WO2013053140A1 - 一种轮对故障动态检测数据处理方法和系统 - Google Patents
一种轮对故障动态检测数据处理方法和系统 Download PDFInfo
- Publication number
- WO2013053140A1 WO2013053140A1 PCT/CN2011/080894 CN2011080894W WO2013053140A1 WO 2013053140 A1 WO2013053140 A1 WO 2013053140A1 CN 2011080894 W CN2011080894 W CN 2011080894W WO 2013053140 A1 WO2013053140 A1 WO 2013053140A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- wheel
- detection
- tread
- detection result
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61K—AUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
- B61K9/00—Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
- B61K9/12—Measuring or surveying wheel-rims
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/043—Analysing solids in the interior, e.g. by shear waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
- G01N29/2412—Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/263—Surfaces
- G01N2291/2634—Surfaces cylindrical from outside
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/269—Various geometry objects
- G01N2291/2696—Wheels, Gears, Bearings
Definitions
- the present invention relates to the field of train detection technology, and more particularly to a wheelset fault dynamic detection data processing method and system.
- a wheelset is a part of a rolling stock that is in contact with a rail.
- the left and right wheels are firmly pressed on the same axle.
- the function of the wheelset is to ensure the running and steering of the locomotive on the rail, in order to ensure the locomotive
- the operation is smooth, the wheel-rail interaction force and the running resistance are reduced, and the machining ellipticity and eccentricity of the axle journal and the wheel tread are strictly limited (the tread is the outer circumferential surface of the wheel in contact with the rail surface).
- the existing daily detection areas for surface defects of train wheel treads include wheel tread abrasion and roundness on-line dynamic detection device, or on-line tread peeling defects of on-line dynamic detection of locomotive wheelset defect dynamics, or The on-line dynamic detection device of the wheelset size of the locomotive vehicle performs the over-limit parameter detection of the wheelset outer dimension.
- the above detection methods all process the parameters of a single wheelset by collecting a plurality of sensor signals, and fail to comprehensively detect and process various possible fault data of the wheelset.
- the existing electromagnetic ultrasonic transducer adopts a single-wire method to transmit the collected signals, and the transmission mode is susceptible to electromagnetic interference, which is not conducive to the processing accuracy of the wheel fault data.
- the present invention provides a wheelset fault dynamic detection method and system for comprehensively detecting and processing various possible wheelset fault data, and improving the wheelset by improving the winding manner of the electromagnetic ultrasonic transducer. Fault data processing accuracy.
- a method for processing wheel fault dynamic detection data comprising:
- the collected wheel pair external dimension data, the wheel scratch data, the wheel tread crack and the material peeling defect data are processed to obtain the detection result, and the detection result includes the wheel pair outer dimension data detection result, the tread rubbing Injury test results and tread crack peeling test results;
- a wheel outer shape detection curve and a tread crack peeling detection curve are drawn based on the detection result.
- the collected wheelset external dimension data is specifically as follows:
- the optical profile method is used to measure and calculate the wheel profile data, the rim thickness data, the rim height data and the rim slope data, and the optical intercept method. Three-point measurement for wheel diameter measurement;
- the collected wheel scratch data is specifically calculated by using the displacement method to calculate wheel scratches and wheel pair out-of-roundness data
- the data of the wheel tread crack and the material peeling defect are calculated as follows: the electromagnetic supersonic transducer is used to detect and calculate the wheel tread crack and/or the material peeling defect.
- two sets of emission lines ⁇ and two sets of receiving lines are respectively wound on the magnetically permeable E-shaped bobbin of the electromagnetic ultrasonic transducer, and the two sets of receiving line ends are different in physical position by a half ultrasonic wavelength.
- the method further includes: determining a wheelset inner distance by a light intercepting method.
- a wheelset fault dynamic detection data processing system which processes the wheelset fault dynamic detection data when the train is put into storage, including:
- a size detecting module for collecting and processing wheel shape size data
- a scratch detection module for collecting and processing wheel scratch data
- the flaw detection module is configured to collect and process the wheel tread crack and the material peeling defect data;
- the data processing server is configured to draw the wheel pair outer dimension data detection curve and the tread crack peeling detection curve by referring to the detection result obtained by the above module processing,
- the test results include the wheel pair outer dimension data detection result, the tread scratch detection result, and the tread crack peeling detection result.
- the method further includes: a car number identification module, configured to read the train electronic tag information to identify the train car number.
- a car number identification module configured to read the train electronic tag information to identify the train car number.
- the processing method achieves the comprehensive detection and processing effect on various possible wheelset fault data; in addition, the electromagnetic ultrasonic transducer adopts a double-wire winding method, and the two line ends of the receiving coil are at a physical difference of half.
- the ultrasonic wavelength is such that the useful signals (periodic echo signals and defective echo signals) of the signals collected by the probe are 180° out of phase, and the phase difference of the noise signals of the two signals is not 180.
- the phase difference relationship so as to achieve the purpose of suppressing noise.
- FIG. 1 is a schematic diagram of a winding of a wheel-to-fault fault dynamic detection electromagnetic ultrasonic transducer according to a prior art disclosed in the embodiment of the present invention
- FIG. 1b is a flow chart of a method for processing wheel fault dynamic detection data disclosed in an embodiment of the present invention
- FIG. 1c is a schematic diagram of a wheel-to-fault dynamic detection data method for wheel-to-shape size data processing according to an embodiment of the present invention
- FIG. 1 is a schematic diagram of a wheel diameter data processing principle of a wheel-to-fault dynamic detection data method according to an embodiment of the present invention
- Figure le is a schematic diagram of waveform data of an electromagnetic ultrasonic transducer in a wheel-to-fault dynamic detection data method according to an embodiment of the present invention
- 2a is a flow chart of a method for processing wheel fault dynamic detection data disclosed in an embodiment of the present invention
- FIG. 2b is an electromagnetic method for processing a wheel-to-fault fault detection data according to an embodiment of the present invention.
- FIG. 3 is a schematic structural diagram of a wheelset fault dynamic detection data processing system according to an embodiment of the present invention.
- the detection of the wheel is mostly the dynamic detection of the tread surface by the simple wheel.
- the detection is based on the electromagnetic ultrasonic transducer, and the winding ⁇ (high frequency line ⁇ , emission line ⁇ and receiving line ⁇ ) of the electromagnetic ultrasonic transducer is utilized.
- the high frequency line passes through the high frequency current, a eddy current is generated in the skin layer contacting the wheel tread surface on the transducer, and then the magnetically permeable E-shaped skeleton of the transducer (as shown in FIG.
- the function of the display generates an ultrasonic wave source, and is emitted by the emission line, and the receiving line is received. Since the existing electromagnetic ultrasonic transducer adopts a single line ⁇ to transmit the collected signal, the transmission mode is easy. Electromagnetic interference is not conducive to the processing accuracy of the wheel fault data.
- the technology of wheel tread abrasion and in-line dynamic detection also has certain application. Because the train will travel to the scratch position when the train is moving at high speed, it will leave the track surface and appear to vacate, the length of the vacant time and the rubbing The size of the injury is related; the wheel vacant time is measured by an electrical signal, and the degree of wheel abrasion is obtained by comparing the vacating time with the degree of scratching.
- this kind of test method cannot realize the short-distance and slow wheel-to-turn fault detection, and the application hindering is formed for the real-time and comprehensive processing problem of the wheel-to-fault fault detection data, thereby generating the prior art wheelset. The problem of single fault parameters and inaccurate measurement parameters.
- the embodiment of the invention solves the above problems in a targeted manner, and proposes a method and system for processing wheel-to-fault fault detection data to realize comprehensive detection and processing of various possible wheelset fault data, and improve
- the winding method of the electromagnetic ultrasonic transducer improves the accuracy of the wheel-to-fault data processing.
- Figure lb shows a method for processing wheelset fault dynamic detection data, including:
- S11 separately collecting the wheel outer shape size, wheel scratch data, wheel tread crack and material peeling defect data
- S12 The collected wheel pair external dimension data, the wheel scratch data, the wheel tread crack and the material peeling defect data are processed to obtain a detection result, and the detection result includes a wheel pair outer dimension data detection result, a tread abrasion detection result, and Tread crack peeling test result;
- the wheelset external dimension data includes: wheel profile data, rim thickness data, rim height data, and rim slope data.
- the wheel pair outer dimension data is measured by a light intercept method, and the line is measured.
- the light source illuminates the wheel tread to form a light intercept curve from the rim to the tread, the light cut curve includes tread outer size information, and the wheel shape light is photographed by the array charge coupled element CCD at a predetermined angle to the incident direction of the line light source. Cut the curve image, compare the obtained shape curve with the standard curve to obtain the size of the key measurement point of the wheel shape, as shown in Figure lc;
- the wheel diameter of the wheelset also belongs to the wheelset outer dimension data.
- the three-point measurement method based on the optical intercept method is used to obtain the wheel diameter, that is, the line light source incident in two directions forms an optical cut-off curve image on the tread surface.
- the coordinates of the two tread measurement points are measured, and the known wheel-rail contact points (coordinate origin) are used to measure the wheel diameter by the three-point method, as shown in FIG.
- the wheel scratch data it is obtained by measuring the change of the relative height between the rim apex of the wheel and the contact point between the wheel tread and the rail. The radius of the circumference of the scratch is reduced after the tread of the wheel pair is scratched. In order to make the difference between the height of the rim of the rim and the contact point of the wheel and the rail lower than the height difference of the non-scratch, the change of the height difference can be used to reflect the damage of the wheel tread, and the measured week will be measured. After analyzing the relative displacement distribution of the rim apex, the complete scratch information of the wheel tread is obtained; The wheel tread crack and the material peeling defect data are detected by the electromagnetic ultrasonic transducer on the preset orientation of the wheel surface.
- the emission line on the probe evokes the ultrasonic surface wave on the tread, due to the surface Waves will appear in the wave shape of different characteristics of the echo when encountering defects, and the problem of wheel tread cracks and material peeling defects can be obtained by analyzing the defect echoes, as shown in Fig.
- the above is respectively selected for the wheelset external dimension data, the wheel scratch data and the wheelset tread crack and the material peeling defect data when the train is put into storage, and the selected test points of the wheel passing the test system are performed, because each data needs to be detected.
- the test points are different, and the presets are preset according to the actual detection requirements, and the requirements are preset based on the adopted data method, and are not specifically limited and limited herein.
- the collection of these data is arranged when the train is put into storage, and the purpose is to comprehensively and accurately measure the faults generated during the wheelset operation comprehensively, and then timely detect the discovered wheel faults, and overcome the prior art.
- the wheel outer shape detection curve corresponds to a processing result of the wheel pair outer shape size data
- the tread crack peeling detection curve corresponds to a wheel pair tread crack and a material peeling defect data processing result
- step S12 the wheel pair external dimension data acquisition and processing is performed by the optical intercept method corresponding device and method, and the wheel profile data, the rim thickness data, the rim height data and the rim slope are obtained.
- the current detection curve is drawn after the data to facilitate analysis of fault types, grades and maintenance measures based on wheelset deformation and the like;
- the wheelset tread crack peeling detection curve corresponds to the wheelset tread crack and the material peeling defect data, and the wheelset tread crack and the material peeling defect data are realized by an electromagnetic ultrasonic transducer processing method.
- Figure 2a shows a method for processing wheelset fault dynamic detection data, including:
- S21 separately collecting wheel pair external dimension data, wheel scratch data, wheel tread crack and material peeling defect data
- S22 The collected wheel pair external dimension data, the wheel scratch data, the wheel tread crack and the material peeling defect data are processed to obtain a detection result, wherein the detection result includes a wheel pair outer dimension data detection result, a tread abrasion detection result, and Tread crack peeling test result;
- the measurement of the wheelset external dimension data further includes measuring the content of the wheelset inner distance by the optical intercept method, the wheelset inner distance, the left wheel of the wheelset and The fixed distance of the inner side of the right wheel is obtained by using the measuring wheel pair profile curve and the offset of the inner side reference line of the left and right wheels in the optical intercept image.
- the electromagnetic ultrasonic transducer is improved, that is, wound on the magnetically permeable E-shaped skeleton of the electromagnetic ultrasonic transducer.
- the two sets of emission lines ⁇ and the two sets of receiving lines ⁇ , the two sets of receiving line ends are physically separated by a half ultrasonic wavelength, as shown in FIG. 2b, thereby ensuring the signals collected by the probe of the electromagnetic ultrasonic transducer.
- the corresponding relationship with the train number is made for the faulty state of the train wheel in the warehouse, so as to know the current wheelset fault and historical data query.
- the database can be constructed by using SQL Server 2000 to ensure data security and reliability, and can be combined with a user interface to facilitate detection and export of detection results.
- FIG. 3a illustrates a wheelset fault dynamic detection data processing system for processing wheelset fault dynamic detection data when the train is in storage, including:
- a size detecting module 31 configured to collect and process wheelset external dimension data
- the scratch detection module 32 is configured to collect and process wheel scratch data
- the flaw detection module 33 is configured to process collecting and processing wheel tread crack and material peeling defect data
- the flaw detection module 33 is specifically an electromagnetic ultrasonic transducer.
- the electromagnetic ultrasonic transducer has two sets of emission lines and two sets of receiving lines respectively on the magnetically conductive E-shaped bobbin, and the two sets of receiving lines are in physical positions. The difference is half the ultrasonic wavelength.
- the data processing server 34 is configured to draw a wheelset external dimension data detection curve and a tread crack peeling detection curve by referring to the detection result obtained by the above module processing, and the detection result includes a wheelset outer dimension data detection result, a tread abrasion detection result, and Tread crack peeling test results.
- the data processing server 34 embeds the relational system SQL system to ensure the security and reliability of the data and can be combined with the user interface to facilitate the detection of results and the like, but is not limited to such an enumerated form.
- car number identification module 35 for reading the train electronic tag information identification column front wheel pair fault and historical data query.
- the detection data processing method of the embodiment of the invention collectively detects various faults that may exist in the wheel pair when the train is put into storage, and combines the optical intercept method, the displacement method and the electromagnetic ultrasonic transducer respectively for the wheel alignment size and the wheel Corrugment and tread crack and material peeling defects are measured and calculated accordingly. Not only the concentration and integrity of the fault parameter detection are improved, but also the processing method for detecting the single fault parameter of the wheelset in the prior art is improved, and various possibilities are achieved.
- the wheel-to-fault data comprehensively detects and processes the technical effects; in addition, the electromagnetic ultrasonic transducer adopts a two-wire winding method, and the two line ends of the receiving coil are at a physical position different by half ultrasonic wavelength, so that the signal collected by the probe.
- the useful signals peripheral echo signals and defective echo signals
- the phase difference of the noise signals of the two signals is not 180.
- the phase difference relationship achieves the purpose of suppressing noise.
- the steps of a method or algorithm described in connection with the embodiments disclosed herein can be implemented directly in hardware, a software module executed by a processor, or a combination of both.
- the software module can be placed in random access memory (RAM), memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Mechanical Engineering (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
一种轮对故障动态检测数据处理方法和系统,其中所述方法包括:在列车入库时,将采集的轮对外形尺寸数据、车轮擦伤数据、轮对踏面裂纹及材料剥离缺陷数据处理后得到检测结果(S12),所述检测结果包括轮对外形尺寸数据检测结果、踏面擦伤检测结果和踏面裂纹、剥离检测结果;根据所述检测结果绘制车轮外形尺寸检测曲线和踏面裂纹剥离检测曲线(S13)。所述方法和系统通过在列车入库时将轮对可能存在的各种故障进行集中检测,并结合光截法、位移法及电磁超声波换能器分别针对轮对外形尺寸、车辆擦伤及踏面裂纹及材料剥离缺陷进行相应测量和计算,不仅故障参数检测集中度及完整度提高,且达到了对各种可能的轮对故障数据全面检测和处理的技术效果。
Description
一种轮对故障动态检测数据处理方法和系统 本申请要求于 2011年 10月 13日提交中国专利局、 申请号为
201110309958.5、 发明名称为 "一种轮对故障动态检测数据处理方法和系统 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域 本发明涉及列车检测技术领域, 更具体地说, 涉及一种轮对故障动态检测 数据处理方法和系统。
背景技术 轮对是机车车辆上与钢轨相接触的部分,由左右两个车轮牢固地压装在同 一根车轴上,轮对的作用是保证机车车辆在钢轨上的运行和转向, 为了保证机 车车辆运行平稳, 降低轮轨相互作用力和运行阻力, 车轴轴颈和车轮踏面的加 工橢圓度和偏心度都有严格的限定(所述踏面是车轮与钢轨面相接触的外圓周 面)。
现有的针对火车车轮踏面表面缺陷日常检测领域包括车轮踏面擦伤及不 圓度在线动态检测装置,或是机车车辆轮对缺陷在线动态检测用电磁超声换能 器进行车轮踏面剥离缺陷,或是机车车辆轮对外形尺寸在线动态检测装置进行 轮对外形尺寸超限参数检测。
上述检测方法均是通过采集多种传感器信号,对单一的轮对的参数进行处 理, 而未能针对轮对的各种可能故障数据做出全面检测和处理。 另外, 现有的 电磁超声换能器采用单线圏的方式进行采集信号的传输,而该种传输方式易受 到电磁干扰, 不利于轮对故障数据的处理准确性。
发明内容
有鉴于此, 本发明提供一种轮对故障动态检测方法和系统, 以实现轮对各 种可能的轮对故障数据全面检测和处理,并通过改进电磁超声换能器的绕线方 式改善轮对故障数据处理准确性。
一种轮对故障动态检测数据处理方法, 包括:
在列车入库时, 将采集的轮对外形尺寸数据、 车轮擦伤数据、 轮对踏面裂 纹及材料剥离缺陷数据处理后得到检测结果,所述检测结果包括轮对外形尺寸 数据检测结果、 踏面擦伤检测结果和踏面裂纹剥离检测结果;
根据所述检测结果绘制车轮外形尺寸检测曲线和踏面裂纹剥离检测曲线。 为了完善上述方案, 采集的轮对外形尺寸数据具体为: 采用光截法测量 并计算车轮外形轮廓数据、 轮缘厚度数据、 轮缘高度数据和轮缘斜度数据, 以 及, 采用光截法中的三点测量法进行车轮直径测量;
按照预设规则计算采集的车轮擦伤数据具体为:利用位移法计算车轮擦伤 及轮对不圓度数据;
按照预设规则计算轮对踏面裂纹及材料剥离缺陷数据具体为:利用电磁超 声波换能器探测并计算轮对踏面裂纹和 /或材料剥离缺陷。
作为优选,在所述电磁超声换能器的导磁性 E型骨架上分别绕制两组发射 线圏和两组接收线圏, 所述两组接收线端在物理位置上相差半个超声波波长。
所述方法还包括: 通过光截法测定轮对内距。
一种轮对故障动态检测数据处理系统,在列车入库时对轮对故障动态检测 数据的处理, 包括:
尺寸检测模块, 用于采集并处理轮对外形尺寸数据;
擦伤检测模块, 用于采集并处理车轮擦伤数据;
探伤检测模块, 用于采集并处理轮对踏面裂纹及材料剥离缺陷数据; 数据处理服务器,用于参照上述模块处理后得到的检测结果绘制轮对外形 尺寸数据检测曲线和踏面裂纹剥离检测曲线,所述检测结果包括轮对外形尺寸 数据检测结果、 踏面擦伤检测结果和踏面裂纹剥离检测结果。
为了完善上述方案还包括: 车号识别模块, 用于读取所述列车电子标签信 息识别列车车号。
从上述的技术方案可以看出,本发明实施例的检测数据处理方法通过在列 车入库时将轮对可能存在的各种故障进行集中检测, 并结合光截法、位移法及 电磁超声波换能器分别针对轮对外形尺寸、车轮擦伤及踏面裂纹及材料剥离缺 陷进行相应测量和计算, 不仅故障参数检测集中度及完整度提高,且改善了现 有技术中对轮对单一故障参数检测的处理方式,达到了对各种可能的轮对故障 数据全面检测和处理技术效果; 另外, 电磁超声换能器采用双线圏绕制方式, 接收线圏的两个线端在物理位置上相差半个超声波波长,从而探头采集的信号 中有用信号(周期回波信号及缺陷回波信号)相差 180° 相位, 并使两路信号 的噪声信号相位差不具有 180。 的相位差关系, 从而达到抑制噪声的目的。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 la为本发明实施例公开的一种现有技术中, 轮对故障动态检测电磁超 声换能器绕线示意图;
图 lb 为本发明实施例公开的一种轮对故障动态检测数据处理方法流程 图;
图 lc为本发明实施例公开的一种轮对故障动态检测数据方法轮对外形尺 寸数据处理原理示意图;
图 Id为本发明实施例公开的一种轮对故障动态检测数据方法车轮直径数 据处理原理示意图;
图 le为本发明实施例公开的一种轮对故障动态检测数据方法电磁超声波 换能器波形数据示意图;
图 2a 为本发明实施例公开的一种轮对故障动态检测数据处理方法流程 图;
图 2b为本发明实施例公开的一种轮对故障动态检测数据处理方法的电磁
超声换能器的导磁性 E型骨架绕线示意图;
图 3 为本发明实施例公开的一种轮对故障动态检测数据处理系统结构示 意图。
具体实施方式 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅是本发明一部分实施例, 而不是全 部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造性 劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
在进行实施例的描述之前, 需要首先说明的是: 车的关键部件, 其质量的好坏直接影响到行车安全, 由于列车行经之处运行里 程长且运行环境各异,且现有的列车运行速度不断提升,对于轮对的故障检测 和处理的力度提出更高要求。
目前针对车轮的检测多为单纯车轮对踏面的动态检测,该种检测基于电磁 超声换能器, 利用电磁超声波换能器的绕制线圏(高频线圏、 发射线圏和接收 线圏), 当高频线圏通过高频电流时在所述换能器上, 与所述轮对踏面接触的 趋肤层内产生涡流, 进而在换能器的导磁性 E型骨架(如图 la所示) 的作用产 生超声波波源, 并以所述发射线圏发出, 所述接收线圏接收, 由于现有的电磁 超声换能器采用单线圏的方式进行采集信号的传输,而该种传输方式易受到电 磁干扰, 不利于轮对故障数据的处理准确性。
另夕卜, 车轮踏面擦伤及不圓度在线动态检测的技术也有一定的应用, 由于 列车在高速行进时车轮行驶至擦伤位置时, 将脱离轨道面而出现腾空,腾空时 间的长短与擦伤的大小有关; 通过电信号来测量轮对腾空时间,通过腾空时间 与擦伤程度的对比, 得出车轮擦伤程度。 然而, 该种测试方法无法实现短途及 慢速的轮对故障检测, 则对于轮对故障检测数据实时而全面的处理问题来说, 形成的应用上的阻碍,从而产生了现有技术中轮对故障参数单一及测定参数不 准确的问题。
故而该发明的实施例有针对性地解决了上述问题,提出了一种轮对故障动 态检测数据处理方法和系统,以实现轮对各种可能的轮对故障数据全面检测和 处理, 并通过改进电磁超声换能器的绕线方式改善轮对故障数据处理准确性。
现就本发明的实施例进行具体说明:
图 lb示出了一种轮对故障动态检测数据处理方法, 包括:
S11 : 分别采集轮对外形尺寸、 车轮擦伤数据、 轮对踏面裂纹及材料剥离 缺陷数据;
需要指出的是, 上述数据的采集所用的方式方法不做局限, 可配合针对数 据处理方法进行相应采集。
S12: 将采集的轮对外形尺寸数据、 车轮擦伤数据、 轮对踏面裂纹及材料 剥离缺陷数据处理后得到检测结果,所述检测结果包括轮对外形尺寸数据检测 结果、 踏面擦伤检测结果和踏面裂纹剥离检测结果;
所述轮对外形尺寸数据包括: 车轮外形轮廓数据、轮缘厚度数据、 轮缘高 度数据和轮缘斜度数据,在本实施例中, 采用光截法测量上述轮对外形尺寸数 据,通过线光源照射车轮踏面形成从轮缘到踏面的光截曲线, 该光截曲线包括 了踏面外形尺寸信息,并利用与所述线光源入射方向呈预设角度的面阵电荷耦 合元件 CCD拍摄车轮外形光截曲线图像,将获取的外形曲线与标准曲线比较得 到车轮外形关键测量点的尺寸, 如图 lc所示;
以及:
轮对的车轮直径也属于轮对外形尺寸数据,本实施例采用基于光截法的三 点测量法来获得车轮直径, 即, 利用两个方向入射的线光源在踏面形成光截曲 线图像,求出两个踏面测量点的坐标,再利用已知的轮轨接触点(坐标原点 ) , 通过三点法即可测得车轮直径, 如图 Id所示;
而对于车轮擦伤数据,则是通过测量车轮一周的轮缘顶点与车轮踏面与钢 轨接触点之间相对高度的变化得出, 由于在轮对存在踏面擦伤后,擦伤处圓周 半径减小,使得擦伤处的轮缘顶点相对于车轮与钢轨接触点的高度差低于无擦 伤处的高度差, 则可利用高度差的变化反应车轮踏面受损的信息, 则将测得的 一周的轮缘顶点的相对位移分布情况分析后, 得到车轮踏面的完整擦伤信息;
轮对踏面裂纹及材料剥离缺陷数据则采用电磁超声波换能器对轮对表面 预设取向上的探伤进行, 车轮通过探头时,探头上的发射线圏在踏面上激发出 超声表面波, 由于表面波在遇到缺陷时将出现于回波不同特性的波状, 分析缺 陷回波状则可获知轮对踏面裂纹及材料剥离缺陷等问题, 如图 le所示。
需要特别指出的是:
上述分别针对轮对外形尺寸数据、车轮擦伤数据及轮对踏面裂纹及材料剥 离缺陷数据选定在列车入库时,对轮对经过测试系统的选定测试点进行, 由于 各个数据所需检测的测试点不尽相同, 而根据实际检测需求预设, 所述需求预 设基于采用的数据方法, 在此不做具体限定及局限。
而将这些数据的采集安排于列车入库时进行,目的在于集中地高效地对轮 对运行期间产生的故障全面和准确测定, 进而对发现的车轮故障进行及时处 理, 此外克服了现有技术中在列车高速运行检测故障准确性低的问题。
S13: 根据所述检测结果绘制车轮外形尺寸检测曲线和踏面裂纹剥离检测 曲线。
所述车轮外形尺寸检测曲线对应的是轮对外形尺寸数据的处理结果,所述 踏面裂纹剥离检测曲线对应的是轮对踏面裂纹及材料剥离缺陷数据的处理结 果;
由步骤 S12可知, 在本实施例中, 轮对外形尺寸数据采集和处理, 采用光 截法对应设备及方法进行, 得到车轮外形轮廓数据、 轮缘厚度数据、 轮缘高度 数据和轮缘斜度数据后绘制当前检测曲线便于分析基于轮对变形等方面的故 障类型、 等级和维修措施;
所述轮对踏面裂纹剥离检测曲线对应轮对踏面裂纹及材料剥离缺陷数据, 所述轮对踏面裂纹及材料剥离缺陷数据采用电磁超声波换能器处理方法实现。 绘制轮对踏面裂纹剥离波形曲线便于分析基于轮对踏面裂纹及剥离方面的故 障类型、 等级和维修措施。
图 2a示给出了一种轮对故障动态检测数据处理方法, 包括:
S21 : 分别采集轮对外形尺寸数据、 车轮擦伤数据、 轮对踏面裂纹及材料 剥离缺陷数据;
S22: 将采集的轮对外形尺寸数据、 车轮擦伤数据、 轮对踏面裂纹及材料 剥离缺陷数据处理后得到检测结果,所述检测结果包括轮对外形尺寸数据检测 结果、 踏面擦伤检测结果和踏面裂纹剥离检测结果;
相对于上一实施例,在本实施例中, 所述轮对外形尺寸数据的测量还包括 了通过光截法测定轮对内距的内容, 所述轮对内距,轮对中的左轮和右轮内侧 固定距离, 测量时利用测量轮对外形曲线, 左右车轮内侧面基准线在光截图像 中的偏移量获得。
在本实施例中,轮对踏面裂纹及材料剥离缺陷数据处理过程中,针对电磁 超声换能器做出了改进, 即, 在所述电磁超声换能器的导磁性 E型骨架上分别 绕制两组发射线圏和两组接收线圏,所述两组接收线端在物理位置上相差半个 超声波波长, (如图 2b所示), 从而保证电磁超声换能器的探头采集的信号中 有两路相差 180。 相位差, 有用信号 (周期回波信号及缺陷回波信号)之间也 存在 180° 的相位差关系, 而噪声信号由于具有随机性, 两路信号的噪声信号 之间不具有 180° 的相位差关系,利用该规律可剔除这种不满足 180° 相位差关 系的噪声信号,从而使得现在提取有用信号的同时剔除了电磁干扰等信号, 达 到噪声抑制的目的。
S23: 根据所述检测结果绘制车轮外形尺寸检测曲线踏面裂纹剥离检测曲 线;
S24: 读取所述列车电子标签信息识别列车车号。
通过读取列车电子标签识别列车车号的方式,对入库的列车轮对故障状态 做出与列车车号的对应关系, 以便获知当前轮对故障及历史数据查询。
S25: 构建并更新基于所述车轮外形尺寸检测曲线、 踏面擦伤检测结果和 踏面裂纹剥离的波形曲线的数据库;
作为优选, 所述数据库可采用 SQL Server2000构建形式, 以保证数据的安 全性和可靠性并可结合用户界面方便检测结果查询和导出等。
图 3a示出了一种轮对故障动态检测数据处理系统,在列车入库时对轮对故 障动态检测数据的处理, 包括:
尺寸检测模块 31 , 用于采集并处理轮对外形尺寸数据;
擦伤检测模块 32, 用于采集并处理的车轮擦伤数据;
探伤检测模块 33 , 用于处理采集并处理轮对踏面裂纹及材料剥离缺陷数 据;
探伤检测模块 33具体为电磁超声换能器, 该电磁超声换能器的导磁性 E 型骨架上分别绕制两组发射线圏和两组接收线圏 ,所述两组接收线端在物理位 置上相差半个超声波波长。 更为详细的原理及有益效果说明详见图 2b图示及 其对应说明。
数据处理服务器 34, 用于参照上述模块处理后得到的检测结果绘制轮对 外形尺寸数据检测曲线和踏面裂纹剥离检测曲线,所述检测结果包括轮对外形 尺寸数据检测结果、 踏面擦伤检测结果和踏面裂纹剥离检测结果。
数据处理服务器 34嵌入关系系统 SQL系统,以保证数据的安全性和可靠 性并可结合用户界面方便检测结果查询和导出等,然而并不局限于该种列举形 式。
图中还示出了车号识别模块 35 , 用于读取所述列车电子标签信息识别列 前轮对故障及历史数据查询。
综上所述:
本发明实施例的检测数据处理方法通过在列车入库时将轮对可能存在的 各种故障进行集中检测, 并结合光截法、位移法及电磁超声波换能器分别针对 轮对外形尺寸、车轮擦伤及踏面裂纹及材料剥离缺陷进行相应测量和计算, 不 仅故障参数检测集中度及完整度提高,且改善了现有技术中对轮对单一故障参 数检测的处理方式,达到了对各种可能的轮对故障数据全面检测和处理技术效 果; 另外, 电磁超声换能器采用双线圏绕制方式, 接收线圏的两个线端在物理 位置上相差半个超声波波长,从而探头采集的信号中有用信号(周期回波信号 及缺陷回波信号)相差 180° 相位,并使两路信号的噪声信号相位差不具有 180 。 的相位差关系, 达到抑制噪声的目的。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是 与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于 实施例公开的装置而言, 由于其与实施例公开的方法相对应, 所以描述的比较 筒单, 相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例
的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实现, 为 了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描 述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于 技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来 使用不同方法来实现所描述的功能, 但是这种实现不应认为超出本发明的范 围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处 理器执行的软件模块, 或者二者的结合来实施。软件模块可以置于随机存储器 ( RAM )、内存、只读存储器( ROM )、电可编程 ROM、电可擦除可编程 ROM、 寄存器、 硬盘、 可移动磁盘、 CD-ROM, 或技术领域内所公知的任意其它形式 的存储介质中。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本 发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见 的, 本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下, 在 其它实施例中实现。 因此, 本发明将不会被限制于本文所示的这些实施例, 而 是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims
1、 一种轮对故障动态检测数据处理方法, 其特征在于, 包括:
在列车入库时, 将采集的轮对外形尺寸数据、 车轮擦伤数据、 轮对踏面裂 纹及材料剥离缺陷数据处理后得到检测结果,所述检测结果包括轮对外形尺寸 数据检测结果、 踏面擦伤检测结果和踏面裂纹、 剥离检测结果;
根据所述检测结果绘制轮对外形尺寸数据检测曲线和踏面裂纹剥离检测 曲线。
2、 根据权利要求 1所述的方法, 其特征在于,
所述采集的轮对外形尺寸具体为:采用光截法测量并计算车轮外形轮廓数 据、 轮缘厚度数据、 轮缘高度数据和轮缘斜度数据, 以及, 采用光截法中的三 点测量法进行车轮直径测量;
所述按照预设规则计算采集的车轮擦伤数据具体为:利用位移法计算车轮 擦伤及轮对不圓度数据;
所述按照预设规则计算轮对踏面裂纹及材料剥离缺陷数据具体为:利用电 磁超声波换能器探测并计算轮对踏面裂纹和 /或材料剥离缺陷。
3、 根据权利要求 2所述的方法, 其特征在于, 在所述电磁超声换能器的 导磁性 E型骨架上分别绕制两组发射线圏和两组接收线圏 ,所述两组接收线端 在物理位置上相差半个超声波波长。
4、 根据权利要求 1所述的方法, 其特征在于, 还包括: 通过光截法测定 轮对内距。
5、 根据权利要求 1所述的方法, 其特征在于, 还包括: 构建并更新基于 所述车轮外形尺寸检测曲线、踏面擦伤检测结果和踏面裂纹剥离的波形曲线的 数据库。
6、 根据权利要求 1所述的方法, 其特征在于, 还包括: 读取所述列车电 子标签信息识别列车车号。
7、 一种轮对故障动态检测数据处理系统, 其特征在于, 在列车入库时对 轮对故障动态检测数据的处理, 包括:
尺寸检测模块, 用于采集并处理轮对外形尺寸数据; 擦伤检测模块, 用于采集并处理车轮擦伤数据;
探伤模块, 用于采集并处理轮对踏面裂纹及材料剥离缺陷数据; 数据处理服务器,用于参照上述模块处理后得到的检测结果绘制轮对外形 尺寸数据检测曲线和踏面裂纹剥离检测曲线,所述检测结果包括轮对外形尺寸 数据检测结果、 踏面擦伤检测结果和踏面裂纹剥离检测结果。
8、 根据权利要求 7所述的系统, 其特征在于, 所述轮对探伤检测模块具 体为电磁超声换能器,该电磁超声换能器的导磁性 E型骨架上分别绕制两组发 射线圏和两组接收线圏, 所述两组接收线端在物理位置上相差半个超声波波 长。
9、 根据权利要求 7所述的系统, 其特征在于, 所述数据处理模块嵌入关 系数据库管理系统 SQL系统。
10、 根据权利要求 7所述的系统, 其特征在于, 还包括: 车号识别模块, 用于读取所述列车电子标签信息识别列车车号。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110309958.5 | 2011-10-13 | ||
CN2011103099585A CN102431576A (zh) | 2011-10-13 | 2011-10-13 | 一种轮对故障动态检测数据处理方法和系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013053140A1 true WO2013053140A1 (zh) | 2013-04-18 |
Family
ID=45980015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/080894 WO2013053140A1 (zh) | 2011-10-13 | 2011-10-18 | 一种轮对故障动态检测数据处理方法和系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102431576A (zh) |
WO (1) | WO2013053140A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104608799B (zh) * | 2014-12-12 | 2017-03-29 | 郑州轻工业学院 | 基于信息融合技术列车轮对踏面损伤在线检测与识别方法 |
CN107228636A (zh) * | 2017-07-21 | 2017-10-03 | 深圳市兴兆业光电科技有限公司 | 一种车辆外廓的测量系统及其测量方法 |
CN113534740A (zh) * | 2021-09-16 | 2021-10-22 | 沈阳机床(集团)有限责任公司 | 一种火车车轮轮缘踏面的检测数据分析及修复方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013177393A1 (en) * | 2012-05-24 | 2013-11-28 | International Electronic Machines Corporation | Wayside measurement of railcar wheel to rail geometry |
CN104401359B (zh) * | 2014-10-08 | 2015-09-30 | 西南交通大学 | 高速列车轮对动态检测系统 |
CN106225699B (zh) * | 2016-07-26 | 2020-02-14 | 广州地铁集团有限公司 | 基于激光信噪比最佳点的列车轮对直径测量方法和系统 |
CN106225710B (zh) * | 2016-07-26 | 2019-08-16 | 广州地铁集团有限公司 | 基于误差修正的列车轮踏面三维轮廓自动化测量方法和系统 |
CN108225706B (zh) * | 2016-12-15 | 2019-09-10 | 北京唐智科技发展有限公司 | 一种识别车轮密集剥离麻面故障的自动化诊断方法 |
CN108734060A (zh) * | 2017-04-18 | 2018-11-02 | 香港理工大学深圳研究院 | 一种高速动车组车轮多边形化的识别方法及装置 |
CN108871431A (zh) * | 2018-05-21 | 2018-11-23 | 北京京天威科技发展有限公司 | 轮对动态检测系统和方法 |
CN109204378A (zh) * | 2018-08-14 | 2019-01-15 | 北京交通大学 | 基于轮廓势能和轮廓向量的车轮非圆度检测方法及系统 |
CN109131431A (zh) * | 2018-09-11 | 2019-01-04 | 南京拓控信息科技股份有限公司 | 铁路货车轮对运用状态综合检测系统 |
CN109374734B (zh) * | 2018-09-20 | 2021-07-09 | 华东交通大学 | 一种基于轮对的相控阵超声探伤装置 |
CN112781524B (zh) * | 2021-01-25 | 2023-03-24 | 成都铁安科技有限责任公司 | 一种落轮式车轮检测系统 |
CN113466331B (zh) * | 2021-08-04 | 2024-08-16 | 西南交通大学 | 列车车轮踏面裂纹的脉冲涡流热成像动态检测装置及方法 |
CN115031640B (zh) * | 2022-08-12 | 2022-11-01 | 广州运达智能科技有限公司 | 一种列车轮对在线检测方法、系统、设备及存储介质 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000017632A2 (de) * | 1998-09-22 | 2000-03-30 | Siemens Aktiengesellschaft | Verfahren und vorrichtung zum nachweis eines defekts einer führungsschiene |
CN2466012Y (zh) * | 2001-02-27 | 2001-12-19 | 北方交通大学 | 车轮踏面擦伤及磨损非接触式动态测量装置 |
CN1843822A (zh) * | 2006-04-30 | 2006-10-11 | 西安英卓电子科技有限公司 | 列车轮对动态检测系统及检测方法 |
CN1869584A (zh) * | 2006-06-23 | 2006-11-29 | 西南交通大学 | 机车车辆轮对缺陷在线动态检测用电磁超声换能器 |
CN1868793A (zh) * | 2006-06-23 | 2006-11-29 | 西南交通大学 | 机车车辆轮对外形尺寸在线动态检测装置 |
CN1924570A (zh) * | 2006-09-22 | 2007-03-07 | 西南交通大学 | 便携式机车车辆轮对踏面电磁超声探伤仪 |
CN2921779Y (zh) * | 2006-06-23 | 2007-07-11 | 西南交通大学 | 车轮踏面擦伤及不圆度在线动态检测装置 |
CN101913367A (zh) * | 2009-07-20 | 2010-12-15 | 北京福斯达轨道交通技术有限公司 | 铁路车轮踏面擦伤图像动态探测装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0263217B1 (de) * | 1986-09-09 | 1991-07-31 | CSEE-Transport | System zum Erkennen unzulässig erwärmter Bauteile an fahrenden Schienenfahrzeugen |
DK158079C (da) * | 1986-10-13 | 1990-09-24 | Caltronic As | Anlaeg til sporbaseret aftastning af hjulprofilen paa forbikoerende jernbanehjul |
DE10192587D2 (de) * | 2000-07-07 | 2003-01-16 | Fraunhofer Ges Forschung | Elektromagnetischer Ultraschallwandler |
CN2463262Y (zh) * | 2001-02-28 | 2001-12-05 | 北京新联铁科贸有限公司 | 一种轮对自动检测装置 |
-
2011
- 2011-10-13 CN CN2011103099585A patent/CN102431576A/zh active Pending
- 2011-10-18 WO PCT/CN2011/080894 patent/WO2013053140A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000017632A2 (de) * | 1998-09-22 | 2000-03-30 | Siemens Aktiengesellschaft | Verfahren und vorrichtung zum nachweis eines defekts einer führungsschiene |
CN2466012Y (zh) * | 2001-02-27 | 2001-12-19 | 北方交通大学 | 车轮踏面擦伤及磨损非接触式动态测量装置 |
CN1843822A (zh) * | 2006-04-30 | 2006-10-11 | 西安英卓电子科技有限公司 | 列车轮对动态检测系统及检测方法 |
CN1869584A (zh) * | 2006-06-23 | 2006-11-29 | 西南交通大学 | 机车车辆轮对缺陷在线动态检测用电磁超声换能器 |
CN1868793A (zh) * | 2006-06-23 | 2006-11-29 | 西南交通大学 | 机车车辆轮对外形尺寸在线动态检测装置 |
CN2921779Y (zh) * | 2006-06-23 | 2007-07-11 | 西南交通大学 | 车轮踏面擦伤及不圆度在线动态检测装置 |
CN1924570A (zh) * | 2006-09-22 | 2007-03-07 | 西南交通大学 | 便携式机车车辆轮对踏面电磁超声探伤仪 |
CN101913367A (zh) * | 2009-07-20 | 2010-12-15 | 北京福斯达轨道交通技术有限公司 | 铁路车轮踏面擦伤图像动态探测装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104608799B (zh) * | 2014-12-12 | 2017-03-29 | 郑州轻工业学院 | 基于信息融合技术列车轮对踏面损伤在线检测与识别方法 |
CN107228636A (zh) * | 2017-07-21 | 2017-10-03 | 深圳市兴兆业光电科技有限公司 | 一种车辆外廓的测量系统及其测量方法 |
CN113534740A (zh) * | 2021-09-16 | 2021-10-22 | 沈阳机床(集团)有限责任公司 | 一种火车车轮轮缘踏面的检测数据分析及修复方法 |
CN113534740B (zh) * | 2021-09-16 | 2021-11-19 | 沈阳机床(集团)有限责任公司 | 一种火车车轮轮缘踏面的检测数据分析及修复方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102431576A (zh) | 2012-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013053140A1 (zh) | 一种轮对故障动态检测数据处理方法和系统 | |
CN103322936B (zh) | 轮对尺寸在线监测方法 | |
CN106091951B (zh) | 一种城轨列车轮缘参数在线检测系统及方法 | |
CN105865788A (zh) | 一种用于列车轴承缺陷在线监测的阵列声学检测方法 | |
CN104359983B (zh) | 一种钢轨探伤装置的对中系统及方法 | |
CN103587551B (zh) | 传感器直线垂直安装的城轨车辆车轮直径检测装置及方法 | |
CN103591899B (zh) | 传感器圆弧法线安装的城轨车辆车轮直径检测装置及方法 | |
CN103307982B (zh) | 轮对尺寸在线监测装置 | |
CN106274977A (zh) | 一种触发式采集模式的直流漏磁检测系统及其方法 | |
CN103587549B (zh) | 基于激光传感器的城轨车辆车轮不圆度检测装置及方法 | |
Xing et al. | Online detection system for wheel-set size of rail vehicle based on 2D laser displacement sensors | |
CN103587548A (zh) | 传感器直接测量的城轨车辆车轮不圆度检测装置及方法 | |
CN100561214C (zh) | 便携式机车车辆轮对踏面电磁超声探伤仪 | |
CN108839674B (zh) | 一种列车车轮几何参数在线动态测量装置及测量方法 | |
CN102173296B (zh) | 一种同步驱动轮式电磁钢轨探伤装置 | |
CN103591902A (zh) | 一种基于激光传感器的城轨车辆车轮直径检测装置及方法 | |
CN203511690U (zh) | 一种机车车轮圆度在线检测装置 | |
CN203601294U (zh) | 传感器直线垂直安装的城轨车辆车轮直径检测装置 | |
CN103587550A (zh) | 传感器圆弧垂直安装的城轨车辆车轮直径检测装置及方法 | |
CN103587552B (zh) | 传感器直线倾斜安装的城轨车辆车轮直径检测装置及方法 | |
CN108839676B (zh) | 一种列车车轮几何参数在线动态测量装置及测量方法 | |
CN203605915U (zh) | 传感器圆弧法线安装的城轨车辆车轮直径检测装置 | |
CN203601296U (zh) | 基于激光传感器的城轨车辆车轮不圆度检测装置 | |
CN210591925U (zh) | 轴箱振动的轮径差检测系统 | |
CN115575508A (zh) | 一种基于列车振声复合特征的轨道交通钢轨波磨识别方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11873862 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11873862 Country of ref document: EP Kind code of ref document: A1 |