WO2013054621A1 - Light emitting device and organic electroluminescence element driving method - Google Patents

Light emitting device and organic electroluminescence element driving method Download PDF

Info

Publication number
WO2013054621A1
WO2013054621A1 PCT/JP2012/073129 JP2012073129W WO2013054621A1 WO 2013054621 A1 WO2013054621 A1 WO 2013054621A1 JP 2012073129 W JP2012073129 W JP 2012073129W WO 2013054621 A1 WO2013054621 A1 WO 2013054621A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
light
current value
association information
emission color
Prior art date
Application number
PCT/JP2012/073129
Other languages
French (fr)
Japanese (ja)
Inventor
有章 志田
片桐 哲也
幸緒 木本
松本 行生
田所 豊康
Original Assignee
日本精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精機株式会社 filed Critical 日本精機株式会社
Publication of WO2013054621A1 publication Critical patent/WO2013054621A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/24Controlling the colour of the light using electrical feedback from LEDs or from LED modules
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit

Definitions

  • the present invention relates to a light emitting device using an organic EL (Electro Luminescence) element and a method for driving the organic EL element.
  • organic EL Electro Luminescence
  • an organic EL element known as a self-luminous element formed of an organic material is, for example, a first electrode made of ITO (Indium Tin Oxide) or the like serving as an anode, an organic layer having at least a light emitting layer, and a cathode.
  • a non-translucent second electrode made of aluminum (Al) or the like is sequentially laminated (see Patent Document 1).
  • Such an organic EL element emits light by injecting holes from the first electrode and injecting electrons from the second electrode, and the holes and electrons recombine in the light emitting layer.
  • lighting devices using organic EL elements as light sources have been developed in recent years.
  • JP 59-194393 A Japanese Patent Laid-Open No. 5-94875
  • an organic EL element one that changes the emission color by changing an applied voltage is known (see, for example, Patent Document 2). If such an organic EL element is applied to a light source, an illumination device capable of arbitrarily changing the illumination color can be obtained.
  • the organic EL element has a characteristic that the light emission characteristic fluctuates due to a temperature change, deterioration with time due to continuous driving, and the like, and can be obtained by the above-described change in situation even when a similar driving current and driving voltage are applied.
  • the luminescent color may be different, and there is still room for improvement in terms of the stability of the luminescent color when a color-variable organic EL element is used in a lighting device or the like.
  • an object of the present invention is to provide a light-emitting device and an organic EL element driving method capable of performing highly stable color variable control.
  • the light-emitting device of the present invention has an organic EL element whose emission color changes according to the applied current value; A drive circuit for supplying a drive waveform to the organic EL element; The drive waveform that varies at least one of the current value and the lighting rate of the drive waveform in the drive circuit according to a desired emission color, and that is applied according to a drift in the emission color accompanying a temperature change of the organic EL element. And a control means having a correction function for correcting at least one of the current value and the lighting rate.
  • an association information acquisition unit that acquires association information that is associated with a drift in emission color associated with a temperature change of the organic EL element, and the control unit drives the driving based on the association information from the association information acquisition unit. It is characterized in that at least one of the waveform current value and the lighting rate is corrected.
  • the association information acquisition unit acquires at least one of the driving voltage of the organic EL element, the light amount of the organic EL element or another organic EL element having the same structure as the organic EL element, or the ambient temperature as the association information. It is characterized by doing.
  • the organic EL element has a plurality of light emitting layers having different emission colors.
  • the light-emitting device of the present invention has an organic EL element whose emission color changes according to the applied current value; A drive circuit for supplying a drive waveform to the organic EL element; The drive waveform that varies at least one of the current value and the lighting rate of the drive waveform in the drive circuit according to a desired emission color, and that is applied according to the drift of the emission color accompanying the deterioration of the organic EL element over time. And a control means having a correction function for correcting at least one of the current value and the lighting rate.
  • an association information obtaining unit that obtains association information that is associated with a drift in emission color associated with the deterioration of the organic EL element with time
  • the control unit is configured to obtain the drive waveform based on the association information from the association information obtaining unit. In this case, at least one of the current value and the lighting rate is corrected.
  • the association information acquisition means uses at least one of the drive voltage of the organic EL element, the light amount of the organic EL element or another organic EL element having the same structure as the organic EL element, or the light emission integration time as the association information. get.
  • the organic EL element has a plurality of light emitting layers having different emission colors.
  • the present invention is a method for driving an organic EL element in which a light emission color changes according to an applied current value, The at least one of the current value and the lighting rate of the drive waveform applied to the organic EL element is varied according to the desired emission color, and the application is performed according to the emission color drift accompanying the temperature change of the organic EL element. It is characterized in that at least one of the current value of the drive waveform and the lighting rate is corrected.
  • the present invention is a method for driving an organic EL element in which a light emission color changes according to an applied current value,
  • the at least one of the current value of the drive waveform applied to the organic EL element and the lighting rate is varied according to the desired emission color, and is applied according to the drift of the emission color accompanying the deterioration with time of the organic EL element. It is characterized in that at least one of the current value of the drive waveform and the lighting rate is corrected.
  • association information at least one of a driving voltage of the organic EL element, a light amount of the organic EL element or another organic EL element having the same structure as the organic EL element, or an accumulated light emission time is obtained. .
  • the present invention enables highly stable color variable control.
  • FIG. 3 is a diagram illustrating a relationship between a color temperature and a driving voltage in Embodiment 1.
  • FIG. 3 is a diagram illustrating a relationship between a color temperature and a current value in Example 1.
  • FIG. 4 is a diagram illustrating a relationship between a change amount of a light beam and a change amount of a drive voltage in the first embodiment. The figure which shows the relationship between the light beam in Example 1, and the electric current value at the time of lighting rate 100%.
  • FIG. 6 is a graph showing deterioration with time of color temperature in Example 2.
  • FIG. 6 is a diagram showing deterioration of light flux with time in Example 2.
  • FIG. 10 is a diagram illustrating a relationship between a change amount of a driving voltage and an element junction temperature in Example 5. The figure which shows the relationship between the light beam and element junction temperature in Example 6.
  • FIG. 1 is a diagram showing an electrical configuration of a lighting device 100 according to an embodiment of the present invention.
  • the illumination device 100 includes an organic EL panel 10 that uses an organic EL element, which will be described later, as a light emitting unit, and a drive circuit 20 for applying a drive waveform to the organic EL panel 10.
  • the lighting device 100 also acquires a control unit 30 that controls the drive circuit 20, an operation unit 40 that performs an input operation to the control unit 30, and association information acquisition that acquires association information described later and inputs the association information to the control unit 30. Means 50.
  • FIG. 2 is a diagram showing an organic EL element 10A provided in the organic EL panel 10.
  • the organic EL element 10A is formed by laminating a first electrode 12 serving as an anode, an organic layer 13, and a second electrode 14 serving as a cathode on a support substrate 11.
  • the organic EL element 10A is sealed by disposing a sealing substrate to which a hygroscopic agent is applied on the support substrate 11, but this sealing substrate is omitted in FIG.
  • the support substrate 11 is a rectangular substrate made of translucent non-alkali glass, for example. Other glass substrates such as alkali glass may be used, and the glass thickness is not particularly limited.
  • the 1st electrode 12, the organic layer 13, and the 2nd electrode 14 are laminated
  • the first electrode 12 serves as an anode for injecting holes, and a transparent conductive material such as ITO or AZO is formed on the support substrate 11 in a film thickness of 50 to 500 nm by means such as sputtering or vacuum deposition. And patterned into a predetermined shape by means such as photoetching.
  • the surface of the first electrode 12 is subjected to a surface treatment such as UV / O3 treatment or plasma treatment. Note that the peripheral region of the support substrate 11 including the edge of the first electrode 12 is covered with an insulating film (not shown) made of, for example, a polyimide-based insulating material to define the shape of the light emitting portion and prevent a short circuit or the like.
  • the organic layer 13 is formed of a multilayer including at least a light emitting layer made of an organic material, and is formed on the first electrode 12.
  • the hole injection layer 13a, the hole transport layer 13b, the first light emitting layer 13c, the second light emitting layer 13d, and the electron transport layer 13e are sequentially stacked from the first electrode 12 side. .
  • the hole injection layer 13a has a function of taking holes from the first electrode 12.
  • a hole transporting organic material such as an amine compound is formed in a layer shape having a film thickness of about 20 to 120 nm by means such as vapor deposition. Do it.
  • the hole transport layer 13b has a function of transmitting holes to the first light-emitting layer 13c.
  • a hole transport material such as an amine compound is formed in a layer shape having a film thickness of about 20 to 40 nm by means such as vapor deposition. Formed.
  • the first light emitting layer 13c is a mixed layer having a film thickness of 20 to 60 nm in which a first host material having electron transport property, a hole transporting material, and a first light emitting dopant exhibiting light emission are mixed by means such as co-evaporation. Consists of.
  • the first host material can transport holes and electrons, and has a function of causing the first light-emitting dopant to emit light by recombination of holes and electrons in the molecule.
  • the electron transporting host material is an organic material having a relatively high electron transport capability, and specifically refers to a material having a high electron mobility ⁇ e and a low hole mobility ⁇ h. Specifically, for example, an anthracene derivative is used.
  • the hole transporting material for example, the same material as the hole transporting layer 13b is used, but a different material may be used.
  • the first light-emitting dopant is made of an organic material having a function of emitting light in response to recombination of holes and electrons and exhibiting a predetermined emission color.
  • a fluorescent material made of styrylamine or an amine-substituted styrylamine compound that emits blue-green light is used in a doping amount that does not cause concentration quenching.
  • the second light emitting layer 13d is a mixed layer having a film thickness of 20 to 60 nm in which a second host material having electron transport property, a hole transporting material, and a second light emitting dopant exhibiting light emission are mixed by means such as co-evaporation. Consists of.
  • the second host material can transport holes and electrons, and has a function of causing the second light-emitting dopant to emit light by recombination of holes and electrons in the molecule.
  • the electron transporting host material is an organic material having a relatively high electron transport capability, and specifically refers to a material having a high electron mobility ⁇ e and a low hole mobility ⁇ h. Specifically, it consists of an anthracene derivative, for example.
  • the hole transporting material for example, the same material as the hole transporting layer 13b is used, but a different material may be used.
  • the second light-emitting dopant has a function of emitting light in response to recombination of holes and electrons, and is made of an organic material that exhibits a predetermined emission color different from the first light-emitting dopant.
  • a fluorescent material having a fluoranthene skeleton or a pentacene skeleton that emits orange light is used at a doping amount that does not cause concentration quenching.
  • a phosphorescent material or a thermally delayed fluorescent material may be used in addition to the fluorescent material. Moreover, you may reverse the luminescent color of the 1st light emitting layer 13c and the 2nd light emitting layer 13d.
  • the electron transport layer 13e has a function of transmitting electrons to the second light-emitting layer 13d, and is composed of a mixed layer having a thickness of 20 to 60 nm in which a triazine derivative and an alkali metal complex are mixed by means such as co-evaporation.
  • the second electrode 14 serves as a cathode for injecting electrons.
  • the electron transport layer 13e for example, Al, magnesium (Mg), cobalt (Co), Li, gold (Au), copper (Cu), zinc ( It is made of a conductive film in which a low-resistance conductive material such as Zn) is formed into a layer having a thickness of 20 to 300 nm by means such as sputtering or vacuum deposition.
  • the organic EL element 10 ⁇ / b> A that emits light in a predetermined emission color when a voltage is applied between the first electrode 12 and the second electrode 14 is configured. It should be noted that well-known contents such as routing wires and terminals connected to the first electrode 12 or the second electrode 14 are omitted as appropriate in order to simplify the description.
  • the drive circuit 20 is disposed between the variable current circuit 21 and the organic EL element 10A, which is connected to the power source Vcc and varies the current peak value I of the drive waveform P supplied to the organic EL element 10A.
  • a switch element 22 that switches ON / OFF of current supply to the organic EL element 10A and a drive circuit 23 that controls ON / OFF of the switch element 22 are provided. Further, the drive circuit 20 generates a rectangular wave shown in FIG.
  • the control means 30 is mainly composed of a microcomputer, and controls the light emission of the organic EL element 10A by switching on and off the switch element 22 in accordance with the operation means 40 and other external inputs. . Further, the control unit 30 acquires correction data of the current peak value I from the storage unit 31 including a storage element such as an E2PROM or a flash memory in accordance with the association information input from the association information acquisition unit 50, and the organic EL element 10A. Has a correction function to be described later for correcting the current peak value I supplied to the.
  • the operating means 40 includes a push button switch and a volume switch, and is a means for arbitrarily selecting on / off of the organic EL element 10A, light emission luminance, and light emission color.
  • the association information acquisition unit 50 is associated with a drift (deviation) of the emission color accompanying a temperature change of the organic EL element 10A, that is, a color deviation with respect to a desired emission color when varied, or the organic EL element 10A.
  • association information related to the drift of emission color associated with the temperature change of the organic EL element 10A Obtains at least one of the driving voltage of the organic EL element 10A, the luminous flux (light quantity) of the organic EL element 10A or another organic EL element having the same structure as the organic EL element 10A, and the ambient temperature.
  • the driving voltage of the organic EL element 10A, the organic EL element 10A or the organic E Elements 10A and structure to obtain at least one of the light beam (light quantity) or emission accumulation time of other organic EL elements is the same.
  • the illuminating device 100 is comprised by the above each part.
  • the organic EL element 10A in the present embodiment mainly includes the concentration of the hole transporting material in the first light emitting layer 13c on the first electrode 12 side and the hole in the second light emitting layer 13d on the second electrode 14 side.
  • concentration of the transporting material equal, the device structure is such that the recombination region of holes and electrons, that is, the light emitting region is easily moved by the carrier balance of hole injection transport and electron injection transport. , 14 moves between the light emitting regions according to the current density injected between them, so that the balance of the color mixture changes and the light emission color can be changed intentionally.
  • the organic EL element 10A of the present embodiment having the first light emitting layer 13c exhibiting blue-green light emission and the second light emitting layer 13d exhibiting orange light emission
  • the current density is relatively low
  • holes and The recombination region of electrons moves to the hole transport layer 13b side, and a bluish cold-colored white light emission having a color temperature of about 6000 K is obtained.
  • the current density is increased, the recombination region of holes and electrons becomes an electron. It moves to the transport layer 13e side and becomes an orangeish warm white with a color temperature of about 3500K.
  • Light with a color temperature of about 6000K is suitable for concentrating on work such as work and study, and light with a color temperature of about 3500K is a calm light with a sense of comfort compared to cold-colored light. It is. Note that this color temperature is merely an example, and the change range of the color temperature obtained by the color-variable organic EL element 10A in this embodiment is a color temperature from blue green to orange depending on the element structure and current density. The feeling can be selected arbitrarily widely.
  • the emission color is varied by varying the current peak value I of the drive waveform P applied to the organic EL element 10A in accordance with the operation input of the operation means 40.
  • the luminous flux (brightness) also changes accordingly. Therefore, in order to make the luminous flux constant, the lighting rate (the light emission time in a predetermined frame time, that is, the current wave) is determined according to the current peak value I. It is necessary to adjust the ratio of the application time of the high value I) T.
  • the organic EL element is continuously driven to deteriorate the constituent material. Therefore, in the color-variable organic EL element 10A, the color temperature of the emitted color drifts with the deterioration with time due to the continuous driving. Similarly, in the organic EL element 10A, the luminous flux decreases with time deterioration, and the drive voltage rises in inverse proportion (that is, a voltage drop occurs). As a result of intensive studies, the inventors of the present application have focused attention on the association information correlated with the drift of the emission color accompanying the deterioration with time, and based on this association information, the current peak value I of the drive waveform P supplied to the organic EL element 10A and A method for correcting the lighting rate T as appropriate was found.
  • Example 1 (Correction method to obtain drive voltage as association information)
  • a current correction value that compensates for deterioration characteristics associated with the continuous driving of the organic EL element 10A is written in the storage unit 31 in advance, and the color voltage is monitored by monitoring the driving voltage. It was possible to estimate and correct the drift amount.
  • the drive voltage monitor is provided in the control means 30 as a part of the protection function for stopping the operation when the organic EL panel 10 is short-circuited or poorly connected, and immediately after the drive circuit 20 is turned on. Therefore, it is created so that a current necessary for light emission is applied after monitoring every frame frequency and confirming that it is in a normal state. Therefore, it has been easily achieved to correct the color temperature by monitoring the drive voltage as in this embodiment.
  • the control means 30 calculates the difference from the initial voltage value, that is, the drive voltage value at the desired color temperature, from the result of measuring the drive voltage after power-on. Next, a current correction value necessary for correcting the color temperature change amount derived from the difference is calculated.
  • the luminous flux is determined from the current value and the output setting lighting rate, but when the current value is changed, the amount of change in luminous flux that rises or falls due to the difference in luminous efficiency with respect to the current value is estimated, The lighting rate difference is estimated from the change.
  • the color temperature is corrected by correcting the current peak value I based on the current correction value, and the light flux drift (deviation) can also be corrected by correcting the lighting rate T by applying the lighting rate difference. did. Therefore, by applying the present embodiment, it is possible to correct the color temperature drifted by continuous driving by lighting, and the color temperature drift is not visually recognized.
  • the color temperature variable organic EL panel 10 has an outer size of 150 mm ⁇ 25 mm, a light emission area of 31 cm 2, an initial luminous flux of 30 lm, and a variable width of color temperature from 3500K to 6000K.
  • FIG. 4 shows the relationship between the color temperature and the drive voltage when the change range of the color temperature is changed from 3700K to 6300K in the initial state and continuous driving.
  • FIG. 5 shows the relationship between the color temperature and the current value when the change range of the color temperature is changed from 3700K to 6300K in the initial state and continuous driving.
  • the driving voltage at a color temperature of 4000 K in the initial state is shifted from 8.2 V to 8.5 V by continuous driving.
  • the luminous flux at the lighting rate of 100% obtained when the change is made is known, and the relationship between the current peak value I and the lighting rate T, which is the initial luminous flux value (30 lm) calculated from the figure, is shown in consideration of the drift of the luminous flux.
  • the light flux value drift was also corrected by correcting the lighting rate T.
  • the lighting ratio T is corrected to 16% to obtain the initial luminous flux value.
  • the luminous flux value at the lighting rate of 100% at the color temperature of 4000K is from 148 lm in the initial state. After the correction of the current peak value I, it becomes 162 lm, and it can be seen that the initial luminous flux value of 30 lm can be obtained by changing the lighting rate from 21% to 16%. Such correction is easily performed by registering the relationship between the luminous flux value and the lighting rate in the storage unit 31.
  • FIG. 6 shows the relationship between the amount of change in luminous flux and the amount of change in drive voltage.
  • FIG. 7 shows the relationship between the initial state, the state in which the light beam has deteriorated to 90% of the initial state, and the state in which the light beam has deteriorated to 75% of the initial state, and the current value at a lighting rate of 100%.
  • FIG. 8 shows the relationship between the lighting value and the current value that is the initial light flux value in the initial state, the state where the light flux is degraded to 90% of the initial state, and the state where the light flux is degraded to 75% of the initial state.
  • light emission driving at a color temperature of 4000 K is taken as an example, but it is clear that the drift of the color temperature can be corrected by performing the same correction at any position in the variable range of the color temperature. .
  • the driving voltage associated with light emission is high on the high current density side where the color temperature is warm, and the driving voltage is low on the low current density side where the color temperature is cold.
  • the voltage difference in the correction area is large, depending on the resolution at which the color temperature drift is corrected, a high resolution of the drive voltage difference is required, and the amount of data to be stored increases. ,Caution must be taken.
  • the present embodiment only shows correction for one color temperature setting value of the color temperature variable width, but when changing another color temperature, for example, the color temperature, the color temperature is changed by a switching volume or the like.
  • the lighting device 100 is formed and the setting of the color temperature is determined to be, for example, 10 steps or 128 steps.
  • Example 2 (Correction method to acquire luminous flux as association information)
  • a method for correcting color temperature drift by monitoring a light beam will be described.
  • a color temperature variable type organic EL panel 10 created by the same method as in Example 1, and further driving an organic EL element (another organic EL element) as a test element of 1 mm ⁇ 1 mm created by the same method
  • the photodiode is arranged so that the light beam emitted from the test element can be directly monitored.
  • the means for monitoring the luminous flux is arranged on the circuit board.
  • a test element and a photodiode which are the same means, may be arranged outside the circuit board, or outside the display frame of the organic EL panel 10.
  • a further organic EL element may be formed as a test element with a size of about 1 mm ⁇ 1 mm, for example, and a photodiode may be installed so that the light of the element can be directly monitored.
  • the organic EL panel 10 takes the form of a module, has a shape that hides the frame of the organic EL panel 10, and further has a structure in which the photodiode and the test element for detecting the light beam cannot be seen.
  • the test element provided separately is configured to measure the luminous flux with a photodiode.
  • the photodiode may be installed so as to monitor a part of the light emitting portion of the organic EL element 10A, and the support substrate.
  • emitted from the edge part of 11 cut surfaces may be monitored. Furthermore, another color temperature variable type organic EL panel having the same characteristics is installed on the back surface of the organic EL panel 10, or another color temperature variable type organic EL panel made smaller than that, and the luminous flux of the same panel is installed. May be monitored.
  • the current correction value associated with the deterioration characteristics of the organic EL element 10A is written in the storage unit 31, the light flux from the start of light emission is monitored, and input to the control means 30.
  • the control means 30 calculates the light flux value before the drift occurs from the set current value output to the organic EL panel 10 and the lighting rate, or writes it in the storage unit 31 in advance, and calculates the difference from the detected light flux. To do.
  • the amount of change in drive voltage is estimated from the difference. As shown in FIG.
  • the organic EL element generally has a linear relationship between the deterioration characteristic of the luminous flux and the amount of change in the drive voltage, and the same tendency is shown in the color variable organic EL element 10A of the present invention.
  • the change amount of the driving voltage is calculated, the change amount of the color temperature is calculated in the same manner as in the first embodiment.
  • a correction current value for correcting the change amount of the color temperature is calculated.
  • the lighting rate T for correcting the difference in the luminous flux value from the set lighting rate is calculated on the assumption that the correction current value is applied.
  • the drifted color temperature is corrected in the same manner as in Example 1, and the color temperature change is not visually recognized. If the luminous flux is measured after the color temperature correction and the luminous flux value deviates from a desired value, feedback may be applied by re-correcting the lighting rate T.
  • a photodiode is used for measuring the luminous flux, but a CCD, CMOS, photomultiplier, or the like may be used.
  • change_quantity of color temperature is measured from an emission spectrum, and the current peak value I applied to the organic EL element 10A and the lighting rate T are corrected by the same method as described above, It doesn't matter. In this case, however, a burden is imposed on the microcomputer as the control means 30, so that a trial calculation is delayed or a delay for feedback occurs, and a change in color temperature due to correction may be visually recognized. In addition, since the size is increased, this method is suitable when the large organic EL panel 10 is used. However, the frame is too large in the small organic EL panel 10, so that it is separated from the organic EL panel 10.
  • the lighting device 100 is configured to prepare a test element or another different color temperature variable organic EL panel at a location, measure the amount of change in color temperature, transfer it to the control means 30, and correct the drive. Is desirable. In the present embodiment as well, it is obvious that the color temperature drifting with continuous driving of the color temperature variable organic EL panel 10 can be corrected. As another correction example, the luminous flux is measured, and the amount of change in luminous flux associated with continuous driving is estimated. Next, the change amount of the color temperature is calculated from the relationship between the change amount of the luminous flux and the color temperature, the current correction value to be corrected for the change amount of the color temperature is calculated, and the lighting rate when the current value is corrected is 100%.
  • the lighting rate may be calculated from the calculation of the luminous flux value, and the color temperature and the luminous flux value may be corrected. Further, when the color temperature drift and the light flux drift have a linear relationship due to the characteristics of the organic EL element 10A, a current value for making the light flux the same value as the initial value is estimated from the measurement of the light flux, and the lighting rate is calculated.
  • the color temperature correction may be compensated by correcting the color temperature, and there are other methods for calculating the color temperature change amount and the current correction value, but the trial calculation method and procedure are not limited to this embodiment. . In particular, it should be changed according to the characteristics of the organic EL element 10A with variable color temperature, experimental data, the performance of the drive circuit 20 and the control means 30, the trial resolution, and the like. Although it is the same as in the first embodiment, it is desirable that these are estimated and data are stored according to the number of steps of the color temperature change in the color temperature variable width.
  • Example 3 (Correction method to obtain the accumulated light emission time as association information) Next, as Example 3, an example in which the drift of the color temperature is corrected by monitoring the light emission integration time will be described.
  • a current correction value associated with the deterioration characteristics of the organic EL element 10A due to continuous driving is written in the storage unit 31 in advance.
  • the accumulated light emission time can be estimated by integrating with the lighting rate set within a frame frequency that is a constant period, and the accumulated light emission time calculated by this method is stored in the storage unit 31. It is also possible to prepare an analog counter or the like outside and record the accumulated light emission time using them.
  • the control means 30 first calculates the light emission integration time, and calculates the amount of change in color temperature that drifts with the light emission integration time.
  • the amount of change in the luminous flux drifting in the light emission integration time is estimated. This is obtained from the relationship between the color temperature and the continuous driving time obtained from the life test conducted in advance as shown in FIGS. 9 and 10, and from the relationship between the luminous flux and the continuous driving time.
  • the change amount and the current correction value corresponding to the change amount are recorded in the storage unit 31 and are derived based on the accumulated light emission time.
  • FIG. 9 shows the color temperature when the initial emission color temperature is 3500 K and the drive current value is 4.7 A, and when the initial emission color temperature is 6000 K and the drive current value is 0.5 A.
  • the relationship between the amount of change and the continuous drive time is shown.
  • FIG. 10 shows the relationship between the amount of change in luminous flux and the continuous drive time.
  • the current peak value I for correcting the change amount of the color temperature was derived, and the difference between the luminous flux obtained from the current peak value I and the variation amount of the luminous flux was corrected by changing the lighting rate T.
  • the correction current value is taken in the storage unit 31 in advance.
  • the initial value of the drive voltage is read and, for example, the method shown in the first embodiment is used together, and the accumulated light emission time and the drive are used.
  • a current value for correcting the color temperature may be estimated from the voltage change. As can be seen from FIG. 6 and FIG.
  • the light emission integration time and the amount of change in the drive voltage show a substantially straight line result, so that derivation is easy. Furthermore, the luminous flux shown in the second embodiment is measured, and the light emission integration time shown in this embodiment is monitored, and the amount of change in color temperature is predicted from the relationship between the light flux reduction rate and the light emission integration time, and the current to be corrected is corrected. The value may be determined. In particular, depending on the characteristics of the color temperature variable organic EL element 10A, the trial calculation method is not limited to this method, and the change amount of the color temperature shown in the first, second, and third embodiments is detected and corrected. You may carry out using the method together.
  • Example 4 (Addition of a light emitting layer that emits green light)
  • a green third light emitting layer is further provided on the organic EL element 10A shown in the above embodiment.
  • the first and second light emitting layers 13c and 13d that emit blue-green and orange light are stacked, and the organic EL element 10A having a variable color temperature that changes the color temperature from 3500K to 6000K is created.
  • the color rendering index be 80 or more, and it is desirable to emit light having an emission spectrum over the entire visible light region.
  • a third light emitting layer that emits green light in the wavelength range of about 500 to 600 nm between the second light emitting layer 13d and the electron transport layer 13e, light emission over the entire visible light range is achieved.
  • An organic EL element 10A having a variable color temperature and having a spectrum was formed.
  • the third light-emitting layer is formed by mixing an electron-transporting third host material, a hole-transporting material, and a third light-emitting dopant that emits light by a method such as a co-evaporation method. It is formed in layers.
  • the third host material In the third host material, holes and electrons are transported and recombined to form excitons, and energy is transferred to the light emitting dopant to cause the light emitting dopant to emit light.
  • the third host material is made of an anthracene derivative, for example.
  • As the hole transporting material for example, the same material as the hole transporting layer 13b is used, but a different material may be used.
  • the third light-emitting dopant is a fluorescent material made of, for example, a coumarin derivative and emits green light. The doping amount of the third light emitting dopant is set so as not to cause concentration quenching.
  • the third light-emitting dopant may be a phosphorescent material or a thermally delayed fluorescent material.
  • the blue first light emitting layer 13c, the orange second light emitting layer 13d, and the green third light emitting layer were formed in this order, but the orange light emitting layer, the blue light emitting layer, and the green light emitting layer It may be formed by changing the arrangement position.
  • the color temperature could be changed from about 3000K to about 5000K by changing the current peak value I applied during driving.
  • the color rendering index was 82. If the color temperature correction method according to the first to third embodiments is applied to the organic EL element 10A of the present embodiment, the light flux can be similarly corrected by correcting the color temperature and the lighting rate. Is clear.
  • an organic EL element has temperature characteristics, and it is known that, for example, light emission efficiency and color temperature change as the temperature rises.
  • the luminous efficiency and the color temperature are changed by changing the environmental temperature and the junction temperature (junction temperature) Tj of the organic EL element 10A due to self-heating.
  • the color temperature decreases and the luminous flux increases as the temperature rises.
  • FIG. 11 shows the relationship between the color temperature and the junction temperature Tj when the junction temperature Tj is 25 ° C. and the color temperature of the emitted color is 6000K.
  • Example 5 (Correction method to obtain drive voltage as association information)
  • a method for correcting the color temperature by monitoring the drive voltage will be described.
  • the temperature measurement used in this example will be described.
  • the driving voltage of the element tends to decrease as the junction temperature Tj of the element increases without being saturated below the glass transition temperature which is the heat resistant limit temperature of the element.
  • the organic EL element 10A with variable color temperature according to the present embodiment and the drive voltage changes according to the increase or decrease of the junction temperature Tj as shown in FIG.
  • FIG. 12 shows the relationship between the change amount of the drive voltage and the junction temperature Tj.
  • the control means 30 monitors the amount of change accompanying the temperature change of the drive voltage, and calculates the amount of change of the junction temperature Tj accompanying this from the relationship shown in FIG. Next, from the relationship shown in FIG. 11, the amount of change in color temperature accompanying the amount of change in junction temperature Tj is estimated. After that, as shown in the first embodiment, the current correction value for correcting the change amount of the color temperature is estimated, and the change amount of the light flux accompanying this is calculated. At this time, if the light emission efficiency of the organic EL element 10A changes, a light flux trial value obtained by multiplying it may be prepared. As can be seen from this example, it is clear that the color temperature drift can be easily corrected by the driving method by using this correction method for the color temperature drift due to the environmental temperature and the temperature change caused by self-heating. It is.
  • Example 6 (Correction method to acquire luminous flux as association information)
  • a method for correcting color temperature drift by monitoring a light beam will be described.
  • the detection of the luminous flux was monitored by creating a test element of 1 mm ⁇ 1 mm on the outermost periphery of the organic EL panel 10 and installing a photodiode on the test element.
  • the test element and the photodiode are modularized so that they are hidden from the light emitting part, and light is not allowed to enter from the outside.
  • the organic EL panel 10 for detecting a light beam created in the present embodiment directly monitors the light beam due to the temperature change of the panel, it can respond more sensitively to changes in the environmental temperature than the method of installing on the circuit board. . Further, when the change in the environmental temperature does not change greatly, or when the drive circuit 20 is disposed near the organic EL panel 10, it is preferable to provide the test element and the photodiode on the circuit board. Further, as described in the second embodiment, a test element for detecting a light beam and a photodiode may be connected to the back surface of the organic EL panel 10. As shown in FIG.
  • the temperature change amount can be calculated from the light flux change amount.
  • FIG. 13 shows the relationship between the luminous flux and the junction temperature Tj when the junction temperature Tj is 25 ° C. and the color temperature of the emitted color is 6000K.
  • the control unit 30 calculates the amount of change in color temperature associated with the temperature change from the relationship shown in FIG. 11, and similarly corrects the applied current peak value I and lighting rate T. Thus, it is possible to correct a color temperature drift accompanying a temperature change.
  • the drive voltage may be monitored to determine which side.
  • the drive voltage since the drive voltage does not exhibit an inverted U-shaped characteristic with respect to the temperature change, it is easy to determine the temperature and to estimate the amount of change in the color temperature due to the temperature change.
  • the lighting rate T may be re-corrected to provide further feedback.
  • a photodiode is used in this embodiment, a CCD, CMOS, photomultiplier, or the like may be used. If this is used, spectroscopy is performed, and if the emission spectrum of a specific wavelength has temperature characteristics, the emission spectrum is measured, the amount of change in color temperature is directly measured, and the same method as described above is used. The current peak value I and the lighting rate T applied to the organic EL element 10A may be corrected. However, in this case, since a load is applied to the microcomputer as the control means 30, there is a case where a trial calculation is slow or a delay for feedback occurs, and a change in the color temperature due to the correction is visually recognized.
  • this method is suitable when the large organic EL panel 10 is used.
  • the frame is too large for the small organic EL panel 10, so that it is separated from the organic EL panel 10.
  • the test element and another different color temperature variable type organic EL panel are prepared at the place where the color temperature change is measured by CCD, CMOS, photomultiplier, etc., transferred to the control means 30, and the drive is corrected. It is desirable to configure the lighting device 100 as described above.
  • Example 7 (Correction method to obtain ambient temperature as related information)
  • the detection of the ambient temperature includes a method of measuring with the driving voltage described in the first and fifth embodiments, and a method of measuring the light beam described in the second and sixth embodiments. In that case, it is apparent from the above description that the color temperature is corrected.
  • thermistors and thermocouples can be monitored, for example, a thermocouple is attached to the organic EL panel 10 and the temperature is measured to estimate the amount of change in temperature.
  • the color temperature can be corrected by a temperature change by correcting the lighting rate T in order to obtain a desired luminous flux.
  • the temperature is measured by a thermistor or a thermocouple
  • the ambient temperature may be monitored by installing it inside or outside the circuit board of the drive circuit 20, or the installation position of the organic EL panel 10 is separated from the circuit board.
  • the junction temperature Tj of the organic EL element 10A may be connected to the back surface of the organic EL panel 10 and monitored in order to directly measure it.
  • a material whose resistance is changed by heat such as resistance heat measurement, may be provided in the organic EL panel 10 to monitor the temperature.
  • the drive circuit 20 is driven from the organic EL panel 10 by mounting in parallel on the cathode (second electrode 14) line and the anode (first electrode 12) line of the organic EL element 10A. Temperature changes can be monitored without adding additional wiring.
  • the correction method of the emission color drift accompanying the deterioration over time and the correction method of the emission color drift accompanying the temperature change have been described separately.
  • the first correction is the correction of the emission color drift accompanying the deterioration over time
  • the correction of the emission color drift accompanying the temperature change may be executed in combination as the second correction.
  • the organic EL element used in the light emitting device of the present invention is not limited to the structure having a plurality of light emitting layers, and any single light emitting layer may be doped with two or more kinds of light emitting dopants as long as the color variable control can be performed by the current value. It may be what you did.
  • the illuminating device 100 was mentioned as a light-emitting device in this embodiment, a display apparatus may be sufficient as others.
  • the present invention is suitable for a light emitting device using a color variable organic EL element and a driving method of the color variable organic EL element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided are a light emitting device and an organic electroluminescence element driving method with which it is possible to carry out highly reliable color variability control. A light emitting device comprises: an organic electroluminescence element (10A) in which the color of the emitted light changes according to an applied current value; a drive circuit (20) which supplies a drive waveform to the organic electroluminescence element (10A); and a control means for varying the current value of the drive waveform and/or the lighting performance in the drive circuit (20) according to a desired color of the emitted light, further comprising a correcting function which corrects the current value of the drive waveform and/or the lighting performance which is applied according to drift in the color of the emitted light commensurate with a change in temperature of the organic electroluminescence element (10A).

Description

発光装置及び有機EL素子の駆動方法Light emitting device and organic EL element driving method
 本発明は、有機EL(Electro Luminescence)素子を用いた発光装置及び有機EL素子の駆動方法に関する。 The present invention relates to a light emitting device using an organic EL (Electro Luminescence) element and a method for driving the organic EL element.
 従来、有機材料によって形成される自発光素子として知られる有機EL素子は、例えば、陽極となるITO(Indium Tin Oxide)等からなる第一電極と、少なくとも発光層を有する有機層と、陰極となるアルミニウム(Al)等からなる非透光性の第二電極と、を順次積層してなるものである(特許文献1参照)。 Conventionally, an organic EL element known as a self-luminous element formed of an organic material is, for example, a first electrode made of ITO (Indium Tin Oxide) or the like serving as an anode, an organic layer having at least a light emitting layer, and a cathode. A non-translucent second electrode made of aluminum (Al) or the like is sequentially laminated (see Patent Document 1).
 かかる有機EL素子は、第一電極から正孔を注入し、また、第二電極から電子を注入して正孔及び電子が前記発光層にて再結合することによって光を発するものである。有機EL素子はディスプレイへの採用のほか、近年では有機EL素子を光源とした照明装置も開発されている。 Such an organic EL element emits light by injecting holes from the first electrode and injecting electrons from the second electrode, and the holes and electrons recombine in the light emitting layer. In addition to the use of organic EL elements in displays, lighting devices using organic EL elements as light sources have been developed in recent years.
特開昭59-194393号公報JP 59-194393 A 特開平5-94875号公報Japanese Patent Laid-Open No. 5-94875
 また、有機EL素子としては印加電圧を変化させることにより発光色を可変するものが知られている(例えば特許文献2参照)。かかる有機EL素子を光源に適用すれば照明色を任意に変更可能な照明装置を得ることができる。 Further, as an organic EL element, one that changes the emission color by changing an applied voltage is known (see, for example, Patent Document 2). If such an organic EL element is applied to a light source, an illumination device capable of arbitrarily changing the illumination color can be obtained.
 しかしながら、有機EL素子は温度変化や連続駆動による経時劣化などに起因して発光特性が変動する特性を有しており、同様の駆動電流、駆動電圧を印加した場合でも前述の状況変化によって得られる発光色が異なる場合があり、色可変の有機EL素子を照明装置などに用いる場合には発光色の安定性の点でなお改善の余地があった。 However, the organic EL element has a characteristic that the light emission characteristic fluctuates due to a temperature change, deterioration with time due to continuous driving, and the like, and can be obtained by the above-described change in situation even when a similar driving current and driving voltage are applied. The luminescent color may be different, and there is still room for improvement in terms of the stability of the luminescent color when a color-variable organic EL element is used in a lighting device or the like.
 そこで本発明は、この問題に鑑みてなされたものであり、安定性の高い色可変制御を行うことが可能な発光装置及び有機EL素子の駆動方法を目的とする。 Therefore, the present invention has been made in view of this problem, and an object of the present invention is to provide a light-emitting device and an organic EL element driving method capable of performing highly stable color variable control.
 本発明の発光装置は、前記課題を解決するために、印加する電流値に応じて発光色が変化する有機EL素子と、
前記有機EL素子に駆動波形を供給する駆動回路と、
所望の発光色に応じて前記駆動回路における前記駆動波形の電流値及び点灯率の少なくとも一方を可変させ、また、前記有機EL素子の温度変化に伴う発光色のドリフトに応じて印加する前記駆動波形の電流値及び点灯率の少なくとも一方を補正する補正機能を有する制御手段と、を備えてなることを特徴とする。
In order to solve the above-described problem, the light-emitting device of the present invention has an organic EL element whose emission color changes according to the applied current value;
A drive circuit for supplying a drive waveform to the organic EL element;
The drive waveform that varies at least one of the current value and the lighting rate of the drive waveform in the drive circuit according to a desired emission color, and that is applied according to a drift in the emission color accompanying a temperature change of the organic EL element. And a control means having a correction function for correcting at least one of the current value and the lighting rate.
 前記有機EL素子の温度変化に伴う発光色のドリフトと連関性のある連関情報を取得する連関情報取得手段を備え、前記制御手段は、前記連関情報取得手段からの前記連関情報に基づいて前記駆動波形の電流値及び点灯率の少なくとも一方の補正を行うことを特徴とする。 And an association information acquisition unit that acquires association information that is associated with a drift in emission color associated with a temperature change of the organic EL element, and the control unit drives the driving based on the association information from the association information acquisition unit. It is characterized in that at least one of the waveform current value and the lighting rate is corrected.
 前記連関情報取得手段は、前記連関情報として前記有機EL素子の駆動電圧、前記有機EL素子または前記有機EL素子と構造が同様である他の有機EL素子の光量もしくは周囲温度の少なくともいずれかを取得することを特徴とする。 The association information acquisition unit acquires at least one of the driving voltage of the organic EL element, the light amount of the organic EL element or another organic EL element having the same structure as the organic EL element, or the ambient temperature as the association information. It is characterized by doing.
 前記有機EL素子は、発光色の異なる複数の発光層を有することを特徴とする。 The organic EL element has a plurality of light emitting layers having different emission colors.
 本発明の発光装置は、前記課題を解決するために、印加する電流値に応じて発光色が変化する有機EL素子と、
前記有機EL素子に駆動波形を供給する駆動回路と、
所望の発光色に応じて前記駆動回路における前記駆動波形の電流値及び点灯率の少なくとも一方を可変させ、また、前記有機EL素子の経時劣化に伴う発光色のドリフトに応じて印加する前記駆動波形の電流値及び点灯率の少なくとも一方を補正する補正機能を有する制御手段と、を備えてなることを特徴とする。
In order to solve the above-described problem, the light-emitting device of the present invention has an organic EL element whose emission color changes according to the applied current value;
A drive circuit for supplying a drive waveform to the organic EL element;
The drive waveform that varies at least one of the current value and the lighting rate of the drive waveform in the drive circuit according to a desired emission color, and that is applied according to the drift of the emission color accompanying the deterioration of the organic EL element over time. And a control means having a correction function for correcting at least one of the current value and the lighting rate.
 前記有機EL素子の経時劣化に伴う発光色のドリフトと連関性のある連関情報を取得する連関情報取得手段を備え、前記制御手段は、前記連関情報取得手段からの連関情報に基づいて前記駆動波形の電流値及び点灯率の少なくとも一方の補正を行うことを特徴とする。 And an association information obtaining unit that obtains association information that is associated with a drift in emission color associated with the deterioration of the organic EL element with time, and the control unit is configured to obtain the drive waveform based on the association information from the association information obtaining unit. In this case, at least one of the current value and the lighting rate is corrected.
 前記連関情報取得手段は、前記連関情報として前記有機EL素子の駆動電圧、前記有機EL素子または前記有機EL素子と構造が同様である他の有機EL素子の光量もしくは発光積算時間の少なくともいずれかを取得する。 The association information acquisition means uses at least one of the drive voltage of the organic EL element, the light amount of the organic EL element or another organic EL element having the same structure as the organic EL element, or the light emission integration time as the association information. get.
 前記有機EL素子は、発光色の異なる複数の発光層を有することを特徴とする。 The organic EL element has a plurality of light emitting layers having different emission colors.
 本発明は、前記課題を解決するために、印加する電流値に応じて発光色が変化する有機EL素子の駆動方法であって、
所望の発光色に応じて前記有機EL素子に印加する駆動波形の電流値及び点灯率の少なくとも一方を可変させ、また、前記有機EL素子の温度変化に伴う発光色のドリフトに応じて印加する前記駆動波形の電流値及び点灯率の少なくとも一方を補正することを特徴とする。
In order to solve the above-mentioned problem, the present invention is a method for driving an organic EL element in which a light emission color changes according to an applied current value,
The at least one of the current value and the lighting rate of the drive waveform applied to the organic EL element is varied according to the desired emission color, and the application is performed according to the emission color drift accompanying the temperature change of the organic EL element. It is characterized in that at least one of the current value of the drive waveform and the lighting rate is corrected.
 前記有機EL素子の温度変化に伴う発光色のドリフトと連関性のある連関情報を取得し、前記連関情報に基づいて前記駆動波形の電流値及び点灯率の少なくとも一方の補正を行うことを特徴とする。 Acquiring association information associated with a drift in emission color associated with a temperature change of the organic EL element, and correcting at least one of a current value and a lighting rate of the drive waveform based on the association information. To do.
 前記連関情報として前記有機EL素子の駆動電圧、前記有機EL素子または前記有機EL素子と構造が同様である他の有機EL素子の光量もしくは周囲温度の少なくともいずれかを取得することを特徴とする。 It is characterized in that at least one of a driving voltage of the organic EL element, an amount of light of the organic EL element or another organic EL element having the same structure as the organic EL element, or an ambient temperature is acquired as the association information.
 本発明は、前記課題を解決するために、印加する電流値に応じて発光色が変化する有機EL素子の駆動方法であって、
所望の発光色に応じて前記有機EL素子に印加する駆動波形の電流値及び点灯率の少なくとも一方を可変させ、また、前記有機EL素子の経時劣化に伴う発光色のドリフトに応じて印加する前記駆動波形の電流値及び点灯率の少なくとも一方を補正することを特徴とする。
In order to solve the above-mentioned problem, the present invention is a method for driving an organic EL element in which a light emission color changes according to an applied current value,
The at least one of the current value of the drive waveform applied to the organic EL element and the lighting rate is varied according to the desired emission color, and is applied according to the drift of the emission color accompanying the deterioration with time of the organic EL element. It is characterized in that at least one of the current value of the drive waveform and the lighting rate is corrected.
 前記有機EL素子の経時劣化に伴う発光色のドリフトと連関性のある連関情報を取得し、前記連関情報に基づいて前記駆動波形の電流値及び点灯率の少なくとも一方の補正を行うことを特徴とする。 Acquiring association information associated with drift in emission color associated with deterioration of the organic EL element over time, and correcting at least one of the current value and lighting rate of the drive waveform based on the association information. To do.
 前記連関情報として前記有機EL素子の駆動電圧、前記有機EL素子または前記有機EL素子と構造が同様である他の有機EL素子の光量もしくは発光積算時間の少なくともいずれかを取得することを特徴とする。 As the association information, at least one of a driving voltage of the organic EL element, a light amount of the organic EL element or another organic EL element having the same structure as the organic EL element, or an accumulated light emission time is obtained. .
 本発明は、安定性の高い色可変制御を行うことが可能となるものである。 The present invention enables highly stable color variable control.
本発明の実施形態である照明装置の電気的構成を示す図。The figure which shows the electrical constitution of the illuminating device which is embodiment of this invention. 同上照明装置に用いられる有機EL素子を示す模式図。The schematic diagram which shows the organic EL element used for an illuminating device same as the above. 同上有機EL素子に印加される駆動波形を示す図。The figure which shows the drive waveform applied to an organic EL element same as the above. 実施例1における色温度と駆動電圧との関係を示す図。FIG. 3 is a diagram illustrating a relationship between a color temperature and a driving voltage in Embodiment 1. 実施例1における色温度と電流値との関係を示す図。FIG. 3 is a diagram illustrating a relationship between a color temperature and a current value in Example 1. 実施例1における光束の変化量と駆動電圧の変化量との関係を示す図。FIG. 4 is a diagram illustrating a relationship between a change amount of a light beam and a change amount of a drive voltage in the first embodiment. 実施例1における光束と点灯率100%時の電流値との関係を示す図。The figure which shows the relationship between the light beam in Example 1, and the electric current value at the time of lighting rate 100%. 実施例1における初期光束値となる電流値と点灯率との関係を示す図。The figure which shows the relationship between the electric current value used as the initial light beam value in Example 1, and a lighting rate. 実施例2における色温度の経時劣化を示す図。FIG. 6 is a graph showing deterioration with time of color temperature in Example 2. 実施例2における光束の経時劣化を示す図。FIG. 6 is a diagram showing deterioration of light flux with time in Example 2. 同上照明装置に用いられる有機EL素子の色温度と素子ジャンクション温度との関係を示す図。The figure which shows the relationship between the color temperature of an organic EL element used for an illuminating device same as the above, and element junction temperature. 実施例5における駆動電圧の変化量と素子ジャンクション温度との関係を示す図。FIG. 10 is a diagram illustrating a relationship between a change amount of a driving voltage and an element junction temperature in Example 5. 実施例6における光束と素子ジャンクション温度との関係を示す図。The figure which shows the relationship between the light beam and element junction temperature in Example 6. FIG.
 以下、添付図面に基づいて本発明の発光装置及び有機EL素子の駆動方法を照明装置に適用した一実施形態について説明する。 Hereinafter, an embodiment in which the light emitting device and the organic EL element driving method of the present invention are applied to a lighting device will be described with reference to the accompanying drawings.
 図1は、本発明の実施形態である照明装置100の電気的構成を示す図である。照明装置100は、後述する有機EL素子を発光部とする有機ELパネル10と、有機ELパネル10に駆動波形を印加するための駆動回路20と、を備える。また、照明装置100は、駆動回路20を制御する制御手段30と、制御手段30への入力操作を行うための操作手段40及び後述する連関情報を取得して制御手段30に入力する連関情報取得手段50と、を備える。 FIG. 1 is a diagram showing an electrical configuration of a lighting device 100 according to an embodiment of the present invention. The illumination device 100 includes an organic EL panel 10 that uses an organic EL element, which will be described later, as a light emitting unit, and a drive circuit 20 for applying a drive waveform to the organic EL panel 10. The lighting device 100 also acquires a control unit 30 that controls the drive circuit 20, an operation unit 40 that performs an input operation to the control unit 30, and association information acquisition that acquires association information described later and inputs the association information to the control unit 30. Means 50.
 図2は、有機ELパネル10に備えられる有機EL素子10Aを示す図である。有機EL素子10Aは、支持基板11上に陽極となる第一電極12と、有機層13と、陰極となる第二電極14と、を積層形成してなるものである。なお、有機EL素子10Aは、吸湿剤が塗布される封止基板を支持基板11上に配設して封止されるものであるが、図2ではこの封止基板を省略している。 FIG. 2 is a diagram showing an organic EL element 10A provided in the organic EL panel 10. As shown in FIG. The organic EL element 10A is formed by laminating a first electrode 12 serving as an anode, an organic layer 13, and a second electrode 14 serving as a cathode on a support substrate 11. The organic EL element 10A is sealed by disposing a sealing substrate to which a hygroscopic agent is applied on the support substrate 11, but this sealing substrate is omitted in FIG.
 支持基板11は、例えば透光性の無アルカリガラスからなる矩形状の基板である。なお、アルカリガラス等のその他のガラス基板を用いてもよく、ガラス厚についても特に限定されない。支持基板11上には、第一電極12、有機層13及び第二電極14が順に積層形成される。 The support substrate 11 is a rectangular substrate made of translucent non-alkali glass, for example. Other glass substrates such as alkali glass may be used, and the glass thickness is not particularly limited. On the support substrate 11, the 1st electrode 12, the organic layer 13, and the 2nd electrode 14 are laminated | stacked in order.
 第一電極12は、正孔を注入する陽極となるものであり、支持基板11上にITOあるいはAZO等の透明導電材料をスパッタリング法あるいは真空蒸着法等の手段によって50~500nmの膜厚で層状に形成し、フォトエッチング等の手段によって所定の形状にパターニングされてなる。また、第一電極12は、表面がUV/O3処理やプラズマ処理等の表面処理を施されてなる。なお、第一電極12のエッジを含む支持基板11の周辺領域は例えばポリイミド系統の絶縁材料からなる絶縁膜(図示しない)で覆われ、発光部の形状を画定し、短絡などを防止する。 The first electrode 12 serves as an anode for injecting holes, and a transparent conductive material such as ITO or AZO is formed on the support substrate 11 in a film thickness of 50 to 500 nm by means such as sputtering or vacuum deposition. And patterned into a predetermined shape by means such as photoetching. The surface of the first electrode 12 is subjected to a surface treatment such as UV / O3 treatment or plasma treatment. Note that the peripheral region of the support substrate 11 including the edge of the first electrode 12 is covered with an insulating film (not shown) made of, for example, a polyimide-based insulating material to define the shape of the light emitting portion and prevent a short circuit or the like.
 有機層13は、少なくとも有機材料からなる発光層を含む多層からなり、第一電極12上に形成されるものである。本実施形態においては、第一電極12側から順に正孔注入層13a、正孔輸送層13b、第一の発光層13c、第二の発光層13d及び電子輸送層13eが順に積層形成されてなる。 The organic layer 13 is formed of a multilayer including at least a light emitting layer made of an organic material, and is formed on the first electrode 12. In the present embodiment, the hole injection layer 13a, the hole transport layer 13b, the first light emitting layer 13c, the second light emitting layer 13d, and the electron transport layer 13e are sequentially stacked from the first electrode 12 side. .
 正孔注入層13aは、第一電極12から正孔を取り込む機能を有し、例えばアミン系化合物等の正孔輸送性有機材料を蒸着法等の手段によって膜厚20~120nm程度の層状に形成してなる。 The hole injection layer 13a has a function of taking holes from the first electrode 12. For example, a hole transporting organic material such as an amine compound is formed in a layer shape having a film thickness of about 20 to 120 nm by means such as vapor deposition. Do it.
 正孔輸送層13bは、正孔を第一の発光層13cへ伝達する機能を有し、例えばアミン系化合物等の正孔輸送性材料を蒸着法等の手段によって膜厚20~40nm程度の層状に形成してなる。 The hole transport layer 13b has a function of transmitting holes to the first light-emitting layer 13c. For example, a hole transport material such as an amine compound is formed in a layer shape having a film thickness of about 20 to 40 nm by means such as vapor deposition. Formed.
 第一の発光層13cは、電子輸送性の第一のホスト材料と正孔輸送性材料と発光を呈する第一の発光ドーパントとを共蒸着等の手段によって混合した膜厚20~60nmの混合層からなる。
前記第一のホスト材料は、正孔及び電子の輸送が可能であり、その分子内で正孔及び電子が再結合することで前記第一の発光ドーパントを発光させる機能を有する。ここで、電子輸送性のホスト材料とは電子輸送能力の比較的高い有機材料であり、具体的には電子移動度μeが高く正孔移動度μhが低い材料を言う。具体的には例えばアントラセン誘導体を用いる。前記正孔輸送性材料としては例えば正孔輸送層13bと同様の材料を用いるが異なる材料でもよい。
前記第一の発光ドーパントは、正孔と電子との再結合に反応して発光する機能を有し、所定の発光色を示す有機材料からなる。本実施形態では例えば青緑色発光を示すスチリルアミン、アミン置換スチリルアミン化合物からなる蛍光材料で濃度消光を起こさない程度のドーピング量で用いる。
The first light emitting layer 13c is a mixed layer having a film thickness of 20 to 60 nm in which a first host material having electron transport property, a hole transporting material, and a first light emitting dopant exhibiting light emission are mixed by means such as co-evaporation. Consists of.
The first host material can transport holes and electrons, and has a function of causing the first light-emitting dopant to emit light by recombination of holes and electrons in the molecule. Here, the electron transporting host material is an organic material having a relatively high electron transport capability, and specifically refers to a material having a high electron mobility μe and a low hole mobility μh. Specifically, for example, an anthracene derivative is used. As the hole transporting material, for example, the same material as the hole transporting layer 13b is used, but a different material may be used.
The first light-emitting dopant is made of an organic material having a function of emitting light in response to recombination of holes and electrons and exhibiting a predetermined emission color. In this embodiment, for example, a fluorescent material made of styrylamine or an amine-substituted styrylamine compound that emits blue-green light is used in a doping amount that does not cause concentration quenching.
 第二の発光層13dは、電子輸送性の第二のホスト材料と正孔輸送性材料と発光を呈する第二の発光ドーパントとを共蒸着等の手段によって混合した膜厚20~60nmの混合層からなる。
前記第二のホスト材料は、正孔及び電子の輸送が可能であり、その分子内で正孔及び電子が再結合することで前記第二の発光ドーパントを発光させる機能を有する。ここで、電子輸送性のホスト材料とは電子輸送能力の比較的高い有機材料であり、具体的には電子移動度μeが高く正孔移動度μhが低い材料を言う。具体的には例えばアントラセン誘導体からなる。前記正孔輸送性材料としては例えば正孔輸送層13bと同様の材料を用いるが異なる材料でもよい。
前記第二の発光ドーパントは、正孔と電子との再結合に反応して発光する機能を有し、前述の前記第一の発光ドーパントとは異なる所定の発光色を示す有機材料からなる。本実施形態では例えば橙色発光を示すフルオランテン骨格又はペンタセン骨格を有する蛍光材料で濃度消光を起こさない程度のドーピング量で用いる。なお、前記第一,第二の発光ドーパントとしては、蛍光材料のほか燐光材料あるいは熱遅延蛍光材料を用いてもよい。また、第一の発光層13cと第二の発光層13dとの発光色を逆にしてもよい。
The second light emitting layer 13d is a mixed layer having a film thickness of 20 to 60 nm in which a second host material having electron transport property, a hole transporting material, and a second light emitting dopant exhibiting light emission are mixed by means such as co-evaporation. Consists of.
The second host material can transport holes and electrons, and has a function of causing the second light-emitting dopant to emit light by recombination of holes and electrons in the molecule. Here, the electron transporting host material is an organic material having a relatively high electron transport capability, and specifically refers to a material having a high electron mobility μe and a low hole mobility μh. Specifically, it consists of an anthracene derivative, for example. As the hole transporting material, for example, the same material as the hole transporting layer 13b is used, but a different material may be used.
The second light-emitting dopant has a function of emitting light in response to recombination of holes and electrons, and is made of an organic material that exhibits a predetermined emission color different from the first light-emitting dopant. In this embodiment, for example, a fluorescent material having a fluoranthene skeleton or a pentacene skeleton that emits orange light is used at a doping amount that does not cause concentration quenching. As the first and second light-emitting dopants, a phosphorescent material or a thermally delayed fluorescent material may be used in addition to the fluorescent material. Moreover, you may reverse the luminescent color of the 1st light emitting layer 13c and the 2nd light emitting layer 13d.
 電子輸送層13eは、電子を第二の発光層13dへ伝達する機能を有し、例えばトリアジン誘導体とアルカリ金属錯体とを共蒸着等の手段によって混合した膜厚20~60nmの混合層からなる。 The electron transport layer 13e has a function of transmitting electrons to the second light-emitting layer 13d, and is composed of a mixed layer having a thickness of 20 to 60 nm in which a triazine derivative and an alkali metal complex are mixed by means such as co-evaporation.
 第二電極14は、電子を注入する陰極となるものであり、電子輸送層13e上に例えばAl,マグネシウム(Mg),コバルト(Co),Li,金(Au),銅(Cu),亜鉛(Zn)等の低抵抗導電材料をスパッタリング法や真空蒸着法等の手段によって膜厚20~300nmの層状に形成した導電膜からなるものである。 The second electrode 14 serves as a cathode for injecting electrons. On the electron transport layer 13e, for example, Al, magnesium (Mg), cobalt (Co), Li, gold (Au), copper (Cu), zinc ( It is made of a conductive film in which a low-resistance conductive material such as Zn) is formed into a layer having a thickness of 20 to 300 nm by means such as sputtering or vacuum deposition.
 以上のように、第一電極12と第二電極14との間に電圧を印加すると所定の発光色で発光する有機EL素子10Aが構成されている。なお、第一電極12あるいは第二電極14と接続される引き回し配線や端子等の周知の内容については説明を簡略化にするために適宜省略した。 As described above, the organic EL element 10 </ b> A that emits light in a predetermined emission color when a voltage is applied between the first electrode 12 and the second electrode 14 is configured. It should be noted that well-known contents such as routing wires and terminals connected to the first electrode 12 or the second electrode 14 are omitted as appropriate in order to simplify the description.
 駆動回路20は、電源Vccに接続され有機EL素子10Aに供給される駆動波形Pの電流波高値Iを可変する可変電流回路21と、可変電流回路21と有機EL素子10Aとの間に配置され有機EL素子10Aへの電流供給のオン・オフを切り換えるスイッチ素子22と、スイッチ素子22のオン・オフを制御するドライブ回路23と、を有する。また、駆動回路20は、図3に示す矩形波を駆動波形Pとして生成する。 The drive circuit 20 is disposed between the variable current circuit 21 and the organic EL element 10A, which is connected to the power source Vcc and varies the current peak value I of the drive waveform P supplied to the organic EL element 10A. A switch element 22 that switches ON / OFF of current supply to the organic EL element 10A and a drive circuit 23 that controls ON / OFF of the switch element 22 are provided. Further, the drive circuit 20 generates a rectangular wave shown in FIG.
 制御手段30は、主にマイコン(マイクロコンピュータ)から構成され、操作手段40及びその他外部からの入力に応じてスイッチ素子22のオン・オフを切り換え、有機EL素子10Aの発光を制御するものである。また、制御手段30は、連関情報取得手段50から入力される連関情報に応じてE2PROMやフラッシュメモリなどの記憶素子からなる記憶部31から電流波高値Iの補正データを取得し、有機EL素子10Aに供給する電流波高値Iを補正する後述する補正機能を有する。 The control means 30 is mainly composed of a microcomputer, and controls the light emission of the organic EL element 10A by switching on and off the switch element 22 in accordance with the operation means 40 and other external inputs. . Further, the control unit 30 acquires correction data of the current peak value I from the storage unit 31 including a storage element such as an E2PROM or a flash memory in accordance with the association information input from the association information acquisition unit 50, and the organic EL element 10A. Has a correction function to be described later for correcting the current peak value I supplied to the.
 操作手段40は、押しボタンスイッチやボリュームスイッチからなり、有機EL素子10Aの発光のオン、オフや発光輝度、さらには発光色を任意に選択するための手段である。 The operating means 40 includes a push button switch and a volume switch, and is a means for arbitrarily selecting on / off of the organic EL element 10A, light emission luminance, and light emission color.
 連関情報取得手段50は、有機EL素子10Aの温度変化に伴う発光色のドリフト(ズレ)、すなわち、可変させた場合の所望の発光色に対する色ズレと連関性のある、あるいは、有機EL素子10Aの経時劣化に伴う発光色のドリフトと連関性のある連関情報を取得する手段であり、本実施形態においては、有機EL素子10Aの温度変化に伴う発光色のドリフトと連関性のある連関情報としては有機EL素子10Aの駆動電圧、有機EL素子10Aまたは有機EL素子10Aと構造が同様である他の有機EL素子の光束(光量)もしくは周囲温度の少なくともいずれかを取得し、有機EL素子10Aの経時劣化に伴う発光色のドリフトと連関性のある連関情報としては有機EL素子10Aの駆動電圧、有機EL素子10Aまたは有機EL素子10Aと構造が同様である他の有機EL素子の光束(光量)もしくは発光積算時間の少なくともいずれかを取得する。 The association information acquisition unit 50 is associated with a drift (deviation) of the emission color accompanying a temperature change of the organic EL element 10A, that is, a color deviation with respect to a desired emission color when varied, or the organic EL element 10A. In this embodiment, as association information related to the drift of emission color associated with the temperature change of the organic EL element 10A. Obtains at least one of the driving voltage of the organic EL element 10A, the luminous flux (light quantity) of the organic EL element 10A or another organic EL element having the same structure as the organic EL element 10A, and the ambient temperature. As the association information related to the drift of the luminescent color accompanying the deterioration with time, the driving voltage of the organic EL element 10A, the organic EL element 10A or the organic E Elements 10A and structure to obtain at least one of the light beam (light quantity) or emission accumulation time of other organic EL elements is the same.
 以上の各部によって照明装置100が構成されている。 The illuminating device 100 is comprised by the above each part.
 次に、有機EL素子10Aの駆動方法における色可変制御方法について説明する。 Next, a color variable control method in the driving method of the organic EL element 10A will be described.
 本実施形態における有機EL素子10Aは、主に第一電極12側の第一の発光層13cにおける前記正孔輸送性材料の濃度と第二電極14側の第二の発光層13dにおける前記正孔輸送性材料の濃度とを等しくすることで正孔注入輸送と電子注入輸送のキャリアバランスによって正孔と電子との再結合領域、すなわち発光領域が移動しやすい素子構成となっており、両電極12、14間に注入する電流密度に応じて発光領域が移動することで混色のバランスが変化し発光色を意図的に変化させることができる。青緑発光を呈する第一の発光層13cと橙色発光を呈する第二の発光層13dとを有する本実施形態の有機EL素子10Aにあっては、電流密度が比較的低い場合には正孔と電子の再結合領域が正孔輸送層13b側に移動して色温度が約6000Kの青みがかった寒色系の白色発光が得られ、電流密度を上昇させると正孔と電子との再結合領域は電子輸送層13e側に移動し、色温度が約3500Kの橙色がかった暖色系の白色となる。なお、色温度が約6000Kの光は業務や勉強など作業に集中して取り組むのに好適な光であり、色温度が約3500Kの光は寒色系の光に比べて安らぎ感のある落ち着いた光である。なお、この色温度は一例を示したものに過ぎず、本実施形態における色可変の有機EL素子10Aによって得られる色温度の変化幅は、素子構造や電流密度によって青緑から橙色までの色温度感であれが広く任意に選択可能である。 The organic EL element 10A in the present embodiment mainly includes the concentration of the hole transporting material in the first light emitting layer 13c on the first electrode 12 side and the hole in the second light emitting layer 13d on the second electrode 14 side. By making the concentration of the transporting material equal, the device structure is such that the recombination region of holes and electrons, that is, the light emitting region is easily moved by the carrier balance of hole injection transport and electron injection transport. , 14 moves between the light emitting regions according to the current density injected between them, so that the balance of the color mixture changes and the light emission color can be changed intentionally. In the organic EL element 10A of the present embodiment having the first light emitting layer 13c exhibiting blue-green light emission and the second light emitting layer 13d exhibiting orange light emission, when the current density is relatively low, holes and The recombination region of electrons moves to the hole transport layer 13b side, and a bluish cold-colored white light emission having a color temperature of about 6000 K is obtained. When the current density is increased, the recombination region of holes and electrons becomes an electron. It moves to the transport layer 13e side and becomes an orangeish warm white with a color temperature of about 3500K. Light with a color temperature of about 6000K is suitable for concentrating on work such as work and study, and light with a color temperature of about 3500K is a calm light with a sense of comfort compared to cold-colored light. It is. Note that this color temperature is merely an example, and the change range of the color temperature obtained by the color-variable organic EL element 10A in this embodiment is a color temperature from blue green to orange depending on the element structure and current density. The feeling can be selected arbitrarily widely.
 したがって、操作手段40の操作入力に応じて、有機EL素子10Aに印加される駆動波形Pの電流波高値Iを可変することによって、発光色が可変される。なお、電流波高値Iのみを可変するとこれによって光束(明るさ)も変化するため、光束を一定とするためには電流波高値Iに応じて点灯率(所定のフレーム時間における発光時間すなわち電流波高値Iの印加時間の比率)Tを合わせて調整する必要がある。 Therefore, the emission color is varied by varying the current peak value I of the drive waveform P applied to the organic EL element 10A in accordance with the operation input of the operation means 40. Note that if only the current peak value I is varied, the luminous flux (brightness) also changes accordingly. Therefore, in order to make the luminous flux constant, the lighting rate (the light emission time in a predetermined frame time, that is, the current wave) is determined according to the current peak value I. It is necessary to adjust the ratio of the application time of the high value I) T.
 次に、本実施形態における補正方法のうち、経時劣化に伴う発光色のドリフトを補正する補正方法について説明する。 Next, of the correction methods in the present embodiment, a correction method for correcting the drift of the emission color due to deterioration with time will be described.
一般に、有機EL素子は連続駆動することで構成材料が劣化する。そのため色可変の有機EL素子10Aにおいてはこの連続駆動による経時劣化に伴って発光色の色温度にドリフトが生じることとなる。また、同様に有機EL素子10Aは、経時劣化に伴って光束が減少し、反比例して駆動電圧は上昇する(すなわち電圧降下が生ずる)。本願発明者らは鋭意検討の結果、この経時劣化に伴う発光色のドリフトと相関する連関情報に着目し、この連関情報に基づいて有機EL素子10Aに供給する駆動波形Pの電流波高値Iと点灯率Tを適宜補正する方法を見いだした。 In general, the organic EL element is continuously driven to deteriorate the constituent material. Therefore, in the color-variable organic EL element 10A, the color temperature of the emitted color drifts with the deterioration with time due to the continuous driving. Similarly, in the organic EL element 10A, the luminous flux decreases with time deterioration, and the drive voltage rises in inverse proportion (that is, a voltage drop occurs). As a result of intensive studies, the inventors of the present application have focused attention on the association information correlated with the drift of the emission color accompanying the deterioration with time, and based on this association information, the current peak value I of the drive waveform P supplied to the organic EL element 10A and A method for correcting the lighting rate T as appropriate was found.
・実施例1
(連関情報として駆動電圧を取得する補正方法)
 以下、駆動電圧をモニタする事で色温度を補正する方法について説明する。
駆動方法にて色温度と光束を補正するにあたっては、あらかじめ有機EL素子10Aの連続駆動に伴う劣化特性を補う電流補正値を記憶部31に書き込んでおき、駆動電圧をモニタすることで、色温度のドリフト量の試算ならびに補正を可能とした。
本実施例では駆動電圧のモニタは、有機ELパネル10の短絡や接続不良などの時に動作を停止するための保護機能の一部として制御手段30に備えられ、駆動回路20の電源を投入した直後からフレーム周波数毎にモニタし、正常状態である事を確認してから発光に必要な電流を印加するように作成している。そのため、本実施例のように駆動電圧をモニタして色温度を補正する事は容易に達成された。
Example 1
(Correction method to obtain drive voltage as association information)
Hereinafter, a method for correcting the color temperature by monitoring the drive voltage will be described.
In correcting the color temperature and the luminous flux by the driving method, a current correction value that compensates for deterioration characteristics associated with the continuous driving of the organic EL element 10A is written in the storage unit 31 in advance, and the color voltage is monitored by monitoring the driving voltage. It was possible to estimate and correct the drift amount.
In this embodiment, the drive voltage monitor is provided in the control means 30 as a part of the protection function for stopping the operation when the organic EL panel 10 is short-circuited or poorly connected, and immediately after the drive circuit 20 is turned on. Therefore, it is created so that a current necessary for light emission is applied after monitoring every frame frequency and confirming that it is in a normal state. Therefore, it has been easily achieved to correct the color temperature by monitoring the drive voltage as in this embodiment.
 制御手段30は、電源投入後の駆動電圧を計測した結果から、初期電圧値、すなわち所望の色温度のときの駆動電圧値からの差分を算出する。
次に該差分から導き出される色温度変化量を補正するに必要な電流補正値を試算する。
ここで、電流値と出力設定されている点灯率から光束が決定されるが、電流値を変化させた際に、電流値に対する発光効率の違いにより上昇または下降する光束の変化分を試算し、該変化分から点灯率差分を試算する。
そして前記電流補正値に基づいて電流波高値Iを補正することで色温度を補正し、また点灯率差分を適用して点灯率Tを補正する事で光束のドリフト(ズレ)も補正できるようにした。したがって、本実施例を適用することで点灯による連続駆動でドリフトした色温度を補正する事が可能となり、色温度のドリフトが視認されない。
The control means 30 calculates the difference from the initial voltage value, that is, the drive voltage value at the desired color temperature, from the result of measuring the drive voltage after power-on.
Next, a current correction value necessary for correcting the color temperature change amount derived from the difference is calculated.
Here, the luminous flux is determined from the current value and the output setting lighting rate, but when the current value is changed, the amount of change in luminous flux that rises or falls due to the difference in luminous efficiency with respect to the current value is estimated, The lighting rate difference is estimated from the change.
The color temperature is corrected by correcting the current peak value I based on the current correction value, and the light flux drift (deviation) can also be corrected by correcting the lighting rate T by applying the lighting rate difference. did. Therefore, by applying the present embodiment, it is possible to correct the color temperature drifted by continuous driving by lighting, and the color temperature drift is not visually recognized.
 本実施例では、外形サイズ150mm×25mm、発光面積が31cm2で初期光束を30lmとし、色温度の可変幅を3500Kから6000Kまで変化する色温度可変型の有機ELパネル10とした。
 図4は、初期状態及び連続駆動により色温度の変化幅が3700Kから6300Kに変化した場合の色温度と駆動電圧の関係を示すものである。また図5は初期状態及び連続駆動により色温度の変化幅が3700Kから6300Kに変化した場合の色温度と電流値の関係を示すものである。図4に示すように例えば初期状態で色温度4000Kでの駆動電圧は連続駆動により8.2Vから8.5Vへシフトし、これに連関して図5のように色温度4000Kの発光を得るための電流値が1.9Aから2.7Aへ変化してしまう。これは電流値を初期値のままであると得られる色温度がドリフトすることを示している。したがって、色温度4000Kを得る設定においては本実施例の補正方法により駆動波形Pの電流波高値Iを2.7Aへ変更することで色温度のドリフトを補正した。
また図6に示す光束の変化量と駆動電圧の変化量との関係から、図7に示すように駆動電圧のシフトから予想される光束の変化量があらかじめわかっているため、電流波高値Iを変更した際に得られる点灯率100%時の光束がわかり、さらに同図から試算される初期光束値(30lm)となる電流波高値Iと点灯率Tの関係を光束のドリフトを考慮して図8のように試算しておくことで、点灯率Tを補正することで光束値のドリフトも補正した。本実施例では色温度4000K時の初期点灯率21%に対し光束が75%まで低下した場合点灯率Tを16%に補正して初期光束値を得た。
また確認として、点灯率100%時の光束値と色温度の関係を図5、図7から求めると、色温度4000Kでの点灯率100%時の光束値の値は、初期状態での148lmから電流波高値Iの補正後は162lmとなり、点灯率を初期点灯率21%から16%にする事で、初期光束値である30lmが得られることがわかる。
かかる補正は光束値と点灯率の関係を記憶部31に登録しておくことで容易に実施される。なお、図6は光束の変化量と駆動電圧の変化量との関係を示す。図7は初期状態、光束が初期状態の90%に劣化した状態、光束が初期状態の75%に劣化した状態の光束と点灯率100%の電流値との関係を示す。図8は、初期状態、光束が初期状態の90%に劣化した状態、光束が初期状態の75%に劣化した状態の初期光束値となる電流値と点灯率の関係を示す。
なお、以上の説明は色温度4000Kでの発光駆動を例に挙げたが、色温度が可変域のどの位置であっても同様の補正を行う事で色温度のドリフトを補正できることは明らかである。
In this embodiment, the color temperature variable organic EL panel 10 has an outer size of 150 mm × 25 mm, a light emission area of 31 cm 2, an initial luminous flux of 30 lm, and a variable width of color temperature from 3500K to 6000K.
FIG. 4 shows the relationship between the color temperature and the drive voltage when the change range of the color temperature is changed from 3700K to 6300K in the initial state and continuous driving. FIG. 5 shows the relationship between the color temperature and the current value when the change range of the color temperature is changed from 3700K to 6300K in the initial state and continuous driving. As shown in FIG. 4, for example, the driving voltage at a color temperature of 4000 K in the initial state is shifted from 8.2 V to 8.5 V by continuous driving. In association with this, light emission at a color temperature of 4000 K is obtained as shown in FIG. Current value changes from 1.9 A to 2.7 A. This indicates that the obtained color temperature drifts when the current value is kept at the initial value. Therefore, in the setting for obtaining the color temperature of 4000 K, the color temperature drift is corrected by changing the current peak value I of the drive waveform P to 2.7 A by the correction method of this embodiment.
Further, from the relationship between the change amount of the light beam and the change amount of the drive voltage shown in FIG. 6, the change amount of the light beam expected from the shift of the drive voltage is known in advance as shown in FIG. The luminous flux at the lighting rate of 100% obtained when the change is made is known, and the relationship between the current peak value I and the lighting rate T, which is the initial luminous flux value (30 lm) calculated from the figure, is shown in consideration of the drift of the luminous flux. By making a trial calculation as shown in FIG. 8, the light flux value drift was also corrected by correcting the lighting rate T. In this embodiment, when the luminous flux is reduced to 75% with respect to the initial lighting ratio of 21% at the color temperature of 4000K, the lighting ratio T is corrected to 16% to obtain the initial luminous flux value.
As a confirmation, when the relationship between the luminous flux value and the color temperature at the lighting rate of 100% is obtained from FIGS. 5 and 7, the luminous flux value at the lighting rate of 100% at the color temperature of 4000K is from 148 lm in the initial state. After the correction of the current peak value I, it becomes 162 lm, and it can be seen that the initial luminous flux value of 30 lm can be obtained by changing the lighting rate from 21% to 16%.
Such correction is easily performed by registering the relationship between the luminous flux value and the lighting rate in the storage unit 31. FIG. 6 shows the relationship between the amount of change in luminous flux and the amount of change in drive voltage. FIG. 7 shows the relationship between the initial state, the state in which the light beam has deteriorated to 90% of the initial state, and the state in which the light beam has deteriorated to 75% of the initial state, and the current value at a lighting rate of 100%. FIG. 8 shows the relationship between the lighting value and the current value that is the initial light flux value in the initial state, the state where the light flux is degraded to 90% of the initial state, and the state where the light flux is degraded to 75% of the initial state.
In the above description, light emission driving at a color temperature of 4000 K is taken as an example, but it is clear that the drift of the color temperature can be corrected by performing the same correction at any position in the variable range of the color temperature. .
 本実施例では暖色系の色温度となる高電流密度側では発光に伴う駆動電圧は高い値となり、また寒色系の色温度となる低電流密度側では駆動電圧が低い値となるため、色温度の補正領域における電圧差が大きい場合には、色温度のドリフトの補正をどの程度の分解能で実施するかによっては、高い駆動電圧の差分の分解能が必要であり、記憶するデータ量が増大するため、注意が必要である。
また本実施例は色温度可変幅の一つの色温度設定値に対する補正を示したに過ぎないが、他の色温度、例えば色温度可変する場合には、スイッチングボリュームなどで色温度を変更するように照明装置100を形成し、色温度の設定を例えば10段階や128段階などと決定しておくが、その色温度の変化段階数に応じて、それら補正データを保有、試算する必要がある。そのため、段階数が多い場合には、多数のデータを保有する事が可能な駆動回路20及び制御手段30とする必要がある。
またこれら試算は制御手段30たるマイコンで容易に試算でき、本発明では駆動回路20の電源投入直後からフレーム周波数毎にこれらを試算しているため、常に色温度のフィードバックがかかる照明装置100とした。
また色温度の変化量や電流補正値の試算方法及び手順は本実施例に限定されるものではない。特に色温度可変の有機EL素子10Aの特性データと駆動回路20及び制御手段30の性能、試算分解能などにより適宜変えていくべきものである。
In this embodiment, the driving voltage associated with light emission is high on the high current density side where the color temperature is warm, and the driving voltage is low on the low current density side where the color temperature is cold. When the voltage difference in the correction area is large, depending on the resolution at which the color temperature drift is corrected, a high resolution of the drive voltage difference is required, and the amount of data to be stored increases. ,Caution must be taken.
Further, the present embodiment only shows correction for one color temperature setting value of the color temperature variable width, but when changing another color temperature, for example, the color temperature, the color temperature is changed by a switching volume or the like. The lighting device 100 is formed and the setting of the color temperature is determined to be, for example, 10 steps or 128 steps. However, it is necessary to store and calculate the correction data according to the number of change steps of the color temperature. Therefore, when the number of stages is large, it is necessary to provide the drive circuit 20 and the control means 30 that can hold a large amount of data.
Further, these trial calculations can be easily made with a microcomputer as the control means 30. In the present invention, since these are calculated for each frame frequency immediately after the drive circuit 20 is turned on, the lighting device 100 always receives the color temperature feedback. .
In addition, the trial calculation method and procedure of the change amount of the color temperature and the current correction value are not limited to the present embodiment. In particular, the characteristic data of the organic EL element 10A with variable color temperature, the performance of the drive circuit 20 and the control means 30, the trial resolution, and the like should be changed as appropriate.
・実施例2
(連関情報として光束を取得する補正方法)
 次に実施例2として、光束をモニタすることで色温度のドリフトを補正する方法について説明する。
実施例1と同様の方法で作成した色温度可変型の有機ELパネル10を使用し、さらに同様の方法で作成した1mm×1mmのテストエレメントなる有機EL素子(他の有機EL素子)を駆動回路20を構成する回路基板に配置し、同テストエレメントから発する光の光束を直接モニタできるようフォトダイオードを配置した。なお、本実施例では回路基板に光束をモニタする手段を配置したが、回路基板の外側に同手段たるテストエレメント及びフォトダイオードを配置してもよいし、または有機ELパネル10の表示額縁の外側にさらなる有機EL素子をテストエレメントとして例えば1mm×1mm程度で形成し、同素子の光を直接モニタできるようフォトダイオードを設置してもよい。その場合、有機ELパネル10はモジュールの形態をとり、有機ELパネル10の額縁を隠すような形状にし、さらにはフォトダイオードと光束検出用のテストエレメントが見えないような構造にするのが望ましい。また本実施例では別途設けられるテストエレメントをフォトダイオードで光束計測する構成としたが、有機EL素子10Aの発光部の一部をモニタするようにフォトダイオードを設置してもよいし、また支持基板11の切断面の端部から出射した発光部でない光をモニタするように設置してもよい。さらには有機ELパネル10の裏面に同じ特性を有するもう一枚の色温度可変型有機ELパネル、またはそれより小さく作成したもう一枚の色温度可変型有機ELパネルを設置し、同パネルの光束をモニタしてもよい。
Example 2
(Correction method to acquire luminous flux as association information)
Next, as a second embodiment, a method for correcting color temperature drift by monitoring a light beam will be described.
Using a color temperature variable type organic EL panel 10 created by the same method as in Example 1, and further driving an organic EL element (another organic EL element) as a test element of 1 mm × 1 mm created by the same method The photodiode is arranged so that the light beam emitted from the test element can be directly monitored. In this embodiment, the means for monitoring the luminous flux is arranged on the circuit board. However, a test element and a photodiode, which are the same means, may be arranged outside the circuit board, or outside the display frame of the organic EL panel 10. Further, a further organic EL element may be formed as a test element with a size of about 1 mm × 1 mm, for example, and a photodiode may be installed so that the light of the element can be directly monitored. In that case, it is desirable that the organic EL panel 10 takes the form of a module, has a shape that hides the frame of the organic EL panel 10, and further has a structure in which the photodiode and the test element for detecting the light beam cannot be seen. In the present embodiment, the test element provided separately is configured to measure the luminous flux with a photodiode. However, the photodiode may be installed so as to monitor a part of the light emitting portion of the organic EL element 10A, and the support substrate. You may install so that the light which is not the light emission part radiate | emitted from the edge part of 11 cut surfaces may be monitored. Furthermore, another color temperature variable type organic EL panel having the same characteristics is installed on the back surface of the organic EL panel 10, or another color temperature variable type organic EL panel made smaller than that, and the luminous flux of the same panel is installed. May be monitored.
 次に上述のようにモニタした光束に基づいて色温度を補正する方法を説明する。
実施例1と同様に有機EL素子10Aの劣化特性に伴う電流補正値を記憶部31に書き込んでおき、発光開始時からの光束をモニタし、制御手段30に入力する。
次に制御手段30は、有機ELパネル10へ出力する設定電流値と点灯率からドリフトが発生する以前の光束値を計算、またはあらかじめ記憶部31に書き込んでおき、検出した光束との差分を試算する。
次に該差分から駆動電圧の変化量を試算する。図6に示すように、一般に有機EL素子は光束の劣化特性と駆動電圧の変化量とは直線の関係にあり、本発明の色可変の有機EL素子10Aにおいても同様の傾向を示している。
駆動電圧の変化量が試算されたら、実施例1と同様にして色温度の変化量を算出する。
次に色温度の変化量を補正するための補正電流値を試算する。補正電流値を試算すると、同補正電流値を印加する事を前提に、設定されている点灯率から光束値の差分を補正するための点灯率Tを試算する。
試算された電流波高値Iと点灯率Tを有機EL素子10Aに印加することで、実施例1と同様にドリフトした色温度が補正された駆動となり、色温度変化が視認されない。
なお、色温度補正後に光束を測定し、光束値が所望の値から逸脱する場合には、点灯率Tを再補正することで、フィードバックをかけてもよい。
本実施例では光束の測定にフォトダイオードを使用したが、CCDやCMOS、フォトマルなどを使用してもかまわない。またこれを使用して分光を行い、発光スペクトルから色温度の変化量を計測し、上記と同様の手法にて、有機EL素子10Aに印加する電流波高値Iと点灯率Tを補正してもかまわない。ただし、この場合、制御手段30たるマイコンに負担がかかるため、試算がおそくなったり、フィードバックするための遅延が発生し、補正に伴う色温度の変化が視認される場合がある。またサイズが大きくなるため、本方法は大きい有機ELパネル10を使用する場合には好適だが、小さい有機ELパネル10においては額縁が大きくなりすぎてしまったりするため、有機ELパネル10とは離れた場所にてテストエレメントや異なるもう一つの色温度可変型有機ELパネルを用意し、色温度の変化量を計測し、制御手段30へ転送し、駆動を補正するように照明装置100を構成する事が望ましい。
本実施例でも同様に色温度可変型有機ELパネル10の連続駆動に伴ってドリフトする色温度を補正することが可能であることは明らかである。
また他の補正例として、光束を測定し、連続駆動に伴う光束の変化量を試算する。次に光束の変化量と色温度の関係から色温度の変化量を算出し、色温度の変化量を補正するべき電流補正値を試算し、電流値を補正した際の点灯率100%時の光束値の試算より点灯率を試算し、色温度と光束値の補正を行っても良い。
また、有機EL素子10Aの特性により、色温度のドリフトと光束のドリフトが直線の関係をもつ場合には、光束の測定より光束を初期値と同様の値にする電流値を試算し、点灯率を補正する事で色温度の補正が補われることもあり、色温度の変化量や電流補正値の試算方法は他方法があるが、試算方法、手順は本実施例に限定されるものではない。特に色温度可変の有機EL素子10Aの特性や実験データと駆動回路20及び制御手段30の性能、試算分解能などにより変えていくべきものである。
また、実施例1と同様だが、色温度可変幅における色温度変化の段階数に応じてこれらを試算、データを保有する事が望ましい。
Next, a method for correcting the color temperature based on the light flux monitored as described above will be described.
As in the first embodiment, the current correction value associated with the deterioration characteristics of the organic EL element 10A is written in the storage unit 31, the light flux from the start of light emission is monitored, and input to the control means 30.
Next, the control means 30 calculates the light flux value before the drift occurs from the set current value output to the organic EL panel 10 and the lighting rate, or writes it in the storage unit 31 in advance, and calculates the difference from the detected light flux. To do.
Next, the amount of change in drive voltage is estimated from the difference. As shown in FIG. 6, the organic EL element generally has a linear relationship between the deterioration characteristic of the luminous flux and the amount of change in the drive voltage, and the same tendency is shown in the color variable organic EL element 10A of the present invention.
When the change amount of the driving voltage is calculated, the change amount of the color temperature is calculated in the same manner as in the first embodiment.
Next, a correction current value for correcting the change amount of the color temperature is calculated. When the correction current value is estimated, the lighting rate T for correcting the difference in the luminous flux value from the set lighting rate is calculated on the assumption that the correction current value is applied.
By applying the estimated current peak value I and the lighting rate T to the organic EL element 10A, the drifted color temperature is corrected in the same manner as in Example 1, and the color temperature change is not visually recognized.
If the luminous flux is measured after the color temperature correction and the luminous flux value deviates from a desired value, feedback may be applied by re-correcting the lighting rate T.
In this embodiment, a photodiode is used for measuring the luminous flux, but a CCD, CMOS, photomultiplier, or the like may be used. Moreover, even if it performs spectroscopy using this, the variation | change_quantity of color temperature is measured from an emission spectrum, and the current peak value I applied to the organic EL element 10A and the lighting rate T are corrected by the same method as described above, It doesn't matter. In this case, however, a burden is imposed on the microcomputer as the control means 30, so that a trial calculation is delayed or a delay for feedback occurs, and a change in color temperature due to correction may be visually recognized. In addition, since the size is increased, this method is suitable when the large organic EL panel 10 is used. However, the frame is too large in the small organic EL panel 10, so that it is separated from the organic EL panel 10. The lighting device 100 is configured to prepare a test element or another different color temperature variable organic EL panel at a location, measure the amount of change in color temperature, transfer it to the control means 30, and correct the drive. Is desirable.
In the present embodiment as well, it is obvious that the color temperature drifting with continuous driving of the color temperature variable organic EL panel 10 can be corrected.
As another correction example, the luminous flux is measured, and the amount of change in luminous flux associated with continuous driving is estimated. Next, the change amount of the color temperature is calculated from the relationship between the change amount of the luminous flux and the color temperature, the current correction value to be corrected for the change amount of the color temperature is calculated, and the lighting rate when the current value is corrected is 100%. The lighting rate may be calculated from the calculation of the luminous flux value, and the color temperature and the luminous flux value may be corrected.
Further, when the color temperature drift and the light flux drift have a linear relationship due to the characteristics of the organic EL element 10A, a current value for making the light flux the same value as the initial value is estimated from the measurement of the light flux, and the lighting rate is calculated. The color temperature correction may be compensated by correcting the color temperature, and there are other methods for calculating the color temperature change amount and the current correction value, but the trial calculation method and procedure are not limited to this embodiment. . In particular, it should be changed according to the characteristics of the organic EL element 10A with variable color temperature, experimental data, the performance of the drive circuit 20 and the control means 30, the trial resolution, and the like.
Although it is the same as in the first embodiment, it is desirable that these are estimated and data are stored according to the number of steps of the color temperature change in the color temperature variable width.
・実施例3
(連関情報として発光積算時間を取得する補正方法)
 次に実施例3として、発光積算時間をモニタすることで色温度のドリフトを補正した実施例について説明する。
まず、あらかじめ連続駆動に伴う有機EL素子10Aの劣化特性に伴う電流補正値を記憶部31に書き込んでおく。
発光積算時間は、一定の周期であるフレーム周波数内に設定している点灯率との積算で試算でき、本手法にて試算した発光積算時間を記憶部31に記憶させる。なお、外部にアナログカウンター等を用意し、それらを使用して発光積算時間を記録させてもかまわない。
制御手段30は、まず発光積算時間を試算し、該発光積算時間でドリフトする色温度の変化量を試算する。また同様に該発光積算時間でドリフトする光束の変化量を試算する。これは図9、図10に示すようにあらかじめ実施している寿命試験から得られた色温度と連続駆動時間との関係、光束と連続駆動時間との関係から求められるもので、同試験から求めた変化量とこれに応じた電流補正値を記憶部31に記録しており、発光積算時間に基づいて導出するものである。なお、図9は初期の発光色の色温度3500Kで駆動電流値が4.7Aである場合と、初期の発光色の色温度が6000Kで駆動電流値が0.5Aである場合の色温度の変化量と連続駆動時間との関係を示している。図10は、光束の変化量と連続駆動時間との関係を示している。
次に、色温度の変化量を補正する電流波高値Iを導出し、また、電流波高値Iから得られる光束と光束の変化量との差分を点灯率Tを変更して補正した。
本実施例でも他の実施例と同様に連続駆動に伴ってドリフトする色温度を補正することを可能としていることは明らかである。
なお、本実施例ではあらかじめ補正電流値を記憶部31内に取り込んでいるが、電源投入時に駆動電圧の初期値を読み込み、例えば、実施例1で示した方法を併用し、発光積算時間と駆動電圧の変化から、色温度を補正する電流値を試算してもよい。図6及び図10からわかるように発光積算時間と駆動電圧の変化量はほぼ直線の結果を示すため、導出は容易である。
さらには実施例2で示した光束を計測し、かつ本実施例で示す発光積算時間をモニタし、光束の減少率と発光積算時間の関係から色温度の変化量を予測試算し、補正する電流値を決定してもよい。
特に色温度可変有機EL素子10Aの特性次第では、試算方法は本手法に限られるものではなく、実施例1と実施例2ならびに実施例3で示す色温度の変化量を検出し、かつ補正する方法を併用して実施してもかまわない。
Example 3
(Correction method to obtain the accumulated light emission time as association information)
Next, as Example 3, an example in which the drift of the color temperature is corrected by monitoring the light emission integration time will be described.
First, a current correction value associated with the deterioration characteristics of the organic EL element 10A due to continuous driving is written in the storage unit 31 in advance.
The accumulated light emission time can be estimated by integrating with the lighting rate set within a frame frequency that is a constant period, and the accumulated light emission time calculated by this method is stored in the storage unit 31. It is also possible to prepare an analog counter or the like outside and record the accumulated light emission time using them.
The control means 30 first calculates the light emission integration time, and calculates the amount of change in color temperature that drifts with the light emission integration time. Similarly, the amount of change in the luminous flux drifting in the light emission integration time is estimated. This is obtained from the relationship between the color temperature and the continuous driving time obtained from the life test conducted in advance as shown in FIGS. 9 and 10, and from the relationship between the luminous flux and the continuous driving time. The change amount and the current correction value corresponding to the change amount are recorded in the storage unit 31 and are derived based on the accumulated light emission time. FIG. 9 shows the color temperature when the initial emission color temperature is 3500 K and the drive current value is 4.7 A, and when the initial emission color temperature is 6000 K and the drive current value is 0.5 A. The relationship between the amount of change and the continuous drive time is shown. FIG. 10 shows the relationship between the amount of change in luminous flux and the continuous drive time.
Next, the current peak value I for correcting the change amount of the color temperature was derived, and the difference between the luminous flux obtained from the current peak value I and the variation amount of the luminous flux was corrected by changing the lighting rate T.
In this embodiment, it is obvious that the color temperature drifting with continuous driving can be corrected as in the other embodiments.
In this embodiment, the correction current value is taken in the storage unit 31 in advance. However, when the power is turned on, the initial value of the drive voltage is read and, for example, the method shown in the first embodiment is used together, and the accumulated light emission time and the drive are used. A current value for correcting the color temperature may be estimated from the voltage change. As can be seen from FIG. 6 and FIG. 10, the light emission integration time and the amount of change in the drive voltage show a substantially straight line result, so that derivation is easy.
Furthermore, the luminous flux shown in the second embodiment is measured, and the light emission integration time shown in this embodiment is monitored, and the amount of change in color temperature is predicted from the relationship between the light flux reduction rate and the light emission integration time, and the current to be corrected is corrected. The value may be determined.
In particular, depending on the characteristics of the color temperature variable organic EL element 10A, the trial calculation method is not limited to this method, and the change amount of the color temperature shown in the first, second, and third embodiments is detected and corrected. You may carry out using the method together.
・実施例4
(緑色発光を呈する発光層の追加)
 次に前述の実施形態で示した有機EL素子10Aに緑色の第三の発光層をさらに配設した実施例を説明する。実施例1~3では青緑と橙に発光する第一、第二の発光層13c、13dを積層し、色温度を3500Kから6000Kに変化する色温度可変の有機EL素子10Aを作成したが、照明用途における光源としては、演色性評価指数が80以上ある事が望ましく、さらには可視光領域の全域に渡る発光スペクトルを有する発光が望ましい。そのため、本実施例では第二の発光層13dと電子輸送層13eとの間に500~600nm程度の波長域で緑に発光する第三の発光層を追加することで、可視光域全域にわたる発光スペクトルを有する色温度可変の有機EL素子10Aを形成した。
第三の発光層は、電子輸送性の第三のホスト材料と正孔輸送性材料と発光を呈する第三の発光ドーパントとを共蒸着法等の手法により混合し、膜厚が10~40nmの層状に形成してなる。
前記第三のホスト材料は、正孔及び電子が輸送されて再結合し励起子を形成し、発光ドーパントへエネルギー移動することで発光ドーパントに発光を生じさせるものである。前記第三のホスト材料は、例えばアントラセン誘導体からなる。前記正孔輸送性材料としては例えば正孔輸送層13bと同様の材料を用いるが異なる材料でもよい。
第三の発光ドーパントは、例えばクマリン誘導体からなる蛍光材料で緑色の発光を示す。また、第三の発光ドーパントのドーピング量は、濃度消光を起こさない程度としている。なお、第三の発光ドーパントは、燐光材料、熱遅延蛍光材料でもよい。
また、本実施例では、青色の第一の発光層13c、橙色の第二の発光層13d、緑色の第三の発光層を順に形成したが、橙色発光層、青色発光層、緑色発光層の配置位置を変えて形成してもよい。
本実施例の色温度可変の有機EL素子10Aにおいても、駆動時に印加する電流波高値Iを変えることで、色温度が3000Kから5000K程度に変化することができた。さらに演色性評価指数は82となった。
なお、本実施例の有機EL素子10Aに実施例1~3に従う色温度補正方法を適用すれば色温度を補正し、かつ点灯率を補正することで、光束を同様に補正することができるのは明らかである。
Example 4
(Addition of a light emitting layer that emits green light)
Next, an example in which a green third light emitting layer is further provided on the organic EL element 10A shown in the above embodiment will be described. In Examples 1 to 3, the first and second light emitting layers 13c and 13d that emit blue-green and orange light are stacked, and the organic EL element 10A having a variable color temperature that changes the color temperature from 3500K to 6000K is created. As a light source in lighting applications, it is desirable that the color rendering index be 80 or more, and it is desirable to emit light having an emission spectrum over the entire visible light region. Therefore, in this embodiment, by adding a third light emitting layer that emits green light in the wavelength range of about 500 to 600 nm between the second light emitting layer 13d and the electron transport layer 13e, light emission over the entire visible light range is achieved. An organic EL element 10A having a variable color temperature and having a spectrum was formed.
The third light-emitting layer is formed by mixing an electron-transporting third host material, a hole-transporting material, and a third light-emitting dopant that emits light by a method such as a co-evaporation method. It is formed in layers.
In the third host material, holes and electrons are transported and recombined to form excitons, and energy is transferred to the light emitting dopant to cause the light emitting dopant to emit light. The third host material is made of an anthracene derivative, for example. As the hole transporting material, for example, the same material as the hole transporting layer 13b is used, but a different material may be used.
The third light-emitting dopant is a fluorescent material made of, for example, a coumarin derivative and emits green light. The doping amount of the third light emitting dopant is set so as not to cause concentration quenching. The third light-emitting dopant may be a phosphorescent material or a thermally delayed fluorescent material.
In this example, the blue first light emitting layer 13c, the orange second light emitting layer 13d, and the green third light emitting layer were formed in this order, but the orange light emitting layer, the blue light emitting layer, and the green light emitting layer It may be formed by changing the arrangement position.
Also in the organic EL element 10A having a variable color temperature of this example, the color temperature could be changed from about 3000K to about 5000K by changing the current peak value I applied during driving. Furthermore, the color rendering index was 82.
If the color temperature correction method according to the first to third embodiments is applied to the organic EL element 10A of the present embodiment, the light flux can be similarly corrected by correcting the color temperature and the lighting rate. Is clear.
 次に、本実施形態における補正方法のうち、温度変化に伴う発光色のドリフトを補正する補正方法について説明する。 Next, of the correction methods in the present embodiment, a correction method for correcting the emission color drift accompanying the temperature change will be described.
一般に有機EL素子は温度特性を有しており、温度上昇に伴い、例えば発光効率や色温度が変わることが知られている。本実施形態の色温度可変の有機EL素子10Aにおいても図11に示すとおり、環境温度や自己発熱による有機EL素子10Aのジャンクション温度(接合部温度)Tjが変わる事で、発光効率ならびに色温度が変わり、温度上昇に伴い色温度が低下し、また光束が上昇するという特性を有している。なお、図11は、ジャンクション温度Tjが25℃で発光色の色温度が6000Kである場合の色温度とジャンクション温度Tjとの関係を示している。本願発明者らは鋭意検討の結果、この温度変化に伴う発光色のドリフトと相関する連関情報に着目し、この連関情報に基づいて有機EL素子10Aに印加する駆動波形Pの電流波高値Iと点灯率Tを適宜補正する方法を見いだした。 In general, an organic EL element has temperature characteristics, and it is known that, for example, light emission efficiency and color temperature change as the temperature rises. Also in the organic EL element 10A with variable color temperature of this embodiment, as shown in FIG. 11, the luminous efficiency and the color temperature are changed by changing the environmental temperature and the junction temperature (junction temperature) Tj of the organic EL element 10A due to self-heating. The color temperature decreases and the luminous flux increases as the temperature rises. FIG. 11 shows the relationship between the color temperature and the junction temperature Tj when the junction temperature Tj is 25 ° C. and the color temperature of the emitted color is 6000K. As a result of diligent study, the inventors of the present application pay attention to the association information correlated with the drift of the emission color accompanying the temperature change, and based on this association information, the current peak value I of the drive waveform P applied to the organic EL element 10A and A method for correcting the lighting rate T as appropriate was found.
・実施例5
(連関情報として駆動電圧を取得する補正方法)
以下、駆動電圧をモニタすることで色温度を補正する方法について説明する。
次に本実施例で使用した温度測定について説明する。
一般に有機EL素子の特性として、素子の耐熱限界温度であるガラス転移温度以下で飽和することなく、素子のジャンクション温度Tjの上昇に伴い、素子の駆動電圧が低下する傾向がある。本実施形態の色温度可変の有機EL素子10Aにおいても同様で、図12に示すようにジャンクション温度Tjの増減に応じ、駆動電圧が変化する。なお、図12は駆動電圧の変化量とジャンクション温度Tjとの関係を示している。
本実施例では、実施例1で説明した方法と同様の手法を使用し、環境温度ならびに自己発熱に伴うジャンクション温度Tjの増減を駆動電圧をモニタすることで実施した。
制御手段30は、駆動電圧の温度変化に伴う変化量をモニタし、図12に示す関係からこれに伴うジャンクション温度Tjの変化量を試算する。次に図11に示す関係から、ジャンクション温度Tjの変化量に伴う色温度の変化量を試算する。
後は、前述の実施例1に示したように、色温度の変化量を補正するべき電流補正値を試算し、これに伴う光束の変化量を試算する。このとき、有機EL素子10Aの発光効率が変化する場合には、それを乗じた光束試算値を用意すればよい。
本実施例からわかるように、環境温度や自己発熱に伴う温度変化による色温度のドリフトについて、本補正方法を用いることで駆動方法にて容易に色温度のドリフトを補正することができる事は明らかである。
Example 5
(Correction method to obtain drive voltage as association information)
Hereinafter, a method for correcting the color temperature by monitoring the drive voltage will be described.
Next, the temperature measurement used in this example will be described.
In general, as a characteristic of the organic EL element, the driving voltage of the element tends to decrease as the junction temperature Tj of the element increases without being saturated below the glass transition temperature which is the heat resistant limit temperature of the element. The same applies to the organic EL element 10A with variable color temperature according to the present embodiment, and the drive voltage changes according to the increase or decrease of the junction temperature Tj as shown in FIG. FIG. 12 shows the relationship between the change amount of the drive voltage and the junction temperature Tj.
In this example, the same method as that described in Example 1 was used, and the environmental temperature and the junction temperature Tj accompanying self-heating were increased and decreased by monitoring the drive voltage.
The control means 30 monitors the amount of change accompanying the temperature change of the drive voltage, and calculates the amount of change of the junction temperature Tj accompanying this from the relationship shown in FIG. Next, from the relationship shown in FIG. 11, the amount of change in color temperature accompanying the amount of change in junction temperature Tj is estimated.
After that, as shown in the first embodiment, the current correction value for correcting the change amount of the color temperature is estimated, and the change amount of the light flux accompanying this is calculated. At this time, if the light emission efficiency of the organic EL element 10A changes, a light flux trial value obtained by multiplying it may be prepared.
As can be seen from this example, it is clear that the color temperature drift can be easily corrected by the driving method by using this correction method for the color temperature drift due to the environmental temperature and the temperature change caused by self-heating. It is.
・実施例6
(連関情報として光束を取得する補正方法)
次に実施例6として、光束をモニタすることにより色温度のドリフトを補正する方法について説明する。
光束の検出は、実施例2で説明したように、1mm×1mmのテストエレメントを有機ELパネル10の最外周に作成し、同テストエレメントにフォトダイオードを設置することでモニタするようにした。
またテストエレメントとフォトダイオードとが発光部から隠れるようモジュール化し、かつ外部から光が入らないようにした。本実施例で作成した光束検出する有機ELパネル10は、パネルの温度変化による光束を直接モニタするため、回路基板に設置する方法に比べ、環境温度の変化に敏感に対応する事が可能である。
また環境温度の変化が大きく変わらない、または駆動回路20を有機ELパネル10に近い部位に配置する場合には、テストエレメントとフォトダイオードとを回路基板に具備する方が好適である。また実施例2で説明したように、光束を検出するテストエレメントとフォトダイオードとを有機ELパネル10の背面に接続してもよい。
図13に示すように、温度変化によって発光効率が変化する有機EL素子10Aでは、光束の変化量から温度変化量が算出できる。なお、図13は、ジャンクション温度Tjが25℃で発光色の色温度が6000Kである場合の光束とジャンクション温度Tjとの関係を示している。
制御手段30は、実施例5に示したのと同様に、図11に示す関係から温度変化に伴う色温度の変化量を試算し、同様に印加する電流波高値Iと点灯率Tを補正することで、温度変化に伴う色温度のドリフトを補正することができる。
また、有機EL素子10Aによっては、温度により発光効率の変化がピーク値を有する逆U字型の特性を成す場合がある。その場合、どちらか側を決定するべく、駆動電圧をモニタしてどちら側かを決定してもよい。図12のように、駆動電圧は温度変化に対して逆U字型の特性を示さないため、温度を決定することまた温度変化による色温度の変化量を試算することが容易となる。
また色温度補正後に光束を再度測定し、光束値が所望の値から逸脱する場合には、点灯率Tを再補正することで、更なるフィードバックをかけてもよい。
本実施例ではフォトダイオードを使用したが、CCDやCMOS、フォトマルなどを使用してもかまわない。またこれを使用して分光を行い、特定の波長の発光スペクトルが温度特性を有しているなら、該発光スペクトルを測定し、直接色温度の変化量を計測し、上記と同様の手法にて、有機EL素子10Aに印加する電流波高値Iと点灯率Tを補正してもかまわない。ただし、この場合、制御手段30たるマイコンに負担がかかるため、試算がおそくなったり、しいてはフィードバックするための遅延が発生し、補正に伴う色温度の変化が視認される場合がある。またサイズが大きくなるため、本方法は大きい有機ELパネル10を使用する場合には好適だが、小さい有機ELパネル10おいては額縁が大きくなりすぎてしまったりするため、有機ELパネル10とは離れた場所にてテストエレメントや異なるもう一つの色温度可変型有機ELパネルを用意し、CCDやCMOS、フォトマルなどで色温度の変化量を計測し、制御手段30へ転送し、駆動を補正するように照明装置100を構成する事が望ましい。
Example 6
(Correction method to acquire luminous flux as association information)
Next, as a sixth embodiment, a method for correcting color temperature drift by monitoring a light beam will be described.
As described in Example 2, the detection of the luminous flux was monitored by creating a test element of 1 mm × 1 mm on the outermost periphery of the organic EL panel 10 and installing a photodiode on the test element.
In addition, the test element and the photodiode are modularized so that they are hidden from the light emitting part, and light is not allowed to enter from the outside. Since the organic EL panel 10 for detecting a light beam created in the present embodiment directly monitors the light beam due to the temperature change of the panel, it can respond more sensitively to changes in the environmental temperature than the method of installing on the circuit board. .
Further, when the change in the environmental temperature does not change greatly, or when the drive circuit 20 is disposed near the organic EL panel 10, it is preferable to provide the test element and the photodiode on the circuit board. Further, as described in the second embodiment, a test element for detecting a light beam and a photodiode may be connected to the back surface of the organic EL panel 10.
As shown in FIG. 13, in the organic EL element 10 </ b> A in which the light emission efficiency changes due to the temperature change, the temperature change amount can be calculated from the light flux change amount. FIG. 13 shows the relationship between the luminous flux and the junction temperature Tj when the junction temperature Tj is 25 ° C. and the color temperature of the emitted color is 6000K.
As in the fifth embodiment, the control unit 30 calculates the amount of change in color temperature associated with the temperature change from the relationship shown in FIG. 11, and similarly corrects the applied current peak value I and lighting rate T. Thus, it is possible to correct a color temperature drift accompanying a temperature change.
In addition, depending on the organic EL element 10A, there may be a reverse U-shaped characteristic in which the change in luminous efficiency has a peak value depending on the temperature. In that case, in order to determine which side, the drive voltage may be monitored to determine which side. As shown in FIG. 12, since the drive voltage does not exhibit an inverted U-shaped characteristic with respect to the temperature change, it is easy to determine the temperature and to estimate the amount of change in the color temperature due to the temperature change.
Further, when the luminous flux is measured again after the color temperature correction and the luminous flux value deviates from a desired value, the lighting rate T may be re-corrected to provide further feedback.
Although a photodiode is used in this embodiment, a CCD, CMOS, photomultiplier, or the like may be used. If this is used, spectroscopy is performed, and if the emission spectrum of a specific wavelength has temperature characteristics, the emission spectrum is measured, the amount of change in color temperature is directly measured, and the same method as described above is used. The current peak value I and the lighting rate T applied to the organic EL element 10A may be corrected. However, in this case, since a load is applied to the microcomputer as the control means 30, there is a case where a trial calculation is slow or a delay for feedback occurs, and a change in the color temperature due to the correction is visually recognized. In addition, since the size is increased, this method is suitable when the large organic EL panel 10 is used. However, the frame is too large for the small organic EL panel 10, so that it is separated from the organic EL panel 10. The test element and another different color temperature variable type organic EL panel are prepared at the place where the color temperature change is measured by CCD, CMOS, photomultiplier, etc., transferred to the control means 30, and the drive is corrected. It is desirable to configure the lighting device 100 as described above.
・実施例7
(連関情報として周囲温度を取得する補正方法)
次に実施例7として、周囲温度(有機EL素子10A自体の温度を含む、以下同じ)をモニタすることで色温度のドリフトを補正した実施例について説明する。
周囲温度の検出は実施例1、5で説明した駆動電圧で測定する方法、また実施例2、6で説明した光束を測定する方法がある。その場合、色温度を補正する事は上述の説明で明らかである。
その他、サーミスタや熱起電力をモニタできる例えば熱電対を有機ELパネル10に貼り付けて温度を計測することで、温度の変化量を試算し、実施例6と同様の手法にて、色温度の変化量を試算し、次に該色温度の変化量を補正するための電流補正値を試算する。電流補正値による電流波高値Iの補正が決定したら、光束を所望の値にするために点灯率Tを補正することで、温度変化による色温度の補正が可能となる。
またサーミスタや熱電対にて温度を計測する場合、例えば駆動回路20の回路基板内または外に設置することで周囲温度をモニタしてもよく、または有機ELパネル10の設置位置が回路基板から離れ、特に環境温度が変化しやすい場所などに設置する場合には、有機EL素子10Aのジャンクション温度Tjを直接測定するべく有機ELパネル10の裏面に接続してモニタしてもよい。
また抵抗熱測定のように熱により抵抗がかわる材料を有機ELパネル10内に内装し、温度をモニタしてもよい。またその場合、駆動電圧に余裕があれば、有機EL素子10Aのカソード(第二電極14)ラインとアノード(第一電極12)ラインに並列に実装することで、有機ELパネル10から駆動回路20までの配線の追加なしに温度変化をモニタすることができる。
-Example 7
(Correction method to obtain ambient temperature as related information)
Next, as an embodiment 7, an embodiment in which the drift of the color temperature is corrected by monitoring the ambient temperature (including the temperature of the organic EL element 10A itself, hereinafter the same) will be described.
The detection of the ambient temperature includes a method of measuring with the driving voltage described in the first and fifth embodiments, and a method of measuring the light beam described in the second and sixth embodiments. In that case, it is apparent from the above description that the color temperature is corrected.
In addition, thermistors and thermocouples can be monitored, for example, a thermocouple is attached to the organic EL panel 10 and the temperature is measured to estimate the amount of change in temperature. The amount of change is estimated, and then a current correction value for correcting the amount of change in the color temperature is estimated. When the correction of the current peak value I by the current correction value is determined, the color temperature can be corrected by a temperature change by correcting the lighting rate T in order to obtain a desired luminous flux.
When the temperature is measured by a thermistor or a thermocouple, the ambient temperature may be monitored by installing it inside or outside the circuit board of the drive circuit 20, or the installation position of the organic EL panel 10 is separated from the circuit board. In particular, when it is installed in a place where the environmental temperature is likely to change, the junction temperature Tj of the organic EL element 10A may be connected to the back surface of the organic EL panel 10 and monitored in order to directly measure it.
Further, a material whose resistance is changed by heat, such as resistance heat measurement, may be provided in the organic EL panel 10 to monitor the temperature. In this case, if there is a margin in the drive voltage, the drive circuit 20 is driven from the organic EL panel 10 by mounting in parallel on the cathode (second electrode 14) line and the anode (first electrode 12) line of the organic EL element 10A. Temperature changes can be monitored without adding additional wiring.
 以上の説明は本発明を例示するものであって、その趣旨を逸脱しない範囲で種々の変更、変形が可能でことが言うまでもない。また、経時劣化に伴う発光色のドリフトの補正方法と温度変化に伴う発光色のドリフトの補正方法とを別個に説明したが、例えば経時劣化に伴う発光色のドリフト補正を第一の補正とし、温度変化に伴う発光色のドリフト補正を第二の補正として併用して実行するものであってもよい。また、本発明の発光装置に用いられる有機EL素子は複数の発光層を有する構成に限られず、電流値による色可変制御ができるものであれば単一発光層に2種以上の発光ドーパントをドープしたものであってもよい。また、本実施形態では発光装置として照明装置100を挙げたが、他には表示装置であってもよい。 The above description exemplifies the present invention, and it goes without saying that various changes and modifications can be made without departing from the spirit of the present invention. In addition, the correction method of the emission color drift accompanying the deterioration over time and the correction method of the emission color drift accompanying the temperature change have been described separately.For example, the first correction is the correction of the emission color drift accompanying the deterioration over time, The correction of the emission color drift accompanying the temperature change may be executed in combination as the second correction. Further, the organic EL element used in the light emitting device of the present invention is not limited to the structure having a plurality of light emitting layers, and any single light emitting layer may be doped with two or more kinds of light emitting dopants as long as the color variable control can be performed by the current value. It may be what you did. Moreover, although the illuminating device 100 was mentioned as a light-emitting device in this embodiment, a display apparatus may be sufficient as others.
 本発明は、色可変の有機EL素子を用いた発光装置及び色可変の有機EL素子の駆動方法に好適である。 The present invention is suitable for a light emitting device using a color variable organic EL element and a driving method of the color variable organic EL element.
 100 照明装置
 10 有機ELパネル
 10A 有機EL素子
 11 支持基板
 12 第一電極
 13 有機層
 13a 正孔注入層
 13b 正孔輸送層
 13c 第一の発光層
 13d 第二の発光層
 13e 電子輸送層
 14 第二電極
 20 駆動回路
 21 可変電流回路
 22 スイッチ素子
 23 ドライブ回路
 30 制御手段
 31 記憶部
 40 操作手段
 50 連関情報取得手段
 
DESCRIPTION OF SYMBOLS 100 Illuminating device 10 Organic EL panel 10A Organic EL element 11 Support substrate 12 1st electrode 13 Organic layer 13a Hole injection layer 13b Hole transport layer 13c 1st light emitting layer 13d 2nd light emitting layer 13e Electron transport layer 14 2nd Electrode 20 Drive circuit 21 Variable current circuit 22 Switch element 23 Drive circuit 30 Control means 31 Storage unit 40 Operation means 50 Association information acquisition means

Claims (14)

  1. 印加する電流値に応じて発光色が変化する有機EL素子と、
    前記有機EL素子に駆動波形を供給する駆動回路と、
    所望の発光色に応じて前記駆動回路における前記駆動波形の電流値及び点灯率の少なくとも一方を可変させ、また、前記有機EL素子の温度変化に伴う発光色のドリフトに応じて印加する前記駆動波形の電流値及び点灯率の少なくとも一方を補正する補正機能を有する制御手段と、を備えてなることを特徴とする発光装置。
    An organic EL element whose emission color changes according to the applied current value;
    A drive circuit for supplying a drive waveform to the organic EL element;
    The drive waveform that varies at least one of the current value and the lighting rate of the drive waveform in the drive circuit according to a desired emission color, and that is applied according to a drift in the emission color accompanying a temperature change of the organic EL element. And a control means having a correction function for correcting at least one of the current value and the lighting rate of the light emitting device.
  2. 前記有機EL素子の温度変化に伴う発光色のドリフトと連関性のある連関情報を取得する連関情報取得手段を備え、前記制御手段は、前記連関情報取得手段からの前記連関情報に基づいて前記駆動波形の電流値及び点灯率の少なくとも一方の補正を行うことを特徴とする請求項1に記載の発光装置。 And an association information acquisition unit that acquires association information that is associated with a drift in emission color associated with a temperature change of the organic EL element, and the control unit drives the driving based on the association information from the association information acquisition unit. The light emitting device according to claim 1, wherein at least one of a waveform current value and a lighting rate is corrected.
  3. 前記連関情報取得手段は、前記連関情報として前記有機EL素子の駆動電圧、前記有機EL素子または前記有機EL素子と構造が同様である他の有機EL素子の光量もしくは周囲温度の少なくともいずれかを取得することを特徴とする請求項1に記載の発光装置。 The association information acquisition unit acquires at least one of the driving voltage of the organic EL element, the light amount of the organic EL element or another organic EL element having the same structure as the organic EL element, or the ambient temperature as the association information. The light-emitting device according to claim 1.
  4. 前記有機EL素子は、発光色の異なる複数の発光層を有することを特徴とする請求項1に記載の発光装置。 The light-emitting device according to claim 1, wherein the organic EL element has a plurality of light-emitting layers having different emission colors.
  5. 印加する電流値に応じて発光色が変化する有機EL素子と、
    前記有機EL素子に駆動波形を供給する駆動回路と、
    所望の発光色に応じて前記駆動回路における前記駆動波形の電流値及び点灯率の少なくとも一方を可変させ、また、前記有機EL素子の経時劣化に伴う発光色のドリフトに応じて印加する前記駆動波形の電流値及び点灯率の少なくとも一方を補正する補正機能を有する制御手段と、を備えてなることを特徴とする発光装置。
    An organic EL element whose emission color changes according to the applied current value;
    A drive circuit for supplying a drive waveform to the organic EL element;
    The drive waveform that varies at least one of the current value and the lighting rate of the drive waveform in the drive circuit according to a desired emission color, and that is applied according to the drift of the emission color accompanying the deterioration of the organic EL element over time. And a control means having a correction function for correcting at least one of the current value and the lighting rate of the light emitting device.
  6. 前記有機EL素子の経時劣化に伴う発光色のドリフトと連関性のある連関情報を取得する連関情報取得手段を備え、前記制御手段は、前記連関情報取得手段からの連関情報に基づいて前記駆動波形の電流値及び点灯率の少なくとも一方の補正を行うことを特徴とする請求項5に記載の発光装置。 And an association information obtaining unit that obtains association information that is associated with a drift in emission color associated with the deterioration of the organic EL element with time, and the control unit is configured to obtain the drive waveform based on the association information from the association information obtaining unit. The light emitting device according to claim 5, wherein at least one of the current value and the lighting rate is corrected.
  7. 前記連関情報取得手段は、前記連関情報として前記有機EL素子の駆動電圧、前記有機EL素子または前記有機EL素子と構造が同様である他の有機EL素子の光量もしくは発光積算時間の少なくともいずれかを取得することを特徴とする請求項5に記載の発光装置。 The association information acquisition means uses at least one of the drive voltage of the organic EL element, the light amount of the organic EL element or another organic EL element having the same structure as the organic EL element, or the light emission integration time as the association information. The light emitting device according to claim 5, wherein the light emitting device is acquired.
  8. 前記有機EL素子は、発光色の異なる複数の発光層を有することを特徴とする請求項5に記載の発光装置。 The light emitting device according to claim 5, wherein the organic EL element has a plurality of light emitting layers having different emission colors.
  9. 印加する電流値に応じて発光色が変化する有機EL素子の駆動方法であって、
    所望の発光色に応じて前記有機EL素子に印加する駆動波形の電流値及び点灯率の少なくとも一方を可変させ、また、前記有機EL素子の温度変化に伴う発光色のドリフトに応じて印加する前記駆動波形の電流値及び点灯率の少なくとも一方を補正することを特徴とする有機EL素子の駆動方法。
    A method of driving an organic EL element in which the emission color changes according to the applied current value,
    The at least one of the current value and the lighting rate of the drive waveform applied to the organic EL element is varied according to the desired emission color, and the application is performed according to the emission color drift accompanying the temperature change of the organic EL element. A method for driving an organic EL element, comprising correcting at least one of a current value and a lighting rate of a driving waveform.
  10. 前記有機EL素子の温度変化に伴う発光色のドリフトと連関性のある連関情報を取得し、前記連関情報に基づいて前記駆動波形の電流値及び点灯率の少なくとも一方の補正を行うことを特徴とする請求項9に記載の有機EL素子の駆動方法。 Acquiring association information associated with a drift in emission color associated with a temperature change of the organic EL element, and correcting at least one of a current value and a lighting rate of the drive waveform based on the association information. The method for driving an organic EL element according to claim 9.
  11. 前記連関情報として前記有機EL素子の駆動電圧、前記有機EL素子または前記有機EL素子と構造が同様である他の有機EL素子の光量もしくは周囲温度の少なくともいずれかを取得することを特徴とする請求項9に記載の有機EL素子の駆動方法。 The drive information of the organic EL element, at least one of the amount of light of the organic EL element or another organic EL element having the same structure as the organic EL element, or an ambient temperature is acquired as the association information. Item 10. A method for driving an organic EL element according to Item 9.
  12. 印加する電流値に応じて発光色が変化する有機EL素子の駆動方法であって、
    所望の発光色に応じて前記有機EL素子に印加する駆動波形の電流値及び点灯率の少なくとも一方を可変させ、また、前記有機EL素子の経時劣化に伴う発光色のドリフトに応じて印加する前記駆動波形の電流値及び点灯率の少なくとも一方を補正することを特徴とする有機EL素子の駆動方法。
    A method of driving an organic EL element in which the emission color changes according to the applied current value,
    The at least one of the current value of the drive waveform applied to the organic EL element and the lighting rate is varied according to the desired emission color, and is applied according to the drift of the emission color accompanying the deterioration with time of the organic EL element. A method for driving an organic EL element, comprising correcting at least one of a current value and a lighting rate of a driving waveform.
  13. 前記有機EL素子の経時劣化に伴う発光色のドリフトと連関性のある連関情報を取得し、前記連関情報に基づいて前記駆動波形の電流値及び点灯率の少なくとも一方の補正を行うことを特徴とする請求項12に記載の有機EL素子の駆動方法。 Acquiring association information associated with drift in emission color associated with deterioration of the organic EL element over time, and correcting at least one of the current value and lighting rate of the drive waveform based on the association information. The method for driving an organic EL element according to claim 12.
  14. 前記連関情報として前記有機EL素子の駆動電圧、前記有機EL素子または前記有機EL素子と構造が同様である他の有機EL素子の光量もしくは発光積算時間の少なくともいずれかを取得することを特徴とする請求項12に記載の有機EL素子の駆動方法。
     
    As the association information, at least one of a driving voltage of the organic EL element, a light amount of the organic EL element or another organic EL element having the same structure as the organic EL element, or an accumulated light emission time is obtained. The method for driving an organic EL element according to claim 12.
PCT/JP2012/073129 2011-10-13 2012-09-11 Light emitting device and organic electroluminescence element driving method WO2013054621A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011225762A JP2013089301A (en) 2011-10-13 2011-10-13 Light emitting device and method for driving organic el element
JP2011-225762 2011-10-13

Publications (1)

Publication Number Publication Date
WO2013054621A1 true WO2013054621A1 (en) 2013-04-18

Family

ID=48081680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073129 WO2013054621A1 (en) 2011-10-13 2012-09-11 Light emitting device and organic electroluminescence element driving method

Country Status (2)

Country Link
JP (1) JP2013089301A (en)
WO (1) WO2013054621A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210167313A1 (en) * 2015-02-24 2021-06-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8994013B2 (en) * 2012-05-18 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
JP6516189B2 (en) * 2015-08-26 2019-05-22 パナソニックIpマネジメント株式会社 Light emitting element lighting device, light emitting module provided with the same, and lighting apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106835A1 (en) * 2004-04-30 2005-11-10 Fuji Photo Film Co., Ltd. Organic electroluminescence device capable of regulating chromaticity
WO2008096588A1 (en) * 2007-02-07 2008-08-14 Nippon Seiki Co., Ltd. Organic el device driving apparatus and organic el device driving method
JP2008191611A (en) * 2007-02-08 2008-08-21 Sony Corp Organic el display device, method of controlling organic el display and electronic equipment
WO2010067292A2 (en) * 2008-12-12 2010-06-17 Koninklijke Philips Electronics N.V. Method for maximizing the performance of a luminaire
JP2010266490A (en) * 2009-05-12 2010-11-25 Sony Corp Display apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106835A1 (en) * 2004-04-30 2005-11-10 Fuji Photo Film Co., Ltd. Organic electroluminescence device capable of regulating chromaticity
WO2008096588A1 (en) * 2007-02-07 2008-08-14 Nippon Seiki Co., Ltd. Organic el device driving apparatus and organic el device driving method
JP2008191611A (en) * 2007-02-08 2008-08-21 Sony Corp Organic el display device, method of controlling organic el display and electronic equipment
WO2010067292A2 (en) * 2008-12-12 2010-06-17 Koninklijke Philips Electronics N.V. Method for maximizing the performance of a luminaire
JP2010266490A (en) * 2009-05-12 2010-11-25 Sony Corp Display apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210167313A1 (en) * 2015-02-24 2021-06-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device

Also Published As

Publication number Publication date
JP2013089301A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
JPWO2011010696A1 (en) Organic electroluminescent device
TW200624436A (en) Metal-complex compound and organic electroluminescence device using the compound
US20200372856A1 (en) Oled device with controllable brightness
US8664970B2 (en) Method for accelerated lifetesting of large area OLED lighting panels
JP2007294402A (en) Organic electroluminescent element and display device
US9165984B2 (en) OLEDs for use in NVIS capable devices
US10839734B2 (en) OLED color tuning by driving mode variation
KR20130086947A (en) Organic light emitting device lighting panel
WO2013054622A1 (en) Light emitting device and method for driving organic el element
TW200706561A (en) Novel organic electroluminescent material, organic electroluminescent element employing the same, and thin-film-forming solution for organic electroluminescence
JP2007123865A (en) Organic electroluminescent element
US9741956B2 (en) Organic light-emitting diode apparatus
US20150280164A1 (en) Organic light-emitting diode having an inverse energy level layer
JP2007266160A (en) Organic light emitting element array
WO2013054621A1 (en) Light emitting device and organic electroluminescence element driving method
US20180145283A1 (en) Oled display module
CN106856205B (en) Organic light emitting display device, method of manufacturing the same, and organic light emitting display apparatus
KR20160061363A (en) Optoelectronic component device and method for operating an optoelectronic component
JP2005108572A (en) Organic electroluminescent element
JP5791129B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND ORGANIC ELECTROLUMINESCENT LIGHTING DEVICE
KR100547055B1 (en) Organic Electroluminescent Device
TW201242126A (en) Organic light emitting diode device
JP2008191539A (en) Driving device of organic el element, and driving method of organic el element
Levermore et al. Phosphorescent OLEDs: Enabling energy‐efficient lighting with improved uniformity and longer lifetime
JP5773465B2 (en) Organic EL lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839884

Country of ref document: EP

Kind code of ref document: A1