WO2013054709A1 - Concentrator solar cell module, photovoltaic power generation system, and manufacturing method for concentrator solar cell module - Google Patents

Concentrator solar cell module, photovoltaic power generation system, and manufacturing method for concentrator solar cell module Download PDF

Info

Publication number
WO2013054709A1
WO2013054709A1 PCT/JP2012/075617 JP2012075617W WO2013054709A1 WO 2013054709 A1 WO2013054709 A1 WO 2013054709A1 JP 2012075617 W JP2012075617 W JP 2012075617W WO 2013054709 A1 WO2013054709 A1 WO 2013054709A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
receiver
concentrating solar
electrode pad
Prior art date
Application number
PCT/JP2012/075617
Other languages
French (fr)
Japanese (ja)
Inventor
楊 民挙
田中 正雄
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013054709A1 publication Critical patent/WO2013054709A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a concentrating solar cell module, a solar power generation system including the concentrating solar cell module, and a method for manufacturing the concentrating solar cell module.
  • FIGS. 11 to 13 An example of a conventional concentrating solar cell module is shown in FIGS. 11 to 13 (see, for example, Patent Document 1).
  • 11 is a plan view showing an example of a wiring structure of a module substrate in a conventional solar cell module
  • FIG. 12 is a cross-sectional view taken along line GG in FIG. 11
  • FIG. 13 is a cross-sectional view of a concentrating solar cell. It is.
  • the module substrate 120a is preliminarily applied in a state where the wiring member 124 connecting the solar cell elements is covered with the insulating coating 125, and the concentrating solar cell 110 is disposed. Only the exposed wiring portions 121a and 121b as connection portions are installed in a state where they are not covered.
  • an insulating sheet 122 is interposed between the module substrate 120a and the wiring material 124 in order to electrically insulate the wiring material 124 and the module substrate 120a.
  • the exposed heat radiation part 123 is arrange
  • the terminals 116c and 116d of the concentrating solar cell 110 shown in FIG. 13 and the heat radiating plate 118 are reflow soldered to the exposed wiring parts 121a and 121b and the exposed heat radiating part 123 shown in FIGS. It is connected.
  • a large number of wiring members 124 for connecting a large number of concentrating solar cells 110 (that is, the solar cell elements 111) are arranged on the module substrate 120a at regular intervals. It is necessary to lay in advance. That is, since it is necessary to perform all the operations such as the wiring process of all the electrodes and the mounting process of the concentrating solar cell on the module substrate 120a having a large size, a large work space is required and the work efficiency is poor. There was a problem.
  • the present invention was devised to solve such problems, and its purpose is to provide a concentrating solar cell module, a photovoltaic power generation system, and a concentrating solar cell having an electrode wiring structure with excellent workability during manufacturing. It is to provide a method for manufacturing a module.
  • a concentrating solar cell module includes a plurality of solar cell elements and an elongated shape in which each of the solar cell elements is placed in one row with a constant interval.
  • With a plurality of wiring members arranged in a line along the longitudinal direction, with a positive electrode pad portion at one end of the wiring material and a negative electrode pad portion at the other end. are provided, and a positive electrode terminal and a negative electrode terminal of the solar cell element are connected to the positive electrode pad portion and the negative electrode pad portion, respectively, to constitute a solar cell element mounting portion. That.
  • the solar cell element can be mounted in a state of being electrically connected to the module substrate simply by mounting the receiver substrate on which the solar cell element is mounted on the module substrate. Mounting work becomes easy. Moreover, the heat dissipation effect by heat conduction can be expected by using an integral receiver substrate.
  • the wiring member has a configuration in which a bent portion is formed at the center in the longitudinal direction.
  • the bent portion By forming the bent portion in this way, even if the wiring material expands and contracts due to solar heat, it can be absorbed by the bent portion, so that the wiring material does not break.
  • the receiver base may have a configuration in which notched portions are formed with a predetermined interval in the longitudinal direction. By forming the notch in the receiver base, thermal expansion can be prevented.
  • the plurality of receiver substrates may be electrically connected at one end thereof to each other by a wiring connecting material.
  • a wiring connecting material it is possible to easily create a module substrate in which the solar cell elements are connected in series by simply placing the receiver substrate and the wiring connecting material on the module substrate.
  • positioning means for placing the receiver substrate at a predetermined position of the module substrate may be provided.
  • the receiver substrate can be accurately placed at a predetermined position on the module substrate.
  • This positioning means may be constituted by positioning pins provided on the module substrate and positioning holes provided on the receiver substrate. According to the above configuration, the receiver substrate can be accurately placed at a predetermined position of the module substrate simply by inserting the positioning hole of the receiver base into the positioning pin of the module substrate.
  • a configuration in which a thermally conductive insulating layer is provided between the receiver substrate and the wiring member may be employed. According to the above configuration, not only electrical insulation, but also heat generated by energizing the wiring material can be radiated from the receiver substrate, and further from the receiver substrate to the module substrate, via the insulating layer. Bending or disconnection due to thermal expansion can be prevented.
  • the wiring material is covered with a first insulating protective layer, and the first insulating protective layer is the positive electrode pad portion of the wiring material.
  • a connection opening may be provided above the minus electrode pad.
  • the second insulating protective layer that is transparent on the whole including the opening for connection is formed on the first insulating protective layer.
  • an optical member having a plurality of condensing lens portions for concentrating sunlight on each of the solar cell elements is disposed on the module substrate. It is preferable to have a configuration as described above. According to the said structure, a high photoelectric conversion rate is realizable with a small light-receiving area by condensing sunlight to each solar cell element by each condensing lens part.
  • the photovoltaic power generation system of the present invention is characterized by a configuration in which a plurality of concentrating solar cell modules having the above-described configurations are arranged on a gantry and each solar cell module is connected by an electric cable. Yes.
  • a plurality of wiring members in which a plus electrode pad portion is formed at one end and a minus electrode pad portion is formed at the other end, A step of placing the plus electrode pad portion and the minus electrode pad portion facing each other on a long receiver base, and a step of placing a solar cell element on the plus electrode pad portion and the minus electrode pad portion; A step of fabricating a receiver substrate by connecting the electrode terminal and the negative electrode terminal and mounting the solar cell element on the positive electrode pad portion; and a plurality of the receiver substrates on the module substrate at a constant interval.
  • a parallel mounting step a step of electrically connecting one ends of the adjacent receiver boards with a wiring connecting member, and an upper part of the module board.
  • The is characterized in that it comprises a step of assembling integrally, the sunlight by a plurality of condenser lens section frame member by disposing the optical member having a for focusing on each of the solar cell element.
  • the solar cell element can be mounted in an electrically connected state on the module substrate simply by placing the receiver substrate on which the solar cell element is mounted on the module substrate.
  • the manufacturing operation of the battery module becomes easy.
  • a plurality of receiver boards in which a plurality of solar cell elements are connected in series in advance are prepared, the receiver boards are placed in parallel on the module board, and adjacent one ends are wired together.
  • a concentrating solar cell module in which all solar cell elements are mounted on a receiver substrate can be produced simply by connecting with a connecting material. That is, a concentrating solar cell module having an electrode wiring structure excellent in workability at the time of manufacture can be produced.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. It is an expanded sectional view of the B section of FIG. It is the top view which looked at the lens board from the lower surface side (surface side facing a solar cell element). It is a top view of the module board
  • (A) is a plan view showing the configuration of one receiver substrate
  • (b) is an enlarged plan view showing a part of FIG. (A)
  • D) is an enlarged plan view showing a portion D of FIG. (A)
  • (e) is an enlarged view of an E portion of FIG. (A).
  • FIG. 1 is an external perspective view showing the overall configuration of the concentrating solar cell module of the present invention
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is an enlarged cross-sectional view of a portion B in FIG.
  • the concentrating solar cell module 1 is roughly classified into a module substrate 10 on which a plurality of solar cell elements 60 are mounted, and an upper portion of the module substrate 10.
  • a lens plate (optical member) 30 provided with a plurality of condensing lens portions 31 for condensing sunlight, and the module substrate 10 and the lens plate 30 are arranged so as to be opposed to each other so as to surround the entire circumference. It is comprised with the frame frame 50 supported integrally.
  • the frame frame 50 is composed of an upper frame member, a lower frame member, a left frame member, and a right frame member. These frame members can be combined into a square, and the butted portion of each corner can be connected with a screw or the like. Since such a structure is a conventionally well-known general structure as a frame frame of a solar cell module, detailed description is omitted.
  • FIG. 4 is a plan view of the lens plate 30 viewed from the lower surface side (that is, the surface side facing the solar cell element 60).
  • the condensing lens portion 31 formed on the lens plate 30 is a Fresnel lens in this example, and has a configuration in which, for example, eight Fresnel lenses are arranged in the vertical direction and five in the horizontal direction.
  • FIG. 5 is a plan view of the module substrate 10 with the lens plate 30 removed.
  • the module substrate 10 is composed of a long receiver substrate 11 in which eight solar cell elements 60 are placed in a row at a constant interval W1 in the longitudinal direction (vertical direction in the figure). Five are arranged in parallel with a certain interval W1 in the direction, and one end of the adjacent receiver substrate 11 is electrically connected by the wiring connecting member 25. That is, the module substrate 10 in which eight solar cell elements 60 are arranged in the vertical direction and five in the horizontal direction facing the condenser lens portion 31 provided on the lens plate 30 is manufactured. Moreover, all the solar cell elements 60 are connected in series by connecting all the receiver boards 11 in series via the wiring connection material 25.
  • FIG. 6A is a plan view showing the configuration of one receiver substrate 11, and FIG. 6B is an enlarged plan view showing a part (one wiring member portion) of FIG. 6A.
  • 6 (c) is a plan view showing a part (electrode part) of FIG. 6 (b) further enlarged, and
  • FIG. 6 (d) is a plan view showing an enlarged portion D of FIG. 6 (a).
  • FIG. 6 and FIG. 6E are plan views showing the E portion of FIG.
  • the receiver substrate 11 has a long receiver base 12 and a plurality of receiver bases 12 arranged in a line along the longitudinal direction with the ends facing each other on the receiver base 12 (in this example, solar cell elements). 7 wiring members (conductors) 13 which is one less than 60 (8). A thermally conductive insulating layer 18 is provided between the receiver base 12 and the wiring member 13. By providing the heat conductive insulating layer 18, not only electrical insulation, but also heat generated by energization of the wiring material 13 is transmitted via the insulating layer 18 to the receiver base 12 and further from the receiver base 12 to the module substrate 10. The wiring member 13 can be prevented from being bent or disconnected due to thermal expansion.
  • the receiver base 12 can be any of a stainless plate, a glass plate, a copper plate, an aluminum plate, and an aluminum alloy plate.
  • the insulating layer 18 is comprised by the heat conductive insulating film which mixed the heat conductive material (thermal conductive filler) in resin.
  • the resin silicon resin, fluorine resin, polyimide resin, polyethylene resin / terephthalate (PET) resin, or the like can be used.
  • PET polyethylene resin / terephthalate
  • the thermally conductive filler that is an additive, any one of silicon nitride, aluminum nitride, alumina, magnesium oxide, boron nitride, beryllium oxide, silica, or a combination thereof can be used.
  • the wiring member 13 can be a flat copper wire formed by punching a copper plate.
  • the receiver base 12 can also be formed by punching, like the wiring member 13. However, the formation of the wiring member 13 and the receiver base 12 is not limited to punching.
  • one wiring member 13 has a positive electrode pad portion 14 formed at one end portion and a negative electrode pad portion 15 opened in a bifurcated shape at the other end portion. ing. And as shown in FIG.6 (c), as for the edge parts which the wiring material 13 adjacent to a longitudinal direction opposes, the plus electrode pad part 14 of one wiring material 13 is the forked shape of the other wiring material 13.
  • the negative electrode pad portions 15 are arranged to face each other in an insulated state (with a certain gap).
  • the positive electrode pad portion small piece 14a and the negative electrode pad portion small piece 15a are arranged to face each other at the end portions.
  • the solar cell element 60 can be mounted in advance on the ends of the wiring member 13 located at both ends of the receiver substrate 11.
  • the positive electrode terminal (not shown) on the bottom surface of the solar cell element 60 becomes the positive electrode pad portion 14.
  • the negative electrode terminal (not shown) of the solar cell element 60 is connected to the negative electrode pad portion 15 by the wire 16 to constitute the solar cell element mounting portion 17. Further, the entire solar cell element mounting portion 17 is completely covered with the first insulating protective layer 19 and the transparent second insulating protective layer 20. Thereby, the solar cell element 60 and the wire 16 can be reliably protected.
  • the wiring member 13 is formed with a substantially semicircular arc-shaped bent portion 13a at the center in the longitudinal direction.
  • the bent portion 13a even if the wiring member 13 expands and contracts due to solar heat, it can be absorbed by the bent portion 13a, so that the electrode wiring structure of the solar cell element mounting portion 17 is not affected. It is possible to prevent disconnection or cracking of the wiring member 13 itself.
  • the receiver base 12 is formed with a pair of notches 12a facing each other in the width direction at a plurality of locations having predetermined intervals in the longitudinal direction.
  • the formation position of the notch portion 12a matches the position of the bent portion 13a of the wiring member 13 in this embodiment, but does not necessarily need to match. That is, each may be formed at a position slightly shifted in the longitudinal direction.
  • the notch 12 a formed in the receiver base 12 is provided as a thermal expansion section in the longitudinal direction of the receiver base 12.
  • the solar cell elements 60 arranged on both ends of the notch 12a are irradiated with the condensed sunlight and generate heat, and a large thermal stress is applied to the central portion between the adjacent solar cell elements 60 due to the generated heat.
  • the notch 12a becomes a thermal expansion section in the longitudinal direction to alleviate this thermal stress. That is, the receiver base 12 can have a function of absorbing thermal expansion.
  • FIG. 7 shows a state in which the receiver substrate 11 is mounted on the module substrate 10.
  • positioning means is provided between the module substrate 10 and the receiver substrate 11.
  • the positioning means includes positioning pins 10 a provided on the module substrate 10 and positioning holes 12 b provided on the receiver base 12 of the receiver substrate 11.
  • the positioning pins 10a are provided at two locations in the vicinity of both ends in the longitudinal direction along the mounting position of each receiver substrate 11 on the module substrate 10, and a total of 10 positioning holes 12b are opposed to the positioning pins 10a.
  • the receiver base 12 is provided at two locations near both ends in the longitudinal direction. According to such a configuration, the receiver base body 12 can be obtained simply by inserting the two positioning holes 12 b facing the longitudinal direction of the receiver base 12 into the two positioning pins 10 a facing the longitudinal direction of the module substrate 10. That is, the receiver substrate 11 can be accurately placed at a predetermined position (position shown in FIG. 5) of the module substrate 10.
  • the insulating layer 18 is disposed on the upper surface of the elongated receiver base 12 over the entire length in the longitudinal direction.
  • the insulating layer 18 is a thermally conductive insulating film obtained by adding boron nitride (thermoconductive filler) to polyimide resin.
  • the seven wiring members 13 are placed in a row on the insulating layer 18 of the receiver base 12 with the positive electrode pad portion 14 and the negative electrode pad portion 15 facing each other.
  • the wiring member 13 at the end portion is opposed to the outer end portion so as to face the plus electrode pad portion small piece 14a or the minus electrode pad.
  • the small pieces 15a are arranged to face each other.
  • the wiring material 13 is covered with a first insulating protective layer 19 which is a protective film of a fluorine resist.
  • a first insulating protective layer 19 which is a protective film of a fluorine resist.
  • the first insulating protective layer 19 includes a plus electrode pad portion 14 (including the plus electrode pad portion small piece 14a) and a minus electrode pad portion 15 (the minus electrode pad portion) of the wiring member 13. Connection openings 19a and 19b are provided at the top of the small piece 15a). In other words, except for the plus electrode pad portion 14 (including the plus electrode pad portion small piece 14a) and the minus electrode pad portion 15 (including the minus electrode pad portion small piece 15a), the portion in contact with the atmosphere is protected.
  • the receiver base 12 on which the insulating layer 18, the wiring member 13, and the first insulating protective layer 19 are sequentially placed is inserted into a laminating apparatus (not shown) and maintained at a pressurized state, for example, at 120 ° C. Heat treatment is performed. Thereby, the elongate receiver board
  • solder material is laid on the plus electrode pad portion 14 (including the plus electrode pad portion small piece 14a) of the wiring member 13 of the receiver substrate 11 manufactured in this way through the connection opening portion 10a, and the solder material is formed thereon.
  • the solar cell element 60 is mounted and heated and melted in a reflow furnace, whereby a positive electrode terminal (not shown) on the bottom surface of the solar cell element 60 is attached to the positive electrode pad portion 14 (including the positive electrode pad portion small pieces 14a). Connect with solder.
  • the negative electrode terminal (not shown) of the solar cell element 60 and the negative electrode pad portion 15 (including the negative electrode pad portion small piece 15a) are connected to a gold wire (by wire bonding) via the connection opening 19b.
  • Wires 16 are connected (see FIG. 3).
  • the solar cell element mounting part 17 is comprised.
  • a bypass diode is connected in parallel with the solar cell element 60.
  • the receiver substrate 11 having the electrode structure shown in FIG. 3 is manufactured by covering the first insulating protective layer 19 with a transparent second insulating protective layer 20 to cover the whole.
  • the five receiver boards 11 produced in this way are placed on the module board 10 in parallel at a constant interval. That is, as shown in FIG. 7, two positioning holes 12 b facing each other in the longitudinal direction of each receiver substrate 11 are inserted into two positioning pins 10 a facing each other in the longitudinal direction of the module substrate 10. To do. At this time, the receiver substrate 11 is adhered and fixed to a predetermined position of the module substrate 10 by thinly applying a heat conductive adhesive on the back surface side of the receiver substrate 11 (that is, the back surface side of the receiver base 12). Secure with screws or rivets (not shown). Note that a metal material is used for the module substrate 10 in terms of strength.
  • the positive electrode pad small pieces 14a and the negative electrode pad small pieces 15a facing each other at one end of the adjacent receiver substrate 11 are connected to each other by a wiring connecting member 25 such as a lead wire. .
  • a wiring connecting member 25 such as a lead wire.
  • the lens plate 31 provided with the condensing lens portion 31 is disposed oppositely, and integrally assembled so as to surround the entire circumference with the frame frame 50,
  • the concentrating solar cell module 1 shown in FIGS. 1 and 2 is produced.
  • a plurality of receiver substrates 11 on which the solar cell elements 60 are mounted are placed in parallel on the module substrate 10, and the adjacent one ends are sequentially connected by the wiring connecting member 25.
  • the concentrating solar cell module 1 in which the individual solar cell elements 60 are connected in series can be easily manufactured.
  • a plurality of the concentrating solar cell modules 1 are placed on a gantry 80 having an automatic solar tracking function, and each concentrating solar cell module 1 is connected with an electric cable (not shown).
  • a solar power generation system can be constructed by connecting.
  • the solar power generation system is capable of mounting a total of 28 concentrating solar cell modules 1, four vertically and seven horizontally on the gantry 80.
  • This solar power generation system is mounted on a tracking drive system 81 that can be driven so that the light receiving surface always faces the sun in accordance with the movement of the sun.
  • the tracking drive system 81 includes two separate tracking drive devices, an azimuth axis for directing the module light-receiving surface toward the sun's azimuth and a tilt axis for tilting the module light-receiving surface at the sun's altitude. Can be tracked with high accuracy.
  • the module is installed so that the tilting axis that tilts to the latitude angle every day according to the solar altitude that varies from day to day, and the concentrating photovoltaic module surface is parallel to the tilting axis direction.
  • a system composed of a two-axis drive device in which the module is rotated around the tilt axis is also common, and such a system may be used.
  • a motor and a speed reducer are used to rotate a gear at a predetermined rotational speed to drive it in a predetermined direction, or a hydraulic pump and a hydraulic cylinder are used to achieve a predetermined length.
  • a method of driving in a predetermined direction by adjusting the cylinder and either method may be used.
  • a solar orbit is calculated in advance by a clock mounted in the control system so that the concentrating solar cell module 1 faces in the direction.
  • a control method, a method of attaching a solar sensor such as a photodiode to the system, and monitoring and controlling the sun direction as needed are generally used, and either method may be used.
  • the present invention is a concentrating solar cell module and a photovoltaic power generation system having an electrode wiring structure excellent in workability at the time of manufacturing, and a manufacturing method of the concentrating solar cell module. large.
  • SYMBOLS 1 Condensing type solar cell module 10 Module board

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A concentrator solar cell module is provided with: an elongated receiver substrate (11) having a plurality of solar cell elements (60) arranged thereon in a single line at predetermined intervals (W1); and a module substrate (10) having a plurality of the receiver substrates (11) arranged thereon in parallel at the predetermined intervals (W1). The receiver substrates (11) each comprise an elongated receiver base and a plurality of sections of a wiring member (13) arranged upon the receiver base in a single line along the lengthwise direction so that the adjacent ends face each other. A positive electrode pad is provided to one end of each section of the wiring member (13) and a negative electrode pad is provided to the other end. The positive electrode terminals of the solar cell elements (60) are connected to the positive electrode pads, and the negative electrode terminals of the solar cell elements (60) are connected to the negative electrode pads.

Description

集光型太陽電池モジュール及び太陽光発電システム並びに集光型太陽電池モジュールの製造方法Concentrating solar cell module, solar power generation system, and manufacturing method of concentrating solar cell module
 本発明は、集光型太陽電池モジュール及びこれを搭載した太陽光発電システム並びに集光型太陽電池モジュールの製造方法に関する。 The present invention relates to a concentrating solar cell module, a solar power generation system including the concentrating solar cell module, and a method for manufacturing the concentrating solar cell module.
 従来の集光型太陽電池モジュールの一例を図11乃至図13に示す(例えば、特許文献1参照)。図11は、従来の太陽電池モジュールにおけるモジュール基板の配線構造の一例を示す平面図、図12は、図11のG-G線に沿う断面図、図13は、集光型太陽電池の断面図である。 An example of a conventional concentrating solar cell module is shown in FIGS. 11 to 13 (see, for example, Patent Document 1). 11 is a plan view showing an example of a wiring structure of a module substrate in a conventional solar cell module, FIG. 12 is a cross-sectional view taken along line GG in FIG. 11, and FIG. 13 is a cross-sectional view of a concentrating solar cell. It is.
 この集光型太陽電池モジュールは、モジュール基板120aに、太陽電池素子間を接続する配線材124が絶縁被膜125により被覆された状態で予め施されており、集光型太陽電池110が配置される接続部としての露出配線部121a,121bだけが被覆されていない状態で設置された構成とされている。また、配線材124とモジュール基板120aとを電気的に絶縁するために、モジュール基板120aと配線材124との間に、絶縁シート122が介在されている。 In this concentrating solar cell module, the module substrate 120a is preliminarily applied in a state where the wiring member 124 connecting the solar cell elements is covered with the insulating coating 125, and the concentrating solar cell 110 is disposed. Only the exposed wiring portions 121a and 121b as connection portions are installed in a state where they are not covered. In addition, an insulating sheet 122 is interposed between the module substrate 120a and the wiring material 124 in order to electrically insulate the wiring material 124 and the module substrate 120a.
 そして、モジュール基板120aの露出配線部121a,121bに挟まれた位置に、露出放熱部123が配置されており、露出放熱部123は、集光型太陽電池110をモジュール基板120aに取り付けたときには、太陽電池素子111直下に位置し、太陽電池素子111の発電に伴う熱を外部に放熱するために、太陽電池素子111直下の放熱板118と接続されている。 And the exposed heat radiation part 123 is arrange | positioned in the position pinched | interposed between the exposed wiring parts 121a and 121b of the module board | substrate 120a, and when the exposure heat radiation part 123 attaches the concentrating solar cell 110 to the module board | substrate 120a, It is located immediately below the solar cell element 111 and is connected to a heat radiating plate 118 directly below the solar cell element 111 in order to dissipate heat generated by the power generation of the solar cell element 111 to the outside.
 そして、図11及び図12に示した露出配線部121a,121b、及び露出放熱部123に、図13に示す集光型太陽電池110の端子116c,116d、及び放熱板118がそれぞれリフローはんだ付けにより接続されている。 The terminals 116c and 116d of the concentrating solar cell 110 shown in FIG. 13 and the heat radiating plate 118 are reflow soldered to the exposed wiring parts 121a and 121b and the exposed heat radiating part 123 shown in FIGS. It is connected.
 この後、図示は省略しているが、集光型太陽電池110をモジュール基板120aに接続した状態で、集光型太陽電池110の周囲、及び集光型太陽電池110とモジュール基板120aの接続部分の空間とに樹脂を充填した構造となっている。 Thereafter, although not shown in the drawing, in the state where the concentrating solar cell 110 is connected to the module substrate 120a, the periphery of the concentrating solar cell 110 and the connection portion between the concentrating solar cell 110 and the module substrate 120a. The space is filled with resin.
特開2011-138970号公報JP 2011-138970 A
 特許文献1記載の集光型太陽電池モジュールでは、モジュール基板120a上に、多数の集光型太陽電池110(すなわち、太陽電池素子111)を接続するための多数の配線材124を、一定の間隔を存して予め敷設しておく必要がある。すなわち、寸法の大きなモジュール基板120a上で、全電極の配線工程や、集光型太陽電池の実装工程等、全ての作業を行う必要があるため、広い作業スペースが必要となり、作業効率が悪いといった問題があった。 In the concentrating solar cell module described in Patent Document 1, a large number of wiring members 124 for connecting a large number of concentrating solar cells 110 (that is, the solar cell elements 111) are arranged on the module substrate 120a at regular intervals. It is necessary to lay in advance. That is, since it is necessary to perform all the operations such as the wiring process of all the electrodes and the mounting process of the concentrating solar cell on the module substrate 120a having a large size, a large work space is required and the work efficiency is poor. There was a problem.
 本発明はかかる問題点を解決すべく創案されたもので、その目的は、製造時の作業性に優れた電極配線構造を有する集光型太陽電池モジュール及び太陽光発電システム並びに集光型太陽電池モジュールの製造方法を提供することにある。 The present invention was devised to solve such problems, and its purpose is to provide a concentrating solar cell module, a photovoltaic power generation system, and a concentrating solar cell having an electrode wiring structure with excellent workability during manufacturing. It is to provide a method for manufacturing a module.
 上記課題を解決するため、本発明の集光型太陽電池モジュールは、複数個の太陽電池素子と、前記各太陽電池素子が一定の間隔を存して1列に載置された長尺状のレシーバ基板と、前記レシーバ基板が一定の間隔を存して複数本並行に載置されたモジュール基板とを備え、前記レシーバ基板は、長尺状のレシーバ基体と、前記レシーバ基体上に端部同士を対向させた状態で長手方向に沿って1列に配置された複数本の配線材とからなり、前記配線材の一方の端部にプラス電極パッド部が、他方の端部にマイナス電極パッド部がそれぞれ設けられ、前記プラス電極パッド部及び前記マイナス電極パッド部に前記太陽電池素子のプラス電極端子及びマイナス電極端子がそれぞれ接続されて太陽電池素子搭載部が構成されていることを特徴としている。 In order to solve the above-described problems, a concentrating solar cell module according to the present invention includes a plurality of solar cell elements and an elongated shape in which each of the solar cell elements is placed in one row with a constant interval. A receiver substrate; and a module substrate on which a plurality of the receiver substrates are placed in parallel with a certain interval, the receiver substrate having an elongated receiver base and end portions on the receiver base With a plurality of wiring members arranged in a line along the longitudinal direction, with a positive electrode pad portion at one end of the wiring material and a negative electrode pad portion at the other end. Are provided, and a positive electrode terminal and a negative electrode terminal of the solar cell element are connected to the positive electrode pad portion and the negative electrode pad portion, respectively, to constitute a solar cell element mounting portion. That.
 上記構成によれば、太陽電池素子を搭載したレシーバ基板をモジュール基板に搭載するだけで太陽電池素子をモジュール基板上に電気的に接続された状態で搭載できるので、太陽電池素子のモジュール基板への搭載作業が容易となる。また、一体のレシーバ基板を用いることで熱伝導による放熱効果を期待することができる。 According to the above configuration, the solar cell element can be mounted in a state of being electrically connected to the module substrate simply by mounting the receiver substrate on which the solar cell element is mounted on the module substrate. Mounting work becomes easy. Moreover, the heat dissipation effect by heat conduction can be expected by using an integral receiver substrate.
 また、本発明の集光型太陽電池モジュールによれば、前記配線材の長手方向中央部に屈曲部が形成された構成としている。 Moreover, according to the concentrating solar cell module of the present invention, the wiring member has a configuration in which a bent portion is formed at the center in the longitudinal direction.
 このように屈曲部を形成することで、太陽熱により配線材が伸縮しても、これを屈曲部で吸収できるので、配線材が断線することがない。 By forming the bent portion in this way, even if the wiring material expands and contracts due to solar heat, it can be absorbed by the bent portion, so that the wiring material does not break.
 また、本発明の集光型太陽電池モジュールによれば、前記レシーバ基体には、長手方向に所定の間隔を存して切欠き部が形成された構成としてもよい。レシーバ基体に切欠き部を形成することで、熱膨張を防止することができる。 Further, according to the concentrating solar cell module of the present invention, the receiver base may have a configuration in which notched portions are formed with a predetermined interval in the longitudinal direction. By forming the notch in the receiver base, thermal expansion can be prevented.
 また、本発明の集光型太陽電池モジュールによれば、前記複数本のレシーバ基板は、隣接する一方の端部同士が配線連結材で電気的に接続されていてもよい。この構成では、モジュール基板上に、レシーバ基板と配線連結材とを載置するだけで、各太陽電池素子が直列に接続されたモジュール基板を容易に作成することができる。 Further, according to the concentrating solar cell module of the present invention, the plurality of receiver substrates may be electrically connected at one end thereof to each other by a wiring connecting material. In this configuration, it is possible to easily create a module substrate in which the solar cell elements are connected in series by simply placing the receiver substrate and the wiring connecting material on the module substrate.
 また、本発明の集光型太陽電池モジュールによれば、前記レシーバ基板を前記モジュール基板の所定位置に載置する位置決め手段が設けられていてもよい。位置決め手段を設けることにより、レシーバ基板をモジュール基板の所定位置に正確に載置することができる。 Further, according to the concentrating solar cell module of the present invention, positioning means for placing the receiver substrate at a predetermined position of the module substrate may be provided. By providing the positioning means, the receiver substrate can be accurately placed at a predetermined position on the module substrate.
 この位置決め手段は、前記モジュール基板に設けられた位置決めピンと前記レシーバ基板に設けられた位置決め穴とで構成されていてもよい。上記構成によれば、モジュール基板の位置決めピンにレシーバ基体の位置決め穴を挿入するだけで、レシーバ基板をモジュール基板の所定位置に正確に載置することができる。 This positioning means may be constituted by positioning pins provided on the module substrate and positioning holes provided on the receiver substrate. According to the above configuration, the receiver substrate can be accurately placed at a predetermined position of the module substrate simply by inserting the positioning hole of the receiver base into the positioning pin of the module substrate.
 また、本発明の集光型太陽電池モジュールによれば、前記レシーバ基板と前記配線材との間に熱導電性の絶縁層が設けられた構成としてもよい。上記構成によれば、電気的な絶縁だけでなく、配線材の通電によって発生した熱を、絶縁層を介してレシーバ基板、さらにはレシーバ基板からモジュール基板へと放熱することができ、配線部材の熱膨張による曲がりや断線等を防止することができる。 Further, according to the concentrating solar cell module of the present invention, a configuration in which a thermally conductive insulating layer is provided between the receiver substrate and the wiring member may be employed. According to the above configuration, not only electrical insulation, but also heat generated by energizing the wiring material can be radiated from the receiver substrate, and further from the receiver substrate to the module substrate, via the insulating layer. Bending or disconnection due to thermal expansion can be prevented.
 また、本発明の集光型太陽電池モジュールによれば、前記配線材は第1の絶縁保護層によって被覆されているとともに、前記第1の絶縁保護層は、前記配線材の前記プラス電極パッド部及び前記マイナス電極パッド部の上部に接続用開口部が設けられていてもよい。このように、プラス電極パッド部及びマイナス電極パッド部の上部に接続用開口部を設けることで、プラス電極パッド部上にプラス電極端子を接続した状態で搭載された太陽電池素子のマイナス電極端子とマイナス電極パッド部とを、接続用開口部を介してワイヤボンド等により接続することができる。 Moreover, according to the concentrating solar cell module of the present invention, the wiring material is covered with a first insulating protective layer, and the first insulating protective layer is the positive electrode pad portion of the wiring material. In addition, a connection opening may be provided above the minus electrode pad. Thus, by providing the connection opening on the upper part of the plus electrode pad part and the minus electrode pad part, the minus electrode terminal of the solar cell element mounted with the plus electrode terminal connected on the plus electrode pad part and The negative electrode pad portion can be connected by wire bonding or the like through the connection opening.
 また、本発明の集光型太陽電池モジュールによれば、前記第1の絶縁保護層上には、前記接続用開口部を含む全体に透明な第2の絶縁保護層が形成されている。第1の絶縁保護層上の全体に透明な第2の絶縁保護層を設けることで、太陽電池素子やワイヤを確実に保護することができる。 Further, according to the concentrating solar cell module of the present invention, the second insulating protective layer that is transparent on the whole including the opening for connection is formed on the first insulating protective layer. By providing a transparent second insulating protective layer on the entire first insulating protective layer, the solar cell element and the wire can be reliably protected.
 また、本発明の集光型太陽電池モジュールによれば、前記モジュール基板の上部に、前記各太陽電池素子のそれぞれに太陽光を集光する複数個の集光レンズ部を備えた光学部材が配置された構成とすることが好ましい。上記構成によれば、各集光レンズ部で各太陽電池素子に太陽光を集光することにより、少ない受光面積で高い光電変換率を実現することができる。 Moreover, according to the concentrating solar cell module of the present invention, an optical member having a plurality of condensing lens portions for concentrating sunlight on each of the solar cell elements is disposed on the module substrate. It is preferable to have a configuration as described above. According to the said structure, a high photoelectric conversion rate is realizable with a small light-receiving area by condensing sunlight to each solar cell element by each condensing lens part.
 また、本発明の太陽光発電システムは、上記各構成の集光型太陽電池モジュールが架台上に複数個配置され、各太陽電池モジュールが電気ケーブルで接続された構成とすることによって特徴付けられている。 Further, the photovoltaic power generation system of the present invention is characterized by a configuration in which a plurality of concentrating solar cell modules having the above-described configurations are arranged on a gantry and each solar cell module is connected by an electric cable. Yes.
 また、本発明の集光型太陽電池モジュールの製造方法は、一方の端部にプラス電極パッド部が形成され、他方の端部にマイナス電極パッド部が形成された複数本の配線材を、前記プラス電極パッド部と前記マイナス電極パッド部とを対向させて、長尺状のレシーバ基体上に1列に載置する工程と、前記プラス電極パッド部及び前記マイナス電極パッド部に太陽電池素子のプラス電極端子及びマイナス電極端子をそれぞれ接続して、前記太陽電池素子を前記プラス電極パッド部に搭載することによりレシーバ基板を作製する工程と、複数本の前記レシーバ基板をモジュール基板上に一定の間隔を存して並行に載置する工程と、隣接する前記レシーバ基板の一方の端部同士を配線連結材で電気的に接続する工程と、前記モジュール基板の上部に、前記各太陽電池素子のそれぞれに太陽光を集光する複数の集光レンズ部を備えた光学部材を配置して枠フレームにより一体的に組み付ける工程と、を含むことを特徴としている。 Further, in the method for manufacturing a concentrating solar cell module according to the present invention, a plurality of wiring members in which a plus electrode pad portion is formed at one end and a minus electrode pad portion is formed at the other end, A step of placing the plus electrode pad portion and the minus electrode pad portion facing each other on a long receiver base, and a step of placing a solar cell element on the plus electrode pad portion and the minus electrode pad portion; A step of fabricating a receiver substrate by connecting the electrode terminal and the negative electrode terminal and mounting the solar cell element on the positive electrode pad portion; and a plurality of the receiver substrates on the module substrate at a constant interval. A parallel mounting step, a step of electrically connecting one ends of the adjacent receiver boards with a wiring connecting member, and an upper part of the module board. The is characterized in that it comprises a step of assembling integrally, the sunlight by a plurality of condenser lens section frame member by disposing the optical member having a for focusing on each of the solar cell element.
 本発明の製造方法によれば、太陽電池素子を搭載したレシーバ基板をモジュール基板に載置するだけで太陽電池素子をモジュール基板上に電気的に接続された状態で搭載できるので、集光型太陽電池モジュールの製造作業が容易となる。 According to the manufacturing method of the present invention, the solar cell element can be mounted in an electrically connected state on the module substrate simply by placing the receiver substrate on which the solar cell element is mounted on the module substrate. The manufacturing operation of the battery module becomes easy.
 本発明によれば、複数個の太陽電池素子を予め直列に接続した複数本のレシーバ基板を用意し、このレシーバ基板をモジュール基板上に並行に載置し、隣接する一方の端部同士を配線連結材で接続するだけで、全ての太陽電池素子をレシーバ基板上に搭載した集光型太陽電池モジュールを作製することができる。すなわち、製造時の作業性に優れた電極配線構造を有する集光型太陽電池モジュールを作製することができる。 According to the present invention, a plurality of receiver boards in which a plurality of solar cell elements are connected in series in advance are prepared, the receiver boards are placed in parallel on the module board, and adjacent one ends are wired together. A concentrating solar cell module in which all solar cell elements are mounted on a receiver substrate can be produced simply by connecting with a connecting material. That is, a concentrating solar cell module having an electrode wiring structure excellent in workability at the time of manufacture can be produced.
本発明の集光型太陽電池モジュールの実施形態の全体構成を示す外観斜視図である。It is an external appearance perspective view which shows the whole structure of embodiment of the concentrating solar cell module of this invention. 図1のA-A線に沿う断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 図2のB部分の拡大断面図である。It is an expanded sectional view of the B section of FIG. レンズ板を下面側(太陽電池素子と対向する面側)から見た平面図である。It is the top view which looked at the lens board from the lower surface side (surface side facing a solar cell element). レンズ板を取り外した状態のモジュール基板の平面図である。It is a top view of the module board | substrate of the state which removed the lens plate. (a)は、1本のレシーバ基板の構成を示す平面図、(b)は、同図(a)の一部を拡大して示す平面図、(c)は、同図(b)の一部(電極部)をさらに拡大して示す平面図、(d)は、同図(a)のD部分を拡大して示す平面図、(e)は、同図(a)のE部分を拡大して示す平面図である。(A) is a plan view showing the configuration of one receiver substrate, (b) is an enlarged plan view showing a part of FIG. (A), and (c) is one part of FIG. (D) is an enlarged plan view showing a portion D of FIG. (A), and (e) is an enlarged view of an E portion of FIG. (A). It is a top view shown. レシーバ基板をモジュール基板に搭載する様子を示す分解斜視図である。It is a disassembled perspective view which shows a mode that a receiver board | substrate is mounted in a module board. 本発明の集光型太陽電池モジュールの製造方法の実施形態における製造工程の一工程を示す電極部分の断面図である。It is sectional drawing of the electrode part which shows 1 process of the manufacturing process in embodiment of the manufacturing method of the concentrating solar cell module of this invention. 隣接するレシーバ基板の一方の端部の配線接続構造を示す概略平面図である。It is a schematic plan view which shows the wiring connection structure of one edge part of an adjacent receiver board | substrate. 本発明の太陽光発電システムの実施形態の外観構成を示す斜視図である。It is a perspective view which shows the external appearance structure of embodiment of the solar energy power generation system of this invention. 従来の太陽電池モジュールにおけるモジュール基板の配線構造の一例を示す平面図である。It is a top view which shows an example of the wiring structure of the module board | substrate in the conventional solar cell module. 図11のG-G線に沿う断面図である。It is sectional drawing which follows the GG line of FIG. 従来の集光型太陽電池の断面図である。It is sectional drawing of the conventional concentrating solar cell.
 以下、本発明の実施の形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の集光型太陽電池モジュールの全体構成を示す外観斜視図、図2は、図1のA-A線に沿う断面図である。図3は、図2のB部分の拡大断面図である。 FIG. 1 is an external perspective view showing the overall configuration of the concentrating solar cell module of the present invention, and FIG. 2 is a cross-sectional view taken along the line AA in FIG. FIG. 3 is an enlarged cross-sectional view of a portion B in FIG.
 本実施形態の集光型太陽電池モジュール1は、大別すると、複数個の太陽電池素子60が搭載されたモジュール基板10と、このモジュール基板10の上部に配置され、各太陽電池素子60にそれぞれ太陽光を集光する複数の集光レンズ部31を備えたレンズ板(光学部材)30と、モジュール基板10とレンズ板30とを対向配置した状態で、その全周を囲むように保持して一体に支持する枠フレーム50とで構成されている。 The concentrating solar cell module 1 according to the present embodiment is roughly classified into a module substrate 10 on which a plurality of solar cell elements 60 are mounted, and an upper portion of the module substrate 10. A lens plate (optical member) 30 provided with a plurality of condensing lens portions 31 for condensing sunlight, and the module substrate 10 and the lens plate 30 are arranged so as to be opposed to each other so as to surround the entire circumference. It is comprised with the frame frame 50 supported integrally.
 枠フレーム50は、上枠部材、下枠部材、左枠部材、右枠部材で構成され、これら枠部材を四角に組み合わせ、各コーナーの突き合わせ部をねじ等で連結する構造とすることができる。このような構造は、太陽電池モジュールの枠フレームとしては従来周知の一般的な構造であるので、詳細な説明は省略する。 The frame frame 50 is composed of an upper frame member, a lower frame member, a left frame member, and a right frame member. These frame members can be combined into a square, and the butted portion of each corner can be connected with a screw or the like. Since such a structure is a conventionally well-known general structure as a frame frame of a solar cell module, detailed description is omitted.
 図4は、レンズ板30を下面側(すなわち、太陽電池素子60と対向する面側)から見た平面図である。レンズ板30に形成された集光レンズ部31は、この例ではフレネルレンズであり、このフレネルレンズが、例えば縦方向に8個、横方向に5個並んだ構成となっている。 FIG. 4 is a plan view of the lens plate 30 viewed from the lower surface side (that is, the surface side facing the solar cell element 60). The condensing lens portion 31 formed on the lens plate 30 is a Fresnel lens in this example, and has a configuration in which, for example, eight Fresnel lenses are arranged in the vertical direction and five in the horizontal direction.
 図5は、レンズ板30を取り外した状態のモジュール基板10の平面図である。 FIG. 5 is a plan view of the module substrate 10 with the lens plate 30 removed.
 モジュール基板10は、この例では8個の太陽電池素子60が長手方向(図では縦方向)に一定の間隔W1を存して1列に載置された長尺状のレシーバ基板11が、横方向に一定の間隔W1を存して5本並行に配置され、隣接するレシーバ基板11の一方の端部同士が配線連結材25で電気的に接続された構成となっている。すなわち、レンズ板30に設けられた集光レンズ部31に対向して、太陽電池素子60が縦方向に8個、横方向に5個並んだモジュール基板10が作製されている。また、全てのレシーバ基板11が配線連結材25を介して一連に接続されることで、全ての太陽電池素子60が直列に接続された構成となっている。 In this example, the module substrate 10 is composed of a long receiver substrate 11 in which eight solar cell elements 60 are placed in a row at a constant interval W1 in the longitudinal direction (vertical direction in the figure). Five are arranged in parallel with a certain interval W1 in the direction, and one end of the adjacent receiver substrate 11 is electrically connected by the wiring connecting member 25. That is, the module substrate 10 in which eight solar cell elements 60 are arranged in the vertical direction and five in the horizontal direction facing the condenser lens portion 31 provided on the lens plate 30 is manufactured. Moreover, all the solar cell elements 60 are connected in series by connecting all the receiver boards 11 in series via the wiring connection material 25.
 図6(a)は、1本のレシーバ基板11の構成を示す平面図、図6(b)は、図6(a)の一部(1本の配線材部分)を拡大して示す平面図、図6(c)は、図6(b)の一部(電極部)をさらに拡大して示す平面図、図6(d)は、図6(a)のD部分を拡大して示す平面図、図6(e)は、図6(a)のE部分を拡大して示す平面図である。 6A is a plan view showing the configuration of one receiver substrate 11, and FIG. 6B is an enlarged plan view showing a part (one wiring member portion) of FIG. 6A. 6 (c) is a plan view showing a part (electrode part) of FIG. 6 (b) further enlarged, and FIG. 6 (d) is a plan view showing an enlarged portion D of FIG. 6 (a). FIG. 6 and FIG. 6E are plan views showing the E portion of FIG.
 レシーバ基板11は、長尺状のレシーバ基体12と、このレシーバ基体12上に端部同士を対向させた状態で長手方向に沿って1列に配置された複数本(この例では、太陽電池素子60の数(8個)より一つ少ない7本)の配線材(導体)13とを備えている。また、レシーバ基体12と配線材13との間には、熱導電性の絶縁層18が設けられている。熱導電性の絶縁層18を設けることで、電気的な絶縁だけでなく、配線材13の通電によって発生した熱を、絶縁層18を介してレシーバ基体12、さらにはレシーバ基体12からモジュール基板10へと放熱することができ、配線部材13の熱膨張による曲がりや断線等を防止することができる。 The receiver substrate 11 has a long receiver base 12 and a plurality of receiver bases 12 arranged in a line along the longitudinal direction with the ends facing each other on the receiver base 12 (in this example, solar cell elements). 7 wiring members (conductors) 13 which is one less than 60 (8). A thermally conductive insulating layer 18 is provided between the receiver base 12 and the wiring member 13. By providing the heat conductive insulating layer 18, not only electrical insulation, but also heat generated by energization of the wiring material 13 is transmitted via the insulating layer 18 to the receiver base 12 and further from the receiver base 12 to the module substrate 10. The wiring member 13 can be prevented from being bent or disconnected due to thermal expansion.
 ここで、レシーバ基体12は、ステンレス板、ガラス板、銅板、アルミ板、アルミ合金板のいずれかを使用することができる。また、絶縁層18は、樹脂に導熱素材(熱伝導性フィラ)を混入した導熱絶縁フィルムによって構成されている。樹脂としては、シリコン樹脂、フッ素樹脂、ポリイミド樹脂、ポリエチレン樹脂・テレフタレート(PET)樹脂等を用いることができる。また、添加物である熱伝導性フィラとしては、窒化ケイ素、窒化アルミニウム、アルミナ、酸化マグネシウム、窒化ホウ素、酸化ベリリウム、シリカ等のいずれか若しくはこれらを組み合わせた材料を使用することができる。また、配線材13は、銅板を打ち抜き加工することで形成される平板銅線とすることができる。また、レシーバ基体12も、配線材13と同様、打ち抜き加工によって形成することができる。ただし、配線材13やレシーバ基体12の形成は、打ち抜き加工に限定されるものではない。 Here, the receiver base 12 can be any of a stainless plate, a glass plate, a copper plate, an aluminum plate, and an aluminum alloy plate. Moreover, the insulating layer 18 is comprised by the heat conductive insulating film which mixed the heat conductive material (thermal conductive filler) in resin. As the resin, silicon resin, fluorine resin, polyimide resin, polyethylene resin / terephthalate (PET) resin, or the like can be used. In addition, as the thermally conductive filler that is an additive, any one of silicon nitride, aluminum nitride, alumina, magnesium oxide, boron nitride, beryllium oxide, silica, or a combination thereof can be used. The wiring member 13 can be a flat copper wire formed by punching a copper plate. The receiver base 12 can also be formed by punching, like the wiring member 13. However, the formation of the wiring member 13 and the receiver base 12 is not limited to punching.
 1本の配線材13は、図6(b)に示すように、一方の端部にプラス電極パッド部14が形成され、他方の端部に二股状に開いたマイナス電極パッド部15が形成されている。そして、長手方向に隣接する配線材13の対向する端部同士は、図6(c)に示すように、一方の配線材13のプラス電極パッド部14が、他方の配線材13の二股状のマイナス電極パッド部15の間に絶縁状態で(一定の隙間を開けて)嵌め合わされた状態で対向配置されている。 As shown in FIG. 6B, one wiring member 13 has a positive electrode pad portion 14 formed at one end portion and a negative electrode pad portion 15 opened in a bifurcated shape at the other end portion. ing. And as shown in FIG.6 (c), as for the edge parts which the wiring material 13 adjacent to a longitudinal direction opposes, the plus electrode pad part 14 of one wiring material 13 is the forked shape of the other wiring material 13. The negative electrode pad portions 15 are arranged to face each other in an insulated state (with a certain gap).
 ただし、レシーバ基板11の両端部(図6(a)では上下の両端部)に位置する配線材13の端部には、隣接する配線材13が存在しない。従って、それらの端部では、図6(d)及び図6(e)に示すように、それぞれにプラス電極パッド部小片14a、及びマイナス電極パッド部小片15aが対向配置されている。これにより、レシーバ基板11の両端部に位置する配線材13の端部にも、事前に太陽電池素子60を搭載することができる。 However, there is no adjacent wiring member 13 at the end of the wiring member 13 located at both ends of the receiver substrate 11 (upper and lower ends in FIG. 6A). Accordingly, as shown in FIGS. 6 (d) and 6 (e), the positive electrode pad portion small piece 14a and the negative electrode pad portion small piece 15a are arranged to face each other at the end portions. Thereby, the solar cell element 60 can be mounted in advance on the ends of the wiring member 13 located at both ends of the receiver substrate 11.
 このような電極配線構造において、図3に示すように、プラス電極パッド部14に太陽電池素子60を搭載することで太陽電池素子60底面のプラス電極端子(図示せず)がプラス電極パッド部14にはんだ等により接続され、太陽電池素子60のマイナス電極端子(図示せず)がワイヤ16によりマイナス電極パッド部15に接続されて太陽電池素子搭載部17が構成されている。また、太陽電池素子搭載部17の全体が、第1の絶縁保護層19と透明な第2の絶縁保護層20とによって完全に被覆された構造となっている。これにより、太陽電池素子60やワイヤ16を確実に保護することができる。 In such an electrode wiring structure, as shown in FIG. 3, by mounting the solar cell element 60 on the positive electrode pad portion 14, the positive electrode terminal (not shown) on the bottom surface of the solar cell element 60 becomes the positive electrode pad portion 14. The negative electrode terminal (not shown) of the solar cell element 60 is connected to the negative electrode pad portion 15 by the wire 16 to constitute the solar cell element mounting portion 17. Further, the entire solar cell element mounting portion 17 is completely covered with the first insulating protective layer 19 and the transparent second insulating protective layer 20. Thereby, the solar cell element 60 and the wire 16 can be reliably protected.
 また、配線材13は、図6(b)に示すように、長手方向の中央部に略半円弧状の屈曲部13aが形成されている。屈曲部13aを形成することで、太陽熱により配線材13が伸縮しても、これを屈曲部13aで吸収できるので、太陽電池素子搭載部17の電極配線構造に影響を与えることがなく、また、配線材13自体の断線やひび割れ等も防止することができる。 Further, as shown in FIG. 6B, the wiring member 13 is formed with a substantially semicircular arc-shaped bent portion 13a at the center in the longitudinal direction. By forming the bent portion 13a, even if the wiring member 13 expands and contracts due to solar heat, it can be absorbed by the bent portion 13a, so that the electrode wiring structure of the solar cell element mounting portion 17 is not affected. It is possible to prevent disconnection or cracking of the wiring member 13 itself.
 また、レシーバ基体12には、図6(a)に示すように、長手方向に所定の間隔を存した複数箇所に、幅方向に対向した一対の切欠き部12aがそれぞれ形成されている。この切欠き部12aの形成位置は、本実施形態では配線材13の屈曲部13aの位置と一致しているが、必ずしも一致させる必要はない。すなわち、長手方向に若干ずれた位置にそれぞれを形成してもよい。レシーバ基体12に形成された切欠き部12aは、レシーバ基体12の長手方向の熱膨張区間として設けられている。すなわち、切欠き部12aの両端側に配置した太陽電池素子60が集光太陽光に照射されて発熱し、その発熱により隣接する太陽電池素子60間の中央部に大きい熱応力が掛かることになるが、切欠き部12aが長手方向の熱膨張区間となってこの熱応力を緩和する。つまり、レシーバ基体12に熱膨張を吸収する機能を持たせることができる。 Further, as shown in FIG. 6 (a), the receiver base 12 is formed with a pair of notches 12a facing each other in the width direction at a plurality of locations having predetermined intervals in the longitudinal direction. The formation position of the notch portion 12a matches the position of the bent portion 13a of the wiring member 13 in this embodiment, but does not necessarily need to match. That is, each may be formed at a position slightly shifted in the longitudinal direction. The notch 12 a formed in the receiver base 12 is provided as a thermal expansion section in the longitudinal direction of the receiver base 12. That is, the solar cell elements 60 arranged on both ends of the notch 12a are irradiated with the condensed sunlight and generate heat, and a large thermal stress is applied to the central portion between the adjacent solar cell elements 60 due to the generated heat. However, the notch 12a becomes a thermal expansion section in the longitudinal direction to alleviate this thermal stress. That is, the receiver base 12 can have a function of absorbing thermal expansion.
 図7は、レシーバ基板11をモジュール基板10に搭載する様子を示している。 FIG. 7 shows a state in which the receiver substrate 11 is mounted on the module substrate 10.
 図7に示すように、モジュール基板10とレシーバ基板11との間には位置決め手段が設けられている。この位置決め手段は、本実施形態では、モジュール基板10に設けられた位置決めピン10aと、レシーバ基板11のレシーバ基体12に設けられた位置決め穴12bとで構成されている。位置決めピン10aは、モジュール基板10上の各レシーバ基板11の載置位置に沿って長手方向の両端近傍に2箇所ずつ、合計10箇所に設けられており、位置決め穴12bは、位置決めピン10aに対向するように、レシーバ基体12の長手方向の両端近傍の2箇所に設けられている。このような構成によれば、モジュール基板10の長手方向に対向する2箇所の位置決めピン10aに、レシーバ基体12の長手方向に対向する2箇所の位置決め穴12bをそれぞれ挿入するだけで、レシーバ基体12(すなわち、レシーバ基板11)をモジュール基板10の所定位置(図5に示す位置)に正確に載置することができる。 As shown in FIG. 7, positioning means is provided between the module substrate 10 and the receiver substrate 11. In the present embodiment, the positioning means includes positioning pins 10 a provided on the module substrate 10 and positioning holes 12 b provided on the receiver base 12 of the receiver substrate 11. The positioning pins 10a are provided at two locations in the vicinity of both ends in the longitudinal direction along the mounting position of each receiver substrate 11 on the module substrate 10, and a total of 10 positioning holes 12b are opposed to the positioning pins 10a. As shown, the receiver base 12 is provided at two locations near both ends in the longitudinal direction. According to such a configuration, the receiver base body 12 can be obtained simply by inserting the two positioning holes 12 b facing the longitudinal direction of the receiver base 12 into the two positioning pins 10 a facing the longitudinal direction of the module substrate 10. That is, the receiver substrate 11 can be accurately placed at a predetermined position (position shown in FIG. 5) of the module substrate 10.
 次に、上記構成の集光型太陽電池モジュール1の製造方法について説明する。 Next, a method for manufacturing the concentrating solar cell module 1 having the above configuration will be described.
 まず、長尺状のレシーバ基体12の上面に、長手方向の全長にわたって絶縁層18を配置する。ここでは、絶縁層18は、ポリイミド樹脂に窒化ホウ素(熱電導性フィラ)を添加した導熱性の絶縁フィルムを使用した。 First, the insulating layer 18 is disposed on the upper surface of the elongated receiver base 12 over the entire length in the longitudinal direction. Here, the insulating layer 18 is a thermally conductive insulating film obtained by adding boron nitride (thermoconductive filler) to polyimide resin.
 次に、7本の配線材13を、互いのプラス電極パッド部14とマイナス電極パッド部15とを対向させて、レシーバ基体12の絶縁層18上に1列に載置する。このとき、上記したように、端部の配線材13については、図6(d),(e)に示すように、その外側端部に対向させて、プラス電極パッド部小片14aまたはマイナス電極パッド部小片15aを対向配置する。そして、その上に、フッ素レジストの保護膜である第1の絶縁保護層19を被せて、各配線材13を被覆する。このとき、第1の絶縁保護層19には、図8に示すように、配線材13のプラス電極パッド部14(プラス電極パッド部小片14aも含む)及びマイナス電極パッド部15(マイナス電極パッド部小片15aも含む)の上部に接続用開口部19a,19bが設けられている。すなわち、プラス電極パッド部14(プラス電極パッド部小片14aも含む)及びマイナス電極パッド部15(マイナス電極パッド部小片15aも含む)を除いて、大気に接触する部分を保護している。 Next, the seven wiring members 13 are placed in a row on the insulating layer 18 of the receiver base 12 with the positive electrode pad portion 14 and the negative electrode pad portion 15 facing each other. At this time, as described above, as shown in FIGS. 6D and 6E, the wiring member 13 at the end portion is opposed to the outer end portion so as to face the plus electrode pad portion small piece 14a or the minus electrode pad. The small pieces 15a are arranged to face each other. Then, the wiring material 13 is covered with a first insulating protective layer 19 which is a protective film of a fluorine resist. At this time, as shown in FIG. 8, the first insulating protective layer 19 includes a plus electrode pad portion 14 (including the plus electrode pad portion small piece 14a) and a minus electrode pad portion 15 (the minus electrode pad portion) of the wiring member 13. Connection openings 19a and 19b are provided at the top of the small piece 15a). In other words, except for the plus electrode pad portion 14 (including the plus electrode pad portion small piece 14a) and the minus electrode pad portion 15 (including the minus electrode pad portion small piece 15a), the portion in contact with the atmosphere is protected.
 この後、絶縁層18、配線材13、第1の絶縁保護層19を順次載置したレシーバ基体12をラミネート装置(図示せず)に挿入し、加圧状態を維持しながら、例えば120℃の加熱処理を行う。これにより、ラミネート方式によって配線材13が一体に形成されたアルミ製の細長いレシーバ基板11が作製される。 Thereafter, the receiver base 12 on which the insulating layer 18, the wiring member 13, and the first insulating protective layer 19 are sequentially placed is inserted into a laminating apparatus (not shown) and maintained at a pressurized state, for example, at 120 ° C. Heat treatment is performed. Thereby, the elongate receiver board | substrate 11 made from aluminum in which the wiring material 13 was integrally formed by the lamination system is produced.
 次に、このようにして作製されたレシーバ基板11の配線材13のプラス電極パッド部14(プラス電極パッド部小片14aも含む)に、接続用開口部10aを通じてはんだ材料を敷設し、その上に太陽電池素子60を搭載して、リフロー炉により加熱、溶融させることにより、太陽電池素子60底面のプラス電極端子(図示せず)をプラス電極パッド部14(プラス電極パッド部小片14aも含む)にはんだ接続する。 Next, a solder material is laid on the plus electrode pad portion 14 (including the plus electrode pad portion small piece 14a) of the wiring member 13 of the receiver substrate 11 manufactured in this way through the connection opening portion 10a, and the solder material is formed thereon. The solar cell element 60 is mounted and heated and melted in a reflow furnace, whereby a positive electrode terminal (not shown) on the bottom surface of the solar cell element 60 is attached to the positive electrode pad portion 14 (including the positive electrode pad portion small pieces 14a). Connect with solder.
 次に、太陽電池素子60のマイナス電極端子(図示せず)とマイナス電極パッド部15(マイナス電極パッド部小片15aも含む)とを、接続用開口部19bを介して、ワイヤボンディングにより金線(ワイヤ)16によって接続する(図3参照)。これにより、太陽電池素子搭載部17が構成される。 Next, the negative electrode terminal (not shown) of the solar cell element 60 and the negative electrode pad portion 15 (including the negative electrode pad portion small piece 15a) are connected to a gold wire (by wire bonding) via the connection opening 19b. Wires 16 are connected (see FIG. 3). Thereby, the solar cell element mounting part 17 is comprised.
 なお、図示は省略しているが、プラス電極パッド部14(プラス電極パッド部小片14aも含む)とマイナス電極パッド部15(マイナス電極パッド部小片15aも含む)との間には、太陽電池素子60を保護するため、太陽電池素子60と並列にバイパスダイオードが接続されている。 In addition, although illustration is abbreviate | omitted, between the positive electrode pad part 14 (a positive electrode pad part small piece 14a is also included) and the negative electrode pad part 15 (a negative electrode pad part small piece 15a is also included), it is a solar cell element. In order to protect 60, a bypass diode is connected in parallel with the solar cell element 60.
 この後、第1の絶縁保護層19の上にさらに透明な第2の絶縁保護層20を被せて全体を被覆することで、図3に示す電極構造のレシーバ基板11が作製される。 Then, the receiver substrate 11 having the electrode structure shown in FIG. 3 is manufactured by covering the first insulating protective layer 19 with a transparent second insulating protective layer 20 to cover the whole.
 次に、このようにして作製した5本のレシーバ基板11をモジュール基板10上に一定の間隔を存して並行に載置する。すなわち、図7に示したように、モジュール基板10の長手方向に対向する2箇所の位置決めピン10aに、各レシーバ基板11の長手方向に対向する2箇所の位置決め穴12bをそれぞれ挿入して載置する。このとき、レシーバ基板11の裏面側(すなわち、レシーバ基体12の裏面側)に導熱性の接着材を薄く塗布しておくことにより、レシーバ基板11をモジュール基板10の所定位置に接着固定し、さらに、ねじやリベット等(図示せず)で固定する。なお、モジュール基板10には、強度の面から金属材料が用いられる。 Next, the five receiver boards 11 produced in this way are placed on the module board 10 in parallel at a constant interval. That is, as shown in FIG. 7, two positioning holes 12 b facing each other in the longitudinal direction of each receiver substrate 11 are inserted into two positioning pins 10 a facing each other in the longitudinal direction of the module substrate 10. To do. At this time, the receiver substrate 11 is adhered and fixed to a predetermined position of the module substrate 10 by thinly applying a heat conductive adhesive on the back surface side of the receiver substrate 11 (that is, the back surface side of the receiver base 12). Secure with screws or rivets (not shown). Note that a metal material is used for the module substrate 10 in terms of strength.
 次に、図9に示すように、隣接するレシーバ基板11の一方の端部の対向するプラス電極パッド部小片14aとマイナス電極パッド部小片15a同士を、リード線等の配線連結材25で接続する。これにより、図5に示した電極配線構造のモジュール基板10が作製される。 Next, as shown in FIG. 9, the positive electrode pad small pieces 14a and the negative electrode pad small pieces 15a facing each other at one end of the adjacent receiver substrate 11 are connected to each other by a wiring connecting member 25 such as a lead wire. . Thereby, the module substrate 10 having the electrode wiring structure shown in FIG. 5 is manufactured.
 次に、このように作製されたモジュール基板10の上部に、集光レンズ部31を備えたレンズ板31を対向配置し、その全周を枠フレーム50で囲むように一体的に組み付けることにより、図1及び図2に示す集光型太陽電池モジュール1を作製する。 Next, on the upper part of the module substrate 10 thus manufactured, the lens plate 31 provided with the condensing lens portion 31 is disposed oppositely, and integrally assembled so as to surround the entire circumference with the frame frame 50, The concentrating solar cell module 1 shown in FIGS. 1 and 2 is produced.
 上記製造方法によれば、太陽電池素子60を搭載した複数のレシーバ基板11をモジュール基板10に並行に載置し、隣接する一方の端部同士を配線連結材25で順次接続するだけで、複数個の太陽電池素子60を直列接続した集光型太陽電池モジュール1を簡単に製造することができる。 According to the manufacturing method described above, a plurality of receiver substrates 11 on which the solar cell elements 60 are mounted are placed in parallel on the module substrate 10, and the adjacent one ends are sequentially connected by the wiring connecting member 25. The concentrating solar cell module 1 in which the individual solar cell elements 60 are connected in series can be easily manufactured.
 また、図10に示すように、太陽光自動追尾機能を有する架台80上に、この集光型太陽電池モジュール1を複数個載置し、各集光型太陽電池モジュール1を図示しない電気ケーブルで接続することにより、太陽光発電システムを構築することができる。この例では、太陽光発電システムは、架台80上に縦に4個、横に7個の合計28個の集光型太陽電池モジュール1を載置可能とされている。 Further, as shown in FIG. 10, a plurality of the concentrating solar cell modules 1 are placed on a gantry 80 having an automatic solar tracking function, and each concentrating solar cell module 1 is connected with an electric cable (not shown). A solar power generation system can be constructed by connecting. In this example, the solar power generation system is capable of mounting a total of 28 concentrating solar cell modules 1, four vertically and seven horizontally on the gantry 80.
 この太陽光発電システムは、太陽の動きに合わせて、常に受光面を太陽に正対させるように駆動することができる追尾駆動システム81に搭載されている。 This solar power generation system is mounted on a tracking drive system 81 that can be driven so that the light receiving surface always faces the sun in accordance with the movement of the sun.
 追尾駆動システム81は、太陽の方位にモジュール受光面を向けるための方位軸と、太陽の高度にモジュール受光面を傾けるための傾倒軸との2軸別々の追尾駆動装置から構成され、これにより太陽を高精度に追尾することが可能となる。追尾駆動システムとしては、日ごとに異なる太陽高度に合わせて緯度角程度に日ごとに傾ける傾倒軸と、その傾倒軸方向に集光型太陽光発電モジュール面が平行になるようにモジュールを取り付けて、この傾倒軸を中心にモジュールを回転させるといった2軸駆動装置からなるシステムも一般的であり、このようなシステムを用いても良い。 The tracking drive system 81 includes two separate tracking drive devices, an azimuth axis for directing the module light-receiving surface toward the sun's azimuth and a tilt axis for tilting the module light-receiving surface at the sun's altitude. Can be tracked with high accuracy. As the tracking drive system, the module is installed so that the tilting axis that tilts to the latitude angle every day according to the solar altitude that varies from day to day, and the concentrating photovoltaic module surface is parallel to the tilting axis direction. A system composed of a two-axis drive device in which the module is rotated around the tilt axis is also common, and such a system may be used.
 追尾駆動システムの動力系としては、モーターと減速機とを用いてギヤを所定の回転数回転させて所定の方向に駆動させる方法や、油圧ポンプと油圧シリンダーとを用いて、所定の長さにシリンダーを調節することにより、所定の方向に駆動させるといった方法があり、どちらの方法を用いても良い。 As a power system for a tracking drive system, a motor and a speed reducer are used to rotate a gear at a predetermined rotational speed to drive it in a predetermined direction, or a hydraulic pump and a hydraulic cylinder are used to achieve a predetermined length. There is a method of driving in a predetermined direction by adjusting the cylinder, and either method may be used.
 追尾駆動システムの動作を制御する制御システム(図示せず)としては、制御システム内部に搭載された時計によって、予め太陽の軌道を計算し、その向きに集光型太陽電池モジュール1が向くように制御する方法や、システムにホトダイオード等からなる太陽センサーを取り付けて太陽方向を随時モニターし制御する方法等が一般的であり、どちらの方法を用いても良い。 As a control system (not shown) for controlling the operation of the tracking drive system, a solar orbit is calculated in advance by a clock mounted in the control system so that the concentrating solar cell module 1 faces in the direction. A control method, a method of attaching a solar sensor such as a photodiode to the system, and monitoring and controlling the sun direction as needed are generally used, and either method may be used.
 なお、今回開示した実施の形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。従って、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。 It should be noted that the embodiment disclosed this time is illustrative in all respects and does not serve as a basis for limited interpretation. Therefore, the technical scope of the present invention is not interpreted only by the above-described embodiments, but is defined based on the description of the scope of claims. Moreover, all the changes within the meaning and range equivalent to a claim are included.
 本発明は、製造時の作業性に優れた電極配線構造を有する集光型太陽電池モジュール及び太陽光発電システム並びに集光型太陽電池モジュールの製造方法であり、太陽光発電全般に寄与するところは大きい。 The present invention is a concentrating solar cell module and a photovoltaic power generation system having an electrode wiring structure excellent in workability at the time of manufacturing, and a manufacturing method of the concentrating solar cell module. large.
 1 集光型太陽電池モジュール
 10 モジュール基板
 10a 位置決めピン
 11 レシーバ基板
 12 レシーバ基体
 12a 切欠き部
 12b 位置決め穴
 13 配線材
 13a 屈曲部
 14 プラス電極パッド部
 15 マイナス電極パッド部
 16 ワイヤ
 17 太陽電池素子搭載部
 18 絶縁層
 19 第1の絶縁保護層
 20 第2の絶縁保護層
 25 配線連結材
 25a プラス電極パッド部
 25b マイナス電極パッド部
 30 レンズ板(光学部材)
 31 集光レンズ部
 50 枠フレーム
 60 太陽電池素子
 80 架台
 81 追尾駆動システム
DESCRIPTION OF SYMBOLS 1 Condensing type solar cell module 10 Module board | substrate 10a Positioning pin 11 Receiver board | substrate 12 Receiver base | substrate 12a Notch part 12b Positioning hole 13 Wiring material 13a Bending part 14 Positive electrode pad part 15 Negative electrode pad part 16 Wire 17 Solar cell element mounting part DESCRIPTION OF SYMBOLS 18 Insulating layer 19 1st insulating protective layer 20 2nd insulating protective layer 25 Wiring connection material 25a Positive electrode pad part 25b Negative electrode pad part 30 Lens board (optical member)
31 Condensing lens part 50 Frame frame 60 Solar cell element 80 Base 81 Tracking drive system

Claims (12)

  1.  複数個の太陽電池素子と、前記各太陽電池素子が一定の間隔を存して1列に載置された長尺状のレシーバ基板と、前記レシーバ基板が一定の間隔を存して複数本並行に載置されたモジュール基板とを備え、
     前記レシーバ基板は、長尺状のレシーバ基体と、前記レシーバ基体上に端部同士を対向させた状態で長手方向に沿って1列に配置された複数本の配線材とからなり、
     前記配線材の一方の端部にプラス電極パッド部が、他方の端部にマイナス電極パッド部がそれぞれ設けられ、前記プラス電極パッド部及び前記マイナス電極パッド部に前記太陽電池素子のプラス電極端子及びマイナス電極端子がそれぞれ接続されて太陽電池素子搭載部が構成されていることを特徴とする集光型太陽電池モジュール。
    A plurality of solar cell elements, a long receiver substrate in which each of the solar cell elements is placed in one row with a fixed interval, and a plurality of the receiver substrates in parallel with a fixed interval And a module substrate mounted on
    The receiver substrate is composed of a long receiver base and a plurality of wiring members arranged in a line along the longitudinal direction with the ends facing each other on the receiver base.
    A positive electrode pad portion is provided at one end portion of the wiring member, and a negative electrode pad portion is provided at the other end portion, and the positive electrode terminal of the solar cell element and the negative electrode pad portion and A concentrating solar cell module, wherein a negative electrode terminal is connected to form a solar cell element mounting portion.
  2.  請求項1に記載の集光型太陽電池モジュールであって、
     前記配線材の長手方向中央部に屈曲部が形成されていることを特徴とする集光型太陽電池モジュール。
    The concentrating solar cell module according to claim 1,
    A concentrating solar cell module, wherein a bent portion is formed at a central portion in the longitudinal direction of the wiring member.
  3.  請求項1または請求項2に記載の集光型太陽電池モジュールであって、
     前記レシーバ基体には、長手方向に所定の間隔を存して切欠き部が形成されていることを特徴とする集光型太陽電池モジュール。
    The concentrating solar cell module according to claim 1 or 2, wherein
    The concentrating solar cell module, wherein the receiver base is formed with notches at a predetermined interval in the longitudinal direction.
  4.  請求項1から請求項3までのいずれか1項に記載の集光型太陽電池モジュールであって、
     前記複数本のレシーバ基板は、隣接する一方の端部同士が配線連結材で電気的に接続されていることを特徴とする集光型太陽電池モジュール。
    It is a concentrating solar cell module of any one of Claim 1- Claim 3, Comprising:
    The concentrating solar cell module, wherein the plurality of receiver substrates are electrically connected to each other at adjacent ends by a wiring connecting material.
  5.  請求項1から請求項4までのいずれか1項に記載の集光型太陽電池モジュールであって、
     前記レシーバ基板を前記モジュール基板の所定位置に載置する位置決め手段が設けられていることを特徴とする集光型太陽電池モジュール。
    The concentrating solar cell module according to any one of claims 1 to 4, wherein
    A concentrating solar cell module comprising positioning means for placing the receiver substrate at a predetermined position of the module substrate.
  6.  請求項5に記載の集光型太陽電池モジュールであって、
     前記位置決め手段は、前記モジュール基板に設けられた位置決めピンと前記レシーバ基板に設けられた位置決め穴とからなることを特徴とする集光型太陽電池モジュール。
    The concentrating solar cell module according to claim 5,
    The concentrating solar cell module, wherein the positioning means includes positioning pins provided in the module substrate and positioning holes provided in the receiver substrate.
  7.  請求項1から請求項6までのいずれか1項に記載の集光型太陽電池モジュールであって、
     前記レシーバ基板と前記配線材との間に熱導電性の絶縁層が設けられていることを特徴とする集光型太陽電池モジュール。
    The concentrating solar cell module according to any one of claims 1 to 6, wherein
    A concentrating solar cell module, wherein a thermally conductive insulating layer is provided between the receiver substrate and the wiring member.
  8.  請求項1から請求項7までのいずれか1項に記載の集光型太陽電池モジュールであって、
     前記配線材は第1の絶縁保護層によって被覆されているとともに、前記第1の絶縁保護層には、前記配線材の前記プラス電極パッド部及び前記マイナス電極パッド部の上部に接続用開口部が設けられていることを特徴とする集光型太陽電池モジュール。
    The concentrating solar cell module according to any one of claims 1 to 7, wherein
    The wiring material is covered with a first insulating protective layer, and the first insulating protective layer has connection openings on the plus electrode pad portion and the minus electrode pad portion of the wiring material. A concentrating solar cell module characterized by being provided.
  9.  請求項8に記載の集光型太陽電池モジュールであって、
     前記第1の絶縁保護層上には、前記接続用開口部を含む全体に透明な第2の絶縁保護層が形成されていることを特徴とする集光型太陽電池モジュール。
    The concentrating solar cell module according to claim 8, wherein
    A concentrating solar cell module, wherein a transparent second insulating protective layer is formed on the first insulating protective layer including the connection opening.
  10.  請求項1から請求項9までのいずれか1項に記載の集光型太陽電池モジュールであって、
     前記モジュール基板の上部に、前記各太陽電池素子のそれぞれに太陽光を集光する複数個の集光レンズ部を備えた光学部材が配置されていることを特徴とする集光型太陽電池モジュール。
    The concentrating solar cell module according to any one of claims 1 to 9, wherein
    An optical member having a plurality of condensing lens portions for condensing sunlight on each of the solar cell elements is disposed on the module substrate.
  11.  請求項1から請求項10までのいずれか1項に記載の集光型太陽電池モジュールが架台上に複数個配置され、各太陽電池モジュールが電気ケーブルで接続されたことを特徴とする太陽光発電システム。 A photovoltaic power generation, wherein a plurality of concentrating solar cell modules according to any one of claims 1 to 10 are arranged on a mount, and each solar cell module is connected by an electric cable. system.
  12.  一方の端部にプラス電極パッド部が形成され、他方の端部にマイナス電極パッド部が形成された複数本の配線材を、前記プラス電極パッド部と前記マイナス電極パッド部とを対向させて、長尺状のレシーバ基体上に1列に載置する工程と、
     前記プラス電極パッド部及び前記マイナス電極パッド部に太陽電池素子のプラス電極端子及びマイナス電極端子をそれぞれ接続して、前記太陽電池素子を前記プラス電極パッド部に搭載することによりレシーバ基板を作製する工程と、
     複数本の前記レシーバ基板をモジュール基板上に一定の間隔を存して並行に載置する工程と、
     隣接する前記レシーバ基板の一方の端部同士を配線連結材で電気的に接続する工程と、
     前記モジュール基板の上部に、前記各太陽電池素子のそれぞれに太陽光を集光する複数の集光レンズを備えた光学部材を配置して枠フレームにより一体的に組み付ける工程と、
     を含むことを特徴とする集光型太陽電池モジュールの製造方法。
    A plurality of wiring materials in which a positive electrode pad portion is formed at one end and a negative electrode pad portion is formed at the other end, the positive electrode pad portion and the negative electrode pad portion are opposed to each other, Placing in a row on a long receiver substrate;
    A step of fabricating a receiver substrate by connecting a positive electrode terminal and a negative electrode terminal of a solar cell element to the positive electrode pad portion and the negative electrode pad portion, respectively, and mounting the solar cell element on the positive electrode pad portion. When,
    Placing a plurality of the receiver boards in parallel on the module board at a certain interval; and
    Electrically connecting one end of the adjacent receiver boards with a wiring connecting material;
    A step of arranging an optical member provided with a plurality of condensing lenses for condensing sunlight on each of the solar cell elements on the upper part of the module substrate and integrally assembling with a frame frame;
    The manufacturing method of the concentrating solar cell module characterized by including.
PCT/JP2012/075617 2011-10-12 2012-10-03 Concentrator solar cell module, photovoltaic power generation system, and manufacturing method for concentrator solar cell module WO2013054709A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011225155A JP5214005B2 (en) 2011-10-12 2011-10-12 Concentrating solar cell module and solar power generation system
JP2011-225155 2011-10-12

Publications (1)

Publication Number Publication Date
WO2013054709A1 true WO2013054709A1 (en) 2013-04-18

Family

ID=48081766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075617 WO2013054709A1 (en) 2011-10-12 2012-10-03 Concentrator solar cell module, photovoltaic power generation system, and manufacturing method for concentrator solar cell module

Country Status (3)

Country Link
JP (1) JP5214005B2 (en)
TW (1) TW201324817A (en)
WO (1) WO2013054709A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103646971A (en) * 2013-11-05 2014-03-19 成都聚合科技有限公司 Large-current concentrating solar power receiver
JP2014209584A (en) * 2013-03-26 2014-11-06 住友電気工業株式会社 Concentrator photovoltaic power generation module, concentrator photovoltaic power generation panel and flexible printed wiring board for concentrator photovoltaic power generation module
CN105453274A (en) * 2014-03-12 2016-03-30 住友电气工业株式会社 Concentrator photovoltaic power generation module, concentrator photovoltaic power generation panel, and flexible printed wiring board for concentrator photovoltaic power generation modules
US20170200836A1 (en) * 2014-07-10 2017-07-13 Sumitomo Electric Industries, Ltd. Wiring module
JP2019068106A (en) * 2019-01-21 2019-04-25 住友電気工業株式会社 Flexible printed wiring board, and concentrating photovoltaic power generation module and concentrating photovoltaic power generation panel using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6313086B2 (en) * 2014-03-27 2018-04-18 株式会社カネカ Crystalline silicon solar cell and method for manufacturing the same, method for manufacturing solar cell module, method for manufacturing concentrating solar cell module
JP2015201600A (en) * 2014-04-10 2015-11-12 住友電気工業株式会社 Flexible printed wiring board, and concentrating photovoltaic power generation module and concentrating photovoltaic power generation panel using the same
JP6123845B2 (en) * 2015-05-25 2017-05-10 住友電気工業株式会社 SOLAR POWER GENERATION MODULE, SOLAR POWER GENERATION DEVICE, AND SOLAR POWER GENERATION MODULE MANUFACTURING METHOD

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174179A (en) * 2001-12-07 2003-06-20 Daido Steel Co Ltd Light condensation type photovoltaic generation apparatus
JP2008098237A (en) * 2006-10-06 2008-04-24 Sharp Corp Method and device for manufacturing solarlight power generation unit
JP2011108689A (en) * 2009-11-12 2011-06-02 Shinkawa Ltd Method of manufacturing solar cell module
JP2011108866A (en) * 2009-11-18 2011-06-02 Kyocera Corp Photovoltaic conversion device, package for accommodating photovoltaic conversion element, and photovoltaic conversion module
JP2011138970A (en) * 2009-12-29 2011-07-14 Sharp Corp Concentrating solar battery, concentrating solar battery module, and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174179A (en) * 2001-12-07 2003-06-20 Daido Steel Co Ltd Light condensation type photovoltaic generation apparatus
JP2008098237A (en) * 2006-10-06 2008-04-24 Sharp Corp Method and device for manufacturing solarlight power generation unit
JP2011108689A (en) * 2009-11-12 2011-06-02 Shinkawa Ltd Method of manufacturing solar cell module
JP2011108866A (en) * 2009-11-18 2011-06-02 Kyocera Corp Photovoltaic conversion device, package for accommodating photovoltaic conversion element, and photovoltaic conversion module
JP2011138970A (en) * 2009-12-29 2011-07-14 Sharp Corp Concentrating solar battery, concentrating solar battery module, and method of manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014209584A (en) * 2013-03-26 2014-11-06 住友電気工業株式会社 Concentrator photovoltaic power generation module, concentrator photovoltaic power generation panel and flexible printed wiring board for concentrator photovoltaic power generation module
WO2015136720A1 (en) * 2013-03-26 2015-09-17 住友電気工業株式会社 Concentrator photovoltaic power generation module, concentrator photovoltaic power generation panel, and flexible printed wiring board for concentrator photovoltaic power generation modules
US9577131B2 (en) 2013-03-26 2017-02-21 Sumitomo Electric Industries, Ltd. Concentrator photovoltaic module, concentrator photovoltaic panel, and flexible printed circuit for concentrator photovoltaic module
CN103646971A (en) * 2013-11-05 2014-03-19 成都聚合科技有限公司 Large-current concentrating solar power receiver
CN105453274A (en) * 2014-03-12 2016-03-30 住友电气工业株式会社 Concentrator photovoltaic power generation module, concentrator photovoltaic power generation panel, and flexible printed wiring board for concentrator photovoltaic power generation modules
US20170200836A1 (en) * 2014-07-10 2017-07-13 Sumitomo Electric Industries, Ltd. Wiring module
US10680127B2 (en) 2014-07-10 2020-06-09 Sumitomo Electric Industries, Ltd. Power generation circuit unit
AU2015288771B2 (en) * 2014-07-10 2020-06-25 Sumitomo Electric Industries, Ltd. Wiring module
US10985286B2 (en) 2014-07-10 2021-04-20 Sumitomo Electric Industries, Ltd. Power generation module and wiring substrate
US11101395B2 (en) * 2014-07-10 2021-08-24 Sumitomo Electric Industries, Ltd. Wiring module
JP2019068106A (en) * 2019-01-21 2019-04-25 住友電気工業株式会社 Flexible printed wiring board, and concentrating photovoltaic power generation module and concentrating photovoltaic power generation panel using the same

Also Published As

Publication number Publication date
TW201324817A (en) 2013-06-16
JP5214005B2 (en) 2013-06-19
JP2013084855A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP5214005B2 (en) Concentrating solar cell module and solar power generation system
EP2510549B1 (en) Photovoltaic device with bypass diode
WO2013051426A1 (en) Concentrator solar power generation module, concentrator solar power generation panel, and flexible printed wiring board for concentrator solar power generation module
KR101183743B1 (en) Solar cell module and method for its production
CN102812556B (en) Solar energy module structure
US20060042681A1 (en) Pv laminate backplane with optical concentrator
EP1882130A1 (en) Concentrating solar collector
US20090183762A1 (en) Low-voltage tracking solar concentrator
WO2008041502A1 (en) Solar cell, light concentrating photovoltaic power generation module, light concentrating photovoltaic power generation unit, solar cell manufacturing method and solar cell manufacturing apparatus
JP5153447B2 (en) Concentrating solar power generation unit and concentrating solar power generation device
JP6520943B2 (en) Power generation circuit unit
US9508882B2 (en) Solar cell module
JP5948890B2 (en) Concentrating solar power generation module, concentrating solar power generation panel, and flexible printed wiring board for concentrating solar power generation module
WO2013001944A1 (en) Concentrating solar power generation apparatus, and method for manufacturing concentrating solar power generation apparatus
JP4794402B2 (en) Solar cell and concentrating solar power generation unit
JPWO2012086775A1 (en) Thermoelectric module
WO2010027083A1 (en) Solar cells, concentrating solar generator modules, and solar cell manufacturing method
EP2907168B1 (en) Cpvlis - concentration photovoltaics laminated interconnection system comprising a cpv receiver panel, a method for preparing the cpv receiver panel and an installation comprising the same
JP5948899B2 (en) Concentrating solar power generation module and concentrating solar power generation panel
JP2009081278A (en) Solar cell, concentrating photovoltaic power generation module, concentrating photovoltaic power generation unit, and solar cell manufacturing method
JPH11354819A (en) Solar cell module
WO2014037722A1 (en) Concentrated photovoltaic (cpv) cell module with secondary optical element and method of fabrication
JP2014063779A (en) Solar cell for concentrating solar photovoltaic power generating device
JP4693793B2 (en) Solar cell, concentrating solar power generation module, concentrating solar power generation unit, and solar cell manufacturing method
RU2578735C1 (en) Concentrator solar photovoltaic module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839800

Country of ref document: EP

Kind code of ref document: A1