CN103587551A - 传感器直线垂直安装的城轨车辆车轮直径检测装置及方法 - Google Patents

传感器直线垂直安装的城轨车辆车轮直径检测装置及方法 Download PDF

Info

Publication number
CN103587551A
CN103587551A CN201310558085.0A CN201310558085A CN103587551A CN 103587551 A CN103587551 A CN 103587551A CN 201310558085 A CN201310558085 A CN 201310558085A CN 103587551 A CN103587551 A CN 103587551A
Authority
CN
China
Prior art keywords
rail
sensor
wheel
laser sensor
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310558085.0A
Other languages
English (en)
Other versions
CN103587551B (zh
Inventor
邢宗义
张永
王晓浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201310558085.0A priority Critical patent/CN103587551B/zh
Publication of CN103587551A publication Critical patent/CN103587551A/zh
Application granted granted Critical
Publication of CN103587551B publication Critical patent/CN103587551B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种传感器直线垂直安装的城轨车辆车轮直径检测装置及方法。该装置包括中央处理单元和与其连接的多个激光传感器;检测区段的钢轨向外偏移,且该检测区段的钢轨内侧设置护轨;激光传感器设置于钢轨偏移所空出的区域与护轨之间,激光传感器的探头沿钢轨方向排列且均布在长度固定的水平线上,各激光传感器的探测光束垂直钢轨向上,所有激光传感器位于车轮下方并且与进行直径测量的车轮圆周共面。该方法使用多个激光传感器,将其按照直线垂直关系安装在车轮下方同时探测车轮得到探测点,通过最小二乘拟合得到初始直径,对初始直径求均值得到车轮直径。本发明在线非接触式测量具有速度快、精度高、测量直径范围大的优点。

Description

传感器直线垂直安装的城轨车辆车轮直径检测装置及方法
技术领域
本发明涉及铁路车轮检测领域,特别是一种传感器直线垂直安装的城轨车辆车轮直径检测装置及方法。
背景技术
城轨车辆在运行的过程中会出现不同程度的磨耗,磨耗对车轮安全运行会产生影响,而其中磨耗导致的车轮直径变化尤为关键。列车正线运行中,同轴及同转向架轮径差均有限度要求,同轴轮径差过大容易导致轮对擦伤,同一轮对轮径差过大还容易导致轮缘偏磨或列车异常振动,因此对车轮直径的测量对列车安全运行有着重要意义。
常用的圆弧半径测量方法包括卡尺法和弓高弦长法,其中卡尺法适用于精度要求不高的场合,测量范围受弧长的限制,卡尺量程受横向定位架的限制;而弓高弦长法的操作比较繁琐,该两种方法通常用于对工件做静态的离线测量。中国专利CN201159640Y(铁路车轮直径测量装置,申请号:200820055350.8,申请日:2008-02-02)公开了一种弓高弦长法测量车轮半径装置,检修方法属于手工测量和离线自动测量,当车轮行驶一段时间后需定期送车间进行检修。这种静态离线测量采用专用量具或万能量具人工检测,存在检测结果误差大、准确性差、返工率高、工作效率低、劳动强度大等缺点。
非接触式的在线测量轮对直径或轮对几何参数逐渐发展起来,中国专利CN1899904A(列车轮对尺寸在线检测方法及装置,申请号:200510035961.7申请日:2005-07-20),在每根钢轨的两侧安装一定距离的激光位移传感器,传感器从钢轨的底侧斜向上测量,从而记录车轮踏面数据,并基于列车移动的速度计算经过两个激光传感器弦长得到直径。该方法的缺点为,需要同时利用列车速度信息,不能独立完成直径的测量,且利用单个激光传感器记录踏面信息,会由于踏面的变化无法精确定位直径所在位置。中国专利CN101219672A(基于激光的车轮直径非接触式动态测量方法,申请号:200810056339.8申请日:2008-01-16)采用两个激光位移传感器直接照射车轮踏面滚动面,通过安装传感器的几何位置关系测量车轮直径,该方法的缺点为探测线没有解决对准问题,而同样近似斜切法,无法精确描述车轮直径。综上,目前的非接触式车轮直径测量技术仍然存在测量精度不高、测量响应速度慢、工程实施困难等缺点。
发明内容
本发明的目的在于提供一种高精度的传感器直线垂直安装的城轨车辆车轮直径检测装置及方法,采用非接触式测量,检测速度快、测量范围大。
实现本发明目的的技术解决方案为:
一种传感器直线垂直安装的城轨车辆车轮直径检测装置,包括中央处理单元和多个激光传感器,所述激光传感器均与中央处理单元连接;检测区段的钢轨向外偏移,且该检测区段的钢轨内侧设置护轨,护轨与车轮轮缘内侧相切;激光传感器设置于钢轨偏移所空出的区域与护轨之间,激光传感器的探头沿钢轨方向排列且均布在长度固定的水平线上,各激光传感器的探测光束垂直钢轨向上,所有激光传感器与进行直径测量的车轮圆周共面。
一种传感器直线垂直安装的城轨车辆车轮直径检测方法,其特征在于,包括以下步骤:
第1步,将各激光传感器安装于钢轨偏移所空出的区域,激光传感器的探头沿钢轨方向排列且均布在长度为L的水平线上,各激光传感器的探测光束垂直钢轨向上,各个激光传感器分别记为Pi,沿着钢轨方向i依次为1,2,...n,n为激光传感器的个数;
第2步,在进行直径测量的车轮圆周所在平面上建立二维坐标系:沿钢轨方向为X轴,经过第一个激光传感器P1且垂直于钢轨向上为Y轴,则各个激光传感器探头相对于X轴的安装倾角θi均为90°,激光传感器的坐标(xi,yi)由下式确定:
x i = ( i - 1 ) × L / ( n - 1 ) y i = y 1 i = 1 , 2 · · · n
第3步,采集所有激光传感器的输出值,并选出同时有n个传感器输出值的有效数据组{Si},Si为第i个传感器Pi的输出值,i=1,2,...n;
第4步,根据传感器Pi的输出值Si、坐标值(xi,yi)、安装倾角θi确定车轮上对应传感器Pi的测量点坐标(Xi,Yi):
(Xi,Yi)=(xi,yi)+(Si×cosθi,Si×sinθi)i=1,2…n
第5步,根据车轮上n个测量点坐标(Xi,Yi)进行拟合圆,得到该测量位置的车轮直径D;
第6步,将采集到的多个有效数据组进行拟合得到一系列车轮直径,将得到的一系列车轮直径求平均值,得到该测量位置最终的车轮直径Dfinal
与现有技术相比,本发明的显著优点在于:(1)基于激光检测系统,通过最小二乘拟合的算法,实现对列车车轮在线非接触测量,测量精度高;(2)由激光传感器自动获取车轮任意多点坐标,通过相应数据处理算法,获得当下所测车轮直径,操作简单、方便快捷;(3)具有检测速度快、测量范围大的优点。
附图说明
图1为车轮踏面运行后的磨耗示意图。
图2为本发明传感器直线垂直安装的车轮直径检测装置的结构示意图。
图3为本发明城轨车辆车轮直径检测装置中钢轨切换处的示意图。
图4为本发明钢轨偏移的距离Q与护轨的尺寸破面示意图。
图5为实施例1中激光传感器直线垂直安装的车轮直径检测示意图。
图6为实施例1中各个激光传感器的测量值随时间t(ms)的关系。
图7为实施例1中某一时刻探测序列点(Xi,Yi)及其拟合后的圆。
图8为实施例1中所有有效测量数据值拟合所得到的全部直径。
图9为实施例1中重复测量20次直径所得结果示意图。
具体实施方式
下面结合附图及具体实施例对本发明作进一步详细说明。
图1中表示出了某车轮运行过后的踏面形状与刚投入运行时踏面形状,可以看出距离轮缘侧面处70mm为磨耗集中处,该处为工程中常用的衡量直径所在位置,而车轮直径往往控制在770~840mm之间,故激光传感器探测点选取为该处的车轮圆周。
本发明传感器直线垂直安装的城轨车辆车轮直径检测装置,包括中央处理单元和多个激光传感器,所述激光传感器均与中央处理单元连接;检测区段的钢轨向外偏移,且该检测区段的钢轨内侧设置护轨,护轨与车轮轮缘内侧相切;激光传感器设置于钢轨偏移所空出的区域与护轨之间,激光传感器的探头沿钢轨方向排列且均布在长度固定的水平线上,各激光传感器的探测光束垂直钢轨向上,所有激光传感器与进行直径测量的车轮圆周共面。
如图2所示,在检测区段将钢轨6外偏,空出一定区域,将激光传感器探头3安装在车轮1的测量点下方,在轮缘内侧设置护轨5以防止轮对蛇行或轴向窜动造成脱轨,激光传感器探头3通过传感器夹具4固定,并可以调整激光传感器探头3的位置和倾角,各个激光传感器探头3发出的激光光束2能够同时检测到车轮上的对应检测点。
如图3所示,钢轨向外偏移的切换处为弧形,有利于列车进入和退出探测区。图4说明了钢轨向外偏移的具体尺寸Q,针对车轮踏面和60轨,Q控制在50~65mm之间,使得轨道中心线不超出车轮的外缘。护轨高出轮缘的尺寸P,控制在30~50mm之间。进行直径测量的车轮圆周距离车轮轮缘侧面的距离为70mm。
由于待测的车轮与轨道长期接触,表面光滑粗糙度低,因此涉及到利用激光扫描测头对镜面反射很强的金属曲面进行轮廓测量,该被测对象是目前形貌测量领域的一个难点。张良等分析了现有的几种激光测头对金属表面的测量能力,得出了锥光偏振全息探头和斜射式三角探头较适合测量金属曲面(张良,费致根,郭俊杰.激光扫描测头对金属曲面测量研究,机床与液压,第39卷第9期:2011年5月)。故本发明涉及的激光传感器,优选锥光偏振全息探头和斜射式三角探头,激光传感器的数量为3~10且所有激光传感器的探头通过传感器夹具固定于车轮下方。
使用上述传感器直线垂直安装的城轨车辆车轮直径检测装置进行车轮直径检测的方法,包括以下步骤:
第1步,将各激光传感器安装于钢轨偏移所空出的区域,激光传感器的探头沿钢轨方向排列且均布在长度为L的水平线上,各激光传感器的探测光束垂直钢轨向上,各个激光传感器分别记为Pi,沿着钢轨方向i依次为1,2,...n,n为激光传感器的个数;
第2步,在进行直径测量的车轮圆周所在平面上建立二维坐标系:沿钢轨方向为X轴,经过第一个激光传感器P1且垂直于钢轨向上为Y轴,则各个激光传感器探头相对于X轴的安装倾角θi均为90°,激光传感器的坐标(xi,yi)由下式确定:
x i = ( i - 1 ) × L / ( n - 1 ) y i = y 1 i = 1 , 2 · · · n
第3步,采集所有激光传感器的输出值,并选出同时有n个传感器输出值的有效数据组{Si},Si为第i个传感器Pi的输出值,i=1,2,...n;
第4步,根据传感器Pi的输出值Si、坐标值(xi,yi)、安装倾角θi确定车轮上对应传感器Pi的测量点坐标(Xi,Yi):
(Xi,Yi)=(xi,yi)+(Si×cosθi,Si×sinθi)i=1,2…n
第5步,根据车轮上n个测量点坐标(Xi,Yi)进行拟合圆,得到该测量位置的车轮直径D;采用最小二乘法进行拟合圆,公式如下:
D = a 2 + b 2 + 4 Σ ( X i 2 + Y i 2 ) + aΣ X i + bΣ Y i n , i = 1,2 · · · n
其中,a为拟合后的圆心横坐标x0的-2倍即a=-2x0,b为拟合后的圆心纵坐标y0的-2倍即b=-2y0,并且
a = HD - EG CG - D 2
b = HC - ED D 2 - GC
其中C、D、E、G、H为中间参数,分别如下:
C = nΣ X i 2 - Σ X i Σ X i D = nΣ X i Y i - Σ X i Σ Y i E = nΣ X i 3 + nΣ X i Y i 2 - Σ ( X i 2 + Y i 2 ) Σ X i G = nΣ Y i 2 - Σ Y i Σ Y i H = nΣ X i 2 Y i + nΣ Y i 3 - Σ ( X i 2 + Y i 2 ) Σ Y i i = 1,2 . . . n
第6步,将采集到的多个有效数据组进行拟合得到一系列车轮直径,将得到的一系列车轮直径求平均值,得到该测量位置最终的车轮直径Dfinal
下面结合具体实施例,对本发明作进一步详细说明。
实施例1
本实施例为传感器直线垂直安装的城轨车辆车轮直径检测装置及方法。
如图5所示,n个激光传感器的探头沿钢轨方向排列且均布在长度为L的水平线上,各激光传感器的探测光束垂直钢轨向上。
激光传感器的安装参数满足以下条件:激光传感器的个数为n且3≤n≤10,激光传感器安装水平线长度为L且n×30mm≤L≤D,D为车轮直径,沿钢轨方向第一个激光传感器的安装点至轨道的垂直距离为|y1|且|y1|≥100mm。
按照工程实际及对测量误差的分析,对3个参数优选如下:
y 1 = - 100 n = 6 L = 600
从而得到各传感器的坐标(xi,yi)(单位:mm):
x i = [ 0 120 240 360 480 600 ] y i = [ - 100 - 100 - 100 - 100 - 100 - 100 ]
设激光传感器的采样周期为1kHz,测量随机误差0.1mm,由计算机模拟产生直径为800的被测车轮测量数据如图6所示,由测量数据按照以下步骤输出直径:
(1.1)采集到所有激光传感器输出点序列Si,并遴选出6个传感器有效探测时的数据。某一时刻车轮经过时的有效值:
Si=[233.9894142.0952104.0036104.3825143.4801236.6142]
(1.2)针对传感器的输出值Si以及安装点坐标(xi,yi)、倾角θi,推得弧线上的点坐标(Xi,Yi);图7绘制了(1.1)中Si确定的序列点(Xi,Yi)和该时刻拟合后的圆:
X i = [ 0 120 240 360 480 600 ] Y i = [ 133.9894 42.0952 4.0036 4.3825 43.4801 136.6142 ]
(1.3)由序列点(Xi,Yi)根据最小二乘拟合圆得到该时刻所测的车轮直径为799.354mm。图8为所有有效测量时刻内的相应车轮直径值,有效测量范围内所有时刻的数据计算得到直径为D为798.5mm~801.5mm。
(1.4)对图8中的数据求均值,得到一次测量的输出直径Dfinal=800.13mm。模拟测量20次,得到图9所示的测量结果,由该测量结果可见,该实施方式可以实现车轮直径的高精度测量,测量误差在不考虑安装误差的情况下<0.3mm。
综上所述,本发明传感器直线垂直安装的城轨车辆车轮直径检测装置及方法,通过最小二乘拟合的算法,实现对列车车轮在线非接触测量,测量精度高;由激光传感器自动获取车轮任意多点坐标,通过相应数据处理算法,获得当下所测车轮直径,操作简单、方便快捷;并且具有检测速度快、测量范围大的优点。

Claims (7)

1.一种传感器直线垂直安装的城轨车辆车轮直径检测装置,其特征在于,包括中央处理单元和多个激光传感器,所述激光传感器均与中央处理单元连接;检测区段的钢轨向外偏移,且该检测区段的钢轨内侧设置护轨,护轨与车轮轮缘内侧相切;激光传感器设置于钢轨偏移所空出的区域与护轨之间,激光传感器的探头沿钢轨方向排列且均布在长度固定的水平线上,各激光传感器的探测光束垂直钢轨向上,所有激光传感器与进行直径测量的车轮圆周共面。 
2.根据权利要求1所述的传感器直线垂直安装的城轨车辆车轮直径检测装置,其特征在于,所述检测区段钢轨向外偏移50~65mm,且该钢轨向外偏移的切换处为弧形。 
3.根据权利要求1所述的传感器直线垂直安装的城轨车辆车轮直径检测装置,其特征在于,所述进行直径测量的车轮圆周距离车轮轮缘侧面的距离为70mm。 
4.根据权利要求1所述的传感器直线垂直安装的城轨车辆车轮直径检测装置,其特征在于,所述激光传感器的数量为n且3≤n≤10,激光传感器安装水平线长度为L且n×30mm≤L≤D,D为车轮直径,沿钢轨方向第一个激光传感器的安装点至轨道的垂直距离为|y1|且|y1|≥100mm。 
5.根据权利要求1所述的传感器直线垂直安装的城轨车辆车轮直径检测装置,其特征在于,所述激光传感器的探头为锥光偏振全息探头或斜射式三角探头,且所有激光传感器的探头通过传感器夹具固定于车轮下方。 
6.一种传感器直线垂直安装的城轨车辆车轮直径检测方法,其特征在于,包括以下步骤: 
第1步,将各激光传感器安装于钢轨偏移所空出的区域,激光传感器的探头沿钢轨方向排列且均布在长度为L的水平线上,各激光传感器的探测光束垂直钢轨向上,各个激光传感器分别记为Pi,沿着钢轨方向i依次为1,2,...n,n为激光传感器的个数; 
第2步,在进行直径测量的车轮圆周所在平面上建立二维坐标系:沿钢轨方向为X轴,经过第一个激光传感器P1且垂直于钢轨向上为Y轴,则各个激光传感器探头相对于X轴的安装倾角θi均为90°,激光传感器的坐标(xi,yi)由下式确定: 
Figure FDA0000411817360000011
第3步,采集所有激光传感器的输出值,并选出同时有n个传感器输出值的有效数据组{Si},Si为第i个传感器Pi的输出值,i=1,2,...n; 
第4步,根据传感器Pi的输出值Si、坐标值(xi,yi)、安装倾角θi确定车轮上对应传感器Pi的测量点坐标(Xi,Yi): 
(Xi,Yi)=(xi,yi)+(Si×cosθi,Si×sinθi)i=1,2…n 
第5步,根据车轮上n个测量点坐标(Xi,Yi)进行拟合圆,得到该测量位置的车轮直径D; 
第6步,将采集到的多个有效数据组进行拟合得到一系列车轮直径,将得到的一系列车轮直径求平均值,得到该测量位置最终的车轮直径Dfinal。 
7.根据权利要求6所述的传感器直线垂直安装的城轨车辆车轮直径检测方法,其特征在于,第5步所述根据车轮上n个测量点坐标(Xi,Yi)进行拟合圆,采用最小二乘法,公式如下: 
Figure FDA0000411817360000021
其中,a为拟合后的圆心横坐标x0的-2倍即a=-2x0,b为拟合后的圆心纵坐标y0的-2倍即b=-2y0,并且 
Figure FDA0000411817360000022
Figure FDA0000411817360000023
其中C、D、E、G、H为中间参数,分别如下: 
Figure FDA0000411817360000024
CN201310558085.0A 2013-11-11 2013-11-11 传感器直线垂直安装的城轨车辆车轮直径检测装置及方法 Active CN103587551B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310558085.0A CN103587551B (zh) 2013-11-11 2013-11-11 传感器直线垂直安装的城轨车辆车轮直径检测装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310558085.0A CN103587551B (zh) 2013-11-11 2013-11-11 传感器直线垂直安装的城轨车辆车轮直径检测装置及方法

Publications (2)

Publication Number Publication Date
CN103587551A true CN103587551A (zh) 2014-02-19
CN103587551B CN103587551B (zh) 2016-03-02

Family

ID=50077945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310558085.0A Active CN103587551B (zh) 2013-11-11 2013-11-11 传感器直线垂直安装的城轨车辆车轮直径检测装置及方法

Country Status (1)

Country Link
CN (1) CN103587551B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359413A (zh) * 2014-10-15 2015-02-18 武汉中科创新技术股份有限公司 一种利用激光位移传感器测量钢管直径的装置及方法
CN105423934A (zh) * 2015-12-23 2016-03-23 东莞市诺丽电子科技有限公司 列车车轮直径检测方法
CN107101585A (zh) * 2017-04-28 2017-08-29 北京锦鸿希电信息技术股份有限公司 车轮尺寸检测系统和方法
CN107200041A (zh) * 2017-04-21 2017-09-26 南京理工大学 基于列阵激光的有轨电车车轮不圆度在线检测装置及方法
CN108489389A (zh) * 2018-04-04 2018-09-04 中冶长天国际工程有限责任公司 一种烧结台车车轮的加脂孔定位方法、装置及系统
CN108839675A (zh) * 2018-06-27 2018-11-20 马鞍山市雷狮轨道交通装备有限公司 一种在线动态测量列车车轮几何参数的装置及方法
CN109017871A (zh) * 2018-06-27 2018-12-18 马鞍山市雷狮轨道交通装备有限公司 一种在线动态测量列车车轮几何参数的装置及方法
CN110849280A (zh) * 2019-12-02 2020-02-28 中国科学院长春光学精密机械与物理研究所 一种车轮测量设备
CN111595252A (zh) * 2020-05-21 2020-08-28 哈尔滨市科佳通用机电股份有限公司 一种基于激光测量技术的车轴尺寸动态检测系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107139968A (zh) * 2017-04-21 2017-09-08 南京理工大学 基于激光位移传感器的车轮不圆度检测装置及方法
CN107128330B (zh) * 2017-04-21 2019-03-05 南京理工大学 传感器圆弧垂直安装的有轨电车轮径在线检测装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749870A (en) * 1985-06-26 1988-06-07 Wilhelm Hegenscheidt Gesellschaft Mbh Method and apparatus for measuring data for calculating the diameter of wheels, especially railroad wheel sets
EP0254772B1 (de) * 1986-07-29 1991-12-04 Wilhelm Hegenscheidt Gesellschaft mbH Verfahren zur Ermittlung des Durchmessers der Räder von Schienenfahrzeugen und Einrichtung hierzu
DE4312876A1 (de) * 1993-04-20 1994-10-27 Ibeg Masch & Geraetebau Vorrichtung zum Messen und Bestimmen der Veränderung an der Lauffläche eines Rades von Schienenfahrzeugen
CN1149126A (zh) * 1995-06-29 1997-05-07 塔尔格,S·A· 利用人工视觉方法测量铁路车辆车轮滚动参数的装置和方法
JP2003172609A (ja) * 2001-12-03 2003-06-20 Patentes Talgo Sa 鉄道車輪の楕円化、座屈、平面、および転動パラメータを測定する装置と方法
CN101143593A (zh) * 2007-10-19 2008-03-19 无锡拓谷科技有限公司 钢轨平移布置装置
CN203601294U (zh) * 2013-11-11 2014-05-21 南京理工大学 传感器直线垂直安装的城轨车辆车轮直径检测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749870A (en) * 1985-06-26 1988-06-07 Wilhelm Hegenscheidt Gesellschaft Mbh Method and apparatus for measuring data for calculating the diameter of wheels, especially railroad wheel sets
EP0208060B1 (de) * 1985-06-26 1993-06-02 Wilhelm Hegenscheidt Gesellschaft mbH Verfahren und Messanlage zur Durchmesserbestimmung der Räder von Radsätzen
EP0254772B1 (de) * 1986-07-29 1991-12-04 Wilhelm Hegenscheidt Gesellschaft mbH Verfahren zur Ermittlung des Durchmessers der Räder von Schienenfahrzeugen und Einrichtung hierzu
DE4312876A1 (de) * 1993-04-20 1994-10-27 Ibeg Masch & Geraetebau Vorrichtung zum Messen und Bestimmen der Veränderung an der Lauffläche eines Rades von Schienenfahrzeugen
CN1149126A (zh) * 1995-06-29 1997-05-07 塔尔格,S·A· 利用人工视觉方法测量铁路车辆车轮滚动参数的装置和方法
JP2003172609A (ja) * 2001-12-03 2003-06-20 Patentes Talgo Sa 鉄道車輪の楕円化、座屈、平面、および転動パラメータを測定する装置と方法
CN101143593A (zh) * 2007-10-19 2008-03-19 无锡拓谷科技有限公司 钢轨平移布置装置
CN203601294U (zh) * 2013-11-11 2014-05-21 南京理工大学 传感器直线垂直安装的城轨车辆车轮直径检测装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359413A (zh) * 2014-10-15 2015-02-18 武汉中科创新技术股份有限公司 一种利用激光位移传感器测量钢管直径的装置及方法
CN104359413B (zh) * 2014-10-15 2017-02-15 武汉中科创新技术股份有限公司 一种利用激光位移传感器测量钢管直径的装置及方法
CN105423934A (zh) * 2015-12-23 2016-03-23 东莞市诺丽电子科技有限公司 列车车轮直径检测方法
CN107200041A (zh) * 2017-04-21 2017-09-26 南京理工大学 基于列阵激光的有轨电车车轮不圆度在线检测装置及方法
CN107200041B (zh) * 2017-04-21 2019-03-05 南京理工大学 基于列阵激光的有轨电车车轮不圆度在线检测装置及方法
CN107101585A (zh) * 2017-04-28 2017-08-29 北京锦鸿希电信息技术股份有限公司 车轮尺寸检测系统和方法
CN108489389A (zh) * 2018-04-04 2018-09-04 中冶长天国际工程有限责任公司 一种烧结台车车轮的加脂孔定位方法、装置及系统
CN108839675A (zh) * 2018-06-27 2018-11-20 马鞍山市雷狮轨道交通装备有限公司 一种在线动态测量列车车轮几何参数的装置及方法
CN109017871A (zh) * 2018-06-27 2018-12-18 马鞍山市雷狮轨道交通装备有限公司 一种在线动态测量列车车轮几何参数的装置及方法
CN110849280A (zh) * 2019-12-02 2020-02-28 中国科学院长春光学精密机械与物理研究所 一种车轮测量设备
CN111595252A (zh) * 2020-05-21 2020-08-28 哈尔滨市科佳通用机电股份有限公司 一种基于激光测量技术的车轴尺寸动态检测系统

Also Published As

Publication number Publication date
CN103587551B (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
CN103587551B (zh) 传感器直线垂直安装的城轨车辆车轮直径检测装置及方法
CN103591899B (zh) 传感器圆弧法线安装的城轨车辆车轮直径检测装置及方法
CN103587548B (zh) 传感器直接测量的城轨车辆车轮不圆度检测方法
CN101219672B (zh) 基于激光的车轮直径非接触式动态测量方法
CN103587549B (zh) 基于激光传感器的城轨车辆车轮不圆度检测装置及方法
CN107607044B (zh) 一种基于激光位移传感器的车轮踏面磨耗检测方法
CN103591902B (zh) 一种基于激光传感器的城轨车辆车轮直径检测装置及方法
CN103587550B (zh) 传感器圆弧垂直安装的城轨车辆车轮直径检测装置及方法
CN105292180A (zh) 基于多种传感器的非接触式轮对尺寸在线检测方法和装置
CN105235713A (zh) 基于激光位移传感器的城轨车辆车轮直径在线检测方法
CN103693073A (zh) 一种非接触式车轮直径动态测量装置及其测量方法
CN105946898A (zh) 一种基于激光测距的城轨列车车轮直径检测方法及系统
CN106091951B (zh) 一种城轨列车轮缘参数在线检测系统及方法
CN203601294U (zh) 传感器直线垂直安装的城轨车辆车轮直径检测装置
CN103587552B (zh) 传感器直线倾斜安装的城轨车辆车轮直径检测装置及方法
CN102445166A (zh) 一种行车轨道检测方法
CN105292181A (zh) 一种基于两种传感器的轮对尺寸在线检测方法及装置
CN203605915U (zh) 传感器圆弧法线安装的城轨车辆车轮直径检测装置
CN107200041A (zh) 基于列阵激光的有轨电车车轮不圆度在线检测装置及方法
CN104590314B (zh) 一种基于多种传感器的城轨车辆车轮直径测量装置及方法
CN108819980B (zh) 一种列车车轮几何参数在线动态测量的装置和方法
CN105923015A (zh) 一种以减振平台为惯性位移基准的钢轨波浪磨耗移动测量方法
CN203601295U (zh) 传感器直线倾斜安装的城轨车辆车轮直径检测装置
CN203601296U (zh) 基于激光传感器的城轨车辆车轮不圆度检测装置
CN203601298U (zh) 传感器圆弧垂直安装的城轨车辆车轮直径检测装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant