3
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 3
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 3
- 229940049595 antibody-drug conjugate Drugs 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 239000003593 chromogenic compound Substances 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 239000000562 conjugate Substances 0.000 description 3
- 231100000433 cytotoxic Toxicity 0.000 description 3
- 230000001472 cytotoxic effect Effects 0.000 description 3
- 238000002784 cytotoxicity assay Methods 0.000 description 3
- 231100000263 cytotoxicity test Toxicity 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 229960000975 daunorubicin Drugs 0.000 description 3
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 3
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 3
- 230000033581 fucosylation Effects 0.000 description 3
- 230000013595 glycosylation Effects 0.000 description 3
- 238000006206 glycosylation reaction Methods 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 125000004446 heteroarylalkyl group Chemical group 0.000 description 3
- 229940088597 hormone Drugs 0.000 description 3
- 239000005556 hormone Substances 0.000 description 3
- 238000007901 in situ hybridization Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 201000005202 lung cancer Diseases 0.000 description 3
- 208000020816 lung neoplasm Diseases 0.000 description 3
- 238000007403 mPCR Methods 0.000 description 3
- 208000026037 malignant tumor of neck Diseases 0.000 description 3
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 206010061289 metastatic neoplasm Diseases 0.000 description 3
- 210000004688 microtubule Anatomy 0.000 description 3
- 239000002829 mitogen activated protein kinase inhibitor Substances 0.000 description 3
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 3
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 229940049964 oleate Drugs 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 230000004481 post-translational protein modification Effects 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 238000003127 radioimmunoassay Methods 0.000 description 3
- 238000001959 radiotherapy Methods 0.000 description 3
- GZUITABIAKMVPG-UHFFFAOYSA-N raloxifene Chemical compound C1=CC(O)=CC=C1C1=C(C(=O)C=2C=CC(OCCN3CCCCC3)=CC=2)C2=CC=C(O)C=C2S1 GZUITABIAKMVPG-UHFFFAOYSA-N 0.000 description 3
- 238000003753 real-time PCR Methods 0.000 description 3
- 238000003196 serial analysis of gene expression Methods 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 210000003802 sputum Anatomy 0.000 description 3
- 208000024794 sputum Diseases 0.000 description 3
- JJAHTWIKCUJRDK-UHFFFAOYSA-N succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate Chemical compound C1CC(CN2C(C=CC2=O)=O)CCC1C(=O)ON1C(=O)CCC1=O JJAHTWIKCUJRDK-UHFFFAOYSA-N 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 230000009261 transgenic effect Effects 0.000 description 3
- 229960003048 vinblastine Drugs 0.000 description 3
- XRASPMIURGNCCH-UHFFFAOYSA-N zoledronic acid Chemical compound OP(=O)(O)C(P(O)(O)=O)(O)CN1C=CN=C1 XRASPMIURGNCCH-UHFFFAOYSA-N 0.000 description 3
- JWDFQMWEFLOOED-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(pyridin-2-yldisulfanyl)propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCSSC1=CC=CC=N1 JWDFQMWEFLOOED-UHFFFAOYSA-N 0.000 description 2
- 125000004642 (C1-C12) alkoxy group Chemical group 0.000 description 2
- 125000006710 (C2-C12) alkenyl group Chemical group 0.000 description 2
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 2
- 102100027518 1,25-dihydroxyvitamin D(3) 24-hydroxylase, mitochondrial Human genes 0.000 description 2
- DGHHQBMTXTWTJV-BQAIUKQQSA-N 119413-54-6 Chemical compound Cl.C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 DGHHQBMTXTWTJV-BQAIUKQQSA-N 0.000 description 2
- VGONTNSXDCQUGY-RRKCRQDMSA-N 2'-deoxyinosine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC2=O)=C2N=C1 VGONTNSXDCQUGY-RRKCRQDMSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- VPFUWHKTPYPNGT-UHFFFAOYSA-N 3-(3,4-dihydroxyphenyl)-1-(5-hydroxy-2,2-dimethylchromen-6-yl)propan-1-one Chemical compound OC1=C2C=CC(C)(C)OC2=CC=C1C(=O)CCC1=CC=C(O)C(O)=C1 VPFUWHKTPYPNGT-UHFFFAOYSA-N 0.000 description 2
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 2
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 2
- VVIAGPKUTFNRDU-UHFFFAOYSA-N 6S-folinic acid Natural products C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-UHFFFAOYSA-N 0.000 description 2
- OGSPWJRAVKPPFI-UHFFFAOYSA-N Alendronic Acid Chemical compound NCCCC(O)(P(O)(O)=O)P(O)(O)=O OGSPWJRAVKPPFI-UHFFFAOYSA-N 0.000 description 2
- BFYIZQONLCFLEV-DAELLWKTSA-N Aromasine Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC(=C)C2=C1 BFYIZQONLCFLEV-DAELLWKTSA-N 0.000 description 2
- 241000972773 Aulopiformes Species 0.000 description 2
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 description 2
- 108010006654 Bleomycin Proteins 0.000 description 2
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- 108010092160 Dactinomycin Proteins 0.000 description 2
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 206010061818 Disease progression Diseases 0.000 description 2
- 102000001301 EGF receptor Human genes 0.000 description 2
- 108060006698 EGF receptor Proteins 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 2
- VWUXBMIQPBEWFH-WCCTWKNTSA-N Fulvestrant Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3[C@H](CCCCCCCCCS(=O)CCCC(F)(F)C(F)(F)F)CC2=C1 VWUXBMIQPBEWFH-WCCTWKNTSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 108010000775 Hydroxymethylglutaryl-CoA synthase Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000002147 L01XE04 - Sunitinib Substances 0.000 description 2
- 108010000817 Leuprolide Proteins 0.000 description 2
- 230000027311 M phase Effects 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 238000010222 PCR analysis Methods 0.000 description 2
- SUDAHWBOROXANE-SECBINFHSA-N PD 0325901 Chemical compound OC[C@@H](O)CONC(=O)C1=CC=C(F)C(F)=C1NC1=CC=C(I)C=C1F SUDAHWBOROXANE-SECBINFHSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 108010067902 Peptide Library Proteins 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 239000013614 RNA sample Substances 0.000 description 2
- 238000003559 RNA-seq method Methods 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 108010039491 Ricin Proteins 0.000 description 2
- 230000018199 S phase Effects 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- CYQFCXCEBYINGO-UHFFFAOYSA-N THC Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3C21 CYQFCXCEBYINGO-UHFFFAOYSA-N 0.000 description 2
- NAVMQTYZDKMPEU-UHFFFAOYSA-N Targretin Chemical compound CC1=CC(C(CCC2(C)C)(C)C)=C2C=C1C(=C)C1=CC=C(C(O)=O)C=C1 NAVMQTYZDKMPEU-UHFFFAOYSA-N 0.000 description 2
- 241001116498 Taxus baccata Species 0.000 description 2
- DKJJVAGXPKPDRL-UHFFFAOYSA-N Tiludronic acid Chemical compound OP(O)(=O)C(P(O)(O)=O)SC1=CC=C(Cl)C=C1 DKJJVAGXPKPDRL-UHFFFAOYSA-N 0.000 description 2
- 241000863480 Vinca Species 0.000 description 2
- IBXPAFBDJCXCDW-MHFPCNPESA-A [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].Cc1cn([C@H]2C[C@H](O)[C@@H](COP([S-])(=O)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3CO)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c3nc(N)[nH]c4=O)n3ccc(N)nc3=O)n3cnc4c3nc(N)[nH]c4=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3ccc(N)nc3=O)n3cnc4c3nc(N)[nH]c4=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].Cc1cn([C@H]2C[C@H](O)[C@@H](COP([S-])(=O)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3CO)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c3nc(N)[nH]c4=O)n3ccc(N)nc3=O)n3cnc4c3nc(N)[nH]c4=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3ccc(N)nc3=O)n3cnc4c3nc(N)[nH]c4=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O IBXPAFBDJCXCDW-MHFPCNPESA-A 0.000 description 2
- 230000001594 aberrant effect Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 2
- 150000008052 alkyl sulfonates Chemical class 0.000 description 2
- 239000002168 alkylating agent Substances 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 229960003437 aminoglutethimide Drugs 0.000 description 2
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 description 2
- 210000004381 amniotic fluid Anatomy 0.000 description 2
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 description 2
- 239000003098 androgen Substances 0.000 description 2
- 229940030486 androgens Drugs 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 229940046836 anti-estrogen Drugs 0.000 description 2
- 230000001833 anti-estrogenic effect Effects 0.000 description 2
- 239000000611 antibody drug conjugate Substances 0.000 description 2
- 229940041181 antineoplastic drug Drugs 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001541 aziridines Chemical class 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- QZPQTZZNNJUOLS-UHFFFAOYSA-N beta-lapachone Chemical compound C12=CC=CC=C2C(=O)C(=O)C2=C1OC(C)(C)CC2 QZPQTZZNNJUOLS-UHFFFAOYSA-N 0.000 description 2
- 125000002619 bicyclic group Chemical group 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 2
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical class N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 230000009702 cancer cell proliferation Effects 0.000 description 2
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 2
- 229960000590 celecoxib Drugs 0.000 description 2
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 2
- 229960004630 chlorambucil Drugs 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 229960004316 cisplatin Drugs 0.000 description 2
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 2
- ACSIXWWBWUQEHA-UHFFFAOYSA-N clodronic acid Chemical compound OP(O)(=O)C(Cl)(Cl)P(O)(O)=O ACSIXWWBWUQEHA-UHFFFAOYSA-N 0.000 description 2
- 238000002648 combination therapy Methods 0.000 description 2
- 238000012875 competitive assay Methods 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 229940111134 coxibs Drugs 0.000 description 2
- COFJBSXICYYSKG-OAUVCNBTSA-N cph2u7dndy Chemical compound OS(O)(=O)=O.C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 COFJBSXICYYSKG-OAUVCNBTSA-N 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 239000003255 cyclooxygenase 2 inhibitor Substances 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 229960003901 dacarbazine Drugs 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- VGONTNSXDCQUGY-UHFFFAOYSA-N desoxyinosine Natural products C1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 VGONTNSXDCQUGY-UHFFFAOYSA-N 0.000 description 2
- 229960000633 dextran sulfate Drugs 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- 230000005750 disease progression Effects 0.000 description 2
- AMRJKAQTDDKMCE-UHFFFAOYSA-N dolastatin Chemical compound CC(C)C(N(C)C)C(=O)NC(C(C)C)C(=O)N(C)C(C(C)C)C(OC)CC(=O)N1CCCC1C(OC)C(C)C(=O)NC(C=1SC=CN=1)CC1=CC=CC=C1 AMRJKAQTDDKMCE-UHFFFAOYSA-N 0.000 description 2
- 229930188854 dolastatin Natural products 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- VLCYCQAOQCDTCN-UHFFFAOYSA-N eflornithine Chemical compound NCCCC(N)(C(F)F)C(O)=O VLCYCQAOQCDTCN-UHFFFAOYSA-N 0.000 description 2
- 229960001904 epirubicin Drugs 0.000 description 2
- 229930013356 epothilone Natural products 0.000 description 2
- 150000003883 epothilone derivatives Chemical class 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000000328 estrogen antagonist Substances 0.000 description 2
- 229960005420 etoposide Drugs 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 235000019688 fish Nutrition 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 238000002509 fluorescent in situ hybridization Methods 0.000 description 2
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 2
- VVIAGPKUTFNRDU-ABLWVSNPSA-N folinic acid Chemical compound C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-ABLWVSNPSA-N 0.000 description 2
- 235000008191 folinic acid Nutrition 0.000 description 2
- 239000011672 folinic acid Substances 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- CHPZKNULDCNCBW-UHFFFAOYSA-N gallium nitrate Chemical compound [Ga+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CHPZKNULDCNCBW-UHFFFAOYSA-N 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 238000011223 gene expression profiling Methods 0.000 description 2
- 230000004547 gene signature Effects 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 2
- 229960001101 ifosfamide Drugs 0.000 description 2
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 238000011532 immunohistochemical staining Methods 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- GURKHSYORGJETM-WAQYZQTGSA-N irinotecan hydrochloride (anhydrous) Chemical compound Cl.C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 GURKHSYORGJETM-WAQYZQTGSA-N 0.000 description 2
- 238000001155 isoelectric focusing Methods 0.000 description 2
- 229940043355 kinase inhibitor Drugs 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 description 2
- 229960001691 leucovorin Drugs 0.000 description 2
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 2
- 229960004338 leuprorelin Drugs 0.000 description 2
- DHMTURDWPRKSOA-RUZDIDTESA-N lonafarnib Chemical compound C1CN(C(=O)N)CCC1CC(=O)N1CCC([C@@H]2C3=C(Br)C=C(Cl)C=C3CCC3=CC(Br)=CN=C32)CC1 DHMTURDWPRKSOA-RUZDIDTESA-N 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000035800 maturation Effects 0.000 description 2
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 2
- 229960004961 mechlorethamine Drugs 0.000 description 2
- 229960004296 megestrol acetate Drugs 0.000 description 2
- RQZAXGRLVPAYTJ-GQFGMJRRSA-N megestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 RQZAXGRLVPAYTJ-GQFGMJRRSA-N 0.000 description 2
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 2
- 229960001924 melphalan Drugs 0.000 description 2
- 229960001428 mercaptopurine Drugs 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 230000001394 metastastic effect Effects 0.000 description 2
- 238000010208 microarray analysis Methods 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 229960001156 mitoxantrone Drugs 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- UPSFMJHZUCSEHU-JYGUBCOQSA-N n-[(2s,3r,4r,5s,6r)-2-[(2r,3s,4r,5r,6s)-5-acetamido-4-hydroxy-2-(hydroxymethyl)-6-(4-methyl-2-oxochromen-7-yl)oxyoxan-3-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide Chemical compound CC(=O)N[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@H]1[C@H](O)[C@@H](NC(C)=O)[C@H](OC=2C=C3OC(=O)C=C(C)C3=CC=2)O[C@@H]1CO UPSFMJHZUCSEHU-JYGUBCOQSA-N 0.000 description 2
- QZGIWPZCWHMVQL-UIYAJPBUSA-N neocarzinostatin chromophore Chemical compound O1[C@H](C)[C@H](O)[C@H](O)[C@@H](NC)[C@H]1O[C@@H]1C/2=C/C#C[C@H]3O[C@@]3([C@@H]3OC(=O)OC3)C#CC\2=C[C@H]1OC(=O)C1=C(O)C=CC2=C(C)C=C(OC)C=C12 QZGIWPZCWHMVQL-UIYAJPBUSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002777 nucleoside Substances 0.000 description 2
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 2
- 229960001756 oxaliplatin Drugs 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- SECPZKHBENQXJG-FPLPWBNLSA-N palmitoleic acid Chemical compound CCCCCC\C=C/CCCCCCCC(O)=O SECPZKHBENQXJG-FPLPWBNLSA-N 0.000 description 2
- WRUUGTRCQOWXEG-UHFFFAOYSA-N pamidronate Chemical compound NCCC(O)(P(O)(O)=O)P(O)(O)=O WRUUGTRCQOWXEG-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 2
- 102000013415 peroxidase activity proteins Human genes 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229940068977 polysorbate 20 Drugs 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- ZCCUUQDIBDJBTK-UHFFFAOYSA-N psoralen Chemical compound C1=C2OC(=O)C=CC2=CC2=C1OC=C2 ZCCUUQDIBDJBTK-UHFFFAOYSA-N 0.000 description 2
- 229950010131 puromycin Drugs 0.000 description 2
- 229960004622 raloxifene Drugs 0.000 description 2
- 235000019515 salmon Nutrition 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229940095743 selective estrogen receptor modulator Drugs 0.000 description 2
- 239000000333 selective estrogen receptor modulator Substances 0.000 description 2
- 238000013207 serial dilution Methods 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- PVYJZLYGTZKPJE-UHFFFAOYSA-N streptonigrin Chemical compound C=1C=C2C(=O)C(OC)=C(N)C(=O)C2=NC=1C(C=1N)=NC(C(O)=O)=C(C)C=1C1=CC=C(OC)C(OC)=C1O PVYJZLYGTZKPJE-UHFFFAOYSA-N 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 229960001603 tamoxifen Drugs 0.000 description 2
- RCINICONZNJXQF-XAZOAEDWSA-N taxol® Chemical compound O([C@@H]1[C@@]2(CC(C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3(C21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-XAZOAEDWSA-N 0.000 description 2
- 229940063683 taxotere Drugs 0.000 description 2
- 229960001196 thiotepa Drugs 0.000 description 2
- 229960003087 tioguanine Drugs 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- 229930013292 trichothecene Natural products 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 229960004276 zoledronic acid Drugs 0.000 description 2
- DNXHEGUUPJUMQT-UHFFFAOYSA-N (+)-estrone Natural products OC1=CC=C2C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 DNXHEGUUPJUMQT-UHFFFAOYSA-N 0.000 description 1
- NNJPGOLRFBJNIW-HNNXBMFYSA-N (-)-demecolcine Chemical compound C1=C(OC)C(=O)C=C2[C@@H](NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-HNNXBMFYSA-N 0.000 description 1
- JKHVDAUOODACDU-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(2,5-dioxopyrrol-1-yl)propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCN1C(=O)C=CC1=O JKHVDAUOODACDU-UHFFFAOYSA-N 0.000 description 1
- PVGATNRYUYNBHO-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-(2,5-dioxopyrrol-1-yl)butanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCCN1C(=O)C=CC1=O PVGATNRYUYNBHO-UHFFFAOYSA-N 0.000 description 1
- BQWBEDSJTMWJAE-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-[(2-iodoacetyl)amino]benzoate Chemical compound C1=CC(NC(=O)CI)=CC=C1C(=O)ON1C(=O)CCC1=O BQWBEDSJTMWJAE-UHFFFAOYSA-N 0.000 description 1
- PMJWDPGOWBRILU-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-[4-(2,5-dioxopyrrol-1-yl)phenyl]butanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCCC(C=C1)=CC=C1N1C(=O)C=CC1=O PMJWDPGOWBRILU-UHFFFAOYSA-N 0.000 description 1
- VLARLSIGSPVYHX-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 6-(2,5-dioxopyrrol-1-yl)hexanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCN1C(=O)C=CC1=O VLARLSIGSPVYHX-UHFFFAOYSA-N 0.000 description 1
- WCMOHMXWOOBVMZ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 6-[3-(2,5-dioxopyrrol-1-yl)propanoylamino]hexanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCNC(=O)CCN1C(=O)C=CC1=O WCMOHMXWOOBVMZ-UHFFFAOYSA-N 0.000 description 1
- IHVODYOQUSEYJJ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 6-[[4-[(2,5-dioxopyrrol-1-yl)methyl]cyclohexanecarbonyl]amino]hexanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCNC(=O)C(CC1)CCC1CN1C(=O)C=CC1=O IHVODYOQUSEYJJ-UHFFFAOYSA-N 0.000 description 1
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical group C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 1
- WDQLRUYAYXDIFW-RWKIJVEZSA-N (2r,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-4-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-6-(hydroxymethyl)oxane-2,3,5-triol Chemical compound O[C@@H]1[C@@H](CO)O[C@@H](O)[C@H](O)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@@H](CO[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)O1 WDQLRUYAYXDIFW-RWKIJVEZSA-N 0.000 description 1
- RIWLPSIAFBLILR-WVNGMBSFSA-N (2s)-1-[(2s)-2-[[(2s,3s)-2-[[(2s)-2-[[(2s,3r)-2-[[(2r,3s)-2-[[(2s)-2-[[2-[[2-[acetyl(methyl)amino]acetyl]amino]acetyl]amino]-3-methylbutanoyl]amino]-3-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]pentanoyl]amino]-3-methylpentanoyl]amino]-5-(diaminomethy Chemical compound CC(=O)N(C)CC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1CCC[C@H]1C(=O)NCC RIWLPSIAFBLILR-WVNGMBSFSA-N 0.000 description 1
- MFRNYXJJRJQHNW-DEMKXPNLSA-N (2s)-2-[[(2r,3r)-3-methoxy-3-[(2s)-1-[(3r,4s,5s)-3-methoxy-5-methyl-4-[methyl-[(2s)-3-methyl-2-[[(2s)-3-methyl-2-(methylamino)butanoyl]amino]butanoyl]amino]heptanoyl]pyrrolidin-2-yl]-2-methylpropanoyl]amino]-3-phenylpropanoic acid Chemical compound CN[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H]([C@@H](C)CC)[C@H](OC)CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 MFRNYXJJRJQHNW-DEMKXPNLSA-N 0.000 description 1
- YXTKHLHCVFUPPT-YYFJYKOTSA-N (2s)-2-[[4-[(2-amino-5-formyl-4-oxo-1,6,7,8-tetrahydropteridin-6-yl)methylamino]benzoyl]amino]pentanedioic acid;(1r,2r)-1,2-dimethanidylcyclohexane;5-fluoro-1h-pyrimidine-2,4-dione;oxalic acid;platinum(2+) Chemical compound [Pt+2].OC(=O)C(O)=O.[CH2-][C@@H]1CCCC[C@H]1[CH2-].FC1=CNC(=O)NC1=O.C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 YXTKHLHCVFUPPT-YYFJYKOTSA-N 0.000 description 1
- FLWWDYNPWOSLEO-HQVZTVAUSA-N (2s)-2-[[4-[1-(2-amino-4-oxo-1h-pteridin-6-yl)ethyl-methylamino]benzoyl]amino]pentanedioic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1C(C)N(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FLWWDYNPWOSLEO-HQVZTVAUSA-N 0.000 description 1
- CGMTUJFWROPELF-YPAAEMCBSA-N (3E,5S)-5-[(2S)-butan-2-yl]-3-(1-hydroxyethylidene)pyrrolidine-2,4-dione Chemical compound CC[C@H](C)[C@@H]1NC(=O)\C(=C(/C)O)C1=O CGMTUJFWROPELF-YPAAEMCBSA-N 0.000 description 1
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical group CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 1
- TVIRNGFXQVMMGB-OFWIHYRESA-N (3s,6r,10r,13e,16s)-16-[(2r,3r,4s)-4-chloro-3-hydroxy-4-phenylbutan-2-yl]-10-[(3-chloro-4-methoxyphenyl)methyl]-6-methyl-3-(2-methylpropyl)-1,4-dioxa-8,11-diazacyclohexadec-13-ene-2,5,9,12-tetrone Chemical compound C1=C(Cl)C(OC)=CC=C1C[C@@H]1C(=O)NC[C@@H](C)C(=O)O[C@@H](CC(C)C)C(=O)O[C@H]([C@H](C)[C@@H](O)[C@@H](Cl)C=2C=CC=CC=2)C/C=C/C(=O)N1 TVIRNGFXQVMMGB-OFWIHYRESA-N 0.000 description 1
- XRBSKUSTLXISAB-XVVDYKMHSA-N (5r,6r,7r,8r)-8-hydroxy-7-(hydroxymethyl)-5-(3,4,5-trimethoxyphenyl)-5,6,7,8-tetrahydrobenzo[f][1,3]benzodioxole-6-carboxylic acid Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H](CO)[C@@H]2C(O)=O)=C1 XRBSKUSTLXISAB-XVVDYKMHSA-N 0.000 description 1
- XRBSKUSTLXISAB-UHFFFAOYSA-N (7R,7'R,8R,8'R)-form-Podophyllic acid Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C(CO)C2C(O)=O)=C1 XRBSKUSTLXISAB-UHFFFAOYSA-N 0.000 description 1
- AESVUZLWRXEGEX-DKCAWCKPSA-N (7S,9R)-7-[(2S,4R,5R,6R)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione iron(3+) Chemical compound [Fe+3].COc1cccc2C(=O)c3c(O)c4C[C@@](O)(C[C@H](O[C@@H]5C[C@@H](N)[C@@H](O)[C@@H](C)O5)c4c(O)c3C(=O)c12)C(=O)CO AESVUZLWRXEGEX-DKCAWCKPSA-N 0.000 description 1
- JXVAMODRWBNUSF-KZQKBALLSA-N (7s,9r,10r)-7-[(2r,4s,5s,6s)-5-[[(2s,4as,5as,7s,9s,9ar,10ar)-2,9-dimethyl-3-oxo-4,4a,5a,6,7,9,9a,10a-octahydrodipyrano[4,2-a:4',3'-e][1,4]dioxin-7-yl]oxy]-4-(dimethylamino)-6-methyloxan-2-yl]oxy-10-[(2s,4s,5s,6s)-4-(dimethylamino)-5-hydroxy-6-methyloxan-2 Chemical compound O([C@@H]1C2=C(O)C=3C(=O)C4=CC=CC(O)=C4C(=O)C=3C(O)=C2[C@@H](O[C@@H]2O[C@@H](C)[C@@H](O[C@@H]3O[C@@H](C)[C@H]4O[C@@H]5O[C@@H](C)C(=O)C[C@@H]5O[C@H]4C3)[C@H](C2)N(C)C)C[C@]1(O)CC)[C@H]1C[C@H](N(C)C)[C@H](O)[C@H](C)O1 JXVAMODRWBNUSF-KZQKBALLSA-N 0.000 description 1
- INAUWOVKEZHHDM-PEDBPRJASA-N (7s,9s)-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-7-[(2r,4s,5s,6s)-5-hydroxy-6-methyl-4-morpholin-4-yloxan-2-yl]oxy-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione;hydrochloride Chemical compound Cl.N1([C@H]2C[C@@H](O[C@@H](C)[C@H]2O)O[C@H]2C[C@@](O)(CC=3C(O)=C4C(=O)C=5C=CC=C(C=5C(=O)C4=C(O)C=32)OC)C(=O)CO)CCOCC1 INAUWOVKEZHHDM-PEDBPRJASA-N 0.000 description 1
- RCFNNLSZHVHCEK-IMHLAKCZSA-N (7s,9s)-7-(4-amino-6-methyloxan-2-yl)oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione;hydrochloride Chemical compound [Cl-].O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)C1CC([NH3+])CC(C)O1 RCFNNLSZHVHCEK-IMHLAKCZSA-N 0.000 description 1
- NOPNWHSMQOXAEI-PUCKCBAPSA-N (7s,9s)-7-[(2r,4s,5s,6s)-4-(2,3-dihydropyrrol-1-yl)-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione Chemical compound N1([C@H]2C[C@@H](O[C@@H](C)[C@H]2O)O[C@H]2C[C@@](O)(CC=3C(O)=C4C(=O)C=5C=CC=C(C=5C(=O)C4=C(O)C=32)OC)C(=O)CO)CCC=C1 NOPNWHSMQOXAEI-PUCKCBAPSA-N 0.000 description 1
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 1
- IEXUMDBQLIVNHZ-YOUGDJEHSA-N (8s,11r,13r,14s,17s)-11-[4-(dimethylamino)phenyl]-17-hydroxy-17-(3-hydroxypropyl)-13-methyl-1,2,6,7,8,11,12,14,15,16-decahydrocyclopenta[a]phenanthren-3-one Chemical compound C1=CC(N(C)C)=CC=C1[C@@H]1C2=C3CCC(=O)C=C3CC[C@H]2[C@H](CC[C@]2(O)CCCO)[C@@]2(C)C1 IEXUMDBQLIVNHZ-YOUGDJEHSA-N 0.000 description 1
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LKJPYSCBVHEWIU-KRWDZBQOSA-N (R)-bicalutamide Chemical compound C([C@@](O)(C)C(=O)NC=1C=C(C(C#N)=CC=1)C(F)(F)F)S(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-KRWDZBQOSA-N 0.000 description 1
- AGNGYMCLFWQVGX-AGFFZDDWSA-N (e)-1-[(2s)-2-amino-2-carboxyethoxy]-2-diazonioethenolate Chemical compound OC(=O)[C@@H](N)CO\C([O-])=C\[N+]#N AGNGYMCLFWQVGX-AGFFZDDWSA-N 0.000 description 1
- OTPDWCMLUKMQNO-UHFFFAOYSA-N 1,2,3,4-tetrahydropyrimidine Chemical compound C1NCC=CN1 OTPDWCMLUKMQNO-UHFFFAOYSA-N 0.000 description 1
- FONKWHRXTPJODV-DNQXCXABSA-N 1,3-bis[2-[(8s)-8-(chloromethyl)-4-hydroxy-1-methyl-7,8-dihydro-3h-pyrrolo[3,2-e]indole-6-carbonyl]-1h-indol-5-yl]urea Chemical compound C1([C@H](CCl)CN2C(=O)C=3NC4=CC=C(C=C4C=3)NC(=O)NC=3C=C4C=C(NC4=CC=3)C(=O)N3C4=CC(O)=C5NC=C(C5=C4[C@H](CCl)C3)C)=C2C=C(O)C2=C1C(C)=CN2 FONKWHRXTPJODV-DNQXCXABSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- MYBLAOJMRYYKMS-RTRLPJTCSA-N 1-(2-chloroethyl)-1-nitroso-3-[(3r,4r,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]urea Chemical compound OC[C@H]1OC(O)[C@H](NC(=O)N(CCCl)N=O)[C@@H](O)[C@@H]1O MYBLAOJMRYYKMS-RTRLPJTCSA-N 0.000 description 1
- DIYPCWKHSODVAP-UHFFFAOYSA-N 1-[3-(2,5-dioxopyrrol-1-yl)benzoyl]oxy-2,5-dioxopyrrolidine-3-sulfonic acid Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)C1=CC=CC(N2C(C=CC2=O)=O)=C1 DIYPCWKHSODVAP-UHFFFAOYSA-N 0.000 description 1
- CULQNACJHGHAER-UHFFFAOYSA-N 1-[4-[(2-iodoacetyl)amino]benzoyl]oxy-2,5-dioxopyrrolidine-3-sulfonic acid Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)C1=CC=C(NC(=O)CI)C=C1 CULQNACJHGHAER-UHFFFAOYSA-N 0.000 description 1
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 1
- MQLACMBJVPINKE-UHFFFAOYSA-N 10-[(3-hydroxy-4-methoxyphenyl)methylidene]anthracen-9-one Chemical compound C1=C(O)C(OC)=CC=C1C=C1C2=CC=CC=C2C(=O)C2=CC=CC=C21 MQLACMBJVPINKE-UHFFFAOYSA-N 0.000 description 1
- PNDPGZBMCMUPRI-HVTJNCQCSA-N 10043-66-0 Chemical compound [131I][131I] PNDPGZBMCMUPRI-HVTJNCQCSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- YBBNVCVOACOHIG-UHFFFAOYSA-N 2,2-diamino-1,4-bis(4-azidophenyl)-3-butylbutane-1,4-dione Chemical compound C=1C=C(N=[N+]=[N-])C=CC=1C(=O)C(N)(N)C(CCCC)C(=O)C1=CC=C(N=[N+]=[N-])C=C1 YBBNVCVOACOHIG-UHFFFAOYSA-N 0.000 description 1
- XAJCVZJDLNBGKZ-UHFFFAOYSA-N 2,3,3a,4-tetrahydrofuro[2,3-c]pyridine Chemical group C1C=NC=C2OCCC21 XAJCVZJDLNBGKZ-UHFFFAOYSA-N 0.000 description 1
- BTOTXLJHDSNXMW-POYBYMJQSA-N 2,3-dideoxyuridine Chemical compound O1[C@H](CO)CC[C@@H]1N1C(=O)NC(=O)C=C1 BTOTXLJHDSNXMW-POYBYMJQSA-N 0.000 description 1
- KGLPWQKSKUVKMJ-UHFFFAOYSA-N 2,3-dihydrophthalazine-1,4-dione Chemical class C1=CC=C2C(=O)NNC(=O)C2=C1 KGLPWQKSKUVKMJ-UHFFFAOYSA-N 0.000 description 1
- BOMZMNZEXMAQQW-UHFFFAOYSA-N 2,5,11-trimethyl-6h-pyrido[4,3-b]carbazol-2-ium-9-ol;acetate Chemical compound CC([O-])=O.C[N+]1=CC=C2C(C)=C(NC=3C4=CC(O)=CC=3)C4=C(C)C2=C1 BOMZMNZEXMAQQW-UHFFFAOYSA-N 0.000 description 1
- FZDFGHZZPBUTGP-UHFFFAOYSA-N 2-[[2-[bis(carboxymethyl)amino]-3-(4-isothiocyanatophenyl)propyl]-[2-[bis(carboxymethyl)amino]propyl]amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)C(C)CN(CC(O)=O)CC(N(CC(O)=O)CC(O)=O)CC1=CC=C(N=C=S)C=C1 FZDFGHZZPBUTGP-UHFFFAOYSA-N 0.000 description 1
- FBUTXZSKZCQABC-UHFFFAOYSA-N 2-amino-1-methyl-7h-purine-6-thione Chemical compound S=C1N(C)C(N)=NC2=C1NC=N2 FBUTXZSKZCQABC-UHFFFAOYSA-N 0.000 description 1
- QCXJFISCRQIYID-IAEPZHFASA-N 2-amino-1-n-[(3s,6s,7r,10s,16s)-3-[(2s)-butan-2-yl]-7,11,14-trimethyl-2,5,9,12,15-pentaoxo-10-propan-2-yl-8-oxa-1,4,11,14-tetrazabicyclo[14.3.0]nonadecan-6-yl]-4,6-dimethyl-3-oxo-9-n-[(3s,6s,7r,10s,16s)-7,11,14-trimethyl-2,5,9,12,15-pentaoxo-3,10-di(propa Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N=C2C(C(=O)N[C@@H]3C(=O)N[C@H](C(N4CCC[C@H]4C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]3C)=O)[C@@H](C)CC)=C(N)C(=O)C(C)=C2O2)C2=C(C)C=C1 QCXJFISCRQIYID-IAEPZHFASA-N 0.000 description 1
- VNBAOSVONFJBKP-UHFFFAOYSA-N 2-chloro-n,n-bis(2-chloroethyl)propan-1-amine;hydrochloride Chemical compound Cl.CC(Cl)CN(CCCl)CCCl VNBAOSVONFJBKP-UHFFFAOYSA-N 0.000 description 1
- AOPRXJXHLWYPQR-UHFFFAOYSA-N 2-phenoxyacetamide Chemical class NC(=O)COC1=CC=CC=C1 AOPRXJXHLWYPQR-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- YIMDLWDNDGKDTJ-QLKYHASDSA-N 3'-deamino-3'-(3-cyanomorpholin-4-yl)doxorubicin Chemical compound N1([C@H]2C[C@@H](O[C@@H](C)[C@H]2O)O[C@H]2C[C@@](O)(CC=3C(O)=C4C(=O)C=5C=CC=C(C=5C(=O)C4=C(O)C=32)OC)C(=O)CO)CCOCC1C#N YIMDLWDNDGKDTJ-QLKYHASDSA-N 0.000 description 1
- PWMYMKOUNYTVQN-UHFFFAOYSA-N 3-(8,8-diethyl-2-aza-8-germaspiro[4.5]decan-2-yl)-n,n-dimethylpropan-1-amine Chemical compound C1C[Ge](CC)(CC)CCC11CN(CCCN(C)C)CC1 PWMYMKOUNYTVQN-UHFFFAOYSA-N 0.000 description 1
- QGJZLNKBHJESQX-UHFFFAOYSA-N 3-Epi-Betulin-Saeure Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C(=C)C)C5C4CCC3C21C QGJZLNKBHJESQX-UHFFFAOYSA-N 0.000 description 1
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 1
- MNUHYQZBNHDABI-UHFFFAOYSA-N 3-azabicyclo[3.1.0]hexan-6-amine Chemical compound C1NCC2C(N)C21 MNUHYQZBNHDABI-UHFFFAOYSA-N 0.000 description 1
- CLOUCVRNYSHRCF-UHFFFAOYSA-N 3beta-Hydroxy-20(29)-Lupen-3,27-oic acid Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C(O)=O)CCC5(C)CCC(C(=C)C)C5C4CCC3C21C CLOUCVRNYSHRCF-UHFFFAOYSA-N 0.000 description 1
- VXGRJERITKFWPL-UHFFFAOYSA-N 4',5'-Dihydropsoralen Natural products C1=C2OC(=O)C=CC2=CC2=C1OCC2 VXGRJERITKFWPL-UHFFFAOYSA-N 0.000 description 1
- CLPFFLWZZBQMAO-UHFFFAOYSA-N 4-(5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-5-yl)benzonitrile Chemical compound C1=CC(C#N)=CC=C1C1N2C=NC=C2CCC1 CLPFFLWZZBQMAO-UHFFFAOYSA-N 0.000 description 1
- AKJHMTWEGVYYSE-AIRMAKDCSA-N 4-HPR Chemical compound C=1C=C(O)C=CC=1NC(=O)/C=C(\C)/C=C/C=C(C)C=CC1=C(C)CCCC1(C)C AKJHMTWEGVYYSE-AIRMAKDCSA-N 0.000 description 1
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 1
- DODQJNMQWMSYGS-QPLCGJKRSA-N 4-[(z)-1-[4-[2-(dimethylamino)ethoxy]phenyl]-1-phenylbut-1-en-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 DODQJNMQWMSYGS-QPLCGJKRSA-N 0.000 description 1
- ZMRMMAOBSFSXLN-UHFFFAOYSA-N 4-[4-(2,5-dioxopyrrol-1-yl)phenyl]butanehydrazide Chemical compound C1=CC(CCCC(=O)NN)=CC=C1N1C(=O)C=CC1=O ZMRMMAOBSFSXLN-UHFFFAOYSA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- IDPUKCWIGUEADI-UHFFFAOYSA-N 5-[bis(2-chloroethyl)amino]uracil Chemical compound ClCCN(CCCl)C1=CNC(=O)NC1=O IDPUKCWIGUEADI-UHFFFAOYSA-N 0.000 description 1
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 1
- FHIDNBAQOFJWCA-UAKXSSHOSA-N 5-fluorouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 FHIDNBAQOFJWCA-UAKXSSHOSA-N 0.000 description 1
- WYXSYVWAUAUWLD-SHUUEZRQSA-N 6-azauridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=N1 WYXSYVWAUAUWLD-SHUUEZRQSA-N 0.000 description 1
- YCWQAMGASJSUIP-YFKPBYRVSA-N 6-diazo-5-oxo-L-norleucine Chemical compound OC(=O)[C@@H](N)CCC(=O)C=[N+]=[N-] YCWQAMGASJSUIP-YFKPBYRVSA-N 0.000 description 1
- 229960005538 6-diazo-5-oxo-L-norleucine Drugs 0.000 description 1
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 1
- CJIJXIFQYOPWTF-UHFFFAOYSA-N 7-hydroxycoumarin Natural products O1C(=O)C=CC2=CC(O)=CC=C21 CJIJXIFQYOPWTF-UHFFFAOYSA-N 0.000 description 1
- ZGXJTSGNIOSYLO-UHFFFAOYSA-N 88755TAZ87 Chemical compound NCC(=O)CCC(O)=O ZGXJTSGNIOSYLO-UHFFFAOYSA-N 0.000 description 1
- FUXVKZWTXQUGMW-FQEVSTJZSA-N 9-Aminocamptothecin Chemical compound C1=CC(N)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 FUXVKZWTXQUGMW-FQEVSTJZSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- HDZZVAMISRMYHH-UHFFFAOYSA-N 9beta-Ribofuranosyl-7-deazaadenin Natural products C1=CC=2C(N)=NC=NC=2N1C1OC(CO)C(O)C1O HDZZVAMISRMYHH-UHFFFAOYSA-N 0.000 description 1
- 208000035657 Abasia Diseases 0.000 description 1
- 108010066676 Abrin Proteins 0.000 description 1
- 102000042089 Actin family Human genes 0.000 description 1
- 108091080272 Actin family Proteins 0.000 description 1
- 102100034542 Acyl-CoA (8-3)-desaturase Human genes 0.000 description 1
- 101710159293 Acyl-CoA desaturase 1 Proteins 0.000 description 1
- 102100022299 All trans-polyprenyl-diphosphate synthase PDSS1 Human genes 0.000 description 1
- 102100021266 Alpha-(1,6)-fucosyltransferase Human genes 0.000 description 1
- CEIZFXOZIQNICU-UHFFFAOYSA-N Alternaria alternata Crofton-weed toxin Natural products CCC(C)C1NC(=O)C(C(C)=O)=C1O CEIZFXOZIQNICU-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-OUBTZVSYSA-N Ammonia-15N Chemical compound [15NH3] QGZKDVFQNNGYKY-OUBTZVSYSA-N 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 101000669426 Aspergillus restrictus Ribonuclease mitogillin Proteins 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical class C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 102000006942 B-Cell Maturation Antigen Human genes 0.000 description 1
- 108010008014 B-Cell Maturation Antigen Proteins 0.000 description 1
- 239000012664 BCL-2-inhibitor Substances 0.000 description 1
- 108090000363 Bacterial Luciferases Proteins 0.000 description 1
- 229940123711 Bcl2 inhibitor Drugs 0.000 description 1
- VGGGPCQERPFHOB-MCIONIFRSA-N Bestatin Chemical compound CC(C)C[C@H](C(O)=O)NC(=O)[C@@H](O)[C@H](N)CC1=CC=CC=C1 VGGGPCQERPFHOB-MCIONIFRSA-N 0.000 description 1
- DIZWSDNSTNAYHK-XGWVBXMLSA-N Betulinic acid Natural products CC(=C)[C@@H]1C[C@H]([C@H]2CC[C@]3(C)[C@H](CC[C@@H]4[C@@]5(C)CC[C@H](O)C(C)(C)[C@@H]5CC[C@@]34C)[C@@H]12)C(=O)O DIZWSDNSTNAYHK-XGWVBXMLSA-N 0.000 description 1
- 229940122361 Bisphosphonate Drugs 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- MBABCNBNDNGODA-LTGLSHGVSA-N Bullatacin Natural products O=C1C(C[C@H](O)CCCCCCCCCC[C@@H](O)[C@@H]2O[C@@H]([C@@H]3O[C@H]([C@@H](O)CCCCCCCCCC)CC3)CC2)=C[C@H](C)O1 MBABCNBNDNGODA-LTGLSHGVSA-N 0.000 description 1
- KGGVWMAPBXIMEM-ZRTAFWODSA-N Bullatacinone Chemical compound O1[C@@H]([C@@H](O)CCCCCCCCCC)CC[C@@H]1[C@@H]1O[C@@H]([C@H](O)CCCCCCCCCC[C@H]2OC(=O)[C@H](CC(C)=O)C2)CC1 KGGVWMAPBXIMEM-ZRTAFWODSA-N 0.000 description 1
- KGGVWMAPBXIMEM-JQFCFGFHSA-N Bullatacinone Natural products O=C(C[C@H]1C(=O)O[C@H](CCCCCCCCCC[C@H](O)[C@@H]2O[C@@H]([C@@H]3O[C@@H]([C@@H](O)CCCCCCCCCC)CC3)CC2)C1)C KGGVWMAPBXIMEM-JQFCFGFHSA-N 0.000 description 1
- 108010037003 Buserelin Proteins 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- QCMYYKRYFNMIEC-UHFFFAOYSA-N COP(O)=O Chemical class COP(O)=O QCMYYKRYFNMIEC-UHFFFAOYSA-N 0.000 description 1
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 101710158575 Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase Proteins 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- OKTJSMMVPCPJKN-OUBTZVSYSA-N Carbon-13 Chemical compound [13C] OKTJSMMVPCPJKN-OUBTZVSYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-NJFSPNSNSA-N Carbon-14 Chemical compound [14C] OKTJSMMVPCPJKN-NJFSPNSNSA-N 0.000 description 1
- SHHKQEUPHAENFK-UHFFFAOYSA-N Carboquone Chemical compound O=C1C(C)=C(N2CC2)C(=O)C(C(COC(N)=O)OC)=C1N1CC1 SHHKQEUPHAENFK-UHFFFAOYSA-N 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- AOCCBINRVIKJHY-UHFFFAOYSA-N Carmofur Chemical compound CCCCCCNC(=O)N1C=C(F)C(=O)NC1=O AOCCBINRVIKJHY-UHFFFAOYSA-N 0.000 description 1
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 102000003952 Caspase 3 Human genes 0.000 description 1
- 108090000397 Caspase 3 Proteins 0.000 description 1
- 102000004041 Caspase 7 Human genes 0.000 description 1
- 108090000567 Caspase 7 Proteins 0.000 description 1
- 238000003731 Caspase Glo 3/7 Assay Methods 0.000 description 1
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 description 1
- XCDXSSFOJZZGQC-UHFFFAOYSA-N Chlornaphazine Chemical compound C1=CC=CC2=CC(N(CCCl)CCCl)=CC=C21 XCDXSSFOJZZGQC-UHFFFAOYSA-N 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 206010048832 Colon adenoma Diseases 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 101150073133 Cpt1a gene Proteins 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 108700032819 Croton tiglium crotin II Proteins 0.000 description 1
- 229930188224 Cryptophycin Natural products 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 102100037579 D-3-phosphoglycerate dehydrogenase Human genes 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 239000012624 DNA alkylating agent Substances 0.000 description 1
- 229940124087 DNA topoisomerase II inhibitor Drugs 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- XXGMIHXASFDFSM-UHFFFAOYSA-N Delta9-tetrahydrocannabinol Natural products CCCCCc1cc2OC(C)(C)C3CCC(=CC3c2c(O)c1O)C XXGMIHXASFDFSM-UHFFFAOYSA-N 0.000 description 1
- NNJPGOLRFBJNIW-UHFFFAOYSA-N Demecolcine Natural products C1=C(OC)C(=O)C=C2C(NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-UHFFFAOYSA-N 0.000 description 1
- 108010002156 Depsipeptides Proteins 0.000 description 1
- AUGQEEXBDZWUJY-ZLJUKNTDSA-N Diacetoxyscirpenol Chemical compound C([C@]12[C@]3(C)[C@H](OC(C)=O)[C@@H](O)[C@H]1O[C@@H]1C=C(C)CC[C@@]13COC(=O)C)O2 AUGQEEXBDZWUJY-ZLJUKNTDSA-N 0.000 description 1
- AUGQEEXBDZWUJY-UHFFFAOYSA-N Diacetoxyscirpenol Natural products CC(=O)OCC12CCC(C)=CC1OC1C(O)C(OC(C)=O)C2(C)C11CO1 AUGQEEXBDZWUJY-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- ZQZFYGIXNQKOAV-OCEACIFDSA-N Droloxifene Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=C(O)C=CC=1)\C1=CC=C(OCCN(C)C)C=C1 ZQZFYGIXNQKOAV-OCEACIFDSA-N 0.000 description 1
- CYQFCXCEBYINGO-DLBZAZTESA-N Dronabinol Natural products C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@H]21 CYQFCXCEBYINGO-DLBZAZTESA-N 0.000 description 1
- 229930193152 Dynemicin Natural products 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- AFMYMMXSQGUCBK-UHFFFAOYSA-N Endynamicin A Natural products C1#CC=CC#CC2NC(C=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C(O)=C3)=C3C34OC32C(C)C(C(O)=O)=C(OC)C41 AFMYMMXSQGUCBK-UHFFFAOYSA-N 0.000 description 1
- SAMRUMKYXPVKPA-VFKOLLTISA-N Enocitabine Chemical compound O=C1N=C(NC(=O)CCCCCCCCCCCCCCCCCCCCC)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 SAMRUMKYXPVKPA-VFKOLLTISA-N 0.000 description 1
- OBMLHUPNRURLOK-XGRAFVIBSA-N Epitiostanol Chemical compound C1[C@@H]2S[C@@H]2C[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@H]21 OBMLHUPNRURLOK-XGRAFVIBSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 229930189413 Esperamicin Natural products 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 101710082714 Exotoxin A Proteins 0.000 description 1
- 108091008794 FGF receptors Proteins 0.000 description 1
- 229940125832 FGFR3 inhibitor Drugs 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102100021066 Fibroblast growth factor receptor substrate 2 Human genes 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 241000724791 Filamentous phage Species 0.000 description 1
- 108090000331 Firefly luciferases Proteins 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 108010015133 Galactose oxidase Proteins 0.000 description 1
- 102000002464 Galactosidases Human genes 0.000 description 1
- 108010093031 Galactosidases Proteins 0.000 description 1
- 108700004714 Gelonium multiflorum GEL Proteins 0.000 description 1
- 208000034951 Genetic Translocation Diseases 0.000 description 1
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 1
- 102100022624 Glucoamylase Human genes 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- BLCLNMBMMGCOAS-URPVMXJPSA-N Goserelin Chemical compound C([C@@H](C(=O)N[C@H](COC(C)(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1[C@@H](CCC1)C(=O)NNC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 BLCLNMBMMGCOAS-URPVMXJPSA-N 0.000 description 1
- 108010069236 Goserelin Proteins 0.000 description 1
- 244000041633 Grewia tenax Species 0.000 description 1
- 235000005612 Grewia tenax Nutrition 0.000 description 1
- 101000848239 Homo sapiens Acyl-CoA (8-3)-desaturase Proteins 0.000 description 1
- 101000902409 Homo sapiens All trans-polyprenyl-diphosphate synthase PDSS1 Proteins 0.000 description 1
- 101000819490 Homo sapiens Alpha-(1,6)-fucosyltransferase Proteins 0.000 description 1
- 101000818410 Homo sapiens Fibroblast growth factor receptor substrate 2 Proteins 0.000 description 1
- 101000935587 Homo sapiens Flavin reductase (NADPH) Proteins 0.000 description 1
- 101000878605 Homo sapiens Low affinity immunoglobulin epsilon Fc receptor Proteins 0.000 description 1
- 101000610605 Homo sapiens Tumor necrosis factor receptor superfamily member 10A Proteins 0.000 description 1
- VSNHCAURESNICA-UHFFFAOYSA-N Hydroxyurea Chemical compound NC(=O)NO VSNHCAURESNICA-UHFFFAOYSA-N 0.000 description 1
- MPBVHIBUJCELCL-UHFFFAOYSA-N Ibandronate Chemical compound CCCCCN(C)CCC(O)(P(O)(O)=O)P(O)(O)=O MPBVHIBUJCELCL-UHFFFAOYSA-N 0.000 description 1
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 1
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 1
- JJKOTMDDZAJTGQ-DQSJHHFOSA-N Idoxifene Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN2CCCC2)=CC=1)/C1=CC=C(I)C=C1 JJKOTMDDZAJTGQ-DQSJHHFOSA-N 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010041012 Integrin alpha4 Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- ZCYVEMRRCGMTRW-AHCXROLUSA-N Iodine-123 Chemical compound [123I] ZCYVEMRRCGMTRW-AHCXROLUSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- 239000005511 L01XE05 - Sorafenib Substances 0.000 description 1
- 102100038609 Lactoperoxidase Human genes 0.000 description 1
- 108010023244 Lactoperoxidase Proteins 0.000 description 1
- 229920001491 Lentinan Polymers 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- MEPSBMMZQBMKHM-UHFFFAOYSA-N Lomatiol Natural products CC(=C/CC1=C(O)C(=O)c2ccccc2C1=O)CO MEPSBMMZQBMKHM-UHFFFAOYSA-N 0.000 description 1
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 1
- 102100038007 Low affinity immunoglobulin epsilon Fc receptor Human genes 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- VJRAUFKOOPNFIQ-UHFFFAOYSA-N Marcellomycin Natural products C12=C(O)C=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C=C2C(C(=O)OC)C(CC)(O)CC1OC(OC1C)CC(N(C)C)C1OC(OC1C)CC(O)C1OC1CC(O)C(O)C(C)O1 VJRAUFKOOPNFIQ-UHFFFAOYSA-N 0.000 description 1
- 229930126263 Maytansine Natural products 0.000 description 1
- IVDYZAAPOLNZKG-KWHRADDSSA-N Mepitiostane Chemical compound O([C@@H]1[C@]2(CC[C@@H]3[C@@]4(C)C[C@H]5S[C@H]5C[C@@H]4CC[C@H]3[C@@H]2CC1)C)C1(OC)CCCC1 IVDYZAAPOLNZKG-KWHRADDSSA-N 0.000 description 1
- VFKZTMPDYBFSTM-KVTDHHQDSA-N Mitobronitol Chemical compound BrC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CBr VFKZTMPDYBFSTM-KVTDHHQDSA-N 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- HRHKSTOGXBBQCB-UHFFFAOYSA-N Mitomycin E Natural products O=C1C(N)=C(C)C(=O)C2=C1C(COC(N)=O)C1(OC)C3N(C)C3CN12 HRHKSTOGXBBQCB-UHFFFAOYSA-N 0.000 description 1
- 244000302512 Momordica charantia Species 0.000 description 1
- 235000009811 Momordica charantia Nutrition 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- WTBIAPVQQBCLFP-UHFFFAOYSA-N N.N.N.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O Chemical compound N.N.N.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O WTBIAPVQQBCLFP-UHFFFAOYSA-N 0.000 description 1
- 108010072915 NAc-Sar-Gly-Val-(d-allo-Ile)-Thr-Nva-Ile-Arg-ProNEt Proteins 0.000 description 1
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- SYNHCENRCUAUNM-UHFFFAOYSA-N Nitrogen mustard N-oxide hydrochloride Chemical compound Cl.ClCC[N+]([O-])(C)CCCl SYNHCENRCUAUNM-UHFFFAOYSA-N 0.000 description 1
- KGTDRFCXGRULNK-UHFFFAOYSA-N Nogalamycin Natural products COC1C(OC)(C)C(OC)C(C)OC1OC1C2=C(O)C(C(=O)C3=C(O)C=C4C5(C)OC(C(C(C5O)N(C)C)O)OC4=C3C3=O)=C3C=C2C(C(=O)OC)C(C)(O)C1 KGTDRFCXGRULNK-UHFFFAOYSA-N 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- 241000238413 Octopus Species 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 229930187135 Olivomycin Natural products 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 239000012828 PI3K inhibitor Substances 0.000 description 1
- 241000609499 Palicourea Species 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 235000021319 Palmitoleic acid Nutrition 0.000 description 1
- VREZDOWOLGNDPW-ALTGWBOUSA-N Pancratistatin Chemical compound C1=C2[C@H]3[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O)[C@@H]3NC(=O)C2=C(O)C2=C1OCO2 VREZDOWOLGNDPW-ALTGWBOUSA-N 0.000 description 1
- VREZDOWOLGNDPW-MYVCAWNPSA-N Pancratistatin Natural products O=C1N[C@H]2[C@H](O)[C@H](O)[C@H](O)[C@H](O)[C@@H]2c2c1c(O)c1OCOc1c2 VREZDOWOLGNDPW-MYVCAWNPSA-N 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108010057150 Peplomycin Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical group OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 108010053210 Phycocyanin Proteins 0.000 description 1
- 101100413173 Phytolacca americana PAP2 gene Proteins 0.000 description 1
- KMSKQZKKOZQFFG-HSUXVGOQSA-N Pirarubicin Chemical compound O([C@H]1[C@@H](N)C[C@@H](O[C@H]1C)O[C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1CCCCO1 KMSKQZKKOZQFFG-HSUXVGOQSA-N 0.000 description 1
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 1
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 1
- 108010051742 Platelet-Derived Growth Factor beta Receptor Proteins 0.000 description 1
- 102100026547 Platelet-derived growth factor receptor beta Human genes 0.000 description 1
- HFVNWDWLWUCIHC-GUPDPFMOSA-N Prednimustine Chemical compound O=C([C@@]1(O)CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)[C@@H](O)C[C@@]21C)COC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 HFVNWDWLWUCIHC-GUPDPFMOSA-N 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 101710083689 Probable capsid protein Proteins 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 102000009516 Protein Serine-Threonine Kinases Human genes 0.000 description 1
- 108010009341 Protein Serine-Threonine Kinases Proteins 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 102100024924 Protein kinase C alpha type Human genes 0.000 description 1
- 101710109947 Protein kinase C alpha type Proteins 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 241001506137 Rapa Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- OWPCHSCAPHNHAV-UHFFFAOYSA-N Rhizoxin Natural products C1C(O)C2(C)OC2C=CC(C)C(OC(=O)C2)CC2CC2OC2C(=O)OC1C(C)C(OC)C(C)=CC=CC(C)=CC1=COC(C)=N1 OWPCHSCAPHNHAV-UHFFFAOYSA-N 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- NSFWWJIQIKBZMJ-YKNYLIOZSA-N Roridin A Chemical compound C([C@]12[C@]3(C)[C@H]4C[C@H]1O[C@@H]1C=C(C)CC[C@@]13COC(=O)[C@@H](O)[C@H](C)CCO[C@H](\C=C\C=C/C(=O)O4)[C@H](O)C)O2 NSFWWJIQIKBZMJ-YKNYLIOZSA-N 0.000 description 1
- 238000011579 SCID mouse model Methods 0.000 description 1
- CIEYTVIYYGTCCI-UHFFFAOYSA-N SJ000286565 Natural products C1=CC=C2C(=O)C(CC=C(C)C)=C(O)C(=O)C2=C1 CIEYTVIYYGTCCI-UHFFFAOYSA-N 0.000 description 1
- 229920000519 Sizofiran Polymers 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- BXFOFFBJRFZBQZ-QYWOHJEZSA-N T-2 toxin Chemical compound C([C@@]12[C@]3(C)[C@H](OC(C)=O)[C@@H](O)[C@H]1O[C@H]1[C@]3(COC(C)=O)C[C@@H](C(=C1)C)OC(=O)CC(C)C)O2 BXFOFFBJRFZBQZ-QYWOHJEZSA-N 0.000 description 1
- WFWLQNSHRPWKFK-UHFFFAOYSA-N Tegafur Chemical compound O=C1NC(=O)C(F)=CN1C1OCCC1 WFWLQNSHRPWKFK-UHFFFAOYSA-N 0.000 description 1
- CBPNZQVSJQDFBE-FUXHJELOSA-N Temsirolimus Chemical compound C1C[C@@H](OC(=O)C(C)(CO)CO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 CBPNZQVSJQDFBE-FUXHJELOSA-N 0.000 description 1
- CGMTUJFWROPELF-UHFFFAOYSA-N Tenuazonic acid Natural products CCC(C)C1NC(=O)C(=C(C)/O)C1=O CGMTUJFWROPELF-UHFFFAOYSA-N 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 101710183280 Topoisomerase Proteins 0.000 description 1
- 239000000317 Topoisomerase II Inhibitor Substances 0.000 description 1
- IWEQQRMGNVVKQW-OQKDUQJOSA-N Toremifene citrate Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 IWEQQRMGNVVKQW-OQKDUQJOSA-N 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- UMILHIMHKXVDGH-UHFFFAOYSA-N Triethylene glycol diglycidyl ether Chemical compound C1OC1COCCOCCOCCOCC1CO1 UMILHIMHKXVDGH-UHFFFAOYSA-N 0.000 description 1
- FYAMXEPQQLNQDM-UHFFFAOYSA-N Tris(1-aziridinyl)phosphine oxide Chemical compound C1CN1P(N1CC1)(=O)N1CC1 FYAMXEPQQLNQDM-UHFFFAOYSA-N 0.000 description 1
- 102000004243 Tubulin Human genes 0.000 description 1
- 108090000704 Tubulin Proteins 0.000 description 1
- 102100040113 Tumor necrosis factor receptor superfamily member 10A Human genes 0.000 description 1
- 108010092464 Urate Oxidase Proteins 0.000 description 1
- 108010046334 Urease Proteins 0.000 description 1
- 101150117115 V gene Proteins 0.000 description 1
- 240000001866 Vernicia fordii Species 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 102100033220 Xanthine oxidase Human genes 0.000 description 1
- 108010093894 Xanthine oxidase Proteins 0.000 description 1
- ZYVSOIYQKUDENJ-ASUJBHBQSA-N [(2R,3R,4R,6R)-6-[[(6S,7S)-6-[(2S,4R,5R,6R)-4-[(2R,4R,5R,6R)-4-[(2S,4S,5S,6S)-5-acetyloxy-4-hydroxy-4,6-dimethyloxan-2-yl]oxy-5-hydroxy-6-methyloxan-2-yl]oxy-5-hydroxy-6-methyloxan-2-yl]oxy-7-[(3S,4R)-3,4-dihydroxy-1-methoxy-2-oxopentyl]-4,10-dihydroxy-3-methyl-5-oxo-7,8-dihydro-6H-anthracen-2-yl]oxy]-4-[(2R,4R,5R,6R)-4-hydroxy-5-methoxy-6-methyloxan-2-yl]oxy-2-methyloxan-3-yl] acetate Chemical class COC([C@@H]1Cc2cc3cc(O[C@@H]4C[C@@H](O[C@@H]5C[C@@H](O)[C@@H](OC)[C@@H](C)O5)[C@H](OC(C)=O)[C@@H](C)O4)c(C)c(O)c3c(O)c2C(=O)[C@H]1O[C@H]1C[C@@H](O[C@@H]2C[C@@H](O[C@H]3C[C@](C)(O)[C@@H](OC(C)=O)[C@H](C)O3)[C@H](O)[C@@H](C)O2)[C@H](O)[C@@H](C)O1)C(=O)[C@@H](O)[C@@H](C)O ZYVSOIYQKUDENJ-ASUJBHBQSA-N 0.000 description 1
- SPJCRMJCFSJKDE-ZWBUGVOYSA-N [(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] 2-[4-[bis(2-chloroethyl)amino]phenyl]acetate Chemical compound O([C@@H]1CC2=CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)C(=O)CC1=CC=C(N(CCCl)CCCl)C=C1 SPJCRMJCFSJKDE-ZWBUGVOYSA-N 0.000 description 1
- IFJUINDAXYAPTO-UUBSBJJBSA-N [(8r,9s,13s,14s,17s)-17-[2-[4-[4-[bis(2-chloroethyl)amino]phenyl]butanoyloxy]acetyl]oxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-3-yl] benzoate Chemical compound C([C@@H]1[C@@H](C2=CC=3)CC[C@]4([C@H]1CC[C@@H]4OC(=O)COC(=O)CCCC=1C=CC(=CC=1)N(CCCl)CCCl)C)CC2=CC=3OC(=O)C1=CC=CC=C1 IFJUINDAXYAPTO-UUBSBJJBSA-N 0.000 description 1
- IHGLINDYFMDHJG-UHFFFAOYSA-N [2-(4-methoxyphenyl)-3,4-dihydronaphthalen-1-yl]-[4-(2-pyrrolidin-1-ylethoxy)phenyl]methanone Chemical compound C1=CC(OC)=CC=C1C(CCC1=CC=CC=C11)=C1C(=O)C(C=C1)=CC=C1OCCN1CCCC1 IHGLINDYFMDHJG-UHFFFAOYSA-N 0.000 description 1
- XZSRRNFBEIOBDA-CFNBKWCHSA-N [2-[(2s,4s)-4-[(2r,4s,5s,6s)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-2,5,12-trihydroxy-7-methoxy-6,11-dioxo-3,4-dihydro-1h-tetracen-2-yl]-2-oxoethyl] 2,2-diethoxyacetate Chemical compound O([C@H]1C[C@](CC2=C(O)C=3C(=O)C4=CC=CC(OC)=C4C(=O)C=3C(O)=C21)(O)C(=O)COC(=O)C(OCC)OCC)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 XZSRRNFBEIOBDA-CFNBKWCHSA-N 0.000 description 1
- IEDXPSOJFSVCKU-HOKPPMCLSA-N [4-[[(2S)-5-(carbamoylamino)-2-[[(2S)-2-[6-(2,5-dioxopyrrolidin-1-yl)hexanoylamino]-3-methylbutanoyl]amino]pentanoyl]amino]phenyl]methyl N-[(2S)-1-[[(2S)-1-[[(3R,4S,5S)-1-[(2S)-2-[(1R,2R)-3-[[(1S,2R)-1-hydroxy-1-phenylpropan-2-yl]amino]-1-methoxy-2-methyl-3-oxopropyl]pyrrolidin-1-yl]-3-methoxy-5-methyl-1-oxoheptan-4-yl]-methylamino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]-N-methylcarbamate Chemical compound CC[C@H](C)[C@@H]([C@@H](CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C)[C@@H](O)c1ccccc1)OC)N(C)C(=O)[C@@H](NC(=O)[C@H](C(C)C)N(C)C(=O)OCc1ccc(NC(=O)[C@H](CCCNC(N)=O)NC(=O)[C@@H](NC(=O)CCCCCN2C(=O)CCC2=O)C(C)C)cc1)C(C)C IEDXPSOJFSVCKU-HOKPPMCLSA-N 0.000 description 1
- AIWRTTMUVOZGPW-HSPKUQOVSA-N abarelix Chemical compound C([C@@H](C(=O)N[C@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCNC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@H](C)C(N)=O)N(C)C(=O)[C@H](CO)NC(=O)[C@@H](CC=1C=NC=CC=1)NC(=O)[C@@H](CC=1C=CC(Cl)=CC=1)NC(=O)[C@@H](CC=1C=C2C=CC=CC2=CC=1)NC(C)=O)C1=CC=C(O)C=C1 AIWRTTMUVOZGPW-HSPKUQOVSA-N 0.000 description 1
- 108010023617 abarelix Proteins 0.000 description 1
- 229960002184 abarelix Drugs 0.000 description 1
- ZOZKYEHVNDEUCO-XUTVFYLZSA-N aceglatone Chemical compound O1C(=O)[C@H](OC(C)=O)[C@@H]2OC(=O)[C@@H](OC(=O)C)[C@@H]21 ZOZKYEHVNDEUCO-XUTVFYLZSA-N 0.000 description 1
- 229950002684 aceglatone Drugs 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 229930183665 actinomycin Natural products 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 229940037127 actonel Drugs 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 102000035181 adaptor proteins Human genes 0.000 description 1
- 108091005764 adaptor proteins Proteins 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 229950004955 adozelesin Drugs 0.000 description 1
- BYRVKDUQDLJUBX-JJCDCTGGSA-N adozelesin Chemical compound C1=CC=C2OC(C(=O)NC=3C=C4C=C(NC4=CC=3)C(=O)N3C[C@H]4C[C@]44C5=C(C(C=C43)=O)NC=C5C)=CC2=C1 BYRVKDUQDLJUBX-JJCDCTGGSA-N 0.000 description 1
- 229940009456 adriamycin Drugs 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229940062527 alendronate Drugs 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- 108010001818 alpha-sarcin Proteins 0.000 description 1
- 229960000473 altretamine Drugs 0.000 description 1
- 229940059260 amidate Drugs 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 229960002749 aminolevulinic acid Drugs 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- XCPGHVQEEXUHNC-UHFFFAOYSA-N amsacrine Chemical compound COC1=CC(NS(C)(=O)=O)=CC=C1NC1=C(C=CC=C2)C2=NC2=CC=CC=C12 XCPGHVQEEXUHNC-UHFFFAOYSA-N 0.000 description 1
- 229960001220 amsacrine Drugs 0.000 description 1
- 229960002932 anastrozole Drugs 0.000 description 1
- BBDAGFIXKZCXAH-CCXZUQQUSA-N ancitabine Chemical compound N=C1C=CN2[C@@H]3O[C@H](CO)[C@@H](O)[C@@H]3OC2=N1 BBDAGFIXKZCXAH-CCXZUQQUSA-N 0.000 description 1
- 229950000242 ancitabine Drugs 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- UKXZWEDNEGGXQX-UHFFFAOYSA-N aniline;piperidine Chemical compound C1CCNCC1.NC1=CC=CC=C1 UKXZWEDNEGGXQX-UHFFFAOYSA-N 0.000 description 1
- 150000001448 anilines Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- 230000002280 anti-androgenic effect Effects 0.000 description 1
- 238000011122 anti-angiogenic therapy Methods 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000000051 antiandrogen Substances 0.000 description 1
- 229940030495 antiandrogen sex hormone and modulator of the genital system Drugs 0.000 description 1
- 230000009833 antibody interaction Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000013059 antihormonal agent Substances 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 229940045687 antimetabolites folic acid analogs Drugs 0.000 description 1
- 229940045719 antineoplastic alkylating agent nitrosoureas Drugs 0.000 description 1
- 229940045720 antineoplastic alkylating drug epoxides Drugs 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 150000008209 arabinosides Chemical class 0.000 description 1
- 229940078010 arimidex Drugs 0.000 description 1
- 229940087620 aromasin Drugs 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 150000001502 aryl halides Chemical class 0.000 description 1
- 125000005228 aryl sulfonate group Chemical group 0.000 description 1
- 210000003567 ascitic fluid Anatomy 0.000 description 1
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 1
- 238000002820 assay format Methods 0.000 description 1
- 108010044540 auristatin Proteins 0.000 description 1
- 229960002756 azacitidine Drugs 0.000 description 1
- 229950011321 azaserine Drugs 0.000 description 1
- NXUSCSCBRVCRCN-UHFFFAOYSA-N benzamide;piperidine Chemical compound C1CCNCC1.NC(=O)C1=CC=CC=C1 NXUSCSCBRVCRCN-UHFFFAOYSA-N 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-M benzoate Chemical compound [O-]C(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-M 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 1
- QGJZLNKBHJESQX-FZFNOLFKSA-N betulinic acid Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CC[C@@H](C(=C)C)[C@@H]5[C@H]4CC[C@@H]3[C@]21C QGJZLNKBHJESQX-FZFNOLFKSA-N 0.000 description 1
- 229960002938 bexarotene Drugs 0.000 description 1
- 229960000997 bicalutamide Drugs 0.000 description 1
- 238000013357 binding ELISA Methods 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 229950008548 bisantrene Drugs 0.000 description 1
- 150000004663 bisphosphonates Chemical class 0.000 description 1
- 229950006844 bizelesin Drugs 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- 210000001772 blood platelet Anatomy 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229960001467 bortezomib Drugs 0.000 description 1
- 238000013276 bronchoscopy Methods 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 229960005520 bryostatin Drugs 0.000 description 1
- MJQUEDHRCUIRLF-TVIXENOKSA-N bryostatin 1 Chemical compound C([C@@H]1CC(/[C@@H]([C@@](C(C)(C)/C=C/2)(O)O1)OC(=O)/C=C/C=C/CCC)=C\C(=O)OC)[C@H]([C@@H](C)O)OC(=O)C[C@H](O)C[C@@H](O1)C[C@H](OC(C)=O)C(C)(C)[C@]1(O)C[C@@H]1C\C(=C\C(=O)OC)C[C@H]\2O1 MJQUEDHRCUIRLF-TVIXENOKSA-N 0.000 description 1
- MUIWQCKLQMOUAT-AKUNNTHJSA-N bryostatin 20 Natural products COC(=O)C=C1C[C@@]2(C)C[C@]3(O)O[C@](C)(C[C@@H](O)CC(=O)O[C@](C)(C[C@@]4(C)O[C@](O)(CC5=CC(=O)O[C@]45C)C(C)(C)C=C[C@@](C)(C1)O2)[C@@H](C)O)C[C@H](OC(=O)C(C)(C)C)C3(C)C MUIWQCKLQMOUAT-AKUNNTHJSA-N 0.000 description 1
- MBABCNBNDNGODA-LUVUIASKSA-N bullatacin Chemical compound O1[C@@H]([C@@H](O)CCCCCCCCCC)CC[C@@H]1[C@@H]1O[C@@H]([C@H](O)CCCCCCCCCC[C@@H](O)CC=2C(O[C@@H](C)C=2)=O)CC1 MBABCNBNDNGODA-LUVUIASKSA-N 0.000 description 1
- CUWODFFVMXJOKD-UVLQAERKSA-N buserelin Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](COC(C)(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 CUWODFFVMXJOKD-UVLQAERKSA-N 0.000 description 1
- 229960002719 buserelin Drugs 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 108700002839 cactinomycin Proteins 0.000 description 1
- 229950009908 cactinomycin Drugs 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229950009823 calusterone Drugs 0.000 description 1
- IVFYLRMMHVYGJH-PVPPCFLZSA-N calusterone Chemical compound C1C[C@]2(C)[C@](O)(C)CC[C@H]2[C@@H]2[C@@H](C)CC3=CC(=O)CC[C@]3(C)[C@H]21 IVFYLRMMHVYGJH-PVPPCFLZSA-N 0.000 description 1
- 229940088954 camptosar Drugs 0.000 description 1
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 description 1
- 229940127093 camptothecin Drugs 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 230000008758 canonical signaling Effects 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- 238000005251 capillar electrophoresis Methods 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- YAYRGNWWLMLWJE-UHFFFAOYSA-L carboplatin Chemical compound O=C1O[Pt](N)(N)OC(=O)C11CCC1 YAYRGNWWLMLWJE-UHFFFAOYSA-L 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 229960002115 carboquone Drugs 0.000 description 1
- 150000003857 carboxamides Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- XREUEWVEMYWFFA-CSKJXFQVSA-N carminomycin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=C(O)C=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XREUEWVEMYWFFA-CSKJXFQVSA-N 0.000 description 1
- 229930188550 carminomycin Natural products 0.000 description 1
- XREUEWVEMYWFFA-UHFFFAOYSA-N carminomycin I Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=C(O)C=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XREUEWVEMYWFFA-UHFFFAOYSA-N 0.000 description 1
- 229960003261 carmofur Drugs 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 229950001725 carubicin Drugs 0.000 description 1
- BBZDXMBRAFTCAA-AREMUKBSSA-N carzelesin Chemical compound C1=2NC=C(C)C=2C([C@H](CCl)CN2C(=O)C=3NC4=CC=C(C=C4C=3)NC(=O)C3=CC4=CC=C(C=C4O3)N(CC)CC)=C2C=C1OC(=O)NC1=CC=CC=C1 BBZDXMBRAFTCAA-AREMUKBSSA-N 0.000 description 1
- 229950007509 carzelesin Drugs 0.000 description 1
- 108010047060 carzinophilin Proteins 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 238000012054 celltiter-glo Methods 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229950008249 chlornaphazine Drugs 0.000 description 1
- 229960001480 chlorozotocin Drugs 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- SECPZKHBENQXJG-UHFFFAOYSA-N cis-palmitoleic acid Natural products CCCCCCC=CCCCCCCCC(O)=O SECPZKHBENQXJG-UHFFFAOYSA-N 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229960002286 clodronic acid Drugs 0.000 description 1
- HJKBJIYDJLVSAO-UHFFFAOYSA-L clodronic acid disodium salt Chemical compound [Na+].[Na+].OP([O-])(=O)C(Cl)(Cl)P(O)([O-])=O HJKBJIYDJLVSAO-UHFFFAOYSA-L 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000006258 combinatorial reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000024203 complement activation Effects 0.000 description 1
- 229940125773 compound 10 Drugs 0.000 description 1
- 229940125797 compound 12 Drugs 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000005574 cross-species transmission Effects 0.000 description 1
- PSNOPSMXOBPNNV-VVCTWANISA-N cryptophycin 1 Chemical compound C1=C(Cl)C(OC)=CC=C1C[C@@H]1C(=O)NC[C@@H](C)C(=O)O[C@@H](CC(C)C)C(=O)O[C@H]([C@H](C)[C@@H]2[C@H](O2)C=2C=CC=CC=2)C/C=C/C(=O)N1 PSNOPSMXOBPNNV-VVCTWANISA-N 0.000 description 1
- 108010089438 cryptophycin 1 Proteins 0.000 description 1
- 108010090203 cryptophycin 8 Proteins 0.000 description 1
- PSNOPSMXOBPNNV-UHFFFAOYSA-N cryptophycin-327 Natural products C1=C(Cl)C(OC)=CC=C1CC1C(=O)NCC(C)C(=O)OC(CC(C)C)C(=O)OC(C(C)C2C(O2)C=2C=CC=CC=2)CC=CC(=O)N1 PSNOPSMXOBPNNV-UHFFFAOYSA-N 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- 125000001295 dansyl group Chemical group [H]C1=C([H])C(N(C([H])([H])[H])C([H])([H])[H])=C2C([H])=C([H])C([H])=C(C2=C1[H])S(*)(=O)=O 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 229960005052 demecolcine Drugs 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 229950003913 detorubicin Drugs 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229930191339 dianthin Natural products 0.000 description 1
- WVYXNIXAMZOZFK-UHFFFAOYSA-N diaziquone Chemical compound O=C1C(NC(=O)OCC)=C(N2CC2)C(=O)C(NC(=O)OCC)=C1N1CC1 WVYXNIXAMZOZFK-UHFFFAOYSA-N 0.000 description 1
- 229950002389 diaziquone Drugs 0.000 description 1
- 150000008049 diazo compounds Chemical class 0.000 description 1
- RGLYKWWBQGJZGM-ISLYRVAYSA-N diethylstilbestrol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(\CC)C1=CC=C(O)C=C1 RGLYKWWBQGJZGM-ISLYRVAYSA-N 0.000 description 1
- 229960000452 diethylstilbestrol Drugs 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- PZXJOHSZQAEJFE-UHFFFAOYSA-N dihydrobetulinic acid Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C(C)C)C5C4CCC3C21C PZXJOHSZQAEJFE-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- ZLFRJHOBQVVTOJ-UHFFFAOYSA-N dimethyl hexanediimidate Chemical compound COC(=N)CCCCC(=N)OC ZLFRJHOBQVVTOJ-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 206010013023 diphtheria Diseases 0.000 description 1
- ZWIBGKZDAWNIFC-UHFFFAOYSA-N disuccinimidyl suberate Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCCC(=O)ON1C(=O)CCC1=O ZWIBGKZDAWNIFC-UHFFFAOYSA-N 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 description 1
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 230000007783 downstream signaling Effects 0.000 description 1
- ZWAOHEXOSAUJHY-ZIYNGMLESA-N doxifluridine Chemical compound O[C@@H]1[C@H](O)[C@@H](C)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ZWAOHEXOSAUJHY-ZIYNGMLESA-N 0.000 description 1
- 229950005454 doxifluridine Drugs 0.000 description 1
- 229940115080 doxil Drugs 0.000 description 1
- 229950004203 droloxifene Drugs 0.000 description 1
- NOTIQUSPUUHHEH-UXOVVSIBSA-N dromostanolone propionate Chemical compound C([C@@H]1CC2)C(=O)[C@H](C)C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](OC(=O)CC)[C@@]2(C)CC1 NOTIQUSPUUHHEH-UXOVVSIBSA-N 0.000 description 1
- 229960004242 dronabinol Drugs 0.000 description 1
- 229950004683 drostanolone propionate Drugs 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229960005501 duocarmycin Drugs 0.000 description 1
- VQNATVDKACXKTF-XELLLNAOSA-N duocarmycin Chemical compound COC1=C(OC)C(OC)=C2NC(C(=O)N3C4=CC(=O)C5=C([C@@]64C[C@@H]6C3)C=C(N5)C(=O)OC)=CC2=C1 VQNATVDKACXKTF-XELLLNAOSA-N 0.000 description 1
- 229930184221 duocarmycin Natural products 0.000 description 1
- AFMYMMXSQGUCBK-AKMKHHNQSA-N dynemicin a Chemical compound C1#C\C=C/C#C[C@@H]2NC(C=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C(O)=C3)=C3[C@@]34O[C@]32[C@@H](C)C(C(O)=O)=C(OC)[C@H]41 AFMYMMXSQGUCBK-AKMKHHNQSA-N 0.000 description 1
- 230000008482 dysregulation Effects 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- FSIRXIHZBIXHKT-MHTVFEQDSA-N edatrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CC(CC)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FSIRXIHZBIXHKT-MHTVFEQDSA-N 0.000 description 1
- 229950006700 edatrexate Drugs 0.000 description 1
- 229960002759 eflornithine Drugs 0.000 description 1
- 229940121647 egfr inhibitor Drugs 0.000 description 1
- XOPYFXBZMVTEJF-PDACKIITSA-N eleutherobin Chemical compound C(/[C@H]1[C@H](C(=CC[C@@H]1C(C)C)C)C[C@@H]([C@@]1(C)O[C@@]2(C=C1)OC)OC(=O)\C=C\C=1N=CN(C)C=1)=C2\CO[C@@H]1OC[C@@H](O)[C@@H](O)[C@@H]1OC(C)=O XOPYFXBZMVTEJF-PDACKIITSA-N 0.000 description 1
- XOPYFXBZMVTEJF-UHFFFAOYSA-N eleutherobin Natural products C1=CC2(OC)OC1(C)C(OC(=O)C=CC=1N=CN(C)C=1)CC(C(=CCC1C(C)C)C)C1C=C2COC1OCC(O)C(O)C1OC(C)=O XOPYFXBZMVTEJF-UHFFFAOYSA-N 0.000 description 1
- 229950000549 elliptinium acetate Drugs 0.000 description 1
- 229940120655 eloxatin Drugs 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 150000002081 enamines Chemical class 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- JOZGNYDSEBIJDH-UHFFFAOYSA-N eniluracil Chemical compound O=C1NC=C(C#C)C(=O)N1 JOZGNYDSEBIJDH-UHFFFAOYSA-N 0.000 description 1
- 229950010213 eniluracil Drugs 0.000 description 1
- 229950011487 enocitabine Drugs 0.000 description 1
- 108010028531 enomycin Proteins 0.000 description 1
- 230000001973 epigenetic effect Effects 0.000 description 1
- YJGVMLPVUAXIQN-UHFFFAOYSA-N epipodophyllotoxin Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YJGVMLPVUAXIQN-UHFFFAOYSA-N 0.000 description 1
- 229950002973 epitiostanol Drugs 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- ITSGNOIFAJAQHJ-BMFNZSJVSA-N esorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)C[C@H](C)O1 ITSGNOIFAJAQHJ-BMFNZSJVSA-N 0.000 description 1
- 229950002017 esorubicin Drugs 0.000 description 1
- LJQQFQHBKUKHIS-WJHRIEJJSA-N esperamicin Chemical compound O1CC(NC(C)C)C(OC)CC1OC1C(O)C(NOC2OC(C)C(SC)C(O)C2)C(C)OC1OC1C(\C2=C/CSSSC)=C(NC(=O)OC)C(=O)C(OC3OC(C)C(O)C(OC(=O)C=4C(=CC(OC)=C(OC)C=4)NC(=O)C(=C)OC)C3)C2(O)C#C\C=C/C#C1 LJQQFQHBKUKHIS-WJHRIEJJSA-N 0.000 description 1
- 229960001842 estramustine Drugs 0.000 description 1
- FRPJXPJMRWBBIH-RBRWEJTLSA-N estramustine Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 FRPJXPJMRWBBIH-RBRWEJTLSA-N 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- VUCAHVBMSFIGAI-ZFINNJDLSA-M estrone sodium sulfate Chemical compound [Na+].[O-]S(=O)(=O)OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 VUCAHVBMSFIGAI-ZFINNJDLSA-M 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- QCYAXXZCQKMTMO-QFIPXVFZSA-N ethyl (2s)-2-[(2-bromo-3-oxospiro[3.5]non-1-en-1-yl)amino]-3-[4-(2,7-naphthyridin-1-ylamino)phenyl]propanoate Chemical compound N([C@@H](CC=1C=CC(NC=2C3=CN=CC=C3C=CN=2)=CC=1)C(=O)OCC)C1=C(Br)C(=O)C11CCCCC1 QCYAXXZCQKMTMO-QFIPXVFZSA-N 0.000 description 1
- QSRLNKCNOLVZIR-KRWDZBQOSA-N ethyl (2s)-2-[[2-[4-[bis(2-chloroethyl)amino]phenyl]acetyl]amino]-4-methylsulfanylbutanoate Chemical compound CCOC(=O)[C@H](CCSC)NC(=O)CC1=CC=C(N(CCCl)CCCl)C=C1 QSRLNKCNOLVZIR-KRWDZBQOSA-N 0.000 description 1
- 229940009626 etidronate Drugs 0.000 description 1
- 229960005237 etoglucid Drugs 0.000 description 1
- NPUKDXXFDDZOKR-LLVKDONJSA-N etomidate Chemical compound CCOC(=O)C1=CN=CN1[C@H](C)C1=CC=CC=C1 NPUKDXXFDDZOKR-LLVKDONJSA-N 0.000 description 1
- 229960004945 etoricoxib Drugs 0.000 description 1
- MNJVRJDLRVPLFE-UHFFFAOYSA-N etoricoxib Chemical compound C1=NC(C)=CC=C1C1=NC=C(Cl)C=C1C1=CC=C(S(C)(=O)=O)C=C1 MNJVRJDLRVPLFE-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 229940085363 evista Drugs 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229960000255 exemestane Drugs 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 229950011548 fadrozole Drugs 0.000 description 1
- 229940043168 fareston Drugs 0.000 description 1
- 229940087861 faslodex Drugs 0.000 description 1
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 1
- 229940087476 femara Drugs 0.000 description 1
- 229950003662 fenretinide Drugs 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 102000052178 fibroblast growth factor receptor activity proteins Human genes 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 1
- 229960000961 floxuridine Drugs 0.000 description 1
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 1
- 229960004413 flucytosine Drugs 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 150000002224 folic acids Chemical class 0.000 description 1
- 210000001733 follicular fluid Anatomy 0.000 description 1
- 229960004421 formestane Drugs 0.000 description 1
- OSVMTWJCGUFAOD-KZQROQTASA-N formestane Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1O OSVMTWJCGUFAOD-KZQROQTASA-N 0.000 description 1
- 229940001490 fosamax Drugs 0.000 description 1
- 229960004783 fotemustine Drugs 0.000 description 1
- YAKWPXVTIGTRJH-UHFFFAOYSA-N fotemustine Chemical compound CCOP(=O)(OCC)C(C)NC(=O)N(CCCl)N=O YAKWPXVTIGTRJH-UHFFFAOYSA-N 0.000 description 1
- 229960002258 fulvestrant Drugs 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 229940044658 gallium nitrate Drugs 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- 229940020967 gemzar Drugs 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 231100000118 genetic alteration Toxicity 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229960002913 goserelin Drugs 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 125000005349 heteroarylcycloalkyl group Chemical group 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 229940088013 hycamtin Drugs 0.000 description 1
- 229940042795 hydrazides for tuberculosis treatment Drugs 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 229960001330 hydroxycarbamide Drugs 0.000 description 1
- KNOSIOWNDGUGFJ-UHFFFAOYSA-N hydroxysesamone Natural products C1=CC(O)=C2C(=O)C(CC=C(C)C)=C(O)C(=O)C2=C1O KNOSIOWNDGUGFJ-UHFFFAOYSA-N 0.000 description 1
- 229940015872 ibandronate Drugs 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- 229950002248 idoxifene Drugs 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- YLMAHDNUQAMNNX-UHFFFAOYSA-N imatinib methanesulfonate Chemical compound CS(O)(=O)=O.C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 YLMAHDNUQAMNNX-UHFFFAOYSA-N 0.000 description 1
- 150000002463 imidates Chemical class 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000013388 immunohistochemistry analysis Methods 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- DBIGHPPNXATHOF-UHFFFAOYSA-N improsulfan Chemical compound CS(=O)(=O)OCCCNCCCOS(C)(=O)=O DBIGHPPNXATHOF-UHFFFAOYSA-N 0.000 description 1
- 229950008097 improsulfan Drugs 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- APFVFJFRJDLVQX-AHCXROLUSA-N indium-111 Chemical compound [111In] APFVFJFRJDLVQX-AHCXROLUSA-N 0.000 description 1
- 229940055742 indium-111 Drugs 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229940125798 integrin inhibitor Drugs 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical group C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229940057428 lactoperoxidase Drugs 0.000 description 1
- CWPGNVFCJOPXFB-UHFFFAOYSA-N lapachol Chemical compound C1=CC=C2C(=O)C(=O)C(CC=C(C)C)=C(O)C2=C1 CWPGNVFCJOPXFB-UHFFFAOYSA-N 0.000 description 1
- SIUGQQMOYSVTAT-UHFFFAOYSA-N lapachol Natural products CC(=CCC1C(O)C(=O)c2ccccc2C1=O)C SIUGQQMOYSVTAT-UHFFFAOYSA-N 0.000 description 1
- DXOJIXGRFSHVKA-BZVZGCBYSA-N larotaxel Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@@]23[C@H]1[C@@]1(CO[C@@H]1C[C@@H]2C3)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 DXOJIXGRFSHVKA-BZVZGCBYSA-N 0.000 description 1
- 229950005692 larotaxel Drugs 0.000 description 1
- 229940115286 lentinan Drugs 0.000 description 1
- 229960003881 letrozole Drugs 0.000 description 1
- RGLRXNKKBLIBQS-XNHQSDQCSA-N leuprolide acetate Chemical compound CC(O)=O.CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 RGLRXNKKBLIBQS-XNHQSDQCSA-N 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- 229950001750 lonafarnib Drugs 0.000 description 1
- YROQEQPFUCPDCP-UHFFFAOYSA-N losoxantrone Chemical compound OCCNCCN1N=C2C3=CC=CC(O)=C3C(=O)C3=C2C1=CC=C3NCCNCCO YROQEQPFUCPDCP-UHFFFAOYSA-N 0.000 description 1
- 229950008745 losoxantrone Drugs 0.000 description 1
- 230000004777 loss-of-function mutation Effects 0.000 description 1
- 108010078259 luprolide acetate gel depot Proteins 0.000 description 1
- 229940087857 lupron Drugs 0.000 description 1
- RVFGKBWWUQOIOU-NDEPHWFRSA-N lurtotecan Chemical compound O=C([C@]1(O)CC)OCC(C(N2CC3=4)=O)=C1C=C2C3=NC1=CC=2OCCOC=2C=C1C=4CN1CCN(C)CC1 RVFGKBWWUQOIOU-NDEPHWFRSA-N 0.000 description 1
- 229950002654 lurtotecan Drugs 0.000 description 1
- 210000004880 lymph fluid Anatomy 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 150000002671 lyxoses Chemical class 0.000 description 1
- 229940124302 mTOR inhibitor Drugs 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000003628 mammalian target of rapamycin inhibitor Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- MQXVYODZCMMZEM-ZYUZMQFOSA-N mannomustine Chemical compound ClCCNC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CNCCCl MQXVYODZCMMZEM-ZYUZMQFOSA-N 0.000 description 1
- 229950008612 mannomustine Drugs 0.000 description 1
- 229940099262 marinol Drugs 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000008774 maternal effect Effects 0.000 description 1
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 1
- WKPWGQKGSOKKOO-RSFHAFMBSA-N maytansine Chemical compound CO[C@@H]([C@@]1(O)C[C@](OC(=O)N1)([C@H]([C@@H]1O[C@@]1(C)[C@@H](OC(=O)[C@H](C)N(C)C(C)=O)CC(=O)N1C)C)[H])\C=C\C=C(C)\CC2=CC(OC)=C(Cl)C1=C2 WKPWGQKGSOKKOO-RSFHAFMBSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- PSGAAPLEWMOORI-PEINSRQWSA-N medroxyprogesterone acetate Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](OC(C)=O)(C(C)=O)CC[C@H]21 PSGAAPLEWMOORI-PEINSRQWSA-N 0.000 description 1
- 229960002985 medroxyprogesterone acetate Drugs 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229950009246 mepitiostane Drugs 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- TWXDDNPPQUTEOV-FVGYRXGTSA-N methamphetamine hydrochloride Chemical compound Cl.CN[C@@H](C)CC1=CC=CC=C1 TWXDDNPPQUTEOV-FVGYRXGTSA-N 0.000 description 1
- VJRAUFKOOPNFIQ-TVEKBUMESA-N methyl (1r,2r,4s)-4-[(2r,4s,5s,6s)-5-[(2s,4s,5s,6s)-5-[(2s,4s,5s,6s)-4,5-dihydroxy-6-methyloxan-2-yl]oxy-4-hydroxy-6-methyloxan-2-yl]oxy-4-(dimethylamino)-6-methyloxan-2-yl]oxy-2-ethyl-2,5,7,10-tetrahydroxy-6,11-dioxo-3,4-dihydro-1h-tetracene-1-carboxylat Chemical compound O([C@H]1[C@@H](O)C[C@@H](O[C@H]1C)O[C@H]1[C@H](C[C@@H](O[C@H]1C)O[C@H]1C[C@]([C@@H](C2=CC=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C(O)=C21)C(=O)OC)(O)CC)N(C)C)[C@H]1C[C@H](O)[C@H](O)[C@H](C)O1 VJRAUFKOOPNFIQ-TVEKBUMESA-N 0.000 description 1
- QRMNENFZDDYDEF-GOSISDBHSA-N methyl (8s)-8-(bromomethyl)-2-methyl-4-(4-methylpiperazine-1-carbonyl)oxy-6-(5,6,7-trimethoxy-1h-indole-2-carbonyl)-7,8-dihydro-3h-pyrrolo[3,2-e]indole-1-carboxylate Chemical compound C1([C@H](CBr)CN(C1=C1)C(=O)C=2NC3=C(OC)C(OC)=C(OC)C=C3C=2)=C2C(C(=O)OC)=C(C)NC2=C1OC(=O)N1CCN(C)CC1 QRMNENFZDDYDEF-GOSISDBHSA-N 0.000 description 1
- HRHKSTOGXBBQCB-VFWICMBZSA-N methylmitomycin Chemical compound O=C1C(N)=C(C)C(=O)C2=C1[C@@H](COC(N)=O)[C@@]1(OC)[C@H]3N(C)[C@H]3CN12 HRHKSTOGXBBQCB-VFWICMBZSA-N 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 238000012775 microarray technology Methods 0.000 description 1
- 108010029942 microperoxidase Proteins 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 229960005485 mitobronitol Drugs 0.000 description 1
- MXWHMTNPTTVWDM-NXOFHUPFSA-N mitoguazone Chemical compound NC(N)=N\N=C(/C)\C=N\N=C(N)N MXWHMTNPTTVWDM-NXOFHUPFSA-N 0.000 description 1
- 229960003539 mitoguazone Drugs 0.000 description 1
- VFKZTMPDYBFSTM-GUCUJZIJSA-N mitolactol Chemical compound BrC[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)CBr VFKZTMPDYBFSTM-GUCUJZIJSA-N 0.000 description 1
- 229950010913 mitolactol Drugs 0.000 description 1
- 229960000350 mitotane Drugs 0.000 description 1
- 108010010621 modeccin Proteins 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000009149 molecular binding Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 235000021281 monounsaturated fatty acids Nutrition 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 238000011512 multiplexed immunoassay Methods 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- NJSMWLQOCQIOPE-OCHFTUDZSA-N n-[(e)-[10-[(e)-(4,5-dihydro-1h-imidazol-2-ylhydrazinylidene)methyl]anthracen-9-yl]methylideneamino]-4,5-dihydro-1h-imidazol-2-amine Chemical compound N1CCN=C1N\N=C\C(C1=CC=CC=C11)=C(C=CC=C2)C2=C1\C=N\NC1=NCCN1 NJSMWLQOCQIOPE-OCHFTUDZSA-N 0.000 description 1
- LBWFXVZLPYTWQI-IPOVEDGCSA-N n-[2-(diethylamino)ethyl]-5-[(z)-(5-fluoro-2-oxo-1h-indol-3-ylidene)methyl]-2,4-dimethyl-1h-pyrrole-3-carboxamide;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C LBWFXVZLPYTWQI-IPOVEDGCSA-N 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229940086322 navelbine Drugs 0.000 description 1
- 230000027498 negative regulation of mitosis Effects 0.000 description 1
- 108010068617 neonatal Fc receptor Proteins 0.000 description 1
- MQYXUWHLBZFQQO-UHFFFAOYSA-N nepehinol Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C)CCC(C(=C)C)C5C4CCC3C21C MQYXUWHLBZFQQO-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- XWXYUMMDTVBTOU-UHFFFAOYSA-N nilutamide Chemical compound O=C1C(C)(C)NC(=O)N1C1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 XWXYUMMDTVBTOU-UHFFFAOYSA-N 0.000 description 1
- 229960002653 nilutamide Drugs 0.000 description 1
- 229960001420 nimustine Drugs 0.000 description 1
- VFEDRRNHLBGPNN-UHFFFAOYSA-N nimustine Chemical compound CC1=NC=C(CNC(=O)N(CCCl)N=O)C(N)=N1 VFEDRRNHLBGPNN-UHFFFAOYSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- KGTDRFCXGRULNK-JYOBTZKQSA-N nogalamycin Chemical compound CO[C@@H]1[C@@](OC)(C)[C@@H](OC)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=C(O)C=C4[C@@]5(C)O[C@H]([C@H]([C@@H]([C@H]5O)N(C)C)O)OC4=C3C3=O)=C3C=C2[C@@H](C(=O)OC)[C@@](C)(O)C1 KGTDRFCXGRULNK-JYOBTZKQSA-N 0.000 description 1
- 229950009266 nogalamycin Drugs 0.000 description 1
- 229940085033 nolvadex Drugs 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 230000036963 noncompetitive effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000001293 nucleolytic effect Effects 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229960000435 oblimersen Drugs 0.000 description 1
- CZDBNBLGZNWKMC-MWQNXGTOSA-N olivomycin Chemical class O([C@@H]1C[C@@H](O[C@H](C)[C@@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1)O[C@H]1O[C@@H](C)[C@H](O)[C@@H](OC2O[C@@H](C)[C@H](O)[C@@H](O)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@H](O)[C@H](OC)[C@H](C)O1 CZDBNBLGZNWKMC-MWQNXGTOSA-N 0.000 description 1
- 229950011093 onapristone Drugs 0.000 description 1
- 231100000590 oncogenic Toxicity 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- BWKDAMBGCPRVPI-ZQRPHVBESA-N ortataxel Chemical compound O([C@@H]1[C@]23OC(=O)O[C@H]2[C@@H](C(=C([C@@H](OC(C)=O)C(=O)[C@]2(C)[C@@H](O)C[C@H]4OC[C@]4([C@H]21)OC(C)=O)C3(C)C)C)OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)CC(C)C)C(=O)C1=CC=CC=C1 BWKDAMBGCPRVPI-ZQRPHVBESA-N 0.000 description 1
- 229950001094 ortataxel Drugs 0.000 description 1
- 229940075461 other therapeutic product in atc Drugs 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical group C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 1
- 150000002917 oxazolidines Chemical class 0.000 description 1
- 150000002918 oxazolines Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- QVGXLLKOCUKJST-OUBTZVSYSA-N oxygen-17 atom Chemical compound [17O] QVGXLLKOCUKJST-OUBTZVSYSA-N 0.000 description 1
- 229940046231 pamidronate Drugs 0.000 description 1
- VREZDOWOLGNDPW-UHFFFAOYSA-N pancratistatine Natural products C1=C2C3C(O)C(O)C(O)C(O)C3NC(=O)C2=C(O)C2=C1OCO2 VREZDOWOLGNDPW-UHFFFAOYSA-N 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 229960002340 pentostatin Drugs 0.000 description 1
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 1
- QIMGFXOHTOXMQP-GFAGFCTOSA-N peplomycin Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCCN[C@@H](C)C=1C=CC=CC=1)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1NC=NC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C QIMGFXOHTOXMQP-GFAGFCTOSA-N 0.000 description 1
- 229950003180 peplomycin Drugs 0.000 description 1
- 229950010632 perifosine Drugs 0.000 description 1
- SZFPYBIJACMNJV-UHFFFAOYSA-N perifosine Chemical compound CCCCCCCCCCCCCCCCCCOP([O-])(=O)OC1CC[N+](C)(C)CC1 SZFPYBIJACMNJV-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 108010076042 phenomycin Proteins 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 229940043441 phosphoinositide 3-kinase inhibitor Drugs 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- NJBFOOCLYDNZJN-UHFFFAOYSA-N pipobroman Chemical compound BrCCC(=O)N1CCN(C(=O)CCBr)CC1 NJBFOOCLYDNZJN-UHFFFAOYSA-N 0.000 description 1
- 229960000952 pipobroman Drugs 0.000 description 1
- NUKCGLDCWQXYOQ-UHFFFAOYSA-N piposulfan Chemical compound CS(=O)(=O)OCCC(=O)N1CCN(C(=O)CCOS(C)(=O)=O)CC1 NUKCGLDCWQXYOQ-UHFFFAOYSA-N 0.000 description 1
- 229950001100 piposulfan Drugs 0.000 description 1
- 229960001221 pirarubicin Drugs 0.000 description 1
- PEZPMAYDXJQYRV-UHFFFAOYSA-N pixantrone Chemical compound O=C1C2=CN=CC=C2C(=O)C2=C1C(NCCN)=CC=C2NCCN PEZPMAYDXJQYRV-UHFFFAOYSA-N 0.000 description 1
- 229960004403 pixantrone Drugs 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 210000004910 pleural fluid Anatomy 0.000 description 1
- 229960001237 podophyllotoxin Drugs 0.000 description 1
- YJGVMLPVUAXIQN-XVVDYKMHSA-N podophyllotoxin Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H]3[C@@H]2C(OC3)=O)=C1 YJGVMLPVUAXIQN-XVVDYKMHSA-N 0.000 description 1
- YVCVYCSAAZQOJI-UHFFFAOYSA-N podophyllotoxin Natural products COC1=C(O)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YVCVYCSAAZQOJI-UHFFFAOYSA-N 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229950004406 porfiromycin Drugs 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 229960004694 prednimustine Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 229940063238 premarin Drugs 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003623 progesteronic effect Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 239000003528 protein farnesyltransferase inhibitor Substances 0.000 description 1
- 231100000654 protein toxin Toxicity 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- WOLQREOUPKZMEX-UHFFFAOYSA-N pteroyltriglutamic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(=O)NC(CCC(=O)NC(CCC(O)=O)C(O)=O)C(O)=O)C(O)=O)C=C1 WOLQREOUPKZMEX-UHFFFAOYSA-N 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- UBQKCCHYAOITMY-UHFFFAOYSA-N pyridin-2-ol Chemical compound OC1=CC=CC=N1 UBQKCCHYAOITMY-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- UOWVMDUEMSNCAV-WYENRQIDSA-N rachelmycin Chemical compound C1([C@]23C[C@@H]2CN1C(=O)C=1NC=2C(OC)=C(O)C4=C(C=2C=1)CCN4C(=O)C1=CC=2C=4CCN(C=4C(O)=C(C=2N1)OC)C(N)=O)=CC(=O)C1=C3C(C)=CN1 UOWVMDUEMSNCAV-WYENRQIDSA-N 0.000 description 1
- 238000007420 radioactive assay Methods 0.000 description 1
- 229940099538 rapamune Drugs 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- BMKDZUISNHGIBY-UHFFFAOYSA-N razoxane Chemical compound C1C(=O)NC(=O)CN1C(C)CN1CC(=O)NC(=O)C1 BMKDZUISNHGIBY-UHFFFAOYSA-N 0.000 description 1
- 229960000460 razoxane Drugs 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 1
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000022983 regulation of cell cycle Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- OWPCHSCAPHNHAV-LMONGJCWSA-N rhizoxin Chemical compound C/C([C@H](OC)[C@@H](C)[C@@H]1C[C@H](O)[C@]2(C)O[C@@H]2/C=C/[C@@H](C)[C@]2([H])OC(=O)C[C@@](C2)(C[C@@H]2O[C@H]2C(=O)O1)[H])=C\C=C\C(\C)=C\C1=COC(C)=N1 OWPCHSCAPHNHAV-LMONGJCWSA-N 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 108020004418 ribosomal RNA Proteins 0.000 description 1
- 229940089617 risedronate Drugs 0.000 description 1
- 229950004892 rodorubicin Drugs 0.000 description 1
- MBABCNBNDNGODA-WPZDJQSSSA-N rolliniastatin 1 Natural products O1[C@@H]([C@@H](O)CCCCCCCCCC)CC[C@H]1[C@H]1O[C@@H]([C@H](O)CCCCCCCCCC[C@@H](O)CC=2C(O[C@@H](C)C=2)=O)CC1 MBABCNBNDNGODA-WPZDJQSSSA-N 0.000 description 1
- IMUQLZLGWJSVMV-UOBFQKKOSA-N roridin A Natural products CC(O)C1OCCC(C)C(O)C(=O)OCC2CC(=CC3OC4CC(OC(=O)C=C/C=C/1)C(C)(C23)C45CO5)C IMUQLZLGWJSVMV-UOBFQKKOSA-N 0.000 description 1
- 102200143269 rs121913482 Human genes 0.000 description 1
- 102200143266 rs121913483 Human genes 0.000 description 1
- VHXNKPBCCMUMSW-FQEVSTJZSA-N rubitecan Chemical compound C1=CC([N+]([O-])=O)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VHXNKPBCCMUMSW-FQEVSTJZSA-N 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 229930182947 sarcodictyin Natural products 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 150000003341 sedoheptuloses Chemical class 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 150000007659 semicarbazones Chemical class 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 229950001403 sizofiran Drugs 0.000 description 1
- 229940112726 skelid Drugs 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- MKNJJMHQBYVHRS-UHFFFAOYSA-M sodium;1-[11-(2,5-dioxopyrrol-1-yl)undecanoyloxy]-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)CCCCCCCCCCN1C(=O)C=CC1=O MKNJJMHQBYVHRS-UHFFFAOYSA-M 0.000 description 1
- VUFNRPJNRFOTGK-UHFFFAOYSA-M sodium;1-[4-[(2,5-dioxopyrrol-1-yl)methyl]cyclohexanecarbonyl]oxy-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)C1CCC(CN2C(C=CC2=O)=O)CC1 VUFNRPJNRFOTGK-UHFFFAOYSA-M 0.000 description 1
- MIDXXTLMKGZDPV-UHFFFAOYSA-M sodium;1-[6-(2,5-dioxopyrrol-1-yl)hexanoyloxy]-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)CCCCCN1C(=O)C=CC1=O MIDXXTLMKGZDPV-UHFFFAOYSA-M 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 229960003787 sorafenib Drugs 0.000 description 1
- 229950006315 spirogermanium Drugs 0.000 description 1
- ICXJVZHDZFXYQC-UHFFFAOYSA-N spongistatin 1 Natural products OC1C(O2)(O)CC(O)C(C)C2CCCC=CC(O2)CC(O)CC2(O2)CC(OC)CC2CC(=O)C(C)C(OC(C)=O)C(C)C(=C)CC(O2)CC(C)(O)CC2(O2)CC(OC(C)=O)CC2CC(=O)OC2C(O)C(CC(=C)CC(O)C=CC(Cl)=C)OC1C2C ICXJVZHDZFXYQC-UHFFFAOYSA-N 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical class ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 1
- WINHZLLDWRZWRT-ATVHPVEESA-N sunitinib Chemical compound CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C WINHZLLDWRZWRT-ATVHPVEESA-N 0.000 description 1
- 229960001796 sunitinib Drugs 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 229940034785 sutent Drugs 0.000 description 1
- 210000001179 synovial fluid Anatomy 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 238000002626 targeted therapy Methods 0.000 description 1
- 229940099419 targretin Drugs 0.000 description 1
- DKPFODGZWDEEBT-QFIAKTPHSA-N taxane Chemical class C([C@]1(C)CCC[C@@H](C)[C@H]1C1)C[C@H]2[C@H](C)CC[C@@H]1C2(C)C DKPFODGZWDEEBT-QFIAKTPHSA-N 0.000 description 1
- 210000001138 tear Anatomy 0.000 description 1
- 229960000235 temsirolimus Drugs 0.000 description 1
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- MODVSQKJJIBWPZ-VLLPJHQWSA-N tesetaxel Chemical compound O([C@H]1[C@@H]2[C@]3(OC(C)=O)CO[C@@H]3CC[C@@]2(C)[C@H]2[C@@H](C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C(=CC=CN=4)F)C[C@]1(O)C3(C)C)O[C@H](O2)CN(C)C)C(=O)C1=CC=CC=C1 MODVSQKJJIBWPZ-VLLPJHQWSA-N 0.000 description 1
- 229950009016 tesetaxel Drugs 0.000 description 1
- 229960005353 testolactone Drugs 0.000 description 1
- BPEWUONYVDABNZ-DZBHQSCQSA-N testolactone Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(OC(=O)CC4)[C@@H]4[C@@H]3CCC2=C1 BPEWUONYVDABNZ-DZBHQSCQSA-N 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- 238000011285 therapeutic regimen Methods 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- 150000003548 thiazolidines Chemical class 0.000 description 1
- 150000003549 thiazolines Chemical class 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 150000003555 thioacetals Chemical class 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- CNHYKKNIIGEXAY-UHFFFAOYSA-N thiolan-2-imine Chemical compound N=C1CCCS1 CNHYKKNIIGEXAY-UHFFFAOYSA-N 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- YFTWHEBLORWGNI-UHFFFAOYSA-N tiamiprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC(N)=NC2=C1NC=N2 YFTWHEBLORWGNI-UHFFFAOYSA-N 0.000 description 1
- 229950011457 tiamiprine Drugs 0.000 description 1
- 229940019375 tiludronate Drugs 0.000 description 1
- PLHJCIYEEKOWNM-HHHXNRCGSA-N tipifarnib Chemical compound CN1C=NC=C1[C@](N)(C=1C=C2C(C=3C=C(Cl)C=CC=3)=CC(=O)N(C)C2=CC=1)C1=CC=C(Cl)C=C1 PLHJCIYEEKOWNM-HHHXNRCGSA-N 0.000 description 1
- 229950009158 tipifarnib Drugs 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- 230000030968 tissue homeostasis Effects 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- XFCLJVABOIYOMF-QPLCGJKRSA-N toremifene Chemical compound C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 XFCLJVABOIYOMF-QPLCGJKRSA-N 0.000 description 1
- 229960005026 toremifene Drugs 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- IUCJMVBFZDHPDX-UHFFFAOYSA-N tretamine Chemical compound C1CN1C1=NC(N2CC2)=NC(N2CC2)=N1 IUCJMVBFZDHPDX-UHFFFAOYSA-N 0.000 description 1
- 229950001353 tretamine Drugs 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- PXSOHRWMIRDKMP-UHFFFAOYSA-N triaziquone Chemical compound O=C1C(N2CC2)=C(N2CC2)C(=O)C=C1N1CC1 PXSOHRWMIRDKMP-UHFFFAOYSA-N 0.000 description 1
- 229960004560 triaziquone Drugs 0.000 description 1
- LZAJKCZTKKKZNT-PMNGPLLRSA-N trichothecene Chemical compound C12([C@@]3(CC[C@H]2OC2C=C(CCC23C)C)C)CO1 LZAJKCZTKKKZNT-PMNGPLLRSA-N 0.000 description 1
- 150000003327 trichothecene derivatives Chemical class 0.000 description 1
- 229960001670 trilostane Drugs 0.000 description 1
- KVJXBPDAXMEYOA-CXANFOAXSA-N trilostane Chemical compound OC1=C(C#N)C[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@@]32O[C@@H]31 KVJXBPDAXMEYOA-CXANFOAXSA-N 0.000 description 1
- NOYPYLRCIDNJJB-UHFFFAOYSA-N trimetrexate Chemical compound COC1=C(OC)C(OC)=CC(NCC=2C(=C3C(N)=NC(N)=NC3=CC=2)C)=C1 NOYPYLRCIDNJJB-UHFFFAOYSA-N 0.000 description 1
- 229960001099 trimetrexate Drugs 0.000 description 1
- 229950000212 trioxifene Drugs 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- 229960000875 trofosfamide Drugs 0.000 description 1
- UMKFEPPTGMDVMI-UHFFFAOYSA-N trofosfamide Chemical compound ClCCN(CCCl)P1(=O)OCCCN1CCCl UMKFEPPTGMDVMI-UHFFFAOYSA-N 0.000 description 1
- 229950010147 troxacitabine Drugs 0.000 description 1
- RXRGZNYSEHTMHC-BQBZGAKWSA-N troxacitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1O[C@@H](CO)OC1 RXRGZNYSEHTMHC-BQBZGAKWSA-N 0.000 description 1
- HDZZVAMISRMYHH-LITAXDCLSA-N tubercidin Chemical compound C1=CC=2C(N)=NC=NC=2N1[C@@H]1O[C@@H](CO)[C@H](O)[C@H]1O HDZZVAMISRMYHH-LITAXDCLSA-N 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- 230000002476 tumorcidal effect Effects 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 1
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 229950009811 ubenimex Drugs 0.000 description 1
- ORHBXUUXSCNDEV-UHFFFAOYSA-N umbelliferone Chemical compound C1=CC(=O)OC2=CC(O)=CC=C21 ORHBXUUXSCNDEV-UHFFFAOYSA-N 0.000 description 1
- HFTAFOQKODTIJY-UHFFFAOYSA-N umbelliferone Natural products Cc1cc2C=CC(=O)Oc2cc1OCC=CC(C)(C)O HFTAFOQKODTIJY-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229960001055 uracil mustard Drugs 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 229940099039 velcade Drugs 0.000 description 1
- GBABOYUKABKIAF-IELIFDKJSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-IELIFDKJSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- CILBMBUYJCWATM-PYGJLNRPSA-N vinorelbine ditartrate Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.OC(=O)[C@H](O)[C@@H](O)C(O)=O.C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC CILBMBUYJCWATM-PYGJLNRPSA-N 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 229960001771 vorozole Drugs 0.000 description 1
- XLMPPFTZALNBFS-INIZCTEOSA-N vorozole Chemical compound C1([C@@H](C2=CC=C3N=NN(C3=C2)C)N2N=CN=C2)=CC=C(Cl)C=C1 XLMPPFTZALNBFS-INIZCTEOSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229940053867 xeloda Drugs 0.000 description 1
- 150000003742 xyloses Chemical class 0.000 description 1
- 229950009268 zinostatin Drugs 0.000 description 1
- 229940002005 zometa Drugs 0.000 description 1
- FBTUMDXHSRTGRV-ALTNURHMSA-N zorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(\C)=N\NC(=O)C=1C=CC=CC=1)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 FBTUMDXHSRTGRV-ALTNURHMSA-N 0.000 description 1
- 229960000641 zorubicin Drugs 0.000 description 1
- 150000003952 β-lactams Chemical class 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
- A61K31/4355—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having oxygen as a ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/496—Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/50—Pyridazines; Hydrogenated pyridazines
- A61K31/501—Pyridazines; Hydrogenated pyridazines not condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/506—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/513—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/18—Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/10—Drugs for disorders of the urinary system of the bladder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5011—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2510/00—Detection of programmed cell death, i.e. apoptosis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/52—Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
Definitions
- Bladder cancer is the fifth most common cancer worldwide, with an estimated 70,980 new cases and 14,330 deaths occurring in the United States in 2009 (34).
- the prevalence of FGFR3 activating mutations and /or overexpression in bladder cancer and the large body of preclinical loss- of- function studies have implicated FGFR3 as an important oncogenic driver and a potential therapeutic target in this disease setting (12, 21-25).
- FGFR3 critical insights into how FGFR3 signaling contributes to bladder cancer development and progression remain to be elucidated.
- FGFR3 belongs to a family of four structurally and functionally related receptor tyrosine kinases, which transduce signals from many of the 22 identified FGF polypeptides in human (1-3). Upon ligand binding, FGFR3 dimerizes and becomes autophosphorylated at specific tyrosine residues. This triggers the recruitment of adaptor proteins, such as FGFR substrate 2a (FRS2a), to the receptor, resulting in the activation of multiple downstream signaling cascades, including the canonical Ras-Raf-MAPK and PI3K-Akt-mTOR pathways (1-3). FGFR3 signaling plays critical roles during embryonic development and in the maintenance of tissue homeostasis, and regulates cell proliferation, differentiation, migration and survival in a context-dependent manner (3-4).
- FSS2a FGFR substrate 2a
- Gain-of- function mutation in FGFR3 is one of the most common genetic alterations in a spectrum of human congenital skeletal and cranial disorders (5-6).
- Dysregulation of FGFR3 via mutations or overexpression has also been linked with a variety of human cancers, including multiple myeloma positive for t(4; 14) (pl6.3;q32) chromosomal translocation (7-10), bladder cancer (11-14), breast cancer (15), cervical carcinoma (11, 16), hepatocellular carcinoma (17), squamous non-small cell lung cancer (18, 19), and testicular tumors (20).
- somatic activating mutations in FGFR3 have been identified in 60-70% of papillary and 16-20% of muscle-invasive bladder tumors (13-14).
- FGFR3 overexpression has been documented in a significant fraction of superficial as well as advanced bladder cancers (12-13, 21).
- a plethora of loss-of- function studies demonstrate that pharmacological and genetic intervention of FGFR3 function blocks bladder cancer cell proliferation in culture and inhibits tumor growth in animal models (12, 22-25).
- kits for the treatment of pathological conditions such as cancer, and method of using SCDl antagonists.
- methods of inhibiting cell proliferation of a cancer cell comprising contacting the cancer cell with an effective amount of an SCDl antagonist.
- methods of inhibiting cell proliferation of a cancer cell in an individual comprising administering to the individual an effective amount of an SCD 1 antagonist.
- methods of inducing cell cycle arrest of a cancer cell comprising contacting the cancer cell with an effective amount of SCDl antagonist. Further provided herein are methods of inducing cell cycle arrest of a cancer cell in an individual comprising administering to the individual an effective amount of an SCD 1 antagonist.
- provided herein are methods of promoting apoptosis of a cancer cell comprising contacting the cancer cell with an effective amount of SCDl antagonist. Also provided herein are methods of promoting apoptosis of a cancer cell in an individual comprising
- kits for treating a cancer cell in an individual comprising administering to the individual an effective amount of an SCD 1 antagonist.
- the cancer cell is an endometrial cancer cell, a head and neck cancer cell, a kidney cancer cell, an ovarian cancer cell, a colon cancer, a pancreatic cancer cell, an urinary cancer cell, or a bladder cancer cell.
- the cancer cell is a kidney cancer cell, pancreatic cancer cell, or bladder cancer cell.
- the cancer cell expresses elevated levels of one or more biomarkers compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- kits for treating cancer in an individual comprising administering to the individual an effective amount of an SCD 1 antagonist.
- the cancer in the individual expresses elevated levels of one or more biomarkers compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene)
- kits for treating cancer in an individual comprising administering to the individual an effective amount of an SCD 1 antagonist, wherein treatment is based upon the individual having cancer expressing elevated levels of one or more biomarkers compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- kits for treating cancer in an individual comprising administering to the individual an effective amount of an SCD 1 antagonist.
- kits for treating cancer in an individual comprising: determining that a sample obtained from the individual expresses elevated levels of one or more biomarkers compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene), and administering an effective amount of an anti-cancer therapy comprising an SCD 1 antagonist to the individual, whereby the cancer is treated.
- methods of treating cancer comprising: (a) selecting an individual having cancer, wherein the cancer expresses elevated levels of one or more biomarkers compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene); and (b) administering to the individual thus selected an effective amount of an SCD1 antagonist, whereby the cancer is treated.
- kits for identifying an individual who is more likely to benefit from treatment with an anti-cancer therapy comprising an SCD1 antagonist or less likely to benefit from treatment with an anti-cancer therapy comprising an SCD1 antagonist comprising: determining expression levels of one or more biomarkers in a sample obtained from the individual, wherein elevated expression levels of one or more biomarkers in the sample as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene) indicates that the individual is more likely to benefit from treatment with the anti-cancer therapy comprising the SCD 1 antagonist or a reduced expression levels of one or more biomarkers in the sample as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene) indicates that the individual is less likely to benefit from treatment with the anti-cancer therapy comprising the SCD1 antagonist.
- a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control
- kits for predicting whether an individual with cancer is likely to respond effectively to treatment with an anti-cancer therapy comprising an SCD1 antagonist comprising assessing one or more biomarkers, whereby elevated expression levels of one or more biomarkers as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene) indicates that the individual is more likely to effectively respond to treatment with the antagonist and reduced expression levels of one or more biomarkers as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene) indicates that the individual is less likely to effectively respond to treatment with the antagonist.
- a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control e.g., housekeeping gene
- kits for predicting the response or lack of response of an individual to an anti-cancer therapy comprising an SCD1 antagonist comprising measuring in a sample obtained from the individual expression of one or more biomarkers, wherein elevated expression levels of one or more biomarkers as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene) is predictive of response of the individual to the anti-cancer therapy comprising the SCD1 antagonist and reduced expression levels of one or more biomarkers as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene) is predictive of lack of response of the individual to the anticancer therapy comprising the SCD 1 antagonist.
- a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control e.g., housekeeping gene
- kits for determining the likelihood that an individual with cancer will exhibit benefit from anti-cancer therapy comprising an SCD 1 antagonist comprising: determining expression levels of one or more biomarkers in a sample obtained from the individual, wherein elevated expression levels of one or more biomarkers in the sample as compared to a reference sample indicates that the individual has increased likelihood of benefit from the anti-cancer therapy comprising the SCD1 antagonist and reduced expression levels of one or more biomarkers in the sample as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene) indicates that the individual has decreased likelihood of benefit from the anti-cancer therapy comprising the SCD1 antagonist.
- the cancer is endometrial cancer cell, head and neck cancer, a kidney cancer, an ovarian cancer, a colon cancer, a pancreatic cancer, an urinary cancer, or a bladder cancer.
- the cancer is a kidney cancer, pancreatic cancer, or bladder cancer.
- the cancer is bladder cancer.
- the one or more biomarkers is FGFR3. In some embodiments of any of the methods, the one or more biomarkers is phosphorylated FGFR3.
- the one or more biomarkers is one or more genes of the FGFR3 -regulated lipogenic signature.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of one or more genes from the group consisting of SREBF1 , G6PD, ACOT7, PTPLA, PCCB, FADS 1 , RDH1 1 , ACER3, PDSS 1 , MVD, AGPAT5, HSD17B2, ACSL4, EBP, PIGW, LBR, ACLY, ADORA2B, GPCPD1 , CYP24A1 , ACSL3, MVK, ACSS2, FDPS, ELOVL5, HMGCR, LIPG, ME1 , DHCR7, LSS, ACAT2, FASN, CYP51A1 , IDI1 , FDFT1 , FAR2, HMGCS 1 , SDR16C5, LDLR, MS
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of one or more genes from the group consisting of ELOVL5, HMGCR, LIPG, ME1 , DHCR7, LSS, ACAT2, FASN, CYP51A1 , IDI1 , FDFT1 , FAR2, HMGCS1 , SDR16C5, LDLR, MSMOl , INSIG1 , DHRS9, LRP8, SQLE, PCSK9, SCD1 , FABP4, and combinations thereof.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of one or more genes from the group consisting of CYP51A1 , IDI1 , FDFT1 , FAR2, HMGCS1 , SDR16C5, LDLR, MSMOl , INSIG1 , DHRS9, LRP8, SQLE, PCSK9, SCD1 , FABP4, and combinations thereof.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of one or more genes from the group consisting of LDLR, MSMOl , INSIG1 , DHRS9, LRP8, SQLE, PCSK9, SCDl , FABP4, and combinations thereof.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of one or more genes from the group consisting of SQLE, PCSK9, SCDl , FABP4, and combinations thereof.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of SC4MOL.
- the one or more biomarkers is mature
- the one or more biomarkers is ⁇ 9 monounsaturated fatty acids. In some embodiments of any of the methods, the one or more biomarkers is ratio of ⁇ 9 monounsaturated fatty acids: saturated fatty acids.
- the one or more biomarkers is PI3K signaling, mTOR signaling, MEK signaling. In some embodiments of any of the methods, the one or more biomarkers is one or more polymorphism in genes selected from the group consisting of PI3K, PTEN, p85, TSCl/2, and AKT. In some embodiments of any of the methods, the one or more biomarkers is phosphorylated AKT.
- the expression level of the one or more biomarkers is elevated by greater than about 1.5 fold, about 1.75 fold, about 2 fold, about 2.25 fold, about 2.5 fold, about 2.75 fold, about 3.0 fold, or about 3.25 fold as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- the SCDl antagonist is an antibody, binding polypeptide, binding small molecule, or polynucleotide. In some embodiments, the SCDl antagonist is a small molecule. In some embodiments, the small molecule is G01522403 (A37062),
- the small molecule is RGl , RG3, RG8, or derivatives thereof.
- the method further comprises an additional therapeutic agent.
- FIG. 1 Identification of FGFR3 -regulated genes. A Venn-Diagram outlining overlap of genes with significant expression changes upon induction of three FGFR3 shRNAs. Red numbers represent up-regulated genes, and green ones for down-regulated genes.
- FIG. 1 Heat map of the probes found to be regulated by FGFR3 knockdown.
- RT1 12 bladder cancer cells expressing three independent doxycycline-inducible FGFR3 shRNAs or a control shRNA (Ctrl) were cultured with or without 1 ⁇ g/mL doxycycline for 2 days prior to RNA extraction. Total RNA was subjected to microarray studies. Genes that are regulated by all three FGFR3 shRNAs were shown in the heat map. Top panel shows FGFR3 protein level.
- (B) A cohort of genes involved in cholesterol and lipid biosynthesis are repressed in FGFR3 knockdown cell.
- C, D Confirmation of FGFR3 -regulated lipogenic genes by qRT-PCR. The mRNA level of representative genes from lipid (C) and sterol biosynthesis pathways (D) was measured by qRT-PCR. Data are presented as mean +/- SD.
- E FGFR3 knockdown reduces SREBPl expression modestly, but not SREBP2. SREBPl and SREBP2 mRNA level was analyzed by qRT-PCR. Data are presented as mean +/- SD.
- FIG. 3 FGFR3 siRNAs reduce the expression of genes involved in sterol and fatty acid biosynthesis and metabolism in UMUC-14 cells.
- UMUC-14 bladder cancer cells were transfected with FGFR3 siRNA or a non-targeting control siRNA (Ctrl), and total RNA was extracted 48 hr after transfection.
- the mRNA level of representative genes from lipid (A) and sterol biosynthesis pathways (B) was measured by qRT-PCR. Data are presented as mean +/- SD.
- C FGFR3 knockdown reduces SREBPl expression modestly, but not SREBP2.
- SREBPl and SREBP2 mRNA level was analyzed by qRT-PCR. Data are presented as mean +/- SD.
- FIG. 4 Reduced expression of SREBPl, FASN and SCD1 in FGFR3 knockdown cells correlates with decreased fatty acid synthesis and desaturation.
- A FGFR3 knockdown reduces the expression of SREBPl, FASN and SCD1.
- RT112 bladder cancer cells expressing doxycycline - inducible FGFR3 shRNAs or a control shRNA (Ctrl) were cultured with or without 1 ⁇ g/mL doxycycline for 3 days prior to harvest. Cell lysates were subjected to immunoblot analyses.
- RT112 cells were cultured with or without 1 ⁇ g/mL doxycycline for 3 days prior to 4 hr incubation with [ 14 C]acetate. The lipid fraction was extracted and [ 14 C]acetate incorporated into lipids was measured by scintillation counting. Data were normalized to sample protein content, and presented as mean +/- SD.
- C, D FGFR3 knockdown blocks stearic acid desaturation.
- RT112 cells were cultured with or without 1 ⁇ g/mL doxycycline for 3 days prior to 6 hr incubation with [ 14 C] stearic acid.
- [ 14 C] stearic acid desaturation was analyzed by argentation thin-layer chromatography (C) and measured by scintillation counting (D). Data are presented as mean +/- SD, and representative of three independent experiments.
- FIG. 5 Anti-FGFR3 monoclonal antibody, R3Mab, reduces expression of SREBPl, FASN and SCD1 and fatty acid synthesis in UMUC-14 cells.
- UMUC-14 bladder cancer cells were cultured in 1% FBS medium and treated with 15 ug/mL anti-FGFR3 antibody, R3Mab, or a control antibody (Ctrl Ab) for 48 hr. Cell lysates were subjected to Western blot analysis.
- (B) UMUC-14 cells were cultured in 1% FBS medium containing 15 ⁇ g/mL R3Mab or the Ctrl Ab for 48 hr, with [ 14 C] acetate added at the final four hr. [ 14 C] acetate incorporation into the lipid fraction was extracted and measured by scintillation counting. Data were normalized to total protein level in each sample, and presented as mean +/- SD.
- FIG. 6 FGFR3 signalling promotes hpogenesis in an SREBPl -dependent manner.
- FGF1-FGFR3 axis stimulates the accumulation of matured SREBPl and the expression of FASN and SCD1.
- Cal29 bladder cancer cells were serum starved for 20 hr, then treated with FGFl (25 ng/mL) and heparin (10 ⁇ g/mL) for indicated time.
- Cell lysates were immunoprecipitated with anti- FGFR3 antibody and assessed for FGFR3 phosphorylation with an anti-phospho-tyrosine antibody (4G10). Lysates were also immunoblotted to detect indicated proteins as described in Methods.
- RTl 12 cells were transfected with siRNA targeting SREBPl (Sri), SREBP2 (Sr2), or a non-targeting control siRNA (Ctrl).
- siRNA targeting SREBPl Sri
- SREBP2 Sr2
- Ctrl non-targeting control siRNA
- cells were serum starved for 20 hr, then treated with FGFl (25 ng/mL) and heparin (10 ⁇ g/mL) for 24 hr.
- Total cell lysates were subjected to immunoblot analyses.
- FIG. 7 FGFl stimulates SREBPl activation and hpogenesis in bladder cancer cells.
- A, B Dose response of FGFl -induced FGFR3 activation in Cal29 (A) and RTl 12 (B) bladder cancer cells.
- Cal29 and RTl 12 cells were serum starved for 20 hr, then treated with different doses of FGFl plus 10 ⁇ g/ml heparin for 10 minutes. Cell lysates were subjected to immunoblot analyses with indicated antibodies.
- FGFR3 phosphorylation was analyzed as described in Methods. Note that in Cal29 cells, phosphorylated FRS2 displays apparent mobility shift.
- FGFl stimulates SREBPl expression and maturation, and FASN and SCD1 expression.
- RTl 12 bladder cancer cells were serum starved for 20 hr, then treated with 30 ng/mL FGFl plus 10 ⁇ g/ml heparin for indicated time. Total cell lysates were subjected to Western blot analyses.
- D FGFl stimulates fatty acid synthesis.
- RTl 12 cells were serum-starved for 20 hr, then incubated with 30 ng/mL of FGFl plus 10 ⁇ g/mL of heparin for 24 hr. [ 14 C]acetate was added for the final 16 hr.
- FIG. 8 FGFR3 signalling promotes the accumulation of matured SREBPl and hpogenesis via PI3K-mTORCl pathway.
- A Pharmacological inhibition of FGFR3 signalling.
- RTl 12 cells were serum starved for 20 hr, then treated with rapamycin (50 nM), Ly294002 (Ly294, 20 ⁇ ) and PD325901(PD901, 100 nM) for 2 hr, followed by stimulation with 30 ng/ml FGFl plus 10 ⁇ g/mL of heparin for 10 min. Cell lysates were subjected to immunoblot analyses with indicated antibodies.
- PI3K-mTORCl and MEK inhibitors block FGFl induction of SREBPl and SCDl in RT112 cells.
- RT112 cells were serum starved for 20 hr, treated with kinase inhibitors for 4 hr, followed by 24 hr incubation in medium supplemented with 30 ng/ml FGFl .
- Cell lysates were immunoblotted to detect SREBPl maturation, SCDl and FASN expression.
- C PBK-mTORCl and MEK inhibitors block FGFl -stimulated lipid synthesis.
- RT112 cells were treated the same as described in (B). [ 14 C] acetate was added for the final 4 hr incubation. The lipid fraction was extracted and [ 14 C]acetate incorporated into lipids was measured by scintillation counting. Data were normalized to sample protein content, and presented as mean +/- SD. These data are representative of two independent experiments.
- FIG. 9 FGFR3 signalling promotes the accumulation of matured SREBPl and SCDl expression via PBK-mTORCl pathway but not MEK-MAPK pathway in Cal29 cells.
- Cal29 cells were serum starved for 20 hr, treated for 4 hr with vehicle (DMSO), 50 nM rapamycin (Rapa), Ly294002 (Ly294, 20 ⁇ ) and PD325901(PD901, 100 nM). Then cells were cultured in medium supplemented with 30 ng/ml FGFl for 24 hr. Cell lysates were analyzed by Western blot.
- FIG. 10 SCDl knockdown inhibits cell proliferation and induces apoptosis.
- SW780 (A) and UMUC-14 (B) cells were transfected with SCDl siRNAs or three non-targeting control siRNAs (Ctrl), and cell proliferation was measured by [ H]thymidine incorporation at 72 hr after transfection. Data are presented as mean +/- SD relative to cells transfected with RNAiMax alone (Mock), and are representative of three independent experiments. Lower panel: Representative Western blots showing SCDl level in siRNA transfected cells.
- C, D SCDl knockdown leads to Gl cell cycle arrest (C) and apoptosis (D) in SW780 cells.
- FIG. 11 SCDl knockdown induces apoptosis in bladder cancer cells.
- A Effect of SCDl siRNAs on bladder cancer cell proliferation. Cells were transfected with SCD 1 siRNAs or three non-targeting control siRNAs (Ctrl), and cell proliferation was measured by [ H]thymidine incorporation at 72 hr after transfection. Data are presented as mean +/- SD relative to cells transfected with RNAiMax alone (Mock).
- B UMUC-14 cells cultured in 1% FBS medium were transfected with SCDl siRNAs or a control siRNA (Ctrl). FACS analyses were performed at 48 hr after transfection as described in Methods. Data are representative of three independent experiments.
- C, D SCD1 knockdown induces caspases 3/7 activation.
- UMUC-14 cells (C) and SW780 cells (D) were transfected with SCD1 siRNAs or two non-targeting control siRNAs (Ctrl). At 48 hr post transfection, activities of caspases 3 and 7 were measured with Caspase-Glo 3/7 assay kit
- FIG. 12 SCD1 knockdown inhibits cell proliferation in a fatty acid desaturation-dependent manner.
- A Downregulation of SCD1 protein level by SCD1 siRNA.
- SW780 cells were transfected with siRNAs targeting SCD1, FASN, or two non-targeting control siRNAs (Ctrl). Cell lysates were immunoblotted to assess SCD1 and FASN expression.
- B SCD1 knockdown blocks stearic acid desaturation. SW780 cells were transfected as described in (A). At 48 hr post transfection,
- FIG. 13 SCD1 knockdown inhibits cell proliferation in a fatty acid desaturation-dependent manner in UMUC-14 cells.
- A SCD1 knockdown blocks stearic acid desaturation.
- UMUC-14 cells were transfected with SCD1 siRNAs or two non-targeting control siRNAs (Ctrl).
- Ctrl non-targeting control siRNAs
- [ 14 C] stearic acid was added for 6 hr further incubation.
- [ 14 C] stearic acid desaturation was analyzed by thin-layer chromatography and measured by scintillation counting. Data are presented as mean +/- SD, and are representative of two independent experiments.
- B SCD1 knockdown blocks stearic acid desaturation.
- UMUC-14 cells were transfected with SCD1 siRNAs or two non-targeting control siRNAs (Ctrl).
- [ 14 C] stearic acid was added for 6 hr further incubation.
- UMUC-14 cells grown in medium containing 1% FBS were transfected with SCD1 siRNAs or two non-targeting control siRNAs (Ctrl).
- BSA-conjugated oleate acid was added to the culture medium as indicated.
- Cell proliferation was measured by [3H]thymidine incorporation at 72 hr post treatment. Data are presented as mean +/- SD relative to cells transfected with RNAiMax alone (Mock) and grown in medium supplemented with BSA only. These data are representative of three independent experiments.
- FIG. 14 Doxycycline-inducible knockdown of SCDl in SW780 bladder caner cells suppresses tumor growth in vivo.
- Three different SCDl shRNAs were cloned into a Tet-inducible lentiviral expression vector.
- SW780 cells stably expressing doxycycline-inducible SCDl shRNA or a control shRNA (Ctrl) were established with puromycin selection.
- A Representative blots showing SCDl expression in stable cells treated with or without 1 ⁇ g/mL doxycycline for 3 days. KD ratio indicates the efficiency of SCD 1 knockdown relative to cells without doxycycline treatment.
- B SCDl knockdown reduces [ H]thymidine incorporation.
- SW780 cells were cultured with or without 1 ⁇ g/mL doxycycline for 3 days prior to 16 hr incubation with [ H]thymidine. Counts of incorporated [ H]thymidine were presented as mean +/- SD relative to cells without doxycycline treatment.
- C SCDl knockdown attenuates tumor growth in mice. SW780 cells expressing SCDl shRNAl and 3 or a control shRNA (Ctrl) were inoculated into CB.17 SCID mice, and grouped out into cohorts of 10 for treatment. Mice were given 5% sucrose alone or
- FIG. 15 Pharmacological inhibition of SCDl attenuates tumor growth and reduces fatty acid desaturation in mice.
- SCDl small molecule inhibitor A37062 blocks the synthesis of monounsaturated fatty acid.
- UMUC-14 cells were treated with A37062 for 4 hr, then incubated with [ 14 C] acetate for 6 hr. Total fatty acids were extracted and separated by thin-layer chromatography.
- A37062 abolishes AKT phosphorylation and activates caspases 3 and 7.
- UMUC-14 cells were serum starved for 20 hr, then treated with A37062 for 20 hr. Cell lysates were subjected to Western blot analyses.
- FIG. 16 SCDl inhibitor suppresses cell proliferation in a fatty acid desaturation- dependent manner in SW780 cells.
- A Monounsaturated oleate rescues SW780 cells from SCDl inhibitor A37062.
- SW780 cells grown in medium containing 1% FBS were treated with 100 nM of SCDl inhibitor A37062 or DMSO (No 37602).
- BSA-conjugated oleate acid was added to the culture medium as indicated.
- Cell viability was measured by CellTiter Glo (Promega) at 48 hr post treatment. Data are presented as mean +/- SD relative to cells treated with DMSO alone and grown in medium supplemented with BSA only.
- B Saturated palmitate is unable to reverse the effect of SCDl inhibitor A37062. Cells were treated similarly as described in (A), except that BSA- conjugated palmitate was supplemented.
- FIG. 17 Pharmacological inhibition of SCDl reduces cell viability and increases caspases 3/7 activity in human colon cancer cell lines, human pancreatic cancer cell lines, and kidney cancer cell lines.
- A SCDl small molecule inhibitor A37062 reduces cell viability of colon cancer cells.
- B SCDl small molecule inhibitor A37062 activates caspases 3/7 in colon cancer cells.
- C SCDl small molecule inhibitor A37062 reduces cell viability of pancreatic cancer cells.
- D SCDl small molecule inhibitor A37062 activates caspases 3/7 in pancreatic cancer cells.
- E SCDl small molecule inhibitor A37062 reduces cell viability of kidney cancer cells.
- F SCDl small molecule inhibitor A37062 activates caspases 3/7 in kidney cancer cells.
- FIG. 18 Pharmacological inhibition of SCDl reduces cell viability and increases caspases 3/7 activity in a panel of human cancer cell lines, including colon, prostate, pancreatic, and bladder cancers and attenuates tumor growth in mice.
- SCDl small molecule inhibitor A37062 reduces cell viability of human cancer cells.
- SCDl small molecule inhibitor G02447171.1 reduces cell viability of human cancer cells.
- SCDl small molecule inhibitors delay xenograft growth of pre- established HCT15 colon tumors.
- D SCDl small molecule inhibitors delay xenograft growth of pre-established SW780 bladder tumors.
- E SCDl small molecule inhibitors delay xenograft growth of pre-established HP AC pancreatic tumors.
- FIG. 19 Pharmacological inhibition of SCDl by fourteen small molecule SCDl inhibitors reduces cell viability in HCT15 (A, B) and HT29 (C, D) cancer cells.
- FIG. 20 SCDl inhibitors RG1 , RG3, and RG8 suppress cell proliferation in a fatty acid desaturation-dependent manner in HCT15 cells.
- A-C Monounsaturated oleate rescues HCT15 cells from SCDl inhibitors.
- D-F Saturated palmitate is unable to reverse the effect of SCDl inhibitors in HCT15 cells.
- Figure 21 SCDl inhibitors RG1, RG3, and RG8 suppress cell proliferation in a fatty acid desaturation-dependent manner in HT29 cells.
- A-C Monounsaturated oleate rescues HT29 cells from SCDl inhibitors.
- D-F Saturated palmitate is unable to reverse the effect of SCDl inhibitors in HT29 cells.
- stearoyl-CoA desaturase 1 and "SCDl” refer herein to a native sequence SCDl polypeptide, polypeptide variants and fragments of a native sequence polypeptide and polypeptide variants (which are further defined herein).
- SCDl polypeptide described herein may be that which is isolated from a variety of sources, such as from human tissue types or from another source, or prepared by recombinant or synthetic methods.
- a "native sequence SCDl polypeptide” comprises a polypeptide having the same amino acid sequence as the corresponding SCDl polypeptide derived from nature.
- a native sequence SCDl polypeptide comprises the amino acid sequence of SEQ ID NO: l .
- SCDl polypeptide variant means a SCDl polypeptide, generally an active SCDl polypeptide, as defined herein having at least about 80% amino acid sequence identity with any of the native sequence SCDl polypeptide sequences as disclosed herein.
- SCDl polypeptide variants include, for instance, SCDl polypeptides wherein one or more amino acid residues are added, or deleted, at the N- or C-terminus of a native amino acid sequence.
- a SCDl polypeptide variant will have at least about 80%) amino acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%,
- SCDl variant polypeptides are at least about 10 amino acids in length, alternatively at least about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140,
- SCDl variant polypeptides will have no more than one conservative amino acid substitution as compared to a native SCD 1 polypeptide sequence, alternatively no more than 2, 3, 4, 5, 6, 7, 8, 9, or 10 conservative amino acid substitution as compared to the native SCDl polypeptide sequence.
- SCD1 antagonist as defined herein is any molecule that partially or fully blocks, inhibits, or neutralizes a biological activity mediated by a native sequence SCD1. In certain embodiments such antagonist binds to SCD 1.
- the antagonist is a polypeptide.
- the antagonist is an anti-SCDl antibody.
- the antagonist is a small molecule antagonist.
- the antagonist is a polynucleotide antagonist.
- Polynucleotide or “nucleic acid,” as used interchangeably herein, refer to polymers of nucleotides of any length, and include DNA and RNA.
- the nucleotides can be
- a polynucleotide may comprise modified nucleotides, such as methylated nucleotides and their analogs. If present, modification to the nucleotide structure may be imparted before or after assembly of the polymer.
- the sequence of nucleotides may be interrupted by non-nucleotide components.
- a polynucleotide may be further modified after synthesis, such as by conjugation with a label.
- modifications include, for example, "caps", substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as, for example, those with uncharged linkages (e.g. , methyl phosphonates, phosphotriesters, phosphoamidates, carbamates, etc.) and with charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), those containing pendant moieties, such as, for example, proteins (e.g., nucleases, toxins, antibodies, signal peptides, ply-L-lysine, etc.), those with intercalators (e.g., acridine, psoralen, etc.), those containing chelators (e.g., metals, radioactive metals, boron, oxidative metals, etc.), those containing alkylators, those with modified linkages (e.g., alpha anomeric nucleic acids, etc.), as
- any of the hydroxyl groups ordinarily present in the sugars may be replaced, for example, by phosphonate groups, phosphate groups, protected by standard protecting groups, or activated to prepare additional linkages to additional nucleotides, or may be conjugated to solid or semi-solid supports.
- the 5' and 3' terminal OH can be phosphorylated or substituted with amines or organic capping group moieties of from 1 to 20 carbon atoms.
- Other hydroxyls may also be derivatized to standard protecting groups.
- Polynucleotides can also contain analogous forms of ribose or deoxyribose sugars that are generally known in the art, including, for example, 2'-0-methyl-, 2'-0-allyl, 2'-fluoro- or 2'-azido-ribose, carbocyclic sugar analogs, a- anomeric sugars, epimeric sugars such as arabinose, xyloses or lyxoses, pyranose sugars, furanose sugars, sedoheptuloses, acyclic analogs and abasic nucleoside analogs such as methyl riboside.
- One or more phosphodiester linkages may be replaced by alternative linking groups.
- linking groups include, but are not limited to, embodiments wherein phosphate is replaced by P(0)S("thioate”), P(S)S ("dithioate”), "(0)NR 2 ("amidate”), P(0)R, P(0)OR', CO or CH 2 ("formacetal”), in which each R or R' is independently H or substituted or unsubstituted alkyl (1-20 C) optionally containing an ether (-0-) linkage, aryl, alkenyl, cycloalkyl, cycloalkenyl or araldyl. Not all linkages in a polynucleotide need be identical. The preceding description applies to all polynucleotides referred to herein, including RNA and DNA.
- Oligonucleotide refers to short, single stranded polynucleotides that are at least about seven nucleotides in length and less than about 250 nucleotides in length.
- Oligonucleotides may be synthetic.
- the terms “oligonucleotide” and “polynucleotide” are not mutually exclusive. The description above for polynucleotides is equally and fully applicable to oligonucleotides.
- primer refers to a single stranded polynucleotide that is capable of hybridizing to a nucleic acid and allowing the polymerization of a complementary nucleic acid, generally by providing a free 3 '-OH group.
- small molecule refers to any molecule with a molecular weight of about 2000 daltons or less, preferably of about 500 daltons or less.
- array refers to an ordered arrangement of hybridizable array elements, preferably polynucleotide probes (e.g. , oligonucleotides), on a substrate.
- the substrate can be a solid substrate, such as a glass slide, or a semi-solid substrate, such as nitrocellulose membrane.
- Amplification refers to the process of producing one or more copies of a reference nucleic acid sequence or its complement. Amplification may be linear or exponential (e.g. , PCR). A "copy” does not necessarily mean perfect sequence complementarity or identity relative to the template sequence. For example, copies can include nucleotide analogs such as deoxyinosine, intentional sequence alterations (such as sequence alterations introduced through a primer comprising a sequence that is hybridizable, but not fully complementary, to the template), and/or sequence errors that occur during amplification.
- an "isolated" antibody is one which has been separated from a component of its natural environment.
- an antibody is purified to greater than 95% or 99% purity as determined by, for example, electrophoretic (e.g. , SDS-PAGE, isoelectric focusing (IEF), capillary electrophoresis) or chromatographic (e.g. , ion exchange or reverse phase HPLC).
- electrophoretic e.g. , SDS-PAGE, isoelectric focusing (IEF), capillary electrophoresis
- chromatographic e.g. , ion exchange or reverse phase HPLC
- An "isolated" nucleic acid refers to a nucleic acid molecule that has been separated from a component of its natural environment.
- An isolated nucleic acid includes a nucleic acid molecule contained in cells that ordinarily contain the nucleic acid molecule, but the nucleic acid molecule is present extrachromosomally or at a chromosomal location that is different from its natural chromosomal location.
- host cell refers to cells into which exogenous nucleic acid has been introduced, including the progeny of such cells.
- Host cells include “transformants” and “transformed cells,” which include the primary transformed cell and progeny derived therefrom without regard to the number of passages. Progeny may not be completely identical in nucleic acid content to a parent cell, but may contain mutations. Mutant progeny that have the same function or biological activity as screened or selected for in the originally transformed cell are included herein.
- vector refers to a nucleic acid molecule capable of propagating another nucleic acid to which it is linked.
- the term includes the vector as a self-replicating nucleic acid structure as well as the vector incorporated into the genome of a host cell into which it has been introduced.
- Certain vectors are capable of directing the expression of nucleic acids to which they are operatively linked. Such vectors are referred to herein as "expression vectors.”
- antibody herein is used in the broadest sense and encompasses various antibody structures, including but not limited to monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments so long as they exhibit the desired antigen-binding activity.
- anti-SCDl antibody and “an antibody that binds to SCD1” refer to an antibody that is capable of binding SCD1 with sufficient affinity such that the antibody is useful as a diagnostic and/or therapeutic agent in targeting SCD1.
- the extent of binding of an anti-SCDl antibody to an unrelated, non-SCDl protein is less than about 10% of the binding of the antibody to SCD1 as measured, e.g., by a radioimmunoassay (RIA).
- RIA radioimmunoassay
- an anti-SCDl antibody binds to an epitope of SCD1 that is conserved among SCD1 from different species.
- a “blocking” antibody or an “antagonist” antibody is one which inhibits or reduces biological activity of the antigen it binds.
- Preferred blocking antibodies or antagonist antibodies substantially or completely inhibit the biological activity of the antigen.
- Binding affinity refers to the strength of the sum total of noncovalent interactions between a single binding site of a molecule (e.g., an antibody) and its binding partner (e.g., an antigen).
- binding affinity refers to intrinsic binding affinity which reflects a 1 : 1 interaction between members of a binding pair (e.g. , antibody and antigen).
- the affinity of a molecule X for its partner Y can generally be represented by the dissociation constant (Kd). Affinity can be measured by common methods known in the art, including those described herein. Specific illustrative and exemplary embodiments for measuring binding affinity are described in the following.
- An "affinity matured” antibody refers to an antibody with one or more alterations in one or more hypervariable regions (HVRs), compared to a parent antibody which does not possess such alterations, such alterations resulting in an improvement in the affinity of the antibody for antigen.
- HVRs hypervariable regions
- an "antibody fragment” refers to a molecule other than an intact antibody that comprises a portion of an intact antibody that binds the antigen to which the intact antibody binds.
- antibody fragments include but are not limited to Fv, Fab, Fab', Fab'-SH, F(ab') 2 ; diabodies; linear antibodies; single-chain antibody molecules (e.g., scFv); and multispecific antibodies formed from antibody fragments.
- an "antibody that binds to the same epitope" as a reference antibody refers to an antibody that blocks binding of the reference antibody to its antigen in a competition assay by 50% or more, and conversely, the reference antibody blocks binding of the antibody to its antigen in a competition assay by 50% or more.
- An exemplary competition assay is provided herein.
- chimeric antibody refers to an antibody in which a portion of the heavy and/or light chain is derived from a particular source or species, while the remainder of the heavy and/or light chain is derived from a different source or species.
- the "class" of an antibody refers to the type of constant domain or constant region possessed by its heavy chain.
- the heavy chain constant domains that correspond to the different classes of
- immunoglobulins are called ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ , respectively.
- full length antibody “intact antibody,” and “whole antibody” are used herein interchangeably to refer to an antibody having a structure substantially similar to a native antibody structure or having heavy chains that contain an Fc region as defined herein.
- the term "monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical and/or bind the same epitope, except for possible variant antibodies, e.g., containing naturally occurring mutations or arising during production of a monoclonal antibody preparation, such variants generally being present in minor amounts.
- polyclonal antibody preparations typically include different antibodies directed against different determinants (epitopes)
- each monoclonal antibody of a monoclonal antibody preparation is directed against a single determinant on an antigen.
- the modifier "monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
- the monoclonal antibodies to be used in accordance with the present invention may be made by a variety of techniques, including but not limited to the hybridoma method, recombinant DNA methods, phage-display methods, and methods utilizing transgenic animals containing all or part of the human immunoglobulin loci, such methods and other exemplary methods for making monoclonal antibodies being described herein.
- a "human antibody” is one which possesses an amino acid sequence which corresponds to that of an antibody produced by a human or a human cell or derived from a non-human source that utilizes human antibody repertoires or other human antibody-encoding sequences. This definition of a human antibody specifically excludes a humanized antibody comprising non-human antigen- binding residues.
- a “humanized” antibody refers to a chimeric antibody comprising amino acid residues from non-human HVRs and amino acid residues from human FRs.
- a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the HVRs (e.g., CDRs) correspond to those of a non-human antibody, and all or substantially all of the FRs correspond to those of a human antibody.
- a humanized antibody optionally may comprise at least a portion of an antibody constant region derived from a human antibody.
- a "humanized form" of an antibody, e.g. , a non-human antibody refers to an antibody that has undergone humanization.
- an “immunoconjugate” is an antibody conjugated to one or more heterologous molecule(s), including but not limited to a cytotoxic agent.
- Percent (%) amino acid sequence identity with respect to a reference polypeptide sequence is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the reference polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for aligning sequences, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared.
- % amino acid sequence identity values are generated using the sequence comparison computer program ALIGN-2.
- the ALIGN-2 sequence comparison computer program was authored by Genentech, Inc., and the source code has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087.
- the ALIGN-2 program is publicly available from Genentech, Inc., South San Francisco, California, or may be compiled from the source code.
- the ALIGN-2 program should be compiled for use on a UNIX operating system, including digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary.
- % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B is calculated as follows:
- detection includes any means of detecting, including direct and indirect detection.
- biomarker refers to an indicator, e.g. , predictive, diagnostic, and/or prognostic, which can be detected in a sample.
- the biomarker may serve as an indicator of a particular subtype of a disease or disorder (e.g. , cancer) characterized by certain, molecular, pathological, histological, and/or clinical features.
- a biomarker is a gene.
- Biomarkers include, but are not limited to, polynucleotides (e.g., DNA, and/or RNA), polypeptides, polypeptide and polynucleotide modifications (e.g. posttranslational modifications), carbohydrates, and/or glycolipid-based molecular markers.
- biomarker signature refers to one or a combination of biomarkers whose expression is an indicator, e.g., predictive, diagnostic, and/or prognostic.
- the biomarker signature may serve as an indictor of a particular subtype of a disease or disorder (e.g., cancer) characterized by certain molecular, pathological, histological, and/or clinical features.
- the biomarker signature is a "gene signature.”
- the term “gene signature” is used interchangeably with “gene expression signature” and refers to one or a combination of polynucleotides whose expression is an indicator, e.g.
- the biomarker signature is a "protein signature.”
- protein signature is used interchangeably with “protein expression signature” and refers to one or a combination of polypeptides whose expression is an indicator, e.g. , predictive, diagnostic, and/or prognostic.
- the "amount” or "level” of a biomarker associated with an increased clinical benefit to an individual is a detectable level in a biological sample. These can be measured by methods known to one skilled in the art and also disclosed herein. The expression level or amount of biomarker assessed can be used to determine the response to the treatment.
- level of expression or “expression level” in general are used interchangeably and generally refer to the amount of a biomarker in a biological sample. “Expression” generally refers to the process by which information (e.g., gene-encoded and/or epigenetic) is converted into the structures present and operating in the cell. Therefore, as used herein, “expression” may refer to transcription into a polynucleotide, translation into a polypeptide, or even polynucleotide and/or polypeptide modifications (e.g. , posttranslational modification of a polypeptide).
- Fragments of the transcribed polynucleotide, the translated polypeptide, or polynucleotide and/or polypeptide modifications shall also be regarded as expressed whether they originate from a transcript generated by alternative splicing or a degraded transcript, or from a post-translational processing of the polypeptide, e.g., by proteolysis.
- "Expressed genes” include those that are transcribed into a polynucleotide as mRNA and then translated into a polypeptide, and also those that are transcribed into RNA but not translated into a polypeptide (for example, transfer and ribosomal RNAs).
- Elevated expression refers to an increased expression or increased levels of a biomarker in an individual relative to a control, such as an individual or individuals who are not suffering from the disease or disorder (e.g., cancer) or an internal control (e.g., housekeeping biomarker).
- a control such as an individual or individuals who are not suffering from the disease or disorder (e.g., cancer) or an internal control (e.g., housekeeping biomarker).
- Reduced expression refers to a decrease expression or decreased levels of a biomarker in an individual relative to a control, such as an individual or individuals who are not suffering from the disease or disorder (e.g., cancer) or an internal control (e.g. , housekeeping biomarker).
- a control such as an individual or individuals who are not suffering from the disease or disorder (e.g., cancer) or an internal control (e.g. , housekeeping biomarker).
- housekeeping biomarker refers to a biomarker or group of biomarkers (e.g., polynucleotides and/or polypeptides) which are typically similarly present in all cell types.
- the housekeeping biomarker is a "housekeeping gene.”
- a "housekeeping gene” refers herein to a gene or group of genes which encode proteins whose activities are essential for the maintenance of cell function and which are typically similarly present in all cell types.
- “Amplification,” as used herein generally refers to the process of producing multiple copies of a desired sequence. “Multiple copies” mean at least two copies. A “copy” does not necessarily mean perfect sequence complementarity or identity to the template sequence.
- copies can include nucleotide analogs such as deoxyinosine, intentional sequence alterations (such as sequence alterations introduced through a primer comprising a sequence that is hybridizable, but not complementary, to the template), and/or sequence errors that occur during amplification.
- nucleotide analogs such as deoxyinosine
- intentional sequence alterations such as sequence alterations introduced through a primer comprising a sequence that is hybridizable, but not complementary, to the template
- sequence errors that occur during amplification.
- multiplex-PCR refers to a single PCR reaction carried out on nucleic acid obtained from a single source (e.g., an individual) using more than one primer set for the purpose of amplifying two or more DNA sequences in a single reaction.
- Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so.
- stringency of hybridization reactions see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).
- "Stringent conditions” or “high stringency conditions”, as defined herein, can be identified by those that: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50°C; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1%) Ficoll/0.1%> polyvinylpyrrolidone/50mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42°C; or (3) overnight hybridization in a solution that employs 50%) formamide, 5 x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 ⁇ ), 0.1% S
- Modely stringent conditions can be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and %>SDS) less stringent that those described above.
- moderately stringent conditions is overnight incubation at 37°C in a solution comprising: 20% formamide, 5 x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 x Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1 x SSC at about 37-50°C.
- the skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.
- diagnosis is used herein to refer to the identification or classification of a molecular or pathological state, disease or condition (e.g., cancer).
- diagnosis may refer to identification of a particular type of cancer.
- Diagnosis may also refer to the classification of a particular subtype of cancer, e.g., by histopathological criteria, or by molecular features (e.g., a subtype characterized by expression of one or a combination of biomarkers (e.g., particular genes or proteins encoded by said genes)).
- a method of aiding diagnosis of a disease or condition can comprise measuring certain biomarkers in a biological sample from an individual.
- sample refers to a composition that is obtained or derived from a subject and/or individual of interest that contains a cellular and/or other molecular entity that is to be characterized and/or identified, for example based on physical, biochemical, chemical and/or physiological characteristics.
- disease sample and variations thereof refers to any sample obtained from a subject of interest that would be expected or is known to contain the cellular and/or molecular entity that is to be characterized.
- Samples include, but are not limited to, primary or cultured cells or cell lines, cell supernatants, cell lysates, platelets, serum, plasma, vitreous fluid, lymph fluid, synovial fluid, follicular fluid, seminal fluid, amniotic fluid, milk, whole blood, blood-derived cells, urine, cerebro-spinal fluid, saliva, sputum, tears, perspiration, mucus, tumor lysates, and tissue culture medium, tissue extracts such as homogenized tissue, tumor tissue, cellular extracts, and combinations thereof.
- tissue sample or “cell sample” is meant a collection of similar cells obtained from a tissue of a subject or individual.
- the source of the tissue or cell sample may be solid tissue as from a fresh, frozen and/or preserved organ, tissue sample, biopsy, and/or aspirate; blood or any blood constituents such as plasma; bodily fluids such as cerebral spinal fluid, amniotic fluid, peritoneal fluid, or interstitial fluid; cells from any time in gestation or development of the subject.
- the tissue sample may also be primary or cultured cells or cell lines.
- the tissue or cell sample is obtained from a disease tissue/organ.
- the tissue sample may contain compounds which are not naturally intermixed with the tissue in nature such as preservatives, anticoagulants, buffers, fixatives, nutrients, antibiotics, or the like.
- a “reference sample”, “reference cell”, “reference tissue”, “control sample”, “control cell”, or “control tissue”, as used herein, refers to a sample, cell, tissue, standard, or level that is used for comparison purposes.
- a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is obtained from a healthy and/or non-diseased part of the body (e.g. , tissue or cells) of the same subject or individual.
- healthy and/or non- diseased cells or tissue adjacent to the diseased cells or tissue e.g. , cells or tissue adjacent to a tumor.
- a reference sample is obtained from an untreated tissue and/or cell of the body of the same subject or individual.
- a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is obtained from a healthy and/or non-diseased part of the body (e.g. , tissues or cells) of an individual who is not the subject or individual.
- a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is obtained from an untreated tissue and/or cell of the body of an individual who is not the subject or individual.
- a "section" of a tissue sample is meant a single part or piece of a tissue sample, e.g. a thin slice of tissue or cells cut from a tissue sample. It is understood that multiple sections of tissue samples may be taken and subjected to analysis, provided that it is understood that the same section of tissue sample may be analyzed at both morphological and molecular levels, or analyzed with respect to both polypeptides and polynucleotides.
- correlate or “correlating” is meant comparing, in any way, the performance and/or results of a first analysis or protocol with the performance and/or results of a second analysis or protocol. For example, one may use the results of a first analysis or protocol in carrying out a second protocols and/or one may use the results of a first analysis or protocol to determine whether a second analysis or protocol should be performed. With respect to the embodiment of polynucleotide analysis or protocol, one may use the results of the polynucleotide expression analysis or protocol to determine whether a specific therapeutic regimen should be performed.
- “Individual response” or “response” can be assessed using any endpoint indicating a benefit to the individual, including, without limitation, (1) inhibition, to some extent, of disease progression (e.g. , cancer progression), including slowing down and complete arrest; (2) a reduction in tumor size; (3) inhibition (i.e. , reduction, slowing down or complete stopping) of cancer cell infiltration into adjacent peripheral organs and/or tissues; (4) inhibition (i.e. reduction, slowing down or complete stopping) of metasisis; (5) relief, to some extent, of one or more symptoms associated with the disease or disorder (e.g., cancer); (6) increase in the length of progression free survival; and/or (9) decreased mortality at a given point of time following treatment.
- disease progression e.g. , cancer progression
- a reduction in tumor size i.e. , reduction, slowing down or complete stopping
- inhibition i.e. reduction, slowing down or complete stopping
- metasisis i.e. reduction, slowing down or complete
- the term "substantially the same,” as used herein, denotes a sufficiently high degree of similarity between two numeric values, such that one of skill in the art would consider the difference between the two values to be of little or no biological and/or statistical significance within the context of the biological characteristic measured by said values (e.g., Kd values or expression).
- the difference between said two values is, for example, less than about 50%, less than about 40%, less than about 30%, less than about 20%, and/or less than about 10% as a function of the
- the phrase "substantially different,” as used herein, denotes a sufficiently high degree of difference between two numeric values such that one of skill in the art would consider the difference between the two values to be of statistical significance within the context of the biological characteristic measured by said values (e.g., Kd values).
- the difference between said two values is, for example, greater than about 10%, greater than about 20%, greater than about 30%, greater than about 40%, and/or greater than about 50% as a function of the value for the reference/comparator molecule.
- label when used herein refers to a detectable compound or composition.
- the label is typically conjugated or fused directly or indirectly to a reagent, such as a polynucleotide probe or an antibody, and facilitates detection of the reagent to which it is conjugated or fused.
- the label may itself be detectable (e.g., radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which results in a detectable product.
- an "effective amount” of an agent refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic or prophylactic result.
- a "therapeutically effective amount" of a substance/molecule of the invention, agonist or antagonist may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the substance/molecule, agonist or antagonist to elicit a desired response in the individual.
- a therapeutically effective amount is also one in which any toxic or detrimental effects of the substance/molecule, agonist or antagonist are outweighed by the therapeutically beneficial effects.
- a “prophylactically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically but not necessarily, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount will be less than the therapeutically effective amount.
- composition refers to a preparation which is in such form as to permit the biological activity of an active ingredient contained therein to be effective, and which contains no additional components which are unacceptably toxic to a subject to which the formulation would be administered.
- a “pharmaceutically acceptable carrier” refers to an ingredient in a pharmaceutical formulation, other than an active ingredient, which is nontoxic to a subject.
- a pharmaceutically acceptable carrier includes, but is not limited to, a buffer, excipient, stabilizer, or preservative.
- treatment and grammatical variations thereof such as “treat” or
- treating refers to clinical intervention in an attempt to alter the natural course of the individual being treated, and can be performed either for prophylaxis or during the course of clinical pathology. Desirable effects of treatment include, but are not limited to, preventing occurrence or recurrence of disease, alleviation of symptoms, diminishment of any direct or indirect pathological consequences of the disease, preventing metastasis, decreasing the rate of disease progression, amelioration or palliation of the disease state, and remission or improved prognosis.
- antibodies of the invention are used to delay development of a disease or to slow the progression of a disease.
- anti-cancer therapy refers to a therapy useful in treating cancer.
- anti-cancer therapeutic agents include, but are limited to, e.g., chemotherapeutic agents, growth inhibitory agents, cytotoxic agents, agents used in radiation therapy, anti-angiogenesis agents, apoptotic agents, anti-tubulin agents, and other agents to treat cancer, anti-CD20 antibodies, platelet derived growth factor inhibitors (e.g., Gleevec (Imatinib Mesylate)), a COX-2 inhibitor (e.g., celecoxib), interferons, cytokines, antagonists (e.g., neutralizing antibodies) that bind to one or more of the following targets PDGFR-beta, BlyS, APRIL, BCMA receptor(s), TRAIL/Apo2, and other bioactive and organic chemical agents, etc. Combinations thereof are also included in the invention.
- cytotoxic agent refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells.
- the term is intended to include radioactive isotopes (e.g., At 211 , 1 131 , 1 125 , Y 90 , Re 186 , Re 188 , Sm 153 , Bi 212 , P 32 and radioactive isotopes of Lu), chemotherapeutic agents e.g., methotrexate, adriamicin, vinca alkaloids (vincristine, vinblastine, etoposide), doxorubicin, melphalan, mitomycin C, chlorambucil, daunorubicin or other intercalating agents, enzymes and fragments thereof such as nucleolytic enzymes, antibiotics, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof,
- a tumoricidal agent causes destruction of tumor cells.
- a "chemotherapeutic agent” refers to a chemical compound useful in the treatment of cancer.
- examples of chemotherapeutic agents include alkylating agents such as thiotepa and cyclosphosphamide (CYTOXAN®); alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and
- methylamelamines including altretamine, triethylenemelamine, triethylenephosphoramide, triethylenethiophosphoramide and trimethylomelamine; acetogenins (especially bullatacin and bullatacinone); delta-9-tetrahydrocannabinol (dronabinol, MARINOL®); beta-lapachone; lapachol; colchicines; betulinic acid; a camptothecin (including the synthetic analogue topotecan
- HEC AMTIN® CPT-1 1 (irinotecan, CAMPTOSAR®), acetylcamptothecin, scopolectin, and 9- aminocamptothecin); bryostatin; callystatin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); podophyllotoxin; podophyllinic acid; teniposide; cryptophycins (particularly cryptophycin 1 and cryptophycin 8); dolastatin; duocarmycin (including the synthetic analogues, KW-2189 and CB 1-TM1); eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chlornaphazine, chlorophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, mel
- folic acid analogues such as denopterin, methotrexate, pteropterin, trimetrexate
- purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine
- pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine
- androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone
- anti-adrenals such as aminoglutethimide, mitotane, trilostane
- folic acid replenisher such as frolinic acid; aceglatone; aldophosphamide glycoside;
- spirogermanium spirogermanium; tenuazonic acid; triaziquone; 2,2',2'-trichlorotriethylamine; trichothecenes (especially T-2 toxin, verracurin A, roridin A and anguidine); urethan; vindesine (ELDISINE®, FILDESIN®); dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside ("Ara-C"); thiotepa; taxoid, e.g., paclitaxel (TAXOL®), albumin-engineered nanoparticle formulation of paclitaxel (ABRAXANETM), and docetaxel (TAXOTERE®);
- TAXOL® paclitaxel
- ABRAXANETM albumin-engineered nanoparticle formulation of paclitaxel
- TXOTERE® docetaxel
- chloranbucil 6-thioguanine; mercaptopurine; methotrexate; platinum agents such as cisplatin, oxaliplatin (e.g., ELOXATIN®), and carboplatin; vincas, which prevent tubulin polymerization from forming microtubules, including vinblastine (VELBAN®), vincristine (ONCOVIN®), vindesine (ELDISINE®, FILDESIN®), and vinorelbine (NAVELBINE®); etoposide (VP- 16); ifosfamide; mitoxantrone; leucovorin; novantrone; edatrexate; daunomycin; aminopterin;
- platinum agents such as cisplatin, oxaliplatin (e.g., ELOXATIN®), and carboplatin
- vincas which prevent tubulin polymerization from forming microtubules, including vinblastine (VELBAN®), vincristine (ONCO
- ibandronate topoisomerase inhibitor RFS 2000; difluoromethylornithine (DMFO); retinoids such as retinoic acid, including bexarotene (TARGRETIN®); bisphosphonates such as clodronate (for example, BONEFOS® or OSTAC®), etidronate (DIDROCAL®), NE-58095, zoledronic acid/zoledronate (ZOMETA®), alendronate (FOSAMAX®), pamidronate (AREDIA®), tiludronate (SKELID®), or risedronate (ACTONEL®); troxacitabine (a 1 ,3-dioxolane nucleoside cytosine analog); antisense oligonucleotides, particularly those that inhibit expression of genes in signaling pathways implicated in aberrant cell proliferation, such as, for example, PKC-alpha, Raf, H-Ras, and epidermal growth factor receptor (EGF-R); vaccine
- BAY439006 (sorafenib; Bayer); SU-1 1248 (sunitinib, SUTENT®, Pfizer); perifosine, COX-2 inhibitor (e.g., celecoxib or etoricoxib), proteosome inhibitor (e.g., PS341); bortezomib
- VELCADE® CCI-779; tipifarnib (Rl 1577); orafenib, ABT510; Bcl-2 inhibitor such as oblimersen sodium (GENASENSE®); pixantrone; EGFR inhibitors (see definition below); tyrosine kinase inhibitors (see definition below); serine-threonine kinase inhibitors such as rapamycin (sirolimus, RAPAMUNE®); farnesyltransferase inhibitors such as lonafarnib (SCH 6636, SARASAR ); and pharmaceutically acceptable salts, acids or derivatives of any of the above; as well as combinations of two or more of the above such as CHOP, an abbreviation for a combined therapy of cyclophosphamide, doxorubicin, vincristine, and prednisolone; and FOLFOX, an abbreviation for a treatment regimen with oxaliplatin (ELOXATINTM) combined
- Chemotherapeutic agents as defined herein include “anti-hormonal agents” or “endocrine therapeutics” which act to regulate, reduce, block, or inhibit the effects of hormones that can promote the growth of cancer. They may be hormones themselves, including, but not limited to: anti-estrogens with mixed agonist/antagonist profile, including, tamoxifen (NOLVADEX®), 4- hydroxytamoxifen, toremifene (FARESTON®), idoxifene, droloxifene, raloxifene (EVISTA®), trioxifene, keoxifene, and selective estrogen receptor modulators (SERMs) such as SERM3; pure anti-estrogens without agonist properties, such as fulvestrant (FASLODEX®), and EM800 (such agents may block estrogen receptor (ER) dimerization, inhibit DNA binding, increase ER turnover, and/or suppress ER levels); aromatase inhibitors, including steroidal aromatase inhibitor
- prodrug refers to a precursor or derivative form of a pharmaceutically active substance that is less cytotoxic to tumor cells compared to the parent drug and is capable of being enzymatically activated or converted into the more active parent form. See, e.g., Wilman, "Prodrugs in Cancer Chemotherapy” Biochemical Society Transactions, 14, pp. 375- 382, 615th Meeting Harbor (1986) and Stella et al., “Prodrugs: A Chemical Approach to Targeted Drug Delivery,” Directed Drug Delivery, Borchardt et al., (ed.), pp. 247-267, Humana Press (1985).
- the prodrugs of this invention include, but are not limited to, phosphate-containing prodrugs, thiophosphate-containing prodrugs, sulfate-containing prodrugs, peptide-containing prodrugs, D- amino acid-modified prodrugs, glycosylated prodrugs, ⁇ -lactam-containing prodrugs, optionally substituted phenoxyacetamide-containing prodrugs or optionally substituted phenylacetamide- containing prodrugs, 5-fluorocytosine and other 5-fluorouridine prodrugs which can be converted into the more active cytotoxic free drug.
- cytotoxic drugs that can be derivatized into a prodrug form for use in this invention include, but are not limited to, those chemotherapeutic agents described above.
- a “growth inhibitory agent” when used herein refers to a compound or composition which inhibits growth of a cell (e.g., a cell whose growth is dependent upon SCD1 expression either in vitro or in vivo).
- growth inhibitory agents include agents that block cell cycle progression (at a place other than S phase), such as agents that induce Gl arrest and M-phase arrest.
- Classical M-phase blockers include the vincas (vincristine and vinblastine), taxanes, and
- topoisomerase II inhibitors such as doxorubicin, epirubicin, daunorubicin, etoposide, and bleomycin.
- agents that arrest Gl also spill over into S-phase arrest, for example, DNA alkylating agents such as tamoxifen, prednisone, dacarbazine, mechlorethamine, cisplatin, methotrexate, 5- fluorouracil, and ara-C.
- DNA alkylating agents such as tamoxifen, prednisone, dacarbazine, mechlorethamine, cisplatin, methotrexate, 5- fluorouracil, and ara-C.
- paclitaxel and docetaxel are anticancer drugs both derived from the yew tree.
- Docetaxel TAXOTERE®, Rhone-Poulenc Rorer
- TAXOL® Bristol-Myers Squibb
- radiation therapy is meant the use of directed gamma rays or beta rays to induce sufficient damage to a cell so as to limit its ability to function normally or to destroy the cell altogether. It will be appreciated that there will be many ways known in the art to determine the dosage and duration of treatment. Typical treatments are given as a one time administration and typical dosages range from 10 to 200 units (Grays) per day.
- a "patient,” an “individual,” or a “subject” is a mammal. Mammals include, but are not limited to, domesticated animals (e.g., cows, sheep, cats, dogs, and horses), primates (e.g., humans and non-human primates such as monkeys), rabbits, and rodents (e.g., mice and rats). In certain embodiments, the patient, individual, or subject is a human.
- concurrent administration includes a dosing regimen when the administration of one or more agent(s) continues after discontinuing the administration of one or more other agent(s).
- reduced or inhibit is meant the ability to cause an overall decrease of 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or greater. Reduce or inhibit can refer to the symptoms of the disorder being treated, the presence or size of metastases, or the size of the primary tumor.
- a "package insert” is used to refer to instructions customarily included in commercial packages of therapeutic products or medicaments, that contain information about the indications, usage, dosage, administration, contraindications, other therapeutic products to be combined with the packaged product, and/or warnings concerning the use of such therapeutic products or medicaments and the like.
- An "article of manufacture” is any manufacture (e.g. , a package or container) or kit comprising at least one reagent, e.g. , a medicament for treatment of a disease or disorder (e.g. , cancer), or a probe for specifically detecting a biomarker described herein.
- the manufacture or kit is promoted, distributed, or sold as a unit for performing the methods described herein.
- a "target audience” is a group of people or an institution to whom or to which a particular medicament is being promoted or intended to be promoted, as by marketing or advertising, especially for particular uses, treatments, or indications, such as individuals, populations, readers of newspapers, medical literature, and magazines, television or internet viewers, radio or internet listeners, physicians, drug companies, etc.
- SCDl antagonists as part of a specific treatment regimen intended to provide a beneficial effect. Any of the SCDl antagonists provided herein may be used in therapeutic methods. In a further aspect, the invention provides for the use of an SCDl antagonist in the manufacture or preparation of a medicament. In one embodiment, the medicament is for treatment of cancer. In a further aspect, the invention provides a method for treating a cancer. Further, provided herein methods and compositions for identifying individuals who may benefit from treatment with an anti-cancer therapy comprising an SCDl antagonist. An "individual" according to any of the above embodiments is preferably a human. [0125] Provided herein are methods of inhibiting cell proliferation of a cancer cell comprising contacting the cancer cell with an effective amount of an SCD 1 antagonist. Further provided herein are methods of inhibiting cell proliferation of a cancer cell in an individual comprising
- the cancer cell expresses elevated levels of one or more biomarkers compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- the SCD1 antagonist is a small molecule, an anti-SCDl antibody, a binding polypeptide, or polynucleotide.
- the SCD1 antagonist is a small molecule.
- the small molecule is SMI37062 (GO 1522403), G02447171 , RG1 , RG3, RG8 or derivative thereof.
- An "individual" according to any of the above embodiments is preferably a human.
- the cell cycle arrest is Gl cell cycle arrest.
- the cancer cell expresses elevated levels of one or more biomarkers compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- the SCD1 antagonist is a small molecule, an anti-SCDl antibody, a binding polypeptide, or
- the SCD1 antagonist is a small molecule.
- the small molecule is SMI37062 (G01522403), G02447171 , RG1 , RG3, RG8 or derivative thereof.
- An "individual” according to any of the above embodiments is preferably a human.
- apoptosis is neucrosis.
- the cell death is apoptosis.
- the apoptosis is caspase- dependent apoptosis.
- the apoptosis is caspase-independent apoptosis.
- promotion of apoptosis is indicated by an increase in active caspases, for example, caspase 3 and caspase 7.
- the cancer cell expresses elevated levels of one or more biomarkers compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- the SCD1 antagonist is a small molecule, an anti-SCDl antibody, a binding polypeptide, or polynucleotide.
- the SCD1 antagonist is a small molecule.
- the small molecule is SMI37062 (G01522403), G02447171 , RGl , RG3, RG8 or derivative thereof.
- An "individual" according to any of the above embodiments is preferably a human.
- kits for treating a cancer cell in an individual comprising administering to the individual an effective amount of an SCD 1 antagonist.
- the cancer cell expresses elevated levels of one or more biomarkers compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g. , housekeeping gene).
- the SCD1 antagonist is a small molecule, an anti-SCDl antibody, a binding polypeptide, or polynucleotide.
- the SCD1 antagonist is a small molecule.
- the small molecule is SMI37062 (GO 1522403), G02447171 , RGl , RG3, RG8 or derivative thereof.
- An "individual" according to any of the above embodiments is preferably a human.
- kits for treating cancer in an individual comprising administering to the individual an effective amount of an SCD 1 antagonist.
- the cancer in the individual expresses elevated levels of one or more biomarkers compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- the SCD1 antagonist is a small molecule, an anti-SCDl antibody, a binding polypeptide, or polynucleotide.
- the SCD1 antagonist is a small molecule.
- the small molecule is SMI37062 (G01522403), G02447171 , RGl , RG3, RG8 or derivative thereof.
- An "individual" according to any of the above embodiments is preferably a human.
- methods of treating cancer in an individual comprising administering to the individual an effective amount of an SCD 1 antagonist, wherein treatment is based upon the individual having cancer expressing elevated levels and/or reduced expression levels of one or more biomarkers compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- methods of treating cancer in an individual provided that the individual has been found to have cancer expressing elevated levels of one or more biomarkers compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene), the treatment comprising administering to the individual an effective amount of an SCD1 antagonist.
- the SCD1 antagonist is a small molecule, an anti-SCDl antibody, a binding polypeptide, or polynucleotide. In some embodiments, the SCD1 antagonist is a small molecule. In some embodiments, the small molecule is SMI37062 (G01522403), G02447171 , RG1 , RG3, RG8 or derivative thereof. An "individual" according to any of the above embodiments is preferably a human.
- kits for treating cancer in an individual comprising: (a) determining that a sample obtained from the individual expressing elevated levels of one or more biomarkers compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene), and (b) administering an effective amount of an anti-cancer therapy comprising an SCD 1 antagonist to the individual, whereby the cancer is treated.
- the SCDl antagonist is a small molecule, an anti-SCDl antibody, a binding polypeptide, or polynucleotide.
- the SCDl antagonist is a small molecule.
- the small molecule is SMI37062 (GO 1522403), G02447171 , RG1 , RG3, RG8 or derivative thereof.
- An "individual" according to any of the above embodiments is preferably a human.
- kits for treating cancer comprising: (a) selecting an individual having cancer, wherein the cancer expresses elevated levels of one or more biomarkers compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene); and (b) administering to the individual thus selected an effective amount of an SCDl antagonist, whereby the cancer is treated.
- the SCDl antagonist is a small molecule, an anti-SCDl antibody, a binding polypeptide, or
- the SCDl antagonist is a small molecule.
- the small molecule is SMI37062 (G01522403), G02447171 , or derivative thereof.
- An "individual” according to any of the above embodiments is preferably a human.
- kits for identifying an individual who is more likely to benefit from treatment with an anti-cancer therapy comprising an SCD 1 antagonist or less likely to benefit from treatment with an anti-cancer therapy comprising an SCD 1 antagonist comprising: determining expression levels of one or more biomarkers in a sample obtained from the individual, wherein elevated expression levels of one or more biomarkers in the sample as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g.
- housekeeping gene indicates that the individual is more likely to benefit from treatment with the anti-cancer therapy comprising the SCD 1 antagonist or reduced expression levels of one or more biomarkers in the sample as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene) indicates that the individual is less likely to benefit from treatment with the anti-cancer therapy comprising the SCDl antagonist.
- elevated expression levels of one or more biomarkers in the sample as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control indicates that the individual is more likely to benefit from treatment with the anti-cancer therapy comprising the SCDl antagonist.
- reduced expression levels of one or more biomarkers in the sample as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control indicates that the individual is less likely to benefit from treatment with the anti-cancer therapy comprising the SCDl antagonist.
- the SCDl antagonist is a small molecule, an anti-SCDl antibody, a binding polypeptide, or polynucleotide.
- the SCDl antagonist is a small molecule.
- the small molecule is SMI37062 (G01522403), G02447171 , RGl , RG3, RG8 or derivative thereof.
- An "individual" according to any of the above embodiments is preferably a human.
- kits for predicting the likelihood that an individual with cancer will respond effectively to treatment with an anti-cancer therapy comprising an SCDl antagonist comprising assessing one or more biomarkers, whereby elevated expression levels of one or more biomarkers as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene) indicates that the individual is more likely to effectively respond to treatment with the SCD 1 antagonist and reduced expression levels of one or more biomarkers as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene) indicates that the individual is less likely to effectively respond to treatment with the antagonist.
- a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control e.g., housekeeping gene
- elevated expression levels of one or more biomarkers as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control indicates that the individual is more likely to effectively respond to treatment with the SCDl antagonist.
- reduced expression levels of one or more biomarkers as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control indicates that the individual is less likely to effectively respond to treatment with the antagonist.
- the SCDl antagonist is a small molecule, an anti-SCDl antibody, a binding polypeptide, or polynucleotide.
- the SCDl antagonist is a small molecule.
- the small molecule is SMI37062 (G01522403), G02447171 , RGl , RG3, RG8 or derivative thereof.
- An "individual” according to any of the above embodiments is preferably a human.
- kits for predicting response or lack of response of an individual to an anti-cancer therapy comprising an SCD 1 antagonist comprising measuring in a sample obtained from the individual expression of one or more biomarkers, wherein elevated expression levels of one or more biomarkers as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene) is predictive of response of the individual to the anti-cancer therapy comprising the SCDl antagonist and reduced expression levels of one or more biomarkers as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene) is predictive of lack of response of the individual to the anti-cancer therapy comprising the SCDl antagonist.
- an SCD 1 antagonist comprising measuring in a sample obtained from the individual expression of one or more biomarkers, wherein elevated expression levels of one or more biomarkers as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control
- elevated expression levels of one or more biomarkers as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control is predictive of response of the individual to the anti-cancer therapy comprising the SCDl antagonist.
- reduced expression levels of one or more biomarkers as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control is predictive of lack of response of the individual to the anti-cancer therapy comprising the SCDl antagonist.
- the SCDl antagonist is a small molecule, an anti-SCDl antibody, a binding polypeptide, or polynucleotide.
- the SCDl antagonist is a small molecule.
- the small molecule is SMI37062 (G01522403), G02447171 , RGl , RG3, RG8 or derivative thereof.
- An "individual” according to any of the above embodiments is preferably a human.
- kits for determining the likelihood that an individual with cancer will exhibit benefit from anti-cancer therapy comprising an SCD 1 antagonist comprising: determining expression levels of one or more biomarkers in a sample obtained from the individual, wherein elevated expression levels of one or more biomarkers in the sample as compared to a reference sample indicates that the individual has increased likelihood of benefit from the anti-cancer therapy comprising the SCDl antagonist and reduced expression levels of one or more biomarkers in the sample as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene) indicates that the individual has decreased likelihood of benefit from the anti-cancer therapy comprising the SCDl antagonist.
- internal control e.g., housekeeping gene
- elevated expression levels of one or more biomarkers in the sample as compared to a reference sample indicates that the individual has increased likelihood of benefit from the anti-cancer therapy comprising the SCDl antagonist.
- reduced expression levels of one or more biomarkers in the sample as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g. , housekeeping gene) indicates that the individual has decreased likelihood of benefit from the anti-cancer therapy comprising the SCD1 antagonist.
- the SCD1 antagonist is a small molecule, an anti-SCDl antibody, a binding polypeptide, or
- the SCD1 antagonist is a small molecule.
- the small molecule is SMI37062 (G01522403), G02447171 , RG1 , RG3, RG8 or derivative thereof.
- An "individual” according to any of the above embodiments is preferably a human.
- the cancer and/or cancer cell is a solid tumor.
- solid tumors include, but are not limited to, bladder cancer, pancreatic cancer, lung cancer, breast cancer, colon cancer, colorectal cancer, endometrial cancer, head & neck cancer, kidney cancer, ovarian cancer, hypopharyngeal, prostate cancer, esophageal, hepatocellular carcinoma, and/or urinary cancer.
- the cancer and/or cancer cell is a cancer selected from the group of bladder cancer, pancreatic cancer, lung cancer, breast cancer, colon cancer, colorectal cancer, endometrial cancer, head & neck cancer, kidney cancer, ovarian cancer, and/or urinary cancer.
- the cancer and/or cancer cell is a cancer selected from the group of bladder cancer, pancreatic cancer, colon cancer, colorectal cancer, kidney cancer, and/or urinary cancer.
- the cancer and/or cancer cell is from a cancer selected from the group of bladder cancer, pancreatic cancer, endometrial cancer, head & neck cancer, kidney cancer, ovarian cancer, and/or urinary cancer.
- the cancer and/or cancer cell is kidney cancer. In some embodiments, the cancer and/or cancer cell is pancreatic cancer. In some embodiments, the cancer and/or cancer cell is bladder cancer. In some embodiments, the cancer and/or cancer cell is stage I, stage II, stage III, and/or stage IV. In some embodiments, the cancer and/or cancer cell is localized. In some embodiments, the cancer and/or cancer cell is metastatic.
- the one or more biomarkers is FGFR3.
- a sample from the individual, the cancer and/or the cancer cell has elevated levels of FGFR3 compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- methods of treating cancer in an individual comprising administering to the individual an effective amount of an SCD 1 antagonist, wherein the cancer in the individual expresses elevated levels of one or more biomarkers compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g.
- a sample from the individual, the cancer and/or the cancer cell has expresses substantially the same levels of FGFR3 as a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- the one or more biomarkers is phosphorylated FGFR3.
- a sample from the individual, the cancer and/or the cancer cell expresses phosphorylated FGFR3.
- kits for treating cancer in an individual comprising administering to the individual an effective amount of an SCD 1 antagonist, wherein the cancer in the individual expresses elevated levels of one or more biomarkers compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g. , housekeeping gene) and the one or more biomarkers is phosphorylated FGFR3.
- a sample from the individual, the cancer and/or the cancer cell expresses elevated levels of phosphorylated FGFR3 compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- elevated expression refers to an overall increase of about any of 5%, 10%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%), 99% or greater, in the level of biomarker (e.g. , protein or nucleic acid (e.g., gene or mRNA)), detected by standard art known methods such as those described herein, as compared to a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- biomarker e.g. , protein or nucleic acid (e.g., gene or mRNA)
- the elevated expression refers to the increase in expression level/amount of a biomarker wherein the increase is at least about any of 1.5X, 1.75X, 2X, 3X, 4X, 5X, 6X, 7X, 8X, 9X, 10X, 25X, 50X, 75X, or 100X the expression level/amount of the respective biomarker in a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- a sample from the individual, the cancer and/or the cancer cell expresses substantially the same levels of phosphorylated FGFR3 as a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- the reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is a non-cancerous with or without a known level of expression of FGFR3.
- the reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is a cancerous with or without a known level of expression of FGFR3.
- the expression of FGFR3 in a sample from the individual, the cancer and/or the cancer cell is cell surface expression.
- the FGFR3 pathway in a sample from the individual, the cancer and/or the cancer cell is constitutively active.
- the FGFR3 pathway in a sample from the individual, the cancer and/or the cancer cell is ligand dependent.
- a sample from the individual, the cancer and/or the cancer cell comprises a mutation in FGFR3.
- constitutive ly active mutations in FGFR3 include, but are not limited to, FGFR3 S249C, FGFR3 R248C, FGFR3 G372C, FGFR3 Y375C, FGFR3 K652E, FGFR3 K652Q, and/or FGFR3 K652M.
- a sample from the individual, the cancer and/or the cancer cell is wild-type for FGFR3.
- the one or more biomarkers is one or more genes of the FGFR3 -regulated lipogenic signature.
- a sample from the individual, the cancer and/or the cancer cell expresses of one or more genes of the FGFR3 -regulated lipogenic signature.
- a sample from the individual, the cancer and/or the cancer cell expresses elevated levels of one or more genes of the FGFR3 -regulated lipogenic signature compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- kits for treating cancer in an individual comprising administering to the individual an effective amount of an SCD1 antagonist, wherein the cancer in the individual expresses elevated levels of one or more biomarkers compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene) and the one or more biomarkers is FGFR3 -regulated lipogenic signature.
- an SCD1 antagonist e.g., a cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene) and the one or more biomarkers is FGFR3 -regulated lipogenic signature.
- elevated expression refers to an overall increase of about any of 5%, 10%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or greater, in the level of biomarker (e.g. , protein or nucleic acid (e.g., gene or mRNA)), detected by standard art known methods such as those described herein, as compared to a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- biomarker e.g. , protein or nucleic acid (e.g., gene or mRNA)
- the elevated expression refers to the increase in expression level/amount of a biomarker wherein the increase is at least about any of 1.5X, 1.75X, 2X, 3X, 4X, 5X, 6X, 7X, 8X, 9X, 10X, 25X, 50X, 75X, or 100X the expression level/amount of the respective biomarker in a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- a sample from the individual, the cancer and/or the cancer cell expresses substantially the same levels of FGFR3- regulated lipogenic signature as a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- the reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is a non-cancerous with or without a known level of expression of one or more genes of the FGFR3- regulated lipogenic signature. In some embodiments, the reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is a cancerous with or without a known level of expression of one or more genes of the FGFR3 -regulated lipogenic signature.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of one or more genes from the group consisting of SREBF1 , G6PD, ACOT7, PTPLA, PCCB, FADS1 , RDH1 1 , ACER3, PDSS1 , MVD, AGPAT5, HSD17B2, ACSL4, EBP, PIGW, LBR, ACLY, ADORA2B, GPCPD1 , CYP24A1 , ACSL3, MVK, ACSS2, FDPS, ELOVL5, HMGCR, LIPG, ME1 , DHCR7, LSS, ACAT2, FASN, CYP51A1 , IDI1 , FDFT1 , FAR2, HMGCS1 , SDR16C5, LDLR, MSMOl , INSIG1 , DHRS9, LRP8, SQLE, PCSK9, SCD1 , FABP4, and combinations
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of SC4MOL.
- elevated expression refers to an overall increase of about any of 5%, 10%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or greater, in the level of biomarker (e.g., protein or nucleic acid (e.g., gene or mRNA)), detected by standard art known methods such as those described herein, as compared to a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- biomarker e.g., protein or nucleic acid (e.g., gene or mRNA)
- the elevated expression refers to the increase in expression level/amount of a biomarker wherein the increase is at least about any of 1.5X, 1.75X, 2X, 3X, 4X, 5X, 6X, 7X, 8X, 9X, 10X, 25X, 50X, 75X, or 100X the expression level/amount of the respective biomarker in a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- elevated expression refers to an overall increase of about any of 1.4, 1.5, 1.6, or 1.7 fold or greater, in the level of biomarker (e.g., protein or nucleic acid (e.g., gene or mRNA)), detected by standard art known methods such as those described herein, as compared to a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- biomarker e.g., protein or nucleic acid (e.g., gene or mRNA
- elevated expression refers to an overall increase mean log2 fold change of about any of -0.5, -0.6, -0.7, or - 0.8 or greater, in the level of biomarker (e.g. , protein or nucleic acid (e.g., gene or mRNA)), detected by standard art known methods such as those described herein, as compared to a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of one or more genes from the group consisting of ELOVL5, HMGCR, LIPG, ME1 , DHCR7, LSS, ACAT2, FASN, CYP51A1 , IDI1 , FDFT1 , FAR2, HMGCS 1 , SDR16C5, LDLR, MSMOl , INSIG1 , DHRS9, LRP8, SQLE, PCSK9, SCD1 , FABP4, and combinations thereof.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of SC4MOL.
- elevated expression refers to an overall increase of about any of 1.8, 1.9, 2.0, or 2.1 fold or greater, in the level of biomarker (e.g., protein or nucleic acid (e.g., gene or mRNA)), detected by standard art known methods such as those described herein, as compared to a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- biomarker e.g., protein or nucleic acid (e.g., gene or mRNA)
- elevated expression refers to an overall increase mean log2 fold change of about any of -0.9, -1.0, -1.1 , or - 1.2 or greater, in the level of biomarker (e.g.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of one or more genes from the group consisting of CYP51A1 , IDI1 , FDFT1 , FAR2, HMGCS1 , SDR16C5, LDLR, MSMOl , INSIG1 , DHRS9, LRP8, SQLE, PCSK9, SCD1 , FABP4, and combinations thereof.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of SC4MOL.
- elevated expression refers to an overall increase of about any of 2.2, 2.3, 2.4, 2.5, 2.6, or 2.7 fold or greater, in the level of biomarker (e.g., protein or nucleic acid (e.g., gene or mRNA)), detected by standard art known methods such as those described herein, as compared to a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- biomarker e.g., protein or nucleic acid (e.g., gene or mRNA)
- elevated expression refers to an overall increase mean log2 fold change of about any of -1.0, -1.1 , or -1.2 or greater, in the level of biomarker (e.g., protein or nucleic acid (e.g., gene or mRNA)), detected by standard art known methods such as those described herein, as compared to a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- biomarker e.g., protein or nucleic acid (e.g., gene or mRNA)
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of one or more genes from the group consisting of LDLR, MSMOl , INSIG1 , DHRS9, LRP8, SQLE, PCSK9, SCD1 , FABP4, and combinations thereof.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of SC4MOL.
- elevated expression refers to an overall increase of about any of 2.6, 2.7, 2.8, 2.9, 3.0, 3.1 , or 3.2 fold or greater, in the level of biomarker (e.g.
- elevated expression refers to an overall increase mean log2 fold change of about any of -1.4, -1.5, -1.6 or -1.7 or greater, in the level of biomarker (e.g. , protein or nucleic acid (e.g., gene or mRNA)), detected by standard art known methods such as those described herein, as compared to a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- biomarker e.g. , protein or nucleic acid (e.g., gene or mRNA)
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of one or more genes from the group consisting of SQLE, PCSK9, SCD1 , FABP4, and combinations thereof.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of SQLE.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of PCSK9.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of SCD1.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of FABP4.
- elevated expression refers to an overall increase of about any of 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, or 3.8 fold or greater, in the level of biomarker (e.g. , protein or nucleic acid (e.g., gene or mRNA)), detected by standard art known methods such as those described herein, as compared to a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- biomarker e.g. , protein or nucleic acid (e.g., gene or mRNA)
- elevated expression refers to an overall increase mean log2 fold change of about any of -1.6, -1.7, -1.8, -1.9, or -2.0 or greater, in the level of biomarker (e.g. , protein or nucleic acid (e.g., gene or mRNA)), detected by standard art known methods such as those described herein, as compared to a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- biomarker e.g. , protein or nucleic acid (e.g., gene or mRNA)
- the one or more biomarkers is cleaved mature SREBP1.
- full-length protein SREBPl a is 1-1 147 aa of UNIPROT amino acid sequence P36956-1 and cleaved mature form: 1-490 aa of UNIPROT amino acid sequence P36956-1.
- full-length protein SREBPlc is 1-1 123 aa of UNIPROT amino acid sequence P36956-3 and cleaved mature form: 1-466 aa of UNIPROT amino acid sequence P36956-3.
- a sample from the individual, the cancer and/or the cancer cell expresses elevated levels of mature SREBP1 compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control e.g., housekeeping gene
- methods of treating cancer in an individual comprising administering to the individual an effective amount of an SCD 1 antagonist, wherein the cancer in the individual expresses elevated levels of one or more biomarkers compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene) and the one or more biomarkers is mature SREBP1.
- a sample from the individual, the cancer and/or the cancer cell expresses elevated levels of mature SREBP1 and the levels of mature SREBP2 are not substantially elevated (i.e., substantially the same level of expression) compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- elevated expression refers to an overall increase of about any of 5%, 10%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%), 96%), 97%), 98%), 99%o or greater, in the level of biomarker (e.g., protein or nucleic acid (e.g., gene or mRNA)), detected by standard art known methods such as those described herein, as compared to a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- biomarker e.g., protein or nucleic acid (e.g., gene or mRNA)
- SREBP1 is SREBP1 isoform a.
- SREBP1 is SREBP1 isoform c.
- the elevated expression refers to the increase in expression level/amount of a biomarker wherein the increase is at least about any of 1.5X, 1.75X, 2X, 3X, 4X, 5X, 6X, 7X, 8X, 9X, 10X, 25X, 50X, 75X, or 100X the expression level/amount of the respective biomarker in a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- a sample from the individual, the cancer and/or the cancer cell is a non-cancerous with or without a known level of expression of mature SREBP1 and/or mature SREBP2.
- the reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is a cancerous with or without a known level of expression of mature SREBP1 and/or mature SREBP2.
- the one or more biomarkers is ⁇ 9 monounsaturated fatty acids.
- a sample from the individual, the cancer and/or the cancer cell expresses elevated levels of ⁇ 9
- the one or more biomarkers is ratio of ⁇ 9
- a sample from the individual, the cancer and/or the cancer cell expresses elevated ratio of ⁇ 9 monounsaturated fatty acids: saturated fatty acids compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- a reference sample e.g., a sample obtained from the individual, the cancer and/or the cancer cell
- a sample from the individual, the cancer and/or the cancer cell expresses elevated ratio of ⁇ 9 monounsaturated fatty acids: saturated fatty acids compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- elevated expression refers to an overall increase of about any of 5%, 10%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or greater, in the level of biomarker (e.g. , protein or nucleic acid (e.g., gene or mRNA)), detected by standard art known methods such as those described herein, as compared to a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- biomarker e.g. , protein or nucleic acid (e.g., gene or mRNA)
- the elevated expression refers to the increase in expression level/amount of a biomarker wherein the increase is at least about any of 1.5X, 1.75X, 2X, 3X, 4X, 5X, 6X, 7X, 8X, 9X, 10X, 25X, 50X, 75X, or 100X the expression level/amount of the respective biomarker in a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- the reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is a non-cancerous with or without a known level of expression of ⁇ 9 monounsaturaturated fatty acids and/or saturated fatty acids.
- the reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is a cancerous with or without a known level of expression of ⁇ 9 monounsaturated fatty acids and/or saturated fatty acids.
- ⁇ 9 monounsaturated fatty acids include, but are not limited to, palmitoleic acid (CI 6: 1) and oleic acid (CI 8: 1).
- saturated fatty acids include, but are not limited to, stearic acid (C18:0) and palmitic acid (C16:0).
- Methods of measuring ⁇ 9 monounsaturated fatty acids and saturated fatty acids are known in the art including, but not limited to mass spectrometry, gas chromatography, and thin layer chromatography.
- the one or more biomarkers is PI3K signaling, mTOR signaling, MEK signaling. In some embodiments of any of the uses and methods, the one or more biomarkers is one or more polymorphisms in genes selected from the group consisting of PI3K, PTEN, p85, TSCl/2, and AKT. In some embodiments of any of the uses and methods, the one or more biomarkers is phosphorylated AKT.
- a sample from the individual, the cancer and/or the cancer cell comprises activated PI3K signaling (e.g., elevated PI3K signaling), activated mTOR signaling (e.g., elevated mTOR signaling), and/or activated MEK signaling (e.g., elevated MEK signaling.
- a sample from the individual, the cancer and/or the cancer cell comprises PI3K activating mutations.
- a sample from the individual, the cancer and/or the cancer cell comprises PTEN loss and/or mutations.
- a sample from the individual, the cancer and/or the cancer cell comprises p85 mutations. In some embodiments of any of the methods and/or uses, a sample from the individual, the cancer and/or the cancer cell comprises AKT activating mutations. In some embodiments of any of the methods and/or uses, a sample from the individual, the cancer and/or the cancer cell comprises elevated levels of
- a sample from the individual, the cancer and/or the cancer cell comprises TSCl/2 loss of function mutations.
- elevated expression refers to an overall increase of about any of 5%, 10%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or greater, in the level of biomarker (e.g., protein or nucleic acid (e.g., gene or mRNA)), detected by standard art known methods such as those described herein, as compared to a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- biomarker e.g., protein or nucleic acid (e.g., gene or mRNA)
- the elevated expression refers to the increase in expression level/amount of a biomarker wherein the increase is at least about any of 1.5X, 1.75X, 2X, 3X, 4X, 5X, 6X, 7X, 8X, 9X, 10X, 25X, 50X, 75X, or 100X the expression level/amount of the respective biomarker in a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- elevated expression refers to an overall increase of greater than about 1.5 fold, about 1.75 fold, about 2 fold, about 2.25 fold, about 2.5 fold, about 2.75 fold, about 3.0 fold, or about 3.25 fold as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- reduced expression refers to an overall reduction of about any of 5%, 10%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or greater, in the level of biomarker (e.g. , protein or nucleic acid (e.g., gene or mRNA)), detected by standard art known methods such as those described herein, as compared to a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- biomarker e.g. , protein or nucleic acid (e.g., gene or mRNA)
- reduced expression refers to the decrease in expression level/amount of a biomarker wherein the decrease is at least about any of 0.9X, 0.8X, 0.7X, 0.6X, 0.5X, 0.4X, 0.3X, 0.2X, 0.1X, 0.05X, or 0.01X the expression level/amount of the respective biomarker in a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- the SCD1 antagonist is any antibody, binding polypeptide, binding small molecule, or polynucleotide described herein.
- the SCD1 antagonist is a small molecule.
- the small molecule is SMI37062 (G01522403), G02447171 , or derivative thereof.
- the SCD1 antagonist is an antibody.
- the antibody is a monoclonal antibody.
- the antibody is a human, humanized, or chimeric antibody.
- the antibody is an antibody fragment and the antibody fragment binds SCD 1.
- Expression levels/amount of a biomarker can be determined qualitatively and/or
- expression/amount of a biomarker in a first sample is increased as compared to expression/amount in a second sample.
- expression/amount of a biomarker in a first sample is decreased as compared to expression/amount in a second sample.
- the second sample is a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue. Additional disclosures for determining expression level/amount of a gene are described herein.
- SCDl antagonists described herein can be used either alone or in combination with other agents in a therapy.
- an SCD 1 antagonist described herein may be co-administered with at least one additional therapeutic agent.
- an additional therapeutic agent is a chemotherapeutic agent.
- the additional therapeutic agent is a mTOR inhibitor.
- the additional therapeutic agent is a PI3K inhibitor.
- the additional therapeutic agent is a MEK inhibitor.
- the additional therapeutic agent is an FGFR3 inhibitor.
- Such combination therapies noted above encompass combined administration (where two or more therapeutic agents are included in the same or separate formulations), and separate
- SCDl antagonists described herein can also be used in combination with radiation therapy.
- An SCDl antagonist e.g. , an antibody, binding polypeptides, and/or small molecules described herein (and any additional therapeutic agent) can be administered by any suitable means, including parenteral, intrapulmonary, and intranasal, and, if desired for local treatment, intralesional administration.
- Parenteral infusions include intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous administration. Dosing can be by any suitable route, e.g., by injections, such as intravenous or subcutaneous injections, depending in part on whether the administration is brief or chronic.
- Various dosing schedules including but not limited to single or multiple administrations over various time-points, bolus administration, and pulse infusion are contemplated herein.
- SCDl antagonists e.g., antibodies, binding polypeptides, and/or small molecules
- SCDl antagonists may be formulated, dosed, and administered in a fashion consistent with good medical practice. Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners.
- the SCDl antagonist need not be, but is optionally formulated with one or more agents currently used to prevent or treat the disorder in question. The effective amount of such other agents depends on the amount of the SCDl antagonist present in the formulation, the type of disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as described herein, or about from 1 to 99% of the dosages described herein, or in any dosage and by any route that is empirically/clinically determined to be appropriate.
- an SCD1 antagonist described herein when used alone or in combination with one or more other additional therapeutic agents, will depend on the type of disease to be treated, the severity and course of the disease, whether the SCD1 antagonist is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the SCD1 antagonist, and the discretion of the attending physician.
- the SCD 1 antagonist is suitably administered to the patient at one time or over a series of treatments.
- One typical daily dosage might range from about 1 ⁇ g/kg to 100 mg/kg or more, depending on the factors mentioned above.
- the treatment would generally be sustained until a desired suppression of disease symptoms occurs.
- Such doses may be administered intermittently, e.g., every week or every three weeks (e.g., such that the patient receives from about two to about twenty, or e.g., about six doses of the SCD1 antagonist described herein).
- An initial higher loading dose, followed by one or more lower doses may be administered.
- An exemplary dosing regimen comprises administering. However, other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays.
- Expression levels/amount of a biomarker can be determined qualitatively and/or
- expression is protein expression.
- expression is polynucleotide expression.
- the polynucleotide is DNA.
- the polynucleotide is RNA.
- expression/amount of a biomarker in a first sample is increased as compared to expression/amount in a second sample.
- expression/amount of a biomarker in a first sample is decreased as compared to expression/amount in a second sample.
- the second sample is a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue. Additional disclosures for determining expression level/amount of a gene are described herein.
- IHC immunohistochemical
- Western blot analysis Western blot analysis
- immunoprecipitation molecular binding assays
- ELISA ELISA
- ELIFA fluorescence activated cell sorting
- FACS fluorescence activated cell sorting
- MassARRAY proteomics
- quantitative blood based assays as for example Serum ELISA
- biochemical enzymatic activity assays in situ hybridization, Northern analysis, polymerase chain reaction (PCR) including quantitative real time PCR (qRT-PCR) and other amplification type detection methods, such as, for example, branched DNA, SISBA, TMA and the like), RNA-Seq, FISH, microarray analysis, gene expression profiling, and/or serial analysis of gene expression (SAGE), as well as any one of the wide variety of assays that can be performed by protein, gene, and/or tissue array analysis.
- IHC immunohistochemical
- Western blot analysis immunoprecipitation
- molecular binding assays ELISA
- Multiplexed immunoassays such as those available from Rules Based Medicine or Meso Scale Discovery (MSD) may also be used.
- expression level of a biomarker is determined using a method comprising: (a) performing gene expression profiling, PCR (such as rtPCR), RNA-seq, microarray analysis, SAGE, MassARRAY technique, or FISH on a sample (such as a patient cancer sample); and b) determining expression level of a biomarker in the sample.
- expression level of biomarker is determined using a method comprising: (a) performing IHC analysis of a sample (such as a patient cancer sample) with an antibody; and b) determining expression level of a biomarker in the sample.
- IHC staining intensity is determined relative to a reference value.
- gene expression is measured by observing protein expression levels of an aforementioned gene.
- the gene expression level is measured by a method selected from a PCR method, a microarray method, or an immunoassay method.
- the microarray method comprises the use of a microarray chip having one or more nucleic acid molecules that can hybridize under stringent conditions to a nucleic acid molecule encoding a gene mentioned above or having one or more polypeptides (such as peptides or antibodies) that can bind to one or more of the proteins encoded by the genes mentioned above.
- the PCR method is qPCR.
- the PCR method is multiplex-PCR.
- gene expression is measured by microarray.
- gene expression is measured by real-time quantitative polymerase chain reaction (qPCR).
- qPCR real-time quantitative polymerase chain reaction
- the method comprises contacting the biological sample with antibodies to a biomarker described herein under conditions permissive for binding of the biomarker, and detecting whether a complex is formed between the antibodies and biomarker.
- a biomarker described herein may be an in vitro or in vivo method.
- an antibody is used to select subjects eligible for therapy with SCD1 antagonist, e.g., a biomarker for selection of patients.
- the samples are normalized for both differences in the amount of the biomarker assayed and variability in the quality of the samples used, and variability between assay runs. Such normalization may be accomplished by measuring and incorporating the expression of certain normalizing biomarkers, including well known housekeeping genes, such as ACTB.
- normalization can be based on the mean or median signal of all of the assayed genes or a large subset thereof (global normalization approach).
- measured normalized amount of a patient tumor mRNA or protein is compared to the amount found in a reference set. Normalized expression levels for each mRNA or protein per tested tumor per patient can be expressed as a percentage of the expression level measured in the reference set. The expression level measured in a particular patient sample to be analyzed will fall at some percentile within this range, which can be determined by methods well known in the art.
- relative expression level of a gene is determined as follows:
- Relative expression genel sample 1 2 exp (Ct housekeeping gene - Ct genel) with Ct determined in a sample.
- Relative expression genel reference RNA 2 exp (Ct housekeeping gene - Ct genel) with Ct determined in the reference sample.
- Normalized relative expression genel sample 1 (relative expression genel sample 1 / relative expression genel reference RNA) x 100
- Ct is the threshold cycle.
- the Ct is the cycle number at which the fluorescence generated within a reaction crosses the threshold line.
- RNA is a comprehensive mix of RNA from various tissue sources (e.g., reference RNA #636538 from Clontech, Mountain View, CA). Identical reference RNA is included in each qRT-PCR run, allowing comparison of results between different experimental runs.
- the sample is a clinical sample.
- the sample is used in a diagnostic assay.
- the sample is obtained from a primary or metastatic tumor. Tissue biopsy is often used to obtain a representative piece of tumor tissue.
- tumor cells can be obtained indirectly in the form of tissues or fluids that are known or thought to contain the tumor cells of interest.
- samples of lung cancer lesions may be obtained by resection, bronchoscopy, fine needle aspiration, bronchial brushings, or from sputum, pleural fluid or blood.
- Genes or gene products can be detected from cancer or tumor tissue or from other body samples such as urine, sputum, serum or plasma.
- the same techniques discussed above for detection of target genes or gene products in cancerous samples can be applied to other body samples. Cancer cells may be sloughed off from cancer lesions and appear in such body samples. By screening such body samples, a simple early diagnosis can be achieved for these cancers. In addition, the progress of therapy can be monitored more easily by testing such body samples for target genes or gene products.
- a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is a single sample or combined multiple samples from the same subject or individual that are obtained at one or more different time points than when the test sample is obtained.
- a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is obtained at an earlier time point from the same subject or individual than when the test sample is obtained.
- Such reference sample, reference cell, reference tissue, control sample, control cell, or control tissue may be useful if the reference sample is obtained during initial diagnosis of cancer and the test sample is later obtained when the cancer becomes metastatic.
- a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is a combined multiple samples from one or more healthy individuals who are not the subject or patient.
- a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is a combined multiple samples from one or more individuals with a disease or disorder (e.g., cancer) who are not the subject or patient.
- a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is pooled RNA samples from normal tissues or pooled plasma or serum samples from one or more individuals who are not the subject or patient.
- a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is pooled RNA samples from tumor tissues or pooled plasma or serum samples from one or more individuals with a disease or disorder (e.g., cancer) who are not the subject or patient.
- a disease or disorder e.g., cancer
- the expression of proteins in a sample is examined using immunohistochemistry ("IHC") and staining protocols.
- Immunohistochemical staining of tissue sections has been shown to be a reliable method of assessing or detecting presence of proteins in a sample.
- IHC may be performed in combination with additional techniques such as morphological staining and/or fluorescence in-situ hybridization.
- Two general methods of IHC are available; direct and indirect assays.
- binding of antibody to the target antigen is determined directly.
- This direct assay uses a labeled reagent, such as a fluorescent tag or an enzyme- labeled primary antibody, which can be visualized without further antibody interaction.
- a labeled primary antibody binds to the antigen and then a labeled secondary antibody binds to the primary antibody.
- a chromogenic or fluorogenic substrate is added to provide visualization of the antigen. Signal amplification occurs because several secondary antibodies may react with different epitopes on the primary antibody.
- the primary and/or secondary antibody used for immunohistochemistry typically will be labeled with a detectable moiety. Numerous labels are available which can be generally grouped
- Radioisotopes such as S, C, I, H, and I
- colloidal gold particles such as S, C, I, H, and I
- fluorescent labels including, but are not limited to, rare earth chelates (europium chelates), Texas Red, rhodamine, fluorescein, dansyl, Lissamine, umbelliferone, phycocrytherin, phycocyanin, or commercially available fluorophores such SPECTRUM ORANGE7 and
- SPECTRUM GREEN7 and/or derivatives of any one or more of the above; (d) various enzyme- substrate labels are available and U.S. Patent No. 4,275,149 provides a review of some of these.
- enzymatic labels include luciferases (e.g., firefly luciferase and bacterial luciferase; U.S. Patent No.
- luciferin 2,3-dihydrophthalazinediones, malate dehydrogenase, urease, peroxidase such as horseradish peroxidase (HRPO), alkaline phosphatase, ⁇ -galactosidase, glucoamylase, lysozyme, saccharide oxidases (e.g., glucose oxidase, galactose oxidase, and glucose- 6-phosphate dehydrogenase), heterocyclic oxidases (such as uricase and xanthine oxidase), lactoperoxidase, microperoxidase, and the like.
- HRPO horseradish peroxidase
- alkaline phosphatase alkaline phosphatase
- ⁇ -galactosidase glucoamylase
- lysozyme saccharide oxidases
- glucose oxidase galactose oxidas
- enzyme-substrate combinations include, for example, horseradish peroxidase (HRPO) with hydrogen peroxidase as a substrate; alkaline phosphatase (AP) with para-Nitrophenyl phosphate as chromogenic substrate; and ⁇ -D-galactosidase ( ⁇ -D-Gal) with a chromogenic substrate (e.g., p-nitrophenyl- -D-galactosidase) or fluorogenic substrate (e.g., 4-methylumbelliferyl- -D- galactosidase).
- HRPO horseradish peroxidase
- AP alkaline phosphatase
- ⁇ -D-galactosidase ⁇ -D-Gal
- a chromogenic substrate e.g., p-nitrophenyl- -D-galactosidase
- fluorogenic substrate e.g., 4-methylumbelliferyl- -D- gal
- Specimens thus prepared may be mounted and coverslipped. Slide evaluation is then determined, e.g., using a microscope, and staining intensity criteria, routinely used in the art, may be employed.
- a staining pattern score of about 1+ or higher is diagnostic and/or prognostic.
- a staining pattern score of about 2+ or higher in an IHC assay is diagnostic and/or prognostic.
- a staining pattern score of about 3 or higher is diagnostic and/or prognostic.
- staining is generally determined or assessed in tumor cell and/or tissue (as opposed to stromal or surrounding tissue that may be present in the sample).
- the sample may be contacted with an antibody specific for said biomarker under conditions sufficient for an antibody-biomarker complex to form, and then detecting said complex.
- the presence of the biomarker may be detected in a number of ways, such as by Western blotting and ELISA procedures for assaying a wide variety of tissues and samples, including plasma or serum.
- a wide range of immunoassay techniques using such an assay format are available, see, e.g., U.S. Pat. Nos. 4,016,043, 4,424,279 and 4,018,653. These include both single- site and two-site or "sandwich" assays of the non-competitive types, as well as in the traditional competitive binding assays. These assays also include direct binding of a labeled antibody to a target biomarker.
- Methods for the evaluation of mRNAs in cells include, for example, hybridization assays using complementary DNA probes (such as in situ hybridization using labeled riboprobes specific for the one or more genes, Northern blot and related techniques) and various nucleic acid amplification assays (such as RT-PCR using complementary primers specific for one or more of the genes, and other amplification type detection methods, such as, for example, branched DNA, SISBA, TMA and the like).
- complementary DNA probes such as in situ hybridization using labeled riboprobes specific for the one or more genes, Northern blot and related techniques
- nucleic acid amplification assays such as RT-PCR using complementary primers specific for one or more of the genes, and other amplification type detection methods, such as, for example, branched DNA, SISBA, TMA and the like.
- Samples from mammals can be conveniently assayed for mRNAs using Northern, dot blot or PCR analysis.
- such methods can include one or more steps that allow one to determine the levels of target mRNA in a biological sample ⁇ e.g., by simultaneously examining the levels a comparative control mRNA sequence of a "housekeeping" gene such as an actin family member).
- the sequence of the amplified target cDNA can be determined.
- Optional methods of the invention include protocols which examine or detect mRNAs, such as target mRNAs, in a tissue or cell sample by microarray technologies.
- mRNAs such as target mRNAs
- test and control mRNA samples from test and control tissue samples are reverse transcribed and labeled to generate cDNA probes.
- the probes are then hybridized to an array of nucleic acids immobilized on a solid support.
- the array is configured such that the sequence and position of each member of the array is known. For example, a selection of genes whose expression correlate with increased or reduced clinical benefit of anti-angiogenic therapy may be arrayed on a solid support. Hybridization of a labeled probe with a particular array member indicates that the sample from which the probe was derived expresses that gene.
- Expression of a selected biomarker in a tissue or cell sample may also be examined by way of functional or activity-based assays. For instance, if the biomarker is an enzyme, one may conduct assays known in the art to determine or detect the presence of the given enzymatic activity in the tissue or cell sample.
- SCD1 antagonists useful in the methods described herein.
- the SCD1 antagonists are an antibody, binding polypeptide, binding small molecule, and/or polynucleotide.
- an antibody that binds to SCD1.
- an antibody is humanized.
- an anti-SCDl antibody according to any of the above embodiments is a monoclonal antibody, including a chimeric, humanized or human antibody.
- an anti-SCDl antibody is an antibody fragment, e.g. , a Fv, Fab, Fab', scFv, diabody, or F(ab')2 fragment.
- the antibody is a full length antibody, e.g. , an intact IgGl" antibody or other antibody class or isotype as defined herein.
- an anti-SCDl antibody may incorporate any of the features, singly or in combination, as described in Sections below:
- an antibody provided herein has a dissociation constant (Kd) of ⁇ 1 ⁇ .
- Kd is measured by a radiolabeled antigen binding assay (RIA) performed with the Fab version of an antibody of interest and its antigen as described by the following assay. Solution binding affinity of Fabs for antigen is measured by equilibrating Fab with
- non-adsorbent plate (Nunc #269620), 100 pM or 26 pM [ I]-antigen are mixed with serial dilutions of a Fab of interest (e.g. , consistent with assessment of the anti-VEGF antibody, Fab- 12, in Presta et ah , Cancer Res. 57:4593-4599 (1997)).
- the Fab of interest is then incubated overnight; however, the incubation may continue for a longer period (e.g. , about 65 hours) to ensure that equilibrium is reached. Thereafter, the mixtures are transferred to the capture plate for incubation at room temperature (e.g. , for one hour).
- Kd is measured using surface plasmon resonance assays using a BIACORE ® -2000 or a BIACORE ® -3000 (BIAcore, Inc., Piscataway, NJ) at 25°C with immobilized antigen CM5 chips at -10 response units (RU).
- CM5 carboxymethylated dextran biosensor chips
- EDC N-ethyl-N'- (3-dimethylaminopropyl)- carbodiimide hydrochloride
- NHS N-hydroxysuccinimide
- Antigen is diluted with 10 mM sodium acetate, pH 4.8, to 5 ⁇ g/ml (-0.2 ⁇ ) before injection at a flow rate of 5 ⁇ /minute to achieve approximately 10 response units (RU) of coupled protein. Following the injection of antigen, 1 M ethanolamine is injected to block unreacted groups. For kinetics measurements, two-fold serial dilutions of Fab (0.78 nM to 500 nM) are injected in PBS with 0.05% polysorbate 20 (TWEEN-20TM) surfactant (PBST) at 25°C at a flow rate of
- Association rates (k on ) and dissociation rates (k 0 ff) are calculated using a simple one-to-one Langmuir binding model (BIACORE Evaluation Software version 3.2) by simultaneously fitting the association and dissociation sensorgrams.
- the equilibrium dissociation constant (Kd) is calculated as the ratio k 0 ff k on See, e.g. , Chen et ah, J. Mol. Biol. 293:865-881 (1999).
- an antibody provided herein is an antibody fragment.
- Antibody fragments include, but are not limited to, Fab, Fab', Fab'-SH, F(ab')2, Fv, and scFv fragments, and other fragments described below.
- Fab fragment antigen
- Fab' fragment antigen binding domain
- Patent Nos. 5,571,894 and 5,587,458 For discussion of Fab and F(ab')2 fragments comprising salvage receptor binding epitope residues and having increased in vivo half-life, see U.S. Patent No. 5,869,046.
- Diabodies are antibody fragments with two antigen-binding sites that may be bivalent or bispecific. See, for example, EP 404,097; WO 1993/01161; Hudson et al., Nat. Med. 9: 129-134 (2003); and Hollinger et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993). Triabodies and tetrabodies are also described in Hudson et ah, Nat. Med. 9: 129-134 (2003).
- Single-domain antibodies are antibody fragments comprising all or a portion of the heavy chain variable domain or all or a portion of the light chain variable domain of an antibody.
- a single-domain antibody is a human single-domain antibody (Domantis, Inc., Waltham, MA; see, e.g. , U.S. Patent No. 6,248,516 Bl).
- Antibody fragments can be made by various techniques, including but not limited to proteolytic digestion of an intact antibody as well as production by recombinant host cells ⁇ e.g., E. coli or phage), as described herein.
- an antibody provided herein is a chimeric antibody.
- Certain chimeric antibodies are described, e.g., in U.S. Patent No. 4,816,567; and Morrison et al, Proc. Natl. Acad. Set USA, 81 :6851-6855 (1984)).
- a chimeric antibody comprises a non- human variable region ⁇ e.g., a variable region derived from a mouse, rat, hamster, rabbit, or non- human primate, such as a monkey) and a human constant region.
- a chimeric antibody is a "class switched" antibody in which the class or subclass has been changed from that of the parent antibody. Chimeric antibodies include antigen-binding fragments thereof.
- a chimeric antibody is a humanized antibody.
- a non- human antibody is humanized to reduce immunogenicity to humans, while retaining the specificity and affinity of the parental non-human antibody.
- a humanized antibody comprises one or more variable domains in which HVRs, e.g., CDRs, (or portions thereof) are derived from a non- human antibody, and FRs (or portions thereof) are derived from human antibody sequences.
- HVRs e.g., CDRs, (or portions thereof) are derived from a non- human antibody
- FRs or portions thereof
- a humanized antibody optionally will also comprise at least a portion of a human constant region.
- some FR residues in a humanized antibody are substituted with corresponding residues from a non-human antibody ⁇ e.g., the antibody from which the HVR residues are derived), e.g. , to restore or improve antibody specificity or affinity.
- Human framework regions that may be used for humanization include but are not limited to: framework regions selected using the "best- fit" method ⁇ see, e.g., Sims et al. J. Immunol. 151 :2296 (1993)); framework regions derived from the consensus sequence of human antibodies of a particular subgroup of light or heavy chain variable regions ⁇ see, e.g., Carter et al. Proc. Natl. Acad. Sci. USA, 89:4285 (1992); and Presta et al. J. Immunol, 151 :2623 (1993)); human mature framework regions selected using the "best- fit" method ⁇ see, e.g., Sims et al. J. Immunol. 151 :2296 (1993)); framework regions derived from the consensus sequence of human antibodies of a particular subgroup of light or heavy chain variable regions ⁇ see, e.g., Carter et al. Proc. Natl. Acad. Sci. USA, 89:4285 (1992
- an antibody provided herein is a human antibody.
- Human antibodies can be produced using various techniques known in the art. Human antibodies are described generally in van Dijk and van de Winkel, Curr. Opin. Pharmacol. 5: 368-74 (2001) and Lonberg, Curr. Opin. Immunol. 20:450-459 (2008).
- Human antibodies may be prepared by administering an immunogen to a transgenic animal that has been modified to produce intact human antibodies or intact antibodies with human variable regions in response to antigenic challenge.
- Such animals typically contain all or a portion of the human immunoglobulin loci, which replace the endogenous immunoglobulin loci, or which are present extrachromosomally or integrated randomly into the animal's chromosomes. In such transgenic mice, the endogenous immunoglobulin loci have generally been inactivated.
- Human variable regions from intact antibodies generated by such animals may be further modified, e.g., by combining with a different human constant region.
- Human antibodies can also be made by hybridoma-based methods. Human myeloma and mouse-human heteromyeloma cell lines for the production of human monoclonal antibodies have been described. (See, e.g., Kozbor J. Immunol, 133: 3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987); and Boerner et al., J. Immunol, 147: 86 (1991).) Human antibodies generated via human B- cell hybridoma technology are also described in Li et al., Proc. Natl. Acad. Sci.
- Human antibodies may also be generated by isolating Fv clone variable domain sequences selected from human-derived phage display libraries. Such variable domain sequences may then be combined with a desired human constant domain. Techniques for selecting human antibodies from antibody libraries are described below.
- Antibodies of the invention may be isolated by screening combinatorial libraries for antibodies with the desired activity or activities. For example, a variety of methods are known in the art for generating phage display libraries and screening such libraries for antibodies possessing the desired binding characteristics. Such methods are reviewed, e.g., in Hoogenboom et al. in Methods in Molecular Biology 178: 1-37 (O'Brien et al., ed., Human Press, Totowa, NJ, 2001) and further described, e.g., in the McCafferty et al., Nature 348:552-554; Clackson et al., Nature 352: 624-628 (1991); Marks et al., J. Mol. Biol. 222:581-597 (1992); Marks and Bradbury, in Methods in
- naive repertoire can be cloned (e.g., from human) to provide a single source of antibodies to a wide range of non-self and also self antigens without any immunization as described by Griffiths et al., EMBO J, 12: 725- 734 (1993).
- naive libraries can also be made synthetically by cloning unrearranged V-gene segments from stem cells, and using PCR primers containing random sequence to encode the highly variable CDR3 regions and to accomplish rearrangement in vitro, as described by Hoogenboom and Winter, J. Mol. Biol, 227: 381-388 (1992).
- Patent publications describing human antibody phage libraries include, for example: US Patent No. 5,750,373, and US Patent Publication Nos.
- Antibodies or antibody fragments isolated from human antibody libraries are considered human antibodies or human antibody fragments herein.
- an antibody provided herein is a multispecific antibody, e.g., a bispecific antibody.
- Multispecific antibodies are monoclonal antibodies that have binding specificities for at least two different sites.
- one of the binding specificities is for SCD1 and the other is for any other antigen.
- bispecific antibodies may bind to two different epitopes of SCD1.
- Bispecific antibodies may also be used to localize cytotoxic agents to cells which express SCD1.
- Bispecific antibodies can be prepared as full length antibodies or antibody fragments.
- Multispecific antibodies include, but are not limited to, recombinant co-expression of two immunoglobulin heavy chain-light chain pairs having different specificities (see Milstein and Cuello, Nature 305: 537 (1983)), WO 93/08829, and Traunecker et al., EMBO J. 10: 3655 (1991)), and "knob-in-hole” engineering (see, e.g. , U.S. Patent No. 5,731 ,168). Multi- specific antibodies may also be made by engineering electrostatic steering effects for making antibody Fc-heterodimeric molecules (WO 2009/089004A1); cross-linking two or more antibodies or fragments (see, e.g. , US Patent No.
- the antibody or fragment herein also includes a “Dual Acting FAb” or “DAF” comprising an antigen binding site that binds to SCD 1 as well as another, different antigen (see,
- an antibody provided herein is altered to increase or decrease the extent to which the antibody is glycosylated. Addition or deletion of glycosylation sites to an antibody may be conveniently accomplished by altering the amino acid sequence such that one or more glycosylation sites is created or removed.
- the antibody comprises an Fc region
- the carbohydrate attached thereto may be altered. Native antibodies produced by mammalian cells typically comprise a branched, biantennary oligosaccharide that is generally attached by an N-linkage to Asn297 of the CH2 domain of the Fc region. See, e.g., Wright et al. TIBTECH 15:26-32 (1997).
- the oligosaccharide may include various carbohydrates, e.g., mannose, N-acetyl glucosamine (GlcNAc), galactose, and sialic acid, as well as a fucose attached to a GlcNAc in the "stem" of the biantennary oligosaccharide structure.
- modifications of the oligosaccharide in an antibody of the invention may be made in order to create antibody variants with certain improved properties.
- antibody variants having a carbohydrate structure that lacks fucose attached (directly or indirectly) to an Fc region.
- the amount of fucose in such antibody may be from 1% to 80%, from 1% to 65%, from 5% to 65% or from 20% to 40%.
- the amount of fucose is determined by calculating the average amount of fucose within the sugar chain at Asn297, relative to the sum of all glycostructures attached to Asn 297 (e. g. complex, hybrid and high mannose structures) as measured by MALDI-TOF mass spectrometry, as described in
- Asn297 refers to the asparagine residue located at about position 297 in the Fc region (Eu numbering of Fc region residues); however, Asn297 may also be located about ⁇ 3 amino acids upstream or downstream of position 297, i.e., between positions 294 and 300, due to minor sequence variations in antibodies. Such fucosylation variants may have improved ADCC function. See, e.g., US Patent Publication Nos. US 2003/0157108 (Presta, L.); US
- Examples of cell lines capable of producing defucosylated antibodies include Led 3 CHO cells deficient in protein fucosylation (Ripka et al. Arch. Biochem. Biophys. 249:533-545 (1986); US Pat Appl No US 2003/0157108 Al, Presta, L; and WO 2004/056312 Al, Adams et al., especially at Example 11), and knockout cell lines, such as alpha- 1 ,6-fucosyltransferase gene, FUT8, knockout CHO cells (see, e.g., Yamane-Ohnuki et al. Biotech. Bioeng. 87: 614 (2004); Kanda, Y. et al., Biotechnol. Bioeng., 94(4):680-688 (2006); and WO2003/085107).
- Antibodies variants are further provided with bisected oligosaccharides, e.g., in which a biantennary oligosaccharide attached to the Fc region of the antibody is bisected by GlcNAc. Such antibody variants may have reduced fucosylation and/or improved ADCC function. Examples of such antibody variants are described, e.g., in WO 2003/011878 (Jean-Mairet et al.); US Patent No. 6,602,684 (Umana et al.); and US 2005/0123546 (Umana et al.). Antibody variants with at least one galactose residue in the oligosaccharide attached to the Fc region are also provided.
- Such antibody variants may have improved CDC function.
- Such antibody variants are described, e.g., in WO 1997/30087 (Patel et al.); WO 1998/58964 (Raju, S.); and WO 1999/22764 (Raju, S.).
- one or more amino acid modifications may be introduced into the Fc region of an antibody provided herein, thereby generating an Fc region variant.
- the Fc region variant may comprise a human Fc region sequence (e.g., a human IgGl, IgG2, IgG3 or IgG4 Fc region) comprising an amino acid modification (e.g., a substitution) at one or more amino acid positions.
- the invention contemplates an antibody variant that possesses some but not all effector functions, which make it a desirable candidate for applications in which the half life of the antibody in vivo is important yet certain effector functions (such as complement and ADCC) are unnecessary or deleterious.
- In vitro and/or in vivo cytotoxicity assays can be conducted to confirm the reduction/depletion of CDC and/or ADCC activities.
- Fc receptor (FcR) binding assays can be conducted to ensure that the antibody lacks FcyR binding (hence likely lacking ADCC activity), but retains FcRn binding ability.
- NK cells express FcyRIII only, whereas monocytes express FcyRI, FcyRII and FcyRIII.
- FcR expression on hematopoietic cells is summarized in Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol. 9:457-492 (1991).
- Non-limiting examples of in vitro assays to assess ADCC activity of a molecule of interest is described in U.S. Patent No. 5,500,362 (see, e.g., Hellstrom, I. et al. Proc. Nat ⁇ Acad. Sci. USA 83:7059-7063 (1986)) and Hellstrom, I et al., Proc.
- non-radioactive assays methods may be employed (see, for example, ACTITM non-radioactive cytotoxicity assay for flow cytometry (CellTechnology, Inc. Mountain View, CA; and CytoTox 96 non-radioactive cytotoxicity assay (Promega, Madison, WI).
- Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells.
- ADCC activity of the molecule of interest may be assessed in vivo, e.g., in an animal model such as that disclosed in Clynes et al. Proc. Nat ⁇ Acad. Sci. USA 95:652- 656 (1998).
- Clq binding assays may also be carried out to confirm that the antibody is unable to bind Clq and hence lacks CDC activity. See, e.g., Clq and C3c binding ELISA in WO 2006/029879 and WO 2005/100402.
- a CDC assay may be performed (see, for example, Gazzano-Santoro et al., J. Immunol. Methods 202: 163 (1996); Cragg, M.S.
- FcRn binding and in vivo clearance/half life determinations can also be performed using methods known in the art ⁇ see, e.g., Petkova, S.B. et al. nt 'l. Immunol. 18(12): 1759-1769 (2006)).
- Antibodies with reduced effector function include those with substitution of one or more of Fc region residues 238, 265, 269, 270, 297, 327 and 329 (U.S. Patent No. 6,737,056).
- Fc mutants include Fc mutants with substitutions at two or more of amino acid positions 265, 269, 270, 297 and 327, including the so-called "DANA" Fc mutant with substitution of residues 265 and 297 to alanine (US Patent No. 7,332,581).
- an antibody variant comprises an Fc region with one or more amino acid substitutions which improve ADCC, e.g., substitutions at positions 298, 333, and/or 334 of the Fc region (EU numbering of residues).
- alterations are made in the Fc region that result in altered ⁇ i.e., either improved or diminished) Clq binding and/or Complement Dependent Cytotoxicity (CDC), e.g., as described in US Patent No. 6,194,551, WO 99/51642, and Idusogie et al. J. Immunol. 164: 4178-4184 (2000).
- CDC Complement Dependent Cytotoxicity
- Such Fc variants include those with substitutions at one or more of Fc region residues: 238, 256, 265, 272, 286, 303, 305, 307, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 382, 413, 424 or 434, e.g., substitution of Fc region residue 434 (US Patent No. 7,371,826). See also Duncan & Winter, Nature 322:738-40 (1988); U.S. Patent No. 5,648,260; U.S. Patent No. 5,624,821; and WO 94/29351 concerning other examples of Fc region variants.
- cysteine engineered antibodies e.g., "thioMAbs”
- one or more residues of an antibody are substituted with cysteine residues.
- the substituted residues occur at accessible sites of the antibody.
- reactive thiol groups are thereby positioned at accessible sites of the antibody and may be used to conjugate the antibody to other moieties, such as drug moieties or linker-drug moieties, to create an immunoconjugate, as described further herein.
- any one or more of the following residues may be substituted with cysteine: V205 (Kabat numbering) of the light chain; Al 18 (EU numbering) of the heavy chain; and S400 (EU numbering) of the heavy chain Fc region.
- Cysteine engineered antibodies may be generated as described, e.g., in U.S. Patent No. 7,521,541.
- immunoconjugates comprising an anti-SCDl antibody herein conjugated to one or more cytotoxic agents, such as chemotherapeutic agents or drugs, growth inhibitory agents, toxins (e.g., protein toxins, enzymatically active toxins of bacterial, fungal, plant, or animal origin, or fragments thereof), or radioactive isotopes.
- cytotoxic agents such as chemotherapeutic agents or drugs, growth inhibitory agents, toxins (e.g., protein toxins, enzymatically active toxins of bacterial, fungal, plant, or animal origin, or fragments thereof), or radioactive isotopes.
- an immunoconjugate is an antibody-drug conjugate (ADC) in which an antibody is conjugated to one or more drugs, including but not limited to a maytansinoid (see U.S. Patent Nos. 5,208,020, 5,416,064 and European Patent EP 0 425 235 Bl); an auristatin such as monomethylauristatin drug moieties DE and DF (MMAE and MMAF) (see U.S. Patent Nos.
- ADC antibody-drug conjugate
- drugs including but not limited to a maytansinoid
- a maytansinoid see U.S. Patent Nos. 5,208,020, 5,416,064 and European Patent EP 0 425 235 Bl
- an auristatin such as monomethylauristatin drug moieties DE and DF (MMAE and MMAF) (see U.S. Patent Nos.
- an immunoconjugate comprises an antibody as described herein conjugated to an enzymatically active toxin or fragment thereof, including but not limited to diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes.
- an enzymatically active toxin or fragment thereof including but not limited to diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (
- an immunoconjugate comprises an antibody as described herein conjugated to a radioactive atom to form a radioconjugate.
- a variety of radioactive isotopes are available for the production of radioconjugates. Examples include At 211 , 1131 , 1125 , Y 90 , Re 186 , Re 188 ,
- radioconjugate When used for detection, it may comprise a radioactive atom for scintigraphic studies, for example tc" or I 123 , or a spin label for nuclear magnetic resonance (NMR) imaging (also known as magnetic resonance imaging, mri), such as iodine- 123 again, iodine-131, indium- 111, fluorine- 19, carbon- 13, nitrogen- 15, oxygen- 17, gadolinium, manganese or iron.
- NMR nuclear magnetic resonance
- Conjugates of an antibody and cytotoxic agent may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP),
- SPDP N-succinimidyl-3-(2-pyridyldithio) propionate
- succinimidyl-4-(N-maleimidomethyl) cyclohexane- 1 -carboxylate SMCC
- iminothiolane I
- bifunctional derivatives of imidoesters such as dimethyl adipimidate HQ
- active esters such as disuccinimidyl suberate
- aldehydes such as glutaraldehyde
- bis-azido compounds such as bis (p- azidobenzoyl) hexanediamine
- bis-diazonium derivatives such as bis-(p-diazoniumbenzoyl)- ethylenediamine
- diisocyanates such as toluene 2,6-diisocyanate
- bis-active fluorine compounds such as l,5-difluoro-2,4-dinitrobenzene
- a ricin immunotoxin can be prepared as described in Vitetta et ah, Science 238: 1098 (1987).
- Carbon- 14-labeled 1- isothiocyanatobenzyl-3-methyldi ethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See W094/11026.
- the linker may be a "cleavable linker" facilitating release of a cytotoxic drug in the cell.
- an acid- labile linker, peptidase-sensitive linker, photolabile linker, dimethyl linker or disulfide-containing linker (Chari et al, Cancer Res. 52: 127-131 (1992); U.S. Patent No. 5,208,020) may be used.
- the immunuoconjugates or ADCs herein expressly contemplate, but are not limited to such conjugates prepared with cross-linker reagents including, but not limited to, BMPS, EMCS, GMBS, HBVS, LC-SMCC, MBS, MPBH, SBAP, SIA, SIAB, SMCC, SMPB, SMPH, sulfo-EMCS, sulfo- GMBS, sulfo-KMUS, sulfo-MBS, sulfo-SIAB, sulfo-SMCC, and sulfo-SMPB, and SVSB
- cross-linker reagents including, but not limited to, BMPS, EMCS, GMBS, HBVS, LC-SMCC, MBS, MPBH, SBAP, SIA, SIAB, SMCC, SMPB, SMPH, sulfo-EMCS, sulfo- GMBS, sulfo
- Binding polypeptides are polypeptides that bind, preferably specifically, to SCDl as described herein.
- the binding polypeptides are SCDl antagonists. Binding polypeptides may be chemically synthesized using known polypeptide synthesis methodology or may be prepared and purified using recombinant technology.
- Binding polypeptides are usually at least about 5 amino acids in length, alternatively at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 amino acids in length or more, wherein such binding polypeptides that are capable of binding, preferably specifically, to a target, SCDl, as
- Binding polypeptides may be identified without undue experimentation using well known techniques.
- techniques for screening polypeptide libraries for binding polypeptides that are capable of specifically binding to a polypeptide target are well known in the art (see, e.g., U.S. Patent Nos. 5,556,762, 5,750,373, 4,708,871, 4,833,092, 5,223,409, 5,403,484, 5,571,689, 5,663,143; PCT Publication Nos. WO 84/03506 and WO84/03564; Geysen et al., Proc. Natl. Acad. Sci.
- bacteriophage (phage) display is one well known technique which allows one to screen large polypeptide libraries to identify member(s) of those libraries which are capable of specifically binding to a target polypeptide, SCD1.
- Phage display is a technique by which variant polypeptides are displayed as fusion proteins to the coat protein on the surface of bacteriophage particles (Scott, J.K. and Smith, G. P. (1990) Science, 249: 386).
- the utility of phage display lies in the fact that large libraries of selectively randomized protein variants (or randomly cloned cDNAs) can be rapidly and efficiently sorted for those sequences that bind to a target molecule with high affinity. Display of peptide (Cwirla, S. E.
- Sorting phage libraries of random mutants requires a strategy for constructing and propagating a large number of variants, a procedure for affinity purification using the target receptor, and a means of evaluating the results of binding enrichments.
- WO 97/35196 describes a method of isolating an affinity ligand in which a phage display library is contacted with one solution in which the ligand will bind to a target molecule and a second solution in which the affinity ligand will not bind to the target molecule, to selectively isolate binding ligands.
- WO 97/46251 describes a method of biopanning a random phage display library with an affinity purified antibody and then isolating binding phage, followed by a micropanning process using microplate wells to isolate high affinity binding phage.
- Staphlylococcus aureus protein A as an affinity tag has also been reported (Li et al. (1998) Mol Biotech., 9: 187).
- WO 97/47314 describes the use of substrate subtraction libraries to distinguish enzyme specificities using a combinatorial library which may be a phage display library.
- a method for selecting enzymes suitable for use in detergents using phage display is described in WO 97/09446. Additional methods of selecting specific binding proteins are described in U.S. Patent Nos. 5,498,538, 5,432,018, and WO 98/15833.
- binding small molecules for use as a SCD1 small molecule antagonist.
- Binding small molecules are preferably organic molecules other than binding polypeptides or antibodies as defined herein that bind, preferably specifically, to SCDlas described herein.
- Binding organic small molecules may be identified and chemically synthesized using known methodology ⁇ see, e.g., PCT Publication Nos. WO 00/00823 and WO 00/39585). Binding organic small molecules are usually less than about 2000 daltons in size, alternatively less than about 1500, 750, 500, 250 or 200 daltons in size, wherein such organic small molecules that are capable of binding, preferably specifically, to a polypeptide as described herein may be identified without undue experimentation using well known techniques. In this regard, it is noted that techniques for screening organic small molecule libraries for molecules that are capable of binding to a polypeptide target are well known in the art ⁇ see, e.g., PCT Publication Nos.
- Binding organic small molecules may be, for example, aldehydes, ketones, oximes, hydrazones, semicarbazones, carbazides, primary amines, secondary amines, tertiary amines, N-substituted hydrazines, hydrazides, alcohols, ethers, thiols, thioethers, disulfides, carboxylic acids, esters, amides, ureas, carbamates, carbonates, ketals, thioketals, acetals, thioacetals, aryl halides, aryl sulfonates, alkyl halides, alkyl sulfonates, aromatic compounds, heterocyclic compounds, anilines, alkenes, alkynes, diols, amino alcohols, oxazolidines, oxazolines, thiazolidines, thiazolines, thiazolines,
- the SCDl small molecule antagonist is a compound described in WO 2005/011655 and/or US 2005/0119251, which are incorporated by reference in their entirety.
- the SCDl small molecule antagonist is a compound of formula (I):
- x and y are each independently 1 , 2 or 3;
- W is -C(0)N(R 1 )-; -C(0)N[C(0)R la ]-, - N(R 1 )C(0)N(R 1 )- or -NCR ⁇ CCO)-;
- V is -C(O)-, -C(S)-, or -C(R 10 )H;
- each R 1 is independently selected from the group consisting of hydrogen;
- Ci-C 6 alkyl optionally substituted with one or more substituents selected from the group consisting of halo, methyl or trifluoromethyl; and C 2 -C 6 alkyl optionally substituted with one or more substituents selected from the group consisting of methoxy and hydroxyl;
- R l is selected from the group consisting of hydrogen, Ci-C 6 alkyl and cycloalkyl;
- R 2 is selected from the group consisting of C1-C12 alkyl, C 2 -Ci 2
- R 6 and R 6 together, or R 7 and R 7 together, or R 8 and R 8 together, or R 9 and R 9 together are an oxo group, provided that when V is -C(O)-, R 7 and R 7 together or R 8 and R 8 together do not form an oxo group, while the remaining R 6 , R 6 , R 7 , R 7 , R 8 , R 8 , R 9 , and R 9 are each independently selected from hydrogen or C 1 -C 3 alkyl; or one of R 6 , R 6 , R 7 , and R 7 together with one of R 8 , R 8 , R 9 and R 9 form an alkylene bridge, while the remaining R 6 , R 6 , R 7 , R 7 , R 8 , R 8 , R 9 , and R 9 are each independently selected from hydrogen or C1-C3 alkyl; R 1U is hydro gen or C 1 -C 3 alkyl; and each R is independently selected
- small molecule antagonist is a compound of formula (II):
- x and y are each independently 1 , 2 or 3;
- W is selected from -C(0)N(R and - ⁇ ) ⁇ ( ⁇ )- ;
- each R 1 is independently selected from the group consisting of hydrogen;
- C 1 -C6 alkyl optionally substituted with one or more substituents selected from the group consisting of halo, methyl or trifluoromethyl;
- C 2 -C6 alkyl optionally substituted with one or more substituents selected from the group consisting of methoxy and hydroxy;
- R is selected from the group consisting of C7-C 12 alkyl, C 3 -C 12 alkenyl, C7-Ci 2 hydroxyalkyl, C 2 -C 12 alkoxyalkyl, C 3 -Ci 2 hydroxyalkenyl, C 3 -C 12 cycloalkyl, C4-C 12 cycloalkylalkyl, , C 13 -C 19 aralkyl, C 3 -Ci 2 hetero
- R is selected from the group consisting of C 3 -C 12 alkyl, C 3 -C 12 alkenyl, C 3 -Ci 2 hydroxyalkyl, C 3 -Ci 2 hydroxyalkenyl, C 3 -C 12 alkoxy, C 3 -C 12 alkoxyalkyl, C 3 -C 12 cycloalkyl, C 4 -Ci 2 cycloalkylalkyl, aryl, C7-C 12 aralkyl, C 3 -Ci 2 heterocyclyl, C 3 - Ci 2 heterocyclylalkyl, C5-C 12 heteroaryl and C 3 -C 1 2 heteroarylalkyl; or R is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl
- le antagonist is a compound of formula (III):
- x and y are each independently 1 , 2 or 3; A is oxygen or sulfur; W is selected from - C(0)N(R 1 )- and -N ⁇ R 1 )C(0)-; each R 1 is independently selected from the group consisting of hydrogen; Ci-C 6 alkyl optionally substituted with one or more substituents selected from the group consisting of halo, methyl or trifluoromethyl; and C2-C 6 alkyl optionally substituted with one or more substituents selected from the group consisting of methoxy and hydroxy; R is selected from the group consisting of C1-C12 alkyl, C 2 -Ci 2 alkenyl, C 2 -Ci 2 hydroxyalkyl, C 2 -Ci 2 hydroxyalkenyl, Ci-C 6 alkoxy, C 3 -Ci 2 alkoxyalkyl, C 3 -Ci 2 cycloalkyl, C 4 -Ci 2 cycloalkylalkyl, aryl, C 7 -
- R 7 , R 8 , R 8 , R 9 , and R 9 are each independently selected from hydrogen or C1-C 3 alkyl; or R 6 and R 6 together, or R 7 and R 7 together, or R 8 and R 8 together, or R 9 and R 9 together are an oxo group, provided that when V is -C(O)-, R 7 and R 7 together or R 8 and R 8 together do not form an oxo group, while the remaining R 6 , R 6 , R 7 , R 7 , R 8 , R , R and R ya ' are each independently selected from hydrogen or C1-C 3 alkyl; or one of R , R , R , and R 7 together with one of R 8 , R 8 , R 9 and R 9 form an alkylene bridge, while the remaining R 6 , R 6 , R 7 , R 7 , R 8 , R 8 , R 9 , and R 9 are each independently selected from hydrogen or C1-C 3 alkyl; and each R 11 is
- small molecule antagonist is a compound of formula (IV)
- x and y are each independently 1 , 2 or 3; each R 1 is independently selected from the group consisting of hydrogen; Ci-C 6 alkyl optionally substituted with one or more substituents selected from the group consisting of halo, methyl or trifluoromethyl; and C 2 -C 6 alkyl optionally substituted with one or more substituents selected from the group consisting of methoxy and hydroxy; R is selected from the group consisting of C 1 -C 12 alkyl, C 2 -Ci 2 alkenyl, C 2 -Ci 2 hydroxyalkyl, C 2 - Ci 2 hydroxyalkenyl, C 2 -Ci 2 alkoxyalkyl, C 3 -Ci 2 cycloalkyl, C 4 -Ci 2 cycloalkylalkyl, C 3 - Ci 2 heterocyclyl, C 3 -Ci 2 heterocyclylalkyl, aryl, C 7 -Ci 2 aralkyl, Ci-Ci 2
- R is selected from the group consisting of Ci-Ci 2 alkyl, C 2 -Ci 2 alkenyl, C 2 -Ci 2 hydroxyalkyl, C 2 -Ci 2 hydroxyalkenyl, Ci-Ci 2 alkoxy, C 2 - Ci 2 alkoxyalkyl,
- R is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;
- R 4 and R 5 are each independently selected from hydrogen, fiuoro, chloro, methyl, methoxy and trifluoromethyl; and
- R 6 , R 6 , R 7 , R 7 , R 8 , R 8 , R 9 , and R 9 are each independently selected from hydrogen or Ci-C 3 alkyl; or R 6 and R 6 together, or R 7 and R 7 together
- small molecule antagonist is a compound of formula (Va)
- x and y are each independently 1 , 2 or 3;
- W is -C(0)N(R 1 )-; -N(R 1 )C(0)N(R 1 )- or - NCR ⁇ CCO)-;
- each R 1 is independently selected from the group consisting of hydrogen; CrC 6 alkyl optionally substituted with one or more substituents selected from the group consisting of halo, methyl or trifluoromethyl; and C 2 -C 6 alkyl optionally substituted with one or more substituents selected from the group consisting of methoxy and hydroxy;
- R is selected from the group consisting of C7-C12 alkyl, C 2 -Ci 2 alkenyl, C 7 -Ci 2 hydroxyalkyl, C 2 -Ci 2 hydroxyalkenyl, Ci-Ci 2 alkoxy, C 2 - Ci 2 alkoxyalkyl, C 3 -Ci 2 cycloalkyl, Ci-Ci 2 cycloalkylalkyl, C13-C19 aralkyl, Ci-Ci 2 heterocyclyl, C 3 - Ci 2 heterocyclylalkyl, Ci-Ci 2 heteroaryl, and C 3 -Ci 2 heteroarylalkyl
- Ci-C 3 alkyl and each R is independently selected from hydrogen or Ci-C 6 alkyl; provided, however, that R can not be pyrazinyl, pyridinonyl, pyrrolidinonyl or imidazolyl; a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable salt thereof, a pharmaceutical composition thereof or a prodrug thereof.
- the SCDl small molecule antagonist is a compound of formula (Vb): wherein: x and y are each independently 1 , 2 or 3; W is -C(0)N(R 1 )-; -N(R 1 )C(0)N(R 1 )- or - NCR' O)-;
- each R 1 is independently selected from the group consisting of hydrogen; C 1 -C6 alkyl optionally substituted with one or more substituents selected from the group consisting of halo, methyl or trifluoromethyl; and C 2 -C6 alkyl optionally substituted with one or more substituents selected from the group consisting of methoxy and hydroxy;
- R is selected from the group consisting of C 1 -C 12 alkyl, C 2 -C 12 alkenyl, C 2 -Ci 2 hydroxyalkyl, C 2 -Ci 2 hydroxyalkenyl, C 1 -C 12 alkoxy, C 2 -C 12 alkoxyalkyl, C 3 -Ci 2 cycloalkyl, C4-C 12 cycloalkylalkyl, aryl, C7-C 12 aralkyl, C 3 -Ci 2 heterocyclyl, C3-C 12 heterocyclylalkyl, Ci-Ci 2 heteroaryl, and C 3 -
- R is selected from the group consisting of C7-C 12 alkyl, C 2 -C 12 alkenyl, C 2 -Ci 2 hydroxyalkyl, C 2 -C 12 hydroxyalkenyl, C 1 -C 12 alkoxy or C 2 -Ci 2 alkoxyalkyl;
- R 4 and R 5 are each independently selected from hydrogen, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or -N(R 12 ) 2 ;
- R 6 , R 6 , R 7 , R 7 , R 8 , R 8 , R 9 , and R 9 are each independently selected from hydrogen or C 1 -C 3 alkyl; or R 6 and R 6 together, or R 7 and R 7 together, or R 8 and R 8 together, or R 9 and R 9 together are an oxo group, provided that when V is -C(O)-, R 7 and R 7 together or R 8 and R 8 together do not form an oxo
- the SCD1 antagonist small molecule is a SCD1 antagonist small molecule described in US20050119251, WO2006014168, WO2006034441, WO2006034312, WO2006034315, WO2006125194, WO2007046868, WO2007050124, WO2006034279,
- WO2006125180 WO2007136746, WO2007130075, WO2007143597, WO2008024390, WO2008036715, WO2008074835, WO2008127349, which are incorporated by reference in its entirety.
- the SCDl small molecule antagonist comprises a central
- the SCDl small molecule antagonist is Compound 1. In some embodiments, the SCDl small molecule antagonist is Compound 2.
- the pyridazine/pyridine core has been replaced with other monocyclic and bicyclic rings, including pyrimidine (both regioisomers) and pyrazine, pyridinone, phenyl ring, imidazolo ridazine and benzimidazole, as shown below.
- the six-membered heteroaryl ring can be replaced with the five- membered rings, such as [l,2,4]thiadiazole, pyrazole, and thiazole, as pyridazine surrogates.
- the SCDl antagonist small molecule is Compound 3.
- the SCDl antagonist small molecule is Compound 4.
- the SCDl antagonist small molecule is Compound 5.
- the pyridazine ring is changed to an acyclic amidine structure.
- the SCDl antagonist small molecule is Compound 6.
- the SCDl antagonist small molecule is a non-aromatic thiazolidinedione piperidine derivative.
- the SCDl antagonist small molecule is Compound 7.
- the SCDl antagonist small molecule is fused tetrahydro-l,6-naphthyridine.
- the SCDl antagonist small molecule is tetrahydrofuro[2,3-c]pyridine.
- the SCDl antagonist small molecule is Compound 8.
- the SCDl antagonist small molecule is Compound 9.
- the SCDl antagonist small molecule comprises a double bond linker between piperidine and phenyl ring. In some embodiments, the SCDl antagonist small molecule is the piperazine is modified to cyclohexane or tetrahydropyrimidine. In some embodiments, the SCDl antagonist small molecule comprises a domain shown below.
- the SCDl antagonist small molecule comprises a linker, such as oxygen, amino and/or carbonyl group, inserted between the pyridazine and the piperidine ring.
- the SCDl antagonist small molecule is Compound 10.
- the SCDl antagonist small molecule is a directly-connected heteroarylpiperazine derivative.
- the SCDl antagonist small molecule is Compound 11.
- the SCDl antagonist small molecule is a tricyclic SCDl inhibitor.
- the SCDl antagonist small molecule is Compound 12.
- the SCDl antagonist small molecule is an imidazoline. In some embodiments, the SCDl antagonist small molecule is an oxadiazole (three different regioisomers). In some embodiments, the SCDl antagonist small molecule is an imidazopyridine. In some embodiments, the SCD 1 antagonist small molecule is a cyclic urea. In some embodiments, the SCDl antagonist small molecule comprises a domain shown below.
- the SCDl antagonist small molecule is carboxamide is moved from a 1,4 to a 1,3 arrangementon the pyridine template.
- the SCDl antagonist small molecule is Compound 13.
- the SCDl antagonist small molecule is a tricyclic fused oxazepinone.
- the SCDl antagonist small molecule is Compound 14.
- the SCDl antagonist small molecule is cyclized to the phenyl ring to generate a phthalimide type.
- the SCDl antagonist small molecule is Compound 15.
- the SCDl antagonist small molecule is a macrocycle cyclizing both ends of the compound.
- the SCDl antagonist small molecule is Compound 16.
- the SCDl antagonist small molecule is a thiazole carboxamide. In some embodiments, the SCDl antagonist small molecule is Compound 17. In some embodiments, the SCDl antagonist small molecule is a 2-oxopyridin- 1 (2H)-yl thiazole carboxamide derivative. In some embodiments, the SCDl antagonist small molecule is Compound 18. In some embodiments, the SCDl antagonist small molecule has an IC5 0 value of 50 nM. In some embodiments, the SCDl antagonist small molecule is Compound 19. In some embodiments, the SCDl antagonist small molecule has an IC5 0 value of 30 nM.
- the SCDl antagonist small molecule is a 2-(pyrazin-2-yl)-thiazole derivative. In some embodiments, the SCDl antagonist small molecule is a 2-(lH-pyrazol-3-yl)- thiazole derivative. In some embodiments, the SCDl antagonist small molecule is Compound 21. In some embodiments, the SCDl antagonist small molecule has an IC5 0 value of 42 nM. In some embodiments, the SCDl antagonist small molecule is Compound 22. In some embodiments, the SCDl antagonist small molecule has an IC5 0 value of 49 nM.
- the SCDl antagonist small molecule is a thiazolyl pyrrolidinone and piperidinone-based SCD 1 inhibitor. In some embodiments, the SCDl antagonist small molecule is a triazolyl thiazole-based SCDl inhibitor. In some embodiments, the SCDl antagonist small molecule is Compound 22. In some embodiments, the SCDl antagonist small molecule has an IC5 0 value of 120 nM. In some embodiments, the SCDl antagonist small molecule is Compound 23. In some embodiments, the SCDl antagonist small molecule has an IC5 0 value of 10 nM. In some embodiments, the SCDl antagonist small molecule is a dihydroimidazolinone. In some embodiments, the SCDl antagonist small molecule is an imidazolidinone. In some embodiments, the SCDl antagonist small molecule is Compound 26. In some embodiments, the SCDl antagonist small molecule is Compound 27.
- the SCDl antagonist small molecule is a SCDl antagonist small molecule described in WO2006130986, WO2007009236, WO2007056846, WO2008017161 WO2008141455, WO2007134457, WO2007143823, WO2007143824, WO2008046226,
- the SCDl antagonist small molecule is an azacyclohexane derivative.
- the SCDl antagonist small molecule is a thiazolyl oxadiazole compound. In some embodiments, the SCDl antagonist small molecule is Compound 26. In some embodiments, the SCDl antagonist small molecule is Compound 27. [0246] In some embodiments, the SCDl antagonist small molecule is a pyridazine derivative with different carboxamide bioisosteres. In some embodiments, the SCDl antagonist small molecule is Compound 28. In some embodiments, the SCDl antagonist small molecule is Compound 29.
- the SCDl antagonist small molecule is a compound with fused bicyclic heteroaryls. In some embodiments, the SCDl antagonist small molecule is a
- the SCDl antagonist small molecule is a thiazolopyrimidine with fused bicyclic heteroaryls. In some embodiments, the SCDl antagonist small molecule is a purine with fused bicyclic heteroaryls. In some embodiments, the SCDl antagonist small molecule is lH-imidazo[4,5-c]pyridin-4-amine (e.g., replacing the pyridazine core) with fused bicyclic heteroaryls. In some embodiments, the SCDl antagonist small molecule is Compound 30. In some embodiments, the SCDl antagonist small molecule is
- the SCDl antagonist small molecule is Compound 32. In some embodiments, the SCDl antagonist small molecule is Compound 33.
- the SCDl antagonist small molecule is bycyclic. In some embodiments, the SCDl antagonist small molecule is Compound 34. In some embodiments, the SCDl antagonist small molecule is Compound 35. In some embodiments, the SCDl antagonist small molecule comprises a pyridazine ring. In some embodiments, the SCDl antagonist small molecule does not comprises a pyridazine ring. In some embodiments, the SCDl antagonist small molecule is Compound 36. In some embodiments, the SCDl antagonist small molecule is
- the SCDl antagonist small molecule comprises a six-membered piperidine. In some embodiments, the SCDl antagonist small molecule comprises a four membered azetidine. In some embodiments, the SCDl antagonist small molecule is Compound 38. In some embodiments, the SCDl antagonist small molecule is Compound 39.
- the SCDl antagonist small molecule comprises a 5-membered pyrrolidine ring. In some embodiments, the SCDl antagonist small molecule is Compound 40. In some embodiments, the SCDl antagonist small molecule is Compound 41. In some embodiments, the SCDl antagonist small molecule is Compound 42.
- the SCDl antagonist small molecule is Compound 43. In some embodiments, the SCDl antagonist small molecule is Compound 44. in some embodiments, the SCDl antagonist small molecule comprises a tetrazole acetic acid. In some embodiments, the SCDl antagonist small molecule comprising a tetrazole acetric acid further comprises an aliphatic portion. In some embodiments, the SCDl antagonist small molecule is Compound 45. In some
- the SCDl antagonist small molecule is Compound 46.
- the SCDl antagonist small molecule is a SCDl antagonist small molecule described in Liu G. et al., J Med Chem (2007);50:3086-100, Zhao H. et al., Bioorg Med Chem Lett (2007); 17:3388-91 , Xin Z. et al., Bioorg Med Chem Lett (2008); 18:4298-302, and/or Liu G. Stearoyl-CoA desaturase-1 (SCDl) Inhibitors: Discovery and in vivo evaluation. Emerging Targets for Type 2 Diabetes Symposium, The 233th ACS National Meeting, Chicago, IL, March 2007, MEDI-382, which are incorporated by reference in its entirety.
- the SCDl antagonist small molecule is Compound 46. In some embodiments, the SCDl antagonist small molecule is orally bioavailable. In some embodiments, the SCDl antagonist small molecule has IC5 0 values of 4.5 and 26 nM in mouse and human, respectively. In some embodiments, the SCDl antagonist small molecule is inhibits the long-chain fatty acid-CoA desaturation in HepG2
- the SCDl antagonist small molecule comprises a glycine amide pyridine.
- the SCDl antagonist small molecule is Compound 48.
- the SCDl antagonist small molecule inhibits human SCDl with an IC5 0 value of 90 nM.
- the SCDl antagonist small molecule is a pyrazine compound.
- the SCDl antagonist small molecule is Compound 49.
- the SCDl antagonist small molecule has an IC5 0 value of 37 nM against human SCDl .
- the SCDl antagonist small molecule is a SCDl antagonist small molecule described in WO2008123891 , WO2008043087, WO2008127615, and/or Koltun DO et al. Potent, selective, and metabolically stable stearoyl-CoA desaturase (SCD) inhibitors for the potential treatment of obesity and diabetes. The 236th ACS National Meeting, Philadelphia, PA, August 2008, MEDI-198, which are incorporated by reference in its entirety.
- the SCDl antagonist small molecule is a pteridinone derivative.
- the SCDl antagonist small molecule is a pteridinone derivative comprising a systematic modification of the core template led to improvement in both potency and in vitro ADME profiles as shown in
- the SCDl antagonist small molecule is Compound 51. In some embodiments, the SCDl antagonist small molecule is a pteridone analogue. In some embodiments, the SCDl antagonist small molecule has IC5 0 values of 250 and 280 nM against rat and human SCDl , respectively. In some embodiments, the SCDl antagonist small molecule is a 3-oxopyrido[3,2-b]pyrazine. In some embodiments, the SCDl antagonist small molecule is Compound 52. Compound 52 is A37602 (GO .1522403) used in the Examples.
- the SCDl antagonist small molecule has a hSCDl IC5 0 of 37 nM. In some embodiments, the SCDl antagonist small molecule has an IC5 0 in rat of 7.8 nM. In some embodiments, the SCDl antagonist small molecule is a the 2-oxopyrido[3,4-b]pyrazine analogue. In some embodiments, the SCDl antagonist small molecule is Compound 53. In some embodiments, the SCDl antagonist small molecule is a 2-oxoquinoxaline-based SCDl inhibitors. In some embodiments, the SCDl antagonist small molecule is Compound 54. In some embodiments, the SCD 1 antagonist small molecule has a subnanomolar IC5 0 S, to be selective against ⁇ 5 and ⁇ 6 desaturases, and to have greater than 50% stability in HLM and RLM (30 min incubation).
- the SCDl antagonist small molecule is a SCDl antagonist small molecule described in WO2008074824, WO20080074832, WO2008074833, WO2008074834, WO2008104524, and/or WO2009010560, which are incorporated by reference in their entirety. GSK published a number of patent applications regarding SCDl inhibitors.
- the SCDl antagonist small molecule is a pyrazolyl 4-amide.
- the SCDl antagonist small molecule is Compound 55.
- the SCDl antagonist small molecule has an pICso (-log IC 50 ) value ⁇ 5.5 against rat SCDl .
- the SCDl antagonist small molecule is a pyrazolyl 3-amide. In some embodiments, the SCDl antagonist small molecule is Comound 56. In some embodiments, the SCDl antagonist small molecule inhibits rat SCDl with pICso greater than 5.5. In some embodiments, the pyrazole is modified to thiadiazole. In some embodiments, the SCDl antagonist small molecule is Compound 57, In some embodiments, the SCDl antagonist small molecule inhibits rat SCDl with pICso greater than 5.5. In some embodiments, the SCDl antagonist small molecule is Compound 58, In some embodiments, the SCDl antagonist small molecule has in vitro and cellular potency (pICso between 7.00 and 7.25, respectively).
- the SCDl antagonist small molecule is a SCDl antagonist small molecule described in WO2008044767 and/or WO2008096746, which are incorporated by reference in their entirety.
- the SCDl antagonist small molecule is an aromatic amine derivative.
- the SCDl antagonist small molecule is Compound 59.
- the SCDl antagonist small molecule at 10 ⁇ inhibits 100% of the microsomal SCDl activity.
- the SCDl antagonist small molecule is a pyridazine template.
- the SCDl antagonist small molecule is Compound 60. In some embodiments,
- the SCDl antagonist small molecule reduces DI (C18: l/C18:0) in DIO mice.
- the SCDl antagonist small molecule is a SCDl antagonist small molecule described in WO2008056687, JP2009019013, and/or WO2008139845, which are incorporated by reference in their entirety.
- the SCDl antagonist small molecule is a spiropiperidine derivative.
- the SCDl antagonist small molecule is Compound 61.
- the SCDl antagonist small molecule has an IC5 0 values below 0.2 ⁇ against human SCDl transfected in HEK293 cells.
- the SCDl antagonist small molecule is Compound 62.
- the SCDl antagonist small molecule is an azole amide.
- the SCDl antagonist small molecule is
- the SCDl antagonist small molecule inhibits human SCDl with an IC 50 value ⁇ 1 ⁇ .
- the SCDl antagonist small molecule is a SCDl antagonist small molecule described in WO2008120744, WO2008123469, and/or WO2008029266, which are incorporated by reference in their entirety.
- the SCDl antagonist small molecule is a 2,5-disubstituted thiophene/furan derivatives.
- the SCDl antagonist small molecule is Compound 64.
- the SCDl antagonist small molecule has an IC5 0 value below 0.1 ⁇ .
- the SCDl antagonist small molecule is a modified to six-membered aryl ring.
- the SCDl antagonist small molecule is a benzamide analogue. In some embodiments, the SCDl antagonist small molecule is Compound 65. In some embodiments, the SCDl antagonist small molecule has an IC5 0 value below 0.1 ⁇ against rat SCDl . In some embodiments, the SCDl antagonist small molecule has modified to piperidine. In some embodiments, the SCDl antagonist small molecule is a urea derivative. In some embodiments, the SCDl antagonist small molecule is Compound 66. In some embodiments, the SCDl anta onist small molecule has an IC5 0 value below 0.1 ⁇ against rat SCDl .
- the SCDl antagonist small molecule is a SCDl antagonist small molecule described in WO2008029266 and/or WO2008062276, which are incorporated by reference in their entirety. In some embodiments, the SCDl antagonist small molecule is
- the SCDl antagonist small molecule is Compound 67. In some embodiments, the SCDl antagonist small molecule inhibits human SCDl 99% at 10 ⁇ . In some embodiments, the SCDl antagonist small molecule is acetylene containing
- the SCDl antagonist small molecule is Compound 68. In some embodiments, the SCDl antagonist small molecule inhibits human SCDl 100% at 10 ⁇ .
- the SCDl antagonist small molecule is a SCDl antagonist small molecule described in WO2008003753 and/or WO20081 16898, which are incorporated by reference in their entirety.
- the SCDl antagonist small molecule is a pyrazolo[l ,5- a]pyrimidine derivatives.
- the SCDl antagonist small molecule is Compound 69.
- the SCDl antagonist small molecule has an IC5 0 value of 140 nM.
- the SCDl antagonist small molecule is compound 70.
- the SCDl antagonist small molecule has an IC5 0 value of 22 nM.
- the SCDl antagonist small molecule is a SCDl antagonist small molecule described in WO2008157844, which is incorporated by reference in its entirety.
- the SCDl antagonist small molecule is piperazine-based SCDl inhibitors.
- the SCDl antagonist small molecule is Compound 71.
- the SCDl antagonist small molecule is Compound 72.
- the SCDl antagonist small molecule inhibits rat SCDl with IC5 0 values ⁇ 10 mM.
- the SCDl antagonist small molecule is a SCDl antagonist small molecule described in WO2008135141 , which is incorporated by reference in its entirety.
- the SCDl antagonist small molecule is a bicyclic pyrrolo[3,4-c]pyrrolo diamine core scaffold.
- the SCDl antagonist small molecule is Compound 73.
- the SCDl antagonist small molecule is Compound 74.
- the SCDl antagonist small molecule inhibits rat SCDl 100% at 10 ⁇ .
- the SCDl antagonist small molecule is Compound 75.
- the SCDl antagonist small molecule is Compound 76.
- the SCDl antagonist small molecule is Compound 19b. In some embodiments, the SCDl antagonist small molecule is Compound 24b. Compound 24b is G02447171.1 (G02447171) used in the Examples. ADME and Pharmacokinetic Profiles of 1 b and 24b
- the SCDl antagonist small molecule is a SCDl antagonist small molecule described in WO201 101 1872, WO201 101 1506, WO201 1047481 , WO201 101 1508, WO201 1039358, WO201 1030312, WO2010025553, WO2010094120, WO20101 12520,
- the SCDl antagonist small molecule is a spirocyclic compound. In some embodiments, the SCDl antagonist small molecule is spiro compound. In some embodiments, the SCDl antagonist small molecule is a benzo- fused oxazepine compound. In some embodiments, the SCDl antagonist small molecule is a pyrazole derivative. In some embodiments, the SCDl antagonist small molecule is a triazole dertivative.
- the SCDl antagonist small molecule is a N-thiazolyl-1 ,2,3,4- tetrahydro-6-isoquinolinecarboxamide derivative.
- the SCDl antagonist small molecule is A939572 (4-(2-chlorophenoxy)-N-(3-(methylcarbamoyl)-phenyl)piperidine-l- carboxamide).
- the SCDl antagonist small molecule is CVT-1 1 ,127.
- the SCDl antagonist small molecule is MF-438.
- the SCDl antagonist small molecule is a quinoxalinone.
- the SCDl antagonist small molecule is CVT-13,036.
- the SCDl antagonist small molecule is 1 1 ,563. In some embodiments, the SCDl antagonist small molecule is CVT-12,012. In some embodiments, the SCDl antagonist small molecule is CVT-12,805. In some embodiments, the SCDl antagonist small molecule is a SCD 1 antagonist small molecule in
- the SCD1 antagonist small molecule is a compound of formula (I):
- Ri represents an alkyl, a cycloalkyl, an aryl or a heteroaryl group in C5 to C14, in particular in e, said aryl or heteroaryl being optionally substituted with one or more groups R a ;
- - R a represents an halogen atom, an hydroxyl group, -N0 2 , -CN, -NH 2 , -N(Ci_ 6 alkyl) 2 , a a - C(0)-Ci_ 6 alkyl, C2- 6 alkenyl, C 3 - 6 cycloalkyl, aryl, C 3 -6 heterocyclyl or heteroaryl, said alkyl, alkoxy, alkenyl, cycloalkyl, aryl, heterocyclyl or heteroaryl being optionally substituted with one or more halogen atom, Ci_ 6 alkyl, Ci_ 6 alkoxy, -C(0)-Ci_ 6 alkyl, -N0 2 , -
- the SCD1 antagonist small molecule is a SCD1 antagonist small molecule described in U.S. Patent Application No. 7,652,013, which is incorporated by reference in its entirety.
- the SCD1 antagonist small molecule is a compound of formula (II):
- Rl and R5 independently of each other, are hydrogen, unsubstituted lower alkyl, halogen, trifiuoromethyl, hydroxy, aryl, alkoxy or N0 2 ;
- R3 is hydrogen, unsubstituted lower alkyl, alkoxy or halogen; wherein at least one of Rl, R2, R3, R4 or R5 is hydrogen, and pharmaceutically acceptable salts thereof.
- Rl is halogen
- R4 is alkoxy and R5 is hydroxy.
- Rl, R4 and R5 are each hydrogen.
- R2 is halogen
- R4 is halogen
- R5 is hydroxy.
- both R2 and R3 are
- both R2 and R5 are trifluoromethyl.
- both R3 and R4 are halogen.
- both R4 and R5 are halogen.
- R2 is halogen and R3 is hydroxy.
- R2 is halogen and R5 is NO 2 .
- R2 is— O-trifluoromethyl and R5 is hydroxy.
- R3 is halogen.
- R4 is unsubstituted lower alkyl.
- R5 is unsubstituted lower alkyl.
- R5 is trifluoromethyl.
- R5 is halogen. In some embodiments, R5 is NO 2 .
- the compound is 6-[4-(3-Bromo- benzyl)-piperazin-l-yl]-3H-pyrimidin-4-one; 6-[4-(5-Bromo-2-hydroxy-benzyl)-piperazin-l-yl]-3H- pyrimidin-4-one; 6-[4-(3-Chloro-benzyl)-piperazin-l-yl]-3H-pyrimidin-4-one; 6-[4-(5-Chloro-2- nitro-benzyl)-piperazin-l-yl]-3H-pyrimidin-4-one; 6-[4-(2,3-Dichloro-benzyl)-piperazin-l-yl]-3H- pyrimidin-4-one; 6-[4-(3,5-Dichloro-2-hydroxy-benzyl)-piperazin-l-yl]-3H-pyrimidin-4-one; 6-[4
- the SCDl antagonist small molecule is Compound 77 (RG1 of the Examples; Example 24 in U.S. Patent Application No. 7,652,013). In some embodiments, the SCDl antagonist small molecule is Compound 78 (RG2 of the Examples; Example 51 in U.S. Patent Application No. 7,652,013). In some embodiments, the SCDl antagonist small molecule is
- the SCDl antagonist small molecule is Compound 80 (RG4 of the Examples; Example 44 in U.S. Patent Application No. 7,652,013). In some embodiments, the SCDl antagonist small molecule is Compound 81 (RG5 of the Examples; Example 45 in U.S. Patent Application No. 7,652,013). In some embodiments, the SCDl antagonist small molecule is Compound 82 (RG6 of the Examples; Example 46 in U.S. Patent Application No. 7,652,013). In some embodiments, the SCDl antagonist small molecule is Compound 83 (RG7 of the Examples; Example 28 in U.S. Patent Application No. 7,652,013). In some embodiments, the SCDl antagonist small molecule is
- the SCDl antagonist small molecule is Compound 85 (RG9 of the Examples; Example 48 in U.S. Patent Application No. 7,652,013).
- the SCDl antagonist small molecule is Compound 86 (RG10 of the Examples; Example 25 in U.S. Patent Application No. 7,652,013).
- the SCDl antagonist small molecule is Compound 87 (RGl 1 of the Examples; Example 38 in U.S. Patent Application No. 7,652,013).
- the SCDl antagonist small molecule is Compound 88 (RG12 of the Examples; Example 47 in U.S. Patent Application No.
- the SCDl antagonist small molecule is Compound 89 (RG13 of the Examples; Example 35 in U.S. Patent Application No. 7,652,013). In some embodiments, the SCDl antagonist small molecule is Compound 90 (RG14 of the Examples; Example 31 in U.S. Patent Application No. 7,652,013).
- polynucleotide antagonists may be an antisense nucleic acid and/or a ribozyme.
- the antisense nucleic acids comprise a sequence complementary to at least a portion of an RNA transcript of a SCD1 gene. However, absolute complementarity, although preferred, is not required.
- a sequence "complementary to at least a portion of an RNA,” referred to herein, means a sequence having sufficient complementarity to be able to hybridize with the RNA, forming a stable duplex; in the case of double stranded SCD1 antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed.
- the ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the larger the hybridizing nucleic acid, the more base mismatches with an SCD1 RNA it may contain and still form a stable duplex (or triplex as the case may be).
- One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex.
- polynucleotide antagonists comprises 5'- GATCCCCCTACAAGAGTG
- GATCCCCGCACATCAACTTCACCACATTCAAGAGATGTGGTGAAGTTG ATGTGCTTTTTTGGAAA-3 ' (SEQ ID NO:4).
- Polynucleotides that are complementary to the 5' end of the message should work most efficiently at inhibiting translation.
- sequences complementary to the 3' untranslated sequences of mRNAs have been shown to be effective at inhibiting translation of mRNAs as well. See generally, Wagner, R., 1994. Nature 372:333-335.
- oligonucleotides complementary to either the 5'- or 3'-non- translated, non-coding regions of the SCD1 gene could be used in an antisense approach to inhibit translation of endogenous SCD1 mRNA.
- Polynucleotides complementary to the 5' untranslated region of the mRNA should include the complement of the AUG start codon.
- Antisense polynucleotides complementary to mRNA coding regions are less efficient inhibitors of translation but could be used in accordance with the invention. Whether designed to hybridize to the 5'-, 3'- or coding region of SCD1 mRNA, antisense nucleic acids should be at least six nucleotides in length, and are preferably oligonucleotides ranging from 6 to about 50 nucleotides in length. In specific aspects the oligonucleotide is at least 10 nucleotides, at least 17 nucleotides, at least 25 nucleotides or at least 50 nucleotides.
- the SCDl antisense nucleic acid of the invention is produced intracellularly by transcription from an exogenous sequence.
- a vector or a portion thereof is transcribed, producing an antisense nucleic acid (RNA) of the SCDl gene.
- RNA antisense nucleic acid
- Such a vector would contain a sequence encoding the SCDl antisense nucleic acid.
- Such a vector can remain episomal or become chromosomally integrated, as long as it can be transcribed to produce the desired antisense RNA.
- Such vectors can be constructed by recombinant DNA technology methods standard in the art. Vectors can be plasmid, viral, or others know in the art, used for replication and expression in vertebrate cells.
- Expression of the sequence encoding SCDl, or fragments thereof, can be by any promoter known in the art to act in vertebrate, preferably human cells.
- Such promoters can be inducible or constitutive.
- Such promoters include, but are not limited to, the SV40 early promoter region (Bernoist and Chambon, Nature 29:304-310 (1981), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto et al., Cell 22:787-797 (1980), the herpes thymidine promoter (Wagner et al., Proc. Natl. Acad. Sci. U.S.A. 78: 1441-1445 (1981), the regulatory sequences of the metallothionein gene (Brinster, et al., Nature 296:39-42 (1982)), etc.
- F. Antibody and Binding Polypeptide Variants include, but are not limited to, the SV40 early promoter region (
- amino acid sequence variants of the antibodies and/or the binding polypeptides provided herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody and/or binding polypeptide.
- Amino acid sequence variants of an antibody and/or binding polypeptides may be prepared by introducing appropriate modifications into the nucleotide sequence encoding the antibody and/or binding polypeptide, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of residues within the amino acid sequences of the antibody and/or binding polypeptide. Any combination of deletion, insertion, and substitution can be made to arrive at the final construct, provided that the final construct possesses the desired characteristics, e.g., target-binding.
- antibody variants and/or binding polypeptide variants having one or more amino acid substitutions are provided.
- Sites of interest for substitutional mutagenesis include the FTVRs and FRs. Conservative substitutions are shown in Table 1 under the heading of
- amino acid side chain classes “conservative substitutions.” More substantial changes are provided in Table 1 under the heading of "exemplary substitutions,” and as further described below in reference to amino acid side chain classes. Amino acid substitutions may be introduced into an antibody and/or binding polypeptide of interest and the products screened for a desired activity, e.g., retained/improved antigen binding, decreased immunogenicity, or improved ADCC or CDC.
- Amino acids may be grouped according to common side-chain properties:
- Non-conservative substitutions will entail exchanging a member of one of these classes for another class.
- One type of substitutional variant involves substituting one or more hypervariable region residues of a parent antibody (e.g., a humanized or human antibody).
- a parent antibody e.g., a humanized or human antibody.
- the resulting variant(s) selected for further study will have modifications (e.g., improvements) in certain biological properties (e.g. , increased affinity, reduced immunogenicity) relative to the parent antibody and/or will have substantially retained certain biological properties of the parent antibody.
- An exemplary substitutional variant is an affinity matured antibody, which may be conveniently generated, e.g. , using phage display-based affinity maturation techniques such as those described herein. Briefly, one or more HVR residues are mutated and the variant antibodies displayed on phage and screened for a particular biological activity (e.g., binding affinity).
- Alterations may be made in HVRs, e.g., to improve antibody affinity. Such alterations may be made in HVR "hotspots," i.e., residues encoded by codons that undergo mutation at high frequency during the somatic maturation process (see, e.g., Chowdhury, Methods Mol. Biol. 207: 179-196 (2008)), and/or SDRs (a-CDRs), with the resulting variant VH or VL being tested for binding affinity.
- HVR "hotspots” i.e., residues encoded by codons that undergo mutation at high frequency during the somatic maturation process (see, e.g., Chowdhury, Methods Mol. Biol. 207: 179-196 (2008)), and/or SDRs (a-CDRs), with the resulting variant VH or VL being tested for binding affinity.
- Affinity maturation by constructing and reselecting from secondary libraries has been described, e.g., in Hoogenboo
- affinity maturation diversity is introduced into the variable genes chosen for maturation by any of a variety of methods (e.g., error-prone PCR, chain shuffling, or oligonucleotide-directed mutagenesis).
- a secondary library is then created. The library is then screened to identify any antibody variants with the desired affinity.
- Another method to introduce diversity involves HVR-directed approaches, in which several HVR residues (e.g. , 4-6 residues at a time) are randomized. HVR residues involved in antigen binding may be specifically identified, e.g., using alanine scanning mutagenesis or modeling. CDR-H3 and CDR-L3 in particular are often targeted.
- substitutions, insertions, or deletions may occur within one or more HVRs so long as such alterations do not substantially reduce the ability of the antibody to bind antigen.
- conservative alterations e.g., conservative substitutions as provided herein
- Such alterations may be outside of HVR "hotspots" or SDRs.
- each HVR either is unaltered, or contains no more than one, two or three amino acid substitutions.
- a useful method for identification of residues or regions of the antibody and/or the binding polypeptide that may be targeted for mutagenesis is called "alanine scanning mutagenesis" as described by Cunningham and Wells (1989) Science, 244: 1081-1085.
- a residue or group of target residues e.g., charged residues such as arg, asp, his, lys, and glu
- a neutral or negatively charged amino acid e.g., alanine or polyalanine
- Further substitutions may be introduced at the amino acid locations demonstrating functional sensitivity to the initial substitutions.
- a crystal structure of an antigen-antibody complex to identify contact points between the antibody and antigen. Such contact residues and neighboring residues may be targeted or eliminated as candidates for substitution.
- Variants may be screened to determine whether they contain the desired properties.
- Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues.
- terminal insertions include an antibody with an N-terminal methionyl residue.
- Other insertional variants of the antibody molecule include the fusion to the N- or C-terminus of the antibody to an enzyme (e.g., for ADEPT) or a polypeptide which increases the serum half-life of the antibody.
- an antibody and/or binding polypeptide provided herein may be further modified to contain additional nonproteinaceous moieties that are known in the art and readily available.
- the moieties suitable for derivatization of the antibody and/or binding polypeptide include but are not limited to water soluble polymers.
- Non- limiting examples of water soluble polymers include, but are not limited to, polyethylene glycol (PEG), copolymers of ethylene glycol/propylene glycol, carboxymethylcellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone, poly-1 , 3-dioxolane, poly-l ,3,6-trioxane, ethylene/maleic anhydride copolymer, polyaminoacids (either homopolymers or random copolymers), and dextran or poly(n-vinyl pyrrolidone)polyethylene glycol, propropylene glycol homopolymers, prolypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols (e.g., glycerol), polyvinyl alcohol, and mixtures thereof.
- PEG polyethylene glycol
- copolymers of ethylene glycol/propylene glycol carboxymethylcellulose
- dextran polyvinyl alcohol
- Polyethylene glycol propionaldehyde may have advantages in manufacturing due to its stability in water.
- the polymer may be of any molecular weight, and may be branched or unbranched.
- the number of polymers attached to the antibody and/or binding polypeptide may vary, and if more than one polymer are attached, they can be the same or different molecules. In general, the number and/or type of polymers used for derivatization can be determined based on considerations including, but not limited to, the particular properties or functions of the antibody and/or binding polypeptide to be improved, whether the antibody derivative and/or binding polypeptide derivative will be used in a therapy under defined conditions, etc.
- nonproteinaceous moiety that may be selectively heated by exposure to radiation
- the nonproteinaceous moiety is a carbon nanotube (Kam et al. , Proc. Natl. Acad. Set USA 102: 11600-11605 (2005)).
- the radiation may be of any wavelength, and includes, but is not limited to, wavelengths that do not harm ordinary cells, but which heat the nonproteinaceous moiety to a temperature at which cells proximal to the antibody and/or binding polypeptide - nonproteinaceous moiety are killed.
- Antibodies and/or binding polypeptides may be produced using recombinant methods and compositions, e.g., as described in U.S. Patent No. 4,816,567.
- isolated nucleic acid encoding an anti-SCDl antibody may encode an amino acid sequence comprising the VL and/or an amino acid sequence comprising the VH of the antibody (e.g., the light and/or heavy chains of the antibody).
- one or more vectors e.g., expression vectors
- a host cell comprising such nucleic acid is provided.
- a host cell comprises (e.g., has been transformed with): (1) a vector comprising a nucleic acid that encodes an amino acid sequence comprising the VL of the antibody and an amino acid sequence comprising the VH of the antibody, or (2) a first vector comprising a nucleic acid that encodes an amino acid sequence comprising the VL of the antibody and a second vector comprising a nucleic acid that encodes an amino acid sequence comprising the VH of the antibody.
- the host cell is eukaryotic, e.g., a Chinese Hamster Ovary (CHO) cell or lymphoid cell (e.g., Y0, NS0, Sp20 cell).
- a method of making an anti-SCDl antibody and/or binding polypeptide comprises culturing a host cell comprising a nucleic acid encoding the antibody and/or binding polypeptide, as provided above, under conditions suitable for expression of the antibody and/or binding polypeptide, and optionally recovering the antibody and/or polypeptide from the host cell (or host cell culture medium).
- nucleic acid encoding the antibody and/or the binding polypeptide is isolated and inserted into one or more vectors for further cloning and/or expression in a host cell.
- nucleic acid may be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the antibody).
- Suitable host cells for cloning or expression of vectors include prokaryotic or eukaryotic cells described herein.
- antibodies may be produced in bacteria, in particular when glycosylation and Fc effector function are not needed.
- U.S. Patent Nos. 5,648,237, 5,789,199, and 5,840,523. See also Charlton, Methods in Molecular Biology, Vol. 248 (B.K.C. Lo, ed., Humana Press, Totowa, NJ, 2003), pp. 245-254, describing expression of antibody fragments in E. coli.
- the antibody and/or binding polypeptides may be isolated from the bacterial cell paste in a soluble fraction and can be further purified.
- eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for vectors, including fungi and yeast strains whose
- glycosylation pathways have been "humanized,” resulting in the production of an antibody with a partially or fully human glycosylation pattern. See Gerngross, Nat. Biotech. 22: 1409-1414 (2004), and Li et al., Nat. Biotech. 24:210-215 (2006).
- Suitable host cells for the expression of glycosylated antibody and/or glycosylated binding polypeptides are also derived from multicellular organisms (invertebrates and vertebrates).
- invertebrate cells include plant and insect cells. Numerous baculoviral strains have been identified which may be used in conjunction with insect cells, particularly for transfection of Spodoptera frugiperda cells.
- Plant cell cultures can also be utilized as hosts. See, e.g., US Patent Nos. 5,959,177, 6,040,498, 6,420,548, 7,125,978, and 6,417,429 (describing PLANTIB ODIE STM technology for producing antibodies in transgenic plants).
- Vertebrate cells may also be used as hosts.
- mammalian cell lines that are adapted to grow in suspension may be useful.
- useful mammalian host cell lines are monkey kidney CVl line transformed by SV40 (COS-7); human embryonic kidney line (293 or 293 cells as described, e.g., in Graham et ah, J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK); mouse Sertoli cells (TM4 cells as described, e.g., in Mather, Biol. Reprod.
- monkey kidney cells (CVl); African green monkey kidney cells (VERO-76); human cervical carcinoma cells (HELA); canine kidney cells (MDCK; buffalo rat liver cells (BRL 3A); human lung cells (W138); human liver cells (Hep G2); mouse mammary tumor (MMT 060562); TRI cells, as described, e.g., in Mather et al, Annals N Y. Acad. Sci. 383:44-68 (1982); MRC 5 cells; and FS4 cells.
- Other useful mammalian host cell lines include Chinese hamster ovary (CHO) cells, including DHFR " CHO cells (Urlaub et al., Proc. Natl. Acad. Sci.
- myeloma cell lines such as Y0, NS0 and Sp2/0.
- myeloma cell lines such as Y0, NS0 and Sp2/0.
- polypeptides may be produced by direct peptide synthesis using solid-phase techniques [see, e.g., Stewart et al., Solid- Phase Peptide Synthesis, W.H. Freeman Co., San Francisco, CA (1969); Merrifield, J. Am. Chem. Soc, 85:2149-2154 (1963)].
- In vitro protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be accomplished, for instance, using an Applied phase
- Forms of antibody and/or binding polypeptide may be recovered from culture medium or from host cell lysates. If membrane -bound, it can be released from the membrane using a suitable detergent solution (e.g., Triton-X 100) or by enzymatic cleavage. Cells employed in expression of antibody and/or binding polypeptide can be disrupted by various physical or chemical means, such as freeze-thaw cycling, sonication, mechanical disruption, or cell lysing agents.
- the following procedures are exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; protein A Sepharose columns to remove contaminants such as IgG; and metal chelating columns to bind epitope-tagged forms of the antibody and/or binding polypeptide.
- the antibody and/or binding polypeptide can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody and/or binding polypeptide is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter et al., Bio/Technology 10: 163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli.
- cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min.
- PMSF phenylmethylsulfonylfluoride
- Cell debris can be removed by centrifugation.
- supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit.
- a protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.
- the antibody and/or binding polypeptide composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique.
- affinity chromatography is the preferred purification technique.
- the suitability of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc domain that is present in the antibody.
- Protein A can be used to purify antibodies that are based on human ⁇ , ⁇ 2 or ⁇ 4 heavy chains (Lindmark et al., J. Immunol. Meth. 62: 1-13 (1983)). Protein G is recommended for all mouse isotypes and for human ⁇ 3 (Guss et al., EMBO J.
- the matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose.
- the antibody comprises a CH3 domain
- the Bakerbond ABXTMresin J. T. Baker, Phillipsburg, NJ is useful for purification.
- the mixture comprising the antibody and/or binding polypeptide of interest and contaminants may be subjected to low pH hydrophobic interaction chromatography using an elution buffer at a pH between about 2.5-4.5, preferably performed at low salt concentrations (e.g., from about 0-0.25M salt).
- SCD1 antagonists such as antibodies, binding polypeptides, and/or small molecules have been described above. Additional SCD1 antagonists such as anti-SCDl antibodies, binding polypeptides, and/or binding small molecules provided herein may be identified, screened for, or characterized for their physical/chemical properties and/or biological activities by various assays known in the art.
- [0300] Further provided herein are methods of screening for and/or identifying an SCDl antagonist which induces cancer cell cycle arrest, inhibits cancer cell proliferation, and/or promotes cancer cell death said method comprising: (a) contacting a cancer cell, cancer tissue, and/or cancer sample with a SCDl candidate antagonist, (b) determining the distribution of cell cycle stage, level of cell proliferation, and/or level of cancer cell death to the cancer cell, cancer tissue, and/or cancer sample in the absence of the SCDl candidate antagonist, whereby a difference in distribution of cell cycle stage, decreased level of cell proliferation, and/or increased level of cancer cell death between the cancer cell, cancer tissue, and/or cancer sample in the presence of a SCDl candidate antagonist and the cancer cell, cancer tissue, and/or cancer sample in the absence of a SCDl candidate antagonist identifies the SCDl candidate antagonist as an SCDl antagonist which induces cancer cell cycle arrest, inhibits cancer cell proliferation, and/or promotes cancer cell cancer death.
- the SCDl candidate antagonist induces cancer cell cycle arrest. In some embodiments of any of methods of screening for and/or identifying an SCDl antagonist, the SCDl candidate antagonist inhibits cancer cell proliferation. In some embodiments of any of methods of screening for and/or identifying an SCDl antagonist, the SCDl candidate antagonist promotes cancer cell death. In some embodiments, the cancer cell death is apoptosis. In some embodiments, the cancer cell death is neucrosis.
- the cancer cell, cancer tissue, or cancer sample is bladder cancer, pancreatic cancer, lung cancer, breast cancer, colon cancer, colorectal cancer, endometrial cancer, head & neck cancer, kidney cancer, ovarian cancer, hypopharyngeal, prostate cancer, esophageal, hepatocellular carcinoma, and/or urinary cancer.
- the cancer cell, cancer tissue, or cancer sample is from a cancer selected from the group of bladder cancer, pancreatic cancer, lung cancer, breast cancer, colon cancer, colorectal cancer, endometrial cancer, head & neck cancer, kidney cancer, ovarian cancer, and/or urinary cancer.
- the cancer cell, cancer tissue, or cancer sample is from a cancer selected from the group of bladder cancer, pancreatic cancer, endometrial cancer, head & neck cancer, kidney cancer, ovarian cancer, and/or urinary cancer.
- the cancer cell, cancer tissue, or cancer sample is bladder cancer.
- the cancer cell, cancer tissue, and/or cancer sample expresses FGFR3.
- the cancer cell, cancer tissue, and/or cancer sample expresses elevated levels of FGFR3 compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- the reference cancer cell expresses substantially the same levels of FGFR3 as a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- the cancer cell, cancer tissue, and/or cancer sample expresses phosphorylated FGFR3.
- the cancer cell, cancer tissue, and/or cancer sample expresses elevated levels of phosphorylated FGFR3 compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- the reference cancer cell expresses substantially the same levels of phosphorylated FGFR3 as a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- the reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is a non-cancerous with or without a known level of expression of FGFR3 and/or phosphorylated FGFR3.
- the reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is a cancerous with or without a known level of expression of FGFR3 and/or phosphorylated FGFR3.
- the expression of FGFR3 in the cancer cell, cancer tissue, and/or cancer sample is cell surface expression.
- the FGFR3 pathway in the cancer cell, cancer tissue, and/or cancer sample is constitutively active.
- the FGFR3 pathway in the cancer cell, cancer tissue, and/or cancer sample is ligand dependent.
- the cancer cell, cancer tissue, and/or cancer sample comprises a mutation in FGFR3. Examples of constitutively active mutations in FGFR3 include, but are not limited to, FGFR3 S249C.
- the cancer cell, cancer tissue, and/or cancer sample is wild- type for FGFR3.
- the cancer cell, cancer tissue, and/or cancer sample expresses of one or more genes of the FGFR3 -regulated lipogenic signature.
- the cancer cell, cancer tissue, and/or cancer sample expresses elevated levels of one or more genes of the FGFR3 -regulated lipogenic signature compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- the cancer cell, cancer tissue, and/or cancer sample expresses substantially the same levels of FGFR3 -regulated lipogenic signature as a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- the reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is a non-cancerous with or without a known level of expression of one or more genes of the FGFR3- regulated lipogenic signature.
- the reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is a cancerous with or without a known level of expression of one or more genes of the FGFR3 -regulated lipogenic signature.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of one or more genes from the group consisting of SREBF1 , G6PD, ACOT7, PTPLA, PCCB, FADS 1 , RDH1 1 , ACER3, PDSS 1 , MVD, AGPAT5, HSD17B2, ACSL4, EBP, PIGW, LBR, ACLY, ADORA2B, GPCPD1 , CYP24A1 , ACSL3, MVK, ACSS2, FDPS, ELOVL5, HMGCR, LIPG, ME1 , DHCR7, LSS, ACAT2, FASN, CYP51A1 , IDI1 , FDFT1 , FAR2, HMGCS1 , SDR16C5, LDLR, MSMOl , INSIG1 , DHRS9, LRP8, SQLE, PCSK9, SCDl , FABP4, and combinations thereof.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of one or more genes from the group consisting of ELOVL5, HMGCR, LIPG, ME1 , DHCR7, LSS, ACAT2, FASN, CYP51A1 , IDI1 , FDFT1 , FAR2, HMGCS 1 , SDR16C5, LDLR, MSMOl , INSIG1 , DHRS9, LRP8, SQLE, PCSK9, SCDl , FABP4, and combinations thereof.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of one or more genes from the group consisting of CYP51A1 , IDI1 , FDFT1 , FAR2, HMGCS1 , SDR16C5, LDLR, MSMOl , INSIG1 , DHRS9, LRP8, SQLE, PCSK9, SCDl , FABP4, and combinations thereof.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of one or more genes from the group consisting of LDLR, MSMOl , INSIG1 , DHRS9, LRP8, SQLE, PCSK9, SCDl , FABP4, and combinations thereof.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of one or more genes from the group consisting of SQLE, PCSK9, SCDl , FABP4, and combinations thereof.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of SQLE.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of PCSK9. In some embodiments, the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of SCDl . In some embodiments, the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of FABP4.
- the cancer cell, cancer tissue, or cancer sample expresses elevated levels of mature SREBP1 compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g. , housekeeping gene).
- the cancer cell, cancer tissue, or cancer sample expresses elevated levels of mature SREBP1 and the levels of mature SREBP2 are not substantially elevated (i. e.
- the reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control e.g., housekeeping gene
- the reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is a non-cancerous with or without a known level of expression of mature SREBP1 and/or mature SREBP2.
- the reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is a cancerous with or without a known level of expression of mature SREBP1 and/or mature SREBP2.
- the cancer cell, cancer tissue, or cancer sample expresses elevated levels of ⁇ 9 monounsaturaturated fatty acids compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- the cancer cell, cancer tissue, or cancer sample expresses elevated ratio of ⁇ 9 monounsaturated fatty acids: saturated fatty acids compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- the reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is a non-cancerous with or without a known level of expression of ⁇ 9
- the reference sample, reference cell, reference tissue, control sample, control cell, or control tissue is a cancerous with or without a known level of expression of ⁇ 9 monounsaturated fatty acids and/or saturated fatty acids.
- ⁇ 9 monounsaturated fatty acids include, but are not limited to, palmitoleic acid (C16: l) and oleic acid (C18: l).
- saturated fatty acids include, but are not limited to, stearic acid (C18:0) and palmitic acid (C16:0).
- the cancer cell, cancer tissue, and/or cancer sample comprises activated PI3K signaling, activated mTOR signaling, and/or activated MEK signaling.
- the cancer cell, cancer tissue, and/or cancer sample comprises PI3K activating mutations.
- the cancer cell, cancer tissue, and/or cancer sample comprises PTEN loss and/or mutations.
- the cancer cell, cancer tissue, and/or cancer sample comprises p85 mutations. In some embodiments of any of the methods of screening for and/or identifying an SCD1 antagonist, the cancer cell, cancer tissue, and/or cancer sample comprises AKT activating mutations. In some embodiments of any of the methods of screening for and/or identifying an SCD1 antagonist, the cancer cell, cancer tissue, and/or cancer sample comprises elevated levels of phosphorylated AKT (e.g., pAKT S ). In some embodiments of any of the methods of screening for and/or identifying an SCDl antagonist, the cancer cell, cancer tissue, and/or cancer sample comprises TSCl/2 loss of function mutations.
- elevated expression refers to an overall increase of about any of 5%, 10%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or greater, in the level of biomarker (e.g., protein or nucleic acid (e.g., gene or mRNA)), detected by standard art known methods such as those described herein, as compared to a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- biomarker e.g., protein or nucleic acid (e.g., gene or mRNA)
- the elevated expression refers to the increase in expression level/amount of a biomarker in the sample wherein the increase is at least about any of 1.5X, 1.75X, 2X, 3X, 4X, 5X, 6X, 7X, 8X, 9X, 10X, 25X, 50X, 75X, or 100X the expression level/amount of the respective biomarker in a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- elevated expression refers to an overall increase of greater than about 1.5 fold, about 1.75 fold, about 2 fold, about 2.25 fold, about 2.5 fold, about 2.75 fold, about 3.0 fold, or about 3.25 fold as compared to a reference sample, reference cell, reference tissue, control sample, control cell, control tissue, or internal control (e.g., housekeeping gene).
- reduced expression refers to an overall reduction of about any of 5%, 10%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or greater, in the level of biomarker (e.g., protein or nucleic acid (e.g., gene or mRNA)), detected by standard art known methods such as those described herein, as compared to a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- biomarker e.g., protein or nucleic acid (e.g., gene or mRNA)
- reduced expression refers to the decrease in expression level/amount of a biomarker in the sample wherein the decrease is at least about any of 0.9X, 0.8X, 0.7X, 0.6X, 0.5X, 0.4X, 0.3X, 0.2X, 0.1X, 0.05X, or 0.01X the expression level/amount of the respective biomarker in a reference sample, reference cell, reference tissue, control sample, control cell, or control tissue.
- an SCDl antagonist described herein may be assessed by methods known in the art, e.g., using cells which express SCDl either endogenously or following transfection with the respective gene(s).
- appropriate tumor cell lines, and SCDl polypeptide-transfected cells may be treated with an SCDl antagonist described herein at various concentrations for a few days (e.g., 2-7) days and stained with crystal violet or MTT or analyzed by some other colorimetric assay.
- Another method of measuring proliferation would be by comparing H-thymidine uptake by the cells treated in the presence or absence an antibody, binding polypeptide or binding small molecule of the invention.
- cancer cell cycle arrest is arrest in Gl .
- the SCDl antagonist will inhibit cancer cell proliferation of the cancer cell, cancer tissue, or cancer sample in vitro or in vivo by about 25-100% compared to the untreated cancer cell, cancer tissue, or cancer sample, more preferably, by about 30-100%), and even more preferably by about 50-100%) or about 70-100%).
- growth inhibition can be measured at an SCDl antagonist concentration of about 0.5 to about 30 ⁇ g/ml or about 0.5 nM to about 200 nM in cell culture, where the growth inhibition is determined 1-10 days after exposure of the tumor cells to the SCDl candidate antagonist.
- the SCDl antagonist is growth inhibitory in vivo if administration of the SCDl candidate antagonist at about 1 ⁇ g/kg to about 100 mg/kg body weight results in reduction in tumor size or reduction of tumor cell proliferation within about 5 days to 3 months from the first administration of the SCDl candidate antagonist, preferably within about 5 to 30 days.
- PI propidium iodide
- trypan blue or 7AAD uptake may be assessed relative to a reference.
- a PI uptake assay can be performed in the absence of complement and immune effector cells. SCDl -expressing tumor cells are incubated with medium alone or medium containing the appropriate SCDl antagonist. The cells are incubated for a 3-day time period.
- Those antibodies, binding polypeptides or binding small molecules that induce statistically significant levels of cell death as determined by PI uptake may be selected as cell death-inducing antibodies, binding polypeptides or binding small molecules.
- cancer cell apoptosis is indicated by activation of caspase 3 and/or caspase 7.
- Antibodies A Laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed. This assay can be used to determine if a test SCD1 antagonist binds the same site or epitope as a known antibody. Alternatively, or additionally, epitope mapping can be performed by methods known in the art. For example, the antibody sequence or binding polypeptide can be mutagenized such as by alanine scanning, to identify contact residues. The mutant antibody and/or mutant binding polypeptide is initially tested for binding with polyclonal antibody or binding polypeptide to ensure proper folding. In a different method, peptides corresponding to different regions of a polypeptide can be used in competition assays with the test antibodies or test binding polypeptides or with a test antibody or a test binding polypeptide and an antibody with a
- the SCD1 candidate antagonist is an antibody, binding polypeptide, binding small molecule, or polynucleotide. In some embodiments, the SCD1 candidate antagonist is an antibody. In some embodiments, the SCD1 antagonist is a small molecule.
- an SCD1 antagonist is tested for its binding activity (e.g., antigen binding activity) by known methods such as ELISA, Western blot, etc.
- compositions of an SCD1 antagonist as described herein are prepared by mixing such SCD1 antagonists having the desired degree of purity with one or more optional pharmaceutically acceptable carriers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions.
- the SCD1 antagonist is a binding small molecule, an antibody, binding polypeptide, and/or
- Pharmaceutically acceptable carriers are generally nontoxic to recipients at the dosages and concentrations employed, and include, but are not limited to: buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride; benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine
- Exemplary pharmaceutically acceptable carriers herein further include insterstitial drug dispersion agents such as soluble neutral-active hyaluronidase glycoproteins (sHASEGP), for example, human soluble PH-20 hyaluronidase glycoproteins, such as rHuPH20 (HYLENEX , Baxter International, Inc.).
- sHASEGP soluble neutral-active hyaluronidase glycoproteins
- rHuPH20 HYLENEX , Baxter International, Inc.
- Certain exemplary sHASEGPs and methods of use, including rHuPH20 are described in US Patent Publication Nos. 2005/0260186 and 2006/0104968.
- a sHASEGP is combined with one or more additional glycosaminoglycanases such as chondroitinases.
- Exemplary lyophilized formulations are described in US Patent No. 6,267,958.
- Aqueous formulations include those described in US Patent No. 6,171,586 and WO2006/044908, the latter formulations including a histidine-acetate buffer.
- the formulation herein may also contain more than one active ingredients as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other.
- active ingredients are suitably present in combination in amounts that are effective for the purpose intended.
- Active ingredients may be entrapped in microcapsules prepared, for example, by
- coacervation techniques or by interfacial polymerization for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions.
- colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules
- macroemulsions for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules
- Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody and/or binding polypeptide, which matrices are in the form of shaped articles, e.g., films, or microcapsules.
- the formulations to be used for in vivo administration are generally sterile. Sterility may be readily accomplished, e.g., by filtration through sterile filtration membranes.
- an article of manufacture containing materials useful for the treatment, prevention and/or diagnosis of the disorders described above comprises a container and a label or package insert on or associated with the container.
- Suitable containers include, for example, bottles, vials, syringes, IV solution bags, etc.
- the containers may be formed from a variety of materials such as glass or plastic.
- the container holds a composition which is by itself or combined with another composition effective for treating, preventing and/or diagnosing the condition and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle).
- At least one active agent in the composition is an SCD1 antagonist of the invention.
- the label or package insert indicates that the composition is used for treating the condition of choice.
- the article of manufacture may comprise (a) a first container with a composition contained therein, wherein the composition comprises an SCD1 antagonist; and (b) a second container with a composition contained therein, wherein the composition comprises a further cytotoxic or otherwise therapeutic agent.
- the article of manufacture comprises a container, a label on said container, and a composition contained within said container; wherein the composition includes one or more reagents (e.g. , primary antibodies that bind to one or more biomarkers or probes and/or primers to one or more of the biomarkers described herein), the label on the container indicating that the composition can be used to evaluate the presence of one or more biomarkers in a sample, and instructions for using the reagents for evaluating the presence of one or more biomarkers in a sample.
- the article of manufacture can further comprise a set of instructions and materials for preparing the sample and utilizing the reagents.
- the article of manufacture may include reagents such as both a primary and secondary antibody, wherein the secondary antibody is conjugated to a label, e.g., an enzymatic label.
- the article of manufacture one or more probes and/or primers to one or more of the biomarkers described herein.
- the one or more biomarkers is FGFR3. In some embodiments of any of the articles of manufacture, the one or more biomarkers is phosphorylated FGFR3.
- the one or more biomarkers is one or more genes of the FGFR3 -regulated lipogenic signature.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of one or more genes from the group consisting of SREBF1 , G6PD, ACOT7, PTPLA, PCCB, FADSl , RDHl 1 , ACER3, PDSSl , MVD, AGPAT5, HSD17B2, ACSL4, EBP, PIGW, LBR, ACLY, ADORA2B, GPCPD1 , CYP24A1 , ACSL3, MVK, ACSS2, FDPS, ELOVL5, HMGCR, LIPG, ME1 , DHCR7, LSS, ACAT2, FASN, CYP51A1 , IDI1 , FDFT1 , FAR2, HMGCS 1 , SDR16C5, LDLR
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of one or more genes from the group consisting of ELOVL5, HMGCR, LIPG, ME1 , DHCR7, LSS, ACAT2, FASN, CYP51A1 , IDI1 , FDFT1 , FAR2, HMGCS1 , SDR16C5, LDLR, MSMOl , INSIG1 , DHRS9, LRP8, SQLE, PCSK9, SCD1 , FABP4, and combinations thereof.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of one or more genes from the group consisting of CYP51A1 , IDI1 , FDFT1 , FAR2, HMGCS1 , SDR16C5, LDLR, MSMOl , INSIG1 , DHRS9, LRP8, SQLE, PCSK9, SCDl , FABP4, and combinations thereof.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of one or more genes from the group consisting of LDLR, MSMOl , INSIG1 , DHRS9, LRP8, SQLE, PCSK9, SCDl , FABP4, and combinations thereof.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of one or more genes from the group consisting of SQLE, PCSK9, SCDl , FABP4, and combinations thereof.
- the one or more genes of the FGFR3 -regulated lipogenic signature comprises, consists of, or consists essential of SC4MOL.
- the one or more biomarkers is mature SREBP1. In some embodiments of any of the articles of manufacture, the one or more biomarkers is ⁇ 9 monounsaturated fatty acids. In some embodiments of any of the articles of manufacture, the one or more biomarkers is ratio of ⁇ 9 monounsaturated fatty acids: saturated fatty acids. In some embodiments of any of the articles of manufacture, the one or more biomarkers is PI3K signaling, mTOR signaling, MEK signaling.
- the one or more biomarkers is one or more polymorphism in genes selected from the group consisting of PI3K, PTEN, p85, TSCl/2, and AKT. In some embodiments of any of the articles of manufacture, the one or more biomarkers is phosphorylated AKT.
- buffers e.g., block buffer, wash buffer, substrate buffer, etc
- other reagents such as substrate (e.g., chromogen) which is chemically altered by an enzymatic label, epitope retrieval solution, control samples (positive and/or negative controls), control slide(s) etc.
- the SCDl antagonist is an antibody, binding polypeptide, binding small molecule, or polynucleotide. In some embodiments, the SCDl antagonist is a small molecule. In some embodiments, the SCDl antagonist is an antibody. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a human, humanized, or chimeric antibody. In some embodiments, the antibody is an antibody fragment and the antibody fragment binds SCD 1.
- the article of manufacture in this embodiment of the invention may further comprise a package insert indicating that the compositions can be used to treat a particular condition.
- the article of manufacture may further comprise a second (or third) container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
- BWFI bacteriostatic water for injection
- phosphate-buffered saline such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution.
- BWFI bacteriostatic water for injection
- phosphate-buffered saline such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution.
- BWFI bacteriostatic water for injection
- Ringer's solution such as bacterio
- RTl 12 cells were purchased from German Collection of Microorganisms and Cell Cultures (DSMZ, Germany). RTl 12 cells stably expressing doxycycline-inducible shRNAs targeting FGFR3 or EGFP were previously described in (24).
- Bladder cancer cell line UMUC-14 was obtained from Dr. H.B. Grossman (Currently at University of Texas M. D. Anderson Cancer Center, TX) from the University of Michigan. Bladder cancer cell line TCC-97-7 was a gift from Dr. Margret Knowles of St. James's University Hospital (Leeds, United Kingdom).
- the cells were maintained with RPMI medium supplemented with 10% fetal bovine serum (FBS) (Sigma), 100 U/ml penicillin, 0.1 mg/ml streptomycin and L-glutamine under conditions of 5% CO 2 at 37°C.
- FBS fetal bovine serum
- Rapamycin and PI3K inhibitor LY294002 were obtained from Cell Signaling Technology (Danvers, MA).
- a potent and selective MEK1/2 inhibitor PD0325901 (Pfizer) was purchased from Synthesis Med Chem (San Diego, CA).
- SCDl small molecule inhibitor A37062 was purchased from BioFine International (Vancouver, Canada).
- RNA interference experiments were carried out with ON-TARGETplus siRNAs (50nM, Dharmacon, Lafayette, CO). Cells were transfected with Lipofectamine RNAiMax (Invitrogen, Carlsbad, CA), and cell proliferation or apoptosis were assessed 48 hr or 72 hr after transfection.
- RTl 12 cells expressing doxycline-inducible shRNAs targeting FGFR3 or EGFP were grown in 10 cm plates in the presence or absence of doxycycline (1 ⁇ g/ml) for 48 hr.
- Total RNA from sub- confluent cell cultures was isolated using RNAeasy kit (Qiagen). RNA quality was verified by running samples on an Agilent Bioanalyzer 2100, and samples of sufficient quality were profiled on Affymetrix HGU133-Plus_2.0 chips. Microarray studies were performed using triplicate RNA samples. Preparation of complementary RNA, array hybridizations, scanning, and subsequent array image data analysis were done following manufacturer's protocols.
- Expression summary values for all probe sets were calculated using the RMA algorithm as implemented in the affy package from Bioconductor.
- Statistical analyses of differentially expressed genes were performed using linear models and empirical Bayes moderated statistics as implemented in the limma package from Bioconductor.
- hypergeometric tests for association of Gene Ontology (GO) biological process categories and genes were performed using the GOstats and Category packages.
- Hierarchical clustering of the expression profile was performed using (1 - Pearson's correlation) as the distance measure and Ward's minimum-variance method as the agglomeration method.
- SCD1 activity was determined by monitoring the desaturation of [1- 14 C] 18:0 stearate (American Radiolabeled Chemicals, St. Louis, MO) or the incorporation of [1,2- 14 C] acetate into monounsaturated fatty acid. Cells were incubated with the labeled substrates for 6-8 hr. Total lipids were isolated as described above, dissolved in 1ml of 14% boron trifluoride in methanol, and incubated at 64 C for 6 hr.
- SCD1 activity was expressed as the ratio of oleic on stearic methyl ester acids or palmitoleic on palmitic methyl ester acids.
- a 50 mM oleate or palmitate stock solution was prepared in 4 mM NaOH using the sodium salt of oleate or palmtate (Sigma-Aldrich).
- Fatty acid- free BSA (Sigma- Aldrich) was prepared in distilled H 2 O at a final concentration of 4 mM.
- One volume of 50 mM stock of oleate or palmitate was combined with 1.5 volume of 4 mM BSA and heated to 55°C for 1 hr to obtain a 20 mM stock solution of BSA-complexed oleate or palmitate at a fatty acid/BSA ratio of -8.3: 1.
- SCDl shRNAs Three independent SCDl shRNAs were cloned into pG-pHUSH lentiviral vector Genentech developed. Detailed information of the vector would be provided upon request.
- the sequence for SCDl shRNAs used in the studies is as follows: shRNA 1 : 5'-GATCCCCCTACAAGAGTGGCTG AGTTTTCAAGAGAAACTCAGCCACTCTTGTAGTTTTTTGGAAA-3' (SEQ ID NO:2);
- TGTGGTGAAGTTGATGTGCTTTTTTGGAAA-3' SEQ ID NO:4. All constructs were confirmed by sequencing.
- EGFP control shRNA was described previously (24).
- the shRNA- containing lentivirus was produced by co-transfecting GNE293T cells with packaging plasmid delta 8.9, envelope plasmid VSV-G and pG-pHUSH-shRNA constructs. Viral supernatants were harvested 48 and 72 hr after transfection, and cleared of cell debris by filtering through a 0.45 ⁇ syringe filter. Lentiviral transduction and stable cell selection were performed as described (24).
- lysate from tumor tissues was extracted with lysis buffer (consisted of 150 mM sodium chloride, 20 mM Tris (pH 7.5), 2 M EDTA, 1% Triton X-
- FGFR3 was immunoprecipitated using a rabbit polyclonal antibody (sc- 123, Santa Cruz Biotechnology, Santa Cruz, CA) and analyzed by sodium dodecyl-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot. Phosphorylated FGFR3 was assessed with a monoclonal antibody against phospho-tyrosine (4G10, Millipore) or pFGFR Y653/645 (#3476, Cell Signaling Technology, Danvers, MA). To detect SCD1 in tumor tissues, SCD1 was assessed with a monoclonal antibody against phospho-tyrosine (4G10, Millipore) or pFGFR Y653/645 (#3476, Cell Signaling Technology, Danvers, MA). To detect SCD1 in tumor tissues, SCD1 was
- pFRS2 iyo (#3864), FASN (#3189), pAKT S473 (#4060), total AKT (#9272), pMAPK (#9101), total MAPK (#4695), pS6 (#2211), cleaved caspase 3 (# 9664), total caspase 3 (#9665), cleaved caspase 7 (#9491), total caspase 7 (#9492), and PARP (#9542).
- the blots were visualized using a chemiluminescent substrate (ECL Plus, Amersham Pharmacia Biotech, Piscataway, NJ).
- mice Female CB17 severe combined immunodeficiency (SCID) mice, 6-8 weeks of age, were purchased from Charles River Laboratory (Hollister, CA). Female athymic nude mice were obtained from Harlan Laboratory (Hayward, CA). Mice were maintained under specific pathogen- free conditions. SW780 shRNA stable cells (7 xl0°) were implanted subcutaneously into the flank of CB 17. SCID mice in a volume of 0.2 ml in HBSS/matrigel (1 : 1 v/v, BD Biosciences). UMUC-14 cells (5 xl0°) and HCT-15 cells (5 xl0°) were implanted into athymic nude mice without matrigel.
- mice with tumors of a mean volume of 150 to 200 mm were randomly grouped into treatment cohorts of 8 or 10.
- mice were given sucrose FLO alone or supplemented with 1 mg/mL doxycycline.
- SCDl inhibitor A37062 (75 mg/kg) or the vehicle control was administered twice daily by oral gavage for 21 days.
- different doses of SCDl inhibitors G02447171 and A37062, or the vehicle control was administered twice daily by oral gavage for 21 days.
- Tumor volume results are presented as mean tumor volume +/- SEM and data were analyzed by Student's t test.
- Tumor volume results are presented as mean tumor volume +/- SEM and data were analyzed by Student's t test.
- Example 1 FGFR3 knockdown suppresses the expression of genes involved in sterol and fatty acid biosynthesis and metabolism
- microarray results were further confirmed using quantitative RT-PCR (qRT-PCR) analysis of the mRNA abundance level of representative genes ( Figure 2C and D).
- qRT-PCR quantitative RT-PCR
- FGFR3 -dependent regulation of these lipogenic genes was also verified in bladder cancer cell line UMUC-14 with short-interfering RNA (siRNA)-mediated FGFR3 knockdown ( Figure 3 A and B).
- siRNA short-interfering RNA
- a specific anti-FGFR3 antibody reduced the expression of lipogenic genes in UMUC-14 tumor xenograft.
- UMUC-14 xenograft tumors were treated with a control antibody (Ctrl Ab) or R3Mab, and tumor tissues were harvested at Day 5.
- Total RNA was isolated from tumor tissues for microarray analysis. Genes shown significant modulation by R3Mab compared with Ctrl Ab were further analyzed. All the genes and further including SC4MOL were similarly downregulated as using si-RNA-mediated FGFR3 knockdown.
- Example 2 FGFR3 knockdown inhibits fatty acid synthesis and desaturation
- Example 3 FGFR3 signaling activates SREBP1 and promotes de novo fatty acid synthesis through PI3K-mTORCl
- siRNAs targeting SREBPl markedly reduced both basal and FGFl- induced SCD1 expression, whereas knockdown of SREBP2 alone had no effect (Figure 6C).
- siRNAs targeting both SREBPl and SREBP2 almost completely abolished SCD1 expression ( Figure 6C), suggesting that although SREBPl plays a dominant role in regulating SCD1 expression, both SREBPl and SREBP2 contribute to maximal induction of SCD1 upon FGF1 stimulation.
- the induction of FASN also depends on both SREBPl and SREBP2, with SREBPl playing a more prominent role (Data not shown).
- FGFR3 mainly signals through PI3K-mTORCl axis to promote SREBPl cleavage and activation, resulting in elevated de novo lipogenesis and fatty acid desaturation.
- the contribution of MEK-MAPK pathway may be cell line- and /or context-dependent.
- siRNA-mediated knockdown of SCDl blocks cell cycle progression and induces apoptosis in bladder cancer cells with active FGFR3 signaling
- De novo lipogenesis is necessary for rapidly proliferating cells to form new membranes and organelles, a prerequisite for cell growth and proliferation. Lipids and their metabolic intermediate can also regulate signal transduction through lipidation of signaling molecules, modulation of subcellular localization of proteins, or serving as second messengers. Thus, it has been postulated that certain cancer types, including breast, prostate and glioblastomas, rely on de novo fatty acid synthesis for uncontrolled cell proliferation and survival (33). To examine the importance of FGFR3 -stimulated lipogenesis in bladder tumor growth and to explore the potential of lipogenic pathway as a therapeutic target, cell proliferation following siRNA-mediated knockdown of SREBPl , FASN and SCDl was accessed. Our initial studies revealed that SCDl siRNAs elicited the strongest anti-proliferative effect and therefore, SCDl was further investigated (data not shown).
- RT1 12 and BFTC-905 cells contain wild type FGFR3, and SCDl siRNAs did not have apparent effect on their proliferation ( Figure 1 1A). These results suggested that cells with constitutively active FGFR3 signaling may rely more on SCD 1 activity for proliferation and survival.
- Example 5 SCDl siRNAs inhibit cell proliferation in a fatty acid desaturation-dependent manner
- Example 6 Doxycycline-inducible knockdown of SCDl attenuated tumor growth in vivo
- A37062 The specificity and selectivity of A37062 was also evaluated. Under normal growth condition, A37062 suppressed proliferation of multiple bladder cancer cell lines and induced apoptosis in culture (data not shown). 100 nM A37062 reduced the viability of UMUC-14 cells by approximately 85% ( Figure 15C and D). Exogenously supplemented oleate reversed the growth inhibitory effect in a dose-dependent fashion (Figure 15C), whereas palmitate failed to rescue the cells ( Figure 15D). Similar results were observed in SW780 cells ( Figure 16). These data strongly suggest that the inhibitor A37062 is SCDl -specific, and its inhibitory effect on cell proliferation and survival is due to the deficiency in generating monounsaturated fatty acid.
- A37062 inhibits growth of UMUC-14 tumor xenografts in conjunction with a blockade in fatty acid desaturation. In the course of the experiments, no significant weight loss or other gross abnormalities in the nude mice were observed.
- colon cancer cells lines, pancreatic cancer cell lines, and kidney cancer cell lines were treated with serially diluted A37062 for 72 hr, and cell viability was measured by CellTiter- Glo (Promega) as described above. Further, colon cancer cells lines, pancreatic cancer cell lines, and kidney cancer cell lines were treated with serially diluted A37062 for 48 hr, and caspases 3/7 activity was measured by Caspase-Glo 3/7 assay kit (Promega) as described above.
- mice were given vehicle or SCDl small molecular inhibitors GO 1522403 (A37062) and G02447171 orally, twice a day as described above.
- HT29 and HCT15 were treated with serially diluted small molecule inhibitors RGl-14 and G02447171 (G7171) for 72 hr, and cell viability was measured by CellTiter-Glo (Promega). The specificity and selectivity of the SCDl small molecule inhibitors was also evaluated. See Tables 6-9. Under normal growth condition, the small molecule SCDl antagonists suppressed proliferation of HT29 and HCT15 cells ( Figure 19). Exogenously supplemented oleate reversed the growth inhibitory effect in a dose- dependent fashion ( Figure 20A-C and 21A-C), whereas palmitate failed to rescue the cells ( Figure 20D-F and 21D-F).
- SREBPl In response to low intracellular sterol level or insulin stimulation, SREBPl is activated by proteolytic cleavage and the mature N-terminal fragment translocates into nucleus to activate the transcription of a cascade of lipogenic genes (32). Growth factors and their receptors potentially can activate SREBPl through multiple mechanisms, including transcriptional upregulation, increased proteolytic processing, or stabilizing cleaved SREBPl by inhibiting GSK3-Fbw7-mediated ubiquitination and proteasomal degradation (33).
- the examples demonstrate that ligand-induced FGFR3 activation only has a minor effect in the induction of the full-length inactive SREBPl , whereas the cleaved active form of SREBP 1 accumulates significantly.
- SCDl is essential to maintain the proliferation and survival of bladder cancer cells with
- AK292304.1 AK302341.1, AL560686.3, BC000337.2, DQ892219.2, DQ895415.2,
- Cienhank Ci l- ⁇ ⁇ Accession K scq Accession Cienhank
- AF034544.1 AF062481.1, AF067127.1, AF096305.1, AI888720.1, AK289497.1,
- Cienhank Ci l- ⁇ ⁇ Accession K scq Accession Cienhank
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Biochemistry (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Biotechnology (AREA)
- Hospice & Palliative Care (AREA)
- Tropical Medicine & Parasitology (AREA)
- Toxicology (AREA)
- Oncology (AREA)
- Reproductive Health (AREA)
- Endocrinology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014119426/15A RU2014119426A (en) | 2011-10-15 | 2012-10-12 | WAYS OF APPLICATION OF SCD1 ANTAGONISTS |
EP12780615.6A EP2766000A2 (en) | 2011-10-15 | 2012-10-12 | Scd1 antagonists for treating cancer |
KR1020147012651A KR20140084164A (en) | 2011-10-15 | 2012-10-12 | Scd1 antagonists for treating cancer |
CN201280062198.5A CN103998027A (en) | 2011-10-15 | 2012-10-12 | Methods of using SCD1 antagonists for cancer therapy |
BR112014008590A BR112014008590A2 (en) | 2011-10-15 | 2012-10-12 | methods of using scd1 antagonists |
JP2014535954A JP6254087B2 (en) | 2011-10-15 | 2012-10-12 | SCD1 antagonists for treating cancer |
MX2014004426A MX2014004426A (en) | 2011-10-15 | 2012-10-12 | Scd1 antagonists for treating cancer. |
CA2850836A CA2850836A1 (en) | 2011-10-15 | 2012-10-12 | Methods of using scd1 antagonists |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161547706P | 2011-10-15 | 2011-10-15 | |
US61/547,706 | 2011-10-15 | ||
US201261704397P | 2012-09-21 | 2012-09-21 | |
US61/704,397 | 2012-09-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2013056148A2 true WO2013056148A2 (en) | 2013-04-18 |
WO2013056148A3 WO2013056148A3 (en) | 2013-10-10 |
Family
ID=47116448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/060094 WO2013056148A2 (en) | 2011-10-15 | 2012-10-12 | Methods of using scd1 antagonists |
Country Status (10)
Country | Link |
---|---|
US (1) | US9358250B2 (en) |
EP (1) | EP2766000A2 (en) |
JP (1) | JP6254087B2 (en) |
KR (1) | KR20140084164A (en) |
CN (1) | CN103998027A (en) |
BR (1) | BR112014008590A2 (en) |
CA (1) | CA2850836A1 (en) |
MX (1) | MX2014004426A (en) |
RU (1) | RU2014119426A (en) |
WO (1) | WO2013056148A2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020154571A1 (en) * | 2019-01-24 | 2020-07-30 | Yumanity Therapeutics, Inc. | Compounds and uses thereof |
US10919885B2 (en) | 2018-04-25 | 2021-02-16 | Yumanity Therapeutics, Inc. | Compounds and uses thereof |
US11519006B2 (en) | 2016-01-15 | 2022-12-06 | American Gene Technologies International Inc. | Methods and compositions for the activation of gamma-delta T-cells |
US11534450B2 (en) | 2016-01-15 | 2022-12-27 | American Gene Technologies International Inc. | Methods and compositions for the activation of gamma-delta T-cells |
US11873298B2 (en) | 2017-10-24 | 2024-01-16 | Janssen Pharmaceutica Nv | Compounds and uses thereof |
US11970486B2 (en) | 2016-10-24 | 2024-04-30 | Janssen Pharmaceutica Nv | Compounds and uses thereof |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9962368B2 (en) | 2009-01-09 | 2018-05-08 | Board Of Regents Of The University Of Texas System | Pro-neurogenic compounds |
US9162980B2 (en) | 2009-01-09 | 2015-10-20 | Board Of Regents Of The University Of Texas System | Anti-depression compounds |
US8362277B2 (en) | 2009-01-09 | 2013-01-29 | Board Of Regents Of The University Of Texas System | Pro-neurogenic compounds |
US8604074B2 (en) | 2009-01-09 | 2013-12-10 | Board Of Regents Of The University Of Texas System | Pro-neurogenic compounds |
BR112013000414A2 (en) | 2010-07-07 | 2016-05-17 | Univ Texas | proneurogenic compounds |
US9233102B2 (en) | 2012-03-07 | 2016-01-12 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
US9255154B2 (en) | 2012-05-08 | 2016-02-09 | Alderbio Holdings, Llc | Anti-PCSK9 antibodies and use thereof |
US9701676B2 (en) | 2012-08-24 | 2017-07-11 | Board Of Regents Of The University Of Texas System | Pro-neurogenic compounds |
EP3041470A4 (en) * | 2013-09-04 | 2017-05-03 | Board Of Regents Of the University Of Texas System | Methods and compositions for selective and targeted cancer therapy |
WO2015070237A1 (en) | 2013-11-11 | 2015-05-14 | Board Of Regents Of The University Of Texas System | Neuroprotective chemicals and methods for identifying and using same |
US20170015654A1 (en) * | 2014-03-12 | 2017-01-19 | Takeda Pharmaceutical Company Limited | Pyridazine compound |
US10301273B2 (en) | 2014-08-07 | 2019-05-28 | Mayo Foundation For Medical Education And Research | Compounds and methods for treating cancer |
CA2977817A1 (en) * | 2015-03-04 | 2016-09-09 | Children's Hospital Medical Center | Methods for treating cancer |
JP6867295B2 (en) * | 2015-03-09 | 2021-04-28 | バイエル ファーマ アクチエンゲゼルシャフト | Combinations Containing Substitution 2,3-Dihydroimidazo [1,2-C] Quinazoline |
JP6853239B2 (en) * | 2015-05-29 | 2021-03-31 | タギビグロウ,チャンジズ | Polypeptides and antibodies for treating skin diseases associated with sebum overproduction |
BR112018016920A2 (en) * | 2016-03-02 | 2019-01-02 | Toray Industries | immunity inducer, isolated antigen presenting cell, isolated t cell, polypeptide, agent for treating or preventing cancer, and method of treating or preventing cancer |
EP3589659A4 (en) | 2017-02-28 | 2021-03-24 | Mayo Foundation for Medical Education and Research | Compounds and methods for treating cancer |
CN107641651B (en) * | 2017-08-28 | 2020-03-17 | 中南大学湘雅医院 | Application of brain glioma temozolomide drug resistance detection marker molecule SCD1 |
WO2019140257A1 (en) * | 2018-01-11 | 2019-07-18 | Beth Israel Deaconess Medical Center, Inc. | Compositions and methods for characterizing and treating prostate cancer |
US11243207B2 (en) | 2018-03-29 | 2022-02-08 | Mayo Foundation For Medical Education And Research | Assessing and treating cancer |
WO2021257700A1 (en) * | 2020-06-19 | 2021-12-23 | Mayo Foundation For Medical Education And Research | Methods and materials for assessing and treating cancer |
CN115337308B (en) * | 2022-07-15 | 2024-03-22 | 山东省农业科学院家禽研究所(山东省无特定病原鸡研究中心) | Application of ACSS2 inhibitor in preparation of anti-H1N 1 subtype swine influenza virus drugs |
Citations (205)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4016043A (en) | 1975-09-04 | 1977-04-05 | Akzona Incorporated | Enzymatic immunological method for the determination of antigens and antibodies |
US4018653A (en) | 1971-10-29 | 1977-04-19 | U.S. Packaging Corporation | Instrument for the detection of Neisseria gonorrhoeae without culture |
US4275149A (en) | 1978-11-24 | 1981-06-23 | Syva Company | Macromolecular environment control in specific receptor assays |
US4318980A (en) | 1978-04-10 | 1982-03-09 | Miles Laboratories, Inc. | Heterogenous specific binding assay employing a cycling reactant as label |
US4424279A (en) | 1982-08-12 | 1984-01-03 | Quidel | Rapid plunger immunoassay method and apparatus |
WO1984003564A1 (en) | 1983-03-08 | 1984-09-13 | Commw Serum Lab Commission | Method of determining antigenically active amino acid sequences |
WO1984003506A1 (en) | 1983-03-08 | 1984-09-13 | Commw Serum Lab Commission | Antigenically active amino acid sequences |
US4676980A (en) | 1985-09-23 | 1987-06-30 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Target specific cross-linked heteroantibodies |
US4708871A (en) | 1983-03-08 | 1987-11-24 | Commonwealth Serum Laboratories Commission | Antigenically active amino acid sequences |
US4737456A (en) | 1985-05-09 | 1988-04-12 | Syntex (U.S.A.) Inc. | Reducing interference in ligand-receptor binding assays |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US4833092A (en) | 1985-04-22 | 1989-05-23 | Commonwealth Serum Laboratories Commission | Method for determining mimotopes |
EP0404097A2 (en) | 1989-06-22 | 1990-12-27 | BEHRINGWERKE Aktiengesellschaft | Bispecific and oligospecific, mono- and oligovalent receptors, production and applications thereof |
EP0425235A2 (en) | 1989-10-25 | 1991-05-02 | Immunogen Inc | Cytotoxic agents comprising maytansinoids and their therapeutic use |
WO1993001161A1 (en) | 1991-07-11 | 1993-01-21 | Pfizer Limited | Process for preparing sertraline intermediates |
US5208020A (en) | 1989-10-25 | 1993-05-04 | Immunogen Inc. | Cytotoxic agents comprising maytansinoids and their therapeutic use |
WO1993008829A1 (en) | 1991-11-04 | 1993-05-13 | The Regents Of The University Of California | Compositions that mediate killing of hiv-infected cells |
US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
WO1993016185A2 (en) | 1992-02-06 | 1993-08-19 | Creative Biomolecules, Inc. | Biosynthetic binding protein for cancer marker |
WO1994011026A2 (en) | 1992-11-13 | 1994-05-26 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabeled antibodies to human b lymphocyte restricted differentiation antigen for treatment of b cell lymphoma |
WO1994029351A2 (en) | 1993-06-16 | 1994-12-22 | Celltech Limited | Antibodies |
US5427908A (en) | 1990-05-01 | 1995-06-27 | Affymax Technologies N.V. | Recombinant library screening methods |
US5432018A (en) | 1990-06-20 | 1995-07-11 | Affymax Technologies N.V. | Peptide library and screening systems |
WO1995034683A1 (en) | 1994-06-10 | 1995-12-21 | Symbiotech, Inc. | Method of detecting compounds utilizing genetically modified lambdoid bacteriophage |
US5498530A (en) | 1991-10-16 | 1996-03-12 | Affymax Technologies, N.V. | Peptide library and screening method |
US5498538A (en) | 1990-02-15 | 1996-03-12 | The University Of North Carolina At Chapel Hill | Totally synthetic affinity reagents |
US5500362A (en) | 1987-01-08 | 1996-03-19 | Xoma Corporation | Chimeric antibody with specificity to human B cell surface antigen |
US5556762A (en) | 1990-11-21 | 1996-09-17 | Houghten Pharmaceutical Inc. | Scanning synthetic peptide combinatorial libraries: oligopeptide mixture sets having a one predetermined residue at a single, predetermined position, methods of making and using the same |
US5571894A (en) | 1991-02-05 | 1996-11-05 | Ciba-Geigy Corporation | Recombinant antibodies specific for a growth factor receptor |
US5571689A (en) | 1988-06-16 | 1996-11-05 | Washington University | Method of N-acylating peptide and proteins with diheteroatom substituted analogs of myristic acid |
US5587458A (en) | 1991-10-07 | 1996-12-24 | Aronex Pharmaceuticals, Inc. | Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof |
WO1997009446A1 (en) | 1995-09-07 | 1997-03-13 | Novo Nordisk A/S | Phage display for detergent enzyme activity |
US5624821A (en) | 1987-03-18 | 1997-04-29 | Scotgen Biopharmaceuticals Incorporated | Antibodies with altered effector functions |
US5627024A (en) | 1994-08-05 | 1997-05-06 | The Scripps Research Institute | Lambdoid bacteriophage vectors for expression and display of foreign proteins |
US5635483A (en) | 1992-12-03 | 1997-06-03 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Tumor inhibiting tetrapeptide bearing modified phenethyl amides |
US5648237A (en) | 1991-09-19 | 1997-07-15 | Genentech, Inc. | Expression of functional antibody fragments |
WO1997030087A1 (en) | 1996-02-16 | 1997-08-21 | Glaxo Group Limited | Preparation of glycosylated antibodies |
US5663143A (en) | 1988-09-02 | 1997-09-02 | Dyax Corp. | Engineered human-derived kunitz domains that inhibit human neutrophil elastase |
WO1997035196A1 (en) | 1996-03-20 | 1997-09-25 | Dyax Corp. | Engineering affinity ligands for macromolecules |
WO1997046251A1 (en) | 1996-06-06 | 1997-12-11 | Lajolla Pharmaceutical Company | aPL IMMUNOREACTIVE PEPTIDES, CONJUGATES THEREOF AND METHODS OF TREATMENT FOR aPL ANTIBODY-MEDIATED PATHOLOGIES |
US5698426A (en) | 1990-09-28 | 1997-12-16 | Ixsys, Incorporated | Surface expression libraries of heteromeric receptors |
WO1997047314A1 (en) | 1996-06-10 | 1997-12-18 | The Scripps Research Institute | Use of substrate subtraction libraries to distinguish enzyme specificities |
US5712374A (en) | 1995-06-07 | 1998-01-27 | American Cyanamid Company | Method for the preparation of substantiallly monomeric calicheamicin derivative/carrier conjugates |
US5714586A (en) | 1995-06-07 | 1998-02-03 | American Cyanamid Company | Methods for the preparation of monomeric calicheamicin derivative/carrier conjugates |
US5723323A (en) | 1985-03-30 | 1998-03-03 | Kauffman; Stuart Alan | Method of identifying a stochastically-generated peptide, polypeptide, or protein having ligand binding property and compositions thereof |
US5731168A (en) | 1995-03-01 | 1998-03-24 | Genentech, Inc. | Method for making heteromultimeric polypeptides |
US5734018A (en) | 1988-05-02 | 1998-03-31 | The Regents Of The University Of California | Peptide mixtures |
WO1998014277A1 (en) | 1996-10-04 | 1998-04-09 | Whatman, Inc. | Device and method for simultaneous multiple chemical syntheses |
US5739116A (en) | 1994-06-03 | 1998-04-14 | American Cyanamid Company | Enediyne derivatives useful for the synthesis of conjugates of methyltrithio antitumor agents |
WO1998015833A1 (en) | 1996-10-08 | 1998-04-16 | Universiteit Utrecht | Methods and means for selecting peptides and proteins having specific affinity for a target |
US5750373A (en) | 1990-12-03 | 1998-05-12 | Genentech, Inc. | Enrichment method for variant proteins having altered binding properties, M13 phagemids, and growth hormone variants |
WO1998020169A1 (en) | 1996-11-07 | 1998-05-14 | Ramot University Authority For Applied Research & Industrial Development Ltd. | Determination and control of bimolecular interactions |
WO1998020036A1 (en) | 1996-11-06 | 1998-05-14 | Genentech, Inc. | Constrained helical peptides and methods of making same |
WO1998020159A1 (en) | 1996-11-07 | 1998-05-14 | Ramot University Authority For Applied Research & Industrial Development Ltd. | Representations of bimolecular interactions |
US5763192A (en) | 1986-11-20 | 1998-06-09 | Ixsys, Incorporated | Process for obtaining DNA, RNA, peptides, polypeptides, or protein, by recombinant DNA technique |
US5766905A (en) | 1996-06-14 | 1998-06-16 | Associated Universities Inc. | Cytoplasmic bacteriophage display system |
US5770429A (en) | 1990-08-29 | 1998-06-23 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5770710A (en) | 1987-10-30 | 1998-06-23 | American Cyanamid Company | Antitumor and antibacterial substituted disulfide derivatives prepared from compounds possessing a methlytrithio group |
US5770434A (en) | 1990-09-28 | 1998-06-23 | Ixsys Incorporated | Soluble peptides having constrained, secondary conformation in solution and method of making same |
US5770701A (en) | 1987-10-30 | 1998-06-23 | American Cyanamid Company | Process for preparing targeted forms of methyltrithio antitumor agents |
US5780588A (en) | 1993-01-26 | 1998-07-14 | Arizona Board Of Regents | Elucidation and synthesis of selected pentapeptides |
US5789199A (en) | 1994-11-03 | 1998-08-04 | Genentech, Inc. | Process for bacterial production of polypeptides |
US5821337A (en) | 1991-06-14 | 1998-10-13 | Genentech, Inc. | Immunoglobulin variants |
US5840523A (en) | 1995-03-01 | 1998-11-24 | Genetech, Inc. | Methods and compositions for secretion of heterologous polypeptides |
WO1998058964A1 (en) | 1997-06-24 | 1998-12-30 | Genentech, Inc. | Methods and compositions for galactosylated glycoproteins |
US5869046A (en) | 1995-04-14 | 1999-02-09 | Genentech, Inc. | Altered polypeptides with increased half-life |
WO1999022764A1 (en) | 1997-10-31 | 1999-05-14 | Genentech, Inc. | Methods and compositions comprising glycoprotein glycoforms |
US5959177A (en) | 1989-10-27 | 1999-09-28 | The Scripps Research Institute | Transgenic plants expressing assembled secretory antibodies |
WO1999051642A1 (en) | 1998-04-02 | 1999-10-14 | Genentech, Inc. | Antibody variants and fragments thereof |
WO2000000823A1 (en) | 1998-06-26 | 2000-01-06 | Sunesis Pharmaceuticals, Inc. | Methods for rapidly identifying small organic ligands |
US6040498A (en) | 1998-08-11 | 2000-03-21 | North Caroline State University | Genetically engineered duckweed |
US6075181A (en) | 1990-01-12 | 2000-06-13 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
WO2000039585A1 (en) | 1998-12-28 | 2000-07-06 | Sunesis Pharmaceuticals, Inc. | Identifying small organic molecule ligands for binding |
WO2000061739A1 (en) | 1999-04-09 | 2000-10-19 | Kyowa Hakko Kogyo Co., Ltd. | Method for controlling the activity of immunologically functional molecule |
US6150584A (en) | 1990-01-12 | 2000-11-21 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US6171586B1 (en) | 1997-06-13 | 2001-01-09 | Genentech, Inc. | Antibody formulation |
US6194551B1 (en) | 1998-04-02 | 2001-02-27 | Genentech, Inc. | Polypeptide variants |
WO2001029246A1 (en) | 1999-10-19 | 2001-04-26 | Kyowa Hakko Kogyo Co., Ltd. | Process for producing polypeptide |
US6248516B1 (en) | 1988-11-11 | 2001-06-19 | Medical Research Council | Single domain ligands, receptors comprising said ligands methods for their production, and use of said ligands and receptors |
US6267958B1 (en) | 1995-07-27 | 2001-07-31 | Genentech, Inc. | Protein formulation |
WO2002031140A1 (en) | 2000-10-06 | 2002-04-18 | Kyowa Hakko Kogyo Co., Ltd. | Cells producing antibody compositions |
US6420548B1 (en) | 1999-10-04 | 2002-07-16 | Medicago Inc. | Method for regulating transcription of foreign genes |
US20020164328A1 (en) | 2000-10-06 | 2002-11-07 | Toyohide Shinkawa | Process for purifying antibody |
WO2003001878A2 (en) | 2001-06-28 | 2003-01-09 | S & S Industries, Inc. | Improved underwire for brassiere |
US20030115614A1 (en) | 2000-10-06 | 2003-06-19 | Yutaka Kanda | Antibody composition-producing cell |
US6602684B1 (en) | 1998-04-20 | 2003-08-05 | Glycart Biotechnology Ag | Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity |
US20030157108A1 (en) | 2001-10-25 | 2003-08-21 | Genentech, Inc. | Glycoprotein compositions |
US6630579B2 (en) | 1999-12-29 | 2003-10-07 | Immunogen Inc. | Cytotoxic agents comprising modified doxorubicins and daunorubicins and their therapeutic use |
WO2003085107A1 (en) | 2002-04-09 | 2003-10-16 | Kyowa Hakko Kogyo Co., Ltd. | Cells with modified genome |
WO2003084570A1 (en) | 2002-04-09 | 2003-10-16 | Kyowa Hakko Kogyo Co., Ltd. | DRUG CONTAINING ANTIBODY COMPOSITION APPROPRIATE FOR PATIENT SUFFERING FROM FcϜRIIIa POLYMORPHISM |
WO2003085119A1 (en) | 2002-04-09 | 2003-10-16 | Kyowa Hakko Kogyo Co., Ltd. | METHOD OF ENHANCING ACTIVITY OF ANTIBODY COMPOSITION OF BINDING TO FcϜ RECEPTOR IIIa |
US20040093621A1 (en) | 2001-12-25 | 2004-05-13 | Kyowa Hakko Kogyo Co., Ltd | Antibody composition which specifically binds to CD20 |
US6737056B1 (en) | 1999-01-15 | 2004-05-18 | Genentech, Inc. | Polypeptide variants with altered effector function |
US20040109865A1 (en) | 2002-04-09 | 2004-06-10 | Kyowa Hakko Kogyo Co., Ltd. | Antibody composition-containing medicament |
US20040110282A1 (en) | 2002-04-09 | 2004-06-10 | Kyowa Hakko Kogyo Co., Ltd. | Cells in which activity of the protein involved in transportation of GDP-fucose is reduced or lost |
US20040132140A1 (en) | 2002-04-09 | 2004-07-08 | Kyowa Hakko Kogyo Co., Ltd. | Production process for antibody composition |
WO2004056312A2 (en) | 2002-12-16 | 2004-07-08 | Genentech, Inc. | Immunoglobulin variants and uses thereof |
US20050014934A1 (en) | 2002-10-15 | 2005-01-20 | Hinton Paul R. | Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis |
WO2005011655A2 (en) | 2003-07-30 | 2005-02-10 | Xenon Pharmaceuticals Inc. | Pyridazine derivatives and their use as therapeutic agents |
US20050079574A1 (en) | 2003-01-16 | 2005-04-14 | Genentech, Inc. | Synthetic antibody phage libraries |
WO2005035778A1 (en) | 2003-10-09 | 2005-04-21 | Kyowa Hakko Kogyo Co., Ltd. | PROCESS FOR PRODUCING ANTIBODY COMPOSITION BY USING RNA INHIBITING THE FUNCTION OF α1,6-FUCOSYLTRANSFERASE |
WO2005035586A1 (en) | 2003-10-08 | 2005-04-21 | Kyowa Hakko Kogyo Co., Ltd. | Fused protein composition |
US20050119455A1 (en) | 2002-06-03 | 2005-06-02 | Genentech, Inc. | Synthetic antibody phage libraries |
US20050119251A1 (en) | 2001-12-21 | 2005-06-02 | Jian-Min Fu | Nicotinamide derivatives and their use as therapeutic agents |
US20050123546A1 (en) | 2003-11-05 | 2005-06-09 | Glycart Biotechnology Ag | Antigen binding molecules with increased Fc receptor binding affinity and effector function |
WO2005053742A1 (en) | 2003-12-04 | 2005-06-16 | Kyowa Hakko Kogyo Co., Ltd. | Medicine containing antibody composition |
WO2005100402A1 (en) | 2004-04-13 | 2005-10-27 | F.Hoffmann-La Roche Ag | Anti-p-selectin antibodies |
US20050260186A1 (en) | 2003-03-05 | 2005-11-24 | Halozyme, Inc. | Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases |
US20050266000A1 (en) | 2004-04-09 | 2005-12-01 | Genentech, Inc. | Variable domain library and uses |
US6982321B2 (en) | 1986-03-27 | 2006-01-03 | Medical Research Council | Altered antibodies |
US20060025576A1 (en) | 2000-04-11 | 2006-02-02 | Genentech, Inc. | Multivalent antibodies and uses therefor |
WO2006014168A1 (en) | 2004-07-06 | 2006-02-09 | Xenon Pharmaceuticals Inc. | Nicotinamide derivatives and their use as therapeutic agents |
WO2006029879A2 (en) | 2004-09-17 | 2006-03-23 | F.Hoffmann-La Roche Ag | Anti-ox40l antibodies |
WO2006034312A1 (en) | 2004-09-20 | 2006-03-30 | Xenon Pharmaceuticals Inc. | Bicyclic heterocyclic derivatives and their use as inhibitors of stearoyl-coa-desaturase (scd) |
WO2006034279A1 (en) | 2004-09-20 | 2006-03-30 | Xenon Pharmaceuticals Inc. | Heterocyclic derivatives and their use as therapeutic agents |
WO2006034341A2 (en) | 2004-09-20 | 2006-03-30 | Xenon Pharmaceuticals Inc. | Pyridazine derivatives for inhibiting human stearoyl-coa-desaturase |
WO2006034441A1 (en) | 2004-09-20 | 2006-03-30 | Xenon Pharmaceuticals Inc. | Heterocyclic derivatives and their use as stearoyl-coa desaturase inhibitors |
WO2006034315A2 (en) | 2004-09-20 | 2006-03-30 | Xenon Pharmaceuticals Inc. | Heterocyclic derivatives for the treatment of diseases mediated by stearoyl-coa desaturase enzymes |
WO2006034338A1 (en) | 2004-09-20 | 2006-03-30 | Xenon Pharmaceuticals Inc. | Heterocyclic derivatives and their use as mediators of stearoyl-coa desaturase |
WO2006034446A2 (en) | 2004-09-20 | 2006-03-30 | Xenon Pharmaceuticals Inc. | Pyridine derivatives for inhibiting human stearoyl-coa-desaturase |
WO2006034440A2 (en) | 2004-09-20 | 2006-03-30 | Xenon Pharmaceuticals Inc. | Heterocyclic derivatives and their use as stearoyl-coa desaturase inhibitors |
WO2006044908A2 (en) | 2004-10-20 | 2006-04-27 | Genentech, Inc. | Antibody formulation in histidine-acetate buffer |
US7041870B2 (en) | 2000-11-30 | 2006-05-09 | Medarex, Inc. | Transgenic transchromosomal rodents for making human antibodies |
US20060104968A1 (en) | 2003-03-05 | 2006-05-18 | Halozyme, Inc. | Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminogly ycanases |
US7087409B2 (en) | 1997-12-05 | 2006-08-08 | The Scripps Research Institute | Humanization of murine antibody |
WO2006101521A2 (en) | 2004-09-20 | 2006-09-28 | Xenon Pharmaceuticals Inc. | Heterocyclic derivatives and their use as stearoyl-coa desaturase inhibitors |
US7125978B1 (en) | 1999-10-04 | 2006-10-24 | Medicago Inc. | Promoter for regulating expression of foreign genes |
WO2006125180A1 (en) | 2005-05-19 | 2006-11-23 | Xenon Pharmaceuticals Inc. | Piperazine derivatives and their uses as therapeutic agents |
WO2006125179A1 (en) | 2005-05-19 | 2006-11-23 | Xenon Pharmaceuticals Inc. | Tricyclic compounds and their uses as therapeutic agents |
WO2006125194A2 (en) | 2005-05-19 | 2006-11-23 | Xenon Pharmaceuticals Inc. | Piperazine derivatives and their uses as therapeutic agents |
WO2006125181A2 (en) | 2005-05-19 | 2006-11-23 | Xenon Pharmaceuticals Inc. | Piperidine derivatives and their use as stearoyl-coa desaturase modulators |
WO2006125178A2 (en) | 2005-05-19 | 2006-11-23 | Xenon Pharmaceuticals Inc. | Tricyclic pyridazine compounds and their uses as therapeutic agents |
WO2006130986A1 (en) | 2005-06-09 | 2006-12-14 | Merck Frosst Canada Ltd. | Azacyclohexane derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2007009236A1 (en) | 2005-07-20 | 2007-01-25 | Merck Frosst Canada Ltd. | Heteroaromatic compounds as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
US7189826B2 (en) | 1997-11-24 | 2007-03-13 | Institute For Human Genetics And Biochemistry | Monoclonal human natural antibodies |
US20070061900A1 (en) | 2000-10-31 | 2007-03-15 | Murphy Andrew J | Methods of modifying eukaryotic cells |
WO2007044085A2 (en) | 2005-05-19 | 2007-04-19 | Xenon Pharmaceuticals Inc. | Heteroaryl compounds and their uses as therapeutic agents |
WO2007046868A2 (en) | 2005-05-19 | 2007-04-26 | Xenon Pharmaceuticals Inc. | Thiazolidine derivatives and their uses as therapeutic agents |
WO2007046867A2 (en) | 2005-05-19 | 2007-04-26 | Xenon Pharmaceuticals Inc. | Piperidine derivatives and their uses as therapeutic agents |
WO2007050124A1 (en) | 2005-05-19 | 2007-05-03 | Xenon Pharmaceuticals Inc. | Fused piperidine derivatives and their uses as therapeutic agents |
WO2007056846A1 (en) | 2005-11-15 | 2007-05-24 | Merck Frosst Canada Ltd. | Azacyclohexane derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
US20070117126A1 (en) | 1999-12-15 | 2007-05-24 | Genentech, Inc. | Shotgun scanning |
US20070160598A1 (en) | 2005-11-07 | 2007-07-12 | Dennis Mark S | Binding polypeptides with diversified and consensus vh/vl hypervariable sequences |
US20070237764A1 (en) | 2005-12-02 | 2007-10-11 | Genentech, Inc. | Binding polypeptides with restricted diversity sequences |
WO2007130075A1 (en) | 2005-06-03 | 2007-11-15 | Xenon Pharmaceuticals Inc. | Aminothiazole derivatives as human stearoyl-coa desaturase inhibitors |
WO2007134457A1 (en) | 2006-05-22 | 2007-11-29 | Merck Frosst Canada Ltd. | Cyclic amine derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2007136746A2 (en) | 2006-05-19 | 2007-11-29 | Xenon Pharmaceuticals Inc. | Macrocyclic compounds and their uses as stearoyl-coa desaturase |
WO2007143597A2 (en) | 2006-06-05 | 2007-12-13 | Novartis Ag | Organic compounds |
US20070292936A1 (en) | 2006-05-09 | 2007-12-20 | Genentech, Inc. | Binding polypeptides with optimized scaffolds |
WO2007143823A1 (en) | 2006-06-12 | 2007-12-21 | Merck Frosst Canada Ltd. | Azetidine derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2007143824A1 (en) | 2006-06-13 | 2007-12-21 | Merck Frosst Canada Ltd. | Azacyclopentane derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2008003753A1 (en) | 2006-07-07 | 2008-01-10 | Biovitrum Ab (Publ) | Pyrazolo [1,5-a] pyrimidine analogs for use as inhibitors of stearoyl-coa desaturase (scd) activity |
WO2008007483A1 (en) | 2006-07-10 | 2008-01-17 | Satoru Tanaya | Shoulder belt traction type hand-push tool |
WO2008017161A1 (en) | 2006-08-09 | 2008-02-14 | Merck Frosst Canada Ltd. | Azacycloalkane derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2008024390A2 (en) | 2006-08-24 | 2008-02-28 | Novartis Ag | 2- (pyrazin-2-yl) -thiazole and 2- (1h-pyraz0l-3-yl) -thiazole derivatives as well as related compounds as stearoyl-coa desaturase (scd) inhibitors for the treatment of metabolic, cardiovascular and other disorders |
WO2008029266A1 (en) | 2006-09-08 | 2008-03-13 | Glenmark Pharmaceuticals S.A. | Stearoyl coa desaturase inhibitors |
US20080069820A1 (en) | 2006-08-30 | 2008-03-20 | Genentech, Inc. | Multispecific antibodies |
WO2008036715A1 (en) | 2006-09-22 | 2008-03-27 | Novartis Ag | Heterocyclic organic compounds |
WO2008043087A2 (en) | 2006-10-05 | 2008-04-10 | Cv Therapeutics, Inc. | Bicyclic nitrogen-containing heterocyclic compounds for use as stearoyl coa desaturase inhibitors |
WO2008044767A1 (en) | 2006-10-13 | 2008-04-17 | Takeda Pharmaceutical Company Limited | Aromatic amine derivative and use thereof |
WO2008046226A1 (en) | 2006-10-20 | 2008-04-24 | Merck Frosst Canada Ltd. | Azacycloalkane derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
US7371826B2 (en) | 1999-01-15 | 2008-05-13 | Genentech, Inc. | Polypeptide variants with altered effector function |
WO2008056687A1 (en) | 2006-11-09 | 2008-05-15 | Daiichi Sankyo Company, Limited | Novel spiropiperidine derivative |
WO2008062276A2 (en) | 2006-11-20 | 2008-05-29 | Glenmark Pharmaceuticals S.A. | Acetylene derivatives as stearoyl coa desaturase inhibitors |
WO2008064474A1 (en) | 2006-12-01 | 2008-06-05 | Merck Frosst Canada Ltd. | Azacycloalkane derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2008074834A2 (en) | 2006-12-21 | 2008-06-26 | Smithkline Beecham Corporation | Isoquinolinecarboxamides as inhibitors of stearoyl-coa desaturase (scd) |
WO2008074824A2 (en) | 2006-12-21 | 2008-06-26 | Smithkline Beecham Corporation | Isoquinolinecarboxamides as inhibitors of stearoyl-coa desaturase (scd) |
WO2008074833A2 (en) | 2006-12-21 | 2008-06-26 | Smithkline Beecham Corporation | Compounds |
WO2008074835A1 (en) | 2006-12-20 | 2008-06-26 | Novartis Ag | 2-substituted 5-membered heterocycles as scd inhibitors |
WO2008077546A1 (en) | 2006-12-22 | 2008-07-03 | F. Hoffmann-La Roche Ag | Antibodies against insulin-like growth factor i receptor and uses thereof |
WO2008096746A1 (en) | 2007-02-06 | 2008-08-14 | Takeda Pharmaceutical Company Limited | Spiro compound and use thereof |
WO2008104524A1 (en) | 2007-02-28 | 2008-09-04 | Smithkline Beecham Corporation | Thiadiazole derivatives, inhibitors of stearoyl-coa desaturase |
WO2008116898A1 (en) | 2007-03-28 | 2008-10-02 | Biovitrum Ab (Publ) | Pyrazolo [1,5-a]pyrimidines as inhibitors of stearoyl-coa desaturase |
WO2008120744A1 (en) | 2007-03-30 | 2008-10-09 | Japan Tobacco Inc. | Five-membered cyclic amide compound and use thereof |
WO2008123891A1 (en) | 2007-04-09 | 2008-10-16 | Cv Therapeutics, Inc. | PTERIDINONE DERIVATIVES FOR USE AS STEAROYL CoA DESATURASE INHIBITORS |
WO2008123469A1 (en) | 2007-03-30 | 2008-10-16 | Japan Tobacco Inc. | Six-membered amide compound and use thereof |
WO2008127615A1 (en) | 2007-04-11 | 2008-10-23 | Cv Therapeutics Inc | 3-HYDROQUINAZOLIN-4-ONE DERIVATIVES FOR USE AS STEAROYL CoA DESATURASE INHIBITORS |
WO2008127349A2 (en) | 2006-08-15 | 2008-10-23 | Novartis Ag | Heterocyclic compounds suitable for the treatment of diseases related to elevated lipid level |
WO2008128335A1 (en) | 2007-04-20 | 2008-10-30 | Merck Frosst Canada Ltd. | Novel heteroaromatic compounds as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2008135141A1 (en) | 2007-04-27 | 2008-11-13 | Sanofi-Aventis | 2 -heteroaryl- pyrrolo [3, 4-c] pyrrole derivatives and their use as scd inhibitors |
WO2008139845A1 (en) | 2007-04-24 | 2008-11-20 | Daiichi Sankyo Company, Limited | Novel amide derivative |
WO2008141455A1 (en) | 2007-05-23 | 2008-11-27 | Merck Frosst Canada Ltd. | Bicyclic heteroaromatic compounds as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2008157844A1 (en) | 2007-06-21 | 2008-12-24 | Forest Laboratories Holdings Limited | Novel piperazine derivatives as inhibitors of stearoyl-coa desaturase |
US20090002360A1 (en) | 2007-05-25 | 2009-01-01 | Innolux Display Corp. | Liquid crystal display device and method for driving same |
WO2009010560A1 (en) | 2007-07-19 | 2009-01-22 | Smithkline Beecham Corporation | Pyrazole derivatives and use thereof as inhibitors of stearoyl-coa desaturase |
JP2009019013A (en) | 2007-07-12 | 2009-01-29 | Daiichi Sankyo Co Ltd | New heteroarylpiperidine derivative |
WO2009016216A1 (en) | 2007-08-02 | 2009-02-05 | Smithkline Beecham Corporation | Triazole derivatives as scd inhibitors |
WO2009019566A1 (en) | 2007-08-08 | 2009-02-12 | Pfizer Inc. | Phenoxy-pyrrolidine derivative and its use and compositions |
US7498298B2 (en) | 2003-11-06 | 2009-03-03 | Seattle Genetics, Inc. | Monomethylvaline compounds capable of conjugation to ligands |
US7521541B2 (en) | 2004-09-23 | 2009-04-21 | Genetech Inc. | Cysteine engineered antibodies and conjugates |
US7527791B2 (en) | 2004-03-31 | 2009-05-05 | Genentech, Inc. | Humanized anti-TGF-beta antibodies |
WO2009056556A1 (en) | 2007-10-31 | 2009-05-07 | Smithkline Beecham Corporation | Substitute 1, 6-naphthyridines for use as scd inhibitors |
WO2009060452A2 (en) | 2007-11-08 | 2009-05-14 | Galmed International Ltd. | Methods and compositions for treating biliary cholesterol crystallization and related conditions |
WO2009089004A1 (en) | 2008-01-07 | 2009-07-16 | Amgen Inc. | Method for making antibody fc-heterodimeric molecules using electrostatic steering effects |
US7652013B2 (en) | 2007-12-11 | 2010-01-26 | Hoffman-La Roche Inc. | Inhibitors of stearoyl-CoA desaturase |
WO2010025553A1 (en) | 2008-09-08 | 2010-03-11 | Merck Frosst Canada Ltd. | Heteroaromatic compounds as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2010094120A1 (en) | 2009-02-17 | 2010-08-26 | Merck Frosst Canada Ltd. | Novel spiro compounds useful as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2010111367A1 (en) | 2009-03-25 | 2010-09-30 | Genentech, Inc. | Anti-fgfr3 antibodies and methods using same |
WO2010112520A1 (en) | 2009-04-01 | 2010-10-07 | Novartis Ag | Spiro derivatives for the modulation of stearoyl-coa desaturase |
WO2011011508A1 (en) | 2009-07-23 | 2011-01-27 | Schering Corporation | Benzo-fused oxazepine compounds as stearoyl-coenzyme a delta-9 desaturase inhibitors |
WO2011011506A1 (en) | 2009-07-23 | 2011-01-27 | Schering Corporation | Spirocyclic oxazepine compounds as stearoyl-coenzyme a delta-9 desaturase inhibitors |
WO2011011872A1 (en) | 2009-07-28 | 2011-02-03 | Merck Frosst Canada Ltd. | Novel spiro compounds useful as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2011030312A1 (en) | 2009-09-10 | 2011-03-17 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | NOVEL INHIBITORS OF STEAROYL-CoA-DESATURASE-1 AND THEIR USES |
WO2011039358A1 (en) | 2009-10-01 | 2011-04-07 | Novartis Ag | Pyrazole derivatives which modulate stearoyl-coa desaturase |
WO2011047481A1 (en) | 2009-10-23 | 2011-04-28 | Merck Frosst Canada Ltd. | Novel spiro compounds useful as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60142692D1 (en) * | 2000-02-24 | 2010-09-09 | Xenon Genetics Inc | STEAROYL COA DESATURASE FOR IDENTIFYING TRIGLYCERIDE REDUCTION THERAPEUTICS |
GB0625604D0 (en) | 2006-12-21 | 2007-01-31 | Smithkline Beecham Corp | Compounds |
FR2948939B1 (en) * | 2009-08-05 | 2013-03-22 | Pf Medicament | 2H PYRIDAZIN-3-ONES DERIVATIVES, THEIR PREPARATION AND THEIR APPLICATION IN HUMAN THERAPEUTICS |
-
2012
- 2012-10-12 KR KR1020147012651A patent/KR20140084164A/en not_active Application Discontinuation
- 2012-10-12 CA CA2850836A patent/CA2850836A1/en not_active Abandoned
- 2012-10-12 CN CN201280062198.5A patent/CN103998027A/en active Pending
- 2012-10-12 JP JP2014535954A patent/JP6254087B2/en active Active
- 2012-10-12 EP EP12780615.6A patent/EP2766000A2/en not_active Withdrawn
- 2012-10-12 RU RU2014119426/15A patent/RU2014119426A/en not_active Application Discontinuation
- 2012-10-12 US US13/651,226 patent/US9358250B2/en active Active
- 2012-10-12 MX MX2014004426A patent/MX2014004426A/en unknown
- 2012-10-12 BR BR112014008590A patent/BR112014008590A2/en not_active IP Right Cessation
- 2012-10-12 WO PCT/US2012/060094 patent/WO2013056148A2/en active Application Filing
Patent Citations (216)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4018653A (en) | 1971-10-29 | 1977-04-19 | U.S. Packaging Corporation | Instrument for the detection of Neisseria gonorrhoeae without culture |
US4016043A (en) | 1975-09-04 | 1977-04-05 | Akzona Incorporated | Enzymatic immunological method for the determination of antigens and antibodies |
US4318980A (en) | 1978-04-10 | 1982-03-09 | Miles Laboratories, Inc. | Heterogenous specific binding assay employing a cycling reactant as label |
US4275149A (en) | 1978-11-24 | 1981-06-23 | Syva Company | Macromolecular environment control in specific receptor assays |
US4424279A (en) | 1982-08-12 | 1984-01-03 | Quidel | Rapid plunger immunoassay method and apparatus |
US4708871A (en) | 1983-03-08 | 1987-11-24 | Commonwealth Serum Laboratories Commission | Antigenically active amino acid sequences |
WO1984003564A1 (en) | 1983-03-08 | 1984-09-13 | Commw Serum Lab Commission | Method of determining antigenically active amino acid sequences |
WO1984003506A1 (en) | 1983-03-08 | 1984-09-13 | Commw Serum Lab Commission | Antigenically active amino acid sequences |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US5723323A (en) | 1985-03-30 | 1998-03-03 | Kauffman; Stuart Alan | Method of identifying a stochastically-generated peptide, polypeptide, or protein having ligand binding property and compositions thereof |
US4833092A (en) | 1985-04-22 | 1989-05-23 | Commonwealth Serum Laboratories Commission | Method for determining mimotopes |
US4737456A (en) | 1985-05-09 | 1988-04-12 | Syntex (U.S.A.) Inc. | Reducing interference in ligand-receptor binding assays |
US4676980A (en) | 1985-09-23 | 1987-06-30 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Target specific cross-linked heteroantibodies |
US6982321B2 (en) | 1986-03-27 | 2006-01-03 | Medical Research Council | Altered antibodies |
US5763192A (en) | 1986-11-20 | 1998-06-09 | Ixsys, Incorporated | Process for obtaining DNA, RNA, peptides, polypeptides, or protein, by recombinant DNA technique |
US5500362A (en) | 1987-01-08 | 1996-03-19 | Xoma Corporation | Chimeric antibody with specificity to human B cell surface antigen |
US5624821A (en) | 1987-03-18 | 1997-04-29 | Scotgen Biopharmaceuticals Incorporated | Antibodies with altered effector functions |
US5648260A (en) | 1987-03-18 | 1997-07-15 | Scotgen Biopharmaceuticals Incorporated | DNA encoding antibodies with altered effector functions |
US5770710A (en) | 1987-10-30 | 1998-06-23 | American Cyanamid Company | Antitumor and antibacterial substituted disulfide derivatives prepared from compounds possessing a methlytrithio group |
US5770701A (en) | 1987-10-30 | 1998-06-23 | American Cyanamid Company | Process for preparing targeted forms of methyltrithio antitumor agents |
US5734018A (en) | 1988-05-02 | 1998-03-31 | The Regents Of The University Of California | Peptide mixtures |
US5571689A (en) | 1988-06-16 | 1996-11-05 | Washington University | Method of N-acylating peptide and proteins with diheteroatom substituted analogs of myristic acid |
US5403484A (en) | 1988-09-02 | 1995-04-04 | Protein Engineering Corporation | Viruses expressing chimeric binding proteins |
US5663143A (en) | 1988-09-02 | 1997-09-02 | Dyax Corp. | Engineered human-derived kunitz domains that inhibit human neutrophil elastase |
US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
US6248516B1 (en) | 1988-11-11 | 2001-06-19 | Medical Research Council | Single domain ligands, receptors comprising said ligands methods for their production, and use of said ligands and receptors |
EP0404097A2 (en) | 1989-06-22 | 1990-12-27 | BEHRINGWERKE Aktiengesellschaft | Bispecific and oligospecific, mono- and oligovalent receptors, production and applications thereof |
US5416064A (en) | 1989-10-25 | 1995-05-16 | Immunogen, Inc. | Cytotoxic agents comprising maytansinoids and their therapeutic use |
US5208020A (en) | 1989-10-25 | 1993-05-04 | Immunogen Inc. | Cytotoxic agents comprising maytansinoids and their therapeutic use |
EP0425235A2 (en) | 1989-10-25 | 1991-05-02 | Immunogen Inc | Cytotoxic agents comprising maytansinoids and their therapeutic use |
US5959177A (en) | 1989-10-27 | 1999-09-28 | The Scripps Research Institute | Transgenic plants expressing assembled secretory antibodies |
US6417429B1 (en) | 1989-10-27 | 2002-07-09 | The Scripps Research Institute | Transgenic plants expressing assembled secretory antibodies |
US6150584A (en) | 1990-01-12 | 2000-11-21 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US6075181A (en) | 1990-01-12 | 2000-06-13 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US5498538A (en) | 1990-02-15 | 1996-03-12 | The University Of North Carolina At Chapel Hill | Totally synthetic affinity reagents |
US5580717A (en) | 1990-05-01 | 1996-12-03 | Affymax Technologies N.V. | Recombinant library screening methods |
US5427908A (en) | 1990-05-01 | 1995-06-27 | Affymax Technologies N.V. | Recombinant library screening methods |
US5723286A (en) | 1990-06-20 | 1998-03-03 | Affymax Technologies N.V. | Peptide library and screening systems |
US5432018A (en) | 1990-06-20 | 1995-07-11 | Affymax Technologies N.V. | Peptide library and screening systems |
US5770429A (en) | 1990-08-29 | 1998-06-23 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5698426A (en) | 1990-09-28 | 1997-12-16 | Ixsys, Incorporated | Surface expression libraries of heteromeric receptors |
US5770434A (en) | 1990-09-28 | 1998-06-23 | Ixsys Incorporated | Soluble peptides having constrained, secondary conformation in solution and method of making same |
US5556762A (en) | 1990-11-21 | 1996-09-17 | Houghten Pharmaceutical Inc. | Scanning synthetic peptide combinatorial libraries: oligopeptide mixture sets having a one predetermined residue at a single, predetermined position, methods of making and using the same |
US5750373A (en) | 1990-12-03 | 1998-05-12 | Genentech, Inc. | Enrichment method for variant proteins having altered binding properties, M13 phagemids, and growth hormone variants |
US5571894A (en) | 1991-02-05 | 1996-11-05 | Ciba-Geigy Corporation | Recombinant antibodies specific for a growth factor receptor |
US5821337A (en) | 1991-06-14 | 1998-10-13 | Genentech, Inc. | Immunoglobulin variants |
WO1993001161A1 (en) | 1991-07-11 | 1993-01-21 | Pfizer Limited | Process for preparing sertraline intermediates |
US5648237A (en) | 1991-09-19 | 1997-07-15 | Genentech, Inc. | Expression of functional antibody fragments |
US5587458A (en) | 1991-10-07 | 1996-12-24 | Aronex Pharmaceuticals, Inc. | Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof |
US5498530A (en) | 1991-10-16 | 1996-03-12 | Affymax Technologies, N.V. | Peptide library and screening method |
WO1993008829A1 (en) | 1991-11-04 | 1993-05-13 | The Regents Of The University Of California | Compositions that mediate killing of hiv-infected cells |
WO1993016185A2 (en) | 1992-02-06 | 1993-08-19 | Creative Biomolecules, Inc. | Biosynthetic binding protein for cancer marker |
WO1994011026A2 (en) | 1992-11-13 | 1994-05-26 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabeled antibodies to human b lymphocyte restricted differentiation antigen for treatment of b cell lymphoma |
US5635483A (en) | 1992-12-03 | 1997-06-03 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Tumor inhibiting tetrapeptide bearing modified phenethyl amides |
US5780588A (en) | 1993-01-26 | 1998-07-14 | Arizona Board Of Regents | Elucidation and synthesis of selected pentapeptides |
WO1994029351A2 (en) | 1993-06-16 | 1994-12-22 | Celltech Limited | Antibodies |
US5767285A (en) | 1994-06-03 | 1998-06-16 | American Cyanamid Company | Linkers useful for the synthesis of conjugates of methyltrithio antitumor agents |
US5773001A (en) | 1994-06-03 | 1998-06-30 | American Cyanamid Company | Conjugates of methyltrithio antitumor agents and intermediates for their synthesis |
US5739116A (en) | 1994-06-03 | 1998-04-14 | American Cyanamid Company | Enediyne derivatives useful for the synthesis of conjugates of methyltrithio antitumor agents |
US5877296A (en) | 1994-06-03 | 1999-03-02 | American Cyanamid Company | Process for preparing conjugates of methyltrithio antitumor agents |
WO1995034683A1 (en) | 1994-06-10 | 1995-12-21 | Symbiotech, Inc. | Method of detecting compounds utilizing genetically modified lambdoid bacteriophage |
US5627024A (en) | 1994-08-05 | 1997-05-06 | The Scripps Research Institute | Lambdoid bacteriophage vectors for expression and display of foreign proteins |
US5789199A (en) | 1994-11-03 | 1998-08-04 | Genentech, Inc. | Process for bacterial production of polypeptides |
US5731168A (en) | 1995-03-01 | 1998-03-24 | Genentech, Inc. | Method for making heteromultimeric polypeptides |
US5840523A (en) | 1995-03-01 | 1998-11-24 | Genetech, Inc. | Methods and compositions for secretion of heterologous polypeptides |
US5869046A (en) | 1995-04-14 | 1999-02-09 | Genentech, Inc. | Altered polypeptides with increased half-life |
US5714586A (en) | 1995-06-07 | 1998-02-03 | American Cyanamid Company | Methods for the preparation of monomeric calicheamicin derivative/carrier conjugates |
US5712374A (en) | 1995-06-07 | 1998-01-27 | American Cyanamid Company | Method for the preparation of substantiallly monomeric calicheamicin derivative/carrier conjugates |
US6267958B1 (en) | 1995-07-27 | 2001-07-31 | Genentech, Inc. | Protein formulation |
WO1997009446A1 (en) | 1995-09-07 | 1997-03-13 | Novo Nordisk A/S | Phage display for detergent enzyme activity |
WO1997030087A1 (en) | 1996-02-16 | 1997-08-21 | Glaxo Group Limited | Preparation of glycosylated antibodies |
WO1997035196A1 (en) | 1996-03-20 | 1997-09-25 | Dyax Corp. | Engineering affinity ligands for macromolecules |
WO1997046251A1 (en) | 1996-06-06 | 1997-12-11 | Lajolla Pharmaceutical Company | aPL IMMUNOREACTIVE PEPTIDES, CONJUGATES THEREOF AND METHODS OF TREATMENT FOR aPL ANTIBODY-MEDIATED PATHOLOGIES |
WO1997047314A1 (en) | 1996-06-10 | 1997-12-18 | The Scripps Research Institute | Use of substrate subtraction libraries to distinguish enzyme specificities |
US5766905A (en) | 1996-06-14 | 1998-06-16 | Associated Universities Inc. | Cytoplasmic bacteriophage display system |
WO1998014277A1 (en) | 1996-10-04 | 1998-04-09 | Whatman, Inc. | Device and method for simultaneous multiple chemical syntheses |
WO1998015833A1 (en) | 1996-10-08 | 1998-04-16 | Universiteit Utrecht | Methods and means for selecting peptides and proteins having specific affinity for a target |
WO1998020036A1 (en) | 1996-11-06 | 1998-05-14 | Genentech, Inc. | Constrained helical peptides and methods of making same |
WO1998020169A1 (en) | 1996-11-07 | 1998-05-14 | Ramot University Authority For Applied Research & Industrial Development Ltd. | Determination and control of bimolecular interactions |
WO1998020159A1 (en) | 1996-11-07 | 1998-05-14 | Ramot University Authority For Applied Research & Industrial Development Ltd. | Representations of bimolecular interactions |
US6171586B1 (en) | 1997-06-13 | 2001-01-09 | Genentech, Inc. | Antibody formulation |
WO1998058964A1 (en) | 1997-06-24 | 1998-12-30 | Genentech, Inc. | Methods and compositions for galactosylated glycoproteins |
WO1999022764A1 (en) | 1997-10-31 | 1999-05-14 | Genentech, Inc. | Methods and compositions comprising glycoprotein glycoforms |
US7189826B2 (en) | 1997-11-24 | 2007-03-13 | Institute For Human Genetics And Biochemistry | Monoclonal human natural antibodies |
US7087409B2 (en) | 1997-12-05 | 2006-08-08 | The Scripps Research Institute | Humanization of murine antibody |
US6194551B1 (en) | 1998-04-02 | 2001-02-27 | Genentech, Inc. | Polypeptide variants |
WO1999051642A1 (en) | 1998-04-02 | 1999-10-14 | Genentech, Inc. | Antibody variants and fragments thereof |
US6602684B1 (en) | 1998-04-20 | 2003-08-05 | Glycart Biotechnology Ag | Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity |
WO2000000823A1 (en) | 1998-06-26 | 2000-01-06 | Sunesis Pharmaceuticals, Inc. | Methods for rapidly identifying small organic ligands |
US6040498A (en) | 1998-08-11 | 2000-03-21 | North Caroline State University | Genetically engineered duckweed |
WO2000039585A1 (en) | 1998-12-28 | 2000-07-06 | Sunesis Pharmaceuticals, Inc. | Identifying small organic molecule ligands for binding |
US7371826B2 (en) | 1999-01-15 | 2008-05-13 | Genentech, Inc. | Polypeptide variants with altered effector function |
US7332581B2 (en) | 1999-01-15 | 2008-02-19 | Genentech, Inc. | Polypeptide variants with altered effector function |
US6737056B1 (en) | 1999-01-15 | 2004-05-18 | Genentech, Inc. | Polypeptide variants with altered effector function |
WO2000061739A1 (en) | 1999-04-09 | 2000-10-19 | Kyowa Hakko Kogyo Co., Ltd. | Method for controlling the activity of immunologically functional molecule |
US6420548B1 (en) | 1999-10-04 | 2002-07-16 | Medicago Inc. | Method for regulating transcription of foreign genes |
US7125978B1 (en) | 1999-10-04 | 2006-10-24 | Medicago Inc. | Promoter for regulating expression of foreign genes |
WO2001029246A1 (en) | 1999-10-19 | 2001-04-26 | Kyowa Hakko Kogyo Co., Ltd. | Process for producing polypeptide |
US20070117126A1 (en) | 1999-12-15 | 2007-05-24 | Genentech, Inc. | Shotgun scanning |
US6630579B2 (en) | 1999-12-29 | 2003-10-07 | Immunogen Inc. | Cytotoxic agents comprising modified doxorubicins and daunorubicins and their therapeutic use |
US20060025576A1 (en) | 2000-04-11 | 2006-02-02 | Genentech, Inc. | Multivalent antibodies and uses therefor |
US20030115614A1 (en) | 2000-10-06 | 2003-06-19 | Yutaka Kanda | Antibody composition-producing cell |
US20020164328A1 (en) | 2000-10-06 | 2002-11-07 | Toyohide Shinkawa | Process for purifying antibody |
WO2002031140A1 (en) | 2000-10-06 | 2002-04-18 | Kyowa Hakko Kogyo Co., Ltd. | Cells producing antibody compositions |
US20070061900A1 (en) | 2000-10-31 | 2007-03-15 | Murphy Andrew J | Methods of modifying eukaryotic cells |
US7041870B2 (en) | 2000-11-30 | 2006-05-09 | Medarex, Inc. | Transgenic transchromosomal rodents for making human antibodies |
WO2003001878A2 (en) | 2001-06-28 | 2003-01-09 | S & S Industries, Inc. | Improved underwire for brassiere |
US20030157108A1 (en) | 2001-10-25 | 2003-08-21 | Genentech, Inc. | Glycoprotein compositions |
US20050119251A1 (en) | 2001-12-21 | 2005-06-02 | Jian-Min Fu | Nicotinamide derivatives and their use as therapeutic agents |
US20040093621A1 (en) | 2001-12-25 | 2004-05-13 | Kyowa Hakko Kogyo Co., Ltd | Antibody composition which specifically binds to CD20 |
US20040132140A1 (en) | 2002-04-09 | 2004-07-08 | Kyowa Hakko Kogyo Co., Ltd. | Production process for antibody composition |
US20040110282A1 (en) | 2002-04-09 | 2004-06-10 | Kyowa Hakko Kogyo Co., Ltd. | Cells in which activity of the protein involved in transportation of GDP-fucose is reduced or lost |
US20040109865A1 (en) | 2002-04-09 | 2004-06-10 | Kyowa Hakko Kogyo Co., Ltd. | Antibody composition-containing medicament |
US20040110704A1 (en) | 2002-04-09 | 2004-06-10 | Kyowa Hakko Kogyo Co., Ltd. | Cells of which genome is modified |
WO2003085119A1 (en) | 2002-04-09 | 2003-10-16 | Kyowa Hakko Kogyo Co., Ltd. | METHOD OF ENHANCING ACTIVITY OF ANTIBODY COMPOSITION OF BINDING TO FcϜ RECEPTOR IIIa |
WO2003084570A1 (en) | 2002-04-09 | 2003-10-16 | Kyowa Hakko Kogyo Co., Ltd. | DRUG CONTAINING ANTIBODY COMPOSITION APPROPRIATE FOR PATIENT SUFFERING FROM FcϜRIIIa POLYMORPHISM |
WO2003085107A1 (en) | 2002-04-09 | 2003-10-16 | Kyowa Hakko Kogyo Co., Ltd. | Cells with modified genome |
US20050119455A1 (en) | 2002-06-03 | 2005-06-02 | Genentech, Inc. | Synthetic antibody phage libraries |
US20050014934A1 (en) | 2002-10-15 | 2005-01-20 | Hinton Paul R. | Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis |
WO2004056312A2 (en) | 2002-12-16 | 2004-07-08 | Genentech, Inc. | Immunoglobulin variants and uses thereof |
US20050079574A1 (en) | 2003-01-16 | 2005-04-14 | Genentech, Inc. | Synthetic antibody phage libraries |
US20060104968A1 (en) | 2003-03-05 | 2006-05-18 | Halozyme, Inc. | Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminogly ycanases |
US20050260186A1 (en) | 2003-03-05 | 2005-11-24 | Halozyme, Inc. | Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases |
WO2005011655A2 (en) | 2003-07-30 | 2005-02-10 | Xenon Pharmaceuticals Inc. | Pyridazine derivatives and their use as therapeutic agents |
WO2005035586A1 (en) | 2003-10-08 | 2005-04-21 | Kyowa Hakko Kogyo Co., Ltd. | Fused protein composition |
WO2005035778A1 (en) | 2003-10-09 | 2005-04-21 | Kyowa Hakko Kogyo Co., Ltd. | PROCESS FOR PRODUCING ANTIBODY COMPOSITION BY USING RNA INHIBITING THE FUNCTION OF α1,6-FUCOSYLTRANSFERASE |
US20050123546A1 (en) | 2003-11-05 | 2005-06-09 | Glycart Biotechnology Ag | Antigen binding molecules with increased Fc receptor binding affinity and effector function |
US7498298B2 (en) | 2003-11-06 | 2009-03-03 | Seattle Genetics, Inc. | Monomethylvaline compounds capable of conjugation to ligands |
WO2005053742A1 (en) | 2003-12-04 | 2005-06-16 | Kyowa Hakko Kogyo Co., Ltd. | Medicine containing antibody composition |
US7527791B2 (en) | 2004-03-31 | 2009-05-05 | Genentech, Inc. | Humanized anti-TGF-beta antibodies |
US20050266000A1 (en) | 2004-04-09 | 2005-12-01 | Genentech, Inc. | Variable domain library and uses |
WO2005100402A1 (en) | 2004-04-13 | 2005-10-27 | F.Hoffmann-La Roche Ag | Anti-p-selectin antibodies |
WO2006014168A1 (en) | 2004-07-06 | 2006-02-09 | Xenon Pharmaceuticals Inc. | Nicotinamide derivatives and their use as therapeutic agents |
WO2006029879A2 (en) | 2004-09-17 | 2006-03-23 | F.Hoffmann-La Roche Ag | Anti-ox40l antibodies |
WO2006034338A1 (en) | 2004-09-20 | 2006-03-30 | Xenon Pharmaceuticals Inc. | Heterocyclic derivatives and their use as mediators of stearoyl-coa desaturase |
WO2006101521A2 (en) | 2004-09-20 | 2006-09-28 | Xenon Pharmaceuticals Inc. | Heterocyclic derivatives and their use as stearoyl-coa desaturase inhibitors |
WO2006034315A2 (en) | 2004-09-20 | 2006-03-30 | Xenon Pharmaceuticals Inc. | Heterocyclic derivatives for the treatment of diseases mediated by stearoyl-coa desaturase enzymes |
WO2006034341A2 (en) | 2004-09-20 | 2006-03-30 | Xenon Pharmaceuticals Inc. | Pyridazine derivatives for inhibiting human stearoyl-coa-desaturase |
WO2006034440A2 (en) | 2004-09-20 | 2006-03-30 | Xenon Pharmaceuticals Inc. | Heterocyclic derivatives and their use as stearoyl-coa desaturase inhibitors |
WO2006034312A1 (en) | 2004-09-20 | 2006-03-30 | Xenon Pharmaceuticals Inc. | Bicyclic heterocyclic derivatives and their use as inhibitors of stearoyl-coa-desaturase (scd) |
WO2006034279A1 (en) | 2004-09-20 | 2006-03-30 | Xenon Pharmaceuticals Inc. | Heterocyclic derivatives and their use as therapeutic agents |
WO2006034446A2 (en) | 2004-09-20 | 2006-03-30 | Xenon Pharmaceuticals Inc. | Pyridine derivatives for inhibiting human stearoyl-coa-desaturase |
WO2006034441A1 (en) | 2004-09-20 | 2006-03-30 | Xenon Pharmaceuticals Inc. | Heterocyclic derivatives and their use as stearoyl-coa desaturase inhibitors |
US7521541B2 (en) | 2004-09-23 | 2009-04-21 | Genetech Inc. | Cysteine engineered antibodies and conjugates |
WO2006044908A2 (en) | 2004-10-20 | 2006-04-27 | Genentech, Inc. | Antibody formulation in histidine-acetate buffer |
WO2007050124A1 (en) | 2005-05-19 | 2007-05-03 | Xenon Pharmaceuticals Inc. | Fused piperidine derivatives and their uses as therapeutic agents |
WO2006125178A2 (en) | 2005-05-19 | 2006-11-23 | Xenon Pharmaceuticals Inc. | Tricyclic pyridazine compounds and their uses as therapeutic agents |
WO2007046868A2 (en) | 2005-05-19 | 2007-04-26 | Xenon Pharmaceuticals Inc. | Thiazolidine derivatives and their uses as therapeutic agents |
WO2007046867A2 (en) | 2005-05-19 | 2007-04-26 | Xenon Pharmaceuticals Inc. | Piperidine derivatives and their uses as therapeutic agents |
WO2006125180A1 (en) | 2005-05-19 | 2006-11-23 | Xenon Pharmaceuticals Inc. | Piperazine derivatives and their uses as therapeutic agents |
WO2007044085A2 (en) | 2005-05-19 | 2007-04-19 | Xenon Pharmaceuticals Inc. | Heteroaryl compounds and their uses as therapeutic agents |
WO2006125179A1 (en) | 2005-05-19 | 2006-11-23 | Xenon Pharmaceuticals Inc. | Tricyclic compounds and their uses as therapeutic agents |
WO2006125194A2 (en) | 2005-05-19 | 2006-11-23 | Xenon Pharmaceuticals Inc. | Piperazine derivatives and their uses as therapeutic agents |
WO2006125181A2 (en) | 2005-05-19 | 2006-11-23 | Xenon Pharmaceuticals Inc. | Piperidine derivatives and their use as stearoyl-coa desaturase modulators |
WO2007130075A1 (en) | 2005-06-03 | 2007-11-15 | Xenon Pharmaceuticals Inc. | Aminothiazole derivatives as human stearoyl-coa desaturase inhibitors |
WO2006130986A1 (en) | 2005-06-09 | 2006-12-14 | Merck Frosst Canada Ltd. | Azacyclohexane derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2007009236A1 (en) | 2005-07-20 | 2007-01-25 | Merck Frosst Canada Ltd. | Heteroaromatic compounds as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
US20070160598A1 (en) | 2005-11-07 | 2007-07-12 | Dennis Mark S | Binding polypeptides with diversified and consensus vh/vl hypervariable sequences |
WO2007056846A1 (en) | 2005-11-15 | 2007-05-24 | Merck Frosst Canada Ltd. | Azacyclohexane derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
US20070237764A1 (en) | 2005-12-02 | 2007-10-11 | Genentech, Inc. | Binding polypeptides with restricted diversity sequences |
US20070292936A1 (en) | 2006-05-09 | 2007-12-20 | Genentech, Inc. | Binding polypeptides with optimized scaffolds |
WO2007136746A2 (en) | 2006-05-19 | 2007-11-29 | Xenon Pharmaceuticals Inc. | Macrocyclic compounds and their uses as stearoyl-coa desaturase |
WO2007134457A1 (en) | 2006-05-22 | 2007-11-29 | Merck Frosst Canada Ltd. | Cyclic amine derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2007143597A2 (en) | 2006-06-05 | 2007-12-13 | Novartis Ag | Organic compounds |
WO2007143823A1 (en) | 2006-06-12 | 2007-12-21 | Merck Frosst Canada Ltd. | Azetidine derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2007143824A1 (en) | 2006-06-13 | 2007-12-21 | Merck Frosst Canada Ltd. | Azacyclopentane derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2008003753A1 (en) | 2006-07-07 | 2008-01-10 | Biovitrum Ab (Publ) | Pyrazolo [1,5-a] pyrimidine analogs for use as inhibitors of stearoyl-coa desaturase (scd) activity |
WO2008007483A1 (en) | 2006-07-10 | 2008-01-17 | Satoru Tanaya | Shoulder belt traction type hand-push tool |
WO2008017161A1 (en) | 2006-08-09 | 2008-02-14 | Merck Frosst Canada Ltd. | Azacycloalkane derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2008127349A2 (en) | 2006-08-15 | 2008-10-23 | Novartis Ag | Heterocyclic compounds suitable for the treatment of diseases related to elevated lipid level |
WO2008024390A2 (en) | 2006-08-24 | 2008-02-28 | Novartis Ag | 2- (pyrazin-2-yl) -thiazole and 2- (1h-pyraz0l-3-yl) -thiazole derivatives as well as related compounds as stearoyl-coa desaturase (scd) inhibitors for the treatment of metabolic, cardiovascular and other disorders |
US20080069820A1 (en) | 2006-08-30 | 2008-03-20 | Genentech, Inc. | Multispecific antibodies |
WO2008029266A1 (en) | 2006-09-08 | 2008-03-13 | Glenmark Pharmaceuticals S.A. | Stearoyl coa desaturase inhibitors |
WO2008036715A1 (en) | 2006-09-22 | 2008-03-27 | Novartis Ag | Heterocyclic organic compounds |
WO2008043087A2 (en) | 2006-10-05 | 2008-04-10 | Cv Therapeutics, Inc. | Bicyclic nitrogen-containing heterocyclic compounds for use as stearoyl coa desaturase inhibitors |
WO2008044767A1 (en) | 2006-10-13 | 2008-04-17 | Takeda Pharmaceutical Company Limited | Aromatic amine derivative and use thereof |
WO2008046226A1 (en) | 2006-10-20 | 2008-04-24 | Merck Frosst Canada Ltd. | Azacycloalkane derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2008056687A1 (en) | 2006-11-09 | 2008-05-15 | Daiichi Sankyo Company, Limited | Novel spiropiperidine derivative |
WO2008062276A2 (en) | 2006-11-20 | 2008-05-29 | Glenmark Pharmaceuticals S.A. | Acetylene derivatives as stearoyl coa desaturase inhibitors |
WO2008064474A1 (en) | 2006-12-01 | 2008-06-05 | Merck Frosst Canada Ltd. | Azacycloalkane derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2008074835A1 (en) | 2006-12-20 | 2008-06-26 | Novartis Ag | 2-substituted 5-membered heterocycles as scd inhibitors |
WO2008074824A2 (en) | 2006-12-21 | 2008-06-26 | Smithkline Beecham Corporation | Isoquinolinecarboxamides as inhibitors of stearoyl-coa desaturase (scd) |
WO2008074833A2 (en) | 2006-12-21 | 2008-06-26 | Smithkline Beecham Corporation | Compounds |
WO2008074834A2 (en) | 2006-12-21 | 2008-06-26 | Smithkline Beecham Corporation | Isoquinolinecarboxamides as inhibitors of stearoyl-coa desaturase (scd) |
WO2008077546A1 (en) | 2006-12-22 | 2008-07-03 | F. Hoffmann-La Roche Ag | Antibodies against insulin-like growth factor i receptor and uses thereof |
WO2008096746A1 (en) | 2007-02-06 | 2008-08-14 | Takeda Pharmaceutical Company Limited | Spiro compound and use thereof |
WO2008104524A1 (en) | 2007-02-28 | 2008-09-04 | Smithkline Beecham Corporation | Thiadiazole derivatives, inhibitors of stearoyl-coa desaturase |
WO2008116898A1 (en) | 2007-03-28 | 2008-10-02 | Biovitrum Ab (Publ) | Pyrazolo [1,5-a]pyrimidines as inhibitors of stearoyl-coa desaturase |
WO2008120744A1 (en) | 2007-03-30 | 2008-10-09 | Japan Tobacco Inc. | Five-membered cyclic amide compound and use thereof |
WO2008123469A1 (en) | 2007-03-30 | 2008-10-16 | Japan Tobacco Inc. | Six-membered amide compound and use thereof |
WO2008123891A1 (en) | 2007-04-09 | 2008-10-16 | Cv Therapeutics, Inc. | PTERIDINONE DERIVATIVES FOR USE AS STEAROYL CoA DESATURASE INHIBITORS |
WO2008127615A1 (en) | 2007-04-11 | 2008-10-23 | Cv Therapeutics Inc | 3-HYDROQUINAZOLIN-4-ONE DERIVATIVES FOR USE AS STEAROYL CoA DESATURASE INHIBITORS |
WO2008128335A1 (en) | 2007-04-20 | 2008-10-30 | Merck Frosst Canada Ltd. | Novel heteroaromatic compounds as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2008139845A1 (en) | 2007-04-24 | 2008-11-20 | Daiichi Sankyo Company, Limited | Novel amide derivative |
WO2008135141A1 (en) | 2007-04-27 | 2008-11-13 | Sanofi-Aventis | 2 -heteroaryl- pyrrolo [3, 4-c] pyrrole derivatives and their use as scd inhibitors |
WO2008141455A1 (en) | 2007-05-23 | 2008-11-27 | Merck Frosst Canada Ltd. | Bicyclic heteroaromatic compounds as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
US20090002360A1 (en) | 2007-05-25 | 2009-01-01 | Innolux Display Corp. | Liquid crystal display device and method for driving same |
WO2008157844A1 (en) | 2007-06-21 | 2008-12-24 | Forest Laboratories Holdings Limited | Novel piperazine derivatives as inhibitors of stearoyl-coa desaturase |
JP2009019013A (en) | 2007-07-12 | 2009-01-29 | Daiichi Sankyo Co Ltd | New heteroarylpiperidine derivative |
WO2009010560A1 (en) | 2007-07-19 | 2009-01-22 | Smithkline Beecham Corporation | Pyrazole derivatives and use thereof as inhibitors of stearoyl-coa desaturase |
WO2009016216A1 (en) | 2007-08-02 | 2009-02-05 | Smithkline Beecham Corporation | Triazole derivatives as scd inhibitors |
WO2009019566A1 (en) | 2007-08-08 | 2009-02-12 | Pfizer Inc. | Phenoxy-pyrrolidine derivative and its use and compositions |
WO2009056556A1 (en) | 2007-10-31 | 2009-05-07 | Smithkline Beecham Corporation | Substitute 1, 6-naphthyridines for use as scd inhibitors |
WO2009060452A2 (en) | 2007-11-08 | 2009-05-14 | Galmed International Ltd. | Methods and compositions for treating biliary cholesterol crystallization and related conditions |
US7652013B2 (en) | 2007-12-11 | 2010-01-26 | Hoffman-La Roche Inc. | Inhibitors of stearoyl-CoA desaturase |
WO2009089004A1 (en) | 2008-01-07 | 2009-07-16 | Amgen Inc. | Method for making antibody fc-heterodimeric molecules using electrostatic steering effects |
WO2010025553A1 (en) | 2008-09-08 | 2010-03-11 | Merck Frosst Canada Ltd. | Heteroaromatic compounds as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2010094120A1 (en) | 2009-02-17 | 2010-08-26 | Merck Frosst Canada Ltd. | Novel spiro compounds useful as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2010111367A1 (en) | 2009-03-25 | 2010-09-30 | Genentech, Inc. | Anti-fgfr3 antibodies and methods using same |
WO2010112520A1 (en) | 2009-04-01 | 2010-10-07 | Novartis Ag | Spiro derivatives for the modulation of stearoyl-coa desaturase |
WO2011011508A1 (en) | 2009-07-23 | 2011-01-27 | Schering Corporation | Benzo-fused oxazepine compounds as stearoyl-coenzyme a delta-9 desaturase inhibitors |
WO2011011506A1 (en) | 2009-07-23 | 2011-01-27 | Schering Corporation | Spirocyclic oxazepine compounds as stearoyl-coenzyme a delta-9 desaturase inhibitors |
WO2011011872A1 (en) | 2009-07-28 | 2011-02-03 | Merck Frosst Canada Ltd. | Novel spiro compounds useful as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2011030312A1 (en) | 2009-09-10 | 2011-03-17 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | NOVEL INHIBITORS OF STEAROYL-CoA-DESATURASE-1 AND THEIR USES |
WO2011039358A1 (en) | 2009-10-01 | 2011-04-07 | Novartis Ag | Pyrazole derivatives which modulate stearoyl-coa desaturase |
WO2011047481A1 (en) | 2009-10-23 | 2011-04-28 | Merck Frosst Canada Ltd. | Novel spiro compounds useful as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
Non-Patent Citations (183)
Title |
---|
ALMAGRO; FRANSSON, FRONT. BIOSCI., vol. 13, 2008, pages 1619 - 1633 |
AUSUBEL ET AL. E: "Current Protocols In Molecular Biology", 1995, article "Units 2 (Northern Blotting), 4 (Southern Blotting), 15 (Immunoblotting) and 18 (PCR Analysis)" |
AUSUBEL ET AL.: "Current Protocols in Molecular Biology", 1995, WILEY INTERSCIENCE PUBLISHERS |
BACA ET AL., J BIOL. CHEM., vol. 272, 1997, pages 10678 - 10684 |
BEENKEN, A.; MOHAMMADI, M., NAT. REV.. DRUG DISCOVERY, vol. 8, 2009, pages 235 - 253 |
BERNOIST; CHAMBON, NATURE, vol. 29, 1981, pages 304 - 310 |
BOERNER ET AL., J. IMMUNOL., vol. 147, 1991, pages 86 |
BRENNAN ET AL., SCIENCE, vol. 229, 1985, pages 81 |
BRINSTER ET AL., NATURE, vol. 296, 1982, pages 39 - 42 |
BRODEUR ET AL.: "Monoclonal Antibody Production Techniques and Applications", 1987, MARCEL DEKKER, INC., pages: 51 - 63 |
BRUGGEMANN, M. ET AL., J. EXP. MED., vol. 166, 1987, pages 1351 - 1361 |
CAPPELLEN, D. ET AL., NAT. GENET., vol. 23, 1999, pages 18 - 20 |
CARTER ET AL., BIOLTECHNOLOGY, vol. 10, 1992, pages 163 - 167 |
CARTER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 4285 |
CHANG, H. ET AL., BLOOD, vol. 106, 2005, pages 353 - 355 |
CHANG, Y. ET AL., 1. LIPID RES., vol. 46, 2005, pages 2624 - 2635 |
CHARI ET AL., CANCER RES., vol. 52, 1992, pages 127 - 131 |
CHARLTON: "Methods in Molecular Biology", vol. 248, 2003, HUMANA PRESS, pages: 245 - 254 |
CHEN ET AL., J. MOL. BIOL., vol. 293, 1999, pages 865 - 881 |
CHESI, M. ET AL., NAT. GENET., vol. 16, 1997, pages 260 - 264 |
CHOWDHURY, METHODS MOL. BIOL., vol. 207, 2008, pages 179 - 196 |
CLACKSON ET AL., NATURE, vol. 352, 1991, pages 624 - 628 |
CLACKSON, T. ET AL., NATURE, vol. 352, 1991, pages 624 |
CLYNES ET AL., PROC. NAT'L ACAD. SCI. USA, vol. 95, 1998, pages 652 - 656 |
CORTESE, R. ET AL., INT J BIOCHEM CELL BIOL, vol. 40, 2008, pages 1494 - 1508 |
CRAGG, M.S. ET AL., BLOOD, vol. 101, 2003, pages 1045 - 1052 |
CRAGG, M.S.; M.J. GLENNIE, BLOOD, vol. 103, 2004, pages 2738 - 2743 |
CUNNINGHAM; WELLS, SCIENCE, vol. 244, 1989, pages 1081 - 1085 |
CWIRLA, S. E. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 6378 |
CWIRLA, S. E., PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 6378 |
DAILEY, L. ET AL., CYTOKINE GROWTH FACTOR REV, vol. 16, 2005, pages 233 - 247 |
DALL'ACQUA ET AL., METHODS, vol. 36, 2005, pages 43 - 60 |
DEMOULIN, J.B. ET AL., J. BIOL. CHEM., vol. 279, 2004, pages 35392 - 35402 |
DEUTSCHER, METHODS IN ENZYMOLOGY, 1990, pages 182 |
DUBOWCHIK ET AL., BIOORG. & MED. CHEM. LETTERS, vol. 12, 2002, pages 1529 - 1532 |
DUNCAN; WINTER, NATURE, vol. 322, 1988, pages 738 - 40 |
DUVEL, K. ET AL., MOL. CELL, vol. 39, 2010, pages 171 - 183 |
ED HARLOW; DAVID LANE: "Antibodies, A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY |
EFIMOV ET AL., VIRUS GENES, vol. 10, 1995, pages 173 |
ESWARAKUMAR, V.P.; LAX, I.; SCHLESSINGER, J., CYTOKINE GROWTH FACTOR REV., vol. 16, 2005, pages 139 - 149 |
FELLOUSE, PROC. NATL. ACAD. SCI. USA, vol. 101, no. 34, 2004, pages 12467 - 12472 |
FLATMAN, J. CHROMATOGR. B, vol. 848, 2007, pages 79 - 87 |
FRITZ, V. ET AL., MOL. CANCER THER., vol. 9, 2010, pages 1740 - 1754 |
GAZZANO-SANTORO ET AL., J. IMMUNOL. METHODS, vol. 202, 1996, pages 163 |
GCYSCN, J. IMMUNOL. METH., vol. 102, 1987, pages 259 - 274 |
GENENTECH. AN OPEN-LABEL, MULTICENTER, Retrieved from the Internet <URL:http://clinicaltrial.gov/ct2/show/NCT01363024> |
GERNGROSS; 2004, NAT. BIOTECH., vol. 22, pages 1409 - 1414 |
GEYSEN ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 81, 1984, pages 3998 - 4002 |
GEYSEN ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 82, 1985, pages 178 - 182 |
GEYSEN ET AL., SYNTHETIC PCPTIDCS AS ANTIGENS, 1986, pages 130 - 149 |
GOLDSTCIN, J.L. ET AL., CELL, vol. 124, 2006, pages 35 - 46 |
GOMCZ-ROMAN, J.J., CLIN CANCER RES, vol. 11, 2005, pages 459 - 465 |
GORIELY, A. ET AL., NAT. GENET., vol. 41, 2009, pages 1247 - 1252 |
GRAHAM ET AL., J. GEN VIROL., vol. 36, 1977, pages 59 |
GRIFFITHS ET AL., EMBO J, vol. 12, 1993, pages 725 - 734 |
GRUBER ET AL., J. IMMUNOL., vol. 152, 1994, pages 5368 |
GUO, D. ET AL., SCI. SIGNAL., vol. 2, no. 101, 2009, pages RA82 |
GUSS, EMBOJ., vol. 5, 1986, pages 1567 - 1575 |
GUYER ET AL., J. IMMUNOL., vol. 117, 1976, pages 587 |
HELLSTROM, 1. ET AL., PROC. NAT'L ACAD. SCI. USA, vol. 83, 1986, pages 7059 - 7063 |
HELLSTROM, I ET AL., PROC. NAT'L ACAD. SCI. USA, vol. 82, 1985, pages 1499 - 1502 |
HINMAN ET AL., CANCER RES., vol. 53, 1993, pages 3336 - 3342 |
HOLLINGER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448 |
HOOGENBOOM ET AL.: "Methods in Molecular Biology", vol. 178, 2001, HUMAN PRESS, pages: 1 - 37 |
HOOGENBOOM; WINTER, J. MOL. BIOL., vol. 227, 1992, pages 381 - 388 |
HORTON, J.D. ET AL., J. CIN. INVEST., vol. 109, 2002, pages 1125 - 1131 |
HORTON, J.D. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 100, 2003, pages 12027 - 12032 |
HUDSON ET AL., NAT. MED., vol. 9, 2003, pages 129 - 134 |
IDUSOGIE ET AL., J. IMMUNOL., vol. 164, 2000, pages 4178 - 4184 |
JEFFREY ET AL., BIOORGANIC & MED. CHEM. LETTERS, vol. 16, 2006, pages 358 - 362 |
JEMAL, A. ET AL., CANCER STATISTICS, 2010. CA: A CANCER JOURNAL FOR CLINICIANS, vol. 60, 2010, pages 277 - 300 |
JIANG ET AL., INFECTION & IMMUNITY, vol. 65, no. 11, 1997, pages 4770 - 4777 |
KAM ET AL., PROC. NATL. ACAD. SCI. USA, vol. 102, 2005, pages 11600 - 11605 |
KANDA, Y. ET AL., BIOTECHNOL. BIOENG., vol. 94, no. 4, 2006, pages 680 - 688 |
KANG, A.S. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 88, 1991, pages 8363 |
KASHMIRI ET AL., METHODS, vol. 36, 2005, pages 25 - 34 |
KIM ET AL., J. IMMUNOL., vol. 24, 1994, pages 249 |
KING ET AL., J. MED. CHENI., vol. 45, 2002, pages 4336 - 4343 |
KLIMKA ET AL., BR. J. CANCER, vol. 83, 2000, pages 252 - 260 |
KNOWLES, M.A., FUTURE ONCOL, vol. 4, 2008, pages 71 - 83 |
KOSTCLNY, J. IMMUNOL., vol. 148, no. 5, 1992, pages 1547 - 1553 |
KOZBOR, J. LMMUNOL., vol. 133, 1984, pages 3001 |
KRATZ ET AL., CURRENT MED. CHEM., vol. 13, 2006, pages 477 - 523 |
KUMAR-SINHA, C. ET AL., CANCER RES., vol. 63, 2003, pages 132 - 139 |
KUROSO, K. ET AL., PATHOBIO.: J. IMMUN., MOL. CELL BIOL., vol. 77, 2010, pages 231 - 240 |
LAMONT, F.R. ET AL., BRIT. J. CANCER, vol. 104, 2011, pages 75 - 82 |
LEE ET AL., J. IMMUNOL. METHODS, vol. 284, no. 1-2, 2004, pages 119 - 132 |
LEE ET AL., J. MOL. BIOL., vol. 340, no. 5, 2004, pages 1073 - 1093 |
LGAL, R.A., CARCINOGENESIS, vol. 31, 2010, pages 1509 - 1515 |
LI ET AL., MOL BIOTECH., vol. 9, 1998, pages 187 |
LI ET AL., NAT. BIOTECH., vol. 24, 2006, pages 210 - 215 |
LI ET AL., PROC. NATL. ACAD. SCI. USA, vol. 103, 2006, pages 3557 - 3562 |
LINDMARK ET AL., J. IMMUNOL. METH., vol. 62, 1983, pages 1 - 13 |
LIU G. ET AL., JMED CHEM, vol. 50, 2007, pages 3086 - 100 |
LIU G.: "Stearoyl-CoA desaturase-1 (SCDI) Inhibitors: Discovery and in vivo evaluation. Emerging Targets for Type 2 Diabetes Symposium", THE 233TH ACS NATIONAL MEETING, CHICAGO, IL, March 2007 (2007-03-01) |
LODE ET AL., CANCER RES., vol. 58, 1998, pages 2925 - 2928 |
LONBERG, CURR. OPIN. IMMUNOL., vol. 20, 2008, pages 450 - 459 |
LONBERG, NAT. BIOTECH., vol. 23, 2005, pages 1117 - 1125 |
LOWMAN, H.B. ET AL., BIOCHEMISTLY, vol. 30, 1991, pages 10832 |
LOWMAN, H.B. ET AL., BIOCHEMISTRY, vol. 30, 1991, pages 10832 |
MARKS ET AL., J. MOL. BIOL., vol. 222, 1992, pages 581 - 597 |
MARKS, J. D. ET AL., J. MOL. BIOL., vol. 222, 1991, pages 581 |
MARKS; BRADBURY: "Methods in Molecular Biology", vol. 248, 2003, HUMAN PRESS, pages: 161 - 175 |
MARTINEZ-TORRECUADRADA, J. ET AL., CLIN CANCER RES, vol. 11, 2005, pages 6280 - 6290 |
MATHER ET AL., ANNALS N.Y. ACAD. SCI., vol. 383, 1982, pages 44 - 68 |
MATHER, BIOL. REPROD., vol. 23, pages 243 - 251 |
MCCAFFERTY ET AL., NATURE, vol. 348, pages 552 - 554 |
MENENDEZ, J.A.; LUPU, R., NAT. REV. CANCER, vol. 7, 2007, pages 763 - 777 |
MERRIFIELD, J. AM. CHEM. SOC., vol. 85, 1963, pages 2149 - 2154 |
MILSTEIN; CUELLO, NATURE, vol. 305, 1983, pages 537 |
MOREAU, P. ET AL., BLOOD, vol. 100, 2002, pages 1579 - 1583 |
MORGAN-LAPPE, S.E. ET AL., CANCER RES., vol. 67, 2007, pages 4390 - 4398 |
MORRISON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 6851 - 6855 |
MURAKAMI ET AL.: "The Molecular Basis of Cancer, Mcndclsohn and Israel", 1995, WB SAUNDERS: PHILADELPHIA, article "Cell cycle regulation, oncogcncs, and antineoplastic drugs", pages: 13 |
NAGY ET AL., PROC. NATL. ACAD. SCI. USA, vol. 97, 2000, pages 829 - 834 |
NI, XIANDAI MIANYIXUE, vol. 26, no. 4, 2006, pages 265 - 268 |
NICOLAOU ET AL., ANGEW. CHEM INTL. ED. ENGL., vol. 33, 1994, pages 183 - 186 |
NOVARTIS. A DOSE ESCALATION STUDY IN ADULT PATIENTS WITH ADVANCED SOLID MALIGNANCIES, Retrieved from the Internet <URL:http://clinicaltrials.gov/ct2/show/NCTOl 004224> |
NOVARTIS. A PHASE II MULTI-CENTER |
OKAZAKI, J. MOL. BIOL., vol. 336, 2004, pages 1239 - 1249 |
ORNITZ, D.M., CYTOKINE GROWTH FACTOR REV., vol. 16, 2005, pages 205 - 213 |
OSBOURN ET AL., METHODS, vol. 36, 2005, pages 61 - 68 |
OSOL, A.: "Remington's Pharmaceutical Sciences 16th edition,", 1980 |
PADLAN, MOL. IMMUNOL., vol. 28, 1991, pages 489 - 498 |
PATON, C.M.; NTAMBI, J.M., AM. J. PHYSIOL. ENDOCRINOL. METAB., vol. 297, 2009, pages E28 - 37 |
PETKOVA, S.B. ET AL., INT'L. IMMUNOL., vol. 18, no. 12, 2006, pages 1759 - 1769 |
PORSTMANN, T. ET AL., CELL METABOL., vol. 8, 2008, pages 224 - 236 |
PORSTMANN, T. ET AL., ONCOGENE, vol. 24, 2005, pages 6465 - 6481 |
PRESTA ET AL., CANCER RES., vol. 57, 1997, pages 4593 - 4599 |
PRESTA ET AL., J. IMMUNOL., vol. 151, 1993, pages 2623 |
QING ET AL., J. CLIN. INVEST., vol. 119, no. 5, 2009, pages 1216 - 1229 |
QING, J. ET AL., J. CLIN. INVEST., vol. 119, 2009, pages 1216 - 1229 |
QIU, W.H. ET AL., WORLD J GASTROENTEROL, vol. 11, 2005, pages 5266 - 5272 |
QUEEN ET AL., PROC. NAT'L ACAD. SCI. USA, vol. 86, 1989, pages 10029 - 10033 |
RAVETCH; KINET, ANNU. REV. IMMUNOL., vol. 9, 1991, pages 457 - 492 |
REN ET AL., GENE, vol. 195, no. 2, 1997, pages 303 - 311 |
REN ET AL., GENE, vol. 215, 1998, pages 439 |
REN, PROTEIN SCI., vol. 5, 1996, pages 1833 |
RICCHMANN ET AL., NATURE, vol. 332, 1988, pages 323 - 329 |
RIPKA ET AL., ARCH. BIOCHEM. BIOPHYS., vol. 249, 1986, pages 533 - 545 |
ROONGTA, U.V. ET AL., MOL. CANCER RES., 2011 |
ROSENBURG AND MOORE: "The Pharmacology ofmonoclonal Antibodies", vol. 113, 1994, SPRINGER-VERLAG, pages: 269 - 315 |
ROSOK ET AL., J. BIOL. CHEM., vol. 271, 1996, pages 22611 - 22618 |
ROSTY, C. ET AL., MOL CANCER, vol. 4, 2005, pages 15 |
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR PRESS |
SCAGLIA, N. ET AL., PLOS ONE, vol. 4, 2009, pages E6812 |
SCHOOFS, 1. IMMUNOL., vol. 140, 1988, pages 611 - 616 |
SCOPES: "Protein Purification: Principles and Practice", 1982, SPRINGER-VERLAG |
SCOTT, J.K.; SMITH, G. P., SCIENCE, vol. 249, 1990, pages 386 |
SHIELDS ET AL., J. BIOL. CHEM., vol. 9, no. 2, 2001, pages 6591 - 6604 |
SIDHU ET AL., J. MOL. BIOL., vol. 338, no. 2, 2004, pages 299 - 310 |
SIMS, J. IMMUNOL., vol. 151, 1993, pages 2296 |
SMITH, G. P., CURRENT OPIN. BIOTECHNOL., vol. 2, 1991, pages 668 |
SMITH; SCOTT, METHODS IN ENZYMOLOGY, vol. 217, 1993, pages 228 - 257 |
STELLA ET AL.: "Directed Drug Delivery", 1985, HUMANA PRESS, article "Prodrugs: A Chemical Approach to Targeted Drug Delivery", pages: 247 - 267 |
STEWART ET AL.: "Solid-Phase Peptide Synthesis", 1969, W.H. FREEMAN CO. |
SWINNEN,J.V. ET AL., ONCOGENE, vol. 19, 2000, pages 5173 - 5181 |
TOMLINSON, D.C. ET AL., J PATHOL, vol. 213, 2007, pages 91 - 98 |
TOMLINSON, D.C. ET AL., ONCOGENE, vol. 26, 2007, pages 5889 - 5899 |
TORGOV ET AL., BIOCONJ. CHEM., vol. 16, 2005, pages 717 - 721 |
TRAUNECKER ET AL., EMBO J., vol. 10, 1991, pages 3655 |
TRUDEL, S. ET AL., BLOOD, vol. 103, 2004, pages 3521 - 3528 |
TURNER, N.; GROSE, R., NAT. REV. CANCER, vol. 10, 2010, pages 116 - 129 |
TUTT ET AL., J. IMMUNOL., vol. 147, 1991, pages 60 |
URLAUB ET AL., PROC. NATL. ACAD. SCI. USA, vol. 77, 1980, pages 4216 |
VAN DIJK; VAN DE WINKEL, CURR. OPIN. PHARMACOL., vol. 5, 2001, pages 368 - 74 |
VAN RHIJN, B.W. ET AL., J PATHOL, vol. 198, 2002, pages 245 - 251 |
VOLLMERS; BRANDLEIN, HISTOL. NISTOPATHOL., vol. 20, no. 3, 2005, pages 927 - 937 |
VOLLMERS; BRANDLEIN, METHODS FIND EXP. CLIN. PHARMACOL., vol. 27, no. 3, 2005, pages 185 - 91 |
WAGNER ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 78, 1981, pages 1441 - 1445 |
WAGNER, R., NATURE, vol. 372, 1994, pages 333 - 335 |
WILKIE, A.O., CYTOKINE GROWTH FACTOR REV., vol. 16, 2005, pages 187 - 203 |
WILMAN: "Prodrugs in Cancer Chemotherapy", BIOCHEMICAL SOCIETY TRANSACTIONS, vol. 14, 1986, pages 375 - 382 |
WINTER ET AL., ANN. REV. IMMUNOL., vol. 12, 1994, pages 433 - 455 |
WOENCKHAUS, M. ET AL., JPATHOL, vol. 210, 2006, pages 192 - 204 |
WRIGHT ET AL., TIBTECH, vol. 15, 1997, pages 26 - 32 |
XIN Z. ET AL., BIOORG MED CHEM LETT, vol. 18, 2008, pages 4298 - 302 |
YAMAMOTO ET AL., CELL, vol. 22, 1980, pages 787 - 797 |
YAMANE-OHNUKI ET AL., BIOTECH. BIOENG., vol. 87, 2004, pages 614 |
YANG, Y.A. ET AL., EXP. CELL RES., vol. 279, no. 1, 2002, pages 80 - 90 |
YAZAKI; WU: "Methods in Molecular Biology", vol. 248, 2003, HUMANA PRESS, pages: 255 - 268 |
ZHAO H. ET AL., BIOORG MED CHEM LETT, vol. 17, 2007, pages 3388 - 91 |
ZHU ET AL., CANCER RESEARCH, vol. 58, no. 15, 1998, pages 3209 - 3214 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11519006B2 (en) | 2016-01-15 | 2022-12-06 | American Gene Technologies International Inc. | Methods and compositions for the activation of gamma-delta T-cells |
US11534450B2 (en) | 2016-01-15 | 2022-12-27 | American Gene Technologies International Inc. | Methods and compositions for the activation of gamma-delta T-cells |
US11970486B2 (en) | 2016-10-24 | 2024-04-30 | Janssen Pharmaceutica Nv | Compounds and uses thereof |
US11873298B2 (en) | 2017-10-24 | 2024-01-16 | Janssen Pharmaceutica Nv | Compounds and uses thereof |
US10919885B2 (en) | 2018-04-25 | 2021-02-16 | Yumanity Therapeutics, Inc. | Compounds and uses thereof |
WO2020154571A1 (en) * | 2019-01-24 | 2020-07-30 | Yumanity Therapeutics, Inc. | Compounds and uses thereof |
US12098146B2 (en) | 2019-01-24 | 2024-09-24 | Janssen Pharmaceutica Nv | Compounds and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
US20130096181A1 (en) | 2013-04-18 |
MX2014004426A (en) | 2014-07-09 |
JP2015501301A (en) | 2015-01-15 |
RU2014119426A (en) | 2015-11-20 |
WO2013056148A3 (en) | 2013-10-10 |
BR112014008590A2 (en) | 2017-10-24 |
CN103998027A (en) | 2014-08-20 |
CA2850836A1 (en) | 2013-04-18 |
EP2766000A2 (en) | 2014-08-20 |
JP6254087B2 (en) | 2017-12-27 |
US9358250B2 (en) | 2016-06-07 |
KR20140084164A (en) | 2014-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9358250B2 (en) | Methods of using SCD1 antagonists | |
US20220146517A1 (en) | Biomarkers and methods of treating pd-1 and pd-l1 related conditions | |
EP2804630B1 (en) | Methods of using fgf19 modulators | |
EP2972373B1 (en) | Biomarkers and methods of treating pd-1 and pd-l1 related conditions | |
US20180194844A1 (en) | Methods of treating fgfr3 related conditions | |
EP3146071B1 (en) | Mit biomarkers and methods using the same | |
WO2013170191A1 (en) | Methods of using antagonists of nad biosynthesis from nicotinamide | |
US20130217014A1 (en) | Methods of using cdk8 antagonists | |
US20170209444A1 (en) | Methods of treating cancer and preventing cancer drug resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12780615 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012780615 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2850836 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2014/004426 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2014535954 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147012651 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2014119426 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014008590 Country of ref document: BR |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: 112014008590 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014008590 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140409 |