WO2013054602A1 - Method for producing pneumatic tire - Google Patents

Method for producing pneumatic tire Download PDF

Info

Publication number
WO2013054602A1
WO2013054602A1 PCT/JP2012/071648 JP2012071648W WO2013054602A1 WO 2013054602 A1 WO2013054602 A1 WO 2013054602A1 JP 2012071648 W JP2012071648 W JP 2012071648W WO 2013054602 A1 WO2013054602 A1 WO 2013054602A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
inner liner
maleic anhydride
tire
pneumatic tire
Prior art date
Application number
PCT/JP2012/071648
Other languages
French (fr)
Japanese (ja)
Inventor
洋二 井本
睦樹 杉本
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Publication of WO2013054602A1 publication Critical patent/WO2013054602A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/08Building tyres
    • B29D30/20Building tyres by the flat-tyre method, i.e. building on cylindrical drums
    • B29D30/30Applying the layers; Guiding or stretching the layers during application
    • B29D30/3007Applying the layers; Guiding or stretching the layers during application by feeding a sheet perpendicular to the drum axis and joining the ends to form an annular element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0681Parts of pneumatic tyres; accessories, auxiliary operations
    • B29D2030/0682Inner liners

Definitions

  • the present invention relates to a method of manufacturing a pneumatic tire, and more particularly, to a method of forming an inner liner, comprising the steps of manufacturing a laminate of an unvulcanized rubber sheet such as a carcass ply and the inner liner and forming a green tire.
  • the present invention relates to a method of manufacturing a tire.
  • the weight of the tire has been reduced, and among the tire members, it is disposed inside the tire to reduce air leakage from the inside to the outside of the pneumatic tire. Also in the air blocking layer (inner liner) which is required to be done, the weight reduction is required.
  • the rubber composition for air barrier layer improves the air permeation resistance of the tire by using a rubber compound mainly composed of butyl rubber containing, for example, 70 to 100% by mass of butyl rubber and 30 to 0% by mass of natural rubber.
  • the rubber composition containing butyl rubber contains about 1% by mass of isoprene, which can be combined with sulfur, vulcanization accelerator, and zinc flower to enable co-crosslinking between molecules with adjacent rubber layers. I have to.
  • the above butyl rubber needs to have a thickness of about 0.6 to 1.0 mm for passenger car tires and about 1.0 to 2.0 mm for truck and bus tires in a normal composition, but the weight reduction of the tires is achieved. For this reason, there is a demand for a polymer which is more excellent in air permeation resistance than butyl rubber and which can further reduce the thickness of the air blocking layer.
  • the inner liner film P2 is elongated on the conveyor to the unvulcanized inner liner rubber P1. Both end edges of the direction are aligned and attached in advance to form a laminate, and the inner liner film P2 of the laminate is wound on the band with the inner liner film P2 on the inner side, and both ends of the laminate are circumferentially Generally, it is common to overlap at one place to form a joint PJ, and then use a stitching roller to press the joint PJ of the laminate to perform air bleeding.
  • the adjacent carcass may be separated if peeling occurs at the joint of the inner liner of the molded green tire. It may cause damage to the ply.
  • thermoplastic elastomer for the inner liner in an attempt to reduce the weight of the pneumatic tire.
  • a material that is thinner than the butyl rubber inner liner and has high air permeability is inferior in vulcanization adhesion to the insulation rubber or carcass ply rubber adjacent to the inner liner than the butyl rubber inner liner. It will be.
  • the joint portion peels off during traveling, and the tire internal pressure may decrease, which may cause a burst of the tire.
  • the joint portion since the joint portion has a structure in which other members are exposed to the inner surface, it becomes a path of air leakage, and the internal pressure of the tire is easily reduced.
  • Patent Document 1 an inner liner film and an unvulcanized rubber sheet are pasted with both ends in the extending direction mutually offset, and this adhesive body is wound on a drum Techniques for molding unvulcanized tires are disclosed.
  • each member in order to shift the both ends in the extending direction from each other, each member must be cut to a fixed size one by one and separately shifted for lamination, which may reduce productivity. Further, depending on the bonding method, the accuracy may be deteriorated, and air may be accumulated between the films to cause damage at the time of tire vulcanization.
  • Patent Document 2 an ethylene-vinyl alcohol copolymer is contained in an amount of 15 to 30 parts by mass with respect to 100 parts by mass of a rubber component consisting of a natural rubber and / or a synthetic rubber. Disclosed is a pneumatic tire provided with the contained inner liner rubber composition. However, this technique is not preferable from the viewpoint of reducing the weight of the tire, since the thickness of the inner liner is as large as 1 mm.
  • Patent Document 3 JP-A-9-165469 discloses a nylon film used as an inner liner. Here, it is disclosed that after the nylon film is subjected to RFL treatment, it is adhered to the inner surface of the tire or the carcass layer with a rubber paste made of a rubber composition to produce a pneumatic tire.
  • vulcanization molding is generally performed by pressing the inner surface of the uncured tire housed in the mold against the inner surface of the mold, but since the inner liner is a nylon film, nylon is heated when heating the bladder during vulcanization. There is a problem that the film adheres to the bladder and adheres and breaks.
  • the present invention is a method of forming a tire by winding a laminate of an inner liner and an unvulcanized rubber sheet such as a carcass ply on a forming drum, and providing uniformity in thickness at a joint on the periphery of the drum.
  • An object of the present invention is to increase air pressure, prevent air from remaining, and effectively reduce peeling of a joint between an inner liner and a carcass ply.
  • Another object of the present invention is to provide a pneumatic tire having low flex crack growth, rolling resistance and low static air pressure reduction rate.
  • the present invention relates to a method of manufacturing a pneumatic tire having an inner liner on the inside of the tire, wherein molding of the green tire is (A) an assembly step of manufacturing a laminate by laminating the end portions in the width direction of the inner liner and the end portions in the width direction of the unvulcanized rubber sheet by shifting them 50 mm to 500 mm in the width direction; (B) a cutting step of manufacturing the cut sheet by cutting the laminate to a predetermined length corresponding to a drum width; (C) The cut sheet is wound around the entire circumference of the drum so that the cut surface is in the circumferential direction of the drum and the inner liner is on the inner side, and the end of the inner liner and the end of the unvulcanized rubber sheet Has a bonding step of bonding by shifting the position of the part by a fixed distance,
  • the inner liner is a polymer composition comprising 60 to 99% by mass of a styrene-isobutylene-styrene block copolymer and
  • the width of the inner liner and the width of the unvulcanized rubber sheet are different, and the laminate is manufactured by shifting in the width direction such that both ends in the width direction do not overlap each other. be able to.
  • the styrene-isobutylene-styrene triblock copolymer preferably has a styrene component content of 10 to 30% by mass.
  • the styrene-maleic anhydride copolymer has a molar ratio of styrene component / maleic anhydride component of 50/50 to 90/10, a weight average molecular weight of 4,000 to 20,000, and further, maleic anhydride It is preferable to include a styrene-maleic anhydride copolymer base resin in which the acid value of the acid component is 50 to 600.
  • the styrene-maleic anhydride copolymer is a styrene-maleic anhydride copolymer having a monoester group and a monocarboxylic acid group, which is obtained by esterifying the styrene-maleic anhydride copolymer base resin. It is preferable to include an ester resin of
  • the styrene-maleic anhydride copolymer preferably includes an aqueous solution of styrene-maleic anhydride copolymer ammonium salt, in which the styrene-maleic anhydride copolymer base resin is dissolved in an ammonium salt.
  • an inner liner comprising a composite layer of a first layer containing a mixture of SIBS and a styrene-maleic anhydride copolymer and a second layer of a thermoplastic elastomer is mutually offset from the unvulcanized rubber sheet in the width direction
  • the laminated body is wound around the entire circumference of the drum so that the inner liner is on the inner surface side, and the respective end portions of the inner liner and the unvulcanized rubber sheet are mutually separated in the circumferential direction of the drum
  • the thickness in the circumferential direction of the tire becomes uniform and the tire becomes close to a true circle, the radial force variation (RFV) can be reduced and the uniformity of the tire is improved.
  • the formed inner liner and the unvulcanized rubber sheet such as the carcass ply will form a joint separated in the circumferential direction from each other, even if peeling occurs in the joint of the carcass ply Since the peeled portion is reinforced by the inner liner, damage and breakage of the product tire will be alleviated.
  • the inner liner is disposed on the tire inner side, a first layer having a thickness of 0.05 mm to 0.6 mm, and disposed on the unvulcanized rubber sheet side, having a thickness of 0.01 mm.
  • the composite layer of the second layer having a thickness of ⁇ 0.3 mm enhances the adhesion of the adjacent carcass ply to the rubber.
  • Embodiment 1 is a method of manufacturing a pneumatic tire having an inner liner on the inside of the tire, and the manufacturing method is performed in the following green tire molding process.
  • A An assembly step of manufacturing a laminate by shifting and bonding the widthwise end of the inner liner and the widthwise end of the unvulcanized rubber sheet mutually in the width direction in the range of 50 mm to 500 mm.
  • B A cutting step of manufacturing the cut sheet by cutting the laminate to a predetermined length corresponding to a drum width.
  • FIG. 1 is a lateral schematic view showing an assembling process
  • FIG. 2 is a perspective schematic view showing the assembling process.
  • the film-like inner liner 2 is fed from the storage roll R1 through the first drive roller R2 in the direction of the arrow in the state covered with the release paper and It is separated. Then, the inner liner 2 is sent to the pair of calendar rolls R7.
  • the unvulcanized rubber sheet 3 is fed to the pair of calender rolls R7 via the second drive roller R6.
  • the inner liner 2 and the unvulcanized rubber sheet 3 are bonded to produce the laminate 1.
  • the laminate 1 is taken up by a take-up roll R8 and temporarily stored, or is continuously sent to the subsequent cutting process.
  • the inner liner 2 and the unvulcanized rubber sheet 3 having substantially the same width are used, and the positions of these both ends are mutually offset, and an offset distance L is formed. .
  • the shift distance L is prepared in the range of 50 mm to 500 mm, preferably in the range of 100 mm to 300 mm. If the shift distance L is smaller than 50 mm, the distance between the joint of the unvulcanized rubber sheet and the joint of the inner liner becomes narrow, and adhesion failure at the joint tends to occur. On the other hand, if the shift distance L exceeds 500 mm, tire molding on the drum becomes difficult.
  • the inner liner is made of a styrene-isobutylene-styrene block copolymer, is a first layer having a thickness of 0.05 mm to 0.6 mm, is disposed on the unvulcanized rubber sheet side, and is made of a thermoplastic elastomer. It is composed of a composite layer of a second layer having a thickness of 0.01 mm to 0.3 mm. The width of the inner liner is adjusted by the tire size.
  • the inner liner and the unvulcanized rubber sheet are pressure-bonded using a roll, there is no air accumulation, which can be reliably adhered, and the efficiency is good and the productivity is good.
  • FIG. 3 is a schematic perspective view showing the cutting process.
  • the laminate 1 is sent from the take-up roll R8 by a belt conveyor to a cutter, or continuously sent from an assembling process.
  • the laminate 1 is cut at a predetermined length in the longitudinal direction according to the size of the tire, and a cut sheet 4 is manufactured.
  • the conventional techniques such as a knife cut, can employ
  • the cutting direction of the cut sheet 4 corresponds to the circumferential direction of the drum, and the cut length in the longitudinal direction corresponds to the width direction of the drum 5.
  • the length of the inner liner is appropriately adjusted depending on the tire size.
  • FIG. 4A is a cross-sectional view of the cut sheet 4
  • FIG. 4B is a schematic view showing a method of winding the cut sheet 4 on the drum 5.
  • the laminate is wound so that the inner liner 2 is adjacent to the surface of the drum 5.
  • the position where the end portions 2a and 2b of the inner liner are joined to each other to form a joint, and the position where the end portions 3a and 3b of the unvulcanized rubber sheet are joined to each other to form a joint are mutually Will be offset.
  • a laminate of the inner liner and the unvulcanized carcass ply is produced and formed into a drum shape and a cylindrical shape.
  • both ends of the laminate located at both ends of the drum are wound around the bead cores, and then the central portion of the laminate comprising the inner liner and the unvulcanized carcass ply is bulged and deformed while narrowing the spacing between the bead cores.
  • a belt member, tread rubber and the like are attached to the central portion of the laminate, and other rubber members such as side walls and bead apex are also attached to form a green tire.
  • a green tire thus formed is put into a mold and vulcanized by a conventional method to obtain a product tire.
  • the inner liner is a polymer composition comprising 60 to 99% by mass of a styrene-isobutylene-styrene block copolymer and 100 parts by mass of a polymer mixture containing 1 to 40% by mass of a styrene-maleic anhydride copolymer.
  • First layer having a thickness of 0.05 mm to 0.6 mm, and a second layer having a thickness of 0.01 mm to 0.3 mm, which is disposed on the unvulcanized rubber sheet side and made of a thermoplastic elastomer Is composed of a laminate of
  • the inner liner is a polymer composition including 60 to 99% by mass of a styrene-isobutylene-styrene block copolymer and 100 parts by mass of a polymer mixture containing 1 to 40% by mass of a styrene-maleic anhydride copolymer.
  • the first layer comprises a composition of a thermoplastic elastomer based on styrene-isobutylene-styrene block copolymer (SIBS). Due to the isobutylene block origin of SIBS, polymer films made of SIBS have excellent resistance to air permeation. Therefore, when a polymer composed of SIBS is used for the inner liner, a pneumatic tire excellent in air permeation resistance can be obtained.
  • SIBS styrene-isobutylene-styrene block copolymer
  • SIBS is inhibited from deterioration and hardening and has excellent durability. Therefore, when a polymer film made of SIBS is used for the inner liner, a pneumatic tire excellent in durability can be obtained.
  • the molecular weight of SIBS is not particularly limited, but it is preferable that the weight average molecular weight by GPC measurement is 50,000 to 400,000, from the viewpoint of flowability, molding process, rubber elasticity and the like. If the weight average molecular weight is less than 50,000, the tensile strength and the tensile elongation may be lowered, and if it exceeds 400,000, the extrusion processability may be deteriorated, which is not preferable.
  • the content of the styrene component in SIBS is preferably 10 to 30% by mass, and more preferably 14 to 23% by mass, from the viewpoint of improving air permeability and durability of SIBS.
  • the degree of polymerization of each block of the SIBS is about 10,000 to 150,000 for isobutylene from the viewpoints of rubber elasticity and handling (the degree of polymerization is less than 10,000 becomes liquid), and styrene And preferably about 5,000 to 30,000.
  • SIBS can be obtained by a common living cationic polymerization method of vinyl compounds.
  • living cationic polymerization of isobutylene with another vinyl compound is possible, and by using isobutylene and another compound as the vinyl compound. It is disclosed that polyisobutylene-based block copolymers can be produced.
  • a styrene-maleic anhydride copolymer means a styrene-maleic anhydride copolymer base resin (hereinafter also referred to as "SMA base resin"), a styrene-maleic anhydride copolymer base
  • SMA base resin a styrene-maleic anhydride copolymer base resin
  • SMA ester resin an ester resin of a styrene-maleic anhydride copolymer having a monoester group and a monocarboxylic acid group obtained by esterifying a resin
  • SMA ester resin a styrene-maleic anhydride copolymer base It is described as a concept including a styrene-maleic anhydride copolymer ammonium salt aqueous solution (hereinafter also referred to as "SMA resin ammonium salt aqueous solution”) in which a resin is dissolved in an ammonium salt
  • Styrene-maleic anhydride copolymer is used as a polymeric surfactant in dispersion and emulsification, and a high functional crosslinking agent, and has very excellent vulcanization adhesion to rubber. In addition, the adhesive effect is also excellent because it imparts wettability to rubber.
  • the content of SMA is 0.5 to 40% by mass.
  • the content of SMA is 0.5% by mass or more, an inner liner excellent in adhesion to the second layer can be obtained.
  • the content of SMA is 40% by mass or less, an inner liner having excellent air permeation resistance and durability can be obtained.
  • the content of SMA in the polymer component is more preferably 2 to 30% by mass.
  • SMA preferably comprises an SMA base resin from the viewpoint of unvulcanized tackiness and post-vulcanization adhesion.
  • the SMA base resin preferably has a molar ratio of styrene component / maleic anhydride component of 50/50 to 90/10 from the viewpoint of high softening point and high thermal stability.
  • the SMA base resin preferably has a weight average molecular weight of 4,000 to 20,000 from the viewpoint of adhesion after vulcanization and fluidity. More preferably, the weight average molecular weight is 5,000 to 15,000.
  • the SMA base resin has an acid value of 50 to 600 for the maleic anhydride component in the styrene-maleic anhydride copolymer. Furthermore, the acid value of the maleic anhydride component is more preferably 95 to 500.
  • a styrene-maleic anhydride copolymer is a styrene- having a monoester group and a monocarboxylic acid group, which is obtained by esterifying a styrene-maleic anhydride copolymer base resin. It is preferable to contain an ester resin of maleic anhydride copolymer (hereinafter also referred to as SMA ester resin).
  • the SMA ester resin has the property of being excellent in vulcanization adhesion. Therefore, the polymer composition for inner liners excellent in the vulcanized adhesion with the rubber layer can be obtained by blending the SMA ester resin with SIBS. From the viewpoint of vulcanization adhesion, the SMA ester resin preferably has a molar ratio of styrene component / maleic anhydride component of 50/50 to 90/10.
  • the SMA ester resin preferably has a weight average molecular weight of 5,000 to 12,000 from the viewpoint of adhesion after vulcanization and fluidity. Further, the weight average molecular weight is more preferably 6,000 to 11,000.
  • the acid value of the maleic anhydride component is preferably 50 to 400 from the viewpoint of adhesion to the unvulcanized rubber. More preferably, the acid value of the maleic anhydride component is 95 to 290.
  • the SMA ester resin can be produced, for example, by introducing a base resin and an alcohol into a reaction vessel and heating and stirring under an inert gas atmosphere.
  • a styrene-maleic anhydride copolymer is an aqueous solution of styrene-maleic anhydride copolymer ammonium salt (hereinafter also referred to as an SMA ammonium salt aqueous solution) in which an SMA base resin is dissolved in an ammonium salt. Is preferred.
  • the aqueous solution of SMA ammonium salt has the property of being excellent in wettability. Therefore, the polymer composition for inner liners excellent in adhesiveness can be obtained by mix
  • the aqueous solution of SMA ammonium salt preferably has a solid concentration of 10.0 to 45.0% from the viewpoint of adhesion to unvulcanized rubber and molding processability.
  • the aqueous solution of SMA ammonium salt preferably has a pH of 8.0 to 9.5 from the viewpoint of adhesiveness.
  • an aqueous solution of SMA ammonium salt solution is charged with water in a reaction vessel, a base resin is added while vigorously stirring, and an exothermic reaction occurs when ammonium hydroxide is gradually added. It can then be manufactured by heating to a predetermined temperature and continuing stirring until dissolution is complete.
  • the polymer composition is compounded in tire or general polymer compositions such as other reinforcing agents, vulcanizing agents, vulcanization accelerators, various oils, antioxidants, softeners, plasticizers, coupling agents, etc. Various ingredients and additives can be blended.
  • the thickness of the first layer of SIBS is 0.05 to 0.6 mm. If the thickness of the first layer is less than 0.05 mm, the first layer may be broken by the press pressure during vulcanization of a green tire in which the polymer laminate is applied to the inner liner, which may cause an air leak phenomenon in the tire. is there. On the other hand, if the thickness of the first layer exceeds 0.6 mm, the weight of the tire increases and the fuel economy performance decreases.
  • the first layer can be obtained by film-forming SIBS by a conventional method of film-forming a thermoplastic resin or a thermoplastic elastomer such as extrusion, calendaring and the like.
  • the second layer is composed of a thermoplastic elastomer, in particular a styrenic thermoplastic elastomer composition.
  • the styrene-based thermoplastic elastomer refers to a copolymer containing a styrene block as a hard segment.
  • styrene-isoprene-styrene block copolymer hereinafter also referred to as "SIS"
  • SIB styrene-isobutylene block copolymer
  • SIB styrene-butadiene-styrene block copolymer
  • SIB styrene-butadiene-styrene block copolymer
  • SIBS styrene-isobutylene-styrene block copolymer
  • SEBS styrene-ethylene ⁇ butene-styrene block copolymer
  • SEPS Styrene-ethylene-propylene-styrene block copolymer
  • SEEPS styrene-ethylene-ethylene-propylene-styrene block copolymer
  • SBB styrene- Butadiene-butylene-styrene block copolymer
  • the styrenic thermoplastic elastomer may have an epoxy group in its molecular structure.
  • Epofriend A 1020 made by Daicel Chemical Industries, Ltd., weight average molecular weight is 100,000, epoxy equivalent is 500
  • Epoxy modified styrene-butadiene-styrene copolymer epoxidized SBS
  • SIS and SIB are particularly preferred. Since the isoprene block of SIS is a soft segment, the polymer film made of SIS is easy to cure and adhere to the rubber component. Therefore, when a polymer film made of SIS is used for the inner liner, the inner liner is excellent in adhesion to, for example, the rubber layer of the carcass ply, so that a pneumatic tire excellent in durability can be obtained.
  • the molecular weight of the SIS is not particularly limited, but in view of rubber elasticity and moldability, it is preferable that the weight average molecular weight by GPC measurement is 100,000 to 290,000. If the weight average molecular weight is less than 100,000, the tensile strength may be lowered, and if it exceeds 290,000, the extrusion processability is unfavorably deteriorated.
  • the content of the styrene component in SIS is preferably 10 to 30% by mass from the viewpoints of tackiness, adhesiveness and rubber elasticity.
  • the degree of polymerization of each block in SIS is preferably about 500 to 5,000 for isoprene and about 50 to 1,500 for styrene from the viewpoint of rubber elasticity and handling.
  • the SIS can be obtained by a general polymerization method of a vinyl compound, and can be obtained, for example, by a living cationic polymerization method.
  • the SIS layer can be obtained by film-forming the SIS by a conventional method of film-forming a thermoplastic resin such as extrusion molding, calendar molding, or a thermoplastic elastomer.
  • the isobutylene block of the styrene-isobutylene block copolymer (SIB) is a soft segment, the polymer film made of SIB is easy to cure and adhere to the rubber component. Therefore, when a polymer film made of SIB is used for the inner liner, the inner liner is excellent in adhesion to the adjacent rubber forming, for example, the carcass and the insulation, so that a pneumatic tire excellent in durability is obtained. be able to.
  • SIB it is preferable to use a linear one from the viewpoint of rubber elasticity and adhesiveness.
  • the molecular weight of SIB is not particularly limited, but from the viewpoint of rubber elasticity and moldability, it is preferable that the weight average molecular weight by GPC measurement is 40,000 to 120,000. If the weight average molecular weight is less than 40,000, the tensile strength may be lowered, and if it exceeds 120,000, the extrusion processability may be deteriorated, which is not preferable.
  • the content of the styrene component in the SIB is preferably 10 to 35% by mass from the viewpoints of tackiness, adhesiveness and rubber elasticity.
  • the degree of polymerization of each block in SIB is preferably about 300 to 3,000 for isobutylene and about 10 to 1,500 for styrene from the viewpoint of rubber elasticity and handling.
  • the SIB can be obtained by a general living polymerization method of a vinyl compound, and for example, methylcyclohexane, n-butyl chloride and cumyl chloride are added to a stirrer, cooled to -70 ° C, and reacted for 2 hours Then, the reaction can be stopped by adding a large amount of methanol and vacuum dried at 60 ° C. to produce SIB.
  • the SIB layer can be formed by a conventional method of film-forming styrenic thermoplastic elastomer such as extrusion or calendaring of SIB.
  • the thickness of the second layer is preferably 0.01 mm to 0.3 mm. If the thickness of the second layer is less than 0.01 mm, the second layer may be broken by the press pressure during vulcanization of a green tire in which the polymer laminate is applied to the inner liner, and the vulcanization adhesion may be reduced. There is. On the other hand, if the thickness of the second layer exceeds 0.3 mm, the weight of the tire may increase and the low fuel consumption performance may decrease.
  • the thickness of the second layer is preferably 0.05 to 0.2 mm.
  • the inner liner is a polymer laminate composed of a composite layer of a first layer and a second layer.
  • the first layer and the second layer are thermoplastic elastomer compositions, and are in a softened state in the mold at a vulcanization temperature, for example, 150 ° C. to 180 ° C.
  • the softened state is an intermediate state between solid and liquid by improving molecular mobility.
  • the thermoplastic elastomer composition is in a softened state, the reactivity is improved more than in a solid state, so that it adheres and adheres to adjacent members.
  • a cooling process is required when manufacturing the tire.
  • quenching is performed to 50 to 120 ° C. for 10 to 300 seconds, and the inside of the bladder portion is cooled.
  • a cooling medium one or more selected from air, water vapor, water and oil are used.
  • the width W 2 of the inner liner 2 is formed wider than the width W 1 of the unvulcanized rubber sheet 3.
  • FIG. 5 is a schematic view showing a cutting process.
  • the laminate 1 is sent from the take-up roll R8 to a cutter by a belt conveyor or continuously sent from an assembling process.
  • the laminate 1 is cut at a predetermined length in the longitudinal direction according to the size of the tire, whereby a cut sheet 4 is manufactured.
  • the conventional techniques such as a knife cut, can employ
  • the cutting direction of the cutting sheet 4 corresponds to the circumferential direction of the drum, while the cutting length in the longitudinal direction corresponds to the width direction of the drum 5.
  • FIG.6 (a) is sectional drawing of a laminated body
  • FIG.6 (b) is schematic which shows the state which winds a laminated body on a drum.
  • the inner liner 2 is wound on the drum 5 so as to be in contact with the inner liner 2, and the joints 2a and 2b overlap to form a joint.
  • unvulcanized rubber pieces 6 are used. In this case, two joints are formed, but they are offset from the joint position with the inner liner.
  • FIG. 8 is a schematic cross-sectional view of the right half of the pneumatic tire.
  • the pneumatic tire 11 has a tread portion 12 and sidewall portions 13 and bead portions 14 so as to form a toroidal shape from both ends of the tread portion. Furthermore, the bead core 15 is embedded in the bead portion 14. Further, a carcass ply 16 is provided from one bead portion 14 to the other bead portion, and is wound around the bead core 15 at both ends so as to be locked, and at least two at the outside of the crown portion of the carcass ply 16. And a belt layer 17 made of ply.
  • the belt layer 17 usually crosses two plies of cords such as steel cords or aramid fibers between the plies so that the cords are at an angle of usually 5 to 30 ° with respect to the tire circumferential direction.
  • a topping rubber layer can be provided on the outer sides of both ends of the belt layer to reduce the peeling of both ends of the belt layer.
  • the carcass ply has organic fiber cords such as polyester, nylon, aramid or the like arranged at approximately 90 ° in the tire circumferential direction, and in the region surrounded by the carcass ply and its turn, from the upper end of the bead core 15 to the sidewall direction
  • An extending bead apex 18 is disposed.
  • an inner liner 19 extending from one bead portion 14 to the other bead portion 14 is disposed on the inner side in the tire radial direction of the carcass ply 16.
  • the polymer laminate PL is composed of a first layer PL1 and a second layer PL2.
  • the second layer PL2 is installed outward in the tire radial direction so as to be in contact with the carcass ply C, in the tire vulcanization step, the second layer PL2 And the adhesion strength between the carbon and the carcass C can be enhanced.
  • the resulting pneumatic tire has excellent air permeation resistance and flex crack growth resistance because the inner liner and the rubber layer of the carcass ply C are well adhered.
  • the method of manufacturing a pneumatic tire according to the present invention can use a conventional manufacturing method.
  • An inner liner is manufactured using the polymer laminate PL.
  • the inner liner is applied to a green tire of a pneumatic tire 11 and manufactured by vulcanization molding with other members.
  • the second layer PL2 of the polymer laminate PL is disposed radially outward of the tire so as to be in contact with the carcass ply C.
  • the adhesive strength between the second layer PL2 and the carcass 6 can be enhanced in the tire vulcanization step.
  • the resulting pneumatic tire has excellent air permeation resistance and flex crack growth resistance because the inner liner and the rubber layer of the carcass ply C are well adhered.
  • IIR “Exxon chlorobutyl 1068” manufactured by ExxonMobil Co., Ltd.
  • SIBS Sibustar SIBSTAR 102T” (Shore A hardness: 25, styrene content: 25% by mass) manufactured by Kaneka Co., Ltd.
  • SMA base resin “SMA 1000” manufactured by Sartomer (styrene component / maleic anhydride component: 50/50, weight average molecular weight: 5,500, acid value of maleic anhydride: 490).
  • SMA ester resin “SMA1440” manufactured by Sartmar (styrene component / maleic anhydride component: 80/20, weight average molecular weight: 7,000, acid value of maleic anhydride: 200).
  • SMA ammonium salt aqueous solution “SMA1000H” (pH 9.0) manufactured by Sartmar.
  • Carbon “Siest V” (N 660, N 2 SA: 27 m 2 / g) manufactured by Tokai Carbon Co., Ltd.
  • Stearic acid “Runac Stearate S30” manufactured by Kao Corporation.
  • Zinc oxide Zinc flower No.
  • the unvulcanized rubber sheet uses a carcass ply, and the composition of the topping rubber is as follows.
  • the shift distance (amount) L is changed to 50 mm, 500 mm, and 250 mm, respectively, by setting the inner liner to 1300 mm and changing the dimension of the carcass ply based on FIG.
  • Examples 1 to 3 0.5 parts by mass of the SMA base resin was blended in SIBS of the first layer, and in Examples 4 to 6, 20 parts by mass of the SMA base resin was blended in SIBS of the first layer. is there.
  • Examples 7 to 9 are examples in which 0.5 parts by mass of each of the SMA base resin and the SMA ester resin were blended in SIBS in the first layer, and in Examples 10 to 12, the SMA base resin and SMA in SIBS of the first layer It is an example which mix
  • Comparative Example 1 is an example in which IIR is used in the first layer, and Comparative Examples 2 to 4 are examples in which 0.5 mass% of SMA base resin is mixed in IIR in the first layer.
  • Comparative Example 5 is an example in which only SIBS is used in the first layer, and Comparative Examples 6 and 7 are examples in which 50 mass% of SMA is mixed with SIBS in the first layer.
  • All of the embodiments of the present invention are excellent in air-in performance, flex crack growth, rolling resistance and static air reduction rate comprehensive evaluation, and further excellent in uniformity.
  • A In appearance, when the number of air-ins with a diameter of 5 mm or less is 0 and the number of air-ins with a diameter of 5 mm or more is 0 per tire
  • B Appearance, a diameter of 5 mm or less per tire When the number of air-ins is 1 to 3 and the number of air-ins exceeding 5 mm in diameter is 0
  • C In terms of appearance, the number of air-ins of 5 mm or less in diameter per tire is 4 or more, and 5 mm in diameter When the number of air-ins exceeding 1 is 1 or more ⁇ Bending crack growth test> The flex crack growth test was evaluated by whether the inner liner was broken or peeled off.
  • the prototype tire is assembled on a JIS standard rim 15 x 6 JJ, the internal pressure of the tire is set to 150 KPa lower than usual, the load is 600 kg, the speed is 100 km / h, the inside of the tire is observed with a traveling distance of 20,000 km, The number of peels was measured.
  • the crack growth of each Example and Comparative Example was expressed as an index based on the following formula based on Comparative Example 1. The larger the number, the smaller the flex crack growth.
  • Flexural crack growth index (number of cracks in comparative example 1) / (number of cracks in each example) ⁇ 100 ⁇ Rolling resistance index> Using a rolling resistance tester manufactured by Kobe Steel, Ltd., assemble a prototype tire to JIS standard rim 15 ⁇ 6JJ, load 3.4 kN, air pressure 230 kPa, speed 80 km / h, room temperature (30 ° C) The rolling resistance was measured. And the rolling resistance change rate (%) of the Example was displayed by the index
  • Rolling resistance index (rolling resistance of comparative example 1) / (rolling resistance of example) ⁇ 100 ⁇ Static air pressure reduction rate>
  • the prototype tire is assembled on a JIS standard rim 15 ⁇ 6JJ, sealed with an initial air pressure of 300 kPa, left at room temperature for 90 days, and the reduction rate of the air pressure is calculated. As the numerical value is smaller, the air pressure is less likely to decrease and is preferable.
  • ⁇ Uniformity index> The radial force variation (RFV) was measured using a tire uniformity tester in accordance with JASOC 607: 2000 "Test method for uniformity of automobile tires".
  • the relative value which makes comparative example 1 100 is displayed as an index. The larger the index, the better the uniformity.
  • the rim was 8.0 ⁇ 17, the tire rotational speed was 60 rpm, the air pressure was 200 kPa, and the longitudinal load was 4000 kN.
  • Judgment A is one that satisfies all the following conditions.
  • Air-in evaluation is B or C evaluation
  • flex crack growth index is less than 100
  • rolling resistance change rate is less than 100
  • static air pressure reduction rate (% / month) is 2.7 or more
  • the method of manufacturing a pneumatic tire according to the present invention can be applied to a method of manufacturing a pneumatic tire for trucks, buses, heavy machinery, etc. besides pneumatic tires for passenger cars.
  • Reference Signs List 1 laminate, 2 and 19 inner liner, 3 unvulcanized rubber sheet, 4 cut sheet, 5 drums, L displacement distance (amount), 11 pneumatic tire, 12 tread portion, 13 sidewall portion, 14 bead portion, 15 Bead core, 16 carcass plies, 17 belt layers, 18 bead apexes, PL polymer laminate, PL1 first layer, PL2 second layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tyre Moulding (AREA)
  • Tires In General (AREA)

Abstract

A method for producing a pneumatic tire provided with an inner liner (2) inside the tire, wherein the molding of a green tire includes: an assembly step for joining together a width direction end part of the inner liner (2) and a width direction end part of an unvulcanized rubber sheet (3), displaced from each other in the width direction, to produce a laminate (1); a cutting step for slicing the laminate (1) to a certain length corresponding to a drum width, to produce a cut sheet; and a bonding step for winding the cut sheet around the entire periphery of the drum so that the cut surface becomes the peripheral direction of the drum and the inner liner (2) becomes the inner surface, and bonding together positions of an end part of the inner liner (2) and an end part of the unvulcanized rubber sheet (3), displaced by a certain distance. The inner liner is a thermoplastic elastomer composition including SIBS, a polyamide-based polymer, and organoclay, and is the laminate (1) of the first layer having a thickness of 0.05-0.6 mm and the second layer having a thickness of 0.01-0.3 mm.

Description

空気入りタイヤの製造方法Method of manufacturing pneumatic tire
 本発明は、空気入りタイヤの製造方法、特に、インナーライナーの成形方法に関し、カーカスプライなどの未加硫ゴムシートとインナーライナーとの積層体を製造して生タイヤを成形する工程を含む空気入りタイヤの製造方法に関する。 The present invention relates to a method of manufacturing a pneumatic tire, and more particularly, to a method of forming an inner liner, comprising the steps of manufacturing a laminate of an unvulcanized rubber sheet such as a carcass ply and the inner liner and forming a green tire. The present invention relates to a method of manufacturing a tire.
 近年、車の低燃費化に対する強い社会的要請から、タイヤの軽量化が図られており、タイヤ部材のなかでも、タイヤの内部に配され、空気入りタイヤ内部から外部への空気の漏れを低減することが要請されている空気遮断層(インナーライナー)においても、その軽量化が求められている。 In recent years, due to strong social demand for low fuel consumption of the car, the weight of the tire has been reduced, and among the tire members, it is disposed inside the tire to reduce air leakage from the inside to the outside of the pneumatic tire. Also in the air blocking layer (inner liner) which is required to be done, the weight reduction is required.
 現在、空気遮断層用ゴム組成物は、たとえばブチルゴム70~100質量%および天然ゴム30~0質量%を含むブチルゴムを主体とするゴム配合を使用することで、タイヤの耐空気透過性を向上させることが行われている。また、ブチルゴムを主体とするゴム配合はブチレン以外に約1質量%のイソプレンを含み、これが硫黄・加硫促進剤・亜鉛華と相俟って、隣接ゴム層との分子間の共架橋を可能にしている。上記ブチル系ゴムは、通常の配合では乗用車用タイヤでは0.6~1.0mm、トラック・バス用タイヤでは1.0~2.0mm程度の厚みが必要となるが、タイヤの軽量化を図るために、ブチル系ゴムより耐空気透過性に優れ、空気遮断層の厚みをより薄くできるポリマーが要請されている。 At present, the rubber composition for air barrier layer improves the air permeation resistance of the tire by using a rubber compound mainly composed of butyl rubber containing, for example, 70 to 100% by mass of butyl rubber and 30 to 0% by mass of natural rubber. The thing is done. In addition to butylene, the rubber composition containing butyl rubber contains about 1% by mass of isoprene, which can be combined with sulfur, vulcanization accelerator, and zinc flower to enable co-crosslinking between molecules with adjacent rubber layers. I have to. The above butyl rubber needs to have a thickness of about 0.6 to 1.0 mm for passenger car tires and about 1.0 to 2.0 mm for truck and bus tires in a normal composition, but the weight reduction of the tires is achieved. For this reason, there is a demand for a polymer which is more excellent in air permeation resistance than butyl rubber and which can further reduce the thickness of the air blocking layer.
 空気入りタイヤの生タイヤの成形において、図7に示すように、インナーライナーPをドラム5A上で成形する際に、インナーライナーフィルムP2を、コンベア上で、未加硫インナーライナーゴムP1に、長手方向の両端縁位置を揃えて予め貼着させて積層体とし、該積層体のインナーライナーフィルムP2を内面側として、バンド上に、その全周にわたって巻き付けて、積層体の両端部を、周上の一個所で重複させて接合部PJを形成し、その後、ステッチングローラーを用いて、その積層体の接合部PJを押し付けてエアー抜きを行うのが一般的である。 In forming a green tire of a pneumatic tire, as shown in FIG. 7, when forming the inner liner P on the drum 5A, the inner liner film P2 is elongated on the conveyor to the unvulcanized inner liner rubber P1. Both end edges of the direction are aligned and attached in advance to form a laminate, and the inner liner film P2 of the laminate is wound on the band with the inner liner film P2 on the inner side, and both ends of the laminate are circumferentially Generally, it is common to overlap at one place to form a joint PJ, and then use a stitching roller to press the joint PJ of the laminate to perform air bleeding.
 かかる技術では、インナーライナーフィルムP2と、未加硫インナーライナーゴムP1とをドラム上に巻き付けるにあたって、それらの長手方向の両端縁位置を揃えて予め貼着させることから、その積層体の両端部の、ドラム上での重複接合に際し、ドラム5A上の周上に形成される接合部PJの厚みが必然的に厚くなる。このため接合部PJにステッチングローラーを施しても接合部PJ間にエアーが残留することがあり、その残留エアーが、生タイヤの加硫成型によって膨張すると、積層体Pの接合部PJが剥離する虞があった。 In this technique, when the inner liner film P2 and the non-vulcanized inner liner rubber P1 are wound on the drum, the positions of both end edges in the longitudinal direction are aligned and adhered in advance. During overlapping bonding on the drum, the thickness of the bonding portion PJ formed on the periphery of the drum 5A inevitably becomes large. For this reason, even if a stitching roller is applied to the joint portion PJ, air may remain between the joint portions PJ, and when the residual air expands by vulcanization molding of a green tire, the joint portion PJ of the laminate P peels off There was a risk of
 しかも、この技術では積層体Pの端部がドラム5Aの周上の一個所で接合部を形成するため、成形された生タイヤのインナーライナーの接合部に剥離が生じた場合は、隣接するカーカスプライの損傷を招来することがある。 Moreover, in this technology, since the end of the laminate P forms a joint at one point on the circumference of the drum 5A, the adjacent carcass may be separated if peeling occurs at the joint of the inner liner of the molded green tire. It may cause damage to the ply.
 従来技術において、空気入りタイヤの軽量化を意図して、インナーライナーに熱可塑性エラストマーを用いることが提案されている。しかしブチル系ゴムのインナーライナーよりも薄くし、高い耐空気透過性を有する材料は、インナーライナーに隣接するインスレーションゴムやカーカスプライゴムとの加硫接着力がブチル系ゴムのインナーライナーよりも劣ることになる。 In the prior art, it is proposed to use a thermoplastic elastomer for the inner liner in an attempt to reduce the weight of the pneumatic tire. However, a material that is thinner than the butyl rubber inner liner and has high air permeability is inferior in vulcanization adhesion to the insulation rubber or carcass ply rubber adjacent to the inner liner than the butyl rubber inner liner. It will be.
 特にインナーライナーの接合部において接着力が弱いと、走行中に接合部が剥離しタイヤ内圧が低下し、タイヤのバーストを招来することがある。また前記接合部は他部材が内面に露出する構造となるため、エアー漏れの経路となり、タイヤ内圧低下を生じやすくなる。 In particular, when the adhesive strength is weak at the joint portion of the inner liner, the joint portion peels off during traveling, and the tire internal pressure may decrease, which may cause a burst of the tire. Further, since the joint portion has a structure in which other members are exposed to the inner surface, it becomes a path of air leakage, and the internal pressure of the tire is easily reduced.
 特開2009-208444号公報(特許文献1)には、インナーライナーフィルムと未加硫ゴムシートを、延在方向の両端を相互にずらした状態で貼り付け、この粘着体をドラム上に巻いて未加硫タイヤを成形する技術が開示されている。 In JP 2009-208444 A (Patent Document 1), an inner liner film and an unvulcanized rubber sheet are pasted with both ends in the extending direction mutually offset, and this adhesive body is wound on a drum Techniques for molding unvulcanized tires are disclosed.
 しかし、延在方向の両端を相互にずらすためには、それぞれ部材を1枚ずつ定寸カットし、個別にずらして張り合わせなければならないため、生産性が低下する可能性がある。また貼り合わせ方法によっては、精度が悪くなり、フィルム間にエアーが溜まることによってタイヤ加硫時に損傷を与えることになる。 However, in order to shift the both ends in the extending direction from each other, each member must be cut to a fixed size one by one and separately shifted for lamination, which may reduce productivity. Further, depending on the bonding method, the accuracy may be deteriorated, and air may be accumulated between the films to cause damage at the time of tire vulcanization.
 特開2007―291256号公報(特許文献2)には、天然ゴムおよび/または合成ゴムからなるゴム成分の100質量部に対して、エチレンービニルアルコール共重合体が15~30質量部の範囲で含有されたインナーライナー用ゴム組成物を備えた空気入りタイヤが開示されている。しかしこの技術は、インナーライナーの厚さが1mmと厚くタイヤの軽量化の観点で好ましくない。 In JP-A-2007-291256 (Patent Document 2), an ethylene-vinyl alcohol copolymer is contained in an amount of 15 to 30 parts by mass with respect to 100 parts by mass of a rubber component consisting of a natural rubber and / or a synthetic rubber. Disclosed is a pneumatic tire provided with the contained inner liner rubber composition. However, this technique is not preferable from the viewpoint of reducing the weight of the tire, since the thickness of the inner liner is as large as 1 mm.
 特開平9-165469号公報(特許文献3)にはインナーライナーとして用いるナイロンフィルムが開示されている。ここではナイロンフィルムをRFL処理した後、ゴム組成物からなるゴム糊により、タイヤ内面またはカーカス層と接着させて空気入りタイヤを製造することが開示されている。 JP-A-9-165469 (Patent Document 3) discloses a nylon film used as an inner liner. Here, it is disclosed that after the nylon film is subjected to RFL treatment, it is adhered to the inner surface of the tire or the carcass layer with a rubber paste made of a rubber composition to produce a pneumatic tire.
 しかし、この技術では工程が複雑化する問題がある。さらに加硫工程では一般に金型内に収容した未加硫タイヤの内側から金型内面に押し付けて加硫成形を行うが、インナーライナーがナイロンフィルムであるため加硫時にブラダーを加熱する際にナイロンフィルムがブラダーに粘着、接着して破損する問題がある。 However, this technique has a problem that the process becomes complicated. Furthermore, in the vulcanization process, vulcanization molding is generally performed by pressing the inner surface of the uncured tire housed in the mold against the inner surface of the mold, but since the inner liner is a nylon film, nylon is heated when heating the bladder during vulcanization. There is a problem that the film adheres to the bladder and adheres and breaks.
特開2009-208444号公報JP, 2009-208444, A 特開2007―291256号公報JP 2007-291256 A 特開平9-165469号公報JP-A-9-165469
 本発明は、インナーライナーとカーカスプライなどの未加硫ゴムシートとの積層体を成形ドラム上に巻きつけてタイヤを成形する方法において、ドラムの周上の接合部での厚さの均一性を高め、エアーの残留を防止しインナーライナーおよびカーカスプライの接合部の剥離も有効に軽減することを目的とする。さらに屈曲亀裂成長性、転がり抵抗性さらに静的空気圧低下率の小さい空気入りタイヤを提供することを目的とする。 The present invention is a method of forming a tire by winding a laminate of an inner liner and an unvulcanized rubber sheet such as a carcass ply on a forming drum, and providing uniformity in thickness at a joint on the periphery of the drum. An object of the present invention is to increase air pressure, prevent air from remaining, and effectively reduce peeling of a joint between an inner liner and a carcass ply. Another object of the present invention is to provide a pneumatic tire having low flex crack growth, rolling resistance and low static air pressure reduction rate.
 本発明はインナーライナーをタイヤ内側に備えた空気入りタイヤの製造方法において、生タイヤの成形は、
(a)インナーライナーの幅方向端部と未加硫ゴムシートの幅方向端部を幅方向に相互に50mm~500mmずらして貼り合わせて積層体を製造するアッセンブル工程と、
(b)前記積層体を、ドラム幅に対応する一定長さに切断して、裁断シートを製造する裁断工程と、
(c)前記裁断シートを、その裁断面がドラムの周方向となり、かつインナーライナーが内面側となるようにドラム全周に巻きつけて、インナーライナーの端部と、未加硫ゴムシートの端部の位置を一定距離ずらして接合する接合工程を有し、
 前記インナーライナーは、スチレン-イソブチレン-スチレンブロック共重合体60~99質量%と、スチレン-無水マレイン酸共重合体1~40質量%を含むポリマー混合物100質量部を含むポリマー組成物であり、
 厚さが0.05mm~0.6mmである第1層と、未加硫ゴムシート側に配置され、熱可塑性エラストマーよりなり、厚さが0.01mm~0.3mmである第2層の積層体である前記空気入りタイヤの製造方法に関する。
The present invention relates to a method of manufacturing a pneumatic tire having an inner liner on the inside of the tire, wherein molding of the green tire is
(A) an assembly step of manufacturing a laminate by laminating the end portions in the width direction of the inner liner and the end portions in the width direction of the unvulcanized rubber sheet by shifting them 50 mm to 500 mm in the width direction;
(B) a cutting step of manufacturing the cut sheet by cutting the laminate to a predetermined length corresponding to a drum width;
(C) The cut sheet is wound around the entire circumference of the drum so that the cut surface is in the circumferential direction of the drum and the inner liner is on the inner side, and the end of the inner liner and the end of the unvulcanized rubber sheet Has a bonding step of bonding by shifting the position of the part by a fixed distance,
The inner liner is a polymer composition comprising 60 to 99% by mass of a styrene-isobutylene-styrene block copolymer and 100 parts by mass of a polymer mixture containing 1 to 40% by mass of a styrene-maleic anhydride copolymer,
A first layer having a thickness of 0.05 mm to 0.6 mm and a second layer having a thickness of 0.01 mm to 0.3 mm, which is disposed on an unvulcanized rubber sheet side and made of a thermoplastic elastomer The present invention relates to a method of manufacturing the pneumatic tire which is a body.
 本発明では、前記アッセンブル工程において、インナーライナーの幅と未加硫ゴムシートの幅は異なっており、それらの幅方向の両端部が相互に重複しないように幅方向にずらして積層体を製造することができる。 In the present invention, in the assembling step, the width of the inner liner and the width of the unvulcanized rubber sheet are different, and the laminate is manufactured by shifting in the width direction such that both ends in the width direction do not overlap each other. be able to.
 前記スチレン-イソブチレン-スチレントリブロック共重合体は、スチレン成分含有量が10~30質量%であることが好ましい。また前記スチレン-無水マレイン酸共重合体は、スチレン成分/無水マレイン酸成分のモル比が50/50~90/10であり、重量平均分子量が4,000~20,000であり、さらに無水マレイン酸成分の酸価が50~600であるスチレン-無水マレイン酸共重合体ベースレジンを含むことが好ましい。 The styrene-isobutylene-styrene triblock copolymer preferably has a styrene component content of 10 to 30% by mass. The styrene-maleic anhydride copolymer has a molar ratio of styrene component / maleic anhydride component of 50/50 to 90/10, a weight average molecular weight of 4,000 to 20,000, and further, maleic anhydride It is preferable to include a styrene-maleic anhydride copolymer base resin in which the acid value of the acid component is 50 to 600.
 また前記スチレン-無水マレイン酸共重合体は、前記スチレン-無水マレイン酸共重合体ベースレジンがエステル化されて得られた、モノエステル基およびモノカルボン酸基を有するスチレン-無水マレイン酸共重合体のエステルレジンを含むことが好ましい。 The styrene-maleic anhydride copolymer is a styrene-maleic anhydride copolymer having a monoester group and a monocarboxylic acid group, which is obtained by esterifying the styrene-maleic anhydride copolymer base resin. It is preferable to include an ester resin of
 更に、前記スチレン-無水マレイン酸共重合体は、前記スチレン-無水マレイン酸共重合体ベースレジンがアンモニウム塩に溶解した、スチレン-無水マレイン酸共重合体アンモニウム塩水溶液を含むことが好ましい。 Furthermore, the styrene-maleic anhydride copolymer preferably includes an aqueous solution of styrene-maleic anhydride copolymer ammonium salt, in which the styrene-maleic anhydride copolymer base resin is dissolved in an ammonium salt.
 本発明はSIBSとスチレン-無水マレイン酸共重合体の混合物を含む第1層と熱可塑性エラストマーの第2層の複合層よりなるインナーライナーを、未加硫ゴムシートと幅方向に相互にずらして積層し、その積層体をインナーライナーが内面側となるようにしてドラム上に、その全周にわたって巻き付け、インナーライナーおよび未加硫ゴムシートのそれぞれの端部を、ドラムの周方向に相互に離隔した位置で接合させることにより、インナーライナーの接合部と未加硫ゴムシートの接合部における厚みの段差を緩和させることができる。そしてステッチングに際して、それらの接合部のエアーを確実に除去することができ残留エアーに起因する接合部の剥離を軽減できる。 In the present invention, an inner liner comprising a composite layer of a first layer containing a mixture of SIBS and a styrene-maleic anhydride copolymer and a second layer of a thermoplastic elastomer is mutually offset from the unvulcanized rubber sheet in the width direction The laminated body is wound around the entire circumference of the drum so that the inner liner is on the inner surface side, and the respective end portions of the inner liner and the unvulcanized rubber sheet are mutually separated in the circumferential direction of the drum By bonding at the above positions, it is possible to ease the difference in thickness between the bonded portion of the inner liner and the bonded portion of the unvulcanized rubber sheet. And in the case of stitching, the air of those junctions can be removed certainly, and the exfoliation of the junctions resulting from residual air can be reduced.
 更に、タイヤ円周方向の厚さが均一となり、タイヤが真円に近くなるため、ラジアルフォースバリエーション(RFV)が軽減でき、タイヤの均一性が向上する。 Furthermore, since the thickness in the circumferential direction of the tire becomes uniform and the tire becomes close to a true circle, the radial force variation (RFV) can be reduced and the uniformity of the tire is improved.
 また成形されたインナーライナーとカーカスプライなどの未加硫ゴムシートとは相互には円周方向に隔離した接合部が形成されることになることから、カーカスプライの接合部に剥離が生じても、インナーライナーによって該剥離部分は補強されるため、製品タイヤの損傷および破損は緩和されることになる。 Further, since the formed inner liner and the unvulcanized rubber sheet such as the carcass ply will form a joint separated in the circumferential direction from each other, even if peeling occurs in the joint of the carcass ply Since the peeled portion is reinforced by the inner liner, damage and breakage of the product tire will be alleviated.
 特に本発明において前記インナーライナーは、タイヤ内側に配置される、厚さが0.05mm~0.6mmである第1層と、未加硫ゴムシート側に配置される、厚さが0.01mm~0.3mmである第2層の複合層であるため、隣接するカーカスプライのゴムとの接着力が強化される。そしてカーカスプライの接合部が剥離した場合のインナーライナーによる補強効果は高くなり、一方、インナーライナーの接合部が剥離した場合のカーカスプライによる補強効果は高くなる。 In the present invention, in particular, the inner liner is disposed on the tire inner side, a first layer having a thickness of 0.05 mm to 0.6 mm, and disposed on the unvulcanized rubber sheet side, having a thickness of 0.01 mm. The composite layer of the second layer having a thickness of ̃0.3 mm enhances the adhesion of the adjacent carcass ply to the rubber. The reinforcing effect by the inner liner when the joint of the carcass ply is peeled is enhanced, while the reinforcing effect by the carcass ply when the joint of the inner liner is peeled is enhanced.
アッセンブル工程を示す概略図である。It is the schematic which shows an assembly process. アッセンブル工程の概略を示す斜視図である。It is a perspective view which shows the outline of an assembly process. 裁断工程を示す概略図である。It is the schematic which shows a cutting process. (a)は、積層体の断面図、(b)は積層体をドラムに巻き付ける状態を示す概略図である。(A) is sectional drawing of a laminated body, (b) is schematic which shows the state which winds a laminated body on a drum. 裁断工程を示す概略図である。It is the schematic which shows a cutting process. (a)は、積層体の断面図、(b)は積層体をドラムに巻き付ける状態を示す概略図である。(A) is sectional drawing of a laminated body, (b) is schematic which shows the state which winds a laminated body on a drum. 従来のインナーライナーの成形方法の概略図である。It is the schematic of the shaping | molding method of the conventional inner liner. 空気入りタイヤの概略断面図である。1 is a schematic cross-sectional view of a pneumatic tire. ポリマー積層体の概略断面図である。It is a schematic sectional drawing of a polymer laminated body.
 <実施の形態1>
 本発明はインナーライナーをタイヤ内側に備えた空気入りタイヤの製造方法であって、該製造方法は、以下の生タイヤの成形工程で行われる。
(a)インナーライナーの幅方向端部と未加硫ゴムシートの幅方向端部を、幅方向に相互に50mm~500mmの範囲で、ずらして貼り合わせて積層体を製造するアッセンブル工程。
(b)前記積層体を、ドラム幅に対応する一定長さに切断して、裁断シートを製造する裁断工程。
(c)前記裁断シートを、その裁断面がドラム周方向となり、かつインナーライナーが内面側となるようにドラム全周に巻きつけて、インナーライナーの端部と、未加硫ゴムシートの端部の位置を一定距離ずらして接合する接合工程。
Embodiment 1
The present invention is a method of manufacturing a pneumatic tire having an inner liner on the inside of the tire, and the manufacturing method is performed in the following green tire molding process.
(A) An assembly step of manufacturing a laminate by shifting and bonding the widthwise end of the inner liner and the widthwise end of the unvulcanized rubber sheet mutually in the width direction in the range of 50 mm to 500 mm.
(B) A cutting step of manufacturing the cut sheet by cutting the laminate to a predetermined length corresponding to a drum width.
(C) The cut sheet is wound around the entire circumference of the drum so that the cut surface is in the circumferential direction of the drum and the inner liner is on the inner side, and the end of the inner liner and the end of the unvulcanized rubber sheet Bonding process to shift the position of the fixed distance a certain distance.
 ここで、本発明の空気入りタイヤの製造方法について図を参照して説明する。
 <アッセンブル工程>
 図1はアッセンブル工程を示す横方向概略図であり、図2はアッセンブル工程を示す斜視概略図である。図1および図2において、フィルム状のインナーライナー2は離型紙で被覆された状態で、保管ロールR1から第1駆動ローラR2を介して矢印方向に送られて剥離ローラR3,R4において離型紙と分離される。そして、インナーライナー2は、一対のカレンダーロールR7に送られる。
Here, a method of manufacturing a pneumatic tire according to the present invention will be described with reference to the drawings.
<Assembling process>
FIG. 1 is a lateral schematic view showing an assembling process, and FIG. 2 is a perspective schematic view showing the assembling process. In FIG. 1 and FIG. 2, the film-like inner liner 2 is fed from the storage roll R1 through the first drive roller R2 in the direction of the arrow in the state covered with the release paper and It is separated. Then, the inner liner 2 is sent to the pair of calendar rolls R7.
 一方、未加硫ゴムシート3は、第2駆動ローラR6を介して、一対のカレンダーロールR7に送られる。ここでインナーライナー2と未加硫ゴムシート3は貼合されて積層体1が製造される。積層体1は、巻取ロールR8に巻き取られて一時保管されるか、若しくは、連続的にその後の裁断工程に送られる。ここで、インナーライナー2と未加硫ゴムシート3は、実質的に同じ幅のものが使用されており、これらの両端の位置は相互に、ずらしされており、ずらし距離Lが形成されている。 On the other hand, the unvulcanized rubber sheet 3 is fed to the pair of calender rolls R7 via the second drive roller R6. Here, the inner liner 2 and the unvulcanized rubber sheet 3 are bonded to produce the laminate 1. The laminate 1 is taken up by a take-up roll R8 and temporarily stored, or is continuously sent to the subsequent cutting process. Here, the inner liner 2 and the unvulcanized rubber sheet 3 having substantially the same width are used, and the positions of these both ends are mutually offset, and an offset distance L is formed. .
 ここでずらし距離Lは、50mm~500mmの範囲、好ましくは100mm~300mmの範囲で調製される。ずらし距離Lが、50mmより小さい場合には、未加硫ゴムシートの接合部とインナーライナーの接合部の間隔が狭くなり、接合部での接着不良が生じやすいからである。一方、ずらし距離Lが500mmを超えると、ドラム上でのタイヤ成形が困難となる。 Here, the shift distance L is prepared in the range of 50 mm to 500 mm, preferably in the range of 100 mm to 300 mm. If the shift distance L is smaller than 50 mm, the distance between the joint of the unvulcanized rubber sheet and the joint of the inner liner becomes narrow, and adhesion failure at the joint tends to occur. On the other hand, if the shift distance L exceeds 500 mm, tire molding on the drum becomes difficult.
 なお、インナーライナーは、スチレン-イソブチレン-スチレンブロック共重合体よりなり、厚さが0.05mm~0.6mmである第1層と、未加硫ゴムシート側に配置され、熱可塑性エラストマーよりなり厚さが0.01mm~0.3mmである第2層の複合層で構成されている。またインナーライナーの幅は、タイヤサイズによって調整される。 The inner liner is made of a styrene-isobutylene-styrene block copolymer, is a first layer having a thickness of 0.05 mm to 0.6 mm, is disposed on the unvulcanized rubber sheet side, and is made of a thermoplastic elastomer. It is composed of a composite layer of a second layer having a thickness of 0.01 mm to 0.3 mm. The width of the inner liner is adjusted by the tire size.
 本発明では、インナーライナーと未加硫ゴムシートはロールを用いて圧着されるため、空気溜まりがなく、確実に密着させることができ、また効率的で生産性が良い。 In the present invention, since the inner liner and the unvulcanized rubber sheet are pressure-bonded using a roll, there is no air accumulation, which can be reliably adhered, and the efficiency is good and the productivity is good.
 <裁断工程>
 図3は裁断工程を示す斜視概略図である。積層体1はベルトコンベヤによって裁断機に、巻取ロールR8から送られるか、もしくはアッセンブル工程から連続的に送られる。積層体1は、タイヤのサイズに応じて長手方向に所定の長さで裁断され、裁断シート4を製造する。なお積層体の裁断は、ナイフカットなどの従来の技術が採用できる。この裁断シート4の、裁断方向がドラムの円周方向に、長手方向の裁断長さがドラム5の幅方向に対応することになる。またインナーライナーの長さはタイヤサイズによって、適宜、調製される。
<Cutting process>
FIG. 3 is a schematic perspective view showing the cutting process. The laminate 1 is sent from the take-up roll R8 by a belt conveyor to a cutter, or continuously sent from an assembling process. The laminate 1 is cut at a predetermined length in the longitudinal direction according to the size of the tire, and a cut sheet 4 is manufactured. In addition, the conventional techniques, such as a knife cut, can employ | adopt the cutting | judgement of a laminated body. The cutting direction of the cut sheet 4 corresponds to the circumferential direction of the drum, and the cut length in the longitudinal direction corresponds to the width direction of the drum 5. In addition, the length of the inner liner is appropriately adjusted depending on the tire size.
 <接合工程>
 図4に基づき積層体よりなる前述の裁断シート4を接合する接合工程を説明する。ここで図4(a)は、裁断シート4の断面図であり、図4(b)は、裁断シート4をドラム5上に巻きつけ方法を示す概略図である。インナーライナー2がドラム5の表面に隣接するように積層体を巻きつける。ここでインナーライナーの端部2a,2bが相互に接合されて接合部を形成する位置と、未加硫ゴムシートの端部3a,3bが相互に接合されて接合部を形成する位置は、相互にオフセットされることになる。
<Joining process>
The joining process which joins the above-mentioned cutting sheet 4 which consists of a layered product based on Drawing 4 is explained. Here, FIG. 4A is a cross-sectional view of the cut sheet 4, and FIG. 4B is a schematic view showing a method of winding the cut sheet 4 on the drum 5. The laminate is wound so that the inner liner 2 is adjacent to the surface of the drum 5. Here, the position where the end portions 2a and 2b of the inner liner are joined to each other to form a joint, and the position where the end portions 3a and 3b of the unvulcanized rubber sheet are joined to each other to form a joint are mutually Will be offset.
 <タイヤの成形・加硫工程>
 前述の如く接合工程において、インナーライナーと未加硫カーカスプライの積層体を製造し、これをドラム状で円筒状に形成する。接合工程の後、ドラム両端に位置する積層体の両端部分をビードコアの周りに巻き返した後、ビードコア同士の間隔を狭めながらインナーライナーおよび未加硫カーカスプライよりなる積層体の中央部を膨出変形させる。
Tire molding and vulcanization process
As described above, in the bonding step, a laminate of the inner liner and the unvulcanized carcass ply is produced and formed into a drum shape and a cylindrical shape. After the bonding process, both ends of the laminate located at both ends of the drum are wound around the bead cores, and then the central portion of the laminate comprising the inner liner and the unvulcanized carcass ply is bulged and deformed while narrowing the spacing between the bead cores. Let
 この作動に伴って積層体の中央部分に、ベルト部材、トレッドゴム等を貼着し、さらにサイドウォール、ビードエーペックスなどの他のゴム部材をも貼り付けて生タイヤを成形する。このように成形された生タイヤを金型に投入して、従来の方法で加硫することで製品タイヤを得る。 Along with this operation, a belt member, tread rubber and the like are attached to the central portion of the laminate, and other rubber members such as side walls and bead apex are also attached to form a green tire. A green tire thus formed is put into a mold and vulcanized by a conventional method to obtain a product tire.
 <インナーライナー>
 本発明において前記インナーライナーは、スチレン-イソブチレン-スチレンブロック共重合体60~99質量%と、スチレン-無水マレイン酸共重合体1~40質量%を含むポリマー混合物100質量部を含むポリマー組成物であり、厚さが0.05mm~0.6mmである第1層と、未加硫ゴムシート側に配置され、熱可塑性エラストマーよりなり、厚さが0.01mm~0.3mmである第2層の積層体で構成されている。
<Inner liner>
In the present invention, the inner liner is a polymer composition comprising 60 to 99% by mass of a styrene-isobutylene-styrene block copolymer and 100 parts by mass of a polymer mixture containing 1 to 40% by mass of a styrene-maleic anhydride copolymer. First layer having a thickness of 0.05 mm to 0.6 mm, and a second layer having a thickness of 0.01 mm to 0.3 mm, which is disposed on the unvulcanized rubber sheet side and made of a thermoplastic elastomer Is composed of a laminate of
 <第1層>
 前記インナーライナーは、スチレン-イソブチレン-スチレンブロック共重合体60~99質量%と、スチレン-無水マレイン酸共重合体1~40質量%を含むポリマー混合物100質量部を含むポリマー組成物である。
<First layer>
The inner liner is a polymer composition including 60 to 99% by mass of a styrene-isobutylene-styrene block copolymer and 100 parts by mass of a polymer mixture containing 1 to 40% by mass of a styrene-maleic anhydride copolymer.
 (SIBS)
 前記第1層は、スチレン-イソブチレン-スチレンブロック共重合体(SIBS)を主体とする熱可塑性エラストマーの組成物からなる。SIBSのイソブチレンブロック由来により、SIBSからなるポリマーフィルムは優れた耐空気透過性を有する。したがって、SIBSからなるポリマーをインナーライナーに用いた場合、耐空気透過性に優れた空気入りタイヤを得ることができる。
(SIBS)
The first layer comprises a composition of a thermoplastic elastomer based on styrene-isobutylene-styrene block copolymer (SIBS). Due to the isobutylene block origin of SIBS, polymer films made of SIBS have excellent resistance to air permeation. Therefore, when a polymer composed of SIBS is used for the inner liner, a pneumatic tire excellent in air permeation resistance can be obtained.
 さらに、SIBSは芳香族以外の分子構造が完全飽和であることにより、劣化硬化が抑制され、優れた耐久性を有する。したがって、SIBSからなるポリマーフィルムをインナーライナーに用いた場合、耐久性に優れた空気入りタイヤを得ることができる。 Furthermore, due to complete saturation of molecular structures other than aromatics, SIBS is inhibited from deterioration and hardening and has excellent durability. Therefore, when a polymer film made of SIBS is used for the inner liner, a pneumatic tire excellent in durability can be obtained.
 SIBSからなるポリマーフィルムをインナーライナーに適用して空気入りタイヤを製造した場合には、耐空気透過性を確保できる。したがってハロゲン化ブチルゴム等の、従来耐空気透過性を付与するために使用されてきた高比重のハロゲン化ゴムを使用する必要がなく、使用する場合にも使用量の低減が可能である。これによってタイヤの軽量化が可能であり燃費が向上する。 When a pneumatic tire is manufactured by applying a polymer film made of SIBS to the inner liner, the air permeation resistance can be secured. Therefore, it is not necessary to use a high specific gravity halogenated rubber, which has been conventionally used to impart air resistance, such as halogenated butyl rubber, and the amount can be reduced even when used. This makes it possible to reduce the weight of the tire and to improve the fuel consumption.
 SIBSの分子量は特に制限はないが、流動性、成形化工程、ゴム弾性などの観点から、GPC測定による重量平均分子量が50,000~400,000であることが好ましい。重量平均分子量が50,000未満であると引張強度、引張伸びが低下するおそれがあり、400,000を超えると押出加工性が悪くなるおそれがあるため好ましくない。SIBSは耐空気透過性と耐久性をより良好にする観点から、SIBS中のスチレン成分の含有量は10~30質量%、好ましくは14~23質量%であることが好ましい。 The molecular weight of SIBS is not particularly limited, but it is preferable that the weight average molecular weight by GPC measurement is 50,000 to 400,000, from the viewpoint of flowability, molding process, rubber elasticity and the like. If the weight average molecular weight is less than 50,000, the tensile strength and the tensile elongation may be lowered, and if it exceeds 400,000, the extrusion processability may be deteriorated, which is not preferable. The content of the styrene component in SIBS is preferably 10 to 30% by mass, and more preferably 14 to 23% by mass, from the viewpoint of improving air permeability and durability of SIBS.
 該SIBSは、その共重合体において、各ブロックの重合度は、ゴム弾性と取り扱い(重合度が10,000未満では液状になる)の点からイソブチレンでは10,000~150,000程度、またスチレンでは5,000~30,000程度であることが好ましい。 In the copolymer, the degree of polymerization of each block of the SIBS is about 10,000 to 150,000 for isobutylene from the viewpoints of rubber elasticity and handling (the degree of polymerization is less than 10,000 becomes liquid), and styrene And preferably about 5,000 to 30,000.
 SIBSは、一般的なビニル系化合物のリビングカチオン重合法により得ることができ。例えば、特開昭62-48704号公報および特開昭64-62308号公報には、イソブチレンと他のビニル化合物とのリビングカチオン重合が可能であり、ビニル化合物にイソブチレンと他の化合物を用いることでポリイソブチレン系のブロック共重合体を製造できることが開示されている。 SIBS can be obtained by a common living cationic polymerization method of vinyl compounds. For example, in JP-A-62-48704 and JP-A-64-62308, living cationic polymerization of isobutylene with another vinyl compound is possible, and by using isobutylene and another compound as the vinyl compound. It is disclosed that polyisobutylene-based block copolymers can be produced.
 (スチレン-無水マレイン酸共重合体)
 本明細書において、スチレン-無水マレイン酸共重合体(SMA)とは、スチレン-無水マレイン酸共重合体ベースレジン(以下、「SMAベースレジン」ともいう)、スチレン-無水マレイン酸共重合体ベースレジンがエステル化されて得られた、モノエステル基およびモノカルボン酸基を有するスチレン-無水マレイン酸共重合体のエステルレジン(以下、SMAエステルレジンともいう)およびスチレン-無水マレイン酸共重合体ベースレジンがアンモニウム塩に溶解した、スチレン-無水マレイン酸共重合体アンモニウム塩水溶液(以下、「SMAレジンアンモニウム塩水溶液」ともいう)を含む概念として記載する。
(Styrene-maleic anhydride copolymer)
In the present specification, a styrene-maleic anhydride copolymer (SMA) means a styrene-maleic anhydride copolymer base resin (hereinafter also referred to as "SMA base resin"), a styrene-maleic anhydride copolymer base An ester resin of a styrene-maleic anhydride copolymer having a monoester group and a monocarboxylic acid group obtained by esterifying a resin (hereinafter also referred to as SMA ester resin) and a styrene-maleic anhydride copolymer base It is described as a concept including a styrene-maleic anhydride copolymer ammonium salt aqueous solution (hereinafter also referred to as "SMA resin ammonium salt aqueous solution") in which a resin is dissolved in an ammonium salt.
 スチレン-無水マレイン酸共重合体(SMA)は、分散、乳化における高分子界面活性剤、高機能性架橋剤として使用されゴムとの加硫接着性が非常に優れている。また、ゴムにぬれ性を与えるため粘着効果も優れている。 Styrene-maleic anhydride copolymer (SMA) is used as a polymeric surfactant in dispersion and emulsification, and a high functional crosslinking agent, and has very excellent vulcanization adhesion to rubber. In addition, the adhesive effect is also excellent because it imparts wettability to rubber.
 インナーライナー用ポリマー組成物のポリマー成分において、SMAの含有量は0.5~40質量%である。SMAの含有量が0.5質量%以上であることにより、前記第2層との接着性が優れたインナーライナーを得ることができる。またSMAの含有量が40質量%以下であることにより、優れた耐空気透過性と耐久性を有するインナーライナーを得ることができる。ポリマー成分中のSMAの含有量は、2~30質量%がより好ましい。 In the polymer component of the polymer composition for the inner liner, the content of SMA is 0.5 to 40% by mass. When the content of SMA is 0.5% by mass or more, an inner liner excellent in adhesion to the second layer can be obtained. In addition, when the content of SMA is 40% by mass or less, an inner liner having excellent air permeation resistance and durability can be obtained. The content of SMA in the polymer component is more preferably 2 to 30% by mass.
 (スチレン-無水マレイン酸共重合体ベースレジン)
 本発明の一実施の形態において、SMAはSMAベースレジンを含むことが未加硫粘着性および加硫後接着性の観点から好ましい。
(Styrene-maleic anhydride copolymer based resin)
In one embodiment of the present invention, SMA preferably comprises an SMA base resin from the viewpoint of unvulcanized tackiness and post-vulcanization adhesion.
 SMAベースレジンは、スチレン成分/無水マレイン酸成分のモル比が50/50~90/10であることが、高軟化点および高い熱安定性の観点から好ましい。SMAベースレジンは、重量平均分子量が4,000~20,000であることが、加硫後接着性および流動性の観点から好ましい。さらに重量平均分子量は、5,000~15,000であることがより好ましい。 The SMA base resin preferably has a molar ratio of styrene component / maleic anhydride component of 50/50 to 90/10 from the viewpoint of high softening point and high thermal stability. The SMA base resin preferably has a weight average molecular weight of 4,000 to 20,000 from the viewpoint of adhesion after vulcanization and fluidity. More preferably, the weight average molecular weight is 5,000 to 15,000.
 SMAベースレジンは、スチレン-無水マレイン酸共重合体中の無水マレイン酸成分の酸価が50~600であることが、未加硫粘着性の観点から好ましい。さらに無水マレイン酸成分の酸価は、95~500であることがより好ましい。 From the viewpoint of unvulcanized tackiness, it is preferable that the SMA base resin has an acid value of 50 to 600 for the maleic anhydride component in the styrene-maleic anhydride copolymer. Furthermore, the acid value of the maleic anhydride component is more preferably 95 to 500.
 (スチレン-無水マレイン酸共重合体のエステルレジン)
 本発明の一実施の形態において、スチレン-無水マレイン酸共重合体は、スチレンc無水マレイン酸共重合体ベースレジンがエステル化されて得られた、モノエステル基およびモノカルボン酸基を有するスチレン-無水マレイン酸共重合体のエステルレジン(以下、SMAエステルレジンともいう)を含むことが好ましい。
(Styrene-maleic anhydride copolymer ester resin)
In one embodiment of the present invention, a styrene-maleic anhydride copolymer is a styrene- having a monoester group and a monocarboxylic acid group, which is obtained by esterifying a styrene-maleic anhydride copolymer base resin. It is preferable to contain an ester resin of maleic anhydride copolymer (hereinafter also referred to as SMA ester resin).
 SMAエステルレジンは、加硫接着性に優れるという特性を有する。したがって、SIBSにSMAエステルレジンを配合することで、ゴム層との加硫接着性に優れたインナーライナー用ポリマー組成物を得ることができる。SMAエステルレジンは、スチレン成分/無水マレイン酸成分のモル比が50/50~90/10であることが、加硫接着性の観点から好ましい。 The SMA ester resin has the property of being excellent in vulcanization adhesion. Therefore, the polymer composition for inner liners excellent in the vulcanized adhesion with the rubber layer can be obtained by blending the SMA ester resin with SIBS. From the viewpoint of vulcanization adhesion, the SMA ester resin preferably has a molar ratio of styrene component / maleic anhydride component of 50/50 to 90/10.
 SMAエステルレジンは、重量平均分子量が5,000~12,000であることが、加硫後接着性および流動性の観点から好ましい。さらに重量平均分子量は、6,000~11,000であることがより好ましい。SMAエステルレジンは、無水マレイン酸成分の酸価が50~400であることが、未加硫ゴムへの粘着性の観点から好ましい。さらに無水マレイン酸成分の酸価は、95~290であることがより好ましい。 The SMA ester resin preferably has a weight average molecular weight of 5,000 to 12,000 from the viewpoint of adhesion after vulcanization and fluidity. Further, the weight average molecular weight is more preferably 6,000 to 11,000. In the SMA ester resin, the acid value of the maleic anhydride component is preferably 50 to 400 from the viewpoint of adhesion to the unvulcanized rubber. More preferably, the acid value of the maleic anhydride component is 95 to 290.
 SMAエステルレジンは例えば反応容器にベースレジンとアルコールを導入し、不活性ガス雰囲気下で加熱攪拌することによって製造することができる。 The SMA ester resin can be produced, for example, by introducing a base resin and an alcohol into a reaction vessel and heating and stirring under an inert gas atmosphere.
 (スチレン-無水マレイン酸共重合体アンモニウム塩水溶液)
 本発明の一実施の形態において、スチレン-無水マレイン酸共重合体は、SMAベースレジンがアンモニウム塩に溶解した、スチレン-無水マレイン酸共重合体アンモニウム塩水溶液(以下、SMAアンモニウム塩水溶液ともいう)を含むことが好ましい。
(Styrene-maleic anhydride copolymer ammonium salt aqueous solution)
In one embodiment of the present invention, a styrene-maleic anhydride copolymer is an aqueous solution of styrene-maleic anhydride copolymer ammonium salt (hereinafter also referred to as an SMA ammonium salt aqueous solution) in which an SMA base resin is dissolved in an ammonium salt. Is preferred.
 SMAアンモニウム塩水溶液は、ぬれ性に優れているという特性を有する。したがって、SIBSにSMAアンモニウム塩水溶液を配合することで、粘着性に優れたインナーライナー用ポリマー組成物を得ることができる。 The aqueous solution of SMA ammonium salt has the property of being excellent in wettability. Therefore, the polymer composition for inner liners excellent in adhesiveness can be obtained by mix | blending SMA ammonium salt aqueous solution with SIBS.
 SMAアンモニウム塩水溶液は、固形分濃度が10.0~45.0%であることが、未加硫ゴムへの粘着性と成形加工性の観点から好ましい。SMAアンモニウム塩水溶液は、pHが8.0~9.5であることが粘着性の観点から好ましい。SMAアンモニウム塩水溶液は例えば反応容器に水を入れ、激しく攪拌しながらベースレジンを加え、徐々に水酸化アンモニウムを加えると発熱反応が起こる。その後、所定の温度まで加熱し、溶解が完了するまで攪拌を続けることによって製造することができる。 The aqueous solution of SMA ammonium salt preferably has a solid concentration of 10.0 to 45.0% from the viewpoint of adhesion to unvulcanized rubber and molding processability. The aqueous solution of SMA ammonium salt preferably has a pH of 8.0 to 9.5 from the viewpoint of adhesiveness. For example, an aqueous solution of SMA ammonium salt solution is charged with water in a reaction vessel, a base resin is added while vigorously stirring, and an exothermic reaction occurs when ammonium hydroxide is gradually added. It can then be manufactured by heating to a predetermined temperature and continuing stirring until dissolution is complete.
 (ポリマー組成物の添加剤)
 ポリマー組成物には、その他の補強剤、加硫剤、加硫促進剤、各種オイル、老化防止剤、軟化剤、可塑剤、カップリング剤などのタイヤ用または一般のポリマー組成物に配合される各種配合剤および添加剤を配合することができる。
(Additives of polymer composition)
The polymer composition is compounded in tire or general polymer compositions such as other reinforcing agents, vulcanizing agents, vulcanization accelerators, various oils, antioxidants, softeners, plasticizers, coupling agents, etc. Various ingredients and additives can be blended.
 (第1層の厚さ)
 SIBSからなる第1層の厚さは、0.05~0.6mmである。第1層の厚さが0.05mm未満であると、ポリマー積層体をインナーライナーに適用した生タイヤの加硫時に第1層がプレス圧力で破れてしまい、タイヤにエアーリーク現象が生じる虞がある。一方、第1層の厚さが0.6mmを超えるとタイヤ重量が増加し低燃費性能が低下する。
(Thickness of first layer)
The thickness of the first layer of SIBS is 0.05 to 0.6 mm. If the thickness of the first layer is less than 0.05 mm, the first layer may be broken by the press pressure during vulcanization of a green tire in which the polymer laminate is applied to the inner liner, which may cause an air leak phenomenon in the tire. is there. On the other hand, if the thickness of the first layer exceeds 0.6 mm, the weight of the tire increases and the fuel economy performance decreases.
 第1層は、SIBSを押出成形、カレンダー成形などの熱可塑性樹脂あるいは熱可塑性エラストマーをフィルム化する通常の方法によってフィルム化して得ることができる。 The first layer can be obtained by film-forming SIBS by a conventional method of film-forming a thermoplastic resin or a thermoplastic elastomer such as extrusion, calendaring and the like.
 <第2層>
 本発明において、第2層は熱可塑性エラストマー、特にスチレン系熱可塑性エラストマー組成物で構成される。ここでスチレン系熱可塑性エラストマーは、ハードセグメントとしてスチレンブロックを含む共重合体をいう。例えば、スチレン-イソプレン-スチレンブロック共重合体(以下、「SIS」ともいう。)、スチレン-イソブチレンブロック共重合体(以下、「SIB」ともいう。)、スチレン-ブタジエン-スチレンブロック共重合体(以下、「SBS」ともいう。)、スチレン-イソブチレン-スチレンブロック共重合体(以下、「SIBS」ともいう。)、スチレン-エチレン・ブテン-スチレンブロック共重合体(以下、「SEBS」ともいう。)、スチレン-エチレン・プロピレン-スチレンブロック共重合体(以下、「SEPS」ともいう。)、スチレン-エチレン・エチレン・プロピレン-スチレンブロック共重合体(以下、「SEEPS」ともいう。)、スチレン-ブタジエン・ブチレン-スチレンブロック共重合体(以下、「SBBS」ともいう。)がある。
<Second layer>
In the present invention, the second layer is composed of a thermoplastic elastomer, in particular a styrenic thermoplastic elastomer composition. Here, the styrene-based thermoplastic elastomer refers to a copolymer containing a styrene block as a hard segment. For example, styrene-isoprene-styrene block copolymer (hereinafter also referred to as "SIS"), styrene-isobutylene block copolymer (hereinafter also referred to as "SIB"), styrene-butadiene-styrene block copolymer (hereinafter referred to as "SIB") Hereinafter, it is also referred to as “SBS”), styrene-isobutylene-styrene block copolymer (hereinafter, also referred to as “SIBS”), and styrene-ethylene · butene-styrene block copolymer (hereinafter, also referred to as “SEBS”). ), Styrene-ethylene-propylene-styrene block copolymer (hereinafter also referred to as "SEPS"), styrene-ethylene-ethylene-propylene-styrene block copolymer (hereinafter also referred to as "SEEPS"), styrene- Butadiene-butylene-styrene block copolymer (hereinafter referred to as "SBB Also referred to as ".) There is.
 また、スチレン系熱可塑性エラストマーは、その分子構造において、エポキシ基を有してもよく、例えば、ダイセル化学工業(株)社製、エポフレンドA1020(重量平均分子量が10万、エポキシ当量が500)のエポキシ変性スチレン-ブタジエン-スチレン共重合体(エポキシ化SBS)を使用できる。 In addition, the styrenic thermoplastic elastomer may have an epoxy group in its molecular structure. For example, Epofriend A 1020 (made by Daicel Chemical Industries, Ltd., weight average molecular weight is 100,000, epoxy equivalent is 500) Epoxy modified styrene-butadiene-styrene copolymer (epoxidized SBS) can be used.
 第2層に用いられる前記スチレン系熱可塑性エラストマーのうち、特にSISおよびSIBが好適である。SISのイソプレンブロックはソフトセグメントであるため、SISからなるポリマーフィルムはゴム成分と加硫接着しやすい。したがって、SISからなるポリマーフィルムをインナーライナーに用いた場合、該インナーライナーは、たとえばカーカスプライのゴム層との接着性に優れているため、耐久性に優れた空気入りタイヤを得ることができる。 Among the styrenic thermoplastic elastomers used in the second layer, SIS and SIB are particularly preferred. Since the isoprene block of SIS is a soft segment, the polymer film made of SIS is easy to cure and adhere to the rubber component. Therefore, when a polymer film made of SIS is used for the inner liner, the inner liner is excellent in adhesion to, for example, the rubber layer of the carcass ply, so that a pneumatic tire excellent in durability can be obtained.
 前記SISの分子量は特に制限はないが、ゴム弾性および成形性の観点から、GPC測定による重量平均分子量が100,000~290,000であることが好ましい。重量平均分子量が100,000未満であると引張強度が低下するおそれがあり、290,000を超えると押出加工性が悪くなるため好ましくない。SIS中のスチレン成分の含有量は、粘着性、接着性およびゴム弾性の観点から10~30質量%が好ましい。 The molecular weight of the SIS is not particularly limited, but in view of rubber elasticity and moldability, it is preferable that the weight average molecular weight by GPC measurement is 100,000 to 290,000. If the weight average molecular weight is less than 100,000, the tensile strength may be lowered, and if it exceeds 290,000, the extrusion processability is unfavorably deteriorated. The content of the styrene component in SIS is preferably 10 to 30% by mass from the viewpoints of tackiness, adhesiveness and rubber elasticity.
 本発明において、SISにおける、各ブロックの重合度は、ゴム弾性と取り扱いの観点からイソプレンでは500~5,000程度、またスチレンでは50~1,500程度であることが好ましい。 In the present invention, the degree of polymerization of each block in SIS is preferably about 500 to 5,000 for isoprene and about 50 to 1,500 for styrene from the viewpoint of rubber elasticity and handling.
 前記SISは、一般的なビニル系化合物の重合法により得ることができ、例えば、リビングカチオン重合法により得ることができる。SIS層は、SISを押出成形、カレンダー成形といった熱可塑性樹脂、熱可塑性エラストマーをフィルム化する通常の方法によってフィルム化して得ることができる。 The SIS can be obtained by a general polymerization method of a vinyl compound, and can be obtained, for example, by a living cationic polymerization method. The SIS layer can be obtained by film-forming the SIS by a conventional method of film-forming a thermoplastic resin such as extrusion molding, calendar molding, or a thermoplastic elastomer.
 スチレン-イソブチレンブロック共重合体(SIB)のイソブチレンブロックはソフトセグメントであるため、SIBからなるポリマーフィルムはゴム成分と加硫接着しやすい。したがって、SIBからなるポリマーフィルムをインナーライナーに用いた場合、該インナーライナーは、たとえばカーカスやインスレーションを形成する隣接ゴムとの接着性に優れているため、耐久性に優れた空気入りタイヤを得ることができる。 Since the isobutylene block of the styrene-isobutylene block copolymer (SIB) is a soft segment, the polymer film made of SIB is easy to cure and adhere to the rubber component. Therefore, when a polymer film made of SIB is used for the inner liner, the inner liner is excellent in adhesion to the adjacent rubber forming, for example, the carcass and the insulation, so that a pneumatic tire excellent in durability is obtained. be able to.
 SIBとしては、直鎖状のものを用いることがゴム弾性および接着性の観点から好ましい。SIBの分子量は特に制限はないが、ゴム弾性および成形性の観点から、GPC測定による重量平均分子量が40,000~120,000であることが好ましい。重量平均分子量が40,000未満であると引張強度が低下するおそれがあり、120,000を超えると押出加工性が悪くなるおそれがあるため好ましくない。 As SIB, it is preferable to use a linear one from the viewpoint of rubber elasticity and adhesiveness. The molecular weight of SIB is not particularly limited, but from the viewpoint of rubber elasticity and moldability, it is preferable that the weight average molecular weight by GPC measurement is 40,000 to 120,000. If the weight average molecular weight is less than 40,000, the tensile strength may be lowered, and if it exceeds 120,000, the extrusion processability may be deteriorated, which is not preferable.
 SIB中のスチレン成分の含有量は、粘着性、接着性およびゴム弾性の観点から10~35質量%であることが好ましい。 The content of the styrene component in the SIB is preferably 10 to 35% by mass from the viewpoints of tackiness, adhesiveness and rubber elasticity.
 本発明において、SIBにおける、各ブロックの重合度は、ゴム弾性と取り扱いの観点からイソブチレンでは300~3,000程度、またスチレンでは10~1,500程度であることが好ましい。 In the present invention, the degree of polymerization of each block in SIB is preferably about 300 to 3,000 for isobutylene and about 10 to 1,500 for styrene from the viewpoint of rubber elasticity and handling.
 前記SIBは、一般的なビニル系化合物のリビング重合法により得ることができ、例えば、攪拌機にメチルシクロヘキサン、n-ブチルクロライド、クミルクロライドを加え、-70℃に冷却した後、2時間反応させ、その後に大量のメタノールを添加して反応を停止させ、60℃で真空乾燥してSIBを製造できる。 The SIB can be obtained by a general living polymerization method of a vinyl compound, and for example, methylcyclohexane, n-butyl chloride and cumyl chloride are added to a stirrer, cooled to -70 ° C, and reacted for 2 hours Then, the reaction can be stopped by adding a large amount of methanol and vacuum dried at 60 ° C. to produce SIB.
 SIB層は、SIBを押出成形またはカレンダー成形などのスチレン系熱可塑性エラストマーをフィルム化する通常の方法によって成型できる。第2層の厚さは、0.01mm~0.3mmが好ましい。第2層の厚さが0.01mm未満であると、ポリマー積層体をインナーライナーに適用した生タイヤの加硫時に、第2層がプレス圧力で破れてしまい、加硫接着力が低下する虞がある。一方、第2層の厚さが0.3mmを超えるとタイヤ重量が増加し低燃費性能が低下する可能性がある。第2層の厚さは、さらに0.05~0.2mmであることが好ましい。 The SIB layer can be formed by a conventional method of film-forming styrenic thermoplastic elastomer such as extrusion or calendaring of SIB. The thickness of the second layer is preferably 0.01 mm to 0.3 mm. If the thickness of the second layer is less than 0.01 mm, the second layer may be broken by the press pressure during vulcanization of a green tire in which the polymer laminate is applied to the inner liner, and the vulcanization adhesion may be reduced. There is. On the other hand, if the thickness of the second layer exceeds 0.3 mm, the weight of the tire may increase and the low fuel consumption performance may decrease. The thickness of the second layer is preferably 0.05 to 0.2 mm.
 <ポリマー積層体>
 本発明においてインナーライナーは第1層と第2層の複合層で構成されるポリマー積層体が使用される。ここで第1層、第2層は熱可塑性エラストマー組成物であり、加硫温度、例えば150℃~180℃において、金型中で軟化状態にある。軟化状態とは、分子運動性が向上し固体と液体の中間状態を意味する。また、熱可塑性エラストマー組成物が軟化状態では、固体状態よりも反応性が向上するため、隣接する部材と粘着、接着する。そのため、熱可塑性エラストマーの形状変化や隣接部材との粘着、融着を防止するために、タイヤの製造の際には、冷却工程を必要とする。冷却工程は、タイヤ加硫後に、10~300秒間、50~120℃に急冷し、ブラダー部内を冷却する。冷却媒体としては、空気、水蒸気、水およびオイルより選択される1種以上が使用される。かかる冷却工程を採用することで、インナーライナーを0.05~0.6mmの範囲の薄いインナーライナーを形成することができる。
<Polymer laminate>
In the present invention, the inner liner is a polymer laminate composed of a composite layer of a first layer and a second layer. Here, the first layer and the second layer are thermoplastic elastomer compositions, and are in a softened state in the mold at a vulcanization temperature, for example, 150 ° C. to 180 ° C. The softened state is an intermediate state between solid and liquid by improving molecular mobility. In addition, when the thermoplastic elastomer composition is in a softened state, the reactivity is improved more than in a solid state, so that it adheres and adheres to adjacent members. Therefore, in order to prevent the shape change of the thermoplastic elastomer, the adhesion with the adjacent member, and the fusion, a cooling process is required when manufacturing the tire. In the cooling step, after tire curing, quenching is performed to 50 to 120 ° C. for 10 to 300 seconds, and the inside of the bladder portion is cooled. As a cooling medium, one or more selected from air, water vapor, water and oil are used. By employing such a cooling process, the inner liner can be formed into a thin inner liner in the range of 0.05 to 0.6 mm.
 <実施の形態2>
 実施の形態2では、インナーライナー2の幅W2は、未加硫ゴムシート3の幅W1よりも広く形成される。
Second Embodiment
In the second embodiment, the width W 2 of the inner liner 2 is formed wider than the width W 1 of the unvulcanized rubber sheet 3.
 <裁断工程>
 図5は裁断工程を示す概略図である。積層体1はベルトコンベヤによって裁断機に巻取ロールR8から送られるか、もしくはアッセンブル工程から連続的に送られる。積層体1はタイヤのサイズに応じて長手方向に所定の長さで裁断されて裁断シート4が製造される。なお積層体の裁断はナイフカットなどの従来の技術が採用できる。この裁断シート4の裁断方向がドラムの円周方向に、一方、長手方向の裁断長さがドラム5の幅方向に対応することになる。
<Cutting process>
FIG. 5 is a schematic view showing a cutting process. The laminate 1 is sent from the take-up roll R8 to a cutter by a belt conveyor or continuously sent from an assembling process. The laminate 1 is cut at a predetermined length in the longitudinal direction according to the size of the tire, whereby a cut sheet 4 is manufactured. In addition, the conventional techniques, such as a knife cut, can employ | adopt the cutting | judgement of a laminated body. The cutting direction of the cutting sheet 4 corresponds to the circumferential direction of the drum, while the cutting length in the longitudinal direction corresponds to the width direction of the drum 5.
 <接合工程>
 図6(a)は、積層体の断面図、図6(b)は積層体をドラムに巻き付ける状態を示す概略図である。ここでドラム5の上にインナーライナー2が接するように巻きつけられ、その両端2a、2bは重複するようにして接合部を形成する。その上にインスレーションなどの未加硫ゴムシート3の両端3a、3bを接合するには、未加硫ゴム片6が用いられる。この場合に接合部は2ヶ所形成されるが、前記インナーライナーとの接合部位置とはオフセットされている。
<Joining process>
Fig.6 (a) is sectional drawing of a laminated body, FIG.6 (b) is schematic which shows the state which winds a laminated body on a drum. Here, the inner liner 2 is wound on the drum 5 so as to be in contact with the inner liner 2, and the joints 2a and 2b overlap to form a joint. In order to join the both ends 3a and 3b of unvulcanized rubber sheets 3 such as insulation on that, unvulcanized rubber pieces 6 are used. In this case, two joints are formed, but they are offset from the joint position with the inner liner.
 <タイヤの構造>
 本発明のタイヤ内側にインナーライナーを備えた空気入りタイヤを図8に基づいて説明する。図8は空気入りタイヤの右半分の概略断面図である。空気入りタイヤ11は、トレッド部12と、該トレッド部両端からトロイド形状を形成するようにサイドウォール部13とビード部14とを有している。さらに、ビード部14にはビードコア15が埋設される。また、一方のビード部14から他方のビード部に亘って設けられ、両端をビードコア15のまわりに巻き返して係止されるカーカスプライ16と、該カーカスプライ16のクラウン部外側には、少なくとも2枚のプライよりなるベルト層17とが配置されている。
<Structure of tire>
A pneumatic tire provided with an inner liner inside the tire according to the present invention will be described based on FIG. FIG. 8 is a schematic cross-sectional view of the right half of the pneumatic tire. The pneumatic tire 11 has a tread portion 12 and sidewall portions 13 and bead portions 14 so as to form a toroidal shape from both ends of the tread portion. Furthermore, the bead core 15 is embedded in the bead portion 14. Further, a carcass ply 16 is provided from one bead portion 14 to the other bead portion, and is wound around the bead core 15 at both ends so as to be locked, and at least two at the outside of the crown portion of the carcass ply 16. And a belt layer 17 made of ply.
 前記ベルト層17は、通常、スチールコードまたはアラミド繊維等のコードよりなるプライの2枚をタイヤ周方向に対して、コードが通常5~30°の角度になるようにプライ間で相互に交差するように配置される。なおベルト層の両端外側には、トッピングゴム層を設け、ベルト層両端の剥離を軽減することができる。またカーカスプライはポリエステル、ナイロン、アラミド等の有機繊維コードがタイヤ周方向にほぼ90°に配列されており、カーカスプライとその折り返し部に囲まれる領域には、ビードコア15の上端からサイドウォール方向に延びるビードエーペックス18が配置される。また前記カーカスプライ16のタイヤ半径方向内側には一方のビード部14から他方のビード部14に亘るインナーライナー19が配置されている。 The belt layer 17 usually crosses two plies of cords such as steel cords or aramid fibers between the plies so that the cords are at an angle of usually 5 to 30 ° with respect to the tire circumferential direction. Arranged as. A topping rubber layer can be provided on the outer sides of both ends of the belt layer to reduce the peeling of both ends of the belt layer. The carcass ply has organic fiber cords such as polyester, nylon, aramid or the like arranged at approximately 90 ° in the tire circumferential direction, and in the region surrounded by the carcass ply and its turn, from the upper end of the bead core 15 to the sidewall direction An extending bead apex 18 is disposed. Further, an inner liner 19 extending from one bead portion 14 to the other bead portion 14 is disposed on the inner side in the tire radial direction of the carcass ply 16.
 次にインナーライナーの加硫タイヤにおけるカーカスプライとの配置状態を図9において示す。図9において、ポリマー積層体PLは、第1層PL1および第2層PL2から構成される。該ポリマー積層体PLを空気入りタイヤのインナーライナーに適用する場合、第2層PL2がカーカスプライCに接するようにタイヤ半径方向外側に向けて設置すると、タイヤの加硫工程において、第2層PL2とカーカスCとの接着強度を高めることができる。得られた空気入りタイヤは、インナーライナーとカーカスプライCのゴム層とが良好に接着しているため、優れた耐空気透過性および耐屈曲亀裂成長性を有する。 Next, an arrangement state of the inner liner and the carcass ply in the vulcanized tire is shown in FIG. In FIG. 9, the polymer laminate PL is composed of a first layer PL1 and a second layer PL2. When the polymer laminate PL is applied to the inner liner of a pneumatic tire, when the second layer PL2 is installed outward in the tire radial direction so as to be in contact with the carcass ply C, in the tire vulcanization step, the second layer PL2 And the adhesion strength between the carbon and the carcass C can be enhanced. The resulting pneumatic tire has excellent air permeation resistance and flex crack growth resistance because the inner liner and the rubber layer of the carcass ply C are well adhered.
 <空気入りタイヤの製造方法>
 本発明の空気入りタイヤの製造方法は、従来の製造方法を用いることができる。前記ポリマー積層体PLを用いてインナーライナーを製造する。空気入りタイヤ11の生タイヤに前記インナーライナーを適用して他の部材とともに加硫成形することによって製造する。ポリマー積層体PLを生タイヤに配置する際は、ポリマー積層体PLの第2層PL2が、カーカスプライCに接するようにタイヤ半径方向外側に向けて配置する。このように配置すると、タイヤ加硫工程において、第2層PL2とカーカス6との接着強度を高めることができる。得られた空気入りタイヤは、インナーライナーとカーカスプライCのゴム層とが良好に接着しているため、優れた耐空気透過性および耐屈曲亀裂成長性を有する。
<Method of manufacturing pneumatic tire>
The method of manufacturing a pneumatic tire according to the present invention can use a conventional manufacturing method. An inner liner is manufactured using the polymer laminate PL. The inner liner is applied to a green tire of a pneumatic tire 11 and manufactured by vulcanization molding with other members. When disposing the polymer laminate PL in a green tire, the second layer PL2 of the polymer laminate PL is disposed radially outward of the tire so as to be in contact with the carcass ply C. When arranged in this manner, the adhesive strength between the second layer PL2 and the carcass 6 can be enhanced in the tire vulcanization step. The resulting pneumatic tire has excellent air permeation resistance and flex crack growth resistance because the inner liner and the rubber layer of the carcass ply C are well adhered.
 <インナーライナーの製造>
 表1、2に示す配合処方にしたがって、各種配合剤を2軸押出機(スクリュ径:φ50mm、L/D:30、シリンダ温度:220℃)に投入してペレット化した。これを押出機(スクリュ径:φ80mm、L/D:50、ダイギャップ幅:40mm、シリンダ温度:220℃)を用いて、スクリュ回転数80RPM、押出速度は約9m/分でシートを押出した。
<Manufacture of inner liner>
Various compounding agents were introduced into a twin-screw extruder (screw diameter: φ 50 mm, L / D: 30, cylinder temperature: 220 ° C.) and pelletized in accordance with the compounding formulas shown in Tables 1 and 2. The sheet was extruded using an extruder (screw diameter: φ 80 mm, L / D: 50, die gap width: 40 mm, cylinder temperature: 220 ° C.) at a screw rotational speed of 80 RPM and an extrusion speed of about 9 m / min.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(注1)IIR:エクソンモービル(株)社製の「エクソンクロロブチル 1068」。(注2)SIBS:カネカ(株)社製の「シブスターSIBSTAR 102T」(ショアA硬度25、スチレン含量:25質量%)。
(注3)SMAベースレジン:サートマー社製の「SMA1000」(スチレン成分/無水マレイン酸成分:50/50、重量平均分子量:5,500、無水マレイン酸の酸価:490)。
(注4)SMAエステルレジン:サートマー社製の「SMA1440」(スチレン成分/無水マレイン酸成分:80/20、重量平均分子量:7,000、無水マレイン酸の酸価:200)。
(注5)SMAアンモニウム塩水溶液:サートマー社製の「SMA1000H」(pH9.0)。
(注6)カーボン:東海カーボン(株)製の「シーストV」(N660、N2SA:27m2/g)。
(注7)ステアリン酸:花王(株)社製の「ステアリン酸ルナックS30」。
(注8)酸化亜鉛:三井金属鉱業(株)社製の「亜鉛華1号」。
(注9)老化防止剤:大内新興化学(株)社製の「ノクラック6C」(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)。
(注10)加硫促進剤:大内新興化学(株)社製の「ノクセラーDM」(ジ-2-ベンゾチアゾリルジスルフィド)。
(注11)硫黄:鶴見化学工業(株)社製の「粉末硫黄」。
(注12)SIS:クレイトンポリマー社製のD1161JP(スチレン成分含有量15質量%、重量平均分子量:150,000)。
(注13)SIB。
(Note 1) IIR: “Exxon chlorobutyl 1068” manufactured by ExxonMobil Co., Ltd. (Note 2) SIBS: “Sibustar SIBSTAR 102T” (Shore A hardness: 25, styrene content: 25% by mass) manufactured by Kaneka Co., Ltd.
(Note 3) SMA base resin: “SMA 1000” manufactured by Sartomer (styrene component / maleic anhydride component: 50/50, weight average molecular weight: 5,500, acid value of maleic anhydride: 490).
(Note 4) SMA ester resin: “SMA1440” manufactured by Sartmar (styrene component / maleic anhydride component: 80/20, weight average molecular weight: 7,000, acid value of maleic anhydride: 200).
(Note 5) SMA ammonium salt aqueous solution: "SMA1000H" (pH 9.0) manufactured by Sartmar.
(Note 6) Carbon: “Siest V” (N 660, N 2 SA: 27 m 2 / g) manufactured by Tokai Carbon Co., Ltd.
(Note 7) Stearic acid: "Runac Stearate S30" manufactured by Kao Corporation.
(Note 8) Zinc oxide: "Zinc flower No. 1" manufactured by Mitsui Mining & Smelting Co., Ltd.
(Note 9) Anti-aging agent: "NOCRAC 6C" (N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine) manufactured by Ouchi Emerging Chemical Co., Ltd.
(Note 10) Vulcanization accelerator: "Noxceler DM" (di-2-benzothiazolyl disulfide) manufactured by Ouchi New Chemical Co., Ltd.
(Note 11) Sulfur: "Powder sulfur" manufactured by Tsurumi Chemical Industry Co., Ltd.
(Note 12) SIS: D1161 JP manufactured by Kraton Polymers (styrene content: 15% by mass, weight average molecular weight: 150,000).
(Note 13) SIB.
 攪拌機付き2L反応容器に、メチルシクロヘキサン(モレキュラーシーブスで乾燥したもの)589mL、n-ブチルクロライド(モレキュラーシーブスで乾燥したもの)613ml、クミルクロライド0.550gを加えた。反応容器を-70℃に冷却した後、α-ピコリン(2-メチルピリジン)0.35mL、イソブチレン179mLを添加した。さらに四塩化チタン9.4mLを加えて重合を開始し、-70℃で溶液を攪拌しながら2.0時間反応させた。次に反応容器にスチレン59mLを添加し、さらに60分間反応を続けた後、大量のメタノールを添加して反応を停止させた。反応溶液から溶剤などを除去した後に、重合体をトルエンに溶解して2回水洗した。このトルエン溶液をメタノール混合物に加えて重合体を沈殿させ、得られた重合体を60℃で24時間乾燥することによりスチレン-イソブチレンジブロック共重合体を得た。 In a 2 L reaction vessel equipped with a stirrer, 589 mL of methylcyclohexane (dried with molecular sieves), 613 ml of n-butyl chloride (dried with molecular sieves), and 0.550 g of cumyl chloride were added. The reaction vessel was cooled to −70 ° C., and then 0.35 mL of α-picoline (2-methylpyridine) and 179 mL of isobutylene were added. Further, 9.4 mL of titanium tetrachloride was added to initiate polymerization, and the solution was reacted at -70 ° C. for 2.0 hours with stirring. Next, 59 mL of styrene was added to the reaction vessel and the reaction was continued for further 60 minutes, and then the reaction was stopped by adding a large amount of methanol. After removing the solvent and the like from the reaction solution, the polymer was dissolved in toluene and washed twice with water. The toluene solution was added to a methanol mixture to precipitate a polymer, and the obtained polymer was dried at 60 ° C. for 24 hours to obtain a styrene-isobutylene diblock copolymer.
 スチレン成分含有量:15質量%
 重量平均分子量 :70,000
 <未加硫ゴムシート>
 本発明において、未加硫ゴムシートは、カーカスプライを用い、そのトッピングゴムの配合は、以下のとおりである。
Styrene component content: 15% by mass
Weight average molecular weight: 70,000
<Unvulcanized rubber sheet>
In the present invention, the unvulcanized rubber sheet uses a carcass ply, and the composition of the topping rubber is as follows.
      <トッピングゴムの配合A>
  天然ゴム(注1)        100質量部
  カーボンブラック(注2)     50質量部
  亜鉛華(注3)           3質量部
  老化防止剤(注4)       0.2質量部
  硫黄(注5)            1質量部
  加硫促進剤(注6)         1質量部
  加硫助剤 (注7)         1質量部
 (注1)TSR20
 (注2)東海カーボン(株)社製「シーストV」(N660、N2SA:27m2/g)
 (注3)酸化亜鉛(ZnO):三井金属鉱業(株)社製「亜鉛華1号」
 (注4)大内新興化学社製「ノクラック6C」
 (注5)鶴見化学工業(株)社製「粉末硫黄」
 (注6)大内新興化学社製「ノクセラーDM」
 (注7)ステアリン酸:花王(株)社製、「ステアリン酸ルナックS30」
 <空気入りタイヤの製造>
 本発明の空気入りタイヤの製造を、前述のアッセンブル工程、裁断工程、接合工程に基づき実施した。詳細は表1に示すように比較例、実施例の空気入りタイヤを製造した。なお加硫は、170℃で20分間、プレス成型し、加硫金型から取り出さずに100℃で3分間冷却した後、加硫タイヤから取り出し、図8に示す基本構造を有する195/65R15サイズのものを製造した。
<Formulation of topping rubber A>
Natural rubber (Note 1) 100 parts by mass Carbon black (Note 2) 50 parts by mass Zinc white (Note 3) 3 parts by mass Antidegradant (Note 4) 0.2 parts by mass Sulfur (Note 5) 1 part by mass Vulcanization acceleration Agent (Note 6) 1 part by mass Vulcanization auxiliary (Note 7) 1 part by mass (Note 1) TSR 20
(Note 2) “Seast V” manufactured by Tokai Carbon Co., Ltd. (N 660, N 2 SA: 27 m 2 / g)
(Note 3) Zinc oxide (ZnO): "Zinc flower No. 1" manufactured by Mitsui Mining & Smelting Co., Ltd.
(Note 4) Nocchi 6C, made by Ouchi emerging chemical company
(Note 5) "Powder sulfur" manufactured by Tsurumi Chemical Industries, Ltd.
(Note 6) "Nocceller DM" manufactured by Ouchi Emerging Chemical Company
(Note 7) Stearic acid: Kao Corporation "Runac Stearate S30"
<Manufacture of pneumatic tire>
Production of the pneumatic tire of the present invention was carried out based on the above-mentioned assembling step, cutting step and joining step. As shown in Table 1 in detail, pneumatic tires of the comparative example and the example were manufactured. C. for 20 minutes at 170.degree. C., and after cooling for 3 minutes at 100.degree. C. without taking it out of the vulcanizing mold, it is taken out of the vulcanized tire and has the 195 / 65R15 size having the basic structure shown in FIG. Manufactured ones.
 実施例は、いずれも図5に基づきインナーライナーが1300mmとしカーカスプライの寸法を変更することでずらし距離(量)Lを、それぞれ50mm、500mm、250mmと変更している。 In each of the examples, the shift distance (amount) L is changed to 50 mm, 500 mm, and 250 mm, respectively, by setting the inner liner to 1300 mm and changing the dimension of the carcass ply based on FIG.
 実施例1~3は、第1層のSIBSにSMAベースレジンを0.5質量部配合した例、実施例4~6は、第1層のSIBSにSMAベースレジンを20質量部配合した例である。実施例7~9は、第1層のSIBSにSMAベースレジンとSMAエステルレジンを、それぞれ0.5質量部配合した例、実施例10~12は、第1層のSIBSにSMAベースレジンとSMAアンモニウム水溶液を、それぞれ0.5質量部配合した例である。 In Examples 1 to 3, 0.5 parts by mass of the SMA base resin was blended in SIBS of the first layer, and in Examples 4 to 6, 20 parts by mass of the SMA base resin was blended in SIBS of the first layer. is there. Examples 7 to 9 are examples in which 0.5 parts by mass of each of the SMA base resin and the SMA ester resin were blended in SIBS in the first layer, and in Examples 10 to 12, the SMA base resin and SMA in SIBS of the first layer It is an example which mix | blended 0.5 mass part of ammonium aqueous solution, respectively.
 比較例1は、第1層にIIRを用いた例、比較例2~4は、第1層にIIRにSMAベースレジンを0.5質量%混合した例である。比較例5は、第1層にSIBSのみを用いた例、比較例6,7は、第1層にSIBSにSMAを50質量%混合した例である。 Comparative Example 1 is an example in which IIR is used in the first layer, and Comparative Examples 2 to 4 are examples in which 0.5 mass% of SMA base resin is mixed in IIR in the first layer. Comparative Example 5 is an example in which only SIBS is used in the first layer, and Comparative Examples 6 and 7 are examples in which 50 mass% of SMA is mixed with SIBS in the first layer.
 本発明の実施例は、いずれもエアーイン性能、屈曲亀裂成長性、転がり抵抗性および静的空気低下率の総合的判定、更にユニフォムティに性能に優れている。 All of the embodiments of the present invention are excellent in air-in performance, flex crack growth, rolling resistance and static air reduction rate comprehensive evaluation, and further excellent in uniformity.
 <性能試験>
 前述の如く製造された空気入りタイヤに関し、以下の方法で性能評価を実施した。
<Performance test>
The performance evaluation was performed by the following method regarding the pneumatic tire manufactured as mentioned above.
 <エアーイン性能>
 加硫後のタイヤ内側を外観で検査し、その評価を以下のとおりとした。
<Air-in performance>
The inside of the tire after vulcanization was inspected by appearance and the evaluation was as follows.
 A: 外観上、タイヤ1本当たり、直径5mm以下のエアーインの数が0個、かつ直径5mmを超えるエアーインの数が0個の場合
 B: 外観上、タイヤ1本当たり、直径5mm以下のエアーインの数が1~3個、かつ直径5mmを超えるエアーインの数が0個の場合
 C: 外観上、タイヤ1本当たり、直径5mm以下のエアーインの数が4個以上、かつ直径5mmを超えるエアーインの数が1個以上の場合
 <屈曲亀裂成長試験>
 屈曲亀裂成長試験は、インナーライナーが割れたり剥がれたりするかどうかで評価した。試作タイヤをJIS規格リム15×6JJに組み付け、タイヤ内圧は150KPaで通常よりも低内圧に設定し、荷重は600kg、速度100km/h、走行距離20,000kmでタイヤの内部を観察し、亀裂、剥離の数を測定した。比較例1を基準にして各実施例、比較例の亀裂成長性を、以下の式に基づき指数で表示した。数字が大きいほど屈曲亀裂成長が小さいことを示す。
A: In appearance, when the number of air-ins with a diameter of 5 mm or less is 0 and the number of air-ins with a diameter of 5 mm or more is 0 per tire B: Appearance, a diameter of 5 mm or less per tire When the number of air-ins is 1 to 3 and the number of air-ins exceeding 5 mm in diameter is 0 C: In terms of appearance, the number of air-ins of 5 mm or less in diameter per tire is 4 or more, and 5 mm in diameter When the number of air-ins exceeding 1 is 1 or more <Bending crack growth test>
The flex crack growth test was evaluated by whether the inner liner was broken or peeled off. The prototype tire is assembled on a JIS standard rim 15 x 6 JJ, the internal pressure of the tire is set to 150 KPa lower than usual, the load is 600 kg, the speed is 100 km / h, the inside of the tire is observed with a traveling distance of 20,000 km, The number of peels was measured. The crack growth of each Example and Comparative Example was expressed as an index based on the following formula based on Comparative Example 1. The larger the number, the smaller the flex crack growth.
  屈曲亀裂成長指数=(比較例1の亀裂の数)/(各実施例の亀裂の数)×100
 <転がり抵抗指数>
 (株)神戸製鋼所製の転がり抵抗試験機を用いて、試作タイヤをJIS規格リム15×6JJに組み付け、荷重3.4kN、空気圧230kPa、速度80km/hの条件で、室温(30℃)にて走行させて転がり抵抗を測定した。そして、下記の計算式に基づき比較例1を基準100として、実施例の転がり抵抗変化率(%)を指数で表示した。転がり抵抗変化率が大きいほど、転がり抵抗が低減されていることを示す。
Flexural crack growth index = (number of cracks in comparative example 1) / (number of cracks in each example) × 100
<Rolling resistance index>
Using a rolling resistance tester manufactured by Kobe Steel, Ltd., assemble a prototype tire to JIS standard rim 15 × 6JJ, load 3.4 kN, air pressure 230 kPa, speed 80 km / h, room temperature (30 ° C) The rolling resistance was measured. And the rolling resistance change rate (%) of the Example was displayed by the index | exponent based on the following formula, making Comparative example 1 into 100 the reference | standard. The larger the rolling resistance change rate, the lower the rolling resistance.
  転がり抵抗指数=(比較例1の転がり抵抗)/(実施例の転がり抵抗)×100
 <静的空気圧低下率>
 試作タイヤをJIS規格リム15×6JJに組み付け、初期空気圧300kPaを封入し、90日間室温で放置し、空気圧の低下率を計算する。数値が小さいほど、空気圧が減りにくく好ましい。
Rolling resistance index = (rolling resistance of comparative example 1) / (rolling resistance of example) × 100
<Static air pressure reduction rate>
The prototype tire is assembled on a JIS standard rim 15 × 6JJ, sealed with an initial air pressure of 300 kPa, left at room temperature for 90 days, and the reduction rate of the air pressure is calculated. As the numerical value is smaller, the air pressure is less likely to decrease and is preferable.
 <ユニフォミティ指数>
 JASOC607:2000の「自動車タイヤのユニフォミティ試験方法」に準拠し、タイヤユニフォミティ試験機を用いてラジアルフォースバリエーション(RFV)を測定した。比較例1を100とする相対値を指数表示した。指数が大きいほどユニフォミティが優れている。測定条件は、リムは8.0×17、タイヤ回転速度は60rpm、空気圧は200kPa、縦荷重は4000kNとした。
<Uniformity index>
The radial force variation (RFV) was measured using a tire uniformity tester in accordance with JASOC 607: 2000 "Test method for uniformity of automobile tires". The relative value which makes comparative example 1 100 is displayed as an index. The larger the index, the better the uniformity. As the measurement conditions, the rim was 8.0 × 17, the tire rotational speed was 60 rpm, the air pressure was 200 kPa, and the longitudinal load was 4000 kN.
 <総合判定>
 判定Aは、次の条件をすべて満たしたものをいう。
<Overall judgment>
Judgment A is one that satisfies all the following conditions.
 (a)エアーイン性能がA評価
 (b)屈曲亀裂成長指数が100以上
 (c)転がり抵抗変化率が100以上
 (d)静的空気圧低下率(%/月間)が2.6以下
 判定Bは、次の条件のいずれか1つを満たす場合をいう。複数の判定に該当する場合は、評価の低い方を採用した。
(A) Air-in performance evaluation A (b) Flex crack growth index 100 or more (c) Rolling resistance change rate 100 or more (d) Static air pressure reduction rate (% / month) is 2.6 or less Judgment B is The case where any one of the following conditions is satisfied. In the case of multiple judgments, the lower of the evaluation was adopted.
 (a)エアーイン評価がBまたはC評価
 (b)屈曲亀裂成長指数が100未満
 (c)転がり抵抗変化率が100より低い
 (d)静的空気圧低下率(%/月間)が2.7以上
(A) Air-in evaluation is B or C evaluation (b) flex crack growth index is less than 100 (c) rolling resistance change rate is less than 100 (d) static air pressure reduction rate (% / month) is 2.7 or more
 本発明の空気入りタイヤの製造方法は、乗用車用空気入りタイヤのほか、トラック・バス用、重機用等の空気入りタイヤの製造方法に適用できる。 The method of manufacturing a pneumatic tire according to the present invention can be applied to a method of manufacturing a pneumatic tire for trucks, buses, heavy machinery, etc. besides pneumatic tires for passenger cars.
 1 積層体、2、19 インナーライナー、3 未加硫ゴムシート、4 裁断シート、5 ドラム、L ずらし距離(量)、11 空気入りタイヤ、12 トレッド部、13 サイドウォール部、14 ビード部、15 ビードコア、16 カーカスプライ、17 ベルト層、18 ビードエーペックス、PL ポリマー積層体、PL1 第1層、PL2 第2層。 Reference Signs List 1 laminate, 2 and 19 inner liner, 3 unvulcanized rubber sheet, 4 cut sheet, 5 drums, L displacement distance (amount), 11 pneumatic tire, 12 tread portion, 13 sidewall portion, 14 bead portion, 15 Bead core, 16 carcass plies, 17 belt layers, 18 bead apexes, PL polymer laminate, PL1 first layer, PL2 second layer.

Claims (6)

  1.  インナーライナー(2)をタイヤ内側に備えた空気入りタイヤ(11)の製造方法において、生タイヤの成形は、
    (a)インナーライナー(2)の幅方向端部と未加硫ゴムシート(3)の幅方向端部を幅方向に相互に50mm~500mmずらして貼り合わせて積層体(1)を製造するアッセンブル工程と、
    (b)前記積層体(1)を、ドラム幅に対応する一定長さに切断して、裁断シート(4)を製造する裁断工程と、
    (c)前記裁断シート(4)を、その裁断面がドラムの周方向となり、かつインナーライナー(2)が内面側となるようにドラム全周に巻きつけて、インナーライナー(2)の端部と、未加硫ゴムシート(3)の端部の位置を一定距離ずらして接合する接合工程を有し、
     前記インナーライナー(2)は、
     スチレン-イソブチレン-スチレンブロック共重合体60~99質量%と、スチレン-無水マレイン酸共重合体1~40質量%を含むポリマー混合物100質量部を含むポリマー組成物であり、厚さが0.05mm~0.6mmである第1層と、
     未加硫ゴムシート(3)側に配置され、熱可塑性エラストマーよりなり、厚さが0.01mm~0.3mmである第2層の積層体(1)である前記空気入りタイヤ(11)の製造方法。
    In the method of manufacturing a pneumatic tire (11) having the inner liner (2) inside the tire, molding of the green tire is
    (A) An assembly for manufacturing a laminate (1) by pasting the end portions in the width direction of the inner liner (2) and the end portions in the width direction of the unvulcanized rubber sheet (3) by shifting them 50 mm to 500 mm in the width direction. Process,
    (B) a cutting step of manufacturing the cut sheet (4) by cutting the laminate (1) into a predetermined length corresponding to a drum width;
    (C) Wrap the cut sheet (4) around the entire circumference of the drum so that the cut surface is in the circumferential direction of the drum and the inner liner (2) is on the inner side, and the end of the inner liner (2) And a bonding step of bonding by shifting the position of the end of the unvulcanized rubber sheet (3) by a fixed distance,
    The inner liner (2) is
    A polymer composition comprising 100 parts by mass of a polymer mixture containing 60 to 99% by mass of styrene-isobutylene-styrene block copolymer and 1 to 40% by mass of styrene-maleic anhydride copolymer, and having a thickness of 0.05 mm The first layer, which is ~ 0.6 mm,
    The pneumatic tire (11), which is a laminate of a second layer (1) which is disposed on the unvulcanized rubber sheet (3) side, is made of a thermoplastic elastomer, and has a thickness of 0.01 mm to 0.3 mm. Production method.
  2.  アッセンブル工程において、インナーライナー(2)の幅と未加硫ゴムシート(3)の幅は異なっており、それらの幅方向の両端部が相互に重複しないように幅方向にずらして積層体(1)を製造する請求項1記載の空気入りタイヤ(11)の製造方法。 In the assembling process, the width of the inner liner (2) and the width of the unvulcanized rubber sheet (3) are different from each other so that both end portions in the width direction do not overlap with each other. The method for producing a pneumatic tire (11) according to claim 1, wherein the tire is produced.
  3.  前記スチレン-イソブチレン-スチレントリブロック共重合体は、スチレン成分含有量が10~30質量%である請求項1または2に記載の空気入りタイヤ(11)の製造方法。 The method for producing a pneumatic tire (11) according to claim 1 or 2, wherein the styrene-isobutylene-styrene triblock copolymer has a styrene component content of 10 to 30% by mass.
  4.  前記スチレン-無水マレイン酸共重合体は、スチレン成分/無水マレイン酸成分のモル比が50/50~90/10であり、重量平均分子量が4,000~20,000であり、さらに無水マレイン酸成分の酸価が50~600であるスチレン-無水マレイン酸共重合体ベースレジンを含む、請求項1~3のいずれかに記載の空気入りタイヤ(11)の製造方法。 The styrene-maleic anhydride copolymer has a styrene component / maleic anhydride component molar ratio of 50/50 to 90/10, a weight average molecular weight of 4,000 to 20,000, and further, maleic anhydride The method for producing a pneumatic tire (11) according to any one of claims 1 to 3, comprising a styrene-maleic anhydride copolymer base resin wherein the acid value of the component is 50 to 600.
  5.  前記スチレン-無水マレイン酸共重合体は、前記スチレン-無水マレイン酸共重合体ベースレジンがエステル化されて得られた、モノエステル基およびモノカルボン酸基を有するスチレン-無水マレイン酸共重合体のエステルレジンを含む、請求項1~4のいずれかに記載の空気入りタイヤ(11)の製造方法。 The styrene-maleic anhydride copolymer is a styrene-maleic anhydride copolymer having a monoester group and a monocarboxylic acid group, which is obtained by esterifying the styrene-maleic anhydride copolymer base resin. The method for producing a pneumatic tire (11) according to any one of claims 1 to 4, which comprises an ester resin.
  6.  前記スチレン-無水マレイン酸共重合体は、前記スチレン-無水マレイン酸共重合体ベースレジンがアンモニウム塩に溶解した、スチレン-無水マレイン酸共重合体アンモニウム塩水溶液を含む、請求項1~5のいずれかに記載の空気入りタイヤ(11)の製造方法。 The styrene-maleic anhydride copolymer comprises an aqueous solution of styrene-maleic anhydride copolymer ammonium salt, wherein the styrene-maleic anhydride copolymer base resin is dissolved in an ammonium salt. The manufacturing method of the pneumatic tire (11) as described in.
PCT/JP2012/071648 2011-10-11 2012-08-28 Method for producing pneumatic tire WO2013054602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011224084A JP5319752B2 (en) 2011-10-11 2011-10-11 Pneumatic tire manufacturing method
JP2011-224084 2011-10-11

Publications (1)

Publication Number Publication Date
WO2013054602A1 true WO2013054602A1 (en) 2013-04-18

Family

ID=48081662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071648 WO2013054602A1 (en) 2011-10-11 2012-08-28 Method for producing pneumatic tire

Country Status (2)

Country Link
JP (1) JP5319752B2 (en)
WO (1) WO2013054602A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3249008A1 (en) * 2016-05-23 2017-11-29 Sumitomo Rubber Industries, Ltd. Pneumatic tyre comprising liner formed from vulcanized rubber composition of defined content of voids of specified minimum volume and defined maximum air permeation coefficient

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015030399A (en) * 2013-08-05 2015-02-16 株式会社ブリヂストン Tire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005986A (en) * 2008-06-30 2010-01-14 Bridgestone Corp Method of molding green tire
JP2010167829A (en) * 2009-01-20 2010-08-05 Yokohama Rubber Co Ltd:The Pneumatic tire and method for manufacturing the same
JP2010208132A (en) * 2009-03-10 2010-09-24 Yokohama Rubber Co Ltd:The Method and device of forming band-like rubber member
JP2011074309A (en) * 2009-10-01 2011-04-14 Sumitomo Rubber Ind Ltd Polymer composition for inner liner, and pneumatic tire using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217922A (en) * 1995-02-16 1996-08-27 Yokohama Rubber Co Ltd:The Pneumatic tire
JPH106413A (en) * 1996-06-24 1998-01-13 Yokohama Rubber Co Ltd:The Method for supplying strip like material and apparatus therefor
NL2001510C2 (en) * 2008-04-23 2009-10-26 Vmi Epe Holland Device for manufacturing a pre-assembly for a tire.
JP5359394B2 (en) * 2009-03-09 2013-12-04 横浜ゴム株式会社 Molding method of band-shaped rubber member
JP4831706B2 (en) * 2009-09-04 2011-12-07 住友ゴム工業株式会社 Polymer laminate and pneumatic tire using the same for inner liner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005986A (en) * 2008-06-30 2010-01-14 Bridgestone Corp Method of molding green tire
JP2010167829A (en) * 2009-01-20 2010-08-05 Yokohama Rubber Co Ltd:The Pneumatic tire and method for manufacturing the same
JP2010208132A (en) * 2009-03-10 2010-09-24 Yokohama Rubber Co Ltd:The Method and device of forming band-like rubber member
JP2011074309A (en) * 2009-10-01 2011-04-14 Sumitomo Rubber Ind Ltd Polymer composition for inner liner, and pneumatic tire using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3249008A1 (en) * 2016-05-23 2017-11-29 Sumitomo Rubber Industries, Ltd. Pneumatic tyre comprising liner formed from vulcanized rubber composition of defined content of voids of specified minimum volume and defined maximum air permeation coefficient

Also Published As

Publication number Publication date
JP5319752B2 (en) 2013-10-16
JP2013082139A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
EP2644367B1 (en) A STRIP, METHOD FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING a PNEUMATIC TIRE USING SUCH A STRIP
US10239271B2 (en) Strip, method for manufacturing the same, and method for manufacturing pneumatic tire
US20120024447A1 (en) Polymer sheet for inner liner, polymer laminate for inner liner, and pneumatic tire
US9149996B2 (en) Strip, method for manufacturing the same, and method for manufacturing pneumatic tire
KR20110025597A (en) Polymer laminate and pneumatic tire using the same as inner liner
JP4944239B1 (en) Pneumatic tire manufacturing method
EP2803500B1 (en) Pneumatic tire
WO2013054602A1 (en) Method for producing pneumatic tire
JP5373877B2 (en) Pneumatic tire manufacturing method
JP5281135B2 (en) Pneumatic tire manufacturing method
JP5502834B2 (en) Pneumatic tire manufacturing method
JP5260715B2 (en) Manufacturing method of strip and pneumatic tire
JP5575080B2 (en) Inner liner and method for manufacturing pneumatic tire
JP5469149B2 (en) Pneumatic tire manufacturing method
JP2013001184A (en) Pneumatic tire
WO2014087697A1 (en) Pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12840329

Country of ref document: EP

Kind code of ref document: A1