WO2013053265A1 - 一种双激光束复合焊接装置与复合焊接方法 - Google Patents

一种双激光束复合焊接装置与复合焊接方法 Download PDF

Info

Publication number
WO2013053265A1
WO2013053265A1 PCT/CN2012/079993 CN2012079993W WO2013053265A1 WO 2013053265 A1 WO2013053265 A1 WO 2013053265A1 CN 2012079993 W CN2012079993 W CN 2012079993W WO 2013053265 A1 WO2013053265 A1 WO 2013053265A1
Authority
WO
WIPO (PCT)
Prior art keywords
yag
lens
semiconductor
laser beam
total reflection
Prior art date
Application number
PCT/CN2012/079993
Other languages
English (en)
French (fr)
Inventor
卢国杰
Original Assignee
深圳市联赢激光股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市联赢激光股份有限公司 filed Critical 深圳市联赢激光股份有限公司
Publication of WO2013053265A1 publication Critical patent/WO2013053265A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding

Definitions

  • the invention relates to laser welding, in particular to a double laser beam composite welding device and a composite welding method.
  • a continuous single-wavelength beam generated by a yttrium aluminum garnet rod (ND: YAG) using an ytterbium (ND) as an excitation element is connected to a laser processing head, and the laser welding spot is small.
  • the position of the weldment is very precise, it must be within the focus range of the laser beam, and the interface of the base metal welding end is required to be high. Otherwise, the misalignment and the welding discontinuity are easy.
  • One technical problem to be solved by the present invention is to make up for the deficiencies of the prior art described above, and to provide a dual laser beam hybrid welding device.
  • Another technical problem to be solved by the present invention is to make up for the deficiencies of the above prior art and to provide a dual laser beam hybrid welding method.
  • the double laser beam composite welding device is used for welding a workpiece placed on a horizontal welding workbench, comprising a CCD monitor placed in front of the workpiece to observe the welding effect in real time, and a CCD monitor located at the CCD monitor Side ytterbium-doped aluminum garnet crystal (abbreviated as ND:YAG) laser beam path, the ND:YAG laser beam path including ND:YAG collimating lens disposed in the vertical section of the inverse L-type ND:YAG laser barrel
  • the first ND:YAG total reflection lens is disposed at an angle of 45° with the horizontal work surface in the turning section of the reverse L-type ND:YAG laser lens barrel.
  • a semiconductor laser beam optical path is provided, the semiconductor laser beam being parallel to the ND:YAG laser beam, the semiconductor laser beam optical path comprising a semiconductor collimating lens disposed in a vertical section of the L-type semiconductor laser lens barrel and disposed in the L-type semiconductor laser mirror A semiconductor total reflection lens with an angle of 135° with the horizontal work surface in the turning section of the cylinder.
  • a double laser beam optical path disposed in the vertical double laser beam barrel is further disposed between the CCD monitor and the workpiece, and the double laser beam optical path is sequentially at an angle from the horizontal working surface from top to bottom.
  • 45° second ND: YAG total reflection lens, semiconductor total reflection and ND:YAG total transmission combined lens with angle of 135° on horizontal work surface, and semiconductor and ND:YAG with angle of 0° to horizontal work surface a fully transmissive focusing lens, wherein the ND:YAG laser beam and the semiconductor laser beam respectively form an energy focused laser beam through the semiconductor total reflection and ND:YAG total transmission combined lens, semiconductor and ND:YAG total transmission focusing lens
  • the workpiece is welded to the same machining position.
  • the upper portion of the vertical double laser beam barrel is in communication with the inverted L-shaped ND:YAG laser barrel turning section and is closed, the second ND:YAG total reflection lens and the first ND: The YAG total reflection lens is disposed at the same level and the optical path of the ND:YAG laser beam is extended.
  • a lower portion of the vertical double laser beam barrel is connected to and integrated with the L-shaped semiconductor laser barrel turning section, the semiconductor total reflection and ND:YAG total transmission combined lens and the semiconductor total reflection lens
  • the semiconductor laser beam optical path is extended at the same level and at the same height.
  • the spot of the semiconductor laser after focusing is larger than that of the ND:YAG laser, and the temperature of the workpiece processing position can be preheated to 300 ⁇ 5° C. by using a continuous semiconductor laser. Its absorption efficiency for laser is greatly improved, and pulse ND is used again: The YAG laser welds the workpiece to the same machining position.
  • the semiconductor collimating lens is a coated lens having a surface coated with a semiconductor laser antireflection film.
  • the ND:YAG collimating lens is a coated lens having an ND:YAG laser antireflection coating on its surface.
  • the semiconductor total reflection lens is a coated lens whose surface is plated with a semiconductor laser total reflection film having an incident angle of 45°.
  • the first ND:YAG total reflection lens and the second ND:YAG total reflection lens are coated lenses whose surface is plated with an ND:YAG laser total reflection film having an incident angle of 45°.
  • the semiconductor total reflection and ND:YAG total transmission combined lens is coated with a semiconductor laser total reflection film having an incident angle of 45° and an ND:YAG laser antireflection film having an incident angle of 45°, and the other surface is plated with an incident angle. It is a coated lens of 45° ND:YAG laser antireflection film.
  • the semiconductor and ND:YAG total transmission focusing lens is a coated lens having a surface coated with a semiconductor laser antireflection film and an ND:YAG laser antireflection film.
  • the double laser beam hybrid welding method is characterized by: using a dual laser beam hybrid welding device, which has the following steps in sequence:
  • the ND:YAG laser beam passing through the ND:YAG collimating lens is transmitted to the first and second ND:YAG total reflection lenses and then reflected to the semiconductor total reflection and ND:YAG total transmission combined lens, and then transmitted to the semiconductor and ND: YAG is fully transmissive to gather the lens and then focus on the workpiece at the same processing position for welding.
  • the preheating of the step 2) is that the temperature preheated to the workpiece processing position is 300 ⁇ 5 °C.
  • the semiconductor collimating lens is a coated lens having a surface coated with a semiconductor laser antireflection film.
  • the ND:YAG collimating lens is a coated lens having an ND:YAG laser antireflection coating on its surface.
  • the semiconductor total reflection lens is a coated lens whose surface is plated with a semiconductor laser total reflection film having an incident angle of 45°.
  • the first ND:YAG total reflection lens and the second ND:YAG total reflection lens are coated lenses whose surface is plated with an ND:YAG laser total reflection film having an incident angle of 45°.
  • the semiconductor total reflection and ND:YAG total transmission combined lens is coated with a semiconductor laser total reflection film having an incident angle of 45° and an ND:YAG laser antireflection film having an incident angle of 45°, and the other surface is plated with an incident angle. It is a coated lens of 45° ND:YAG laser antireflection film.
  • the semiconductor and ND:YAG total transmission focusing lens is a coated lens having a surface coated with a semiconductor laser antireflection film and an ND:YAG laser antireflection film.
  • the invention adopts a fiber-coupled-output semiconductor laser and an ND:YAG laser, and can realize high-degree-of-freedom welding processing, including separation of a laser main body and a welding workbench, and has a simple and compact structure and alignment position compared with a conventional hard optical path welding device.
  • FIG. 1 is a view of the optical path of a specific embodiment of the apparatus of the present invention.
  • the ND:YAG laser beam path includes an ND:YAG collimating lens 6 disposed in the vertical section of the inverted L-type ND:YAG laser barrel, and is disposed in the turning section of the inverted L-type ND:YAG laser barrel and the horizontal work surface.
  • the first ND:YAG total reflection lens 7 having an angle of 45°.
  • a semiconductor laser beam optical path is provided, the semiconductor laser beam 2 being parallel to the ND:YAG laser beam 1, the semiconductor laser beam optical path comprising a semiconductor collimating lens 4 disposed in a vertical section of the L-type semiconductor laser lens barrel, and being disposed in the L-type semiconductor laser A semiconductor total reflection lens 5 having an angle of 135° with the horizontal work surface in the corner portion of the barrel body.
  • a double laser beam optical path disposed in the vertical double laser beam barrel is further disposed between the CCD monitor 3 and the workpiece 10.
  • the double laser beam optical path is sequentially at an angle of 45° from the horizontal working surface from top to bottom.
  • the ND:YAG laser beam 1 and the semiconductor laser beam 2 are respectively formed by the semiconductor total reflection and ND:YAG total transmission combined lens 8, the semiconductor and the ND:YAG total transmission focusing lens 9 to form an energy focused laser beam at the same processing position to the workpiece 10 Perform welding processing.
  • the upper part of the vertical double laser beam barrel is connected and closed to the turning section of the inverted L type ND:YAG laser barrel, and the second ND:YAG total reflection lens 7 and the first ND:YAG total reflection lens 7 are disposed at At the same level, the ND:YAG laser beam path is extended.
  • the lower section of the vertical double laser beam barrel is connected and closed to the L-shaped semiconductor laser barrel turning section, and the semiconductor total reflection and ND:YAG total transmission combined lens 8 are disposed at the same level as the semiconductor total reflection lens 5. Wherein, the semiconductor laser beam optical path is extended.
  • the spot of the semiconductor laser after focusing is larger than that of the ND:YAG laser, and the temperature of the processing position of the workpiece 10 can be preheated to 300 ⁇ 5° C. by using a continuous semiconductor laser.
  • the absorption efficiency of the laser is greatly improved, and the pulse ND is used:
  • the YAG laser performs the welding process on the workpiece 10 at the same processing position.
  • the semiconductor collimating lens 4 is a coated lens having a surface coated with a semiconductor laser antireflection film.
  • ND: YAG collimating lens 6 is a coated lens coated with an ND:YAG laser antireflection film.
  • the semiconductor total reflection lens 5 is a coated lens whose surface is plated with a semiconductor laser total reflection film having an incident angle of 45°.
  • the first ND:YAG total reflection lens and the second ND:YAG total reflection lens 7 are coated lenses whose surface is plated with an ND:YAG laser total reflection film having an incident angle of 45°.
  • the semiconductor total reflection and ND:YAG total transmission combined lens 8 is coated with a semiconductor laser total reflection film having an incident angle of 45° and an ND:YAG laser antireflection film having an incident angle of 45°, and the other surface is plated with an incident angle of 45° ND: YAG laser antireflection coated lens.
  • the semiconductor and ND:YAG total transmission focusing lens 9 is a coated lens coated with a semiconductor laser antireflection film and an ND:YAG laser antireflection film.
  • semiconductor laser beam 2 and ND: YAG laser beam 1 are respectively transmitted to the semiconductor collimating lens 4 and ND: YAG collimating lens 3;
  • the semiconductor laser beam passing through the semiconductor collimating lens 4 is transmitted to the semiconductor total reflection lens 5, and then reflected to the semiconductor total reflection and ND:YAG total transmission combined lens 8, and then reflected to the semiconductor and ND:YAG total transmission focusing lens 9 and then focused.
  • the temperature to the processing position of the workpiece 10 is 300 ⁇ 5 ° C;
  • the ND:YAG laser beam passing through the ND:YAG collimating lens 6 is transmitted to the first and second ND:YAG total reflection lenses 7 and then reflected to the semiconductor total reflection and ND:YAG total transmission combined lens 8 and then transmitted to the semiconductor And the ND:YAG total transmission focusing lens 9 is focused on the workpiece 10 at the same processing position for welding.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种双激光束复合焊接装置与复合焊接方法,装置包括ND:YAG激光束光路,设有半导体激光束光路以及设置在垂直型双激光束镜筒体的双激光束光路,双激光束光路自上至下依次是ND:YAG全反射镜片、半导体全反射和ND:YAG全透射组合镜片,以及半导体和ND:YAG全透射聚集镜片。可实现高自由度的焊接加工,结构简单小巧,对准位置更加精确,易于实现自动化,可焊接常规方式无法焊接的位置以及单束激光无法焊接的高反射率性及高导热性材料,扩大了激光焊接的应用领域,尤其是采用连续式半导体激光器对工件进行预热,加大工件材料对ND:YAG激光的吸收效率,增加焊接熔深,提高焊接速度与效率,避免工件焊接过程中出现气孔和裂纹。

Description

一种双激光束复合焊接装置与复合焊接方法 技术领域
本发明涉及激光焊接,特别是涉及一种双激光束复合焊接装置与复合焊接方法。
背景技术
常用的单激光束焊接,例如通过柔性光纤将使用钕(ND)为激发元素的钇铝石榴石晶棒(ND:YAG)产生的连续单一波长光束连接到激光加工头,其激光焊接光斑小,焊件位置要求非常精确,务必在激光束的聚焦范围内,且对母材焊接端面接口要求高,否则,易产生错位和焊接不连续。由于常温下金属材料对波长为1.06μm的YAG激光吸收效率和能量转换效率太低,因此,焊接熔深比较低,焊接速度比较慢,易导致工件在焊接过程中出现气孔和脆化即焊接裂纹,尤其是对高反射性及高导热性材料如铝、铜及其合金焊接比较困难。采用其它热源与激光进行复合焊接的工艺,例如激光与电弧复合焊接、激光与等离子弧复合焊接、激光与感应热源复合焊接、双激光束焊接以及多光束激光焊接等,可以在一定程度上消除或减少上述单激光束焊接的缺陷。现有双激光束焊接装置与复合焊接方法种类较多,性能不一,都有待于改进与完善。
技术问题
本发明所要解决的一个技术问题是弥补上述现有技术的不足,提供一种双激光束复合焊接装置。
本发明所要解决的另一个技术问题是弥补上述现有技术的不足,提供一种双激光束复合焊接方法。
技术解决方案
本发明的双激光束复合焊接装置技术问题通过以下技术方案予以解决。
这种双激光束复合焊接装置,用于对放置在水平焊接工作台的工件进行焊接加工,包括置于所述工件正上方实时观查焊接效果的CCD监视器,以及位于所述CCD监视器一侧的掺钕钇铝石榴石晶体(缩写为ND:YAG)激光束光路,所述ND:YAG激光束光路包括设置在反L型ND:YAG激光镜筒体垂直段的ND:YAG准直镜片、设置在反L型ND:YAG激光镜筒体转弯段中与水平工作台面夹角为45°的第一ND:YAG全反射镜片。
这种双激光束复合焊接装置的特点是:
设有半导体激光束光路,其半导体激光束与ND:YAG激光束平行,所述半导体激光束光路包括设置在L型半导体激光镜筒体垂直段的半导体准直镜片、设置在L型半导体激光镜筒体转弯段中与水平工作台面夹角为135°的半导体全反射镜片。
在所述CCD监视器与所述工件之间还设有设置在垂直型双激光束镜筒体的双激光束光路,所述双激光束光路自上至下依次是与水平工作台面夹角为45°的第二ND:YAG全反射镜片、与水平工作台面夹角为135°的半导体全反射和ND:YAG全透射组合镜片,以及与水平工作台面夹角为0°的半导体和ND:YAG全透射聚集镜片,所述ND:YAG激光束与所述半导体激光束分别先后通过所述半导体全反射和ND:YAG全透射组合镜片、半导体和ND:YAG全透射聚集镜片形成能量聚焦激光束于同一个加工位置对所述工件进行焊接加工。
所述垂直型双激光束镜筒体的上段与所述反L型ND:YAG激光镜筒体转弯段连通且封闭为一体,所述第二ND:YAG全反射镜片与所述第一ND:YAG全反射镜片设置在同一水平等高处,将所述ND:YAG激光束光路延伸。
所述垂直型双激光束镜筒体的下段与所述L型半导体激光镜筒体转弯段连通且封闭为一体,所述半导体全反射和ND:YAG全透射组合镜片与所述半导体全反射镜片设置在同一水平等高处,将所述半导体激光束光路延伸。
由于镜片玻璃材料对不同波长激光的折射率不同,聚焦后半导体激光的光斑比ND:YAG激光的光斑要大,可以先采用连续半导体激光将工件加工位置的温度预热至300±5℃,使其对激光的吸收效率大大提高,再采用脉冲ND: YAG激光对工件同一个加工位置进行焊接加工。
本发明的双激光束复合焊接装置技术问题通过以下进一步的技术方案予以解决。
所述半导体准直镜片是表面镀有半导体激光增透膜的镀膜镜片。
所述ND:YAG准直镜片是表面镀有ND:YAG激光增透膜的镀膜镜片。
所述半导体全反射镜片是表面镀有入射角为45°的半导体激光全反射膜的镀膜镜片。
所述第一ND:YAG全反射镜片和所述第二ND:YAG全反射镜片是表面镀有入射角为45°的ND:YAG激光全反射膜的镀膜镜片。
所述半导体全反射和ND:YAG全透射组合镜片是一面镀有入射角为45°的半导体激光全反射膜和入射角为45°的ND:YAG激光增透膜、且另一面镀有入射角为45°的ND:YAG激光增透膜的镀膜镜片。
所述半导体和ND:YAG全透射聚集镜片是表面镀有半导体激光增透膜和ND:YAG激光增透膜的镀膜镜片。
本发明的双激光束复合焊接方法技术问题通过以下技术方案予以解决。
这种双激光束复合焊接方法的特点是:采用双激光束复合焊接装置,依次有以下步骤:
1)半导体激光束和ND:YAG激光束分别传输到半导体准直镜片和ND:YAG准直镜片;
2)通过半导体准直镜片的半导体激光束传输到半导体全反射镜片后反射到半导体全反射和ND:YAG全透射组合镜片,再反射到半导体和ND:YAG全透射聚集镜片后聚焦于工件加工位置进行预热;
3)通过ND:YAG准直镜片的ND:YAG激光束传输到第一、第二ND:YAG全反射镜片后反射到半导体全反射和ND:YAG全透射组合镜片,再透射到半导体和ND:YAG全透射聚集镜片后聚焦于工件同一个加工位置进行焊接。
本发明的双激光束复合焊接方法技术问题通过以下进一步的技术方案予以解决。
所述步骤2)的预热是预热至工件加工位置的温度为300±5℃。
所述半导体准直镜片是表面镀有半导体激光增透膜的镀膜镜片。
所述ND:YAG准直镜片是表面镀有ND:YAG激光增透膜的镀膜镜片。
所述半导体全反射镜片是表面镀有入射角为45°的半导体激光全反射膜的镀膜镜片。
所述第一ND:YAG全反射镜片和所述第二ND:YAG全反射镜片是表面镀有入射角为45°的ND:YAG激光全反射膜的镀膜镜片。
所述半导体全反射和ND:YAG全透射组合镜片是一面镀有入射角为45°的半导体激光全反射膜和入射角为45°的ND:YAG激光增透膜、且另一面镀有入射角为45°的ND:YAG激光增透膜的镀膜镜片。
所述半导体和ND:YAG全透射聚集镜片是表面镀有半导体激光增透膜和ND:YAG激光增透膜的镀膜镜片。
有益效果
本发明与现有技术对比的有益效果是:
本发明采用光纤耦合输出的半导体激光器和ND:YAG激光器,可实现高自由度的焊接加工,包括激光器主机和焊接工作台分离,相比于传统的硬光路焊接装置,结构简单小巧,对准位置更加精确,易于实现自动化,可焊接常规方式无法焊接的位置以及单束激光无法焊接的高反射性及高导热性材料如铜、铝及其合金金属,扩大了激光焊接的应用领域,尤其是采用连续式半导体激光器对工件进行预热,加大工件材料对ND:YAG激光的吸收效率,增加焊接熔深,提高焊接速度与效率,有效避免工件在焊接过程中出现气孔和脆化即焊接裂纹,显著减少产品的不良率。
附图说明
图1是本发明装置具体实施方式的光路图。
本发明的实施方式
下面结合具体实施方式并对照附图对本发明进行说明。
一种光路如附图所示的双激光束复合焊接装置,用于对放置在水平焊接工作台的工件10进行焊接加工,包括置于工件10正上方实时观查焊接效果的CCD监视器3,以及位于CCD监视器3一侧的ND:YAG激光束光路, ND:YAG激光束光路包括设置在反L型ND:YAG激光镜筒体垂直段的ND:YAG准直镜片6、设置在反L型ND:YAG激光镜筒体转弯段中与水平工作台面夹角为45°的第一ND:YAG全反射镜片7。
设有半导体激光束光路,其半导体激光束2与ND:YAG激光束1平行,半导体激光束光路包括设置在L型半导体激光镜筒体垂直段的半导体准直镜片4、设置在L型半导体激光镜筒体转弯段中与水平工作台面夹角为135°的半导体全反射镜片5。
在CCD监视器3与工件10之间还设有设置在垂直型双激光束镜筒体的双激光束光路,双激光束光路自上至下依次是与水平工作台面夹角为45°的第二ND:YAG全反射镜片7、与水平工作台面夹角为135°的半导体全反射和ND:YAG全透射组合镜片8,以及与水平工作台面夹角为0°的半导体和ND:YAG全透射聚集镜片9, ND:YAG激光束1与半导体激光束2分别先后通过半导体全反射和ND:YAG全透射组合镜片8、半导体和ND:YAG全透射聚集镜片9形成能量聚焦激光束于同一个加工位置对工件10进行焊接加工。
垂直型双激光束镜筒体的上段与反L型ND:YAG激光镜筒体转弯段连通且封闭为一体,第二ND:YAG全反射镜片7与第一ND:YAG全反射镜片7设置在同一水平等高处,将ND:YAG激光束光路延伸。
垂直型双激光束镜筒体的下段与L型半导体激光镜筒体转弯段连通且封闭为一体,半导体全反射和ND:YAG全透射组合镜片8与半导体全反射镜片5设置在同一水平等高处,将半导体激光束光路延伸。
由于工件10材料对不同波长激光的折射率不同,聚焦后半导体激光的光斑比ND:YAG激光的光斑要大,可以先采用连续半导体激光将工件10加工位置的温度预热至300±5℃,使其对激光的吸收效率大大提高,再采用脉冲ND: YAG激光对工件10同一个加工位置进行焊接加工。
半导体准直镜片4是表面镀有半导体激光增透膜的镀膜镜片。
ND:YAG准直镜片6是表面镀有ND:YAG激光增透膜的镀膜镜片。
半导体全反射镜片5是表面镀有入射角为45°的半导体激光全反射膜的镀膜镜片。
第一ND:YAG全反射镜片和第二ND:YAG全反射镜片7是表面镀有入射角为45°的ND:YAG激光全反射膜的镀膜镜片。
半导体全反射和ND:YAG全透射组合镜片8是一面镀有入射角为45°的半导体激光全反射膜和入射角为45°的ND:YAG激光增透膜、且另一面镀有入射角为45°的ND:YAG激光增透膜的镀膜镜片。
半导体和ND:YAG全透射聚集镜片9是表面镀有半导体激光增透膜和ND:YAG激光增透膜的镀膜镜片。
本具体实施方式的复合焊接方法,依次有以下步骤:
1)半导体激光束2和ND:YAG激光束1分别传输到半导体准直镜片4和ND:YAG准直镜片3;
2)通过半导体准直镜片4的半导体激光束传输到半导体全反射镜片5后反射到半导体全反射和ND:YAG全透射组合镜片8,再反射到半导体和ND:YAG全透射聚集镜片9后聚焦于工件10加工位置进行预热,至工件10加工位置的温度为300±5℃;
3)通过ND:YAG准直镜片6的ND:YAG激光束传输到第一、第二ND:YAG全反射镜片7后反射到半导体全反射和ND:YAG全透射组合镜片8,再透射到半导体和ND:YAG全透射聚集镜片9后聚焦于工件10同一个加工位置进行焊接。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明由所提交的权利要求书确定的专利保护范围。
工业实用性
序列表自由内容

Claims (10)

  1. 一种双激光束复合焊接装置,用于对放置在水平焊接工作台的工件进行焊接加工,包括置于所述工件正上方实时观查焊接效果的CCD监视器,以及位于所述CCD监视器一侧的掺钕钇铝石榴石晶体ND:YAG激光束光路,所述ND:YAG激光束光路包括设置在反L型ND:YAG激光镜筒体垂直段的ND:YAG准直镜片、设置在反L型ND:YAG激光镜筒体转弯段中与水平工作台面夹角为45°的第一ND:YAG全反射镜片,其特征在于:
    设有半导体激光束光路,其半导体激光束与ND:YAG激光束平行,所述半导体激光束光路包括设置在L型半导体激光镜筒体垂直段的半导体准直镜片、设置在L型半导体激光镜筒体转弯段中与水平工作台面夹角为135°的半导体全反射镜片;
    在所述CCD监视器与所述工件之间还设有设置在垂直型双激光束镜筒体的双激光束光路,所述双激光束光路自上至下依次是与水平工作台面夹角为45°的第二ND:YAG全反射镜片、与水平工作台面夹角为135°的半导体全反射和ND:YAG全透射组合镜片,以及与水平工作台面夹角为0°的半导体和ND:YAG全透射聚集镜片,所述ND:YAG激光束与所述半导体激光束分别先后通过所述半导体全反射和ND:YAG全透射组合镜片、半导体和ND:YAG全透射聚集镜片形成能量聚焦激光束于同一个加工位置对所述工件进行焊接加工;
    所述垂直型双激光束镜筒体的上段与所述反L型ND:YAG激光镜筒体转弯段连通且封闭为一体,所述第二ND:YAG全反射镜片与所述第一ND:YAG全反射镜片设置在同一水平等高处,将所述ND:YAG激光束光路延伸;
    所述垂直型双激光束镜筒体的下段与所述L型半导体激光镜筒体转弯段连通且封闭为一体,所述半导体全反射和ND:YAG全透射组合镜片与所述半导体全反射镜片设置在同一水平等高处,将所述半导体激光束光路延伸。
  2. 如权利要求1所述的双激光束复合焊接装置,其特征在于:
    所述半导体准直镜片是表面镀有半导体激光增透膜的镀膜镜片;
    所述ND:YAG准直镜片是表面镀有ND:YAG激光增透膜的镀膜镜片。
  3. 如权利要求1或2所述的双激光束复合焊接装置,其特征在于:
    所述半导体全反射镜片是表面镀有入射角为45°的半导体激光全反射膜的镀膜镜片;
    所述第一ND:YAG全反射镜片和所述第二ND:YAG全反射镜片是表面镀有入射角为45°的ND:YAG激光全反射膜的镀膜镜片。
  4. 如权利要求3所述的双激光束复合焊接装置,其特征在于:
    所述半导体全反射和ND:YAG全透射组合镜片是一面镀有入射角为45°的半导体激光全反射膜和入射角为45°的ND:YAG激光增透膜、且另一面镀有入射角为45°的ND:YAG激光增透膜的镀膜镜片。
  5. 如权利要求4所述的双激光束复合焊接装置,其特征在于:
    所述半导体和ND:YAG全透射聚集镜片是表面镀有半导体激光增透膜和ND:YAG激光增透膜的镀膜镜片。
  6. 一种双激光束复合焊接方法,其特征在于:
    采用双激光束复合焊接装置,依次有以下步骤:
    1)半导体激光束和ND:YAG激光束分别传输到半导体准直镜片和ND:YAG准直镜片;
    2)通过半导体准直镜片的半导体激光束传输到半导体全反射镜片后反射到半导体全反射和ND:YAG全透射组合镜片,再反射到半导体和ND:YAG全透射聚集镜片后聚焦于工件加工位置进行预热;
    3)通过ND:YAG准直镜片的ND:YAG激光束传输到第一、第二ND:YAG全反射镜片后反射到半导体全反射和ND:YAG全透射组合镜片,再透射到半导体和ND:YAG全透射聚集镜片后聚焦于工件同一个加工位置进行焊接。
  7. 如权利要求6所述的双激光束复合焊接方法,其特征在于:
    所述步骤2)的预热是预热至工件加工位置的温度为300±5℃。
  8. 如权利要求7或8所述的双激光束复合焊接方法,其特征在于:
    所述半导体准直镜片是表面镀有半导体激光增透膜的镀膜镜片;
    所述ND:YAG准直镜片是表面镀有ND:YAG激光增透膜的镀膜镜片。
  9. 如权利要求8所述的双激光束复合焊接方法,其特征在于:
    所述半导体全反射镜片是表面镀有入射角为45°的半导体激光全反射膜的镀膜镜片;
    所述第一ND:YAG全反射镜片和所述第二ND:YAG全反射镜片是表面镀有入射角为45°的ND:YAG激光全反射膜的镀膜镜片。
  10. 如权利要求9所述的双激光束复合焊接方法,其特征在于:
    所述半导体全反射和ND:YAG全透射组合镜片是一面镀有入射角为45°的半导体激光全反射膜和入射角为45°的ND:YAG激光增透膜、且另一面镀有入射角为45°的ND:YAG激光增透膜的镀膜镜片;
    所述半导体和ND:YAG全透射聚集镜片是表面镀有半导体激光增透膜和ND:YAG激光增透膜的镀膜镜片。
PCT/CN2012/079993 2011-10-12 2012-08-11 一种双激光束复合焊接装置与复合焊接方法 WO2013053265A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110308842.X 2011-10-12
CN201110308842XA CN102500919A (zh) 2011-10-12 2011-10-12 一种双激光束复合焊接装置与复合焊接方法

Publications (1)

Publication Number Publication Date
WO2013053265A1 true WO2013053265A1 (zh) 2013-04-18

Family

ID=46213084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079993 WO2013053265A1 (zh) 2011-10-12 2012-08-11 一种双激光束复合焊接装置与复合焊接方法

Country Status (2)

Country Link
CN (1) CN102500919A (zh)
WO (1) WO2013053265A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102500919A (zh) * 2011-10-12 2012-06-20 深圳市联赢激光股份有限公司 一种双激光束复合焊接装置与复合焊接方法
CN102896419A (zh) * 2012-10-23 2013-01-30 华南师范大学 双激光光束复合焊接装置及其使用方法
CN103753022B (zh) * 2014-01-17 2016-05-25 江苏中科大港激光科技有限公司 采用双激光器对金属材料实施激光焊接的方法
CN106181032B (zh) * 2016-07-29 2019-02-01 温州大学 一种激光焊接系统及方法
CN107398645A (zh) * 2017-08-14 2017-11-28 大族激光科技产业集团股份有限公司 一种激光焊接系统及方法
CN108453374B (zh) * 2018-05-10 2022-12-06 大族激光科技产业集团股份有限公司 一种铝合金的双光束激光焊接方法及装置
CN109175690A (zh) * 2018-09-28 2019-01-11 武汉锐科光纤激光技术股份有限公司 一种镀镍磷钢的焊接方法
CN109926719B (zh) * 2019-04-18 2020-06-23 武汉锐科光纤激光技术股份有限公司 一种铜及铜合金材料的焊接方法及装置
CN109940271A (zh) * 2019-04-23 2019-06-28 武汉锐科光纤激光技术股份有限公司 用于空调消音器的焊接装置及焊接方法
CN111069764B (zh) * 2019-12-30 2021-09-10 广东利元亨智能装备股份有限公司 切割及封装的一体化加工系统及方法
JP7016114B2 (ja) * 2020-04-30 2022-02-04 ダイキン工業株式会社 レーザ溶接方法及びそれを用いた回転電気機械の製造方法
CN112719582A (zh) * 2020-12-04 2021-04-30 上海航天设备制造总厂有限公司 具有预热功能的激光焊接装置及预热焊接方法
CN113275745A (zh) * 2021-04-21 2021-08-20 深圳市联赢激光股份有限公司 一种复合激光设备
CN113199144B (zh) * 2021-05-20 2024-02-09 湖北航嘉麦格纳座椅系统有限公司 工件的激光焊接方法、装置和存储介质
CN113770514B (zh) * 2021-08-25 2023-10-20 富联裕展科技(深圳)有限公司 激光整合装置、激光焊接装置及激光焊接方法
CN116571886A (zh) * 2023-05-12 2023-08-11 武汉锐科光纤激光技术股份有限公司 激光焊接装置、焊接控制方法以及焊接控制装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316282A (ja) * 2001-04-18 2002-10-29 Matsushita Electric Ind Co Ltd レーザ加工方法及び装置
CN101502916A (zh) * 2009-03-04 2009-08-12 天津大学 金属化光纤传感器的激光多点自动焊封方法及焊接装置
CN101564799A (zh) * 2008-04-25 2009-10-28 宝山钢铁股份有限公司 一种半导体激光与co2激光的复合焊接方法
CN101774089A (zh) * 2009-12-25 2010-07-14 武汉凌云光电科技有限责任公司 同轴测温成像的激光聚焦系统
CN102059451A (zh) * 2010-11-08 2011-05-18 北京理工大学 纳飞秒双激光复合加工系统
CN102500919A (zh) * 2011-10-12 2012-06-20 深圳市联赢激光股份有限公司 一种双激光束复合焊接装置与复合焊接方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1785575B (zh) * 2004-12-08 2010-11-10 松下电器产业株式会社 混合激光加工方法及该方法所用的混合激光头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316282A (ja) * 2001-04-18 2002-10-29 Matsushita Electric Ind Co Ltd レーザ加工方法及び装置
CN101564799A (zh) * 2008-04-25 2009-10-28 宝山钢铁股份有限公司 一种半导体激光与co2激光的复合焊接方法
CN101502916A (zh) * 2009-03-04 2009-08-12 天津大学 金属化光纤传感器的激光多点自动焊封方法及焊接装置
CN101774089A (zh) * 2009-12-25 2010-07-14 武汉凌云光电科技有限责任公司 同轴测温成像的激光聚焦系统
CN102059451A (zh) * 2010-11-08 2011-05-18 北京理工大学 纳飞秒双激光复合加工系统
CN102500919A (zh) * 2011-10-12 2012-06-20 深圳市联赢激光股份有限公司 一种双激光束复合焊接装置与复合焊接方法

Also Published As

Publication number Publication date
CN102500919A (zh) 2012-06-20

Similar Documents

Publication Publication Date Title
WO2013053265A1 (zh) 一种双激光束复合焊接装置与复合焊接方法
CN104400226B (zh) 一种双面激光-tig电弧复合焊接方法
WO2022050538A1 (ko) 안정적인 레이저 용접용 광섬유를 이용한 레이저 장치 및 이를 이용한 레이저 용접 방법
CN105562930B (zh) 一种动力电池外壳的激光焊接方法
CN111761205A (zh) 一种双波段激光摆动焊接光学系统
CN102896419A (zh) 双激光光束复合焊接装置及其使用方法
CN201596850U (zh) 用于血管内支架切割的光纤激光微加工系统
WO2024027852A1 (zh) 高反射材料的短波长超高速激光熔覆方法和装置
CN207026753U (zh) 一种激光‑cmt焊接铝合金增材制造成形系统
CN107052580A (zh) 一种激光复合焊接出射装置
CN107999916A (zh) 一种异种材料的双光束激光-tig复合填丝熔钎焊方法
CN102432302A (zh) 一种激光束近净成形陶瓷结构的方法
CN113649595B (zh) 用于金属slm打印的环形光斑光学系统及打印方法
WO2024012610A1 (zh) 一种激光增材制造用系统及增材制造方法
CN107162395A (zh) 一种双层或多层垂直封装玻璃的方法
CN113385814A (zh) 多层极耳的激光焊接方法、激光焊接装置及锂电池
CN107584211A (zh) 一种基于高速扫描振镜的大功率激光焊接系统及其焊接方法
CN113118624A (zh) 双层极耳与巴片光纤激光焊接方法
CN114633022A (zh) 一种紫铜材料双光束复合激光焊接装置及方法
CN201172149Y (zh) 一种减少1420铝锂合金激光焊接气孔的装置
CN110434460A (zh) 一种单臂双腕的激光焊接执行器、机器人及焊接加工方法
CN212357392U (zh) 应用于激光熔覆的靶面叠加式激光镜片模组系统
CN113579380A (zh) 一种光纤激光与电解同轴同步复合加工装置
CN212357393U (zh) 一种激光熔覆装置
CN220262040U (zh) 一种薄膜压块、薄膜夹具及薄膜焊接系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839945

Country of ref document: EP

Kind code of ref document: A1