WO2013054405A1 - 多関節ロボット - Google Patents

多関節ロボット Download PDF

Info

Publication number
WO2013054405A1
WO2013054405A1 PCT/JP2011/073434 JP2011073434W WO2013054405A1 WO 2013054405 A1 WO2013054405 A1 WO 2013054405A1 JP 2011073434 W JP2011073434 W JP 2011073434W WO 2013054405 A1 WO2013054405 A1 WO 2013054405A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
axis
side arm
motor
transmission mechanism
Prior art date
Application number
PCT/JP2011/073434
Other languages
English (en)
French (fr)
Inventor
敦 一番ケ瀬
勇二 佐次川
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2011/073434 priority Critical patent/WO2013054405A1/ja
Publication of WO2013054405A1 publication Critical patent/WO2013054405A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/046Revolute coordinate type
    • B25J9/047Revolute coordinate type the pivoting axis of the first arm being offset to the vertical axis

Definitions

  • the disclosed embodiment relates to an articulated robot.
  • an arc welding robot in which an arc welding torch is attached to the tip of an arm transmission is known.
  • Such articulated robots are widely used in various other industrial fields.
  • the above-described articulated robot includes a base provided on an installation surface at a site such as a factory, and a body portion erected so as to be rotatable about a first axis with respect to the base.
  • a lower arm provided to be rotatable about a second axis extending in a direction orthogonal to the first axis with respect to the body part.
  • the lower arm includes an upper arm rotatably provided around a third axis extending in a direction parallel to the second axis, and further includes a wrist and an end effector at the tip of the upper arm. It is the structure provided with the part (for example, refer patent document 1).
  • the articulated robot as shown in Patent Document 1 is widely used in various industrial fields, and the number of robots installed on the production line tends to increase in factories in each field. . Therefore, the articulated robot that can be operated at a lower cost including the running cost is required from the market.
  • One aspect of the embodiment has been made in view of the above, and an object thereof is to provide an articulated robot that can be operated at low cost.
  • the articulated robot includes at least a body part, a base side arm, and a tip side arm.
  • the body part is provided to be rotatable about a first axis with respect to a base provided on a predetermined installation surface, and the base side arm extends in a direction orthogonal to the first axis with respect to the body part. It is provided to be rotatable around the second axis.
  • the distal end side arm is provided so as to be rotatable about a third axis extending in a direction parallel to the second axis with respect to the base side arm.
  • each transmission mechanism linked to the first shaft and the second shaft is combined with a motor with a reduction gear having a smaller reduction ratio than the transmission mechanism linked to the third shaft.
  • Drawing 1 is an explanatory view by side view of the articulated robot concerning an embodiment.
  • FIG. 2 is a schematic explanatory view showing the movement of each movable part of the articulated robot.
  • FIG. 3 is an explanatory diagram showing an outline of the flow of energy of the articulated robot.
  • FIG. 1 is an explanatory view of the articulated robot according to the present embodiment as viewed from the side.
  • the multi-joint robot is a six-axis robot, and the case viewed from the right side of FIG. 1 is described as a front view.
  • FIG. 2 is a schematic explanatory view showing the movement of each movable part of the articulated robot.
  • FIG. 1 and FIG. 2 three-dimensional orthogonal with the vertical upward direction (Z direction), horizontal right direction (X direction), and horizontal paper back side direction (Y direction) as the positive direction is shown for easy understanding.
  • the coordinate system was displayed.
  • the articulated robot 10 includes a base 2 that is a fixed part and a body part 3 that is connected to the base 2, and a base side arm 4, a tip side arm 5, and a wrist part 6 that are sequentially connected. It is provided as a movable part.
  • the articulated robot 10 has a substantially cylindrical base 2 installed in a fixed state on a floor surface 1 serving as an installation surface.
  • the body 3 is connected to the base 2
  • the base side arm 4 is connected to the body 3
  • the tip side arm 5 is connected to the base side arm 4
  • the wrist part 6 is connected to the tip side arm 5.
  • the trunk portion 3 is rotatably connected to the base 2 installed in a fixed state on the floor surface 1 via a first joint portion 21.
  • 1st joint part 21 is provided with the 1st axis 11 extended in the Z direction used as the perpendicular direction. And this 1st axis
  • shaft 11 is interlockingly connected with the 1st transmission mechanism (not shown) provided with a 1st motor and a 1st reduction gear. Accordingly, the body 3 rotates with respect to the fixed base 2 in the horizontal direction around the first shaft 11 by driving the first motor and the first speed reducer (see the arrow 300 in FIG. 2). ).
  • the trunk portion 3 includes a trunk portion 30 that extends obliquely upward and forward from the first shaft 11, and a second joint portion 22 is provided on the distal end side of the trunk portion 30.
  • the base side arm 4 is rotatably connected via the second joint portion 22.
  • the second joint portion 22 includes a second shaft 12 extending in a direction orthogonal to the first shaft 11, that is, the Y direction. And this 2nd axis
  • shaft 12 is interlockingly connected with the 2nd transmission mechanism (not shown) provided with a 2nd motor and a 2nd reduction gear. Therefore, the base side arm 4 rotates around the second shaft 12 by the drive of the second motor and the second reduction gear, that is, swings in the front-rear direction (see arrow 400 in FIG. 2). Further, since the base side arm 4 is connected to a position that is eccentric to the first shaft 11, the base side arm 4 also turns around the first shaft 11.
  • a third joint portion 23 is provided on the distal end (upper end in FIGS. 1 and 2) side of the longest base side arm 4 in the movable portion, and approximately L through the third joint portion 23.
  • the letter-shaped front end side arm 5 is connected.
  • the third joint portion 23 includes a third shaft 13 that extends in a direction parallel to the second shaft 12, that is, in the same Y direction as the second shaft 12 orthogonal to the first shaft 11. And this 3rd axis
  • shaft 13 is interlockingly connected with the 3rd power transmission mechanism (not shown) provided with a 3rd motor and a 3rd reduction gear. Therefore, the distal end side arm 5 rotates around the third shaft 13 by the drive of the third motor and the third speed reducer, that is, swings in the front-rear direction (see arrow 500 in FIG. 2).
  • a fourth joint portion 24 is provided on the distal end side of the distal end side arm 5, and a wrist including a predetermined end effector such as a welding torch (not shown) is provided through the fourth joint portion 24.
  • the parts 6 are connected in the coaxial direction.
  • the wrist part 6 includes a cylindrical first wrist part 61 coupled to the fourth joint part 24, a second wrist part 62 coupled to the first wrist part 61, and a third wrist part provided with an end effector. 63.
  • the fourth joint portion 24 that interlocks and connects the first wrist portion 61 includes a fourth shaft 14 that extends in a direction perpendicular to the third shaft 13, that is, the X direction. And this 4th axis
  • shaft 14 is interlockingly connected with the 4th transmission mechanism (not shown) provided with a 4th motor and a 4th reduction gear. Therefore, the first wrist unit 61 that is interlocked and connected to the fourth shaft 14 in the coaxial direction rotates around the fourth shaft 14 by driving the fourth motor and the fourth speed reducer, that is, around the fourth shaft 14. (See arrow 600 in FIG. 2).
  • the 5th joint part 25 is provided in the front end side of the 1st wrist part 61,
  • the 2nd wrist part 62 is connected to the coaxial direction via this 5th joint part 25.
  • the fifth joint portion 25 includes a fifth shaft 15 that extends coaxially with the fourth shaft 14, that is, in the X direction. And this 5th axis
  • shaft 15 is interlockingly connected with the 5th transmission mechanism (not shown) provided with a 5th motor and a 5th reduction gear. Accordingly, the second wrist portion 62 that is interlocked and connected to the fifth shaft 15 in the coaxial direction rotates around the fifth shaft 15 by the drive of the fifth motor and the fifth reducer, that is, around the fifth shaft 15. (See arrow 700 in FIG. 2).
  • the 6th joint part 26 is provided in the front end side of the 2nd list part 62, and the 3rd list part 63 is connected via this 6th joint part 26.
  • the sixth joint portion 26 includes a sixth shaft 16 extending in a direction perpendicular to the fifth shaft 15, that is, in the Y direction. And this 6th axis
  • shaft 16 is interlockingly connected with the 6th transmission mechanism (not shown) provided with a 6th motor and a 6th reduction gear. Accordingly, the third wrist unit 63 rotates around the sixth shaft 16 by the drive of the sixth motor and the sixth reducer, that is, swings in the front-rear direction (see the arrow 800 in FIG. 2).
  • the articulated robot 10 includes the body portion 3 provided to be rotatable around the first axis 11 with respect to the base 2 provided on the floor surface 1 which is a predetermined installation surface. ing.
  • a base side arm 4 provided to be rotatable about a second shaft 12 extending in a direction orthogonal to the first shaft 11 with respect to the body portion 3 is provided.
  • the base side arm 4 is provided with a distal end side arm 5 provided to be rotatable around a third axis 13 extending in a direction parallel to the second axis 12.
  • a wrist portion 6 including a third wrist portion 63 provided with a predetermined end effector has predetermined axes (fourth axis 14, fifth axis 15 and sixth axis 16). It is provided so as to be rotatable around.
  • the articulated robot 10 is configured as follows. It is characterized by a configuration that can reduce operational loss and operate at low cost.
  • FIG. 3 is an explanatory diagram showing an outline of the flow of energy of a general articulated robot including the articulated robot 10 according to the present embodiment, and reference numeral 7 in the figure indicates a transmission mechanism.
  • the articulated robot 10 operates by receiving power from the power source 8. Electricity is consumed by various control boards for controlling the robot, fixed and universal power consumed by the backlight operation of the teach pendant, and the transmission mechanism 7 and other machines including a motor and a speed reducer. It is roughly divided into those consumed for operation. It is known that the universal power consumption is about 30% of the total power consumption.
  • the mechanical power consumption which is about 70% of the total power consumption, particularly the transmission mechanism 7 including the motor and the speed reducer in the movable part, by appropriately selecting the motor and the speed reducer, We decided to reduce the mechanical loss.
  • Typical mechanical power consumption includes high-speed inertia acceleration torque (A), low-speed inertia acceleration torque (B) and low-speed gravity moment support torque (C), and no-load running torque ( D), oil seal loss torque (E), and motor loss (F).
  • the high-speed inertia acceleration torque (A) is consumed for motor output (acceleration torque) and the like. Further, the low-speed inertia acceleration torque (B) and the low-speed gravity moment support torque (C) are consumed for load torque on the movable part side, reduction gear output (arm acceleration torque), and the like.
  • the no-load running torque (D) of the reduction gear is a reduction gear loss, and includes oil seal loss, bearing loss, grease stirring loss, and the like.
  • the oil seal loss torque (E) includes oil seal loss, bearing loss, grease agitation loss, and the like in movable parts such as the body portion 3, the base portion side, and the tip portion side arms 4 and 5.
  • the motor loss (F) mainly includes iron loss and copper loss, and includes mechanical loss such as oil seal loss and bearing loss in the motor.
  • the iron loss is the electric energy lost when magnetized by alternating current
  • the copper loss is the electric energy lost by the conductive wire resistance of the coil.
  • the first transmission mechanism and the second transmission mechanism provided in the first and second joint portions 21 and 22 are provided in the third joint portion 23 and are third.
  • a reduction gear having a smaller reduction ratio than that of the transmission mechanism is combined with a motor.
  • a reduction gear having a smaller reduction ratio is combined with the motor than the third transmission mechanism provided in the third joint portion 23 and interlockingly connected to the third shaft 13. It is composed.
  • the motor speed should be reduced as the reduction ratio is lowered (closer to 1). That is, even if the reduction ratio of the reduction gear is reduced, the rotation speed of the motor is reduced as a low-speed motor in order to keep the rotation speed on the output side unchanged.
  • the acceleration torque on the high speed side that is, the motor side
  • the electric power is represented by “torque ⁇ rotational speed”.
  • torque ⁇ rotational speed since the rotational speed is reduced by using a low-speed motor here, the power consumption is naturally reduced.
  • Table 1 shows a reduction rate of mechanical power consumption in the articulated robot 10 according to the present embodiment.
  • the items (A) to (F) of mechanical power consumption are associated with A to F in FIG.
  • a transmission mechanism 7 configured by a combination of a low-speed motor and a reduction gear having a small reduction ratio is employed for the first transmission mechanism and the second transmission mechanism. Yes. Therefore, as can be seen from Table 1, at least (A) inertia acceleration torque on the high speed side and (F) motor loss are reduced, and mechanical loss is reduced. In addition, (E) the oil seal loss torque is substantially proportional to the motor rotation speed, so this also decreases, contributing to a reduction in mechanical loss.
  • the motor linked to the second shaft 12 is a low-speed high-torque motor that exceeds the rated torque.
  • the low-speed high-torque motor is preferably a direct drive motor.
  • a large and heavy motor such as a low-speed high-torque motor tends to be considered unsuitable for reducing power consumption. Therefore, a low speed, high torque motor cannot be adopted indiscriminately for any joint.
  • the first joint portion 21 and the second joint portion 22 are located close to the floor surface 1 and support a movable part that is greatly affected by the weight moment. It is not a joint.
  • first joint portion 21 and the second joint portion 22 are positioned after the distal end side of the long base side arm 4 standing in the reference posture and extend in the horizontal direction as a basic posture.
  • the third joint portion 23 to the sixth joint portion 26 provided in the part are different in the condition of the arrangement position and the condition of the support target.
  • the first joint part 21 and the second joint part 22 can affect the operation of the movable part by an increase in weight moment due to an increase in the weight of the motor itself. Sex is relatively low.
  • the positions of the first joint portion 21 and the second joint portion 22 in the multi-joint robot 10 according to the present embodiment are higher than the third joint portion 23 to the sixth joint portion 26.
  • the effect was found to be relatively small.
  • the low-speed and high-torque motor is interlocked with one or both of the first shaft 11 of the first joint portion 21 and the second shaft 12 of the second joint portion 22. did.
  • only the motor connected to the second shaft 12 of the second joint portion 22 is a low speed and high torque motor, and the first joint portion 21 can be handled only by reducing the reduction gear ratio. Yes.
  • the low-speed high-torque motor may be coupled to one or both of the first shaft 11 of the first joint portion 21 and the second shaft 12 of the second joint portion 22. Therefore, only the motor of the first joint portion 21 can be a low speed and high torque motor, and the second joint portion 22 can be dealt with only by reducing the reduction gear ratio. Alternatively, both the first joint portion 21 and the second joint portion 22 may be low speed and high torque motors.
  • the articulated robot 10 includes a balancer 9 between the body portion 3 and the base side arm 4 that is swingably supported with respect to the body portion 3. It is arranged.
  • the balancer 9 is generally composed of, for example, a cylinder, a rod, and a spring, but may be any one that functions as a compression spring.
  • the balancer 9 Since the balancer 9 is provided, a force that balances with the gravity moment of the base side arm 4 can be applied to the base side arm 4, and as can be seen from FIG. 3 and Table 1, the gravity moment support torque (C ) Becomes smaller.
  • the articulated robot 10 has the following configurations (1) to (3).
  • the second shaft 12 is linked to a low-speed high-torque motor that exceeds the rated torque.
  • the articulated robot 10 has six axes, but the number of axes is not limited. Further, although the articulated robot 10 has been described as being erected from the floor surface 1, it may be an articulated robot provided on a side wall surface or a ceiling surface.
  • a transmission mechanism kit in which a speed reducer and a motor are combined can be replaced for each movable part of the articulated robot 10 (the body part 3, the base part side arm 4, the tip part side arm 5, and the wrist part 6).
  • a mounting portion (not shown) can be provided.
  • a transmission mechanism kit in which a motor having an appropriate rotational speed and a reducer having an appropriate reduction ratio are combined in advance can be easily attached.

Abstract

 消費電力の低減化を図った多関節ロボットを提供すること。第1軸(11)回りに回転可能な胴体部(3)と、胴体部(3)に対し、第1軸(11)と直交方向に延在する第2軸(12)回りに回転可能な基部側アーム(4)と、基部側アーム(4)に対し、第2軸(12)と平行方向に延在する第3軸(13)回りに回転可能な先端部側アーム(5)とを備える。第1軸(11)および第2軸(12)に連動連結する各伝動機構(7)は、第3軸(13)に連動連結する伝動機構(7)よりも小減速比である減速機がモータと組み合わせられる。

Description

多関節ロボット
 開示の実施形態は、多関節ロボットに関する。
 従来、この種の多関節ロボットとして、例えば、アーム伝動の先端にアーク溶接用トーチを取り付けたアーク溶接ロボットなどが知られている。かかる多関節ロボットは、その他にも、様々な産業分野で広く利用されている。
 一般に、上述した多関節ロボットは、工場などの現場における設置面に設けられる基台と、基台に対し、第1軸回りに回転可能に立設された胴体部とを備えている。また、胴体部に対し、第1軸と直交方向に延在する第2軸回りに回転可能に設けられた下部アームとを備えている。
 さらに、下部アームに対しては、第2軸と平行方向に延在する第3軸回りに回転可能に設けられた上部アームを備え、さらに上部アームの先端に手首部やエンドエフェクタを具備するハンド部を備えた構成となっている(例えば、特許文献1を参照)。
特開2011-005635号公報
 特許文献1に示したような多関節ロボットは、上述したように、様々な産業分野で広く利用されており、各分野における工場などでは、製造ラインに設置されるロボット数も増加する傾向にある。そのため、市場からは、ランニングコストを含め、より低コストで運用可能な多関節ロボットが求められている。
 しかし、上述したように、多関節ロボットは様々な分野で広く採用されているため、ロボットが担う作業も各分野において様々である。このような現状において、いかなる分野においても低コストで運用できるような多関節ロボットに関する提案は未だ十分にはなされていない。
 実施形態の一態様は、上記に鑑みてなされたものであって、低コストで運用可能な多関節ロボットを提供することを目的とする。
 実施形態の一態様に係る多関節ロボットは、少なくとも、胴体部、基部側アーム、および先端部側アームを備えている。胴体部は、所定の設置面に設けられた基台に対し、第1軸回りに回転可能に設けられ、基部側アームは、前記胴体部に対し、前記第1軸と直交方向に延在する第2軸回りに回転可能に設けられる。また、先端部側アームは、前記基部側アームに対し、前記第2軸と平行方向に延在する第3軸回りに回転可能に設けられる。そして、前記第1軸乃至前記第3軸は、モータと減速機とを備える伝動機構にそれぞれ連動連結している。しかも、前記第1軸および前記第2軸に連動連結する各伝動機構は、前記第3軸に連動連結する伝動機構よりも小減速比である減速機がモータと組み合わせられていることとした。
 実施形態の一態様によれば、モータ損失の低減と、速度低減による、消費されることのない無効電力の低減が図れ、消費電力の低減化に寄与することができる。
図1は、実施形態に係る多関節ロボットの側面視による説明図である。 図2は、同多関節ロボットの各可動部位の動きを示す模式的説明図である。 図3は、同多関節ロボットのエネルギの流れの概要を示す説明図である。
 以下、添付図面を参照して、本願の開示する多関節ロボットの実施形態を詳細に説明する。ただし、以下の実施形態における例示で本発明が限定されるものではない。
 図1は本実施形態に係る多関節ロボットの側面視による説明図である。本実施形態における以下の説明では、多関節ロボットを6軸ロボットとするとともに、図1の右側から見た場合を正面視として説明する。また、図2は同多関節ロボットの各可動部位の動きを示す模式的説明図である。
 なお、図1および図2には、説明を分かりやすくするために、鉛直上方向(Z方向)、水平右方向(X方向)、水平紙面裏面方向(Y方向)を正方向とする3次元直交座標系を表示した。
 多関節ロボット10は、固定部位である基台2と、この基台2に連接される胴体部3をはじめとして、順次連接された基部側アーム4、先端部側アーム5、およびリスト部6を可動部位として備えている。
 すなわち、図1および図2に示すように、本実施形態に係る多関節ロボット10は、設置面となるフロア面1に略円筒状の基台2を固定状態に設置している。そして、この基台2に胴体部3を連接し、胴体部3に基部側アーム4を、基部側アーム4に先端部側アーム5を、先端部側アーム5にリスト部6を順次連接している。
 胴体部3は、フロア面1に固定状態に設置された基台2に対して、第1関節部21を介して回転可能に連結されている。
 第1関節部21は、垂直方向となるZ方向に延在する第1軸11を備えている。そして、この第1軸11は、第1のモータと第1の減速機とを備える第1の伝動機構(図示せず)に連動連結している。したがって、固定された基台2に対して、胴体部3は、第1のモータおよび第1の減速機の駆動により、第1軸11回りに水平方向に回転する(図2の矢印300を参照)。
 胴体部3は、第1軸11よりも前方斜め上方に伸延する胴部30を備え、この胴部30の先端側に第2関節部22が設けられている。そして、基部側アーム4は、第2関節部22を介して回転可能に連結されている。
 第2関節部22は、第1軸11と直交方向、すなわち、Y方向に延在する第2軸12を備えている。そして、この第2軸12は、第2のモータと第2の減速機とを備える第2の伝動機構(図示せず)に連動連結している。したがって、基部側アーム4は、第2のモータおよび第2の減速機の駆動により、第2軸12回りに回転、つまり、前後方向に揺動する(図2の矢印400を参照)。また、基部側アーム4は、第1軸11に偏心した位置に連結されているため、第1軸11を中心に旋回することにもなる。
 可動部位の中で最も長尺な基部側アーム4の先端(図1および図2においては上端)側には第3関節部23が設けられており、この第3関節部23を介して略L字状の先端部側アーム5が連結されている。
 第3関節部23は、第2軸12と平行方向、すなわち、第1軸11と直交する第2軸12と同方向のY方向に延在する第3軸13を備えている。そして、この第3軸13は、第3のモータと第3の減速機とを備える第3の伝動機構(図示せず)に連動連結している。したがって、先端部側アーム5は、第3のモータおよび第3の減速機の駆動により、第3軸13回りに回転、つまり、前後方向に揺動する(図2の矢印500を参照)。
 また、先端部側アーム5の先端側には第4関節部24が設けられており、この第4関節部24を介して、例えば、図示しない溶接トーチなどのような所定のエンドエフェクタを備えるリスト部6が同軸方向に連結されている。
 なお、リスト部6は、第4関節部24に連結する円筒状の第1リスト部61と、この第1リスト部61に連結する第2リスト部62と、エンドエフェクタを設けた第3リスト部63とから構成される。
 第1リスト部61を連動連結する第4関節部24は、第3軸13と直行する方向、すなわち、X方向に延在する第4軸14を備えている。そして、この第4軸14は、第4のモータと第4の減速機とを備える第4の伝動機構(図示せず)に連動連結している。したがって、第4軸14と同軸方向に連動連結された第1リスト部61は、第4のモータおよび第4の減速機の駆動により、第4軸14回りに回転、つまり、第4軸14回りに自転する(図2の矢印600を参照)。
 第1リスト部61の先端側には、第5関節部25が設けられており、この第5関節部25を介して、第2リスト部62が同軸方向に連結されている。
 第5関節部25は、第4軸14と同軸方向、すなわち、X方向に延在する第5軸15を備えている。そして、この第5軸15は、第5のモータと第5の減速機とを備える第5の伝動機構(図示せず)に連動連結している。したがって、第5軸15と同軸方向に連動連結された第2リスト部62は、第5のモータおよび第5の減速機の駆動により、第5軸15回りに回転、つまり、第5軸15回りに自転する(図2の矢印700を参照)。
 第2リスト部62の先端側には、第6関節部26が設けられており、この第6関節部26を介して、第3リスト部63が連結されている。
 第6関節部26は、第5軸15と直行する方向、すなわち、Y方向に延在する第6軸16を備えている。そして、この第6軸16は、第6のモータと第6の減速機とを備える第6の伝動機構(図示せず)に連動連結している。したがって、第3リスト部63は、第6のモータおよび第6の減速機の駆動により、第6軸16回りに回転、つまり、前後方向に揺動する(図2の矢印800を参照)。
 このように、本実施形態に係る多関節ロボット10は、所定の設置面であるフロア面1に設けられる基台2に対し、第1軸11回りに回転可能に設けられた胴体部3を備えている。また、胴体部3に対し、第1軸11と直交方向に延在する第2軸12回りに回転可能に設けられた基部側アーム4を備えている。さらに、基部側アーム4に対し、第2軸12と平行方向に延在する第3軸13回りに回転可能に設けられた先端部側アーム5を備えている。さらに、先端部側アーム5の先端部には、所定のエンドエフェクタを備えた第3リスト部63を含むリスト部6が所定の軸(第4軸14、第5軸15および第6軸16)回りに回転可能に設けられている。
 第1軸11~第6軸16が、モータと減速機とを備える伝動機構にそれぞれ連動連結した上述してきた構成のロボットにおいて、本実施形態に係る多関節ロボット10は、以下のようにして機械的ロスを低減し、低コストで運用可能な構成とした点に特徴がある。
 すなわち、第1関節部21~第6関節部26にそれぞれ設けられている、モータと減速機とを備える伝動機構に着目し、モータや減速機の適正な選択を行うことで機械的ロスの低減を図っている。
 ここで、図3を参照しながら、多関節ロボット10のエネルギの流れについて説明する。図3は、本実施形態に係る多関節ロボット10を含む一般的な多関節ロボットのエネルギの流れの概要を示す説明図であり、図中の符号7は伝動機構を示している。
 図3に示すように、多関節ロボット10は、電源8から電力の供給を受けて作動する。電力の消費は、ロボットを制御するための各種制御基板や、ティーチペンダントのバックライト動作などで消費される固定的、普遍的なものと、モータや減速機などを備える伝動機構7やその他の機械動作のために消費されるものとに大きく分けられる。なお、普遍的な消費電力は、消費電力総量の約30%であることが分かっている。
 そこで、消費電力総量の約70%にあたる、機械的な消費電力、特に、可動部位におけるモータと減速機とを備える伝動機構7に着目して、モータや減速機の適正な選択を行うことで、機械的ロス低減の実現を図ることとした。
 代表的な機械的な消費電力としては、高速側のイナーシャ加速トルク(A)、低速側のイナーシャ加速トルク(B)と低速側の重力モーメント支持トルク(C)、減速機の無負荷ランニングトルク(D)、オイルシールロストルク(E)、モータ損失(F)がある。
 なお、高速側のイナーシャ加速トルク(A)は、モータ出力(加速トルク)などに消費される。また、低速側のイナーシャ加速トルク(B)および低速側の重力モーメント支持トルク(C)は、可動部位側の負荷トルクや減速機出力(アーム加速トルク)などに消費される。また、減速機の無負荷ランニングトルク(D)は、減速機の損失であり、オイルシール損、軸受損、グリス撹拌損などが含まれる。また、オイルシールロストルク(E)は、胴体部3や基部側、先端部側アーム4,5などの可動部位におけるオイルシール損、軸受損、グリス撹拌損などが含まれる。さらに、モータ損失(F)は、鉄損、銅損などを主とするもので、モータにおけるオイルシール損、軸受損などの機械損も含まれる。ここで、鉄損は交流で磁化した場合に失われる電気エネルギ、銅損はコイルの導線抵抗によって失われる電気エネルギである。
 このような電力の消費形態を有する多関節ロボット10において、第1、第2関節部21,22に設けられた第1伝動機構、第2伝動機構は、第3関節部23に設けられ第3伝動機構よりも小減速比である減速機がモータと組み合わせられた構成としている。
 すなわち、第1伝動機構、第2伝動機構については、第3関節部23に設けられて第3軸13に連動連結する第3伝動機構よりも、小減速比である減速機をモータと組み合わせて構成している。
 このとき、減速比を落とすこと(1に近づける)に伴って、モータの回転数も低速化するとよい。すなわち、減速機の減速比を小さくしても、出力側の回転数を不変とするために低速なモータとしてモータの回転数を落とすのである。
 このように、減速比を小さくした場合にモータの回転数を落とすことで、減速機の出力側の回転数を不変としながら高速側、すなわちモータ側での加速トルクを減少させることができる。電力は、「トルク×回転数」で表されるが、ここでは低速モータを用いて回転数が減少しているため、消費電力は当然ながら減少することになる。
 表1に、本実施形態に係る多関節ロボット10における機械的な消費電力の減少率を示している。なお、機械的な消費電力の項目(A)~(F)については図3におけるA~Fと関連付けられている。
Figure JPOXMLDOC01-appb-T000001
 本実施形態に係る多関節ロボット10では、低速なモータと小減速比である減速機との組み合わせにより構成した伝動機構7(図3参照)を第1伝動機構および第2伝動機構に採用している。したがって、表1からも分かるように、少なくとも、(A)高速側のイナーシャ加速トルク、および(F)モータ損失は減少し、機械的ロスの低減化が実現されている。また、(E)オイルシールロストルクはモータ回転数に略比例するため、これも減少し、機械的ロスの低減化に寄与している。
 また、本実施形態に係る多関節ロボット10では、第2関節部22の第2伝動機構に関し、第2軸12に連動連結するモータを、定格トルクを上回る低速高トルクモータとしている。なお、低速高トルクモータとしては、ダイレクトドライブモータとすることが好ましい。
 通常、低速高トルクモータのように、大型で重量の嵩むモータは、消費電力の低減化には不向きと考えられがちである。したがって、低速高トルクモータは、どの関節に対してでも無差別に採用することはできない。
 しかし、低速高トルクモータであっても、モータの回転数は機械的ロスに直結するため、モータの配設位置を適切に定めれば、トータル的には消費電力の低減化に寄与することになると考えられる。
 そこで、低速高トルクモータを適用するに相応しい関節について検討することとした。図1および図2からも分かるように、第1関節部21および第2関節部22は、フロア面1に近く位置しており、しかも、重量モーメントの影響を大きく受けるような可動部位を支持する関節部ではない。
 つまり、第1関節部21および第2関節部22は、基準となる姿勢では起立している長尺の基部側アーム4の先端側以降に位置し、かつ基本姿勢として水平方向に延在する可動部位に設けられる第3関節部23~第6関節部26とは、配設位置の条件も、支持対象の条件も異なっている。
 第1関節部21および第2関節部22は、第3関節部23~第6関節部26に比べて、モータ自身の重量の増加による重量モーメントの増加によって、可動部位の動作に影響を与える可能性は比較的低い。
 このように、本実施形態に係る多関節ロボット10における第1関節部21および第2関節部22の位置は、第3関節部23~第6関節部26に比べ、可動部位の動作に対する重量の影響が比較的小さいことが分かった。
 こうして、本実施形態に係る多関節ロボット10では、低速高トルクモータを、第1関節部21の第1軸11および第2関節部22の第2軸12の一方または双方に連動連結することとした。
 なお、本実施形態では、第2関節部22の第2軸12に連結するモータのみを低速高トルクモータとし、第1関節部21については減速機を小減速比化することのみで対応している。
 しかし、上述したように、低速高トルクモータは、第1関節部21の第1軸11および第2関節部22の第2軸12の一方または双方に連動連結すればよい。したがって、第1関節部21のモータのみを低速高トルクモータとし、第2関節部22については減速機を小減速比化することのみで対応することもできる。あるいは、第1関節部21および第2関節部22のいずれについても低速高トルクモータとしてもよい。
 また、本実施形態に係る多関節ロボット10は、図2に示すように、胴体部3と、当該胴体部3に対して揺動自在に支持された基部側アーム4との間にバランサ9を配設している。ここで、バランサ9は、例えば、シリンダとロッドとバネから構成されたものが一般的であるが、圧縮バネとして機能するものであればよい。
 バランサ9を配設したことにより、基部側アーム4の重力モーメントとバランスする力を当該基部側アーム4に付与することができるため、図3および表1から分かるように、重力モーメント支持トルク(C)が小さくなる。
 以上、説明してきたように、本実施形態に係る多関節ロボット10は、以下の(1)~(3)の構成を備えている。
 (1)第1軸11および第2軸12に連動連結する各伝動機構7を、第3軸13~第6軸16に連動連結する伝動機構7よりも小減速比である減速機をモータと組み合わせた構成。
 (2)第2軸12には定格トルクを上回る低速高トルクモータを連動連結した構成。
 (3)胴体部3と、当該胴体部3に対して揺動自在に支持された基部側アーム4との間にバランサ9を配設した構成。
 したがって、表2に示すように、第1軸11および第2軸12における電力消費量が低減し、結果的に、多関節ロボット10としての消費電力の低減化が実現されることになる。
Figure JPOXMLDOC01-appb-T000002
 なお、この表2や先に説明した表1に掲載された数値はあくまでも一例であり、多関節ロボットとしての仕様や構成の違い、あるいは使用条件などによって異なってくることは当然である。
 また、消費電力の低減が図られたロボットを実現するためには、必ずしも上記(1)~(3)の構成すべてを併せもつ必要はなく、少なくとも(1)を備えていればよい。あるいは、(1)と(2)、または(1)と(3)とを備える構成であってもよい。
 ところで、上述してきた実施形態では、多関節ロボット10を6軸としたが、軸数が限定されるものではない。また、多関節ロボット10をフロア面1から立設されたものとして説明したが、側壁面や天井面に設けられた多関節ロボットであってもよい。
 また、多関節ロボット10の各可動部位(胴体部3、基部側アーム4、先端部側アーム5、およびリスト部6)には、減速機とモータとが組み合わされた伝動機構キットを取替可能とする装着部(図示せず)を設けることもできる。
 かかる装着部が設けられた多関節ロボット10では、適切な回転数のモータと適切な減速比の減速機とが予め組み合わされた伝動機構キットを容易に取付けることができる。
 上述した実施形態のさらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
 1  フロア面(設置面)
 2  基台
 3  胴体部
 4  基部側アーム
 5  先端部側アーム
 6  リスト部
 7  伝動機構
 9  バランサ
 10  多関節ロボット
 11  第1軸
 12  第2軸
 13  第3軸

Claims (4)

  1.  所定の設置面に設けられる基台に対し、第1軸回りに回転可能に設けられた胴体部と、
     前記胴体部に対し、前記第1軸と直交方向に延在する第2軸回りに回転可能に設けられた基部側アームと、
     前記基部側アームに対し、前記第2軸と平行方向に延在する第3軸回りに回転可能に設けられた先端部側アームと、
    を少なくとも備え、
     前記第1軸乃至前記第3軸は、モータと減速機とを備える伝動機構にそれぞれ連動連結しており、
     前記第1軸および前記第2軸に連動連結する各伝動機構は、
     前記第3軸に連動連結する伝動機構よりも小減速比である減速機がモータと組み合わせられている
     ことを特徴とする多関節ロボット。
  2.  前記先端部側アームの先端部には、所定のエンドエフェクタを備えたリスト部が所定の軸回りに回転可能に設けられている
     ことを特徴とする請求項1に記載の多関節ロボット。
  3.  前記第1軸および前記第2軸の一方または双方に、定格トルクを上回る低速高トルクモータを連動連結した
     ことを特徴とする請求項2に記載の多関節ロボット。
  4.  前記胴体部と、当該胴体部に対して揺動自在に支持された前記基部側アームとの間に、当該基部側アームの重力モーメントとバランスする力を当該基部側アームに付与するバランサを配設したことを特徴とする請求項1、2、または3のいずれか1項に記載の多関節ロボット。
PCT/JP2011/073434 2011-10-12 2011-10-12 多関節ロボット WO2013054405A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/073434 WO2013054405A1 (ja) 2011-10-12 2011-10-12 多関節ロボット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/073434 WO2013054405A1 (ja) 2011-10-12 2011-10-12 多関節ロボット

Publications (1)

Publication Number Publication Date
WO2013054405A1 true WO2013054405A1 (ja) 2013-04-18

Family

ID=48081483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073434 WO2013054405A1 (ja) 2011-10-12 2011-10-12 多関節ロボット

Country Status (1)

Country Link
WO (1) WO2013054405A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107571252A (zh) * 2017-06-02 2018-01-12 佛山华数机器人有限公司 一种双旋关节机器人

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131891A (ja) * 1984-11-29 1986-06-19 三菱重工業株式会社 回転関節機構
JPS61217802A (ja) * 1985-03-23 1986-09-27 Omron Tateisi Electronics Co ロボツト制御装置
JPH1170489A (ja) * 1997-08-29 1999-03-16 Yaskawa Electric Corp 産業用ロボット
JP2001113488A (ja) * 1999-10-15 2001-04-24 Mitsubishi Electric Corp 産業用ロボット
JP2005262340A (ja) * 2004-03-16 2005-09-29 Fanuc Ltd 産業用ロボット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131891A (ja) * 1984-11-29 1986-06-19 三菱重工業株式会社 回転関節機構
JPS61217802A (ja) * 1985-03-23 1986-09-27 Omron Tateisi Electronics Co ロボツト制御装置
JPH1170489A (ja) * 1997-08-29 1999-03-16 Yaskawa Electric Corp 産業用ロボット
JP2001113488A (ja) * 1999-10-15 2001-04-24 Mitsubishi Electric Corp 産業用ロボット
JP2005262340A (ja) * 2004-03-16 2005-09-29 Fanuc Ltd 産業用ロボット

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107571252A (zh) * 2017-06-02 2018-01-12 佛山华数机器人有限公司 一种双旋关节机器人

Similar Documents

Publication Publication Date Title
JP4291344B2 (ja) 産業用ロボット
US8429996B2 (en) Robot arm assembly
US20120067156A1 (en) Robot for handling object
CN201776752U (zh) 六自由度精密重载机械手
US20110067514A1 (en) Robot arm assembly and industrial robot using the same
CN101272886A (zh) 多关节机械手
WO2013061868A1 (ja) ロボットの関節構造及びこの関節構造が組み込まれたロボット
JP2014097546A (ja) ロボットハンド
JP4754296B2 (ja) 産業用ロボット
EP2979822A2 (en) Robot
US11014251B2 (en) Joint structure for robot
CN208788595U (zh) 一种视觉定位机器人
EP2979827A2 (en) Robot
CN101590650B (zh) 解耦的三转动自由度并联机构
CN102848375A (zh) 转动运动和平动运动单独控制的空间六自由度机构
CN102303313A (zh) 一种非对称完全各向同性三自由度空间并联机器人机构
WO2013054405A1 (ja) 多関節ロボット
CN208246811U (zh) 一种五关节机器人
WO2016133105A1 (ja) 産業用ロボット
JP2015160298A (ja) パラレルリンクロボット
JP2017119335A (ja) マニピュレータ
CN208451632U (zh) 一种柔性驱动式机械臂
JP2008264899A (ja) ロボット出力の測定方法および制限装置
CN204525462U (zh) 一种柔性六轴机器人
CN207563989U (zh) 一种中空焊接机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP