WO2013053248A1 - 上行数据异常处理方法及装置 - Google Patents
上行数据异常处理方法及装置 Download PDFInfo
- Publication number
- WO2013053248A1 WO2013053248A1 PCT/CN2012/077974 CN2012077974W WO2013053248A1 WO 2013053248 A1 WO2013053248 A1 WO 2013053248A1 CN 2012077974 W CN2012077974 W CN 2012077974W WO 2013053248 A1 WO2013053248 A1 WO 2013053248A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- onu
- olt
- uplink data
- onus
- wavelength
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0278—WDM optical network architectures
- H04J14/0282—WDM tree architectures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0254—Optical medium access
- H04J14/0272—Transmission of OAMP information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0067—Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0079—Operation or maintenance aspects
- H04Q2011/0081—Fault tolerance; Redundancy; Recovery; Reconfigurability
Definitions
- the present invention relates to the field of communications, and in particular to an uplink data exception processing method and apparatus.
- BACKGROUND With the development of network technologies, a large number of voice, data, video, and other services can be transmitted by using a network. Therefore, bandwidth requirements are continuously improved, and a passive optical network (PON) is under such demand. produced.
- PON passive optical network
- 1 is a topological structural diagram of a PON system according to the related art. As shown in FIG. 1, a PON system usually includes an Optical Line Terminal (OLT) on the central side and an Optical Network Unit on the user side (Optical Network Unit). It is composed of an ONU and an Optical Distribution Network (ODN). It usually adopts a point-to-multipoint network structure.
- OLT Optical Line Terminal
- ODN Optical Distribution Network
- ODN consists of passive optical components such as single-mode fiber and optical splitter, optical connector, etc., providing optical transmission medium for the physical connection between OLT and ONU.
- PON technology mainly includes Time Division Multiplexing (TDM) PON system, Wavelength Division Multiplexing (WDM) PON system and Orthogonal Frequency Division Multiplexing (Orthogonal Frequency Division Multiplexing).
- TDM Time Division Multiplexing
- WDM Wavelength Division Multiplexing
- OFDM Orthogonal Frequency Division Multiplexing
- OFDM Orthogonal Frequency Division Multiplexing
- a time-division multiplexed PON system for example, a Gigabit-Capable Passive Optical Network (GPON) system, an Ethernet Passive Optical Network (EPON) system, and 10 thousand
- GPON Gigabit-Capable Passive Optical Network
- EPON Ethernet Passive Optical Network
- XG-PON 10-Gigabit-capable Passive Optical Network
- XG-PON 10-Gigabit-capable Passive Optical Network
- each ONU receives all the frames separately, and then obtains its own frame according to the ONU-ID, GEM-Port ID, and Allocation-ID.
- each ONU For the data transmission in the uplink direction (from the ONU to the OLT), since each ONU needs to share the transmission medium, each ONU should transmit uplink data to the OLT to arrange its own time slot.
- the time slot allocated by the OLT to the ONU for transmitting uplink data is transmitted to the ONU through an allocation structure (Allocation Structure) in the downlink frame.
- Allocation Structure is an allocation structure diagram in an XG-PON according to the related art. As shown in FIG. 2, the allocation structure is represented by an Alloc-ID field (Allocation Identifier), which is generally a Transmission Container (T-CONT).
- Flags field bandwidth allocation option, 2-bit, one bit is used to indicate whether the ONU sends dynamic bandwidth report upstream (DBRu), and another bit is used to indicate whether the ONU is Sending a physical layer operation administration and maitenance (PLOAMu) message, and starting time (Start Time, indicating the XGPON transmission convergence burst of the XG-PON sent by the ONU)
- DBRu dynamic bandwidth report upstream
- PLOAMu physical layer operation administration and maitenance
- Starting time Start Time, indicating the XGPON transmission convergence burst of the XG-PON sent by the ONU
- the location of the first byte of the XGTC burst in the 125us upstream frame), the Grant Size forced waking up indication (FWI), the burst overhead parameter (Bprofile), and the hybrid Hybrid Error Correct (HEC) is composed.
- the ONU When the ONU receives an Allocation structure, if the ONU determines that the Allocation structure is assigned to itself according to the Alloc-ID, the ONU performs a HEC check on the data in the received Allocation structure. If the verification result is correct, the ONU will be in the The StartTime time indicated by the Allocation structure starts to send data in the T-CONT whose bandwidth allocation identifier is Alloc-ID, and the length of the transmission data is the length of the Grant size field.
- Wavelength Division Multiplexing Passive Optical Network (WDM-PON) and Orthogonal Frequency Division Multiplexing Passive Optical Network (OFDM-PON) technology are Two important technology branches in the PON family are similar to other PON technologies.
- WDM-PON and OFDM-PON are passive optical access technologies using point-to-multipoint topology on optical links.
- the WDM-PON system there are a plurality of light emitters of different wavelengths at the OLT, and the light wavelengths of the respective light emitters are respectively ⁇ (1 1, ⁇ 2, ..., ⁇ ⁇ , where ⁇ (1 1 is OLT)
- ⁇ (1 2 is the wavelength used to transmit the downlink data when the OLT communicates with the second ONU
- ⁇ (1 ⁇ is the communication between the OLT and the nth ONU
- the wavelength at which the downlink data is transmitted; the wavelength of the transmitter at each ONU is different from the transmission wavelength of the transmitter at the other ONUs.
- the transmitting wavelength of the transmitter used by the first ONU to send uplink data to the OLT is ⁇
- OLT Downlink data can be sent to all ONUs at the same time, and each ONU can also send uplink data at the same time, that is, the OLT and the ONU adopt a point-to-point structure on the optical channel.
- Carrier each subcarrier is C l, C
- the OLT modulates the downlink data sent to the first ONU onto the first subcarrier (or modulates to the first subcarrier and other subcarriers)
- the OLT modulates the downlink data sent to the second ONU to the second subcarrier (or to the second subcarrier and other subcarriers), ..., and the OLT sends the downlink to the nth ONU.
- the data is modulated onto the nth subcarrier (or modulated to the nth subcarrier and other subcarriers), and there is no intersection between the subcarriers used for downlink data sent to different ONUs, that is, different ONUs use different subcarriers.
- the subcarrier used by the ONU to send uplink data to the OLT is the same as the subcarrier that the OLT uses to send downlink data to the current ONU.
- the OLT can be the same When all the ONUs are sent downlink data, each ONU can also send uplink data at the same time. That is, the OLT and the ONU adopt a point-to-point structure on the optical channel.
- each ONU transmits uplink data using different uplink time slots, wavelengths, or subcarriers.
- wavelengths or subcarriers used by each ONU to transmit uplink data are used.
- each ONU is different, that is, the ONU is colored, which causes the operator to reserve multiple types of ONUs, and when a user's ONU needs to be replaced, the operator also needs to confirm the user's ONU model. Increased the cost of operation and maintenance of the ONU.
- the ONU of the WDM-PON in the related art can be tuned, and the ONU of the OFDM-PON can also use different subcarriers to transmit uplink data. In both cases, the ONU is under the command of the OLT. Choose your own illuminating wavelength or subcarrier.
- the ONU can tune its own illuminating wavelength or select the subcarrier to be used, if there is a malicious ONU in the network, the uplink data is transmitted by the time slot, wavelength or subcarrier of other ONUs in the network, or the illuminating wavelength of one ONU drifts to other ONUs.
- the OLT cannot correctly analyze the uplink data of the other ONUs.
- the OLT cannot correctly parse the OLT. The uplink data of other ONUs.
- the present invention provides an uplink data exception processing method and apparatus for solving the above problem, in view of the problem that the ONU uplink data abnormality affects the transmission of the normal service of the ONU and reduces the service quality of the network.
- an uplink data exception processing method is provided.
- the uplink data exception processing method includes: the OLT detects that there is an abnormality in the uplink data; the OLT instructs one or more ONUs to stop transmitting uplink data and/or instructs one or more ONUs to replace the physical channel.
- the OLT detecting that the uplink data has an abnormality includes: in a case that the OLT has allocated the first physical channel to the first ONU, the OLT receives the uplink data sent by the non-first ONU in the first physical channel.
- the OLT instructs the one or more ONUs to stop transmitting uplink data and/or instructs the one or more ONUs to replace the physical channel.
- the OLT indicates that the first ONU and/or the ONU that sends the uplink data stops transmitting the uplink data.
- the method further includes: the OLT instructing the first ONU to resume transmitting the uplink data.
- the OLT detects that the uplink data has an abnormality, and if the OLT has allocated the first physical channel to the first ONU, the 0LT cannot parse the uplink data sent by the first ONU.
- the 0LT detects that the uplink data has an abnormality, if the 0LT has allocated the first physical channel to the first ONU, the 0LT cannot parse the uplink data sent by the first ONU, and stops the transmission of the uplink data by indicating the first ONU. After that, the uplink data is still received in the first physical channel.
- the 0LT detects that the uplink data has an abnormality, if the 0LT has allocated the first physical channel to the first ONU, the 0LT cannot parse the uplink data sent by the first ONU, and the 0LT receives the first physical channel.
- the optical power value of the uplink data is increased or the optical power value of the uplink data received by the 0LT in the first physical channel is changed.
- the 0LT detects that the uplink data has an abnormality includes: in a case where the 0LT has allocated the first physical channel for the first ONU and the second physical channel has been allocated the second physical channel, the 0LT does not receive the uplink data from the first ONU. And 0LT cannot parse all the uplink data sent by the second ONU.
- the 0LT detects that the uplink data has an abnormality, if the 0LT has allocated the first physical channel for the first ONU, the 0LT does not receive the uplink data from the first ONU in the first physical channel, and the OLT is not Uplink data is received on the assigned second physical channel.
- the 0LT detects that the uplink data has an abnormality, and in the case that the 0LT has allocated the first physical channel to the first ONU, the 0LT detects that the first physical channel of the first ONU has an offset.
- the method further includes: 0LT acquiring information for accommodating other 0LTs of one or more ONUs; 0LT switching one or more ONUs to other according to the information 0LT.
- 0LT switches one or more ONUs to other OTs according to information, including: when the information includes other 0LT downlink wavelength values for transmitting downlink data and uplink wavelength values for receiving uplink data, 0LT
- the one or more ONUs are commanded to adjust their downstream wavelengths to the downstream wavelength values and command one or more ONUs to adjust their upstream wavelengths to the upstream wavelength values.
- the method further includes: 0LT detecting that there is no abnormality in the uplink data; 0LT notifying the other OTs to switch one or more ONUs back to themselves.
- the method further includes: determining an abnormality 0NU in the one or more ONUs that causes an abnormality in the uplink data.
- the method further includes: recording the abnormal ONU; and preventing the abnormal ONU from entering the working state.
- the OLT instructs the one or more ONUs to stop transmitting uplink data and/or instructs the one or more ONUs to replace the physical channel, including: the OLT transmits an indication that the transmission of the uplink data is stopped and/or the indication of the replacement of the physical channel is sent in the management channel.
- the OLT indicates that one or more ONUs stop transmitting uplink data and/or instructs one or more ONUs to replace the physical channel includes: The OLT completely or partially encrypts the indication that the transmission of the uplink data is stopped and/or the indication of the replacement of the physical channel.
- the physical channel includes one of the following: a wavelength, a subcarrier, and a time slot.
- an uplink data exception processing apparatus which is applicable to an OLT.
- the uplink data exception processing apparatus includes: a detecting module configured to detect an abnormality of the uplink data; and an indication module configured to instruct one or more ONUs to stop transmitting uplink data and/or to instruct one or more ONUs to replace the physical channel.
- the present invention provides a measure for stopping the ONU from transmitting uplink data and/or replacing the physical channel of the ONU, thereby avoiding the impact on the normal service transmission of the ONU and ensuring the network service quality.
- FIG. 1 is a topological structural diagram of a PON system according to the related art
- FIG. 2 is a distribution structure diagram in an XG-PON according to the related art
- FIG. 3 is an uplink data exception processing method according to an embodiment of the present invention.
- FIG. 4a is a topological structural diagram of a hybrid PON system according to Embodiment 10 of the present invention;
- FIG. 4b is a topological structural diagram of a hybrid PON system according to Embodiment 10 of the present invention
- FIG. 5 is another embodiment of the present invention.
- FIG. 6 is a structural block diagram of an uplink data exception processing apparatus according to an embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. The invention will be described in detail below with reference to the drawings in conjunction with the embodiments.
- the embodiment of the invention provides an uplink data exception processing method.
- FIG. 1 provides an uplink data exception processing method.
- step S302 the OLT detects that there is an abnormality in the uplink data.
- step S304 the OLT instructs one or more ONUs to stop transmitting uplink data and/or instruct one or more ONUs to replace physical channels.
- there are a plurality of abnormalities in the uplink data of the ONU which may affect the transmission of the normal service of the ONU and reduce the service quality of the network.
- the embodiments of the present invention provide measures for stopping the ONU from transmitting uplink data and/or replacing the physical channel of the ONU, thereby avoiding the impact on the normal service transmission of the ONU and ensuring the network service quality.
- the embodiment of the present invention further provides an uplink data abnormality and a solution thereof, that is, if the OLT has allocated the first physical channel to the first ONU, the OLT receives the non-origin in the first physical channel. If the uplink data is sent by the first ONU, the OLT instructs the first ONU and/or the ONU that sends the uplink data to stop transmitting the uplink data. Thereafter, the OLT may also instruct the first ONU to resume transmitting uplink data.
- the OLT detects that the uplink data has an abnormality, and includes the following six modes: Mode 1: When the OLT has allocated the first physical channel to the first ONU, the OLT cannot parse the uplink data sent by the first ONU. Manner 2: In the case that the OLT has allocated the first physical channel to the first ONU, the OLT cannot parse the uplink data sent by the first ONU, and after indicating that the first ONU stops transmitting the uplink data, is still in the first physical channel. Received upstream data.
- Mode 1 When the OLT has allocated the first physical channel to the first ONU, the OLT cannot parse the uplink data sent by the first ONU.
- Manner 2 In the case that the OLT has allocated the first physical channel to the first ONU, the OLT cannot parse the uplink data sent by the first ONU, and after indicating that the first ONU stops transmitting the uplink data, is still in the first physical channel. Received upstream data.
- Manner 3 In the case that the OLT has allocated the first physical channel to the first ONU, the 0LT cannot parse the uplink data sent by the first ONU, and the optical power value of the uplink data received by the 0LT in the first physical channel increases. Or the occurrence jump of the uplink data received by the 0LT in the first physical channel.
- Manner 4 In the case that the OLT has allocated the first physical channel for the first ONU and the second physical channel has been allocated for the second ONU, the 0LT does not receive the uplink data from the first ONU, and the 0LT cannot fully resolve the second ONU. The uplink data sent.
- Manner 5 In the case that the 0LT has allocated the first physical channel to the first ONU, the 0LT does not receive the uplink data from the first ONU in the first physical channel, and the 0LT is received on the unallocated second physical channel. Upstream data.
- Manner 6 In the case that 0LT has allocated the first physical channel for the first ONU, 0LT detects that there is an offset of the first physical channel of the first ONU. Preferably, 0LT acquires information for accommodating other OTs of one or more ONUs before 0LT indicates one or more ONUs to replace the physical channel; 0LT switches one or more ONUs to other OLTs according to the information.
- the 0LT switches one or more ONUs to other 0LTs according to the information, including: when the information includes other 0LT downlink wavelength values for transmitting downlink data and uplink wavelength values for receiving uplink data, 0LT
- the one or more ONUs are commanded to adjust their downstream wavelengths to the downstream wavelength values and command one or more ONUs to adjust their upstream wavelengths to the upstream wavelength values.
- 0LT indicates one or more ONUs to replace the physical channel
- 0LT detects that there is no abnormality in the uplink data; 0LT notifies other 0LTs to switch one or more ONUs back to themselves.
- 0LT indicates that one or more ONUs stop transmitting uplink data and/or indicate one or more ONU replacement physical channels, determining an abnormality in one or more ONUs that causes an abnormality in uplink data
- the abnormality ONU is recorded; the abnormality 0NU is prevented from entering the active state.
- 0LT indicates that one or more ONUs stop transmitting uplink data and/or indicate one or more ONUs to replace the physical channel including: 0LT will stop transmitting the indication of the uplink data and/or the indication of the replacement physical channel is carried in the management channel.
- 0LT indicates that one or more ONUs stop transmitting uplink data and/or indicate one or more ONUs to replace the physical channel including: 0LT will stop transmitting the indication of the uplink data and/or the indication of replacing the physical channel is fully encrypted or partially encrypted.
- the physical channel includes one of the following: a wavelength, a subcarrier, and a time slot.
- a wavelength a subcarrier
- a time slot a time slot
- the OLT allocates a downlink wavelength for receiving the downlink signal and an uplink wavelength for transmitting the uplink data to each ONU connected to the PON system.
- the ONU adjusts the illumination wavelength of its own laser to
- the above-mentioned upstream wavelength adjusts the reception wavelength of its own receiver to the above-mentioned downstream wavelength.
- the upstream wavelengths assigned by the OLT to each ONU are different.
- Step 1 When the OLT finds that the uplink data is abnormal, the OLT and the ONU use the following steps to restore the uplink communication: Step 1: When the ONU corresponding to the nth wavelength does not send the uplink data, and the OLT detects the identity information of the ONU that carries the mth wavelength ( For example, when the ONU sends the uplink data by using the nth wavelength, or the OLT does not receive the uplink data sent by the ONU corresponding to the mth wavelength, the ONU sends the uplink data by using the nth wavelength, for example, the ONU identifier information, the ONU sequence number, the ONU logical link identifier, or the ONU medium access control address information.
- the identity information of the ONU For example, when the ONU sends the uplink data by using the nth wavelength, or the OLT does not receive the uplink data sent by the ONU corresponding to the mth wavelength, the ONU sends the uplink data by using the nth wavelength, for example, the
- the OLT cannot correctly analyze the uplink data sent by the ONU corresponding to the nth wavelength; or the OLT does not receive the uplink data sent by the ONU corresponding to the mth wavelength, and the OLT receives the ONU carrying the corresponding mth wavelength on the unassigned wavelength.
- the OLT sends the physical layer operation management (PLOAM) message shown in Table 1 to the ONU corresponding to the mth wavelength, as shown in Table 1.
- PLOAM physical layer operation management
- the first to second bytes of the Assign_ONU_Wavelength message are the values of the ONU-ID, indicating that the message is sent to the ONU whose ONU-ID value is ONU-ID1; the content of the third byte indicates that the type of the PLOAM message is the Assign_ONU_Wavelength message.
- the structure information type; the fourth byte is the sequence number of the PLAOM message; the fifth to fortieth bytes are the upstream wavelength values assigned by the OLT to the ONU (in other embodiments, the fifth to fourth crosses)
- the content of the section is the uplink wavelength value and the downlink wavelength value assigned by the OLT to the ONU.
- the forty-first byte to the forty-eighth byte are the message verification codes of the message integrity check.
- the OLT commands the mth ONU to adjust the illuminating wavelength of its own laser to the upstream wavelength allocated by the OLT to the ONU through the Assign_ONU_Wavelength message (in other embodiments, the OLT commands the mth ONU to illuminate the wavelength of its own laser by the Assign_ONU_Wavelength message. Adjust the upstream wavelength assigned to the ONU by the OLT, and adjust the receiving wavelength of its own receiver to the downstream wavelength allocated by the OLT to the ONU. Step 2: After receiving the Assign_ONU_Wavelength message sent by the OLT, the ONU corresponding to the mth wavelength adjusts the illuminating wavelength of the laser to the uplink wavelength allocated by the OLT in the Assign_ONU_Wavelength message.
- the ONU receives the Assign_ONU_Wavelength sent by the OLT. After the message, the illuminating wavelength of the laser is adjusted to the upstream wavelength allocated by the OLT in the Assign_ONU_Wavelength message, and the receiving wavelength of the own receiver is adjusted to the downstream wavelength allocated by the OLT to the ONU.
- the OLT detects whether the ONU corresponding to the mth wavelength completes the adjustment of the uplink wavelength (in other embodiments, the OLT can also check whether the ONU corresponding to the mth wavelength completes the adjustment of the uplink wavelength and the downlink wavelength), if the ONU completes the wavelength After the adjustment, the OLT detects whether the uplink data is restored to normal. If the uplink data returns to normal, the OLT and the ONU establish normal communication.
- the OLT determines that the ONU corresponding to the mth wavelength is Abnormal ONU.
- the OLT processes the abnormal ONU that is located.
- the processing behavior can be that the OLT uses a unicast or broadcast message to command the abnormal ONU to turn off its own laser or command an abnormal ONU to change its own laser's illumination wavelength and/or downstream wavelength or the OLT disconnects the abnormal ONU branch. optical fiber).
- the uplink wavelength and the downlink wavelength in this embodiment may be the same or different.
- Step 1 OLT and command
- the OLT determines that the ONU is an abnormal ONU, and skips to step 5; if the OLT continues to receive the uplink data corresponding to the nth wavelength, and the uplink data carries The identity information of the ONU, the OLT locates that the identity information ONU is an abnormal ONU, and if the identity information of the ONU is not the ONU corresponding to the nth wavelength, the OLT lives The ONU corresponding to the nth wavelength restores the transmission of the uplink data, and jumps to step 5.
- Step 2 The OLT uses the Assign_ONU_Wavelength message to command the ONU corresponding to the nth wavelength to adjust the illuminating wavelength of the laser to the upstream wavelength allocated by the OLT to the ONU.
- the OLT commands the ONU of the nth wavelength by using the Assign_ONU_Wavelength message.
- the emission wavelength of the own laser is adjusted to the upstream wavelength allocated by the OLT to the ONU, and the reception wavelength of the own receiver is adjusted to the downstream wavelength allocated by the OLT to the ONU.
- Step 3 After receiving the Assign_ONU_Wavelength message sent by the OLT, the ONU adjusts the illuminating wavelength of the laser to the uplink wavelength allocated by the OLT in the Assign_ONU_Wavdength message. In other embodiments, after receiving the Assign_ONU_Wavelength message sent by the OLT, the ONU will The emission wavelength of the own laser is adjusted to the upstream wavelength allocated by the OLT in the Assign_ONU_Wavelength message, and the reception wavelength of the own receiver is adjusted to the downstream wavelength allocated by the OLT to the ONU.
- Step 4 The OLT detects whether the ONU sends the uplink data by using the newly allocated wavelength.
- the OLT If the OLT does not receive the uplink data sent by the ONU by using the newly allocated wavelength, and the OLT still receives the uplink data sent by using the nth wavelength, the OLT If the OLT receives the uplink data sent by the ONU using the newly allocated wavelength, and the OLT still receives the uplink data sent by using the nth wavelength, the OLT and the above-mentioned new wavelength are used to determine that the ONU is an abnormal ONU. The ONU restores the uplink communication. If the identity information of the ONU is carried in the uplink data transmitted by the nth wavelength, the OLT locates the ONU with the identity information as an abnormal ONU, and jumps to step 5, if the OLT still cannot resolve the nth wavelength normally.
- the OLT determines the range of the abnormal ONU as the ONU that has not received the uplink data and the uplink data that is not transmitted by the OLT.
- Step 5 The OLT processes the abnormal ONU that is located.
- the processing behavior may be that the OLT uses the unicast or broadcast message to command the abnormal ONU to turn off its own laser or command the abnormal ONU to change the illumination wavelength and/or the downstream wavelength of the laser or the OLT disconnection.
- the ONU's branch fiber or the OLT continues to locate the abnormal ONU.
- the OLT can select the ONU that uses the new wavelength in the step 4 to restore to the wavelength n originally assigned by the OLT (wavelength n
- wavelength n The concept includes upstream and/or downstream wavelengths).
- the new wavelength allocated by the OLT to the ONU may be a wavelength allocated to other ONUs but not yet used, or a wavelength that is not yet allocated, or an alternate wavelength.
- the OLT may send the information of the allocated wavelengths shown in Table 1 to the ONU through the PLOAM message, or may also pass the ONU management and control interface (OMCI).
- OMCI ONU management and control interface
- the message or Extended Operations, Administration and Maintenance (eOAM) message or other newly defined message sends the ONU the information of the assigned wavelength.
- the OLT does not encrypt the Assign_ONU_Wavelength message sent to the ONU.
- the OLT may also encrypt the Data field in the Assign_ONU_Wavelength message, and the encryption key may be pre-negotiated for storage by the OLT and the ONU.
- the ONU After receiving the encrypted Assign_ONU_Wavelength message sent by the OLT, the ONU decrypts the Data field in the Assign_ONU_Wavelength to obtain the wavelength allocated by the OLT to itself, and adjusts the emission wavelength of its own laser to the upstream wavelength allocated by the OLT in the Assign_ONU_Wavelength message.
- the nth ONU and the OLT use the new uplink wavelength to transmit and receive uplink data, and restore the transmission of the uplink data of the nth ONU.
- the part including the Data field in the Assign_ONU_Wavelength message may be encrypted by the OLT, or the content other than the ONU-ID part may be encrypted, or the entire Assign_ONU_Wavelength message may be encrypted.
- the OLT uses the Assign_ONU_Wavdength message to command the nth ONU to adjust the illuminating wavelength of its own laser to the upstream wavelength allocated by the OLT to the ONU.
- the OLT may also use the Assign_ONU_Wavdength message to command the nth ONU.
- the illuminating wavelength of the own laser is adjusted to the upstream wavelength allocated by the OLT to the ONU, and the receiving wavelength is adjusted to the downstream wavelength allocated by the OLT to the ONU.
- the content of the Data field in the Assign_ONU_Wavelength message is assigned to the ONU by the OLT.
- the upstream wavelength and the downstream wavelength value, or the OLT sends two messages to the ONU to instruct the ONU to adjust the uplink wavelength and the downlink wavelength value.
- the uplink wavelength and the downlink wavelength in this embodiment may be the same or different.
- Embodiment 3 (OFDM system, command replacement subcarrier)
- the OLT allocates one or more subcarriers or subcarrier groups for transmitting uplink data and demodulating downlink data to each ONU connected to the PON system, and the subcarriers between each ONU are different from each other, or each subcarrier
- the subcarriers included in the group are different from each other, and the number of subcarriers protected by each subcarrier group may be the same or different.
- the OLT modulates the data sent to each ONU to the corresponding ONU corresponding to each ONU, and transmits the received data of each ONU by using the subcarrier corresponding to the ONU. demodulation.
- the OLT detects that the ONU corresponding to the mth subcarrier (or subcarrier group) transmits uplink data by using the subcarrier (or subcarrier group) corresponding to the nth ONU, if the nth ONU does not send the uplink number at this time
- the uplink data sent by the mth ONU carries its own identity information (such as ONU identification information, ONU serial number, ONU logical link identifier, or ONU medium access control address information, etc.); Uplink data sent by the ONU with carrier m, and the OLT cannot normally analyze the uplink data sent by the ONU with the subcarrier n; or the OLT does not receive the uplink data sent by the ONU with the wavelength m, and the OLT is on the unassigned subcarrier.
- the OLT Upon receiving the uplink data sent by the ONU, the OLT sends the PLOAM message shown in Table 1 to the mth ONU.
- the first to second bytes of the Assign_ONU_sub-Carrier message are the values of the ONU-ID. Indicates that the message is sent to the ONU whose ONU-ID value is ONU-ID1; the content of the third byte indicates that the type of the PLOAM message is the structure information type of the Assign_ONU_sub-Carrier message; the fourth byte is the serial number of the PLAOM message.
- the content of the fifth to fortieth bytes is the subcarrier (or subcarrier group) allocated by the OLT to the ONU, and the forty-first byte to the forty-eighth byte are the message verification codes of the message integrity check.
- the OLT commands the mth ONU to adjust its own subcarrier to the subcarrier (or subcarrier group) allocated by the OLT to the ONU through the Assign_ONU_sub-Carrier message.
- the mth ONU After receiving the Assign_ONU_Wavelength message sent by the OLT, the mth ONU adjusts its own subcarrier to the subcarrier allocated by the OLT in the Assign_ONU_Wavelength message.
- Table 2 Structure table of the Assign_ONU_sub-Carrier message
- Step 1 The OLT commands the nth ONU to adjust its own subcarrier to the OLT allocation through the Assign_ONU_sub-Carrier message. Give the ONU's subcarriers.
- Step 2 After receiving the Assign_ONU_sub-Carrier message sent by the OLT, the nth ONU adjusts its own subcarrier to the subcarrier allocated by the OLT in the Assign_ONU_sub-Carrier message.
- the nth ONU and the OLT use the new subcarriers to transmit and receive uplink data, and restore the uplink data transmission of the nth ONU.
- the OLT may send the information of the allocated subcarriers shown in Table 2 to the ONU through the PLOAM message, or may be through the ONU management and control interface (OMCI) message and the extended operation management and maintenance (Extended Operations). , Administration and Maintenance (eOAM) messages or other newly defined messages send information to the ONUs to allocate subcarriers.
- the OLT does not encrypt the Assign_ONU_sub-Carrier message sent to the ONU.
- the OLT can also encrypt the Data field in the Assign_ONU_sub-Carrier message.
- the encryption key can be OLT and ONU. Pre-negotiating the key stored locally, or the key sent by the OLT to the ONU, or the key sent by the ONU to the OLT, or the key independently calculated by the OLT and the ONU according to a predetermined algorithm, or defined by the standard. The key obtained by the method.
- the ONU After receiving the encrypted Assign_ONU_sub-Carrier message sent by the OLT, the ONU decrypts the Data field in the Assign_ONU_sub-Carrier to obtain the sub-carrier allocated by the OLT to itself, and adjusts the sub-carrier of the uplink data to the Assign_ONU_sub-Carrier message.
- the nth ONU and the OLT use the new subcarriers to transmit and receive uplink data, and restore the transmission of the uplink data of the nth ONU.
- the part including the Data field in the Assign_ONU_sub-Carrier message may be encrypted by the OLT, or the content other than the ONU-ID part may be encrypted, or the entire Assign_ONU_sub-Carrier message may be encrypted.
- the subcarriers for transmitting data and the subcarriers for receiving data in this embodiment may be the same or different.
- Embodiment 4 (OFDM system, command replacement subcarrier)
- the OLT allocates one or more subcarriers (or subcarrier groups) for receiving downlink data and transmitting uplink data to each ONU connected to the PON system, and after receiving the above information sent by the OLT, the ONU uses the above subcarriers ( Or subcarrier group) Send data and accept data.
- the subcarriers (or subcarrier groups) allocated by the OLT to each ONU are different from each other.
- Step 1 When the OLT finds that the uplink data is abnormal, the OLT and the ONU use the following steps to resume the uplink communication: Step 1: When the ONU corresponding to the nth subcarrier (or subcarrier group) does not send uplink data, and the OLT detects that the mth subcarrier is carried
- the ONU of the identity information of the ONU corresponding to the carrier (for example, the ONU identifier information, the ONU sequence number, the ONU logical link identifier, or the ONU medium access control address information) uses the nth subcarrier to transmit uplink data; or the OLT does not receive the corresponding
- the uplink data sent by the ONU carrying the identity information of the ONU corresponding to the mth subcarrier is received on the subcarrier, or the uplink data sent by the ONU corresponding to the mth subcarrier is not received by the OLT, and the OLT cannot correctly parse the corresponding nth Uplink sent by the ONU of the subcarrier
- the OLT After the OLT commands the ONU corresponding to the nth subcarrier to stop transmitting the uplink data, the OLT still receives the uplink data on the subcarrier, or the OLT does not receive the uplink data sent by the ONU corresponding to the mth subcarrier.
- the OLT If the OLT cannot correctly analyze the uplink data corresponding to the nth subcarrier ONU and the optical power value of the nth subcarrier received by the OLT increases or the optical power value jumps, the OLT gives the corresponding ONU of the mth.
- the physical layer operations, administration and maintenance (PLOAM) message shown in Table 2 is sent.
- the first to second bytes of the Assign_ONU_Wavelength message are the values of the ONU-ID, indicating The message is sent to the ONU whose ONU-ID value is ONU-ID1; the content of the third byte indicates that the type of the PLOAM message is the structure information type of the Assign_ONU_sub-Carrier message; the fourth byte is the sequence number of the PLAOM message; The contents of five to forty bytes are the subcarriers allocated by the OLT to the ONU, and the forty-first byte to the forty-eighth byte are the message verification codes of the message integrity check.
- the OLT commands the mth ONU to adjust its own transmit data and the subcarriers receiving the data to the subcarriers (or subcarrier groups) allocated by the OLT to the ONU through the Assign_ONU_sub-Carrier message.
- Step 2 After receiving the Assign_ONU_sub-Carrier message sent by the OLT, the ONU corresponding to the mth subcarrier adjusts its own subcarrier (or subcarrier group) to the subcarrier (or subcarrier group) allocated by the OLT in the Assign_ONU_sub-Carrier message. .
- the OLT detects whether the ONU of the corresponding mth subcarrier completes the adjustment of the subcarrier. If the OLT receives the uplink data sent by the ONU using the subcarrier allocated in step 1, the OLT detects whether the uplink data returns to normal, and if the uplink data returns to normal. The OLT and the ONU establish normal communication. If the OLT does not receive the uplink data sent by the ONU corresponding to the mth subcarrier by using the newly allocated subcarrier, and the ONU that receives the corresponding mth subcarrier continues to use other subcarriers to send the uplink data, the OLT determines the location. The ONU corresponding to the mth subcarrier is abnormal O; The OLT processes the abnormal ONU that is located.
- the processing behavior may be that the OLT uses a unicast or broadcast message to command the abnormal ONU to turn off its own laser or command the abnormal ONU to change its own subcarrier or the OLT disconnects the branch fiber of the abnormal ONU.
- the subcarriers for transmitting data and the subcarriers for receiving data may be the same or different.
- Embodiment 5 If the OLT cannot correctly parse the uplink data transmitted by the ONU corresponding to the nth subcarrier, the OLT and
- Step 1 After the ONU of the OLT command corresponding to the nth subcarrier stops transmitting uplink data, if the uplink data returns to normal, the OLT determines that the ONU is If the OLT continues to receive the uplink data corresponding to the nth subcarrier, and the uplink data carries the identity information of the ONU, the OLT locates the identity information ONU as an abnormal ONU, if the ONU Identity information is not corresponding to the nth subcarrier On the ONU, the OLT commands the ONU corresponding to the nth subcarrier to resume the transmission of the uplink data, and skips to step 5.
- Step 2 The OLT commands the ONU corresponding to the nth subcarrier to adjust its own subcarrier to the subcarrier allocated by the OLT to the ONU through the Assign_ONU_sub-Carrier message.
- Step 3 After receiving the Assign_ONU_sub-Carrier message sent by the OLT, the ONU adjusts its own subcarrier to the subcarrier allocated by the OLT in the Assign_ONU_Wavelength message.
- Step 4 The OLT detects whether the ONU sends the uplink data by using the newly allocated subcarrier.
- the OLT does not receive the uplink data sent by the ONU by using the newly allocated subcarrier, the OLT still receives the uplink data sent by using the nth subcarrier.
- the OLT determines that the ONU is an abnormal ONU, and skips to step 5. If the OLT receives the uplink data sent by the ONU using the newly allocated subcarrier, and the OLT still receives the uplink data sent by the nth subcarrier, the OLT and the OLT The ONU that uses the new subcarrier recovers the uplink communication.
- the OLT locates the ONU with the identity information as an abnormal ONU, and skips to step 5 if the OLT remains If the uplink data sent by the nth subcarrier cannot be parsed normally, the OLT determines the range of the abnormal ONU as the ONU that has not received the uplink data and the transmitted uplink data that cannot be parsed by the OLT. Step 5: The OLT processes the abnormal ONU that is located. The processing behavior may be that the OLT uses the unicast or broadcast message command. The ONU shuts down its own laser or commands the abnormal ONU to change the illumination wavelength and/or downlink wavelength of the laser or the OLT disconnection.
- the ONU's branch fiber) or the OLT continues to locate the abnormal ONU.
- the OLT can select the ONU that uses the new subcarrier in step 4 to restore to the subcarrier n initially allocated by the OLT.
- the new subcarrier allocated by the OLT to the ONU may be a subcarrier allocated to other ONUs but not used temporarily, or a subcarrier that is temporarily unallocated, or a spare subcarrier.
- the OLT may send the information of the allocated subcarriers shown in Table 2 to the ONU through the PLOAM message, or may be through the ONU management and control interface (OMCI) message or extended operation management and maintenance (Extended The Operations, Administration and Maintenance (eOAM) message or other newly defined message sends the ONU the information of the assigned subcarrier.
- OMCI ONU management and control interface
- eOAM Extended operation management and maintenance
- the OLT does not encrypt the Assign_ONU_sub-Carrier message sent to the ONU.
- the OLT may also use the OLT to perform the Data field in the Assign_ONU_sub-Carrier message.
- the encryption key can be pre-negotiated by the OLT and the ONU to store the key locally, or the key sent by the OLT to the ONU, or the key sent by the ONU to the OLT, or the OLT and the ONU can independently calculate locally according to a predetermined algorithm. The resulting key, or the key obtained by the standard defined method.
- the ONU After receiving the encrypted Assign_ONU_sub-Carrier message sent by the OLT, the ONU decrypts the Data field in the Assign_ONU_sub-Carrier to obtain the subcarrier allocated by the OLT to itself, and adjusts its own subcarrier to the OLT allocated in the Assign_ONU_sub-Carrier message. Subcarrier.
- the nth ONU and the OLT use the new subcarriers to transmit and receive uplink data, and restore the transmission of the uplink data of the nth ONU.
- the part including the Data field in the Assign_ONU_sub-Carrier message may be encrypted by the OLT, or the content other than the ONU-ID part may be encrypted, or the entire Assign_ONU_sub-Carrier message may be encrypted.
- the subcarriers for transmitting data and the subcarriers for receiving data in this embodiment may be the same or different.
- Embodiment 6 (WDM system, command to stop sending data)
- the OLT allocates a downlink wavelength for receiving the downlink signal and an uplink wavelength for transmitting the uplink data to each ONU connected to the PON system.
- the ONU adjusts the illumination wavelength of its own laser to The above-mentioned upstream wavelength adjusts the reception wavelength of its own receiver to the above-mentioned downstream wavelength.
- the upstream wavelengths assigned by the OLT to each ONU are different. If the OLT cannot correctly parse the uplink data sent by the nth ONU, the OLT and the ONU use the following main steps to resume the uplink communication: Step 1: The OLT sends the PLOAM message shown in Table 3 to the ONU, as shown in Table 3.
- the first to second bytes of the upstream-data message are the values of the ONU-ID, indicating that the message is sent to the ONU whose ONU-ID value is ONU-ID1; the content of the third byte indicates that the type of the PLOAM message is Send_upstream-
- the structure message type of the data message; the fourth byte is the sequence number of the PLAOM message; the value of the fifth byte is 1 to indicate that the command ONU resumes transmitting uplink data; the value of 0 indicates that the command ONU stops transmitting uplink data;
- the contents of forty bytes are reserved fields; the forty-first bytes to the forty-eighth bytes are message authentication codes for message integrity check.
- the value of the fifth byte of the Send_upstream-data message of the OLT is written as 0, and the nth ONU stops transmitting the uplink data.
- Step 2 The nth ONU stops sending uplink data after receiving the above command sent by the OLT.
- Step 3 The OLT detects the signal of the nth uplink wavelength and determines the identity of the ONU that currently uses the nth uplink wavelength to transmit data, if the OLT identifies the identity of the ONU (for example, the uplink data sent by the current ONU is carried in the uplink data.
- the identity information of the user such as the ONU identification information, the ONU serial number, the ONU logical link identifier, or the ONU medium access control address information, etc.
- the OLT sends the PLOAM message shown in Table 1 through the unicast or broadcast channel to command the ONU to its own
- the wavelength is adjusted to the uplink wavelength allocated by the OLT to the ONU when the ONU is registered.
- the OLT responds to the ONU by adjusting the uplink and downlink wavelengths of the ONU by the Assign_ONU_Wavelength message.
- the value of the Data field of the PLOAM message is the uplink wavelength value (upstream wavelength value and downlink wavelength value) allocated by the OLT to the ONU when the ONU is registered, if the OLT receives Sending data to the ONU using the uplink wavelength allocated by the OLT, and then skipping to step 4, if the OLT determines the The ONU continues to use the uplink wavelength of the nth ONU to transmit data, or the OLT cannot identify the identity of the ONU that currently uses the upstream wavelength of the nth ONU to transmit data. If there is a spare wavelength, skip to step 5; if there is no free wavelength jump To 7.
- Step 4 The OLT sends a Send_upstream-data message to the nth ONU, and sets the value of the fifth byte to 1 to command the nth ONU to resume sending uplink data, and skips to step 6.
- Step 5 The OLT commands the nth ONU to adjust the illumination wavelength of its own laser to the upstream wavelength allocated by the OLT to the ONU through the Assign_ONU_Wavelength message.
- the OLT commands the nth ONU to adjust its own uplink and downlink wavelengths to the uplink and downlink wavelengths allocated by the OLT to the ONU through the Assign_ONU_Wavelength message), and the nth ONU receives the Assign_ONU_Wavelength message sent by the OLT.
- the illuminating wavelength of the laser is adjusted to the upstream wavelength allocated by the OLT in the Assign_ONU_Wavelength message (the ONU adjusts its own upstream wavelength and downlink wavelength to the upstream wavelength and the downstream wavelength allocated by the OLT to the ONU); if the OLT receives the ONU Skip to step 6 when transmitting uplink data with the newly allocated upstream wavelength, otherwise skip to step 7.
- Step 6 The nth ONU resumes sending the uplink data, and the process is skipped.
- the OLT may send the information of the stop sending uplink data and the resume uplink data transmission shown in Table 3 to the ONU through the PLOAM message, or may send the ONU to stop sending the uplink data and resume the uplink data transmission by using the OMCI or eOAM message. information.
- the OLT is used to send a Send_upstream-data message to the ONU to command the ONU to stop sending uplink data.
- the OLT may also send a PLOAM message named Deactivate_ONU-ID to the ONU, a PLOAM message named Disable_Serial_Number, and a new one.
- the OMCI or eO AM message or other newly defined message is used to notify the ONU to stop sending uplink data.
- the OLT does not encrypt the Send_upstream-data message sent to the ONU.
- the OLT may also encrypt the field of the fifth byte in the Assign_ONU_Wavelength message, and the encryption key may be an OLT.
- the key obtained by the defined method.
- the ONU After receiving the encrypted Send_upstream-data message sent by the OLT, the ONU decrypts the field of the fifth byte in the Send_upstream-data to obtain a command for the OLT to allow itself to send uplink data.
- the nth ONU stops the uplink according to the OLT command. The transmission of data or the transmission of uplink data is resumed.
- the part of the domain containing the 5th byte in the Send_upstream-data message may be encrypted by the OLT, or the content other than the ONU-ID part may be encrypted, or the entire Send_upstream-data message may be used. Encrypt.
- the uplink wavelength and the downlink wavelength in this embodiment may be the same or different.
- Embodiment 7 (OFDM system, command to stop transmitting data)
- the OLT allocates one or more subcarriers for transmitting uplink data and demodulating downlink data to each ONU connected to the PON system, and the subcarriers between each ONU are different from each other.
- the OLT will send to the OLT.
- the data of each ONU is separately modulated to be transmitted to the corresponding ONU on the subcarrier corresponding to each ONU, and the data of each received ONU is demodulated by the subcarrier corresponding to the ONU. If the OLT cannot correctly parse the uplink data sent by the nth ONU, the OLT and the ONU use the following main steps to resume the uplink communication: Step 1:
- the OLT sends the PLOAM message shown in Table 3 to the ONU, as shown in Table 3.
- the first to second bytes of the upstream-data message are the values of the ONU-ID, indicating that the message is sent to the ONU whose ONU-ID value is ONU-ID1; the content of the third byte indicates that the type of the PLOAM message is Send_upstream- The knot of the data message
- the fourth byte is the sequence number of the PLAOM message; the fifth byte has a value of 1 indicating that the command ONU resumes transmitting uplink data; a value of 0 indicates that the command ONU stops transmitting uplink data; the sixth to fourth cross
- the content of the section is the reserved field; the forty-first byte to the forty-eighth byte are the message verification codes of the message integrity check.
- Step 2 After receiving the above command sent by the OLT, the nth ONU stops sending uplink data.
- Step 3 The OLT determines the identity of the ONU that currently uses the subcarrier of the nth ONU to transmit data, and if the OLT identifies the identity of the ONU (for example, the uplink data sent by the current ONU carries its own identity information, such as an ONU.
- the OLT commands the ONU to adjust its own subcarrier to the ONU registration by the OLT through the PLOAM message shown in Table 2 a subcarrier allocated by the ONU, the value of the Data field of the PLOAM message is a subcarrier allocated by the OLT to the ONU when the ONU is registered, and if the OLT determines that the ONU does not use the subcarrier of the nth ONU to transmit data, Then, in step 4, if the OLT determines that the ONU continues to use the subcarrier of the nth ONU to transmit data, or the OLT cannot identify the identity of the ONU that currently uses the subcarrier of the nth ONU to send data, then skip to step 5.
- Step 4 The OLT sends a Send_upstream-data message to the nth ONU, and sets the value of the fifth byte to 1 to command the nth ONU to resume sending uplink data, and skips to step 6.
- Step 5 The OLT commands the nth ONU to adjust its own subcarrier to the subcarrier allocated by the OLT to the ONU through the Assign_ONU_sub-Carrier message. After receiving the Assign_ONU_sub-Carrier message sent by the OLT, the nth ONU transmits its own subcarrier. Adjusted to the subcarrier allocated by the OLT in the Assign_ONU_Wavelength message.
- Step 6 The nth ONU resumes transmitting the uplink data.
- the OLT is used to send a Send_upstream-data message to the ONU to command the ONU to stop sending uplink data.
- the OLT may also send a PLOAM message named Deactivate_ONU-ID to the ONU, a PLOAM message named Disable_Serial_Number, and a new one.
- the OMCI or eOAM message or other newly defined message is used to notify the ONU to stop sending uplink data.
- the OLT does not encrypt the Send_upstream-data message sent to the ONU.
- the OLT may also encrypt the field of the fifth byte in the Assign_ONU_Wavelength message, and the encryption key may be an OLT.
- Pre-negotiate with the ONU for the key stored locally, or sent by the OLT to the ONU, or the key sent by the ONU to the OLT, or the OLT and the ONU are in accordance with a predetermined algorithm.
- the ONU After receiving the encrypted Send_upstream-data message sent by the OLT, the ONU decrypts the field of the fifth byte in the Send_upstream-data to obtain a command for the OLT to allow itself to send uplink data, and the nth ONU stops the uplink according to the OLT command. The transmission of data or the transmission of uplink data is resumed.
- the part of the domain containing the 5th byte in the Send_upstream-data message may be encrypted by the OLT, or the content other than the ONU-ID part may be encrypted, or the entire Send_upstream-data message may be used. Encrypt.
- the subcarriers for transmitting data and the subcarriers for receiving data in this embodiment may be the same or different.
- Embodiment 8 (OFDM system, command to stop transmitting data)
- the OLT allocates one or more subcarriers to each ONU connected to the PON system. After receiving the above information sent by the OLT, the ONU sets its own subcarriers. The subcarriers allocated by the OLT to each ONU are different. If the OLT cannot correctly analyze the uplink data sent by the ONU corresponding to the nth subcarrier, the OLT and the ONU use the following main steps to resume the uplink communication: Step 1: The OLT sends the PLOAM message shown in Table 3 to the ONU, as shown in Table 3.
- the first to second bytes of the Send upstream-data message are the values of the ONU-ID, indicating that the message is sent to the ONU whose ONU-ID value is ONU-ID1; the content of the third byte indicates the type of the PLOAM message.
- the structure information type of the Send_upstream-data message; the fourth byte is the sequence number of the PLAOM message; the value of the fifth byte indicates that the command ONU resumes transmitting uplink data; the value of 0 indicates that the command ONU stops transmitting uplink data;
- the contents of six to forty bytes are reserved fields; the forty-first byte to the forty-eighth byte are message verification codes for message integrity check.
- Step 2 After receiving the above command sent by the OLT, the nth ONU stops sending uplink data.
- Step 3 The OLT detects the signal of the nth subcarrier and determines the identity of the ONU that currently uses the nth subcarrier to transmit data.
- the OLT identifies the identity of the ONU, for example, the uplink data sent by the current ONU carries its own Identity information, such as ONU identification information, ONU serial number, ONU logical link identifier, or ONU medium access control address information, etc.
- the OLT sends the PLOAM message shown in Table 2 through the unicast or broadcast channel to command the ONU to its own subcarrier. Adjusting to the subcarrier allocated by the OLT to the ONU when the ONU is registered, the value of the Data field of the PLOAM message is a subcarrier allocated by the OLT to the ONU when the ONU is registered, and if the OLT receives the ONU, If the sub-carrier allocated by the OLT transmits data, the process goes to step 4.
- Step 4 The OLT sends a Send_upstream-data message to the nth ONU, and sets the value of the fifth byte to 1 to command the nth ONU to resume sending uplink data, and skips to step 6.
- Step 5 The OLT commands the nth ONU to adjust its own subcarrier to the subcarrier allocated by the OLT to the ONU through the Assign_ONU_sub-Carrier message.
- the nth ONU After receiving the Assign_ONU_sub-Carrier message sent by the OLT, the nth ONU transmits its own subcarrier. Adjust to the subcarrier allocated by the OLT in the Assign_ONU_sub-Carrier message; if the OLT receives the uplink data sent by the ONU using the newly allocated subcarrier, skip to step 6, otherwise skip to step 7. Step 6: The nth ONU resumes sending the uplink data, and the process is skipped.
- Step 7 The OLT determines that the range of the abnormal ONU is that the ONU that does not send the uplink data and the OLT cannot correctly parse the uplink data sent by the OLT;
- the OLT may send the information of the stop sending uplink data and the resume uplink data transmission shown in Table 3 to the ONU through the PLOAM message, or may send the ONU to stop sending the uplink data and resume the uplink data transmission by using the OMCI or eOAM message. information.
- the OLT is used to send a Send_upstream-data message to the ONU to command the ONU to stop sending uplink data.
- the OLT may also send a PLOAM message named Deactivate_ONU-ID to the ONU, a PLOAM message named Disable_Serial_Number, and a new one.
- the OMCI or eO AM message or other newly defined message is used to notify the ONU to stop sending uplink data.
- the OLT does not encrypt the Send_upstream-data message sent to the ONU.
- the OLT may also encrypt the field of the fifth byte in the Assign_ONU_Wavelength message, and the encryption key may be an OLT.
- the key obtained by the defined method.
- the ONU After receiving the encrypted Send_upstream-data message sent by the OLT, the ONU decrypts the field of the fifth byte in the Send_upstream-data to obtain a command for the OLT to allow itself to send uplink data.
- the nth ONU stops the uplink according to the OLT command. The transmission of data or the transmission of uplink data is resumed.
- the part of the domain containing the 5th byte in the Send_upstream-data message may be encrypted by the OLT, or the content other than the ONU-ID part may be encrypted, or the entire Send_upstream-data message may be used. Encrypt.
- the subcarriers for transmitting data and the subcarriers for receiving data in this embodiment may be the same or different.
- Embodiment 9 TDM system, reallocating time slots and encrypting commands
- the OLT allocates an uplink time slot for transmitting uplink data to each ONU connected to the PON system, and the uplink time slots of each ONU are different from each other.
- the OLT cannot normally analyze the uplink data sent by the nth ONU, the OLT sends the bandwidth allocation shown in FIG. 2 to the nth ONU, and the content of the Start Time and the Grant Size in the allocation structure corresponding to the bandwidth allocation. Encryption is performed.
- the encryption key is the key used by the OLT to encrypt the GPON Encapsulation Method (GEM) frame.
- GEM GPON Encapsulation Method
- the ONU After receiving the bandwidth allocation allocated by the OLT, the ONU decrypts the bandwidth allocation by using the locally stored GEM key, and obtains an uplink time slot allocated by the OLT for transmitting uplink data, and is in the uplink time slot. Sending uplink data restores the transmission of the uplink data of the ONU.
- the OLT may send the information of the allocated subcarriers to the ONU through the PLOAM message, and may also send the information of the allocated subcarriers to the ONU through the OMCI or the eOAM message.
- the OLT may send a PLOAM message to the ONU to notify the ONU that the current bandwidth allocation content is encrypted, or may also be through the ONU management and control interface (OMCI) message, extended operation management and maintenance (Extended Operations). , Administration and Maintenance (eOAM) messages or other newly defined messages send the ONU the information that the current bandwidth allocation is encrypted.
- the OLT encrypts the contents of the Start Time and the Grant Size in the allocation structure, and may also encrypt the content including the Start Time and the Grant Size in the allocation structure, or may remove the Alloc-ID from the allocation structure. All of the content is encrypted and the entire distribution structure can be encrypted.
- Embodiment 10 (hybrid PON system, adjusting wavelength)
- the topology of the hybrid PON system is as shown in FIG. 4a and FIG. 4b.
- Each OLT manages a group of ONUs, and the group of ONUs is used to transmit uplink wavelengths of uplink data (subcarriers).
- the downlink wavelengths (subcarriers) that receive the downlink data are also the same, and the different ONUs in the group of ONUs transmit the uplink data by means of time division multiplexing.
- the downlink wavelengths (subcarriers) of different OLTs are different, and the uplink wavelengths (subcarriers) used by each group of ONUs managed by different OLTs are also different.
- Each ONU may adjust a downlink wavelength (subcarrier) for receiving a downlink signal and an uplink wavelength for transmitting uplink data according to an OLT command (a subcarrier, and the uplink subcarrier and the downlink subcarrier may be the same or different).
- Each OLT stores downlink wavelength values (subcarriers) for other OLTs to transmit downlink data and uplink wavelength values (subcarriers) for receiving uplink data.
- Each OLT manages a set of ONUs that it manages by time division multiplexing. With the upstream bandwidth, each ONU sends data in the upstream bandwidth allocated by the OLT to itself.
- OLT1 cannot correctly parse uplink data of some uplink time slots or all uplink time slots; or OLT1 cannot correctly parse uplink data of some uplink time slots or all uplink time slots, and commands the ONUs of the time slots to stop. After receiving the uplink data, the uplink data is still received in the time slot; or the OLT1 cannot correctly analyze the uplink data of some uplink time slots or all uplink time slots, and the optical power value of the time slot received by the OLT1 increases.
- Step 1 The OLT1 communicates with other OLTs or the NMS to obtain other OLT information that works normally.
- Step 2 The OLT1 sends an Assign_ONU_Wavelength (Alarm_ONU_sub-Carrier) message shown in Table 4 to an ONU managed by the OLT1.
- the value of the Data field in the message is the uplink wavelength and downlink wavelength value assigned by the OLT1 to the ONU (uplink subcarrier and Downstream subcarrier), the upstream wavelength and downlink wavelength value (uplink subcarrier and downlink subcarrier) allocated by the OLT1 to the ONU are another normal working OLT shown in FIG. 4a and FIG. 4b, for example, OLT2 (in other In the embodiment, the uplink wavelength and the downlink wavelength value (uplink subcarrier and downlink subcarrier) corresponding to the ONU group managed by another OLT, such as OLT3).
- Step 3 If the ONU can respond to the command of the OLT1, the ONU receives the above information sent by the OLT1, and then adjusts the emission wavelength of the laser (the subcarrier of the transmitted data) to the uplink corresponding to the ONU group managed by the OLT2.
- the wavelength (subcarrier), and the receiving wavelength of the receiver is adjusted to the downlink wavelength (subcarrier) corresponding to the ONU group managed by the OLT2, and the ONU and the OLT 2 establish communication according to the prior art.
- Step 4 The OLT1 detects whether the uplink data can be parsed normally.
- the OLT1 notifies the OLT2 of the following information: An abnormal ONU exists in the ONU group managed by the OLT2, and the identity information of the abnormal ONU is notified to the OLT2, otherwise skipping to step 1 .
- OLT1 sends an Assign_ONU_Wavelength ( Assign_ONU_sub-Carrier) message to all ONUs in the ONU group managed by OLT1, and OLT1 still receives the uplink data
- OLT1 can obtain success from OLT1 by communicating with the NMS or other OLT. Switching to the ONU information of the other OLT, the OLT1 compares the information with the information of all the ONUs stored by itself, and locates the abnormal ONU.
- the OLT1 sends a command to turn off the laser or turn off the ONU power to the abnormal ONU, or disconnect.
- the OLT1 can notify the network management system or other OLT to switch some ONUs back to OLT1 after the OLT1 solves the problem of the abnormal ONU by connecting the fiber of the abnormal ONU or the other standard to solve the problem of the abnormal ONU.
- An OLT in the system receives the notification from the network management system or other OLTs in step 4 to check whether the uplink data is normal. If the uplink data is normal, the OLT rejects the registration activation of the ONU carrying the abnormal ONU identity information.
- the OLT If the OLT cannot parse the uplink data normally, the OLT sends a command to stop the sending of the uplink data or the laser to the abnormal ONU. Otherwise, the OLT adopts the method of steps 1 to 4 to restore the ONU uplink communication of the ONU group it manages, or the OLT will The wavelength of all ONUs that are managed by the abnormal ONU is transferred to other OLTs, and then the problem of the abnormal ONU is solved. The solution may be to send the abnormal ONU a command to stop sending uplink data or turn off the laser, or disconnect the connection abnormally. ONU fiber and so on. After the problem of the abnormal ONU is solved, the OLT may notify the network management system or other OLT to switch part of the ONUs back to the OLT.
- the OLT 1 switches the ONUs of the ONU groups managed by the OLTs to other OLTs one by one.
- the OLTs may also use the OLT1 to group the ONUs that are managed by themselves.
- Each group includes one or more ONUs, and the OLT will each The group ONUs switch to other OLTs one by one, and the ONUs of each group can switch to other OLTs at the same time.
- the OLT 1 switches the ONUs of the ONU group that it manages to the same working OLT.
- the OLT 1 can also switch the ONUs of the ONU groups that it manages to different normal workings.
- the topology of FIG. 5 may be adopted, and a standby OLT exists in the system, and the standby OLT receives the uplink of the uplink data.
- the wavelength and the downlink wavelength for transmitting the downlink data are different from the uplink wavelength at which the other OLT receives the uplink data and the downlink wavelength at which the downlink data is transmitted.
- OLT1 may choose to switch its own ONU to another working OLT and/or standby OLT according to the above method.
- an abnormal ONU table is established or maintained at the OLT and/or the network management system.
- OLT detects an abnormal ONU, the OLT reports the identity information of the abnormal ONU to the network management system.
- the abnormal ONU table is locally established and updated by the network management system, or the OLT locally updates the abnormal ONU table.
- Each OLT discovers a new ONU connected to the system, or reconnects to the ONU in the system, after receiving its identity information.
- the OLT determines whether the ONU is an abnormal ONU according to the abnormal ONU table.
- Step 1 The OLT1 communicates with other OLTs or the network management to obtain other OLT information that is working normally; Step 2: The OLT1 notifies the system to work normally.
- OLT1 will transfer ONU1 to OLT2, and send the identity information of ONU1 to OLT2; 3: After receiving the information sent by OLT1 in step 2, OLT2 does not allow ONU1 to enter the working state at OLT2.
- Assign_ONU_Wavelength Assign_ONU_sub-Carrier
- the uplink and downlink wavelength values (uplink subcarriers and downlink subcarriers) allocated by the OLT1 to the ONU are OLT2 ( In other embodiments, the uplink wavelength and the downlink wavelength value corresponding to the ONU group managed by other OLTs, such as OLT3, may also be used; Step 5: If the O The NU can respond to the command of the OLT1, and after receiving the above information sent by the OLT1, the ONU adjusts the illuminating wavelength of the laser (the subcarrier transmitting the data) to the uplink wavelength (uplink subcarrier) corresponding to the ONU group managed by the OLT2.
- Step 6 OLT1 detects whether it can be normal If the uplink data is not restored, OLT1 notifies OLT2 of the following information: ONU1 is a normal ONU, OLT1 skips to step 1, otherwise OLT1 notifies OLT2 of the following information: ONU1 is an abnormal ONU, and OLT2 is notified of identity information of ONU1. .
- the OLT2 After the OLT2 receives the information sent by the OLT1 in step 4, if the ONU1 is a normal ONU, the OLT2 allows the ONU1 to enter the working state, otherwise the OLT rejects the ONU1 to enter the working state.
- OLT1 sends an Assign_ONU_Wavelength ( Assign_ONU_sub-Carrier) message to all ONUs in the ONU group managed by OLT1, and OLT1 still receives the uplink data, OLT1 can obtain success from OLT1 by communicating with the NMS or other OLT. Switching to the ONU information of the other OLT, the OLT1 compares the information with the information of all the ONUs stored by itself and locates the abnormal ONU.
- Assign_ONU_Wavelength Assign_ONU_sub-Carrier
- the OLT1 can notify the network management system or other OLT to switch some ONUs back to the OLT1. .
- the OLT 1 switches the ONUs of the ONU groups managed by the OLTs to other OLTs one by one.
- the OLTs may also use the OLT1 to group the ONUs that are managed by themselves. Each group includes one or more ONUs, and the OLT will each The group ONUs switch to other OLTs one by one, and the ONUs of each group can switch to other OLTs at the same time.
- the OLT 1 switches the ONUs of the ONU group that it manages to the same working OLT.
- the OLT 1 can also switch the ONUs of the ONU groups that it manages to different normal workings. At the OLT, this can alleviate other ONUs managed by the OLT that are working normally, and reduce the impact on the upstream bandwidth of the ONUs managed by other OLTs.
- the topology of FIG. 5 may be adopted, and a standby OLT exists in the system, and the standby OLT receives the uplink of the uplink data.
- the wavelength and the downlink wavelength for transmitting the downlink data are different from the uplink wavelength at which the other OLT receives the uplink data and the downlink wavelength at which the downlink data is transmitted.
- OLT1 may choose to switch its own ONU to another working OLT and/or standby OLT according to the above method.
- the OLT1 determines whether the identity of the abnormal ONU is normal through the uplink data of the ONU managed by the OLT1.
- the OLT1 can also communicate with the OLT2 or the network management to obtain information about whether the uplink direction at the OLT2 is working normally. If the OLT 2 cannot correctly parse the uplink data of a part of the uplink time slot or the entire uplink time slot, the OLT 1 can locate the ONU that changes the wavelength (subcarrier) by itself, and the OLT 1 notifies the OLT 2 through the network management system or directly notifies the OLT 2 of the identity of the abnormal ONU.
- the OLT2 can directly process the abnormal ONU or send the Assign_ONU_Wavelength ( Assign_ONU_sub-Carrier) message shown in Table 4 to all other ONUs currently managed by the OLT2 except the abnormal ONU, and solve the problem. After the problem with the abnormal ONU, switch the above ONU back.
- the OLT may send the information of the allocated wavelength (subcarrier) shown in Table 1 to the ONU through the PLOAM message, or may be through the ONU management and control interface (ONU management and control interface, The OMCI message, Extended Operations, Administration and Maintenance (eOAM) message, or other newly defined message sends the ONU the information of the assigned wavelength (subcarrier).
- the OLT does not encrypt the Assign_ONU_Wavelength (Alarm_ONU_sub-Carrier) message sent to the ONU.
- the OLT may encrypt the Data field in the Assign_ONU_Wavelength (Assignment_ONU_sub-Carrier) message by using the OLT.
- the key may be pre-negotiated by the OLT and the ONU for storing the key locally, or the key sent by the OLT to the ONU, or the key sent by the ONU to the OLT, or the key independently calculated by the OLT and the ONU according to a predetermined algorithm. , or a key obtained for a standard defined method.
- the ONU After receiving the encrypted Assign_ONU_Wavelength ( Assign_ONU_sub-Carrier) message sent by the OLT, the ONU decrypts the Data field in Assign_ONU_Wavelength to obtain the wavelength (subcarrier) allocated by the OLT to itself, and adjusts the emission wavelength of its own laser to Assign_ONU_Wavelength ( Assign_ONU_sub-Carrier ) The upstream wavelength (subcarrier) assigned by the OLT in the message. The nth ONU and the OLT use the new uplink wavelength (subcarrier) to transmit and receive uplink data, and restore the transmission of the uplink data of the nth ONU.
- the part including the Data field in the Assign_ONU_Wavelength ( Assign_ONU_sub-Carrier ) message may be encrypted by the OLT, or the content other than the ONU-ID part may be encrypted, or the entire Assign_ONU_Wavelength ( Assign_ONU_sub-Carrier) ) The message is encrypted.
- Different OLTs in this embodiment may be different OLTs corresponding to different PONs, different OLTs corresponding to different PON ports of the same PON card, or different OLTs corresponding to different wavelengths of the same PON port.
- the subcarriers for transmitting data and the subcarriers for receiving data in this embodiment may be the same or different.
- the uplink wavelength and the downlink wavelength in this embodiment may be the same or different.
- the method of the embodiment can also be used for the protection switching of the PON system, that is, when an OLT cannot work normally, the ONUs under the OLT can all replace the working wavelengths. If the working wavelengths of all the ONUs are the same, the all ONUs are all the same. Establish communication with another OLT, otherwise all the ONUs establish communication with multiple OLTs.
- the other OLTs may be other working OLTs in FIG. 5 or may be standby OLTs. It is to be noted that the steps illustrated in the flowchart of the figures may be performed in a computer system such as a set of computer executable instructions, and, although the logical order is illustrated in the flowchart, in some cases, The steps shown or described may be performed in an order different than that herein.
- FIG. 6 is a structural block diagram of an uplink data exception processing apparatus, including a detection module 62 and an indication module 64, according to an embodiment of the present invention.
- the detecting module 62 is configured to detect that there is an abnormality in the uplink data;
- the indicating module 64 is connected to the detecting module 62, and is configured to instruct one or more ONUs to stop transmitting uplink data and/or instruct one or more ONUs to replace the physical channel.
- the uplink data exception processing apparatus described in the device embodiment corresponds to the foregoing method embodiment, and the specific implementation process has been described in detail in the method embodiment, and details are not described herein again.
- an uplink data exception processing method and apparatus are provided.
- the embodiment of the present invention solves the problem that the ONU uplink data is abnormal in the related art by taking measures to stop the ONU from transmitting the uplink data and/or replacing the ONU physical channel, thereby avoiding the impact on the normal service transmission of the ONU and ensuring the network service quality.
- modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module.
- the invention is not limited to any specific combination of hardware and software.
- the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Small-Scale Networks (AREA)
- Optical Communication System (AREA)
Abstract
本发明公开了一种上行数据异常处理方法及装置,该方法包括:光线路终端(OLT)检测到上行数据存在异常;OLT指示一个或多个光网络单元(ONU)停止传输上行数据和/或指示一个或多个ONU更换物理通道。本发明通过采取停止ONU传输上行数据和/或更换ONU物理通道的措施,解决了相关技术中ONU上行数据异常的情况,从而可以避免对ONU正常业务传输的影响,并保证网络服务质量。
Description
上行数据异常处理方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种上行数据异常处理方法及装置。 背景技术 随着网络技术的发展, 可以利用网络传输大量的语音、 数据、 视频等业务, 因此 对带宽的要求不断提高, 无源光网络 (Passive Optical Network, 简称为 PON) 就是在 这种需求下产生的。 图 1是根据相关技术的 PON系统的拓扑结构图, 如图 1所示, PON系统通常由 局侧的光线路终端(Optical Line Terminal,简称为 OLT)、用户侧的光网络单元(Optical Network Unit,简称为 ONU)和光分配网络(Optical Distribution Network,简称为 ODN) 组成, 通常采用点到多点的网络结构。 ODN由单模光纤和光分路器、 光连接器等无源 光器件组成, 为 OLT和 ONU之间的物理连接提供光传输媒质。 目前 PON技术中主要 有时分复用(Time Division Multiplexing,简称为 TDM)PON系统、波分复用(Wavelength Division Multiplexing ,简称为 WDM)PON系统和正交频分复用 ( Orthogonal Frequency Division Multiplexing, 简称为 OFDM) 系统。 在时分复用的 PON系统中,例如,千兆无源光网络(Gigabit-Capable Passive Optical Network, 简称为 GPON) 系统、 以太无源光网络 (Ethernet Passive Optical Network, 简称为 EPON)系统、 10千兆无源光网络( 10-Gigabit-capable Passive Optical Network, 简称为 XG-PON)系统和 10千兆 (lO-Gigabit-capable)EPON系统中, 下行方向(由 OLT 到 ONU)的数据传输采用广播方式, 每个 ONU分别接收所有的帧, 再根据 ONU-ID、 GEM-Port ID、 Allocation-ID来获取属于自己的帧。 对于上行方向 (从 ONU到 OLT) 的数据传输, 由于各个 ONU需要共享传输媒质, 因此各个 ONU应该在 OLT安排给 自己的时隙内传输上行数据。 以 XG-PON为例, OLT分配给 ONU的用于传输上行数据的时隙是通过下行帧中 的分配结构 (Allocation Structure) 传递给 ONU的。 图 2是根据相关技术的 XG-PON 中的分配结构图, 如图 2所示, 分配结构由 Alloc-ID域 (Allocation Identifier, 带宽分 配标识, 一般是传输容器 (Transmission Container, 简称为 T-CONT)标识)、 Flags域 (带宽分配的选项, 2位比特, 一位比特用于指示 ONU是否发送上行动态带宽报告 (dynamic bandwidth report upstream, 简称为 DBRu), 另一位比特用于指示 ONU是否
发送上 亍物理层操作、 管理禾口维护 ( physical layer operation administration and maitenance,简称为 PLOAMu)消息)、开始时间(Start Time,表示 ONU发送的 XG-PON 的传输汇聚突发(XGPON transmission convergence burst, 简称为 XGTC burst)的第一 个字节在 125us的上行帧中的位置)、 授予尺寸 (Grant Size) 强制苏醒指示 (forced waking up indication,简称为 FWI)、突发开销参数(Bprofile)和混合纠错(Hybrid Error Correct, 简称为 HEC ) 组成。 当 ONU接收到一个 Allocation structure 时, 如果 ONU根据 Alloc-ID 判断此 Allocation structure是分配给自己的,则 ONU对接收到的 Allocation structure中的数据 进行 HEC校验, 如果校验结果正确, ONU将在 Allocation structure指示的 StartTime 时刻开始发送带宽分配标识为 Alloc-ID的 T-CONT中的数据, 发送数据长度为 Grant size域的长度。 波分复用无源光网络 ( Wavelength Division Multiplexing Passive Optical Network, 简称为 WDM-PON ) 和正交频分复用无源光网络 (Orthogonal Frequency Division Multiplexing Passive Optical Network, 简称为 OFDM-PON) 技术是 PON家族 中两个重要的技术分支, 和其它 PON技术类似, WDM-PON和 OFDM-PON在光链路 上是采用点到多点拓扑结构的无源光接入技术。 在 WDM-PON系统中, OLT处有多个不同波长的光发射器,各个光发射器的光波 长分别为 λ(1 1, λά 2, ..., λά η, 其中 λ(1 1为 OLT与第一个 ONU通信时发送下行数 据采用的波长, λ(1 2为 OLT与第二个 ONU通信时发送下行数据采用的波长, ..., λ(1 η 为 OLT与第 η个 ONU通信时发送下行数据采用的波长; 每个 ONU处的发射器的发 生波长均不同于其他 ONU处发射器的发射波长, 例如第一个 ONU用于给 OLT发送 上行数据的发射器的发射波长为 λυΐ , 第二个 ONU用于给 OLT发送上行数据的发射 器的发射波长为 λυ2, ..., 第 η个 ONU用于给 OLT发送上行数据的发射器的发射波 长为 λωι, 采用上述技术, OLT可以同时给所有 ONU发送下行数据, 每个 ONU也可 以同时发送上行数据, 即 OLT和 ONU在光通道上是采用点到点的结构。 在 OFDM-PON系统中, OLT处有多个不同的子载波, 各个子载波分别为 C l, C
2, . . ., C n, 且各个子载波是正交的, OLT将发送给第一个 ONU的下行数据调制到 第一个子载波上 (或者调制到第一个子载波和其他子载波上), OLT 将发送给第二个 ONU 的下行数据调制到第二个子载波上 (或者调制到第二个子载波和其他子载波 上), ..., OLT将发送给第 n个 ONU的下行数据调制到第 n个子载波上 (或者调制到 第 n个子载波和其他子载波上), 发送给不同 ONU的下行数据所采用的子载波之间没 有交集, 即不同的 ONU使用不同的子载波, ONU处用于给 OLT发送上行数据的子载 波与 OLT采用给当前 ONU发送下行数据的子载波相同。 采用上述技术, OLT可以同
时给所有 ONU发送下行数据, 每个 ONU也可以同时发送上行数据, 即 OLT和 ONU 在光通道上是采用点到点的结构。 在 PON系统中, 每个 ONU传输上行数据的采用的上行时隙、 波长或者子载波都 是不同的, 对于 WDM-PON和 OFDM-PON系统中, 由于各个 ONU传输上行数据采 用的波长或者子载波不同, 从而各个 ONU是不同的, 即 ONU是有色的, 这导致运营 商需要储备多种型号的 ONU, 并且当某个用户的 ONU需要更换时, 操作人员也需要 确认该用户的 ONU的型号, 提高了 ONU的运营维护的成本。 为解决上述问题, 相关技术中 WDM-PON 的 ONU 的发光波长是可以调谐的, OFDM-PON的 ONU也可以采用不同的子载波发送上行数据, 在两种情况下 ONU都 是在 OLT的命令下选择自己的发光波长或者子载波。 由于 ONU可以调谐自身的发光 波长或者选择采用的子载波,如果网络中存在恶意的 ONU采用网络中其他 ONU的时 隙、波长或者子载波发送上行数据, 或者某个 ONU的发光波长漂移到其他 ONU的发 光波长上, 则导致 OLT无法正确解析所述其他 ONU的上行数据, 对于 TDM-PON, 如果某个 ONU在 OLT分配给其他 ONU的时隙内发送上行数据, 也会导致 OLT无法 正确解析所述其他 ONU的上行数据。 由此可见, 相关技术中存在多种导致 ONU的上 行数据存在异常的情况, 这样会影响 ONU的正常业务的传输, 降低网络的服务质量。 发明内容 针对 ONU上行数据异常会影响 ONU的正常业务的传输,并降低网络的服务质量 的问题, 本发明提供了一种上行数据异常处理方法及装置, 以解决上述问题。 为了实现上述目的,根据本发明的一个方面,提供了一种上行数据异常处理方法。 根据本发明的上行数据异常处理方法包括: OLT检测到上行数据存在异常; OLT 指示一个或多个 ONU停止传输上行数据和 /或指示一个或多个 ONU更换物理通道。 优选地, OLT检测到上行数据存在异常包括: 在 OLT已为第一 ONU分配第一物 理通道的情况下, OLT在第一物理通道中接收到来自非第一 ONU发送的上行数据。 优选地, OLT指示一个或多个 ONU停止传输上行数据和 /或指示一个或多个 ONU 更换物理通道包括: OLT指示第一 ONU和 /或发送上行数据的 ONU停止传输上行数 据。 优选地, 在 OLT指示一个或多个 ONU停止传输上行数据和 /或指示一个或多个 ONU更换物理通道之后, 该方法还包括: OLT指示第一 ONU恢复传输上行数据。
优选地, OLT检测到上行数据存在异常包括: 在 OLT已为第一 ONU分配第一物 理通道的情况下, 0LT无法全部解析第一 0NU发送的上行数据。 优选地, 0LT检测到上行数据存在异常包括: 在 0LT已为第一 0NU分配第一物 理通道的情况下, 0LT无法全部解析第一 0NU发送的上行数据,并且在指示第一 0NU 停止传输上行数据之后, 仍然在第一物理通道中接收到上行数据。 优选地, 0LT检测到上行数据存在异常包括: 在 0LT已为第一 0NU分配第一物 理通道的情况下, 0LT无法全部解析第一 0NU发送的上行数据, 并且 0LT在第一物 理通道中接收到的上行数据的光功率值增大或者 0LT 在第一物理通道中接收到的上 行数据的光功率值发生跳变。 优选地, 0LT检测到上行数据存在异常包括: 在 0LT已为第一 0NU分配第一物 理通道并且已为第二 0NU分配第二物理通道的情况下, 0LT未收到来自第一 0NU的 上行数据, 并且 0LT不能全部解析第二 0NU发送的上行数据。 优选地, 0LT检测到上行数据存在异常包括: 在 0LT已为第一 0NU分配第一物 理通道的情况下, 0LT在第一物理通道中未收到来自第一 0NU的上行数据,并且 0LT 在未分配的第二物理通道上接收到上行数据。 优选地, 0LT检测到上行数据存在异常包括: 在 0LT已为第一 0NU分配第一物 理通道的情况下, 0LT检测到第一 0NU的第一物理通道存在偏移。 优选地, 在 0LT指示一个或多个 0NU更换物理通道之前, 该方法还包括: 0LT 获取用于容纳一个或多个 0NU的其它 0LT 的信息; 0LT根据信息, 将一个或多个 0NU切换到其它 0LT。 优选地, 0LT根据信息, 将一个或多个 0NU切换到其它 0LT包括: 在信息中包 含其它 0LT 的用于发送下行数据的下行波长值和用于接收上行数据的上行波长值的 情况下, 0LT命令一个或多个 0NU的将其下行波长调整为该下行波长值并命令一个 或多个 0NU将其上行波长调整为该上行波长值。 优选地, 在 0LT指示一个或多个 0NU更换物理通道之后, 该方法还包括: 0LT 检测到上行数据不存在异常; 0LT通知其它 0LT将一个或多个 0NU切换回到自身处。 优选地, 在 0LT指示一个或多个 0NU停止传输上行数据和 /或指示一个或多个 0NU更换物理通道之后, 该方法还包括: 确定一个或多个 0NU中的导致上行数据存 在异常的异常 0NU。
优选地, 在确定一个或多个 0NU中的导致上行数据存在异常的异常 ONU之后, 该方法还包括: 记录异常 ONU; 阻止异常 ONU进入工作状态。 优选地, OLT指示一个或多个 ONU停止传输上行数据和 /或指示一个或多个 ONU 更换物理通道包括: OLT将停止传输上行数据的指示和 /或更换物理通道的指示承载在 管理通道发送。 优选地, OLT指示一个或多个 ONU停止传输上行数据和 /或指示一个或多个 ONU 更换物理通道包括: OLT将停止传输上行数据的指示和 /或更换物理通道的指示完全加 密或者部分加密。 优选地, 上述物理通道包括以下之一: 波长、 子载波、 时隙。 为了实现上述目的, 根据本发明的另一个方面, 提供了一种上行数据异常处理装 置, 该上行数据异常处理装置可以应用于 OLT。 根据本发明的上行数据异常处理装置包括: 检测模块, 设置为检测上行数据存在 异常; 指示模块, 设置为指示一个或多个 ONU停止传输上行数据和 /或指示一个或多 个 ONU更换物理通道。 本发明提供了停止 ONU传输上行数据和 /或更换 ONU物理通道的措施, 从而可 以避免对 ONU正常业务传输的影响, 并保证网络服务质量。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据相关技术的 PON系统的拓扑结构图; 图 2是根据相关技术的 XG-PON中的分配结构图; 图 3是根据本发明实施例的上行数据异常处理方法的流程图; 图 4a是根据本发明实施例十的混合 PON系统的拓扑结构图一; 图 4b是根据本发明实施例十的混合 PON系统的拓扑结构图二; 图 5是根据本发明另一实施例的混合 PON系统的拓扑结构图;
图 6是根据本发明实施例的上行数据异常处理装置的结构框图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 本发明实施例提供了一种上行数据异常处理方法。 图 3是根据本发明实施例的上 行数据异常处理方法的流程图, 包括如下的步骤 S302至步骤 S304。 步骤 S302, OLT检测到上行数据存在异常。 步骤 S304, OLT指示一个或多个 ONU停止传输上行数据和 /或指示一个或多个 ONU更换物理通道。 相关技术中存在多种导致 ONU的上行数据存在异常的情况,这样会影响 ONU的 正常业务的传输, 降低网络的服务质量。 本发明实施例提供了停止 ONU传输上行数 据和 /或更换 ONU物理通道的措施, 从而可以避免对 ONU正常业务传输的影响, 并 保证网络服务质量。 本发明实施例还具体提供了一种上行数据异常的情况及其解决方案, 即, 如果在 OLT已为第一 ONU分配第一物理通道的情况下, OLT在第一物理通道中接收到来自 非第一 ONU发送的上行数据, 则 OLT指示第一 ONU和 /或发送上行数据的 ONU停 止传输上行数据。 此后, OLT还可以指示第一 ONU恢复传输上行数据。 进一步地, OLT检测到上行数据存在异常包括以下 6种方式: 方式一: 在 OLT已为第一 ONU分配第一物理通道的情况下, OLT无法全部解析 第一 ONU发送的上行数据。 方式二: 在 OLT已为第一 ONU分配第一物理通道的情况下, OLT无法全部解析 第一 ONU发送的上行数据, 并且在指示第一 ONU停止传输上行数据之后, 仍然在第 一物理通道中接收到上行数据。 方式三: 在 OLT已为第一 ONU分配第一物理通道的情况下, 0LT无法全部解析 第一 ONU发送的上行数据, 并且 0LT在第一物理通道中接收到的上行数据的光功率 值增大或者 0LT在第一物理通道中接收到的上行数据的发生跳变。
方式四: 在 OLT已为第一 0NU分配第一物理通道并且已为第二 0NU分配第二 物理通道的情况下, 0LT未收到来自第一 0NU的上行数据, 并且 0LT不能全部解析 第二 0NU发送的上行数据。 方式五: 在 0LT已为第一 0NU分配第一物理通道的情况下, 0LT在第一物理通 道中未收到来自第一 0NU的上行数据, 并且 0LT在未分配的第二物理通道上接收到 上行数据。 方式六: 在 0LT 已为第一 0NU分配第一物理通道的情况下, 0LT检测到第一 0NU的第一物理通道存在偏移。 优选地, 在 0LT指示一个或多个 0NU更换物理通道之前, 0LT获取用于容纳一 个或多个 0NU的其它 0LT的信息; 0LT根据信息, 将一个或多个 0NU切换到其它 0LT。 具体地, 0LT根据信息, 将一个或多个 0NU切换到其它 0LT包括: 在信息中 包含其它 0LT 的用于发送下行数据的下行波长值和用于接收上行数据的上行波长值 的情况下, 0LT命令一个或多个 0NU将其下行波长调整为该下行波长值并命令一个 或多个 0NU将其上行波长调整为该上行波长值。 优选地, 在 0LT指示一个或多个 0NU更换物理通道之后, 0LT检测到上行数据 不存在异常; 0LT通知其它 0LT将一个或多个 0NU切换回到自身处。 优选地, 在 0LT指示一个或多个 0NU停止传输上行数据和 /或指示一个或多个 0NU更换物理通道之后, 确定一个或多个 0NU 中的导致上行数据存在异常的异常
优选地, 在确定一个或多个 0NU中的导致上行数据存在异常的异常 0NU之后, 记录异常 0NU; 阻止异常 0NU进入工作状态。 优选地, 0LT指示一个或多个 0NU停止传输上行数据和 /或指示一个或多个 0NU 更换物理通道包括: 0LT将停止传输上行数据的指示和 /或更换物理通道的指示承载在 管理通道发送。 优选地, 0LT指示一个或多个 0NU停止传输上行数据和 /或指示一个或多个 0NU 更换物理通道包括: 0LT将停止传输上行数据的指示和 /或更换物理通道的指示完全加 密或者部分加密。 优选地, 上述物理通道包括以下之一: 波长、 子载波、 时隙。
下面将结合实例对本发明实施例的实现过程进行详细描述。 实施例一 (WDM系统, 命令更换波长)
OLT给连接到 PON系统中的每个 ONU分配一个用于接收下行信号的下行波长和 用于发送上行数据的上行波长, ONU收到 OLT发送的上述信息后, 将自己的激光器 的发光波长调节为上述上行波长,并将自己的接收机的接收波长调节为上述下行波长。 OLT给每个 ONU分配的上行波长都不相同。 当 OLT发现上行数据发生异常时, OLT和 ONU采用下述步骤恢复上行通信: 步骤 1 : 当对应第 n波长的 ONU没有发送上行数据, 且 OLT检测到携带第 m波 长对应的 ONU的身份信息 (例如 ONU标识信息、 ONU序列号、 ONU逻辑链路标识 或者 ONU媒质接入控制地址信息等) 的 ONU采用第 n波长发送上行数据时; 或者 OLT未收到对应第 m波长的 ONU发送的上行数据,且 OLT不能正常解析对应第 n波 长的 ONU发送的上行数据;或者 OLT未收到对应第 m波长的 ONU发送的上行数据, 且 OLT在未分配的波长上收到携带对应第 m波长的 ONU的身份信息的 ONU发送的 上行数据, 或者如果 ONU不能正常解析对应第 n波长的 ONU发送的上行数据, 且 OLT命令所述对应第 n波长的 ONU停止发送上行数据后, OLT依然收到所述波长上 的上行数据,或者 OLT不能正确解析对应第 n波长的 ONU发送的上行数据且 OLT收 到的所述第 n个波长上的光功率值增大或者光功率值发生跳变时,则 OLT给对应第 m 波长的 ONU 发送表 1 所示的物理层操作管理维护 (Physical layer Operations, Administration and Maintenance, 简称 PLOAM ) 消息, 如表 1 所示, Assign_ONU_Wavelength消息的第一到第二字节为 ONU-ID的值, 表示该消息发送给 ONU-ID 值为 ONU-ID1 的 ONU; 第三字节的内容表示该 PLOAM 消息的类型为 Assign_ONU_Wavelength消息的结构信息类型;第四字节为该 PLAOM消息的序列号; 第五到第四十字节的内容为 OLT分配给 ONU的上行波长值 (在其他的实施例中, 第 五到第四十字节的内容为 OLT分配给 ONU的上行波长值和下行波长值),第四十一字 节到第 四十八字节为 消息完整性检查的消息验证码 。 OLT 通过 Assign_ONU_Wavelength消息命令第 m个 ONU将自己的激光器的发光波长调节为 OLT 分配给该 ONU 的上行波长 (在其他的实施例中 , OLT 通过 Assign_ONU_Wavelength消息命令第 m个 ONU将自己的激光器的发光波长调节为 OLT分配给该 ONU的上行波长, 将自己的接收器的接收波长调节为 OLT分配给该 ONU的下行波长)。
步骤 2:对应第 m波长的 ONU收到 OLT发送的 Assign_ONU_Wavelength消息后, 将自己的激光器的发光波长调节为 Assign_ONU_Wavelength消息中 OLT分配的上行波 长 (在其他的实施例中, ONU收到 OLT发送的 Assign_ONU_Wavelength消息后, 将 自己的激光器的发光波长调节为 Assign_ONU_Wavelength消息中 OLT分配的上行波 长, 将自己的接收器的接收波长调节为 OLT分配给该 ONU的下行波长)。 表 1 Assign_ONU_Wavelength消息的结构表
OLT检测上述对应第 m波长的 ONU是否完成上行波长的调节 (在其他的实施例 OLT也可以检查对应第 m波长的 ONU是否完成上行波长和下行波长的调节),如果上 述 ONU完成所述的波长调节, OLT检测上行数据是否恢复正常, 如果上行数据恢复 正常, OLT和 ONU建立正常通信。 如果 OLT未收到所述对应第 m波长的 ONU采用 m波长发送的上行数据, 且收到对应第 m波长的 ONU继续使用其他波长发送上行数 据,则 OLT判断所述对应第 m波长的 ONU为异常 ONU。OLT处理定位到的异常 ONU (处理行为可以为 OLT采用单播或者广播消息命令异常 ONU关闭自己的激光器或者 命令异常 ONU 改变自己激光器的发光波长和 /或下行波长或者 OLT 断开连接异常 ONU的分支光纤)。 本实施例中的上行波长和下行波长可以相同也可以不同。 实施例二 如果 OLT不能正确解析对应第 n个波长的 ONU发送的上行数据时, OLT和 ONU 采用下述部分或者全部主要步骤或者全部步骤中的部分内容恢复上行通信: 步骤 1 : OLT且命令第 n个 ONU停止发送上行数据后, 如果上行数据恢复正常, 则 OLT判断所述 ONU为异常 ONU,跳到步骤 5; 则如果 OLT继续收到对应第 n个波 长的上行数据, 且上行数据中携带了 ONU的身份信息, OLT定位所述带了身份信息 ONU为异常 ONU, 如果该 ONU的身份信息不是对应第 n个波长的 ONU, 则 OLT命
令对应第 n个波长的 ONU恢复上行数据的传输, 并跳到步骤 5, 如果 OLT继续收到 对应第 n个波长的上行数据, 且上行数据不能正常解析则跳到步骤 2。 步骤 2: OLT通过 Assign_ONU_Wavelength消息命令对应第 n波长的 ONU将自 己的激光器的发光波长调节为 OLT分配给该 ONU的上行波长 (在其他的实施例中, OLT通过 Assign_ONU_Wavelength消息命令对应第 n波长的 ONU将自己的激光器的 发光波长调节为 OLT分配给该 ONU的上行波长, 将自己的接收器的接收波长调节为 OLT分配给该 ONU的下行波长)。 步骤 3 : 上述 ONU收到 OLT发送的 Assign_ONU_Wavelength消息后, 将自己的 激光器的发光波长调节为 Assign_ONU_Wavdength消息中 OLT分配的上行波长(在其 他的实施例中, ONU收到 OLT发送的 Assign_ONU_Wavelength消息后, 将自己的激 光器的发光波长调节为 Assign_ONU_Wavelength消息中 OLT分配的上行波长,将自己 的接收器的接收波长调节为 OLT分配给该 ONU的下行波长)。 步骤 4: OLT检测上述 ONU是否采用新分配的波长发送上行数据, 如果 OLT未 收到上述 ONU采用新分配的波长发送的上行数据, 且 OLT依然收到采用第 n波长发 送的上行数据, 则 OLT判断该 ONU为异常 ONU, 跳到步骤 5 ; 如果 OLT收到上述 ONU采用新分配的波长发送的上行数据, 且 OLT依然收到采用第 n波长发送的上行 数据, 则 OLT和上述采用新波长的 ONU恢复了上行通信, 采用第 n波长发送上行数 据中如果携带了 ONU的身份信息, OLT定位所述带了身份信息 ONU为异常 ONU, 跳到步骤 5, 如果 OLT依然不能正常解析采用第 n波长发送的上行数据, 则 OLT将异 常 ONU的范围确定为没有收到发送上行数据的 ONU和发送的上行数据不能被 OLT 正常解析的 O ;。 步骤 5 : OLT处理定位到的异常 ONU (处理行为可以为 OLT采用单播或者广播 消息命令异常 ONU关闭自己的激光器或者命令异常 ONU改变自己激光器的发光波长 和 /或下行波长或者 OLT断开连接异常 ONU的分支光纤); 或者 OLT继续定位异常 ONU, 在 OLT解决了异常 ONU的问题后, OLT可以选择命令所述步骤 4中采用新波 长的 ONU恢复到 OLT初始为其分配的波长 n (波长 n的概念包含上行波长和 /或下行 波长)。 在本实施例中 OLT为 ONU分配的新波长可以为分配给其他 ONU但是暂未使用 的波长, 或者暂未分配的波长, 或者备用波长。 在本实施例中 OLT可以通过 PLOAM消息给 ONU发送表 1所示的分配波长的信 息,也可以通过 ONU管理控制接口(ONU management and control interface,简称 OMCI)
消息或、 扩展操作管理维护 (Extended Operations, Administration and Maintenance, 简 称 eOAM) 消息或者其他新定义的消息给 ONU发送分配波长的信息。 在本实施例中, OLT未对发送给 ONU的 Assign_ONU_Wavelength消息进行加密, 在其他的实施例中也可以采用 OLT对 Assign_ONU_Wavelength消息中的 Data域进行 加密,加密密钥可以为 OLT和 ONU预先协商好存储在本地的,或者 OLT发送给 ONU 的密钥, 或者 ONU发送给 OLT的密钥, 或者 OLT和 ONU按照事先预定好的算法在 本地独立计算得到的密钥, 或者为标准定义的方法得到的密钥。 ONU收到 OLT发送 的加密的 Assign_ONU_Wavelength消息后, 对 Assign_ONU_Wavelength中的 Data域 进行解密后获得 OLT 分配给自己的波长, 并将自己的激光器的发光波长调节为 Assign_ONU_Wavelength消息中 OLT分配的上行波长。第 n个 ONU和 OLT使用新的 上行波长进行上行数据的发送和接收, 恢复了第 n个 ONU的上行数据的传输。 在其 他的实施例中也可以从采用 OLT对 Assign_ONU_Wavelength消息中包含 Data域的部 分进行加密, 或者对除 ONU-ID 部分以外的其他内容进行加密, 或者对整个 Assign_ONU_Wavelength 消 息 进 行 加 密 。 在 本 实 施 例 中 OLT 通 过 Assign_ONU_Wavdength消息命令第 n个 ONU将自己的激光器的发光波长调节为 OLT 分配给该 ONU 的上行波长, 在其他实施例中也可以采用 OLT 通过 Assign_ONU_Wavdength消息命令第 n个 ONU将自己的激光器的发光波长调节为 OLT 分配给该 ONU的上行波长, 并将接收波长调节为 OLT分配给该 ONU的下行波长, 此种情况下, Assign_ONU_Wavelength消息中的 Data域的内容为 OLT分配给 ONU的 上行波长和下行波长值, 或者 OLT给 ONU发送两个消息分别命令 ONU调整上行波 长和下行波长值。 本实施例中的上行波长和下行波长可以相同也可以不同。 实施例三 (OFDM系统, 命令更换子载波)
OLT给连接到 PON系统中的每个 ONU分配一个或者多个用于传输上行数据和解 调下行数据的子载波或者子载波组, 每个 ONU之间的子载波互不相同, 或者每个子 载波组包含的子载波互不相同, 每个子载波组保护的子载波数可以相同也可以不同。 在 OLT侧, OLT将发送给每个 ONU的数据分别调制到对应于每个 ONU的子载波上 发送给对应的 ONU, 并将接收到的每个 ONU的数据利用对应于该 ONU的子载波进 行解调。 当 OLT检测到对应第 m个子载波(或者子载波组)的 ONU采用对应第 n个 ONU 的子载波 (或者子载波组) 发送上行数据时, 如果此时第 n个 ONU没有发送上行数
据, 且第 m个 ONU发送的上行数据中携带了自身的身份信息 (例如 ONU标识信息、 ONU序列号、 ONU逻辑链路标识或者 ONU媒质接入控制地址信息等); 或者 OLT未 收到子载波为 m的 ONU发送的上行数据, 且 OLT不能正常解析子载波为 n的 ONU 发送的上行数据; 或者 OLT未收到波长为 m的 ONU发送的上行数据, 且 OLT在未 分配的子载波上收到上述 ONU发送的上行数据时, 则 OLT给第 m个 ONU发送表 1 所示的 PLOAM消息, 如表 1所示, Assign_ONU_sub-Carrier消息的第一到第二字节 为 ONU-ID的值, 表示该消息发送给 ONU-ID值为 ONU-ID1的 ONU; 第三字节的内 容表示该 PLOAM消息的类型为 Assign_ONU_sub-Carrier消息的结构信息类型; 第四 字节为该 PLAOM消息的序列号; 第五到第四十字节的内容为 OLT分配给 ONU的子 载波(或者子载波组),第四十一字节到第四十八字节为消息完整性检查的消息验证码。 OLT通过 Assign_ONU_sub-Carrier消息命令第 m个 ONU将自己的子载波调节为 OLT 分配给该 ONU 的子载波 (或者子载波组)。 第 m 个 ONU 收到 OLT 发送的 Assign_ONU_Wavelength消息后, 将自己的子载波调节为 Assign_ONU_Wavelength消 息中 OLT分配的子载波。 表 2 Assign_ONU_sub-Carrier消息的结构表
如果 OLT不能正确解析第 n个 ONU发送的上行数据时, OLT和 ONU采用下述 主要步骤恢复上行通讯: 步骤 1: OLT通过 Assign_ONU_sub-Carrier消息命令第 n个 ONU将自己的子载波 调节为 OLT分配给该 ONU的子载波。 步骤 2: 第 n个 ONU收到 OLT发送的 Assign_ONU_sub-Carrier消息后, 将自己 的子载波调节为 Assign_ONU_sub-Carrier消息中 OLT分配的子载波。 经过上述两个步骤后, 第 n个 ONU和 OLT使用新的子载波进行上行数据的发送 和接收, 恢复了第 n个 ONU的上行数据的传输。
在本实施例中 OLT可以通过 PLOAM消息给 ONU发送表 2所示的分配子载波的 信息, 也可以通过 ONU管理控制接口(ONU management and control interface, 简称 OMCI) 消息、扩展操作管理维护(Extended Operations, Administration and Maintenance, 简称 eOAM) 消息或者其他新定义的消息给 ONU发送分配子载波的信息。 在本实施例中, OLT未对发送给 ONU的 Assign_ONU_sub-Carrier消息进行加密, 在其他的实施例中也可以采用 OLT对 Assign_ONU_sub-Carrier消息中的 Data域进行 加密,加密密钥可以为 OLT和 ONU预先协商好存储在本地的,或者 OLT发送给 ONU 的密钥, 或者 ONU发送给 OLT的密钥, 或者 OLT和 ONU按照事先预定好的算法在 本地独立计算得到的密钥, 或者为标准定义的方法得到的密钥。 ONU收到 OLT发送 的加密的 Assign_ONU_sub-Carrier消息后,对 Assign_ONU_sub-Carrier中的 Data域进 行解密后获得 OLT 分配给自己的子载波, 并将自己的发送上行数据的子载波调节为 Assign_ONU_sub-Carrier消息中 OLT分配的子载波。 第 n个 ONU和 OLT使用新的子 载波进行上行数据的发送和接收, 恢复了第 n个 ONU的上行数据的传输。 在其他的 实施例中也可以从采用 OLT对 Assign_ONU_sub-Carrier消息中包含 Data域的部分进 行加密, 或者对除 ONU-ID 部分以外的其他内容进行加密, 或者对整个 Assign_ONU_sub-Carrier消息进行加密。 本实施例中的发送数据的子载波和接收数据的子载波可以相同也可以不同。 实施例四 (OFDM系统, 命令更换子载波)
OLT给连接到 PON系统中的每个 ONU分配一个或者多个用于接收下行数据和发 送上行数据的子载波 (或者子载波组), ONU收到 OLT发送的上述信息后, 利用上述 子载波 (或者子载波组) 发送数据和接受数据。 OLT给每个 ONU分配的子载波 (或 者子载波组) 互不相同。 当 OLT发现上行数据发生异常时, OLT和 ONU采用下述步骤恢复上行通信: 步骤 1 : 当对应第 n子载波(或者子载波组) 的 ONU没有发送上行数据, 且 OLT 检测到携带第 m子载波对应的 ONU的身份信息(例如 ONU标识信息、 ONU序列号、 ONU逻辑链路标识或者 ONU媒质接入控制地址信息等) 的 ONU采用第 n子载波发 送上行数据时; 或者 OLT未收到对应第 m子载波的 ONU发送的上行数据, 且 OLT 不能正常解析对应第 n子载波的 ONU发送的上行数据; 或者 OLT未收到对应第 m子 载波的 ONU发送的上行数据, 且 OLT在未分配的子载波上收到携带对应第 m子载波 的 ONU的身份信息的 ONU发送的上行数据, 或者如果 OLT未收到对应第 m子载波 的 ONU发送的上行数据, 且 OLT不能正常解析对应第 n子载波的 ONU发送的上行
数据, 且 OLT命令所述对应第 n子载波的 ONU停止发送上行数据后, OLT依然收到 所述子载波上的上行数据,或者 OLT未收到对应第 m子载波的 ONU发送的上行数据, 且 OLT不能正确解析对应第 n个子载波 ONU发送的上行数据且 OLT收到的所述第 n 个子载波上的光功率值增大或者光功率值发生跳变时, 则 OLT给对应第 m的 ONU发 送表 2 所示的物理层操作管理维护 ( Physical layer Operations, Administration and Maintenance, 简称为 PLOAM) 消息, 如表 1所示, Assign_ONU_Wavelength消息的 第一到第二字节为 ONU-ID的值,表示该消息发送给 ONU-ID值为 ONU-ID1的 ONU; 第三字节的内容表示该 PLOAM消息的类型为 Assign_ONU_sub-Carrier消息的结构信 息类型; 第四字节为该 PLAOM消息的序列号; 第五到第四十字节的内容为 OLT分配 给 ONU 的子载波, 第四十一字节到第四十八字节为消息完整性检查的消息验证码。 OLT通过 Assign_ONU_sub-Carrier消息命令第 m个 ONU将自己的发送数据和接收数 据的子载波调节为 OLT分配给该 ONU的子载波 (或者子载波组)。 步骤 2: 对应第 m子载波的 ONU收到 OLT发送的 Assign_ONU_sub-Carrier消息 后, 将自己的子载波(或者子载波组)调节为 Assign_ONU_sub-Carrier消息中 OLT分 配的子载波 (或者子载波组)。
OLT检测上述对应第 m子载波的 ONU是否完成子载波的调节,如果 OLT收到上 述 ONU利用步骤 1中分配的子载波发送的上行数据, 则 OLT检测上行数据是否恢复 正常, 如果上行数据恢复正常, OLT和 ONU建立正常通信。 如果 OLT未收到所述对 应第 m子载波的 ONU采用所述新分配的子载波发送的上行数据, 且收到对应第 m子 载波的 ONU继续使用其他子载波发送上行数据, 则 OLT判断所述对应第 m子载波的 ONU为异常 O ;。 OLT处理定位到的异常 ONU (处理行为可以为 OLT采用单播或 者广播消息命令异常 ONU关闭自己的激光器或者命令异常 ONU改变自己的子载波或 者 OLT断开连接异常 ONU的分支光纤) 本实施例中的发送数据的子载波和接收数据的子载波可以相同也可以不同。 实施例五 (OFDM) 如果 OLT不能正确解析对应第 n个子载波的 ONU发送的上行数据时, OLT和
ONU采用下述部分或者全部主要步骤或者全部步骤中部分内容恢复上行通信: 步骤 1 : OLT命令对应第 n个子载波的 ONU停止发送上行数据后,如果上行数据 恢复正常, 则 OLT判断所述 ONU为异常 ONU, 跳到步骤 5 ; 如果 OLT继续收到对应 第 n个子载波的上行数据, 且上行数据中携带了 ONU的身份信息, OLT定位所述带 了身份信息 ONU为异常 ONU, 如果该 ONU的身份信息不是对应第 n个子载波的
ONU, 则 OLT命令对应第 n个子载波的 ONU恢复上行数据的传输, 并跳到步骤 5, 如果 OLT继续收到对应第 n个子载波的上行数据,且上行数据不能正常解析则跳到步 骤 2。 步骤 2: OLT通过 Assign_ONU_sub-Carrier消息命令对应第 n子载波的 ONU将自 己的子载波调节为 OLT分配给该 ONU的子载波。 步骤 3 : 上述 ONU收到 OLT发送的 Assign_ONU_sub-Carrier消息后, 将自己的 子载波调节为 Assign_ONU_Wavelength消息中 OLT分配的子载波。 步骤 4: OLT检测上述 ONU是否采用新分配的子载波发送上行数据, 如果 OLT 未收到上述 ONU采用新分配的子载波发送的上行数据, 且 OLT依然收到采用第 n子 载波发送的上行数据, 则 OLT判断该 ONU为异常 ONU, 跳到步骤 5 ; 如果 OLT收到 上述 ONU采用新分配的子载波发送的上行数据, 且 OLT依然收到采用第 n子载波发 送的上行数据, 则 OLT和上述采用新子载波的 ONU恢复了上行通信, 采用第 n子载 波发送上行数据中如果携带了 ONU的身份信息, OLT定位所述带了身份信息 ONU为 异常 ONU,跳到步骤 5,如果 OLT依然不能正常解析采用第 n子载波发送的上行数据, 则 OLT将异常 ONU的范围确定为没有收到发送上行数据的 ONU和发送的上行数据 不能被 OLT正常解析的 O ;。 步骤 5 : OLT处理定位到的异常 ONU (处理行为可以为 OLT采用单播或者广播 消息命令异常 ONU关闭自己的激光器或者命令异常 ONU改变自己激光器的发光波长 和 /或下行波长或者 OLT 断开连接异常 ONU 的分支光纤) 或者 OLT 继续定位异常 ONU, 在 OLT解决了异常 ONU的问题后, OLT可以选择命令所述步骤 4中采用新子 载波的 ONU恢复到 OLT初始为其分配的子载波 n。 在本实施例中 OLT为 ONU分配的新子载波可以为分配给其他 ONU但是暂未使 用的子载波, 或者暂未分配的子载波, 或者备用子载波。 在本实施例中 OLT可以通过 PLOAM消息给 ONU发送表 2所示的分配子载波的 信息, 也可以通过 ONU管理控制接口(ONU management and control interface, 简称 OMCI) 消息或、 扩展操作管理维护 (Extended Operations, Administration and Maintenance, 简称为 eOAM) 消息或者其他新定义的消息给 ONU发送分配子载波的 信息。 在本实施例中, OLT未对发送给 ONU的 Assign_ONU_sub-Carrier消息进行加密, 在其他的实施例中也可以采用 OLT对 Assign_ONU_sub-Carrier消息中的 Data域进行
加密,加密密钥可以为 OLT和 ONU预先协商好存储在本地的,或者 OLT发送给 ONU 的密钥, 或者 ONU发送给 OLT的密钥, 或者 OLT和 ONU按照事先预定好的算法在 本地独立计算得到的密钥, 或者为标准定义的方法得到的密钥。 ONU收到 OLT发送 的加密的 Assign_ONU_sub-Carrier消息后,对 Assign_ONU_sub-Carrier中的 Data域进 行解密后获得 OLT 分配给自 己的子载波, 并将自 己的子载波调节为 Assign_ONU_sub-Carrier消息中 OLT分配的子载波。 第 n个 ONU和 OLT使用新的子 载波进行上行数据的发送和接收, 恢复了第 n个 ONU的上行数据的传输。 在其他的 实施例中也可以从采用 OLT对 Assign_ONU_sub-Carrier消息中包含 Data域的部分进 行加密, 或者对除 ONU-ID 部分以外的其他内容进行加密, 或者对整个 Assign_ONU_sub-Carrier消息进行加密。 本实施例中的发送数据的子载波和接收数据的子载波可以相同也可以不同。 实施例六 (WDM系统, 命令停止发送数据)
OLT给连接到 PON系统中的每个 ONU分配一个用于接收下行信号的下行波长和 用于发送上行数据的上行波长, ONU收到 OLT发送的上述信息后, 将自己的激光器 的发光波长调节为上述上行波长,并将自己的接收机的接收波长调节为上述下行波长。 OLT给每个 ONU分配的上行波长都不相同。 如果 OLT不能正确解析第 n个 ONU发送的上行数据时, 则 OLT和 ONU采用下 述主要步骤恢复上行通信: 步骤 1: OLT给 ONU发送表 3所示的 PLOAM消息,如表 3所示, Send upstream-data 消息的第一到第二字节为 ONU-ID的值, 表示该消息发送给 ONU-ID值为 ONU-ID1 的 ONU; 第三字节的内容表示该 PLOAM消息的类型为 Send_upstream-data消息的结 构消息类型; 第四字节为该 PLAOM消息的序列号; 第五字节的值为 1表示命令 ONU 恢复发送上行数据; 值为 0表示命令 ONU停止发送上行数据; 第六到第四十字节的 内容为保留域; 第四十一字节到第四十八字节为消息完整性检查的消息验证码。 OLT 所述 Send_upstream-data消息的第五字节的值写成 0命令第 n个 ONU停止发送上行数 据。 表 3 Send upstream-data消息的结构表
5 xxxxxxxx 值为 1表示命令 ONU恢复发送上行数据; 值为 0
表示命令 ONU停止发送上行数据
6-40 Data 保留
41-48 MIC 消息完整性检查 步骤 2: 第 n个 ONU收到 OLT发送的上述命令后停止发送上行数据。 步骤 3 : OLT检测第 n个上行波长的信号并判断当前采用第 n个上行波长发送数 据的 ONU的身份, 如果 OLT识别出所述 ONU的身份(例如所述当前 ONU发送的上 行数据中携带了自身的身份信息, 例如 ONU标识信息、 ONU序列号、 ONU逻辑链路 标识或者 ONU媒质接入控制地址信息等), OLT通过单播或者广播通道发送表 1所示 的 PLOAM消息命令 ONU将自身的波长调整到所述 ONU注册时 OLT给所述 ONU分 配的上行波长(在其他的实施例中, OLT通过 Assign_ONU_Wavelength消息命令对应 该 ONU将自身的上行波长和下行波长调整到所述 ONU注册时 OLT给所述 ONU分配 的上行波长和下行波长), 所述 PLOAM消息的 Data域的值为所述 ONU注册时 OLT 给所述 ONU分配的上行波长值(上行波长值和下行波长值),如果 OLT收到所述 ONU 使用 OLT分配的所述上行波长发送数据, 则跳到步骤 4, 如果 OLT判断所述 ONU继 续使用第 n个 ONU的上行波长发送数据,或者 OLT不能识别出当前采用第 n个 ONU 的上行波长发送数据的 ONU的身份, 如果有空余波长, 则跳到步骤 5; 如果没有空余 波长跳到 7。 步骤 4: OLT给第 n个 ONU发送 Send_upstream-data消息, 且将第五字节的值置 为 1命令第 n个 ONU恢复发送上行数据, 跳到步骤 6。 步骤 5: OLT通过 Assign_ONU_Wavelength消息命令第 n个 ONU将自己的激光 器的发光波长调节为 OLT分配给该 ONU的上行波长。
(在其他的实施例中, OLT通过 Assign_ONU_Wavelength消息命令第 n个 ONU 将自己上行波长和下行波长调节为 OLT分配给该 ONU的上行波长和下行波长), 第 n 个 ONU收到 OLT发送的 Assign_ONU_Wavelength消息后, 将自己的激光器的发光波 长调节为 Assign_ONU_Wavelength消息中 OLT分配的上行波长 (ONU将自己上行波 长和下行波长调节为 OLT分配给该 ONU的上行波长和下行波长); 如果 OLT收到所 述 ONU采用新分配的上行波长发送上行数据时跳到步骤 6, 否则跳到步骤 7。 步骤 6: 第 n个 ONU恢复发送上行数据的发送, 跳出此流程。
步骤 7: OLT确定异常 ONU的范围为没有发送上行数据的 ONU和 OLT不能正常 解析其发送的上行数据的 O ;。 在本实施例中 OLT可以通过 PLOAM消息给 ONU发送表 3所示的停止发送上行 数据和恢复上行数据传输的信息, 也可以通过 OMCI或者 eOAM消息给 ONU发送停 止发送上行数据和恢复上行数据传输的信息。 在本实施例中采用 OLT给 ONU发送 Send_upstream-data消息命令 ONU停止发送 上行数据, 也可以采用 OLT给所述 ONU发送名为 Deactivate_ONU-ID的 PLOAM消 息、 名为 Disable_Serial—Number的 PLOAM消息、 新建的 OMCI或者 eO AM消息或 者其他新定义的消息用于通知 ONU停止发送上行数据。 在本实施例中, OLT未对发 送给 ONU的 Send_upstream-data消息进行加密, 在其他的实施例中也可以采用 OLT 对 Assign_ONU_Wavelength消息中的第 5字节的域进行加密, 加密密钥可以为 OLT 和 ONU预先协商好存储在本地的, 或者 OLT发送给 ONU的密钥, 或者 ONU发送给 OLT的密钥, 或者 OLT和 ONU按照事先预定好的算法在本地独立计算得到的密钥, 或者为标准定义的方法得到的密钥。 ONU收到 OLT发送的加密的 Send_upstream-data 消息后, 对 Send_upstream-data中的第 5字节的域进行解密后获得 OLT是否允许自己 发送上行数据的命令, 第 n个 ONU按照 OLT的命令停止上行数据的发送或者恢复上 行数据的发送。 在其他的实施例中也可以从采用 OLT对 Send_upstream-data消息中包 含第 5字节的域的部分进行加密, 或者对除 ONU-ID部分以外的其他内容进行加密, 或者对整个 Send_upstream-data消息进行加密。 本实施例中的上行波长和下行波长可以相同也可以不同。 实施例七 (OFDM系统, 命令停止发送数据)
OLT给连接到 PON系统中的每个 ONU分配一个或者多个用于传输上行数据和解 调下行数据的子载波, 每个 ONU之间的子载波互不相同, 在 OLT侧, OLT将发送给 每个 ONU的数据分别调制到对应于每个 ONU的子载波上发送给对应的 ONU, 并将 接收到的每个 ONU的数据利用对应于该 ONU的子载波进行解调。 如果 OLT不能正确解析第 n个 ONU发送的上行数据时, 则 OLT和 ONU采用下 述主要步骤恢复上行通信: 步骤 1: OLT给 ONU发送表 3所示的 PLOAM消息,如表 3所示, Send upstream-data 消息的第一到第二字节为 ONU-ID的值, 表示该消息发送给 ONU-ID值为 ONU-ID1 的 ONU; 第三字节的内容表示该 PLOAM消息的类型为 Send_upstream-data消息的结
构信息类型; 第四字节为该 PLAOM消息的序列号; 第五字节的值为 1表示命令 ONU 恢复发送上行数据; 值为 0表示命令 ONU停止发送上行数据; 第六到第四十字节的 内容为保留域; 第四十一字节到第四十八字节为消息完整性检查的消息验证码。 OLT 所述 Send_upstream-data消息的第五字节的值写成 0命令第 n个 ONU停止发送上行数 据。 步骤 2: 第 n个 ONU收到 OLT发送的上述命令后停止发送上行数据。 步骤 3 : OLT判断当前采用第 n个 ONU的子载波发送数据的 ONU的身份, 如果 OLT识别出所述 ONU的身份(例如所述当前 ONU发送的上行数据中携带了自身的身 份信息, 例如 ONU标识信息、 ONU序列号、 ONU逻辑链路标识或者 ONU媒质接入 控制地址信息等), OLT通过表 2所示的 PLOAM消息命令 ONU将自身的子载波调整 到所述 ONU注册时 OLT给所述 ONU分配的子载波, 所述 PLOAM消息的 Data域的 值为所述 ONU注册时 OLT给所述 ONU分配的子载波, 如果 OLT判断所述 ONU不 再使用第 n个 ONU的子载波发送数据, 则跳到步骤 4, 如果 OLT判断所述 ONU继续 使用第 n个 ONU的子载波发送数据, 或者 OLT不能识别出当前采用第 n个 ONU的 子载波发送数据的 ONU的身份, 则跳到步骤 5。 步骤 4: OLT给第 n个 ONU发送 Send_upstream-data消息, 且将第五字节的值置 为 1命令第 n个 ONU恢复发送上行数据, 跳到步骤 6。 步骤 5: OLT通过 Assign_ONU_sub-Carrier消息命令第 n个 ONU将自己的子载波 调节为 OLT 分配给该 ONU 的子载波, 第 n 个 ONU 收到 OLT 发送的 Assign_ONU_sub-Carrier消息后, 将自己的子载波调节为 Assign_ONU_Wavelength消 息中 OLT分配的子载波。 步骤 6: 第 n个 ONU恢复发送上行数据的发送。 在本实施例中采用 OLT给 ONU发送 Send_upstream-data消息命令 ONU停止发送 上行数据, 也可以采用 OLT给所述 ONU发送名为 Deactivate_ONU-ID的 PLOAM消 息、 名为 Disable_Serial—Number的 PLOAM消息、 新建的 OMCI或者 eOAM消息或 者其他新定义的消息用于通知 ONU停止发送上行数据。 在本实施例中, OLT未对发送给 ONU的 Send_upstream-data消息进行加密, 在其 他的实施例中也可以采用 OLT对 Assign_ONU_Wavelength消息中的第 5字节的域进行 加密,加密密钥可以为 OLT和 ONU预先协商好存储在本地的,或者 OLT发送给 ONU 的密钥, 或者 ONU发送给 OLT的密钥, 或者 OLT和 ONU按照事先预定好的算法在
本地独立计算得到的密钥, 或者为标准定义的方法得到的密钥。 ONU收到 OLT发送 的加密的 Send_upstream-data消息后,对 Send_upstream-data中的第 5字节的域进行解 密后获得 OLT是否允许自己发送上行数据的命令,第 n个 ONU按照 OLT的命令停止 上行数据的发送或者恢复上行数据的发送。 在其他的实施例中也可以从采用 OLT 对 Send_upstream-data消息中包含第 5字节的域的部分进行加密,或者对除 ONU-ID部分 以外的其他内容进行加密, 或者对整个 Send_upstream-data消息进行加密。 本实施例中的发送数据的子载波和接收数据的子载波可以相同也可以不同。 实施例八 (OFDM系统, 命令停止发送数据)
OLT给连接到 PON系统中的每个 ONU分配一个或者多个子载波, ONU收到 OLT 发送的上述信息后, 将自己的子载波。 OLT给每个 ONU分配的子载波都不相同。 如果 OLT不能正确解析对应第 n个子载波的 ONU发送的上行数据时,则 OLT和 ONU采用下述主要步骤恢复上行通信: 步骤 1: OLT给 ONU发送表 3所示的 PLOAM消息,如表 3所示, Send upstream-data 消息的第一到第二字节为 ONU-ID的值, 表示该消息发送给 ONU-ID值为 ONU-ID1 的 ONU; 第三字节的内容表示该 PLOAM消息的类型为 Send_upstream-data消息的结 构信息类型; 第四字节为该 PLAOM消息的序列号; 第五字节的值为 1表示命令 ONU 恢复发送上行数据; 值为 0表示命令 ONU停止发送上行数据; 第六到第四十字节的 内容为保留域; 第四十一字节到第四十八字节为消息完整性检查的消息验证码。 OLT 所述 Send_upstream-data消息的第五字节的值写成 0命令第 n个 ONU停止发送上行数 据。 步骤 2: 第 n个 ONU收到 OLT发送的上述命令后停止发送上行数据。 步骤 3 : OLT检测第 n个子载波的信号并判断当前采用第 n个子载波发送数据的 ONU的身份, 如果 OLT识别出所述 ONU的身份 (例如所述当前 ONU发送的上行数 据中携带了自身的身份信息, 例如 ONU标识信息、 ONU序列号、 ONU逻辑链路标识 或者 ONU媒质接入控制地址信息等), OLT通过单播或者广播通道发送表 2所示的 PLOAM消息命令 ONU将自身的子载波调整到所述 ONU注册时 OLT给所述 ONU分 配的子载波, 所述 PLOAM消息的 Data域的值为所述 ONU注册时 OLT给所述 ONU 分配的子载波, 如果 OLT收到所述 ONU使用 OLT分配的所述子载波发送数据, 则跳 到步骤 4, 如果 OLT判断所述 ONU继续使用第 n个子载波发送数据, 或者 OLT不能
识别出当前采用第 n个子载波发送数据的 ONU的身份, 如果有空余子载波, 则跳到 步骤 5; 如果没有空余子载波跳到 7。 步骤 4: OLT给第 n个 ONU发送 Send_upstream-data消息, 且将第五字节的值置 为 1命令第 n个 ONU恢复发送上行数据, 跳到步骤 6。 步骤 5: OLT通过 Assign_ONU_sub-Carrier消息命令第 n个 ONU将自己的子载波 调节为 OLT 分配给该 ONU 的子载波, 第 n 个 ONU 收到 OLT 发送的 Assign_ONU_sub-Carrier消息后, 将自己的子载波调节为 Assign_ONU_sub-Carrier消 息中 OLT分配的子载波;如果 OLT收到所述 ONU采用新分配的子载波发送上行数据 时跳到步骤 6, 否则跳到步骤 7。 步骤 6: 第 n个 ONU恢复发送上行数据的发送, 跳出此流程。 步骤 7: OLT确定异常 ONU的范围为没有发送上行数据的 ONU和 OLT不能正常 解析其发送的上行数据的 O ;。 在本实施例中 OLT可以通过 PLOAM消息给 ONU发送表 3所示的停止发送上行 数据和恢复上行数据传输的信息, 也可以通过 OMCI或者 eOAM消息给 ONU发送停 止发送上行数据和恢复上行数据传输的信息。 在本实施例中采用 OLT给 ONU发送 Send_upstream-data消息命令 ONU停止发送 上行数据, 也可以采用 OLT给所述 ONU发送名为 Deactivate_ONU-ID的 PLOAM消 息、 名为 Disable_Serial—Number的 PLOAM消息、 新建的 OMCI或者 eO AM消息或 者其他新定义的消息用于通知 ONU停止发送上行数据。 在本实施例中, OLT未对发 送给 ONU的 Send_upstream-data消息进行加密, 在其他的实施例中也可以采用 OLT 对 Assign_ONU_Wavelength消息中的第 5字节的域进行加密, 加密密钥可以为 OLT 和 ONU预先协商好存储在本地的, 或者 OLT发送给 ONU的密钥, 或者 ONU发送给 OLT的密钥, 或者 OLT和 ONU按照事先预定好的算法在本地独立计算得到的密钥, 或者为标准定义的方法得到的密钥。 ONU收到 OLT发送的加密的 Send_upstream-data 消息后, 对 Send_upstream-data中的第 5字节的域进行解密后获得 OLT是否允许自己 发送上行数据的命令, 第 n个 ONU按照 OLT的命令停止上行数据的发送或者恢复上 行数据的发送。 在其他的实施例中也可以从采用 OLT对 Send_upstream-data消息中包 含第 5字节的域的部分进行加密, 或者对除 ONU-ID部分以外的其他内容进行加密, 或者对整个 Send_upstream-data消息进行加密。 本实施例中的发送数据的子载波和接收数据的子载波可以相同也可以不同。
实施例九 (TDM系统, 重新分配时隙并将命令加密)
OLT给连接到 PON系统中的每个 ONU分配用于传输上行数据的上行时隙, 每个 ONU的上行时隙互不相同。 当 OLT不能正常解析第 n个 ONU发送的上行数据时, 则 OLT给第 n个 ONU发 送图 2所示的带宽分配,并将对应所述带宽分配的分配结构中的 Start Time和 Grant Size 的内容进行了加密, 加密密钥为 OLT用于加密 GPON封装方法(GPON Encapsulation Method, 简称 GEM) 帧的密钥。 所述 ONU收到 OLT分配的所述带宽分配后, 利用 本地存储的 GEM的密钥解密所述带宽分配, 获得 OLT分配给自己的传输上行数据的 上行时隙, 并在所述上行时隙内发送上行数据, 恢复了所述 ONU的上行数据的传输。 在本实施例中 OLT可以通过 PLOAM消息给 ONU发送的分配子载波的信息, 也 可以通过 OMCI或者 eOAM消息给 ONU发送分配子载波的信息。 在本实施例中 OLT可以给 ONU发送 PLOAM消息通知 ONU当前的带宽分配的 内容已加密, 或者也可以通过 ONU 管理控制接口(ONU management and control interface, 简称 OMCI) 消息、 扩展操作管理维护 (Extended Operations, Administration and Maintenance,简称 eOAM)消息或者其他新定义的消息给 ONU发送当前带宽分配 已加密的信息。 在本实施例中 OLT对分配结构中的 Start Time和 Grant Size的内容进行了加密, 也可以对分配结构中的包括 Start Time和 Grant Size部分内容进行加密,也可以对分配 结构中除 Alloc-ID的所有内容进行加密, 也可以对整个分配结构进行加密。 实施例十 (混合 PON系统, 调整波长) 混合 PON系统的拓扑结构如图 4a和图 4b所示, 每个 OLT管理一组 ONU, 所述 一组 ONU用于发送上行数据的上行波长 (子载波) 相同, 并且接收下行数据的下行 波长(子载波)也相同, 所述一组 ONU中的不同 ONU通过时分复用的方式传输上行 数据。 不同 OLT的下行波长(子载波)不同, 不同 OLT管理的每组 ONU使用的上行 波长 (子载波) 也不同。 每个 ONU可以按照 OLT的命令调整用于接收下行信号的下 行波长 (子载波) 和用于发送上行数据的上行波长 (子载波, 上行子载波和下行子载 波可以相同也可以不同)。 每个 OLT处存储其他 OLT发送下行数据的下行波长值 (子载波) 和接收上行数 据的上行波长值(子载波)。每个 OLT给自己管理的一组 ONU按照时分复用的方式分
配上行带宽, 各个 ONU在 OLT分配给自己的上行带宽内发送数据。 当一个 OLT, 例 如 OLT1不能正常解析部分上行时隙或者所有上行时隙的上行数据时; 或者 OLT1不 能正常解析部分上行时隙或者所有上行时隙的上行数据, 且命令所述时隙的 ONU停 止发送上行数据后依然在所述时隙内收到上行数据; 或者 OLT1不能正常解析部分上 行时隙或者所有上行时隙的上行数据时, 且 OLT1收到的所述时隙上的光功率值增大 或者 OLT1收到的所述时隙上的光功率值发生跳变,则 OLT1和 ONU采取下述部分或 者全部步骤恢复上行通信: 步骤 1 OLT1与其他 OLT或者网管通信获得其他正常工作的 OLT信息。 步骤 2: OLT1给自己管理的一个 ONU发送表 4所示的 Assign_ONU_Wavelength ( Assign_ONU_sub-Carrier )消息, 所述消息中的 Data域的值为 OLT1分配给 ONU的 上行波长和下行波长值 (上行子载波和下行子载波), 所述 OLT1分配给 ONU的上行 波长和下行波长值 (上行子载波和下行子载波) 为图 4a和图 4b中所示的另一个正常 工作的 OLT, 例如 OLT2 (在其他的实施例中也可以是其他的 OLT, 例如 OLT3 )管理 的 ONU组对应的上行波长和下行波长值 (上行子载波和下行子载波)。 表 4 Assign_ONU_Wavelength ( Assign_ONU_sub-Carrier ) 消息的结构表
步骤 3 : 如果所述 ONU可以响应 OLT1的命令, 则所述 ONU收到 OLT1发送的 上述信息后, 将自己的激光器的发光波长 (发送数据的子载波) 调节为 OLT2管理的 ONU组对应的上行波长 (子载波), 并将自己的接收机的接收波长 (接收数据的子载 波)调节为 OLT2管理的 ONU组对应的下行波长(子载波), 所述 ONU和 OLT2按照 现有技术建立通信。 步骤 4: OLT1检测是否能正常解析上行数据, 如果上行数据恢复, 则 OLT1通知 OLT2下述信息: OLT2管理的 ONU组中存在异常 ONU, 并将异常 ONU的身份信息 通知 OLT2, 否则跳到步骤 1。
在上述步骤中如果 OLTl 给其管理的 ONU 组中的所有 ONU 都发送了 Assign_ONU_Wavelength ( Assign_ONU_sub-Carrier ) 消息后, OLT1 仍然收到上行数 据, 则 OLT1可以通过与网管或者其他 OLT通信获得从 OLT1处成功切换到其他 OLT 的 ONU信息, OLT1将上述信息与自身存储的所有 ONU的信息比较定位异常 ONU, 完成定位异常 ONU后, OLT1给所述异常 ONU发送关闭激光器或者关闭 ONU电源 的命令, 或者断开连接异常 ONU的光纤, 或者其他标准规定的解决异常 ONU的问题 的命令, 在 OLT1解决了异常 ONU的问题后, OLT1可以通知网管系统或者其他 OLT 将部分 ONU切换回 OLT1处。 系统中的某个 OLT收到网管系统或者其他 OLT在步骤 4的通知后, 检测上行数 据是否正常, 如果上行数据正常, 则 OLT拒绝所述携带异常 ONU身份信息的 ONU 的注册激活; 如果所述 OLT不能正常解析上行数据, 则 OLT给所述异常 ONU发送停 止发送上行数据或者关闭激光器的命令, 或者, OLT采取步骤 1到步骤 4的方法恢复 其管理的 ONU组的 ONU上行通信,或者 OLT将异常 ONU接入之前自己管理的所有 ONU的波长转移到其他 OLT处, 然后解决异常 ONU的问题, 解决方法可以为给所述 异常 ONU发送停止发送上行数据或者关闭激光器的命令,或者断开连接异常 ONU的 光纤等等。 在解决了异常 ONU的问题后, 所述 OLT可以通知网管系统或者其他 OLT 将部分 ONU切换回所述 OLT处。 在本实施例中 OLT1将自己管理的 ONU组的 ONU逐一切换到其他 OLT处,在其 他的实施例中也可以采用 OLT1 将自己管理的 ONU 分组, 每组包括一个或者多个 ONU, OLT将每组 ONU逐一切换到其他 OLT处, 每组的 ONU可以同时切换到其他 的 OLT上。在本实施例中 OLT1将自己管理的 ONU组的 ONU都切换到同一个正常工 作的 OLT处,在其他的实施例中也可以采取 OLT1将自己管理的 ONU组的 ONU切换 到不同的正常工作的 OLT处, 这样可以减少其他正常工作的 OLT管理的 ONU数量, 减小对其他 OLT管理的 ONU上行带宽的影响。 为进一步减小一个 OLT下出现异常 ONU时对整个 PON系统上行数据发送的影 响, 在其他的实施例中可以采取图 5的拓扑的结构, 系统中存在一个备用 OLT, 备用 OLT接收上行数据的上行波长和发送下行数据的下行波长与其他 OLT接收上行数据的 上行波长和发送下行数据的下行波长不同。 当某个 OLT, 例如 OLT1管理的 ONU中 出现异常 ONU时, OLT1可以选择按照上述方法将自己管理的 ONU切换到其他正常 工作的 OLT和 /或备用 OLT上。 在其他的实施例中, OLT和 /或网管系统处建立或者维护一张异常 ONU表, 当某 个 OLT检测出一个异常 ONU时, 该 OLT将异常 ONU的身份信息上报给网管系统,
由网管系统在本地建立并更新异常 ONU表, 或者 OLT在本地更新异常 ONU表, 每 个 OLT发现一个新连接到系统中的 ONU, 或者重新连接到系统中的 ONU, 在收到其 身份信息后, OLT根据异常 ONU表判断该 ONU是否为异常 ONU,如果该 ONU为异 常 ONU时, OLT不允许该 ONU进入工作状态, 如果该 ONU为正常 ONU时, OLT 和该 ONU按照现有技术建立通信。 在其他的实施例中, OLT1和 ONU也可以采取下述部分或者全部步骤恢复上行通 信: 步骤 1 : OLT1与其他 OLT或者网管通信获得其他正常工作的 OLT信息; 步骤 2: OLT1通知系统中正常工作的 OLT, 例如 OLT2 (在其他的实施例中也可 以是其他的 OLT,例如 OLT3 ,或者备用 OLT),下述信息: OLT1即将 ONU1转至 OLT2 处, 并将 ONU1的身份信息发送给 OLT2; 步骤 3 : OLT2收到 OLT1在步骤 2发送的信息后, 不允许 ONU1在 OLT2处进入 工作状态; 步骤 4 : OLT1 给 ONU1 发送表 4 所示的 Assign_ONU_Wavelength ( Assign_ONU_sub-Carrier )消息, 所述消息中的 Data域的值为 OLT1分配给 ONU的 上行波长和下行波长值 (上行子载波和下行子载波), 所述 OLT1分配给 ONU的上行 波长和下行波长值 (上行子载波和下行子载波) 为 OLT2 (在其他的实施例中也可以 是其他的 OLT, 例如 OLT3 ) 管理的 ONU组对应的上行波长和下行波长值; 步骤 5: 如果所述 ONU可以响应 OLT1的命令, 则所述 ONU收到 OLT1发送的 上述信息后, 将自己的激光器的发光波长 (发送数据的子载波) 调节为 OLT2管理的 ONU组对应的上行波长 (上行子载波), 并将自己的接收机的接收波长 (接收数据的 子载波) 调节为 OLT2管理的 ONU组对应的下行波长 (下行子载波), 所述 ONU等 待 OLT2的命令; 步骤 6: OLT1检测是否能正常解析上行数据, 如果上行数据没有恢复, 则 OLT1 通知 OLT2下述信息: ONU1为正常 ONU, OLT1跳到步骤 1, 否则 OLT1通知 OLT2 下述信息: ONU1为异常 ONU, 并将 ONU1的身份信息通知 OLT2.
OLT2收到 OLT1在步骤 4中发送的信息后, 如果 ONU1为正常 ONU, 则 OLT2 允许 ONU1进入工作状态, 否则 OLT拒绝 ONU1进入工作状态。
在上述步骤中如果 OLTl 给其管理的 ONU 组中的所有 ONU 都发送了 Assign_ONU_Wavelength ( Assign_ONU_sub-Carrier ) 消息后, OLT1 仍然收到上行数 据, 则 OLT1可以通过与网管或者其他 OLT通信获得从 OLT1处成功切换到其他 OLT 的 ONU信息, OLT1将上述信息与自身存储的所有 ONU的信息比较定位异常 ONU, 在 OLT1解决了异常 ONU的问题后, OLT1可以通知网管系统或者其他 OLT将部分 ONU切换回 OLT1处。 在本实施例中 OLT1将自己管理的 ONU组的 ONU逐一切换到其他 OLT处,在其 他的实施例中也可以采用 OLT1 将自己管理的 ONU 分组, 每组包括一个或者多个 ONU, OLT将每组 ONU逐一切换到其他 OLT处, 每组的 ONU可以同时切换到其他 的 OLT上。在本实施例中 OLT1将自己管理的 ONU组的 ONU都切换到同一个正常工 作的 OLT处,在其他的实施例中也可以采取 OLT1将自己管理的 ONU组的 ONU切换 到不同的正常工作的 OLT处, 这样可以减轻其他正常工作的 OLT管理的 ONU, 减小 对其他 OLT管理的 ONU上行带宽的影响。 为进一步减小一个 OLT下出现异常 ONU时对整个 PON系统上行数据发送的影 响, 在其他的实施例中可以采取图 5的拓扑的结构, 系统中存在一个备用 OLT, 备用 OLT接收上行数据的上行波长和发送下行数据的下行波长与其他 OLT接收上行数据的 上行波长和发送下行数据的下行波长不同。 当某个 OLT, 例如 OLT1管理的 ONU中 出现异常 ONU时, OLT1可以选择按照上述方法将自己管理的 ONU切换到其他正常 工作的 OLT和 /或备用 OLT上。 在本实施例中,在 OLT1将一个 ONU的上行波长和下行波长(上行和下行子载波) 调整至其他 OLT处后, OLT1通过自己管理的 ONU的上行数据是否恢复正常判断异 常 ONU的身份, 在其他的实施例中在 OLT1将一个 ONU的上行波长和下行波长 (上 行和下行子载波)调整至其他 OLT处后, OLT1也可以与 OLT2或者网管通信获得 OLT2 处的上行方向是否正常工作的信息, 如果 OLT2不能正常解析部分上行时隙或者整个 上行时隙的上行数据, 则 OLT1可以定位自己命令改变波长(子载波)的 ONU为异常 ONU, OLT1通过网管系统通知 OLT2或者直接通知 OLT2异常 ONU的身份信息, OLT2 收到上述信息后, OLT2可以直接处理异常 ONU或者给除了所述异常 ONU外的 OLT2 当前管理的所有其他的 ONU 发送表 4 所示的 Assign_ONU_Wavelength ( Assign_ONU_sub-Carrier ) 消息, 并在解决了异常 ONU的问题后, 再将上述 ONU 切换回来。 在本实施例中 OLT可以通过 PLOAM消息给 ONU发送表 1所示的分配波长 (子 载波)的信息,也可以通过 ONU管理控制接口(ONU management and control interface,
简称 OMCI) 消息或、 扩展操作管理维护 (Extended Operations, Administration and Maintenance, 简称 eOAM) 消息或者其他新定义的消息给 ONU发送分配波长 (子载 波) 的信息。 在本实施例中 , OLT 未对发送给 ONU 的 Assign_ONU_Wavelength ( Assign_ONU_sub-Carrier ) 消息进行加密, 在其他的实施例中也可以采用 OLT 对 Assign_ONU_Wavelength ( Assign_ONU_sub-Carrier )消息中的 Data域进行加密, 加密 密钥可以为 OLT和 ONU预先协商好存储在本地的, 或者 OLT发送给 ONU的密钥, 或者 ONU发送给 OLT的密钥, 或者 OLT和 ONU按照事先预定好的算法在本地独立 计算得到的密钥, 或者为标准定义的方法得到的密钥。 ONU收到 OLT发送的加密的 Assign_ONU_Wavelength ( Assign_ONU_sub-Carrier ) 消 息 后 , 对 Assign_ONU_Wavelength中的 Data域进行解密后获得 OLT分配给自己的波长 (子载 波 ), 并将 自 己 的激光器的发光波长调节为 Assign_ONU_Wavelength ( Assign_ONU_sub-Carrier ) 消息中 OLT分配的上行波长 (子载波)。 第 n个 ONU和 OLT使用新的上行波长 (子载波) 进行上行数据的发送和接收, 恢复了第 n个 ONU 的上行数据的传输。在其他的实施例中也可以从采用 OLT对 Assign_ONU_Wavelength ( Assign_ONU_sub-Carrier ) 消息中包含 Data域的部分进行加密, 或者对除 ONU-ID 部分 以外的其他内容进行加密, 或者对整个 Assign_ONU_Wavelength ( Assign_ONU_sub-Carrier ) 消息进行加密。 本实施例中的不同的 OLT可以是不同的 PON卡对应不同的 OLT、同一个 PON卡 的不同 PON口对应的不同的 OLT,或者同一个 PON口的不同波长对应的不同的 OLT。 本实施例中的发送数据的子载波和接收数据的子载波可以相同也可以不同。 本实施例中的上行波长和下行波长可以相同也可以不同。 本实施例的方法也可以用于 PON系统的保护倒换, 即当一个 OLT不能正常工作 时, 该 OLT下的 ONU可以全部更换工作波长, 如果全部 ONU更换后的工作波长相 同, 则所述全部 ONU跟其他的一个 OLT建立通信, 否则所述全部 ONU分别跟多个 OLT建立通信。其中, 其他的 OLT可以是图 5中其他处于工作状态的 OLT, 也可以是 备用 OLT。 要说明的是, 在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计 算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是在某些情况下, 可以 以不同于此处的顺序执行所示出或描述的步骤。
本发明实施例提供了一种上行数据异常处理装置, 该上行数据异常处理装置可以 用于实现上述上行数据异常处理方法。 图 6是根据本发明实施例的上行数据异常处理 装置的结构框图, 包括检测模块 62和指示模块 64。 检测模块 62, 设置为检测上行数据存在异常; 指示模块 64, 连接至检测模块 62, 设置为指示一个或多个 ONU停止传输上行数据和 /或指示一个或多个 ONU更换物理 通道。 需要说明的是, 装置实施例中描述的上行数据异常处理装置对应于上述的方法实 施例, 其具体的实现过程在方法实施例中已经进行过详细说明, 在此不再赘述。 综上所述,根据本发明的上述实施例,提供了一种上行数据异常处理方法及装置。 本发明实施例通过采取停止 ONU传输上行数据和 /或更换 ONU物理通道的措施, 解 决了相关技术中 ONU上行数据异常的情况,从而可以避免对 ONU正常业务传输的影 响, 并保证网络服务质量。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 或者将它们分别制作成各个集成电路模 块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明 不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
Claims
1. 一种上行数据异常处理方法, 包括:
光线路终端 OLT检测到上行数据存在异常;
所述 OLT指示一个或多个光网络单元 ONU停止传输所述上行数据和 /或指 示所述一个或多个 ONU更换物理通道。
2. 根据权利要求 1所述的方法, 其中, OLT检测到上行数据存在异常包括: 在所 述 OLT已为第一 ONU分配第一物理通道的情况下,所述 OLT在所述第一物理 通道中接收到来自非所述第一 ONU发送的上行数据。
3. 根据权利要求 2所述的方法, 其中, 所述 OLT指示一个或多个 ONU停止传输 所述上行数据和 /或指示所述一个或多个 ONU更换物理通道包括:所述 OLT指 示所述第一 ONU和 /或发送上行数据的 ONU停止传输所述上行数据。
4. 根据权利要求 3所述的方法, 其中, 在所述 OLT指示一个或多个 ONU停止传 输所述上行数据和 /或指示所述一个或多个 ONU更换物理通道之后, 还包括: 所述 OLT指示所述第一 ONU恢复传输上行数据。
5. 根据权利要求 1所述的方法, 其中, OLT检测到上行数据存在异常包括: 在所 述 OLT已为第一 ONU分配第一物理通道的情况下,所述 OLT无法全部解析所 述第一 ONU发送的上行数据。
6. 根据权利要求 1所述的方法, 其中, OLT检测到上行数据存在异常包括: 在所 述 OLT已为第一 ONU分配第一物理通道的情况下,所述 OLT无法全部解析所 述第一 ONU发送的上行数据,并且在指示所述第一 ONU停止传输所述上行数 据之后, 仍然在所述第一物理通道中接收到上行数据。
7. 根据权利要求 1所述的方法, 其中, OLT检测到上行数据存在异常包括: 在所 述 OLT已为第一 ONU分配第一物理通道的情况下,所述 OLT无法全部解析所 述第一 ONU发送的上行数据, 并且所述 OLT在所述第一物理通道中接收到的 上行数据的光功率值增大或者所述 OLT 在所述第一物理通道中接收到的上行 数据的的光功率值发生跳变。
8. 根据权利要求 1所述的方法, 其中, OLT检测到上行数据存在异常包括: 在所 述 OLT已为第一 ONU分配第一物理通道并且已为第二 ONU分配第二物理通 道的情况下, 所述 OLT未收到来自所述第一 ONU的上行数据, 并且所述 OLT 不能全部解析所述第二 ONU发送的上行数据。
9. 根据权利要求 1所述的方法, 其中, OLT检测到上行数据存在异常包括: 在所 述 OLT已为第一 ONU分配第一物理通道的情况下,所述 OLT在所述第一物理 通道中未收到来自所述第一 ONU的上行数据, 并且所述 OLT在未分配的第二 物理通道上接收到上行数据。
10. 根据权利要求 1所述的方法, 其中, OLT检测到上行数据存在异常包括: 在所 述 OLT已为第一 ONU分配第一物理通道的情况下,所述 OLT检测到所述第一 ONU的所述第一物理通道存在偏移。
11. 根据权利要求 1至 10中任一项所述的方法, 其中, 在所述 OLT指示所述一个 或多个 ONU更换物理通道之前, 还包括:
所述 OLT获取用于容纳所述一个或多个 ONU的其它 OLT的信息; 所述 OLT根据所述信息, 将所述一个或多个 ONU切换到所述其它 OLT。
12. 根据权利要求 11所述的方法, 其中, 所述 OLT根据所述信息, 将所述一个或 多个 ONU切换到所述其它 OLT包括:在所述信息中包含所述其它 OLT的用于 发送下行数据的下行波长值和用于接收上行数据的上行波长值的情况下, 所述 OLT命令所述一个或多个 ONU的将其下行波长调整为该下行波长值并命令所 述一个或多个 ONU将其上行波长调整为该上行波长值。
13. 根据权利要求 11所述的方法,其中,在所述 OLT指示所述一个或多个 ONU更 换物理通道之后, 还包括:
所述 OLT检测到上行数据不存在异常;
所述 OLT通知所述其它 OLT将所述一个或多个 ONU切换回到自身处。
14. 根据权利要求 1至 10中任一项所述的方法, 其中, 在所述 OLT指示一个或多 个 ONU停止传输所述上行数据和 /或指示所述一个或多个 ONU更换物理通道 之后, 还包括: 确定所述一个或多个 ONU中的导致所述上行数据存在异常的 异常 ONU。
15. 根据权利要求 14所述的方法, 其中, 在确定所述一个或多个 ONU中的导致所 述上行数据存在异常的异常 ONU之后, 还包括:
记录所述异常 ONU;
阻止所述异常 ONU进入工作状态。
16. 根据权利要求 1至 10中任一项所述的方法, 其中, 所述 OLT指示一个或多个 ONU停止传输所述上行数据和 /或指示所述一个或多个 ONU更换物理通道包 括: 所述 OLT将停止传输所述上行数据的指示和 /或更换物理通道的指示承载 在管理通道发送。
17. 根据权利要求 1至 10中任一项所述的方法, 其中, 所述 OLT指示一个或多个 ONU停止传输所述上行数据和 /或指示所述一个或多个 ONU更换物理通道包 括: 所述 OLT将停止传输所述上行数据的指示和 /或更换物理通道的指示完全 加密或者部分加密。
18. 根据权利要求 1至 10中任一项所述的方法,其中,所述物理通道包括以下之一: 波长、 子载波、 子载波组、 时隙。
19. 一种上行数据异常处理装置, 应用于光线路终端 OLT, 包括:
检测模块, 设置为检测上行数据存在异常;
指示模块, 设置为指示一个或多个光网络单元 ONU停止传输所述上行数 据和 /或指示所述一个或多个 ONU更换物理通道。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12840215.3A EP2768160B1 (en) | 2011-10-12 | 2012-06-29 | Method and apparatus for processing uplink data abnormity |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110308578.XA CN103051983B (zh) | 2011-10-12 | 2011-10-12 | 上行数据异常处理方法及装置 |
CN201110308578.X | 2011-10-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013053248A1 true WO2013053248A1 (zh) | 2013-04-18 |
Family
ID=48064464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/077974 WO2013053248A1 (zh) | 2011-10-12 | 2012-06-29 | 上行数据异常处理方法及装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2768160B1 (zh) |
CN (1) | CN103051983B (zh) |
WO (1) | WO2013053248A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3149956A4 (en) * | 2014-06-25 | 2017-07-05 | Huawei Technologies Co., Ltd. | Optical line terminal (olt) support of optical network unit (onu) calibration |
CN110166858A (zh) * | 2019-05-30 | 2019-08-23 | 深圳市友华软件科技有限公司 | Pon网络的onu自适应切换方法 |
CN113270946A (zh) * | 2021-07-21 | 2021-08-17 | 广东电网有限责任公司中山供电局 | 一种电力网络安全的远端调控装置及方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104811238B (zh) | 2014-01-28 | 2019-05-07 | 中兴通讯股份有限公司 | 通道切换方法、装置、光网络单元及时分波分复用系统 |
CN105228183A (zh) * | 2014-06-09 | 2016-01-06 | 中兴通讯股份有限公司 | 上行数据异常处理方法及装置 |
CN105743567B (zh) * | 2014-12-12 | 2019-05-31 | 上海诺基亚贝尔股份有限公司 | 一种在无源光网络中识别流氓onu的方法及其装置 |
CN105763964B (zh) * | 2014-12-19 | 2020-04-21 | 中兴通讯股份有限公司 | 应用于ofdm-pon的通信方法、装置及系统 |
CN106253971B (zh) * | 2015-06-15 | 2020-11-03 | 南京中兴新软件有限责任公司 | 光网络系统、光线路终端、光网络单元及其控制方法 |
EP3382919A4 (en) * | 2017-01-24 | 2019-01-16 | Huawei Technologies Co., Ltd. | COMMUNICATION METHOD, DEVICE AND SYSTEM FOR PASSIVE OPTICAL NETWORK (PON) |
CN111107449B (zh) * | 2018-10-25 | 2022-09-02 | 中兴通讯股份有限公司 | 一种突发式长发光干扰onu定位的方法及装置 |
CN112714369B (zh) * | 2019-10-25 | 2022-12-16 | 上海诺基亚贝尔股份有限公司 | 用于光通信的方法、设备、装置和计算机可读介质 |
CN111064542B (zh) * | 2019-12-27 | 2021-11-16 | 武汉长光科技有限公司 | 一种基于pon系统动态分配波长的方法 |
CN114204986A (zh) * | 2020-09-17 | 2022-03-18 | 中国电信股份有限公司 | 光链路故障的检测方法、装置、系统和存储介质 |
CN114374900B (zh) * | 2022-01-04 | 2023-05-12 | 烽火通信科技股份有限公司 | 分配标识符异常占用处理方法、装置、设备及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1996809A (zh) * | 2006-01-04 | 2007-07-11 | 华为技术有限公司 | 增强无源光网络健壮性的系统和方法 |
US20080304828A1 (en) * | 2007-06-07 | 2008-12-11 | Masahiko Mizutani | Optical communication system using wdma and cdma |
CN101651492A (zh) * | 2008-08-15 | 2010-02-17 | 华为技术有限公司 | 光接入网络的远程传输装置、系统和异常发光故障处理方法 |
US20100106437A1 (en) * | 2007-10-26 | 2010-04-29 | The Furukawa Electric Co., Ltd | Subscriber premises side optical network unit and optical transmission system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100536381C (zh) * | 2005-12-23 | 2009-09-02 | 华为技术有限公司 | 一种无源光网络维护方法和光线路终端 |
-
2011
- 2011-10-12 CN CN201110308578.XA patent/CN103051983B/zh active Active
-
2012
- 2012-06-29 WO PCT/CN2012/077974 patent/WO2013053248A1/zh active Application Filing
- 2012-06-29 EP EP12840215.3A patent/EP2768160B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1996809A (zh) * | 2006-01-04 | 2007-07-11 | 华为技术有限公司 | 增强无源光网络健壮性的系统和方法 |
US20080304828A1 (en) * | 2007-06-07 | 2008-12-11 | Masahiko Mizutani | Optical communication system using wdma and cdma |
US20100106437A1 (en) * | 2007-10-26 | 2010-04-29 | The Furukawa Electric Co., Ltd | Subscriber premises side optical network unit and optical transmission system |
CN101651492A (zh) * | 2008-08-15 | 2010-02-17 | 华为技术有限公司 | 光接入网络的远程传输装置、系统和异常发光故障处理方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3149956A4 (en) * | 2014-06-25 | 2017-07-05 | Huawei Technologies Co., Ltd. | Optical line terminal (olt) support of optical network unit (onu) calibration |
US9768905B2 (en) | 2014-06-25 | 2017-09-19 | Futurewei Technologies, Inc. | Optical line terminal (OLT) support of optical network unit (ONU) calibration |
US10014974B2 (en) | 2014-06-25 | 2018-07-03 | Futurewei Technologies, Inc. | Optical line terminal (OLT) support of optical network unit (ONU) calibration |
AU2015281459B2 (en) * | 2014-06-25 | 2018-12-20 | Huawei Technologies Co., Ltd. | Optical line terminal (OLT) support of optical network unit (ONU) calibration |
CN110166858A (zh) * | 2019-05-30 | 2019-08-23 | 深圳市友华软件科技有限公司 | Pon网络的onu自适应切换方法 |
CN110166858B (zh) * | 2019-05-30 | 2021-12-07 | 深圳市友华软件科技有限公司 | Pon网络的onu自适应切换方法 |
CN113270946A (zh) * | 2021-07-21 | 2021-08-17 | 广东电网有限责任公司中山供电局 | 一种电力网络安全的远端调控装置及方法 |
CN113270946B (zh) * | 2021-07-21 | 2021-12-10 | 广东电网有限责任公司中山供电局 | 一种电力网络安全的远端调控装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2768160A1 (en) | 2014-08-20 |
EP2768160A4 (en) | 2015-07-01 |
CN103051983B (zh) | 2017-05-10 |
EP2768160B1 (en) | 2019-11-27 |
CN103051983A (zh) | 2013-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013053248A1 (zh) | 上行数据异常处理方法及装置 | |
US10148385B2 (en) | Optical port auto-negotiation method, optical module, central office end device, and terminal device | |
WO2013185306A1 (zh) | 多波长无源光网络的波长配置方法、系统和装置 | |
EP2897309B1 (en) | Protection switching method, system and apparatus for passive optical network | |
WO2016008111A1 (zh) | 无源光网络的通信方法、装置以及系统 | |
WO2013082936A1 (zh) | 一种无源光网络系统中的上行带宽分配方法及系统 | |
US9819437B2 (en) | Rogue optical network unit mitigation in passive optical networks | |
WO2015113383A1 (zh) | 通道切换方法、装置、光网络单元及时分波分复用系统 | |
CN103378918A (zh) | 通道调整方法及装置 | |
CN103841474B (zh) | 一种无源光网络中的波长调谐方法、系统及设备 | |
CN102594444B (zh) | 一种实现全保护方式的方法及系统 | |
US8422881B2 (en) | Optical access network | |
CN102149027B (zh) | 通路切换方法、系统及下行数据发送方法 | |
CN103841473B (zh) | 一种光网络单元的注册激活方法、系统及设备 | |
WO2014079233A1 (zh) | 工作波长的调谐方法及系统 | |
CN103248418B (zh) | 一种基于无源光网络的主备通道切换方法及系统 | |
WO2013075507A1 (zh) | 数据发送方法及系统 | |
CN103166758A (zh) | Gpon上行aes加密的密钥更新方法及系统 | |
CN102148682B (zh) | 一种对发光异常光网络单元正确定位的方法及系统 | |
JP5988814B2 (ja) | 通信装置、子局装置、制御装置、通信システムおよび通信制御方法 | |
CN102209280A (zh) | 用于无源光网络的上行数据处理方法及无源光网络 | |
JP2015170991A (ja) | 波長監視方法、波長監視システム及び親ノード |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2012840215 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12840215 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |