WO2013054410A1 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
WO2013054410A1
WO2013054410A1 PCT/JP2011/073503 JP2011073503W WO2013054410A1 WO 2013054410 A1 WO2013054410 A1 WO 2013054410A1 JP 2011073503 W JP2011073503 W JP 2011073503W WO 2013054410 A1 WO2013054410 A1 WO 2013054410A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
accuracy
fuel ratio
amount
exhaust gas
Prior art date
Application number
PCT/JP2011/073503
Other languages
French (fr)
Japanese (ja)
Inventor
真介 青柳
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/073503 priority Critical patent/WO2013054410A1/en
Publication of WO2013054410A1 publication Critical patent/WO2013054410A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for an internal combustion engine.
  • Patent Document 1 An internal combustion engine described in Patent Document 1 is an exhaust gas recirculation device that introduces a part of exhaust gas discharged from a combustion chamber into an exhaust passage into the combustion chamber via an intake passage (hereinafter, this device is referred to as an “EGR device”). And an oxygen concentration sensor for detecting the oxygen concentration in the exhaust gas discharged from the combustion chamber into the exhaust passage. And the control apparatus of patent document 1 controls the operation
  • EGR device an exhaust gas recirculation device that introduces a part of exhaust gas discharged from a combustion chamber into an exhaust passage into the combustion chamber via an intake passage
  • an oxygen concentration sensor for detecting the oxygen concentration in the exhaust gas discharged from the combustion chamber into the exhaust passage.
  • the control apparatus of patent document 1 controls the operation
  • target value followability the followability of the oxygen concentration with respect to the target value
  • the response delay of the oxygen concentration sensor changes depending on the engine operating state (that is, the operating state of the internal combustion engine). Therefore, depending on the engine operating state, the response delay of the oxygen concentration sensor may be relatively large. At this time, the target value followability is relatively low, and thus the emission performance in the exhaust gas is degraded.
  • an object of the present invention is to maintain a high target value followability regardless of the engine operating state and to maintain a high emission performance in the exhaust gas.
  • the present invention includes an intake air amount detecting means for detecting an intake air amount that is an amount of air sucked into the combustion chamber, a fuel supply means for supplying fuel to the combustion chamber, and an exhaust passage discharged from the combustion chamber.
  • a control apparatus for an internal combustion engine comprising: an air-fuel ratio detection means for detecting an air-fuel ratio of exhaust gas; and an exhaust gas recirculation means for introducing the exhaust gas discharged from the combustion chamber into the exhaust passage into the combustion chamber via the intake passage.
  • the first accuracy calculated based on the detection accuracy of the intake air amount detection means and the fuel supply accuracy of the fuel supply means is calculated based on the detection accuracy of the air-fuel ratio detection means.
  • the amount of exhaust gas introduced into the combustion chamber is controlled by the exhaust gas recirculation unit so that the intake air amount detected by the intake air amount detection unit matches the target value.
  • the exhaust gas recirculation means introduces the air into the combustion chamber so that the air-fuel ratio detected by the air-fuel ratio detection means matches the target value. The amount of exhaust gas emitted is controlled.
  • the detection accuracy of the intake air amount detection means, the fuel supply accuracy of the fuel supply means, and the detection accuracy of the air-fuel ratio detection means vary depending on the engine operating state (that is, the operating state of the internal combustion engine).
  • the first accuracy is higher than the second accuracy, that is, the accuracy of the intake air amount detected by the intake air amount detection unit than the accuracy of the air-fuel ratio detected by the air-fuel ratio detection unit
  • the accuracy of the amount of fuel supplied to the combustion chamber by the fuel supply means is higher
  • the amount of exhaust gas introduced into the combustion chamber is not controlled based on the air-fuel ratio detected by the air-fuel ratio detection means.
  • the amount of exhaust gas introduced into the combustion chamber is controlled based on the intake air amount detected by the intake air amount detection means. That is, at this time, the amount of exhaust gas introduced into the combustion chamber is controlled based on a parameter with higher accuracy. For this reason, the followability of the intake air amount with respect to the target value is high, and thus the emission performance in the exhaust gas is maintained high.
  • the second accuracy is equal to or higher than the first accuracy, that is, the accuracy of the intake air amount detected by the intake air amount detection means and the accuracy of the amount of fuel supplied to the combustion chamber by the fuel supply means.
  • the accuracy of the air-fuel ratio detected by the air-fuel ratio detection unit is higher than the amount of exhaust gas introduced into the combustion chamber based on the intake air amount detected by the intake air amount detection unit
  • the amount of exhaust gas introduced into the combustion chamber is controlled based on the air-fuel ratio detected by the air-fuel ratio detection means. That is, also at this time, the amount of exhaust gas introduced into the combustion chamber is controlled based on a parameter with higher accuracy. For this reason, the followability of the air-fuel ratio with respect to the target value is high, and thus the emission performance in the exhaust gas is maintained high.
  • the target value followability can be maintained high regardless of the engine operating state, and the emission performance in the exhaust gas can be maintained high.
  • the detection accuracy of the intake air amount detection means when the intake air amount is in a steady state can be adopted as the detection accuracy of the intake air amount detection means.
  • the detection accuracy of the intake air amount detection means when the intake air amount is in a steady state is higher than the detection accuracy of the intake air amount detection means when the intake air amount is in a transient state. This greatly affects the detection accuracy. Therefore, when the detection accuracy of the intake air amount detection means when the intake air amount is in a steady state is adopted as the detection accuracy of the intake air amount detection means, the target value followability is maintained higher, and the emission in the exhaust gas The effect that performance can be maintained higher is acquired.
  • the fuel supply accuracy of the combustion supply means when the amount of fuel supplied to the combustion chamber by the fuel supply means is in a steady state can be adopted as the fuel supply accuracy of the fuel supply means.
  • the following effects can be obtained. That is, the amount of fuel supplied to the combustion chamber by the fuel supply means (hereinafter referred to as “fuel supply amount”) is in a steady state rather than the fuel supply accuracy of the fuel supply means when in a transient state.
  • the fuel supply accuracy of the fuel supply unit when the fuel supply unit is in the above condition greatly affects the fuel supply accuracy of the fuel supply unit. Therefore, when the fuel supply accuracy of the fuel supply means when the fuel supply amount is in a steady state is adopted as the fuel supply accuracy of the fuel supply means, the target value followability is maintained higher and the emission performance in the exhaust gas is improved. The effect that it can maintain more highly is acquired.
  • the detection accuracy of the air-fuel ratio detection means as the detection accuracy of the air-fuel ratio detection means, the detection accuracy of the air-fuel ratio detection means when the air-fuel ratio of the exhaust gas discharged from the combustion chamber to the exhaust passage is in a steady state and the exhaust passage from the combustion chamber
  • the detection accuracy of the air-fuel ratio detection means when the air-fuel ratio of the exhaust gas exhausted in a transient state can be employed.
  • the detection accuracy of the air-fuel ratio detection means when the air-fuel ratio is in a steady state and the detection accuracy of the air-fuel ratio detection means when the air-fuel ratio is in a transient state are equal, greatly affecting the detection accuracy of the air-fuel ratio detection means.
  • the detection accuracy of the air-fuel ratio detection means when the air-fuel ratio is in a steady state and the detection accuracy of the air-fuel ratio detection means when the air-fuel ratio is in a transient state are adopted as the detection accuracy of the air-fuel ratio detection means.
  • the effect that the target value followability can be maintained higher and the emission performance in the exhaust gas can be maintained higher can be obtained.
  • FIG. 4 is a diagram showing a map used for obtaining a reference EGR rate.
  • A) is the figure which showed the map used in order to acquire the reference
  • B) is the figure which showed the map used in order to acquire a reference
  • (A) is a diagram showing an example of a routine for executing control of a fuel injection valve
  • (B) is a diagram showing an example of a routine for executing setting of a target fuel injection amount.
  • (A) is a diagram showing an example of a routine for executing control of a throttle valve
  • (B) is a diagram showing an example of a routine for executing setting of a target throttle valve opening degree. It is the figure which showed an example of the routine which performs control of an EGR control valve. It is the figure which showed an example of the routine which performs the setting of the target EGR rate.
  • FIG. 1 shows an internal combustion engine to which the control device of the present invention is applied.
  • the internal combustion engine shown in FIG. 1 is a compression ignition type internal combustion engine (so-called diesel engine).
  • 10 is an internal combustion engine
  • 20 is a main body of the internal combustion engine
  • 21 is a fuel injection valve
  • 22 is a fuel pump
  • 23 is a fuel supply passage
  • 30 is an intake passage
  • 31 is an intake manifold
  • 32 is an intake pipe
  • 33 Throttle valve, 34 intercooler, 35 air flow meter, 36 air cleaner, 37 intake pressure sensor
  • the intake passage 30 includes an intake manifold 31 and an intake pipe 32.
  • the exhaust passage 40 includes an exhaust manifold 41 and an exhaust pipe 42.
  • the electronic control device 80 is composed of a microcomputer.
  • the electronic control unit 80 includes a CPU (microprocessor) 81, a ROM (read only memory) 82, a RAM (random access memory) 83, a backup RAM 84, and an interface 85.
  • the CPU 81, ROM 82, RAM 83, backup RAM 84, and interface 85 are connected to each other by a bidirectional bus.
  • the fuel injection valve 21 is attached to the main body 20 of the internal combustion engine.
  • a fuel pump 22 is connected to the fuel injection valve 21 via a fuel supply passage 23.
  • the fuel pump 22 supplies high-pressure fuel to the fuel injection valve 21 via the fuel supply passage 23.
  • the fuel injection valve 21 is electrically connected to the interface 85 of the electronic control device 80.
  • the electronic control unit 80 supplies a command signal for causing the fuel injection valve 21 to inject fuel to the fuel injection valve 21.
  • the fuel pump 22 is also electrically connected to the interface 85 of the electronic control device 80.
  • the electronic control unit 80 supplies the fuel pump 22 with a control signal for controlling the operation of the fuel pump 22 so that the pressure of the fuel supplied from the fuel pump 22 to the fuel injection valve 21 is maintained at a predetermined pressure. .
  • the fuel injection valve 21 is attached to the main body 20 of the internal combustion engine so that its fuel injection hole is exposed in the combustion chamber. Therefore, when a command signal is supplied from the electronic control unit 80 to the fuel injection valve 21, the fuel injection valve 21 directly injects fuel into the combustion chamber.
  • the intake manifold 31 is branched into a plurality of pipes at one end thereof, and these branched pipes are connected to intake ports (not shown) formed respectively corresponding to the combustion chambers of the main body 20 of the internal combustion engine.
  • the intake manifold 31 is connected to one end of the intake pipe 32 at the other end.
  • the exhaust manifold 41 is branched into a plurality of pipes at one end thereof, and these branched pipes are connected to exhaust ports (not shown) formed respectively corresponding to the combustion chambers of the main body 20 of the internal combustion engine.
  • the exhaust manifold 41 is connected to one end of the exhaust pipe 42 at the other end.
  • the throttle valve 33 is disposed in the intake pipe 32.
  • this opening is referred to as “throttle valve opening”.
  • the flow path area in the intake pipe 32 in the region where the throttle valve 33 is disposed changes.
  • the throttle 33 is electrically connected to the interface 85 of the electronic control device 80.
  • the electronic control unit 80 supplies a control signal for operating the throttle valve 33 to the throttle valve 33.
  • the intercooler 34 is disposed in the intake pipe 32 upstream of the throttle valve 33.
  • the intercooler 34 cools the air flowing into the intercooler 34.
  • the air flow meter 35 is disposed in the intake pipe 32 upstream of the intercooler 34.
  • the air flow meter 35 is electrically connected to the interface 85 of the electronic control device 80.
  • the air flow meter 35 outputs an output value corresponding to the amount of air passing therethrough. This output value is input to the electronic control unit 80. Based on this output value, the electronic control unit 80 calculates the amount of air passing through the air flow meter 35, that is, the amount of air taken into the combustion chamber.
  • the intake pressure sensor 37 is disposed in the intake passage 30 (more specifically, the intake manifold 31) downstream of the throttle valve 33.
  • the intake pressure sensor 37 is electrically connected to the interface 85 of the electronic control device 80.
  • the intake pressure sensor 37 outputs an output value corresponding to the pressure of the surrounding gas (that is, the pressure of the gas in the intake manifold 31 and the pressure of the gas sucked into the combustion chamber). Based on this output value, the electronic control unit 80 calculates the pressure of the gas around the intake pressure sensor 37, that is, the pressure of the gas sucked into the combustion chamber (that is, the intake pressure).
  • the air-fuel ratio sensor 43 is disposed in the exhaust passage 40 (more specifically, the exhaust pipe 42).
  • the air-fuel ratio sensor 43 is electrically connected to the interface 85 of the electronic control device 80.
  • the air-fuel ratio sensor 43 outputs an output value corresponding to the oxygen concentration in the exhaust gas reaching there. Based on this output value, the electronic control unit 80 calculates the air-fuel ratio of the exhaust gas, that is, the air-fuel ratio of the air-fuel mixture formed in the combustion chamber.
  • Accelerator pedal depression amount sensor 71 is connected to accelerator pedal 70.
  • the accelerator pedal depression amount sensor 71 is electrically connected to the interface 85 of the electronic control unit 80.
  • the accelerator pedal depression amount sensor 71 outputs an output value corresponding to the depression amount of the accelerator pedal 70. This output value is input to the electronic control unit 80.
  • the electronic control unit 80 calculates the amount of depression of the accelerator pedal 70 and thus the torque required for the internal combustion engine (hereinafter, this torque is referred to as “requested engine torque”) based on the output value.
  • the crank position sensor 72 is disposed in the vicinity of the crankshaft (not shown) of the internal combustion engine.
  • the crank position sensor 72 is electrically connected to the interface 85 of the electronic control unit 80.
  • the crank position sensor 72 outputs an output value corresponding to the rotational phase of the crankshaft. This output value is input to the electronic control unit 80.
  • the electronic control unit 80 calculates the engine speed based on this output value.
  • the EGR device 50 includes an exhaust gas recirculation pipe (hereinafter referred to as “EGR pipe”) 51, an exhaust gas recirculation control valve (hereinafter referred to as “EGR control valve”) 52, and an exhaust gas recirculation cooler (hereinafter referred to as “EGR control valve”). This cooler is referred to as an “EGR cooler” 53.
  • the EGR device 50 can introduce the exhaust gas discharged from the combustion chamber into the exhaust passage 40 into the intake passage 30 via the EGR pipe 51.
  • the EGR pipe 51 is connected to the exhaust passage 40 (more specifically, the exhaust manifold 41) at one end, and connected to the intake passage 30 (more specifically, the intake manifold 31) at the other end. Yes. That is, the EGR pipe 51 connects the exhaust passage 40 to the intake passage 30.
  • the EGR control valve 52 is disposed in the EGR pipe 51.
  • EGR control valve opening degree When the opening degree of the EGR control valve 52 (hereinafter, this opening degree is referred to as “EGR control valve opening degree”) is changed, the amount of exhaust gas passing through the EGR control valve 52 is changed, and eventually introduced into the intake passage 30. The amount of exhaust gas is changed.
  • the EGR control valve is electrically connected to the interface 85 of the electronic control unit 80.
  • the electronic control unit 80 supplies a control signal for operating the EGR control valve 52 to the EGR control valve.
  • the EGR cooler 53 is disposed in the EGR pipe 51. The EGR cooler 53 cools the exhaust gas flowing through the EGR pipe 51.
  • fuel injection amount means “amount of fuel injected from the fuel injection valve”.
  • a command signal for injecting an amount of fuel corresponding to a target value of the fuel injection amount (hereinafter, this target value is referred to as “target fuel injection amount”) from the fuel injection valve is calculated by the electronic control unit.
  • a signal is supplied from the electronic control unit to the fuel injector, which causes the fuel injector to operate.
  • an appropriate fuel injection amount corresponding to the depression amount of the accelerator pedal is obtained in advance by experiments or the like.
  • the obtained fuel injection amount is stored in the electronic control unit as a reference fuel injection amount Qb in the form of a map of a function of the accelerator pedal depression amount Dac as shown in FIG.
  • the reference fuel injection amount Qb corresponding to the accelerator pedal depression amount Dac at that time is acquired from the map of FIG. 2A, and the acquired reference fuel injection amount Qb becomes the target fuel injection amount. Is set. Note that, as shown in FIG. 2A, the reference fuel injection amount Qb increases as the accelerator pedal depression amount Dac increases.
  • throttle valve opening means “throttle valve opening”.
  • a control signal for operating the throttle valve is electronically controlled so that a throttle valve opening corresponding to a target value of the throttle valve opening (hereinafter, this target value is referred to as “target throttle valve opening”) is achieved.
  • the control signal is calculated in the device, and this control signal is supplied from the electronic control device to the throttle valve, whereby the throttle valve is operated.
  • an appropriate throttle valve opening corresponding to the engine operating state defined by the engine speed and the target fuel injection amount is obtained in advance by experiments or the like.
  • the obtained throttle valve opening is electronically controlled as a reference throttle valve opening Dthb in the form of a function map of the engine speed NE and the target fuel injection amount Qt as shown in FIG. Stored in the device.
  • the reference throttle valve opening degree Dthb corresponding to the current engine speed NE and the current target fuel injection amount Qt is acquired from the map of FIG.
  • the acquired reference throttle valve opening Dthb is set to the target throttle valve opening.
  • the reference throttle valve opening degree Dthb is larger as the engine speed NE is larger
  • the reference throttle valve opening degree Dthb is larger as the target fuel injection amount Qt is larger.
  • EGR rate means “ratio of the amount of exhaust gas sucked into the combustion chamber to the amount of gas sucked into the combustion chamber”.
  • a control signal for operating the EGR control valve is calculated in the electronic control device so that the target value of the EGR rate (hereinafter, this target value is referred to as “target EGR rate”) is achieved.
  • the EGR control valve is supplied from the control device, and thereby the EGR control valve is operated.
  • an appropriate EGR rate corresponding to the engine operating state defined by the engine speed and the target fuel injection amount is obtained in advance by experiments or the like.
  • the obtained EGR rate is stored in the electronic control unit as a reference EGR rate Regrb in the form of a function map of the engine speed NE and the target fuel injection amount Qt as shown in FIG. ing.
  • the reference EGR rate Regrb corresponding to the current engine speed NE and the current target fuel injection amount Qt is acquired from the map of FIG.
  • an appropriate intake air amount corresponding to the engine operating state defined by the engine speed and the target fuel injection amount is obtained in advance by experiments or the like. Then, as shown in FIG. 3A, the obtained intake air amount is supplied to the electronic control unit as a reference intake air amount GAb in the form of a map of a function of the engine speed NE and the target fuel injection amount Qt. It is remembered. Furthermore, in the present embodiment, an appropriate air-fuel ratio corresponding to the engine operating state defined by the engine speed and the target fuel injection amount is obtained in advance by experiments or the like. The obtained air-fuel ratio is stored in the electronic control unit as a reference air-fuel ratio AFb in the form of a function map of the engine speed NE and the target fuel injection amount Qt as shown in FIG. 2C. ing.
  • first accuracy An accuracy calculated based on the detection accuracy of the air flow meter and the fuel injection accuracy of the fuel injection valve (hereinafter referred to as “first accuracy”) is calculated based on the detection accuracy of the air-fuel ratio sensor ( Hereinafter, when this accuracy is higher than “second accuracy”), the reference intake air amount GAb corresponding to the engine speed NE at that time and the target fuel injection amount Qt at that time is acquired from the map of FIG. The acquired reference intake air amount GAb is set as the target intake air amount. Then, a deviation of the actual intake air amount (that is, the intake air amount detected by the air flow meter) with respect to the set target intake air amount (hereinafter, this deviation is referred to as “intake air amount deviation”) is calculated.
  • a correction coefficient for correcting the current target EGR rate so that the EGR rate is changed so that the intake air amount deviation becomes zero (Referred to as “first correction coefficient”). Then, a value obtained by correcting the acquired reference EGR rate with the calculated first correction coefficient is set as the target EGR rate. That is, in this case, the EGR rate is controlled so that the actual intake air amount matches the target intake air amount.
  • the reference air-fuel ratio AFb corresponding to the engine speed NE at that time and the target fuel injection amount Qt at that time is acquired from the map of FIG.
  • the set reference air-fuel ratio AFb is set to the target air-fuel ratio AFt.
  • a deviation of the actual air-fuel ratio that is, the air-fuel ratio detected by the air-fuel ratio sensor
  • this deviation is referred to as “air-fuel ratio deviation”.
  • first correction coefficient a correction coefficient for correcting the current target EGR rate so that the EGR ratio is changed so that the air-fuel ratio deviation becomes zero
  • second correction coefficient a correction coefficient for correcting the acquired reference EGR rate so that the EGR ratio is changed so that the air-fuel ratio deviation becomes zero
  • the detection accuracy of the air flow meter, the fuel injection accuracy of the fuel injection valve, and the detection accuracy of the air-fuel ratio sensor vary according to the engine operating state.
  • the EGR rate is not controlled based on the air-fuel ratio detected by the air-fuel ratio sensor, but based on the intake air amount detected by the air flow meter.
  • the rate is controlled, and consequently the air-fuel ratio is controlled to the target air-fuel ratio. That is, at this time, the EGR rate is controlled based on a parameter with higher accuracy, and thereby the air-fuel ratio is controlled to the target air-fuel ratio. For this reason, the followability of the intake air amount with respect to the target intake air amount is high, and accordingly, the followability of the air / fuel ratio with respect to the target air / fuel ratio is high, so that the emission performance in the exhaust gas is maintained high.
  • the second accuracy is equal to or higher than the first accuracy, that is, the accuracy of the intake air amount detected by the air flow meter and the accuracy of the amount of fuel injected from the fuel injection valve
  • the EGR rate is not controlled based on the intake air amount detected by the air flow meter, but based on the air-fuel ratio detected by the air-fuel ratio sensor.
  • the air-fuel ratio is controlled to the target air-fuel ratio. That is, also at this time, the EGR rate is controlled based on a parameter with higher accuracy, and thereby the air-fuel ratio is controlled to the target air-fuel ratio. For this reason, the followability of the air-fuel ratio with respect to the target air-fuel ratio is high, and thus the emission performance in the exhaust gas is maintained high.
  • the above-described embodiment is an embodiment in which the present invention is applied to an internal combustion engine having an air flow meter. However, the present invention is widely applied to an internal combustion engine having a means for detecting an intake air amount. Is possible.
  • the above-described embodiment is an embodiment when the present invention is applied to an internal combustion engine including a fuel injection valve.
  • the present invention broadly includes a fuel supply means for supplying fuel to the combustion chamber. Applicable to internal combustion engines.
  • the above-described embodiment is an embodiment in which the present invention is applied to an internal combustion engine having an air-fuel ratio sensor. However, the present invention is broadly based on the exhaust gas exhausted from the combustion chamber into the exhaust passage.
  • the present invention can be applied to an internal combustion engine having air-fuel ratio detection means for detecting the fuel ratio.
  • the above-described embodiment is an embodiment in the case where the present invention is applied to an internal combustion engine having an EGR device.
  • the present invention broadly relates to exhaust gas discharged from a combustion chamber into an exhaust passage.
  • the present invention can be applied to an internal combustion engine having exhaust gas recirculation means introduced into the combustion chamber via the.
  • the routine of FIG. 4A is started, first, at step 10, the latest target fuel injection amount Qt set in the routine of FIG. 4B (details of this routine will be described later) is acquired. The Next, at step 11, a command signal Si to be supplied to the fuel injection valve is calculated based on the target fuel injection amount Qt acquired at step 10. Next, at step 12, the command signal Si calculated at step 12 is supplied to the fuel injection valve, and then the routine ends.
  • FIG. 4B An example of a routine for executing the setting of the target fuel injection amount according to the above-described embodiment will be described.
  • An example of this routine is shown in FIG. This routine is started every time a predetermined crank angle comes when the routine is finished.
  • the routine of FIG. 4B is started, first, in step 15, the accelerator pedal depression amount Dac at that time is acquired.
  • step 16 the reference fuel injection amount Qb corresponding to the accelerator pedal depression amount Dac acquired at step 15 is acquired from the map of FIG.
  • step 17 the reference fuel injection amount Qb acquired at step 16 is set to the target fuel injection amount Qt, and then the routine ends.
  • FIG. 5A An example of a routine for executing control of the throttle valve of the above-described embodiment will be described.
  • An example of this routine is shown in FIG. Note that this routine is started every time a predetermined crank angle arrives.
  • the routine of FIG. 5A is started, first, in step 20, the latest target throttle valve opening Dtht set in the routine of FIG. 5B (details of this routine will be described later) is acquired. Is done.
  • a control signal Sth to be supplied to the throttle valve is calculated based on the target throttle valve opening degree Dtht acquired at step 20.
  • the control signal Sth calculated at step 21 is supplied to the throttle valve, and then the routine ends.
  • FIG. 5B An example of a routine for executing the setting of the target throttle valve opening according to the above-described embodiment will be described.
  • An example of this routine is shown in FIG. Note that this routine is started every time a predetermined crank angle arrives.
  • the routine of FIG. 5B starts, first, at step 25, the engine speed NE at that time and the target fuel injection amount Qt at that time are acquired.
  • the reference throttle valve opening degree Dthb corresponding to the engine speed NE and the target fuel injection amount Qt acquired at step 25 is acquired from the map of FIG.
  • step 27 the reference throttle valve opening degree Dthb acquired at step 26 is set to the target throttle valve opening degree Dtht, and then the routine ends.
  • the routine of FIG. 6 is started, first, at step 30, the latest target EGR rate Regrt set by the routine of FIG. 7 (details of this routine will be described later) is acquired.
  • step 31 a control signal Segr to be supplied to the EGR control valve is calculated based on the target EGR rate Regrt acquired at step 30.
  • step 32 the control signal Segr calculated at step 31 is supplied to the EGR control valve, and then the routine ends.
  • FIG. 7 An example of this routine is shown in FIG. Note that this routine is started every time a predetermined crank angle arrives.
  • the routine of FIG. 7 is started, first, at step 100, the engine speed NE at that time, the target fuel injection amount Qt at that time, the first accuracy A1 at that time, and the second accuracy A2 at that time are acquired.
  • the reference EGR rate Regrb corresponding to the engine speed NE and the target fuel injection amount Qt acquired at step 100 is acquired from the map of FIG.
  • step 102 it is determined whether or not the first accuracy A1 acquired in step 100 is higher than the second accuracy A2 acquired in step 100 (A1> A2).
  • the routine proceeds to step 103.
  • the routine proceeds to step 108.
  • step 103 the intake air amount GA at that time is acquired.
  • step 104 the reference intake air amount GAb corresponding to the engine speed NE and the target fuel injection amount Qt acquired at step 100 is acquired from the map of FIG. 3A, and the acquired reference intake air is obtained.
  • the amount GAb is set to the target intake air amount GAt.
  • step 105 the intake air amount deviation ⁇ GA is calculated based on the intake air amount GA acquired at step 103 and the target intake air amount GAt set at step 104.
  • step 106 the first correction coefficient Kegr1 is calculated based on the intake air amount deviation ⁇ GA calculated at step 105.
  • step 107 a value obtained by correcting the reference EGR rate Regrb acquired in step 101 with the first correction coefficient Kegr1 calculated in step 106 is set as the target EGR rate Regrt, and then the routine ends. To do.
  • step 108 the air-fuel ratio AF at that time is acquired.
  • step 109 the reference air-fuel ratio AFb corresponding to the engine speed NE and the target fuel injection amount Qt acquired at step 100 is acquired from the map of FIG. 3B, and this acquired reference air-fuel ratio AFb is acquired. Is set to the target air-fuel ratio AFt.
  • step 110 the air-fuel ratio deviation ⁇ AF is calculated based on the air-fuel ratio AF acquired at step 108 and the target air-fuel ratio AFt set at step 109.
  • step 111 the second correction coefficient Kegr2 is calculated based on the air-fuel ratio deviation ⁇ AF calculated at step 110.
  • step 112 a value obtained by correcting the reference EGR rate Regrb obtained in step 101 with the second correction coefficient Kegr2 calculated in step 111 is set as the target EGR rate Regrt, and then the routine ends. To do.
  • the detection accuracy of the air flow meter may be any detection accuracy as long as it is the accuracy of the intake air amount detected by the air flow meter.
  • detection accuracy that is, static accuracy, for example, drawing tolerance
  • the detection accuracy of the air flow meter is affected by the flow rate of air passing through the air flow meter and the pulsation of the gas around the air flow meter, the intake air amount detected by the air flow meter, the engine speed, and The detection accuracy of the air flow meter may be calculated based on any one or more of the target fuel injection amounts.
  • the fuel injection accuracy of the fuel injection valve may be any fuel injection accuracy as long as the amount of fuel injected from the fuel injection valve is accurate.
  • the fuel injection amount is in a steady state. It is preferable to employ the detection accuracy (that is, static accuracy, for example, drawing tolerance) when the time is changed (that is, when the change in the fuel injection amount is zero or extremely small).
  • the detection accuracy that is, static accuracy, for example, drawing tolerance
  • the fuel injection accuracy of the fuel injection valve is affected by the pressure of the fuel in the fuel supply passage and the pulsation of the fuel, the fuel pressure in the fuel supply passage, the engine speed, and the target fuel injection amount
  • the fuel injection accuracy of the fuel injection valve may be calculated based on one or more of the above.
  • the first accuracy is represented by “A1”
  • the detection accuracy of the air flow meter is represented by “Aafm”
  • the fuel injection accuracy of the fuel injection valve is represented by “Ainj”
  • the following equation 1 is obtained.
  • the square root of the sum of the square of the detection accuracy of the air flow meter and the square of the fuel injection accuracy of the fuel injection valve can be employed as the first accuracy.
  • A1 ⁇ ⁇ (Aafm) 2 + (Ainj) 2 ⁇ (1)
  • the detection accuracy of the air-fuel ratio sensor may be any detection accuracy as long as the accuracy of the air-fuel ratio detected by the air-fuel ratio sensor.
  • the air-fuel ratio is in a steady state (that is, When the air-fuel ratio change is zero or very small (ie, static accuracy, eg, drawing tolerance) and the air-fuel ratio is in a transient state (ie, the air-fuel ratio change is It is preferable to employ a detection accuracy that is the sum of the detection accuracy (that is, the dynamic accuracy) when the accuracy is relatively high.
  • the static accuracy of the air-fuel ratio sensor is affected by the flow rate of exhaust gas passing through the air-fuel ratio sensor and the pressure of exhaust gas around the air-fuel ratio sensor, so the amount of intake air detected by the air flow meter (That is, the flow rate of exhaust gas passing through the air-fuel ratio sensor) and the pressure of exhaust gas around the air-fuel ratio sensor (this may be an actual measurement value or an estimated value) You may make it calculate based on one or both.
  • the second accuracy is represented by “A2”
  • the static accuracy of the air-fuel ratio sensor is represented by “Aafs”
  • the dynamic accuracy of the air-fuel ratio sensor is represented by “Aaft”
  • the following equation 2 is obtained.
  • the sum of the static accuracy of the air-fuel ratio sensor and the dynamic accuracy of the air-fuel ratio sensor can be adopted as the second accuracy.
  • the time required for the actual air-fuel ratio to change by a predetermined amount (that is, the response) (Delay time)
  • actual response delay time (actual response delay time)
  • detection response delay time (detection response delay time” and is represented by “Tdd”.
  • a coefficient for converting to the static accuracy of the air-fuel ratio sensor is referred to as a “conversion coefficient” and expressed as “ ⁇ ”, and as shown in the following expression 3, the detection response delay time is converted into the actual response delay time. Dividing by Thus obtained value (i.e., the ratio of the detection response delay time to the actual response delay time) can be employed a value obtained by multiplying the conversion factor as a dynamic accuracy of the air-fuel ratio sensor.
  • A2 Aafs + Aaft (2)
  • Aaft Tdd / Tda ⁇ ⁇ (3)
  • the predetermined amount used for acquiring the response delay time is, for example, the air-fuel ratio until the air-fuel ratio converges to a specific air-fuel ratio when the EGR control valve opening is changed stepwise.
  • a change amount of 63% when the amount of change in the fuel ratio is taken as 100% can be adopted.
  • the ratio Tdd / Tda of the detected response delay time to the actual response delay time is referred to as “response delay ratio”
  • the intake air amount detected by the air flow meter (that is, combustion)
  • the actual response delay time is determined in advance for each combination of the flow rate of the exhaust gas discharged from the chamber into the exhaust passage) and the pressure of the exhaust gas in the exhaust passage, and the obtained actual response delay time is calculated as the intake air amount.
  • the actual response delay time corresponding to (or may be an estimated value) is acquired from the map, and the second accuracy may be calculated using the acquired actual response delay time.
  • the detection response delay time is affected by the flow rate of the exhaust gas passing through the air-fuel ratio sensor and the pressure of the exhaust gas around the air-fuel ratio sensor, so the intake air amount detected by the air flow meter (that is, the air-fuel ratio sensor)
  • a detection response delay time is obtained in advance by experiments or the like, and the obtained detection response delay time is calculated based on the intake air amount and the exhaust gas It is stored in the electronic control unit in the form of a function map with pressure, and during the operation of the engine, the amount of intake air at that time and the pressure of the exhaust gas at that time (this may be a measured value or estimated May be a value), and the second accuracy may be calculated using the acquired detection response delay time from the map.
  • the conversion factor can be calculated by the following experiment, for example. That is, the EGR rate is controlled so that a plurality of different response delay ratios are achieved, and the emission performance in the exhaust gas for each response delay ratio (for example, the amount of nitrogen oxide (NOx) contained in the exhaust gas) , And the sensitivity of the change in the emission performance with respect to the change in the response delay ratio (hereinafter, this sensitivity is referred to as “sensitivity to the change in dynamic accuracy”) is calculated based on the acquired emission performance.
  • sensitivity to the change in dynamic accuracy is calculated based on the acquired emission performance.
  • a plurality of air-fuel ratio sensors with different static accuracy are prepared, the EGR rate is controlled using each air-fuel ratio sensor, and the emission performance in the exhaust gas for each air-fuel ratio sensor is obtained.
  • the sensitivity of the change in emission performance to the change in static accuracy of the air-fuel ratio sensor (hereinafter, this sensitivity is referred to as “sensitivity to change in static accuracy”) is calculated. Then, a coefficient to be multiplied by the sensitivity to the dynamic accuracy change is calculated in order to match the sensitivity to the dynamic accuracy change with the static accuracy change.
  • the coefficient calculated here is a conversion coefficient.
  • the absolute value is used for accuracy.
  • the reference intake air amount is set to the target intake air amount as it is.
  • the appropriate intake air amount varies depending on the intake pressure, the intake temperature (that is, the temperature of the gas sucked into the combustion chamber), and the like. Therefore, in the above-described embodiment, a value obtained by correcting the reference intake air amount by one or both of the intake pressure at that time and the intake temperature at that time may be set as the target intake air amount.
  • the appropriate intake air amount is the cooling water temperature (that is, the temperature of the cooling water for cooling the internal combustion engine), the atmospheric pressure, the outside air temperature, and the fuel temperature (that is, the temperature of the fuel injected from the fuel injection valve). It depends on the situation.
  • the reference intake air amount is obtained by correcting the reference intake air temperature by one or more of the cooling water temperature at that time, the atmospheric pressure at that time, the outside air temperature at that time, and the fuel temperature at that time.
  • the value may be set to the target intake air amount.
  • the reference intake air amount is determined based on the engine speed and the target fuel injection amount.
  • the target intake air amount that can achieve the target oxygen concentration (that is, the target value of the concentration of oxygen in the gas sucked into the combustion chamber) may be set as the target intake air amount. Good.
  • the first correction coefficient may be calculated by any method as long as it is a coefficient that corrects the EGR rate so that the intake air amount deviation becomes zero.
  • the first correction coefficient for example, A coefficient calculated by PI control or PID control based on the intake air amount deviation can be employed.
  • the second correction coefficient may be calculated by any method as long as it is a coefficient that corrects the EGR rate so that the air-fuel ratio deviation becomes zero. A coefficient calculated by PI control or PID control based on the fuel ratio deviation can be adopted.
  • an upper limit value and a lower limit value related to the first correction coefficient and the second correction coefficient may be provided in order to suppress the EGR rate from changing excessively.
  • the EGR rate may be controlled to the target EGR rate by changing the EGR control valve opening and the throttle valve opening.
  • the above-described embodiment is an embodiment in the case where the present invention is applied to an internal combustion engine that does not include a so-called supercharger.
  • the present invention can also be applied to an internal combustion engine that includes a so-called supercharger. It is.
  • the above-described embodiment is an embodiment in which the present invention is applied to a compression ignition type internal combustion engine, but the present invention is also applicable to a spark ignition type internal combustion engine (so-called gasoline engine). .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

The present invention relates to a control device for an internal combustion engine, the control device being provided with an intake air quantity detection means (35), a fuel supply means (21), an air-fuel ratio detection means (43), and an exhaust gas recirculation means (50). In the present invention, when a first accuracy (A1) calculated on the basis of the detection accuracy (Aafm) of the intake air quantity detection means and the fuel supply accuracy (Ainj) of the fuel supply means is higher than a second accuracy (A2) calculated on the basis of the detection accuracy (Aafs, Aaft) of the air-fuel ratio detection means, the quantity of exhaust gas to be introduced into a combustion chamber by the exhaust gas recirculation means is controlled such that the intake air quantity detected by the intake air quantity detection means matches the target value thereof. Meanwhile, in the present invention, when the first accuracy is equal to or lower than the second accuracy, the quantity of the exhaust gas to be introduced into the combustion chamber by the exhaust gas recirculation means is controlled such that the air-fuel ratio detected by the air-fuel ratio detection means matches the target value thereof.

Description

内燃機関の制御装置Control device for internal combustion engine
 本発明は、内燃機関の制御装置に関する。 The present invention relates to a control device for an internal combustion engine.
 内燃機関の制御対象が特許文献1に記載されている。特許文献1に記載の内燃機関は、燃焼室から排気通路に排出された排気ガスの一部を吸気通路に介して燃焼室に導入する排気再循環装置(以下この装置を「EGR装置」という)と、燃焼室から排気通路に排出された排気ガス中の酸素濃度を検出する酸素濃度センサと、を具備する。そして、特許文献1に記載の制御装置は、酸素濃度センサによって検出された酸素濃度がその目標値に収束するようにEGR装置の動作を制御することによって当該EGR装置によって燃焼室に導入される排気ガスの量を制御する。 The control object of the internal combustion engine is described in Patent Document 1. An internal combustion engine described in Patent Document 1 is an exhaust gas recirculation device that introduces a part of exhaust gas discharged from a combustion chamber into an exhaust passage into the combustion chamber via an intake passage (hereinafter, this device is referred to as an “EGR device”). And an oxygen concentration sensor for detecting the oxygen concentration in the exhaust gas discharged from the combustion chamber into the exhaust passage. And the control apparatus of patent document 1 controls the operation | movement of an EGR apparatus so that the oxygen concentration detected by the oxygen concentration sensor may converge on the target value, and the exhaust gas introduce | transduced into a combustion chamber by the said EGR apparatus Control the amount of gas.
特開2002-138907号公報Japanese Patent Laid-Open No. 2002-138907 特開2007-262946号公報JP 2007-262946 A 特開2009-103062号公報JP 2009-103062 A
 ところで、上記酸素濃度センサの応答遅れが比較的小さいときには、目標値に対する酸素濃度の追従性(以下これを「目標値追従性」という)は比較的高い。しかしながら、上記酸素濃度センサの応答遅れは、機関運転状態(すなわち、内燃機関の運転状態)に応じて変化する。したがって、機関運転状態によっては上記酸素濃度センサの応答遅れが比較的大きいことがある。このときには、目標値追従性が比較的低く、このため、排気ガス中のエミッション性能が低下してしまう。そして、このことは、酸素濃度センサの代わりに、燃焼室から排気通路に排出された排気ガスの空燃比を検出する空燃比センサを具備する内燃機関において、空燃比センサによって検出された空燃比がその目標値に収束するようにEGR装置の動作を制御することによって当該EGR装置によって燃焼室に導入される排気ガスの量を制御する場合にも等しく当てはまる。 By the way, when the response delay of the oxygen concentration sensor is relatively small, the followability of the oxygen concentration with respect to the target value (hereinafter referred to as “target value followability”) is relatively high. However, the response delay of the oxygen concentration sensor changes depending on the engine operating state (that is, the operating state of the internal combustion engine). Therefore, depending on the engine operating state, the response delay of the oxygen concentration sensor may be relatively large. At this time, the target value followability is relatively low, and thus the emission performance in the exhaust gas is degraded. This is because the air-fuel ratio detected by the air-fuel ratio sensor in an internal combustion engine having an air-fuel ratio sensor for detecting the air-fuel ratio of the exhaust gas discharged from the combustion chamber into the exhaust passage instead of the oxygen concentration sensor is The same applies to controlling the amount of exhaust gas introduced into the combustion chamber by the EGR device by controlling the operation of the EGR device so as to converge to the target value.
 そこで、本発明の目的は、機関運転状態にかかわらず、目標値追従性を高く維持し、排気ガス中のエミッション性能を高く維持することにある。 Therefore, an object of the present invention is to maintain a high target value followability regardless of the engine operating state and to maintain a high emission performance in the exhaust gas.
 本願の発明は、燃焼室に吸入される空気の量である吸入空気量を検出する吸入空気量検出手段と、燃焼室に燃料を供給する燃料供給手段と、燃焼室から排気通路に排出された排気ガスの空燃比を検出する空燃比検出手段と、燃焼室から排気通路に排出された排気ガスを吸気通路を介して燃焼室に導入する排気再循環手段と、を具備する内燃機関の制御装置に関する。そして、本発明では、前記吸入空気量検出手段の検出精度と前記燃料供給手段の燃料供給精度とに基づいて算出される第1精度が前記空燃比検出手段の検出精度に基づいて算出される第2精度よりも高いときには、前記吸入空気量検出手段によって検出される吸入空気量がその目標値に一致するように前記排気再循環手段によって燃焼室に導入される排気ガスの量が制御される。一方、本発明では、前記第1精度が前記第2精度以下であるときには、前記空燃比検出手段によって検出される空燃比がその目標値に一致するように前記排気再循環手段によって燃焼室に導入される排気ガスの量が制御される。 The present invention includes an intake air amount detecting means for detecting an intake air amount that is an amount of air sucked into the combustion chamber, a fuel supply means for supplying fuel to the combustion chamber, and an exhaust passage discharged from the combustion chamber. A control apparatus for an internal combustion engine, comprising: an air-fuel ratio detection means for detecting an air-fuel ratio of exhaust gas; and an exhaust gas recirculation means for introducing the exhaust gas discharged from the combustion chamber into the exhaust passage into the combustion chamber via the intake passage. About. In the present invention, the first accuracy calculated based on the detection accuracy of the intake air amount detection means and the fuel supply accuracy of the fuel supply means is calculated based on the detection accuracy of the air-fuel ratio detection means. When the accuracy is higher than two, the amount of exhaust gas introduced into the combustion chamber is controlled by the exhaust gas recirculation unit so that the intake air amount detected by the intake air amount detection unit matches the target value. On the other hand, in the present invention, when the first accuracy is less than or equal to the second accuracy, the exhaust gas recirculation means introduces the air into the combustion chamber so that the air-fuel ratio detected by the air-fuel ratio detection means matches the target value. The amount of exhaust gas emitted is controlled.
 本発明によれば、以下の効果が得られる。すなわち、吸入空気量検出手段の検出精度、燃料供給手段の燃料供給精度、および、空燃比検出手段の検出精度は、機関運転状態(すなわち、内燃機関の運転状態)に応じて変化する。 According to the present invention, the following effects can be obtained. That is, the detection accuracy of the intake air amount detection means, the fuel supply accuracy of the fuel supply means, and the detection accuracy of the air-fuel ratio detection means vary depending on the engine operating state (that is, the operating state of the internal combustion engine).
 ここで、本発明では、第1精度が第2精度よりも高いとき、すなわち、空燃比検出手段によって検出される空燃比の精度よりも吸入空気量検出手段によって検出される吸入空気量の精度および燃料供給手段によって燃焼室に供給される燃料の量の精度のほうが高いときには、空燃比検出手段によって検出される空燃比に基づいて燃焼室に導入される排気ガスの量が制御されるのではなく、吸入空気量検出手段によって検出される吸入空気量に基づいて燃焼室に導入される排気ガスの量が制御される。つまり、このとき、より精度の高いパラメータに基づいて燃焼室に導入される排気ガスの量が制御される。このため、目標値に対する吸入空気量の追従性が高く、したがって、排気ガス中のエミッション性能が高く維持される。 Here, in the present invention, when the first accuracy is higher than the second accuracy, that is, the accuracy of the intake air amount detected by the intake air amount detection unit than the accuracy of the air-fuel ratio detected by the air-fuel ratio detection unit, and When the accuracy of the amount of fuel supplied to the combustion chamber by the fuel supply means is higher, the amount of exhaust gas introduced into the combustion chamber is not controlled based on the air-fuel ratio detected by the air-fuel ratio detection means. The amount of exhaust gas introduced into the combustion chamber is controlled based on the intake air amount detected by the intake air amount detection means. That is, at this time, the amount of exhaust gas introduced into the combustion chamber is controlled based on a parameter with higher accuracy. For this reason, the followability of the intake air amount with respect to the target value is high, and thus the emission performance in the exhaust gas is maintained high.
 一方、本発明では、第2精度が第1精度以上であるとき、すなわち、吸入空気量検出手段によって検出される吸入空気量の精度および燃料供給手段によって燃焼室に供給される燃料の量の精度よりも空燃比検出手段によって検出される空燃比の精度のほうが高いときには、吸入空気量検出手段によって検出される吸入空気量に基づいて燃焼室に導入される排気ガスの量が制御されるのではなく、空燃比検出手段によって検出される空燃比に基づいて燃焼室に導入される排気ガスの量が制御される。つまり、このときにも、より精度の高いパラメータに基づいて燃焼室に導入される排気ガスの量が制御される。このため、目標値に対する空燃比の追従性が高く、したがって、排気ガス中のエミッション性能が高く維持される。 On the other hand, in the present invention, when the second accuracy is equal to or higher than the first accuracy, that is, the accuracy of the intake air amount detected by the intake air amount detection means and the accuracy of the amount of fuel supplied to the combustion chamber by the fuel supply means. When the accuracy of the air-fuel ratio detected by the air-fuel ratio detection unit is higher than the amount of exhaust gas introduced into the combustion chamber based on the intake air amount detected by the intake air amount detection unit Instead, the amount of exhaust gas introduced into the combustion chamber is controlled based on the air-fuel ratio detected by the air-fuel ratio detection means. That is, also at this time, the amount of exhaust gas introduced into the combustion chamber is controlled based on a parameter with higher accuracy. For this reason, the followability of the air-fuel ratio with respect to the target value is high, and thus the emission performance in the exhaust gas is maintained high.
 したがって、本発明によれば、機関運転状態にかかわらず、目標値追従性を高く維持し、排気ガス中のエミッション性能を高く維持することができるという効果が得られる。 Therefore, according to the present invention, the target value followability can be maintained high regardless of the engine operating state, and the emission performance in the exhaust gas can be maintained high.
 なお、上記発明において、前記吸入空気量検出手段の検出精度として吸入空気量が定常状態にあるときの当該吸入空気量検出手段の検出精度を採用することができる。 In the above invention, the detection accuracy of the intake air amount detection means when the intake air amount is in a steady state can be adopted as the detection accuracy of the intake air amount detection means.
 この場合、以下の効果が得られる。すなわち、吸入空気量が過渡状態にあるときの吸入空気量検出手段の検出精度よりも、吸入空気量が定常状態にあるときの吸入空気量検出手段の検出精度のほうが、吸入空気量検出手段の検出精度に大きく影響する。したがって、吸入空気量検出手段の検出精度として、吸入空気量が定常状態にあるときの吸入空気量検出手段の検出精度を採用した場合、目標値追従性をより高く維持し、排気ガス中のエミッション性能をより高く維持することができるという効果が得られる。 In this case, the following effects can be obtained. That is, the detection accuracy of the intake air amount detection means when the intake air amount is in a steady state is higher than the detection accuracy of the intake air amount detection means when the intake air amount is in a transient state. This greatly affects the detection accuracy. Therefore, when the detection accuracy of the intake air amount detection means when the intake air amount is in a steady state is adopted as the detection accuracy of the intake air amount detection means, the target value followability is maintained higher, and the emission in the exhaust gas The effect that performance can be maintained higher is acquired.
また、上記発明において、前記燃料供給手段の燃料供給精度として当該燃料供給手段によって燃焼室に供給される燃料の量が定常状態にあるときの当該燃焼供給手段の燃料供給精度を採用することができる。 In the above invention, the fuel supply accuracy of the combustion supply means when the amount of fuel supplied to the combustion chamber by the fuel supply means is in a steady state can be adopted as the fuel supply accuracy of the fuel supply means. .
 この場合、以下の効果が得られる。すなわち、燃料供給手段によって燃焼室に供給される燃料の量(以下この量を「燃料供給量」という)が過渡状態にあるときの燃料供給手段の燃料供給精度よりも、燃料供給量が定常状態にあるときの燃料供給手段の燃料供給精度のほうが、燃料供給手段の燃料供給精度に大きく影響する。したがって、燃料供給手段の燃料供給精度として、燃料供給量が定常状態にあるときの燃料供給手段の燃料供給精度を採用した場合、目標値追従性をより高く維持し、排気ガス中のエミッション性能をより高く維持することができるという効果が得られる。 In this case, the following effects can be obtained. That is, the amount of fuel supplied to the combustion chamber by the fuel supply means (hereinafter referred to as “fuel supply amount”) is in a steady state rather than the fuel supply accuracy of the fuel supply means when in a transient state. The fuel supply accuracy of the fuel supply unit when the fuel supply unit is in the above condition greatly affects the fuel supply accuracy of the fuel supply unit. Therefore, when the fuel supply accuracy of the fuel supply means when the fuel supply amount is in a steady state is adopted as the fuel supply accuracy of the fuel supply means, the target value followability is maintained higher and the emission performance in the exhaust gas is improved. The effect that it can maintain more highly is acquired.
 また、上記発明において、前記空燃比検出手段の検出精度として燃焼室から排気通路に排出された排気ガスの空燃比が定常状態にあるときの当該空燃比検出手段の検出精度と燃焼室から排気通路に排出された排気ガスの空燃比が過渡状態にあるときの当該空燃比検出手段の検出精度とを採用することができる。 In the above invention, as the detection accuracy of the air-fuel ratio detection means, the detection accuracy of the air-fuel ratio detection means when the air-fuel ratio of the exhaust gas discharged from the combustion chamber to the exhaust passage is in a steady state and the exhaust passage from the combustion chamber The detection accuracy of the air-fuel ratio detection means when the air-fuel ratio of the exhaust gas exhausted in a transient state can be employed.
 この場合、以下の効果が得られる。すなわち、空燃比が定常状態にあるときの空燃比検出手段の検出精度も、空燃比が過渡状態にあるときの空燃比検出手段の検出精度も、等しく、空燃比検出手段の検出精度に大きく影響する。したがって、空燃比検出手段の検出精度として、空燃比が定常状態にあるときの空燃比検出手段の検出精度と空燃比が過渡状態にあるときの空燃比検出手段の検出精度とを採用した場合、目標値追従性をより高く維持し、排気ガス中のエミッション性能をより高く維持することができるという効果が得られる。 In this case, the following effects can be obtained. That is, the detection accuracy of the air-fuel ratio detection means when the air-fuel ratio is in a steady state and the detection accuracy of the air-fuel ratio detection means when the air-fuel ratio is in a transient state are equal, greatly affecting the detection accuracy of the air-fuel ratio detection means. To do. Therefore, when the detection accuracy of the air-fuel ratio detection means when the air-fuel ratio is in a steady state and the detection accuracy of the air-fuel ratio detection means when the air-fuel ratio is in a transient state are adopted as the detection accuracy of the air-fuel ratio detection means, The effect that the target value followability can be maintained higher and the emission performance in the exhaust gas can be maintained higher can be obtained.
本発明の制御装置が適用された内燃機関を示した図である。It is the figure which showed the internal combustion engine to which the control apparatus of this invention was applied. (A)は基準燃料噴射量を取得するために用いられるマップを示した図であり、(B)は基準スロットル弁開度を取得するために用いられるマップを示した図であり、(C)は基準EGR率を取得するために用いられるマップを示した図である。(A) is the figure which showed the map used in order to acquire the reference | standard fuel injection amount, (B) is the figure which showed the map used in order to acquire the reference | standard throttle valve opening degree, (C) FIG. 4 is a diagram showing a map used for obtaining a reference EGR rate. (A)は基準吸入空気量を取得するために用いられるマップを示した図であり、(B)は基準空燃比を取得するために用いられるマップを示した図である。(A) is the figure which showed the map used in order to acquire the reference | standard intake air amount, (B) is the figure which showed the map used in order to acquire a reference | standard air-fuel ratio. (A)は燃料噴射弁の制御を実行するルーチンの一例を示した図であり、(B)は目標燃料噴射量の設定を実行するルーチンの一例を示した図である。(A) is a diagram showing an example of a routine for executing control of a fuel injection valve, and (B) is a diagram showing an example of a routine for executing setting of a target fuel injection amount. (A)はスロットル弁の制御を実行するルーチンの一例を示した図であり、(B)は目標スロットル弁開度の設定を実行するルーチンの一例を示した図である。(A) is a diagram showing an example of a routine for executing control of a throttle valve, and (B) is a diagram showing an example of a routine for executing setting of a target throttle valve opening degree. EGR制御弁の制御を実行するルーチンの一例を示した図である。It is the figure which showed an example of the routine which performs control of an EGR control valve. 目標EGR率の設定を実行するルーチンの一例を示した図である。It is the figure which showed an example of the routine which performs the setting of the target EGR rate.
 以下、本発明の実施形態について説明する。本発明の制御装置が適用された内燃機関が図1に示されている。図1に示されている内燃機関は、圧縮自着火式の内燃機関(いわゆるディーゼルエンジン)である。図1において、10は内燃機関、20は内燃機関10の本体、21は燃料噴射弁、22は燃料ポンプ、23は燃料供給通路、30は吸気通路、31は吸気マニホルド、32は吸気管、33はスロットル弁、34はインタークーラ、35はエアフローメータ、36はエアクリーナ、37は吸気圧センサ、40は排気通路、41は排気マニホルド、42は排気管、43は空燃比センサ、50は排気再循環装置、70はアクセルペダル、71はアクセルペダル踏込量センサ、72はクランクポジションセンサ、80は電子制御装置をそれぞれ示している。吸気通路30は、吸気マニホルド31と吸気管32とから構成されている。排気通路40は、排気マニホルド41と排気管42とから構成されている。 Hereinafter, embodiments of the present invention will be described. FIG. 1 shows an internal combustion engine to which the control device of the present invention is applied. The internal combustion engine shown in FIG. 1 is a compression ignition type internal combustion engine (so-called diesel engine). In FIG. 1, 10 is an internal combustion engine, 20 is a main body of the internal combustion engine 10, 21 is a fuel injection valve, 22 is a fuel pump, 23 is a fuel supply passage, 30 is an intake passage, 31 is an intake manifold, 32 is an intake pipe, 33 , Throttle valve, 34 intercooler, 35 air flow meter, 36 air cleaner, 37 intake pressure sensor, 40 exhaust passage, 41 exhaust manifold, 42 exhaust pipe, 43 air-fuel ratio sensor, 50 exhaust recirculation 70, an accelerator pedal, 71 an accelerator pedal depression amount sensor, 72 a crank position sensor, and 80 an electronic control device. The intake passage 30 includes an intake manifold 31 and an intake pipe 32. The exhaust passage 40 includes an exhaust manifold 41 and an exhaust pipe 42.
 電子制御装置80は、マイクロコンピュータからなる。また、電子制御装置80は、CPU(マイクロプロセッサ)81、ROM(リードオンリメモリ)82、RAM(ランダムアクセスメモリ)83、バックアップRAM84、および、インターフェース85を有する。これらCPU81、ROM82、RAM83、バックアップRAM84、および、インターフェース85は、双方向バスによって互いに接続されている。 The electronic control device 80 is composed of a microcomputer. The electronic control unit 80 includes a CPU (microprocessor) 81, a ROM (read only memory) 82, a RAM (random access memory) 83, a backup RAM 84, and an interface 85. The CPU 81, ROM 82, RAM 83, backup RAM 84, and interface 85 are connected to each other by a bidirectional bus.
 燃料噴射弁21は、内燃機関の本体20に取り付けられている。燃料噴射弁21には、燃料供給通路23を介して燃料ポンプ22が接続されている。燃料ポンプ22は、燃料噴射弁21に燃料供給通路23を介して高圧の燃料を供給する。また、燃料噴射弁21は、電子制御装置80のインターフェース85に電気的に接続されている。電子制御装置80は、燃料噴射弁21に燃料を噴射させるための指令信号を燃料噴射弁21に供給する。また、燃料ポンプ22も、電子制御装置80のインターフェース85に電気的に接続されている。電子制御装置80は、燃料ポンプ22から燃料噴射弁21に供給される燃料の圧力が予め定められた圧力に維持されるように燃料ポンプ22の作動を制御する制御信号を燃料ポンプ22に供給する。なお、燃料噴射弁21は、その燃料噴射孔が燃焼室内に露出するように内燃機関の本体20に取り付けられている。したがって、電子制御装置80から燃料噴射弁21に指令信号が供給されると、燃料噴射弁21は燃焼室内に燃料を直接噴射する。 The fuel injection valve 21 is attached to the main body 20 of the internal combustion engine. A fuel pump 22 is connected to the fuel injection valve 21 via a fuel supply passage 23. The fuel pump 22 supplies high-pressure fuel to the fuel injection valve 21 via the fuel supply passage 23. The fuel injection valve 21 is electrically connected to the interface 85 of the electronic control device 80. The electronic control unit 80 supplies a command signal for causing the fuel injection valve 21 to inject fuel to the fuel injection valve 21. The fuel pump 22 is also electrically connected to the interface 85 of the electronic control device 80. The electronic control unit 80 supplies the fuel pump 22 with a control signal for controlling the operation of the fuel pump 22 so that the pressure of the fuel supplied from the fuel pump 22 to the fuel injection valve 21 is maintained at a predetermined pressure. . The fuel injection valve 21 is attached to the main body 20 of the internal combustion engine so that its fuel injection hole is exposed in the combustion chamber. Therefore, when a command signal is supplied from the electronic control unit 80 to the fuel injection valve 21, the fuel injection valve 21 directly injects fuel into the combustion chamber.
 吸気マニホルド31は、その一端で複数の管に分岐しており、これら分岐した管は、それぞれ内燃機関の本体20の燃焼室にそれぞれ対応して形成されている吸気ポート(図示せず)に接続されている。また、吸気マニホルド31は、その他端で吸気管32の一端に接続されている。排気マニホルド41は、その一端で複数の管に分岐しており、これら分岐した管は、それぞれ内燃機関の本体20の燃焼室にそれぞれ対応して形成されている排気ポート(図示せず)に接続されている。また、排気マニホルド41は、その他端で排気管42の一端に接続されている。 The intake manifold 31 is branched into a plurality of pipes at one end thereof, and these branched pipes are connected to intake ports (not shown) formed respectively corresponding to the combustion chambers of the main body 20 of the internal combustion engine. Has been. The intake manifold 31 is connected to one end of the intake pipe 32 at the other end. The exhaust manifold 41 is branched into a plurality of pipes at one end thereof, and these branched pipes are connected to exhaust ports (not shown) formed respectively corresponding to the combustion chambers of the main body 20 of the internal combustion engine. Has been. The exhaust manifold 41 is connected to one end of the exhaust pipe 42 at the other end.
 スロットル弁33は、吸気管32に配置されている。また、スロットル弁33の開度(以下この開度を「スロットル弁開度」という)が変更されると、スロットル弁33が配置された領域における吸気管32内の流路面積が変わる。これによってスロットル弁33を通過する空気の量が変わり、ひいては、燃焼室に吸入される空気の量が変わる。スロットル33は、電子制御装置80のインターフェース85に電気的に接続されている。電子制御装置80は、スロットル弁33を動作させるための制御信号をスロットル弁33に供給する。 The throttle valve 33 is disposed in the intake pipe 32. When the opening of the throttle valve 33 (hereinafter, this opening is referred to as “throttle valve opening”) is changed, the flow path area in the intake pipe 32 in the region where the throttle valve 33 is disposed changes. As a result, the amount of air passing through the throttle valve 33 changes, and as a result, the amount of air taken into the combustion chamber changes. The throttle 33 is electrically connected to the interface 85 of the electronic control device 80. The electronic control unit 80 supplies a control signal for operating the throttle valve 33 to the throttle valve 33.
 インタークーラ34は、スロットル弁33よりも上流において吸気管32に配置されている。インタークーラ34は、そこに流入する空気を冷却する。 The intercooler 34 is disposed in the intake pipe 32 upstream of the throttle valve 33. The intercooler 34 cools the air flowing into the intercooler 34.
 エアフローメータ35は、インタークーラ34よりも上流において吸気管32に配置されている。また、エアフローメータ35は、電子制御装置80のインターフェース85に電気的に接続されている。エアフローメータ35は、そこを通過する空気の量に対応する出力値を出力する。この出力値は、電子制御装置80に入力される。電子制御装置80は、この出力値に基づいてエアフローメータ35を通過する空気の量、つまり、燃焼室に吸入される空気の量を算出する。 The air flow meter 35 is disposed in the intake pipe 32 upstream of the intercooler 34. The air flow meter 35 is electrically connected to the interface 85 of the electronic control device 80. The air flow meter 35 outputs an output value corresponding to the amount of air passing therethrough. This output value is input to the electronic control unit 80. Based on this output value, the electronic control unit 80 calculates the amount of air passing through the air flow meter 35, that is, the amount of air taken into the combustion chamber.
 吸気圧センサ37は、スロットル弁33よりも下流の吸気通路30(より具体的には、吸気マニホルド31)に配置されている。また、吸気圧センサ37は、電子制御装置80のインターフェース85に電気的に接続されている。吸気圧センサ37は、その周辺のガスの圧力(つまり、吸気マニホルド31内のガスの圧力であって、燃焼室に吸入されるガスの圧力)に対応する出力値を出力する。電子制御装置80は、この出力値に基づいて吸気圧センサ37周りのガスの圧力、すなわち、燃焼室に吸入されるガスの圧力(すなわち、吸気圧)を算出する。 The intake pressure sensor 37 is disposed in the intake passage 30 (more specifically, the intake manifold 31) downstream of the throttle valve 33. The intake pressure sensor 37 is electrically connected to the interface 85 of the electronic control device 80. The intake pressure sensor 37 outputs an output value corresponding to the pressure of the surrounding gas (that is, the pressure of the gas in the intake manifold 31 and the pressure of the gas sucked into the combustion chamber). Based on this output value, the electronic control unit 80 calculates the pressure of the gas around the intake pressure sensor 37, that is, the pressure of the gas sucked into the combustion chamber (that is, the intake pressure).
 空燃比センサ43は、排気通路40(より具体的には、排気管42)に配置されている。また、空燃比センサ43は、電子制御装置80のインターフェース85に電気的に接続されている。空燃比センサ43は、そこに到達する排気ガス中の酸素濃度に対応する出力値を出力する。電子制御装置80は、この出力値に基づいて排気ガスの空燃比、すなわち、燃焼室に形成される混合気の空燃比を算出する。 The air-fuel ratio sensor 43 is disposed in the exhaust passage 40 (more specifically, the exhaust pipe 42). The air-fuel ratio sensor 43 is electrically connected to the interface 85 of the electronic control device 80. The air-fuel ratio sensor 43 outputs an output value corresponding to the oxygen concentration in the exhaust gas reaching there. Based on this output value, the electronic control unit 80 calculates the air-fuel ratio of the exhaust gas, that is, the air-fuel ratio of the air-fuel mixture formed in the combustion chamber.
 アクセルペダル70には、アクセルペダル踏込量センサ71が接続されている。アクセルペダル踏込量センサ71は、電子制御装置80のインターフェース85に電気的に接続されている。アクセルペダル踏込量センサ71は、アクセルペダル70の踏込量に対応する出力値を出力する。この出力値は、電子制御装置80に入力される。電子制御装置80は、この出力値に基づいてアクセルペダル70の踏込量、ひいては、内燃機関に要求されているトルク(以下このトルクを「要求機関トルク」という)を算出する。 Accelerator pedal depression amount sensor 71 is connected to accelerator pedal 70. The accelerator pedal depression amount sensor 71 is electrically connected to the interface 85 of the electronic control unit 80. The accelerator pedal depression amount sensor 71 outputs an output value corresponding to the depression amount of the accelerator pedal 70. This output value is input to the electronic control unit 80. The electronic control unit 80 calculates the amount of depression of the accelerator pedal 70 and thus the torque required for the internal combustion engine (hereinafter, this torque is referred to as “requested engine torque”) based on the output value.
 クランクポジションセンサ72は、内燃機関のクランクシャフト(図示せず)近傍に配置されている。また、クランクポジションセンサ72は、電子制御装置80のインターフェース85に電気的に接続されている。クランクポジションセンサ72は、クランクシャフトの回転位相に対応する出力値を出力する。この出力値は、電子制御装置80に入力される。電子制御装置80はこの出力値に基づいて機関回転数を算出する。 The crank position sensor 72 is disposed in the vicinity of the crankshaft (not shown) of the internal combustion engine. The crank position sensor 72 is electrically connected to the interface 85 of the electronic control unit 80. The crank position sensor 72 outputs an output value corresponding to the rotational phase of the crankshaft. This output value is input to the electronic control unit 80. The electronic control unit 80 calculates the engine speed based on this output value.
 EGR装置50は、排気再循環管(以下この管を「EGR管」という)51と、排気再循環制御弁(以下この制御弁を「EGR制御弁」という)52と、排気再循環クーラ(以下このクーラを「EGRクーラ」という)53と、を具備する。EGR装置50は、燃焼室から排気通路40に排出された排気ガスをEGR管51を介して吸気通路30に導入することができる。EGR管51は、その一端で排気通路40(より具体的には、排気マニホルド41)に接続されているとともに、その他端で吸気通路30(より具体的には、吸気マニホルド31)に接続されている。すなわち、EGR管51は、排気通路40を吸気通路30に連結している。 The EGR device 50 includes an exhaust gas recirculation pipe (hereinafter referred to as “EGR pipe”) 51, an exhaust gas recirculation control valve (hereinafter referred to as “EGR control valve”) 52, and an exhaust gas recirculation cooler (hereinafter referred to as “EGR control valve”). This cooler is referred to as an “EGR cooler” 53. The EGR device 50 can introduce the exhaust gas discharged from the combustion chamber into the exhaust passage 40 into the intake passage 30 via the EGR pipe 51. The EGR pipe 51 is connected to the exhaust passage 40 (more specifically, the exhaust manifold 41) at one end, and connected to the intake passage 30 (more specifically, the intake manifold 31) at the other end. Yes. That is, the EGR pipe 51 connects the exhaust passage 40 to the intake passage 30.
 EGR制御弁52は、EGR管51に配置されている。EGR制御弁52の開度(以下この開度を「EGR制御弁開度」という)が変更されると、EGR制御弁52を通過する排気ガスの量が変わり、ひいては、吸気通路30に導入される排気ガスの量が変わる。EGR制御弁は、電子制御装置80のインターフェース85に電気的に接続されている。電子制御装置80は、EGR制御弁52を動作させるための制御信号をEGR制御弁に供給する。EGRクーラ53は、EGR管51に配置されている。EGRクーラ53は、EGR管51を流れる排気ガスを冷却する。 The EGR control valve 52 is disposed in the EGR pipe 51. When the opening degree of the EGR control valve 52 (hereinafter, this opening degree is referred to as “EGR control valve opening degree”) is changed, the amount of exhaust gas passing through the EGR control valve 52 is changed, and eventually introduced into the intake passage 30. The amount of exhaust gas is changed. The EGR control valve is electrically connected to the interface 85 of the electronic control unit 80. The electronic control unit 80 supplies a control signal for operating the EGR control valve 52 to the EGR control valve. The EGR cooler 53 is disposed in the EGR pipe 51. The EGR cooler 53 cools the exhaust gas flowing through the EGR pipe 51.
 次に、本実施形態の燃料噴射弁の制御について説明する。なお、以下の説明において「燃料噴射量」とは「燃料噴射弁から噴射される燃料の量」を意味する。本実施形態では、燃料噴射量の目標値(以下この目標値を「目標燃料噴射量」という)に相当する量の燃料を燃料噴射弁から噴射させる指令信号が電子制御装置において算出され、この指令信号が電子制御装置から燃料噴射弁に供給され、これによって、燃料噴射弁が動作せしめられる。 Next, control of the fuel injection valve of this embodiment will be described. In the following description, “fuel injection amount” means “amount of fuel injected from the fuel injection valve”. In the present embodiment, a command signal for injecting an amount of fuel corresponding to a target value of the fuel injection amount (hereinafter, this target value is referred to as “target fuel injection amount”) from the fuel injection valve is calculated by the electronic control unit. A signal is supplied from the electronic control unit to the fuel injector, which causes the fuel injector to operate.
 次に、本実施形態の目標燃料噴射量の設定について説明する。本実施形態では、図1に示されている内燃機関において、アクセルペダルの踏込量に応じた適切な燃料噴射量が実験等によって予め求められる。そして、これら求められた燃料噴射量が図2(A)に示されているようにアクセルペダルの踏込量Dacの関数のマップの形で基準燃料噴射量Qbとして電子制御装置に記憶されている。そして、機関運転中、その時々のアクセルペダルの踏込量Dacに対応する基準燃料噴射量Qbが図2(A)のマップから取得され、この取得された基準燃料噴射量Qbが目標燃料噴射量に設定される。なお、図2(A)に示されているように、基準燃料噴射量Qbはアクセルペダルの踏込量Dacが大きくなるほど多くなる。 Next, the setting of the target fuel injection amount of this embodiment will be described. In the present embodiment, in the internal combustion engine shown in FIG. 1, an appropriate fuel injection amount corresponding to the depression amount of the accelerator pedal is obtained in advance by experiments or the like. The obtained fuel injection amount is stored in the electronic control unit as a reference fuel injection amount Qb in the form of a map of a function of the accelerator pedal depression amount Dac as shown in FIG. Then, during engine operation, the reference fuel injection amount Qb corresponding to the accelerator pedal depression amount Dac at that time is acquired from the map of FIG. 2A, and the acquired reference fuel injection amount Qb becomes the target fuel injection amount. Is set. Note that, as shown in FIG. 2A, the reference fuel injection amount Qb increases as the accelerator pedal depression amount Dac increases.
 次に、本実施形態のスロットル弁の制御について説明する。なお、以下の説明において「スロットル弁開度」とは「スロットル弁の開度」を意味する。本実施形態では、スロットル弁開度の目標値(以下この目標値を「目標スロットル弁開度」という)に相当するスロットル弁開度が達成されるようにスロットル弁を動作させる制御信号が電子制御装置において算出され、この制御信号が電子制御装置からスロットル弁に供給され、これによって、スロットル弁が動作せしめられる。 Next, control of the throttle valve of this embodiment will be described. In the following description, “throttle valve opening” means “throttle valve opening”. In this embodiment, a control signal for operating the throttle valve is electronically controlled so that a throttle valve opening corresponding to a target value of the throttle valve opening (hereinafter, this target value is referred to as “target throttle valve opening”) is achieved. The control signal is calculated in the device, and this control signal is supplied from the electronic control device to the throttle valve, whereby the throttle valve is operated.
 次に、本実施形態の目標スロットル弁開度の設定について説明する。本実施形態では、機関回転数と目標燃料噴射量とよって規定される機関運転状態に応じた適切なスロットル弁開度が実験等によって予め求められる。そして、これら求められたスロットル弁開度が図2(B)に示されているように機関回転数NEと目標燃料噴射量Qtとの関数のマップの形で基準スロットル弁開度Dthbとして電子制御装置に記憶されている。そして、機関運転中、その時々の機関回転数NEとその時々の目標燃料噴射量Qtとに対応する基準スロットル弁開度Dthbが図2(B)のマップから取得される。そして、この取得された基準スロットル弁開度Dthbが目標スロットル弁開度に設定される。なお、図2(B)のマップでは、機関回転数NEが大きいほど、基準スロットル弁開度Dthbが大きく、目標燃料噴射量Qtが大きいほど、基準スロットル弁開度Dthbが大きい。 Next, the setting of the target throttle valve opening according to this embodiment will be described. In the present embodiment, an appropriate throttle valve opening corresponding to the engine operating state defined by the engine speed and the target fuel injection amount is obtained in advance by experiments or the like. The obtained throttle valve opening is electronically controlled as a reference throttle valve opening Dthb in the form of a function map of the engine speed NE and the target fuel injection amount Qt as shown in FIG. Stored in the device. During engine operation, the reference throttle valve opening degree Dthb corresponding to the current engine speed NE and the current target fuel injection amount Qt is acquired from the map of FIG. The acquired reference throttle valve opening Dthb is set to the target throttle valve opening. In the map of FIG. 2B, the reference throttle valve opening degree Dthb is larger as the engine speed NE is larger, and the reference throttle valve opening degree Dthb is larger as the target fuel injection amount Qt is larger.
 次に、本実施形態のEGR制御弁の制御について説明する。なお、以下の説明において「EGR率」とは「燃焼室に吸入されるガスの量に対する燃焼室に吸入される排気ガスの量の比」を意味する。本実施形態では、EGR率の目標値(以下この目標値を「目標EGR率」という)が達成されるようにEGR制御弁を動作させる制御信号が電子制御装置において算出され、この制御信号が電子制御装置からEGR制御弁に供給され、これによって、EGR制御弁が動作せしめられる。 Next, control of the EGR control valve of this embodiment will be described. In the following description, “EGR rate” means “ratio of the amount of exhaust gas sucked into the combustion chamber to the amount of gas sucked into the combustion chamber”. In the present embodiment, a control signal for operating the EGR control valve is calculated in the electronic control device so that the target value of the EGR rate (hereinafter, this target value is referred to as “target EGR rate”) is achieved. The EGR control valve is supplied from the control device, and thereby the EGR control valve is operated.
 次に、本実施形態の目標EGR率の設定について説明する。本実施形態では、機関回転数と目標燃料噴射量とによって規定される機関運転状態に応じた適切なEGR率が実験等によって予め求められる。そして、これら求められたEGR率が図2(C)に示されているように機関回転数NEと目標燃料噴射量Qtとの関数のマップの形で基準EGR率Regrbとして電子制御装置に記憶されている。そして、機関運転中、その時々の機関回転数NEとその時々の目標燃料噴射量Qtとに対応する基準EGR率Regrbが図2(C)のマップから取得される。 Next, the setting of the target EGR rate of this embodiment will be described. In the present embodiment, an appropriate EGR rate corresponding to the engine operating state defined by the engine speed and the target fuel injection amount is obtained in advance by experiments or the like. The obtained EGR rate is stored in the electronic control unit as a reference EGR rate Regrb in the form of a function map of the engine speed NE and the target fuel injection amount Qt as shown in FIG. ing. Then, during engine operation, the reference EGR rate Regrb corresponding to the current engine speed NE and the current target fuel injection amount Qt is acquired from the map of FIG.
 一方、本実施形態では、機関回転数と目標燃料噴射量とによって規定される機関運転状態に応じた適切な吸入空気量が実験等によって予め求められる。そして、これら求められた吸入空気量が図3(A)に示されているように機関回転数NEと目標燃料噴射量Qtとの関数のマップの形で基準吸入空気量GAbとして電子制御装置に記憶されている。さらに、本実施形態では、機関回転数と目標燃料噴射量とによって規定される機関運転状態に応じた適切な空燃比が実験等によって予め求められる。そして、これら求められた空燃比が図2(C)に示されているように機関回転数NEと目標燃料噴射量Qtとの関数のマップの形で基準空燃比AFbとして電子制御装置に記憶されている。 On the other hand, in the present embodiment, an appropriate intake air amount corresponding to the engine operating state defined by the engine speed and the target fuel injection amount is obtained in advance by experiments or the like. Then, as shown in FIG. 3A, the obtained intake air amount is supplied to the electronic control unit as a reference intake air amount GAb in the form of a map of a function of the engine speed NE and the target fuel injection amount Qt. It is remembered. Furthermore, in the present embodiment, an appropriate air-fuel ratio corresponding to the engine operating state defined by the engine speed and the target fuel injection amount is obtained in advance by experiments or the like. The obtained air-fuel ratio is stored in the electronic control unit as a reference air-fuel ratio AFb in the form of a function map of the engine speed NE and the target fuel injection amount Qt as shown in FIG. 2C. ing.
 そして、エアフローメータの検出精度と燃料噴射弁の燃料噴射精度とに基づいて算出される精度(以下この精度を「第1精度」という)が空燃比センサの検出精度に基づいて算出される精度(以下この精度を「第2精度」という)よりも高いときには、その時の機関回転数NEとその時の目標燃料噴射量Qtとに対応する基準吸入空気量GAbが図3(A)のマップから取得され、この取得された基準吸入空気量GAbが目標吸入空気量に設定される。そして、この設定された目標吸入空気量に対する実際の吸入空気量(すなわち、エアフローメータによって検出される吸入空気量)の偏差(以下この偏差を「吸入空気量偏差」という)が算出される。そして、この算出された吸入空気量偏差に基づいて当該吸入空気量偏差が零になるようにEGR率が変化せしめられるように現在の目標EGR率を補正するための補正係数(以下この補正係数を「第1補正係数」という)が算出される。そして、この算出された第1補正係数によって上記取得された基準EGR率を補正することによって得られる値が目標EGR率に設定される。つまり、この場合、実際の吸入空気量が目標吸入空気量に一致するようにEGR率が制御されることになる。 An accuracy calculated based on the detection accuracy of the air flow meter and the fuel injection accuracy of the fuel injection valve (hereinafter referred to as “first accuracy”) is calculated based on the detection accuracy of the air-fuel ratio sensor ( Hereinafter, when this accuracy is higher than “second accuracy”), the reference intake air amount GAb corresponding to the engine speed NE at that time and the target fuel injection amount Qt at that time is acquired from the map of FIG. The acquired reference intake air amount GAb is set as the target intake air amount. Then, a deviation of the actual intake air amount (that is, the intake air amount detected by the air flow meter) with respect to the set target intake air amount (hereinafter, this deviation is referred to as “intake air amount deviation”) is calculated. Based on the calculated intake air amount deviation, a correction coefficient for correcting the current target EGR rate so that the EGR rate is changed so that the intake air amount deviation becomes zero (hereinafter referred to as this correction coefficient). (Referred to as “first correction coefficient”). Then, a value obtained by correcting the acquired reference EGR rate with the calculated first correction coefficient is set as the target EGR rate. That is, in this case, the EGR rate is controlled so that the actual intake air amount matches the target intake air amount.
 一方、第1精度が第2精度以下であるときには、その時の機関回転数NEとその時の目標燃料噴射量Qtとに対応する基準空燃比AFbが図3(B)のマップから取得され、この取得された基準空燃比AFbが目標空燃比AFtに設定される。そして、この設定された目標空燃比に対する実際の空燃比(すなわち、空燃比センサによって検出される空燃比)の偏差(以下この偏差を「空燃比偏差」という)が算出される。そして、この算出された空燃比偏差に基づいて当該空燃比偏差が零になるようにEGR率が変化せしめられるように現在の目標EGR率を補正するための補正係数(以下この補正係数を「第2補正係数」という)が算出される。そして、この算出された第2補正係数によって上記取得された基準EGR率を補正することによって得られる値が目標EGR率に設定される。つまり、この場合、実際の空燃比が目標空燃比に一致するようにEGR率が制御されることになる。 On the other hand, when the first accuracy is less than or equal to the second accuracy, the reference air-fuel ratio AFb corresponding to the engine speed NE at that time and the target fuel injection amount Qt at that time is acquired from the map of FIG. The set reference air-fuel ratio AFb is set to the target air-fuel ratio AFt. Then, a deviation of the actual air-fuel ratio (that is, the air-fuel ratio detected by the air-fuel ratio sensor) with respect to the set target air-fuel ratio (hereinafter, this deviation is referred to as “air-fuel ratio deviation”) is calculated. Then, based on the calculated air-fuel ratio deviation, a correction coefficient for correcting the current target EGR rate so that the EGR ratio is changed so that the air-fuel ratio deviation becomes zero (hereinafter, this correction coefficient is referred to as “first correction coefficient”). 2 correction coefficient ") is calculated. Then, a value obtained by correcting the acquired reference EGR rate by the calculated second correction coefficient is set as the target EGR rate. That is, in this case, the EGR rate is controlled so that the actual air-fuel ratio matches the target air-fuel ratio.
 本実施形態によれば、以下の効果が得られる。すなわち、エアフローメータの検出精度、燃料噴射弁の燃料噴射精度、および、空燃比センサの検出精度は、機関運転状態に応じて変化する。 According to this embodiment, the following effects can be obtained. That is, the detection accuracy of the air flow meter, the fuel injection accuracy of the fuel injection valve, and the detection accuracy of the air-fuel ratio sensor vary according to the engine operating state.
 ここで、本実施形態では、第1精度が第2精度よりも高いとき、すなわち、空燃比センサによって検出される空燃比の精度よりも、エアフローメータによって検出される吸入空気量の精度および燃料噴射弁から噴射される燃料の量の精度のほうが高いときには、空燃比センサによって検出される空燃比に基づいてEGR率が制御されるのではなく、エアフローメータによって検出される吸入空気量に基づいてEGR率が制御され、ひいては、空燃比が目標空燃比に制御される。つまり、このとき、より精度の高いパラメータに基づいてEGR率が制御され、これによって、空燃比が目標空燃比に制御される。このため、目標吸入空気量に対する吸入空気量の追従性が高く、したがって、目標空燃比に対する空燃比の追従性が高く、したがって、排気ガス中のエミッション性能が高く維持される。 Here, in the present embodiment, when the first accuracy is higher than the second accuracy, that is, the accuracy of the intake air amount detected by the air flow meter and the fuel injection than the accuracy of the air-fuel ratio detected by the air-fuel ratio sensor. When the accuracy of the amount of fuel injected from the valve is higher, the EGR rate is not controlled based on the air-fuel ratio detected by the air-fuel ratio sensor, but based on the intake air amount detected by the air flow meter. The rate is controlled, and consequently the air-fuel ratio is controlled to the target air-fuel ratio. That is, at this time, the EGR rate is controlled based on a parameter with higher accuracy, and thereby the air-fuel ratio is controlled to the target air-fuel ratio. For this reason, the followability of the intake air amount with respect to the target intake air amount is high, and accordingly, the followability of the air / fuel ratio with respect to the target air / fuel ratio is high, so that the emission performance in the exhaust gas is maintained high.
 一方、本実施形態では、第2精度が第1精度以上であるとき、すなわち、エアフローメータによって検出される吸入空気量の精度および燃料噴射弁から噴射される燃料の量の精度よりも、空燃比センサによって検出される空燃比の精度のほうが高いときには、エアフローメータによって検出される吸入空気量に基づいてEGR率が制御されるのではなく、空燃比センサによって検出される空燃比に基づいてEGR率が制御され、ひいては、空燃比が目標空燃比に制御される。つまり、このときにも、より精度の高いパラメータに基づいてEGR率が制御され、これによって、空燃比が目標空燃比に制御される。このため、目標空燃比に対する空燃比の追従性が高く、したがって、排気ガス中のエミッション性能が高く維持される。 On the other hand, in the present embodiment, when the second accuracy is equal to or higher than the first accuracy, that is, the accuracy of the intake air amount detected by the air flow meter and the accuracy of the amount of fuel injected from the fuel injection valve, When the accuracy of the air-fuel ratio detected by the sensor is higher, the EGR rate is not controlled based on the intake air amount detected by the air flow meter, but based on the air-fuel ratio detected by the air-fuel ratio sensor. Thus, the air-fuel ratio is controlled to the target air-fuel ratio. That is, also at this time, the EGR rate is controlled based on a parameter with higher accuracy, and thereby the air-fuel ratio is controlled to the target air-fuel ratio. For this reason, the followability of the air-fuel ratio with respect to the target air-fuel ratio is high, and thus the emission performance in the exhaust gas is maintained high.
 したがって、本実施形態によれば、機関運転状態にかかわらず、目標空燃比に対する空燃比の追従性を高く維持し、排気ガス中のエミッション性能を高く維持することができるという効果が得られる。 Therefore, according to the present embodiment, it is possible to obtain the effect that the air-fuel ratio followability with respect to the target air-fuel ratio can be kept high and the emission performance in the exhaust gas can be kept high regardless of the engine operating state.
 なお、上述した実施形態は、エアフローメータを具備する内燃機関に本発明を適用した場合の実施形態であるが、本発明は、広くは、吸入空気量を検出する手段を具備する内燃機関に適用可能である。また、上述した実施形態は、燃料噴射弁を具備する内燃機関に本発明を適用した場合の実施形態であるが、本発明は、広くは、燃焼室に燃料を供給する燃料供給手段を具備する内燃機関に適用可能である。また、上述した実施形態は、空燃比センサを具備する内燃機関に本発明を適用した場合の実施形態であるが、本発明は、広くは、燃焼室から排気通路に排出された排気ガスの空燃比を検出する空燃比検出手段を具備する内燃機関に適用可能である。また、上述した実施形態は、EGR装置を具備する内燃機関に本発明を適用した場合の実施形態であるが、本発明は、広くは、燃焼室から排気通路に排出された排気ガスを吸気通路を介して燃焼室に導入する排気再循環手段を具備する内燃機関に適用可能である。 The above-described embodiment is an embodiment in which the present invention is applied to an internal combustion engine having an air flow meter. However, the present invention is widely applied to an internal combustion engine having a means for detecting an intake air amount. Is possible. In addition, the above-described embodiment is an embodiment when the present invention is applied to an internal combustion engine including a fuel injection valve. However, the present invention broadly includes a fuel supply means for supplying fuel to the combustion chamber. Applicable to internal combustion engines. The above-described embodiment is an embodiment in which the present invention is applied to an internal combustion engine having an air-fuel ratio sensor. However, the present invention is broadly based on the exhaust gas exhausted from the combustion chamber into the exhaust passage. The present invention can be applied to an internal combustion engine having air-fuel ratio detection means for detecting the fuel ratio. In addition, the above-described embodiment is an embodiment in the case where the present invention is applied to an internal combustion engine having an EGR device. However, the present invention broadly relates to exhaust gas discharged from a combustion chamber into an exhaust passage. The present invention can be applied to an internal combustion engine having exhaust gas recirculation means introduced into the combustion chamber via the.
 次に、上述した実施形態の燃料噴射弁の制御を実行するルーチンの一例について説明する。このルーチンの一例が図4(A)に示されている。なお、このルーチンは、所定のクランク角度が到来する毎に開始されるルーチンである。図4(A)のルーチンが開始されると、始めに、ステップ10において、図4(B)のルーチン(このルーチンの詳細は後述する)で設定された最新の目標燃料噴射量Qtが取得される。次いで、ステップ11において、ステップ10で取得された目標燃料噴射量Qtに基づいて燃料噴射弁に供給すべき指令信号Siが算出される。次いで、ステップ12において、ステップ12で算出された指令信号Siが燃料噴射弁に供給され、その後、ルーチンが終了する。 Next, an example of a routine for executing control of the fuel injection valve according to the above-described embodiment will be described. An example of this routine is shown in FIG. Note that this routine is started every time a predetermined crank angle arrives. When the routine of FIG. 4A is started, first, at step 10, the latest target fuel injection amount Qt set in the routine of FIG. 4B (details of this routine will be described later) is acquired. The Next, at step 11, a command signal Si to be supplied to the fuel injection valve is calculated based on the target fuel injection amount Qt acquired at step 10. Next, at step 12, the command signal Si calculated at step 12 is supplied to the fuel injection valve, and then the routine ends.
 次に、上述した実施形態の目標燃料噴射量の設定を実行するルーチンの一例について説明する。このルーチンの一例が図4(B)に示されている。なお、このルーチンは、同ルーチンが終了されている場合において所定のクランク角度が到来する毎に開始されるルーチンである。図4(B)のルーチンが開始されると、始めに、ステップ15において、その時のアクセルペダル踏込量Dacが取得される。次いで、ステップ16において、ステップ15で取得されたアクセルペダル踏込量Dacに対応する基準燃料噴射量Qbが図2(A)のマップから取得される。次いで、ステップ17において、ステップ16で取得された基準燃料噴射量Qbが目標燃料噴射量Qtに設定され、その後、ルーチンが終了する。 Next, an example of a routine for executing the setting of the target fuel injection amount according to the above-described embodiment will be described. An example of this routine is shown in FIG. This routine is started every time a predetermined crank angle comes when the routine is finished. When the routine of FIG. 4B is started, first, in step 15, the accelerator pedal depression amount Dac at that time is acquired. Next, at step 16, the reference fuel injection amount Qb corresponding to the accelerator pedal depression amount Dac acquired at step 15 is acquired from the map of FIG. Next, at step 17, the reference fuel injection amount Qb acquired at step 16 is set to the target fuel injection amount Qt, and then the routine ends.
 次に、上述した実施形態のスロットル弁の制御を実行するルーチンの一例について説明する。このルーチンの一例が図5(A)に示されている。なお、このルーチンは、所定のクランク角度が到来する毎に開始されるルーチンである。図5(A)のルーチンが開始されると、始めに、ステップ20において、図5(B)のルーチン(このルーチンの詳細は後述する)で設定された最新の目標スロットル弁開度Dthtが取得される。次いで、ステップ21において、ステップ20で取得された目標スロットル弁開度Dthtに基づいてスロットル弁に供給すべき制御信号Sthが算出される。次いで、ステップ22において、ステップ21で算出された制御信号Sthがスロットル弁に供給され、その後、ルーチンが終了する。 Next, an example of a routine for executing control of the throttle valve of the above-described embodiment will be described. An example of this routine is shown in FIG. Note that this routine is started every time a predetermined crank angle arrives. When the routine of FIG. 5A is started, first, in step 20, the latest target throttle valve opening Dtht set in the routine of FIG. 5B (details of this routine will be described later) is acquired. Is done. Next, at step 21, a control signal Sth to be supplied to the throttle valve is calculated based on the target throttle valve opening degree Dtht acquired at step 20. Next, at step 22, the control signal Sth calculated at step 21 is supplied to the throttle valve, and then the routine ends.
 次に、上述した実施形態の目標スロットル弁開度の設定を実行するルーチンの一例について説明する。このルーチンの一例が図5(B)に示されている。なお、このルーチンは、所定のクランク角度が到来する毎に開始されるルーチンである。図5(B)のルーチンが開始されると、始めに、ステップ25において、その時の機関回転数NEおよびその時の目標燃料噴射量Qtが取得される。次いで、ステップ26において、ステップ25で取得された機関回転数NEと目標燃料噴射量Qtとに対応する基準スロットル弁開度Dthbが図2(B)のマップから取得される。次いで、ステップ27において、ステップ26で取得された基準スロットル弁開度Dthbが目標スロットル弁開度Dthtに設定され、その後、ルーチンが終了する。 Next, an example of a routine for executing the setting of the target throttle valve opening according to the above-described embodiment will be described. An example of this routine is shown in FIG. Note that this routine is started every time a predetermined crank angle arrives. When the routine of FIG. 5B starts, first, at step 25, the engine speed NE at that time and the target fuel injection amount Qt at that time are acquired. Next, at step 26, the reference throttle valve opening degree Dthb corresponding to the engine speed NE and the target fuel injection amount Qt acquired at step 25 is acquired from the map of FIG. Next, at step 27, the reference throttle valve opening degree Dthb acquired at step 26 is set to the target throttle valve opening degree Dtht, and then the routine ends.
 次に、上述した実施形態のEGR制御弁の制御を実行するルーチンの一例について説明する。このルーチンの一例が図6に示されている。なお、このルーチンは、所定のクランク角度が到来する毎に開始されるルーチンである。図6のルーチンが開始されると、始めに、ステップ30において、図7のルーチン(このルーチンの詳細は後述する)で設定された最新の目標EGR率Regrtが取得される。次いで、ステップ31において、ステップ30で取得された目標EGR率Regrtに基づいてEGR制御弁に供給すべき制御信号Segrが算出される。次いで、ステップ32において、ステップ31で算出された制御信号SegrがEGR制御弁に供給され、その後、ルーチンが終了する。 Next, an example of a routine for executing control of the EGR control valve of the above-described embodiment will be described. An example of this routine is shown in FIG. Note that this routine is started every time a predetermined crank angle arrives. When the routine of FIG. 6 is started, first, at step 30, the latest target EGR rate Regrt set by the routine of FIG. 7 (details of this routine will be described later) is acquired. Next, at step 31, a control signal Segr to be supplied to the EGR control valve is calculated based on the target EGR rate Regrt acquired at step 30. Next, at step 32, the control signal Segr calculated at step 31 is supplied to the EGR control valve, and then the routine ends.
 次に、上述した実施形態の目標EGR率の設定を実行するルーチンの一例について説明する。このルーチンの一例が図7に示されている。なお、このルーチンは、所定のクランク角度が到来する毎に開始されるルーチンである。図7のルーチンが開始されると、始めに、ステップ100において、その時の機関回転数NE、その時の目標燃料噴射量Qt、その時の第1精度A1、および、その時の第2精度A2が取得される。次いで、ステップ101において、ステップ100で取得された機関回転数NEと目標燃料噴射量Qtとに対応する基準EGR率Regrbが図2(C)のマップから取得される。次いで、ステップ102において、ステップ100で取得された第1精度A1がステップ100で取得された第2精度A2よりも高い(A1>A2)か否かが判別される。ここで、A1>A2であると判別されたときには、ルーチンはステップ103に進む。一方、A1>A2ではないと判別されたときには、ルーチンはステップ108に進む。 Next, an example of a routine for executing the setting of the target EGR rate according to the above-described embodiment will be described. An example of this routine is shown in FIG. Note that this routine is started every time a predetermined crank angle arrives. When the routine of FIG. 7 is started, first, at step 100, the engine speed NE at that time, the target fuel injection amount Qt at that time, the first accuracy A1 at that time, and the second accuracy A2 at that time are acquired. The Next, at step 101, the reference EGR rate Regrb corresponding to the engine speed NE and the target fuel injection amount Qt acquired at step 100 is acquired from the map of FIG. Next, in step 102, it is determined whether or not the first accuracy A1 acquired in step 100 is higher than the second accuracy A2 acquired in step 100 (A1> A2). When it is determined that A1> A2, the routine proceeds to step 103. On the other hand, when it is determined that A1> A2 is not satisfied, the routine proceeds to step 108.
 ステップ103では、その時の吸入空気量GAが取得される。次いで、ステップ104において、ステップ100で取得された機関回転数NEと目標燃料噴射量Qtとに対応する基準吸入空気量GAbが図3(A)のマップから取得され、この取得された基準吸入空気量GAbが目標吸入空気量GAtに設定される。次いで、ステップ105において、ステップ103で取得された吸入空気量GAおよびステップ104で設定された目標吸入空気量GAtに基づいて吸入空気量偏差ΔGAが算出される。次いで、ステップ106において、ステップ105で算出された吸入空気量偏差ΔGAに基づいて第1補正係数Kegr1が算出される。次いで、ステップ107において、ステップ101で取得された基準EGR率Regrbをステップ106で算出された第1補正係数Kegr1によって補正することによって得られる値が目標EGR率Regrtに設定され、その後、ルーチンが終了する。 In step 103, the intake air amount GA at that time is acquired. Next, at step 104, the reference intake air amount GAb corresponding to the engine speed NE and the target fuel injection amount Qt acquired at step 100 is acquired from the map of FIG. 3A, and the acquired reference intake air is obtained. The amount GAb is set to the target intake air amount GAt. Next, at step 105, the intake air amount deviation ΔGA is calculated based on the intake air amount GA acquired at step 103 and the target intake air amount GAt set at step 104. Next, at step 106, the first correction coefficient Kegr1 is calculated based on the intake air amount deviation ΔGA calculated at step 105. Next, in step 107, a value obtained by correcting the reference EGR rate Regrb acquired in step 101 with the first correction coefficient Kegr1 calculated in step 106 is set as the target EGR rate Regrt, and then the routine ends. To do.
 ステップ108では、その時の空燃比AFが取得される。次いで、ステップ109において、ステップ100で取得された機関回転数NEと目標燃料噴射量Qtとに対応する基準空燃比AFbが図3(B)のマップから取得され、この取得された基準空燃比AFbが目標空燃比AFtに設定される。次いで、ステップ110において、ステップ108において取得された空燃比AFおよびステップ109で設定された目標空燃比AFtに基づいて空燃比偏差ΔAFが算出される。次いで、ステップ111において、ステップ110で算出された空燃比偏差ΔAFに基づいて第2補正係数Kegr2が算出される。次いで、ステップ112において、ステップ101で取得された基準EGR率Regrbをステップ111で算出された第2補正係数Kegr2によって補正することによって得られる値が目標EGR率Regrtに設定され、その後、ルーチンが終了する。 In step 108, the air-fuel ratio AF at that time is acquired. Next, at step 109, the reference air-fuel ratio AFb corresponding to the engine speed NE and the target fuel injection amount Qt acquired at step 100 is acquired from the map of FIG. 3B, and this acquired reference air-fuel ratio AFb is acquired. Is set to the target air-fuel ratio AFt. Next, at step 110, the air-fuel ratio deviation ΔAF is calculated based on the air-fuel ratio AF acquired at step 108 and the target air-fuel ratio AFt set at step 109. Next, at step 111, the second correction coefficient Kegr2 is calculated based on the air-fuel ratio deviation ΔAF calculated at step 110. Next, in step 112, a value obtained by correcting the reference EGR rate Regrb obtained in step 101 with the second correction coefficient Kegr2 calculated in step 111 is set as the target EGR rate Regrt, and then the routine ends. To do.
 なお、上述した実施形態において、エアフローメータの検出精度は、エアフローメータによって検出される吸入空気量の精度であれば如何なる検出精度でもよいが、たとえば、吸入空気量が定常状態にあるとき(すなわち、吸入空気量の変化が零であるか或いは極めて小さいとき)の検出精度(つまり、静的な精度であって、たとえば、図面公差)を採用することが好ましい。また、エアフローメータの検出精度は、当該エアフローメータを通過する空気の流量および当該エアフローメータ周りのガスの脈動の影響を受けることから、当該エアフローメータによって検出された吸入空気量、機関回転数、および、目標燃料噴射量のいずれか1つ又は複数に基づいてエアフローメータの検出精度を算出するようにしてもよい。 In the above-described embodiment, the detection accuracy of the air flow meter may be any detection accuracy as long as it is the accuracy of the intake air amount detected by the air flow meter. For example, when the intake air amount is in a steady state (that is, It is preferable to employ detection accuracy (that is, static accuracy, for example, drawing tolerance) when the change in the intake air amount is zero or extremely small. Further, since the detection accuracy of the air flow meter is affected by the flow rate of air passing through the air flow meter and the pulsation of the gas around the air flow meter, the intake air amount detected by the air flow meter, the engine speed, and The detection accuracy of the air flow meter may be calculated based on any one or more of the target fuel injection amounts.
 また、上述した実施形態において、燃料噴射弁の燃料噴射精度は、燃料噴射弁から噴射される燃料の量の精度であれば如何なる燃料噴射精度でもよいが、たとえば、燃料噴射量が定常状態にあるとき(すなわち、燃料噴射量の変化が零であるか或いは極めて小さいとき)の検出精度(つまり、静的な精度であって、たとえば、図面公差)を採用することが好ましい。また、燃料噴射弁の燃料噴射精度は、燃料供給通路内の燃料の圧力および当該燃料の脈動の影響を受けることから、燃料供給通路内の燃料の圧力、機関回転数、および、目標燃料噴射量のいずれか1つ又は複数に基づいて燃料噴射弁の燃料噴射精度を算出するようにしてもよい。 In the above-described embodiment, the fuel injection accuracy of the fuel injection valve may be any fuel injection accuracy as long as the amount of fuel injected from the fuel injection valve is accurate. For example, the fuel injection amount is in a steady state. It is preferable to employ the detection accuracy (that is, static accuracy, for example, drawing tolerance) when the time is changed (that is, when the change in the fuel injection amount is zero or extremely small). Further, since the fuel injection accuracy of the fuel injection valve is affected by the pressure of the fuel in the fuel supply passage and the pulsation of the fuel, the fuel pressure in the fuel supply passage, the engine speed, and the target fuel injection amount The fuel injection accuracy of the fuel injection valve may be calculated based on one or more of the above.
 また、第1精度を「A1」で表し、エアフローメータの検出精度を「Aafm」で表し、燃料噴射弁の燃料噴射精度を「Ainj」で表したときに、次式1に示されているように、エアフローメータの検出精度の二乗と燃料噴射弁の燃料噴射精度の二乗との和の平方根を第1精度として採用することができる。 Further, when the first accuracy is represented by “A1”, the detection accuracy of the air flow meter is represented by “Aafm”, and the fuel injection accuracy of the fuel injection valve is represented by “Ainj”, the following equation 1 is obtained. In addition, the square root of the sum of the square of the detection accuracy of the air flow meter and the square of the fuel injection accuracy of the fuel injection valve can be employed as the first accuracy.
 A1=√{(Aafm)+(Ainj)}   …(1) A1 = √ {(Aafm) 2 + (Ainj) 2 } (1)
 また、上述した実施形態において、空燃比センサの検出精度は、空燃比センサによって検出される空燃比の精度であれば如何なる検出精度でもよいが、たとえば、空燃比が定常状態にあるとき(すなわち、空燃比の変化が零であるか或いは極めて小さいとき)の検出精度(つまり、静的な精度であって、たとえば、図面公差)と空燃比が過渡状態にあるとき(すなわち、空燃比の変化が比較的大きいとき)の検出精度(つまり、動的な精度)とを合計した検出精度を採用することが好ましい。また、空燃比センサの静的な精度は、当該空燃比センサを通過する排気ガスの流量および当該空燃比センサ周りの排気ガスの圧力の影響を受けることから、エアフローメータによって検出された吸入空気量(つまり、空燃比センサを通過する排気ガスの流量)、および、空燃比センサ周りの排気ガスの圧力(これは、実測値であってもよいし、推定値であってもよい)のいずれか一方または両方に基づいて算出するようにしてもよい。 In the above-described embodiment, the detection accuracy of the air-fuel ratio sensor may be any detection accuracy as long as the accuracy of the air-fuel ratio detected by the air-fuel ratio sensor. For example, when the air-fuel ratio is in a steady state (that is, When the air-fuel ratio change is zero or very small (ie, static accuracy, eg, drawing tolerance) and the air-fuel ratio is in a transient state (ie, the air-fuel ratio change is It is preferable to employ a detection accuracy that is the sum of the detection accuracy (that is, the dynamic accuracy) when the accuracy is relatively high. The static accuracy of the air-fuel ratio sensor is affected by the flow rate of exhaust gas passing through the air-fuel ratio sensor and the pressure of exhaust gas around the air-fuel ratio sensor, so the amount of intake air detected by the air flow meter (That is, the flow rate of exhaust gas passing through the air-fuel ratio sensor) and the pressure of exhaust gas around the air-fuel ratio sensor (this may be an actual measurement value or an estimated value) You may make it calculate based on one or both.
 また、第2精度を「A2」で表し、空燃比センサの静的な精度を「Aafs」で表し、空燃比センサの動的な精度を「Aaft」で表したときに、次式2に示されているように、空燃比センサの静的な精度と空燃比センサの動的な精度との和を第2精度として採用することができる。また、機関回転数および燃料噴射量が一定に維持された状態でEGR制御弁開度がステップ的に変化せしめられたときに実際の空燃比が所定量だけ変化するまでに要する時間(つまり、応答遅れ時間)を「実応答遅れ時間」と称し、「Tda」で表し、機関回転数および燃料噴射量が一定に維持された状態でEGR制御弁開度がステップ的に変化せしめられたときに空燃比センサによって検出される空燃比が上記所定量だけ変化するまでに要する時間(つまり、応答遅れ時間)を「検出応答遅れ時間」と称し、「Tdd」で表し、空燃比センサの動的精度を空燃比センサの静的精度に換算するための係数を「換算係数」と称し、「β」で表したときに、次式3に示されているように、検出応答遅れ時間を実応答遅れ時間によって除算することによって得られる値(つまり、実応答遅れ時間に対する検出応答遅れ時間の比)に換算係数を乗算することによって得られる値を空燃比センサの動的な精度として採用することができる。 Further, when the second accuracy is represented by “A2”, the static accuracy of the air-fuel ratio sensor is represented by “Aafs”, and the dynamic accuracy of the air-fuel ratio sensor is represented by “Aaft”, the following equation 2 is obtained. As described above, the sum of the static accuracy of the air-fuel ratio sensor and the dynamic accuracy of the air-fuel ratio sensor can be adopted as the second accuracy. In addition, when the EGR control valve opening is changed stepwise while the engine speed and the fuel injection amount are kept constant, the time required for the actual air-fuel ratio to change by a predetermined amount (that is, the response) (Delay time) is referred to as “actual response delay time” and is expressed as “Tda”, and is empty when the EGR control valve opening is changed stepwise while the engine speed and the fuel injection amount are kept constant. The time required for the air-fuel ratio detected by the fuel-fuel ratio sensor to change by the predetermined amount (that is, the response delay time) is referred to as “detection response delay time” and is represented by “Tdd”. A coefficient for converting to the static accuracy of the air-fuel ratio sensor is referred to as a “conversion coefficient” and expressed as “β”, and as shown in the following expression 3, the detection response delay time is converted into the actual response delay time. Dividing by Thus obtained value (i.e., the ratio of the detection response delay time to the actual response delay time) can be employed a value obtained by multiplying the conversion factor as a dynamic accuracy of the air-fuel ratio sensor.
 A2=Aafs+Aaft   …(2)
 Aaft=Tdd/Tda×β   …(3)
A2 = Aafs + Aaft (2)
Aaft = Tdd / Tda × β (3)
 なお、応答遅れ時間を取得するために用いられる上記所定量として、たとえば、EGR制御弁開度がステップ的に変化せしめられたときに空燃比が特定の空燃比に収束するまでの間に当該空燃比が変化する量を100%としたときの63%の変化量を採用することができる。 The predetermined amount used for acquiring the response delay time is, for example, the air-fuel ratio until the air-fuel ratio converges to a specific air-fuel ratio when the EGR control valve opening is changed stepwise. A change amount of 63% when the amount of change in the fuel ratio is taken as 100% can be adopted.
 また、実応答遅れ時間に対する検出応答遅れ時間の比Tdd/Tdaを「応答遅れ比」と称したとき、応答遅れ比が「1」に近いほど空燃比センサの動的な精度が高く、応答遅れ比が「1」から遠いほど空燃比センサの動的な精度が低い。 Further, when the ratio Tdd / Tda of the detected response delay time to the actual response delay time is referred to as “response delay ratio”, the closer the response delay ratio is to “1”, the higher the dynamic accuracy of the air-fuel ratio sensor and the response delay. The farther the ratio is from “1”, the lower the dynamic accuracy of the air-fuel ratio sensor.
 また、実応答遅れ時間は、燃焼室から排気通路に排出される排気ガスの流量および排気通路内の排気ガスの圧力の影響を受けることから、エアフローメータによって検出される吸入空気量(つまり、燃焼室から排気通路に排出される排気ガスの流量)と排気通路内の排気ガスの圧力との組合せ毎に実応答遅れ時間を実験等によって予め求め、これら求められた実応答遅れ時間を吸入空気量と排気ガスの圧力との関数のマップの形で電子制御装置に記憶させておき、機関運転中、その時々の吸入空気量とその時々の排気ガスの圧力(これは、実測値であってもよいし、推定値であってもよい)とに対応する実応答遅れ時間を上記マップから取得し、この取得された実応答遅れ時間を用いて第2精度を算出するようにしてもよい。また、検出応答遅れ時間は、空燃比センサを通過する排気ガスの流量および空燃比センサ周りの排気ガスの圧力の影響を受けることから、エアフローメータによって検出される吸入空気量(つまり、空燃比センサを通過する排気ガスの流量)と空燃比センサ周りの排気ガスの圧力との組合せ毎に検出応答遅れ時間を実験等によって予め求め、これら求められた検出応答遅れ時間を吸入空気量と排気ガスの圧力との関数のマップの形で電子制御装置に記憶させておき、機関運転中、その時々の吸入空気量とその時々の排気ガスの圧力(これは、実測値であってもよいし、推定値であってもよい)とに対応する検出応答遅れ時間を上記マップから取得し、この取得された検出応答遅れ時間を用いて第2精度を算出するようにしてもよい。 Since the actual response delay time is affected by the flow rate of exhaust gas discharged from the combustion chamber into the exhaust passage and the pressure of exhaust gas in the exhaust passage, the intake air amount detected by the air flow meter (that is, combustion) The actual response delay time is determined in advance for each combination of the flow rate of the exhaust gas discharged from the chamber into the exhaust passage) and the pressure of the exhaust gas in the exhaust passage, and the obtained actual response delay time is calculated as the intake air amount. Is stored in the electronic control unit in the form of a map of the function of the exhaust gas pressure and the exhaust gas pressure. The actual response delay time corresponding to (or may be an estimated value) is acquired from the map, and the second accuracy may be calculated using the acquired actual response delay time. The detection response delay time is affected by the flow rate of the exhaust gas passing through the air-fuel ratio sensor and the pressure of the exhaust gas around the air-fuel ratio sensor, so the intake air amount detected by the air flow meter (that is, the air-fuel ratio sensor) For each combination of the exhaust gas flow rate passing through the air-fuel ratio sensor and the pressure of the exhaust gas around the air-fuel ratio sensor, a detection response delay time is obtained in advance by experiments or the like, and the obtained detection response delay time is calculated based on the intake air amount and the exhaust gas It is stored in the electronic control unit in the form of a function map with pressure, and during the operation of the engine, the amount of intake air at that time and the pressure of the exhaust gas at that time (this may be a measured value or estimated May be a value), and the second accuracy may be calculated using the acquired detection response delay time from the map.
 また、換算係数は、たとえば、以下のような実験によって算出することができる。すなわち、異なる複数の応答遅れ比が達成されるようにEGR率の制御を行い、応答遅れ比毎の排気ガス中のエミッション性能(たとえば、排気ガス中に含まれる窒素酸化物(NOx)の量)を取得し、これら取得されたエミッション性能に基づいて、応答遅れ比の変化に対するエミッション性能の変化の感度(以下この感度を「動的な精度の変化に対する感度」という)を算出する。一方、静的な精度の異なる複数の空燃比センサを用意し、各空燃比センサを用いてEGR率の制御を行い、空燃比センサ毎の排気ガス中のエミッション性能を取得し、これら取得されたエミッション性能に基づいて、空燃比センサの静的な精度の変化に対するエミッション性能の変化の感度(以下この感度を「静的な精度の変化に対する感度」という)を算出する。そして、動的な精度の変化に対する感度を静的な精度の変化に一致させるために動的な精度の変化に対する感度に乗算されるべき係数を算出する。ここで算出された係数が換算係数である。なお、精度にはその絶対値が用いられる。 Also, the conversion factor can be calculated by the following experiment, for example. That is, the EGR rate is controlled so that a plurality of different response delay ratios are achieved, and the emission performance in the exhaust gas for each response delay ratio (for example, the amount of nitrogen oxide (NOx) contained in the exhaust gas) , And the sensitivity of the change in the emission performance with respect to the change in the response delay ratio (hereinafter, this sensitivity is referred to as “sensitivity to the change in dynamic accuracy”) is calculated based on the acquired emission performance. On the other hand, a plurality of air-fuel ratio sensors with different static accuracy are prepared, the EGR rate is controlled using each air-fuel ratio sensor, and the emission performance in the exhaust gas for each air-fuel ratio sensor is obtained. Based on the emission performance, the sensitivity of the change in emission performance to the change in static accuracy of the air-fuel ratio sensor (hereinafter, this sensitivity is referred to as “sensitivity to change in static accuracy”) is calculated. Then, a coefficient to be multiplied by the sensitivity to the dynamic accuracy change is calculated in order to match the sensitivity to the dynamic accuracy change with the static accuracy change. The coefficient calculated here is a conversion coefficient. The absolute value is used for accuracy.
 また、上述した実施形態では、基準吸入空気量がそのまま目標吸入空気量に設定される。しかしながら、適切な吸入空気量は、吸気圧、吸気温度(すなわち、燃焼室に吸入されるガスの温度)などに応じて変わる。そこで、上述した実施形態において、基準吸入空気量をその時の吸気圧とその時の吸気温度のいずれか一方または両方によって補正することによって得られる値を目標吸入空気量に設定するようにしてもよい。また、適切な吸入空気量は、冷却水温度(すなわち、内燃機関を冷却するための冷却水の温度)、大気圧、外気温度、燃料温度(すなわち、燃料噴射弁から噴射される燃料の温度)などに応じても変わる。そこで、上述した実施形態において、基準吸入空気量をその時の冷却水水温とその時の大気圧とその時の外気温度とその時の燃料温度とのうちのいずれか1つ又は複数によって補正することによって得られる値を目標吸入空気量に設定するようにしてもよい。 In the above-described embodiment, the reference intake air amount is set to the target intake air amount as it is. However, the appropriate intake air amount varies depending on the intake pressure, the intake temperature (that is, the temperature of the gas sucked into the combustion chamber), and the like. Therefore, in the above-described embodiment, a value obtained by correcting the reference intake air amount by one or both of the intake pressure at that time and the intake temperature at that time may be set as the target intake air amount. Also, the appropriate intake air amount is the cooling water temperature (that is, the temperature of the cooling water for cooling the internal combustion engine), the atmospheric pressure, the outside air temperature, and the fuel temperature (that is, the temperature of the fuel injected from the fuel injection valve). It depends on the situation. Therefore, in the above-described embodiment, the reference intake air amount is obtained by correcting the reference intake air temperature by one or more of the cooling water temperature at that time, the atmospheric pressure at that time, the outside air temperature at that time, and the fuel temperature at that time. The value may be set to the target intake air amount.
 また、上述した実施形態では、機関回転数と目標燃料噴射量とに基づいて基準吸入空気量が決まる。しかしながら、これに代えて、目標酸素濃度(すなわち、燃焼室に吸入されるガス中の酸素の濃度の目標値)を達成することができる吸入空気量を目標吸入空気量に設定するようにしてもよい。 In the above-described embodiment, the reference intake air amount is determined based on the engine speed and the target fuel injection amount. However, instead of this, the target intake air amount that can achieve the target oxygen concentration (that is, the target value of the concentration of oxygen in the gas sucked into the combustion chamber) may be set as the target intake air amount. Good.
 また、上述した実施形態において、第1補正係数は、吸入空気量偏差が零になるようにEGR率を補正する係数であれば如何なる手法によって算出されてもよく、第1補正係数として、たとえば、吸入空気量偏差に基づくPI制御またはPID制御によって算出される係数を採用することができる。また、上述した実施形態において、第2補正係数は、空燃比偏差が零になるようにEGR率を補正する係数であれば如何なる手法によって算出されてもよく、第2補正係数として、たとえば、空燃比偏差に基づくPI制御またはPID制御によって算出される係数を採用することができる。 In the above-described embodiment, the first correction coefficient may be calculated by any method as long as it is a coefficient that corrects the EGR rate so that the intake air amount deviation becomes zero. As the first correction coefficient, for example, A coefficient calculated by PI control or PID control based on the intake air amount deviation can be employed. In the above-described embodiment, the second correction coefficient may be calculated by any method as long as it is a coefficient that corrects the EGR rate so that the air-fuel ratio deviation becomes zero. A coefficient calculated by PI control or PID control based on the fuel ratio deviation can be adopted.
 また、上述した実施形態において、EGR率が過剰に大きく変化することを抑制するために第1補正係数および第2補正係数に関する上限値および下限値を設けてもよい。 In the above-described embodiment, an upper limit value and a lower limit value related to the first correction coefficient and the second correction coefficient may be provided in order to suppress the EGR rate from changing excessively.
 また、スロットル弁開度が変更されると、EGR率が変化する。そこで、上述した実施形態において、EGR制御弁開度およびスロットル弁開度を変更することによって、EGR率を目標EGR率に制御するようにしてもよい。 Also, when the throttle valve opening is changed, the EGR rate changes. Therefore, in the above-described embodiment, the EGR rate may be controlled to the target EGR rate by changing the EGR control valve opening and the throttle valve opening.
 また、上述した実施形態は、いわゆる過給機を備えていない内燃機関に本発明を適用した場合の実施形態であるが、本発明は、いわゆる過給機を備えている内燃機関にも適用可能である。 The above-described embodiment is an embodiment in the case where the present invention is applied to an internal combustion engine that does not include a so-called supercharger. However, the present invention can also be applied to an internal combustion engine that includes a so-called supercharger. It is.
 また、上述した実施形態は、圧縮自着火式の内燃機関に本発明を適用した場合の実施形態であるが、本発明は、火花点火式の内燃機関(いわゆるガソリンエンジン)にも適用可能である。 The above-described embodiment is an embodiment in which the present invention is applied to a compression ignition type internal combustion engine, but the present invention is also applicable to a spark ignition type internal combustion engine (so-called gasoline engine). .

Claims (4)

  1.  燃焼室に吸入される空気の量である吸入空気量を検出する吸入空気量検出手段と、燃焼室に燃料を供給する燃料供給手段と、燃焼室から排気通路に排出された排気ガスの空燃比を検出する空燃比検出手段と、燃焼室から排気通路に排出された排気ガスを吸気通路を介して燃焼室に導入する排気再循環手段と、を具備する内燃機関の制御装置において、
     前記吸入空気量検出手段の検出精度と前記燃料供給手段の燃料供給精度とに基づいて算出される第1精度が前記空燃比検出手段の検出精度に基づいて算出される第2精度よりも高いときには、前記吸入空気量検出手段によって検出される吸入空気量がその目標値に一致するように前記排気再循環手段によって燃焼室に導入される排気ガスの量を制御し、
     前記第1精度が前記第2精度以下であるときには、前記空燃比検出手段によって検出される空燃比がその目標値に一致するように前記排気再循環手段によって燃焼室に導入される排気ガスの量を制御する内燃機関の制御装置。
    Intake air amount detection means for detecting the intake air amount that is the amount of air sucked into the combustion chamber, fuel supply means for supplying fuel to the combustion chamber, and the air-fuel ratio of the exhaust gas discharged from the combustion chamber to the exhaust passage An internal combustion engine control device comprising: an air-fuel ratio detection means for detecting the exhaust gas; and an exhaust gas recirculation means for introducing exhaust gas discharged from the combustion chamber into the exhaust passage into the combustion chamber via the intake passage.
    When the first accuracy calculated based on the detection accuracy of the intake air amount detection means and the fuel supply accuracy of the fuel supply means is higher than the second accuracy calculated based on the detection accuracy of the air-fuel ratio detection means Controlling the amount of exhaust gas introduced into the combustion chamber by the exhaust gas recirculation means so that the intake air quantity detected by the intake air quantity detection means matches the target value;
    When the first accuracy is less than or equal to the second accuracy, the amount of exhaust gas introduced into the combustion chamber by the exhaust gas recirculation means so that the air fuel ratio detected by the air fuel ratio detection means matches the target value A control device for an internal combustion engine for controlling the engine.
  2.  請求項1に記載の内燃機関の制御装置において、
     前記吸入空気量検出手段の検出精度として吸入空気量が定常状態にあるときの当該吸入空気量検出手段の検出精度が採用される内燃機関の制御装置。
    The control apparatus for an internal combustion engine according to claim 1,
    A control device for an internal combustion engine in which the detection accuracy of the intake air amount detection means when the intake air amount is in a steady state is adopted as the detection accuracy of the intake air amount detection means.
  3.  請求項1または請求項2に記載の内燃機関の制御装置において、
     前記燃料供給手段の燃料供給精度として当該燃料供給手段によって燃焼室に供給される燃料の量が定常状態にあるときの当該燃焼供給手段の燃料供給精度が採用される内燃機関の制御装置。
    The control apparatus for an internal combustion engine according to claim 1 or 2,
    A control apparatus for an internal combustion engine in which the fuel supply accuracy of the combustion supply means when the amount of fuel supplied to the combustion chamber by the fuel supply means is in a steady state is adopted as the fuel supply accuracy of the fuel supply means.
  4.  請求項1~請求項3のいずれか1つに記載の内燃機関の制御装置において、
     前記空燃比検出手段の検出精度として燃焼室から排気通路に排出された排気ガスの空燃比が定常状態にあるときの当該空燃比検出手段の検出精度と燃焼室から排気通路に排出された排気ガスの空燃比が過渡状態にあるときの当該空燃比検出手段の検出精度とが採用される内燃機関の制御装置。
    The control apparatus for an internal combustion engine according to any one of claims 1 to 3,
    As the detection accuracy of the air-fuel ratio detection means, the detection accuracy of the air-fuel ratio detection means when the air-fuel ratio of the exhaust gas discharged from the combustion chamber to the exhaust passage is in a steady state and the exhaust gas discharged from the combustion chamber to the exhaust passage A control apparatus for an internal combustion engine, which employs the detection accuracy of the air-fuel ratio detection means when the air-fuel ratio of the engine is in a transient state.
PCT/JP2011/073503 2011-10-13 2011-10-13 Control device for internal combustion engine WO2013054410A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/073503 WO2013054410A1 (en) 2011-10-13 2011-10-13 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/073503 WO2013054410A1 (en) 2011-10-13 2011-10-13 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2013054410A1 true WO2013054410A1 (en) 2013-04-18

Family

ID=48081487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073503 WO2013054410A1 (en) 2011-10-13 2011-10-13 Control device for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2013054410A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1182096A (en) * 1997-09-01 1999-03-26 Toyota Motor Corp Egr control system for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1182096A (en) * 1997-09-01 1999-03-26 Toyota Motor Corp Egr control system for internal combustion engine

Similar Documents

Publication Publication Date Title
US9416738B2 (en) Internal combustion engine control device for carrying out injection amount feedback control
JP5083583B1 (en) Control device for internal combustion engine
JP2011027059A (en) Engine cotrol apparatus
JP5136812B1 (en) Control device for internal combustion engine
US20200149491A1 (en) Techniques for transient estimation and compensation of control parameters for dedicated egr engines
WO2012098661A1 (en) Control device for internal combustion engine
US8037875B2 (en) Control apparatus and control method for internal combustion engine
JP2024021803A (en) fuel injection control device
US9932923B2 (en) Abnormality determination apparatus
JP5593794B2 (en) Control device for internal combustion engine
JP2010013958A (en) Control device for internal combustion engine
WO2013054410A1 (en) Control device for internal combustion engine
JP4968206B2 (en) INTERNAL COMBUSTION ENGINE AND FUEL INJECTION CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2007198198A (en) Fuel control device for alcohol-mixed fuel engine
JP2009007991A (en) Heater controller for exhaust gas sensor
US9650985B2 (en) Fuel injection control apparatus of engine
JP4348686B2 (en) Engine fuel supply method and apparatus
JP6049563B2 (en) Engine control device
JP2021131032A (en) Controller of internal combustion engine
JP2012007566A (en) Fuel injection control device of internal combustion engine
US10221804B2 (en) Fuel injection control device
US9874495B2 (en) Method and device for determining the lambda value with a broadband lambda sensor of an internal combustion engine, particularly of a motor vehicle
WO2012176270A1 (en) Device for controlling internal combustion engine
JP2012087743A (en) Combustion control device and method of internal combustion engine
JP2020007940A (en) Engine control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP