WO2013052389A1 - Contrôleur cvca présentant des caractéristiques d'installation conviviales favorisant à la fois des scénarios d'installation du type bricolage et professionnels - Google Patents

Contrôleur cvca présentant des caractéristiques d'installation conviviales favorisant à la fois des scénarios d'installation du type bricolage et professionnels Download PDF

Info

Publication number
WO2013052389A1
WO2013052389A1 PCT/US2012/058207 US2012058207W WO2013052389A1 WO 2013052389 A1 WO2013052389 A1 WO 2013052389A1 US 2012058207 W US2012058207 W US 2012058207W WO 2013052389 A1 WO2013052389 A1 WO 2013052389A1
Authority
WO
WIPO (PCT)
Prior art keywords
hvac
thermostat
hvac system
connectors
user
Prior art date
Application number
PCT/US2012/058207
Other languages
English (en)
Inventor
Mark D. STEFANSKI
David Sloo
Yoky Matsuoka
Original Assignee
Nest Labs, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/269,501 external-priority patent/US8918219B2/en
Application filed by Nest Labs, Inc. filed Critical Nest Labs, Inc.
Priority to CA2851367A priority Critical patent/CA2851367C/fr
Publication of WO2013052389A1 publication Critical patent/WO2013052389A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1902Control of temperature characterised by the use of electric means characterised by the use of a variable reference value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • F24F11/523Indication arrangements, e.g. displays for displaying temperature data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • F24F11/526Indication arrangements, e.g. displays giving audible indications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Definitions

  • This patent specification relates to systems and methods for the monitoring and control of energy-consuming systems or other resource-consuming systems. More particularly, this patent specification relates to control units that govern the operation of energy-consuming systems, household devices, or other resource-consuming systems, including methods for activating electronic displays for thermostats that govern the operation of heating, ventilation, and air conditioning (HVAC) systems.
  • HVAC heating, ventilation, and air conditioning
  • HVAC heating, ventilation, and air conditioning
  • HVAC thermostatic control systems have tended to fall into one of two opposing categories, neither of which is believed be optimal in most practical home environments.
  • a first category are many simple, non-programmable home thermostats, each typically consisting of a single mechanical or electrical dial for setting a desired temperature and a single HEAT-FAN-OFF-AC switch.
  • any energy-saving control activity such as adjusting the nighttime temperature or turning off all heating/cooling just before departing the home, must be performed manually by the user.
  • substantial energy- saving opportunities are often missed for all but the most vigilant users.
  • more advanced energy-saving settings are not provided, such as the ability to specify a custom temperature swing, i.e., the difference between the desired set temperature and actual current temperature (such as 1 to 3 degrees) required to trigger turn-on of the
  • thermostats Although the scope of the present teachings hereinbelow is not necessarily limited to thermostats but rather can extend to a variety of different smart-home devices, the installation of an intelligent, energy-saving, network-connected thermostat presents particular issues that are well addressed by one or more of the embodiments herein.
  • One the one hand it is desirable to provide an intelligent, energy-saving, network-connected a thermostat that accommodates easy do-it-yourself installation for ordinary users who desire to perform their own installation.
  • HVAC equipment configurations in some homes can get rather complex, and because the consequences of improper installation can sometimes be severe, it is sometimes important that
  • a thermostat may be presented.
  • the thermostat may include a housing, a user interface comprising an electronic display, and a processing system disposed within the housing and coupled to the user interface.
  • the processing system may be configured to be in operative communication with one or more temperature sensors for determining an ambient air temperature, in operative communication with one or more input devices including said user interface for determining a setpoint temperature value, and in still further operative communication with a heating, ventilation, and air conditioning (HVAC) system to control the HVAC system based at least in part on a comparison of a measured ambient temperature and the setpoint temperature value.
  • HVAC heating, ventilation, and air conditioning
  • the thermostat may also include a plurality of HVAC connectors configured to receive a corresponding plurality of HVAC control wires corresponding to the HVAC system, each HVAC connector having an identifier that identifies one or more HVAC functionalities associated with that HVAC connector.
  • the thermostat may additionally include, a connection sensing module coupled to the plurality of HVAC connectors and configured to determine the identities of a first subset of the plurality of HVAC connectors into which corresponding HVAC wires have been inserted, wherein the processing system is further configured to process the identities of the first subset of HVAC connectors to determine a configuration of the HVAC system to be controlled.
  • the processing may include identifying, based on said identities of the first subset of HVAC connectors, whether (i) only a single possible HVAC system configuration is indicated thereby, or (ii) multiple possible HVAC system configurations are indicated thereby.
  • the processing may further include operating, if the single possible HVAC system configuration is indicated, the HVAC system according to said single possible HVAC system
  • the processing may additionally include resolving, if the multiple possible HVAC system configurations are indicated, a particular one of the multiple possible HVAC system configurations that is applicable based on at least one user response to at least one inquiry to a user presented on the user interface, and operating the HVAC system according to the resolved particular HVAC system configuration.
  • a method of determining HVAC system configuration for an HVAC system for control by a thermostat may be presented.
  • the method may include determining the identities of a first subset of a plurality of HVAC connectors into which corresponding HVAC wires have been inserted, wherein the plurality of HVAC connectors are configured to receive a corresponding plurality of HVAC control wires corresponding to the HVAC system, each HVAC connector having an identifier that identifies one or more HVAC functionalities associated with that HVAC connector.
  • the method may also include identifying, based on the identities of the first subset of HVAC connectors, whether (i) only a single possible HVAC system configuration is indicated thereby, or (ii) multiple possible HVAC system configurations are indicated thereby.
  • the method may additionally include operating, if the single possible HVAC system configuration is indicated, the HVAC system according to the single possible HVAC system configuration.
  • the method may further include resolving, if the multiple possible HVAC system configurations are indicated, a particular one of the multiple possible HVAC system configurations that is applicable based on at least one user response to at least one inquiry to a user presented on a user interface comprising an electronic display, and operating said HVAC system according to the resolved particular HVAC system configuration.
  • the resolving is performed at least in part by a processing system disposed within a housing of a thermostat and coupled to the user interface, the processing system being configured to be in operative communication with one or more temperature sensors for determining an ambient air temperature, in operative communication with one or more input devices including said user interface for determining a setpoint temperature value, and in still further operative communication with the HVAC system to control the HVAC system based at least in part on a comparison of a measured ambient temperature and the setpoint temperature value.
  • another thermostat may be presented.
  • the thermostat may include a housing, a user interface, a processing system communicatively coupled to the user interface and disposed within the housing, a power stealing circuit coupled to the processing system and configured to provide power to the user interface using a rechargeable battery, a plurality of HVAC connectors configured to receive a
  • the processing system may be configured to determine an HVAC system configuration by identifying a subset of the plurality of HVAC connectors into which a wire has been mechanically inserted, identifying an ambiguity resulting from the subset, providing an indication via the user interface based on the ambiguity, resolving the ambiguity in accordance with an input provided to the user interface, determining the HVAC system configuration; and operating the HVAC system in accordance with the HVAC system configuration.
  • FIG. 1 illustrates a perspective view of a thermostat, according to one embodiment.
  • FIG. 2 illustrates an exploded perspective view of a thermostat having a head unit and the backplate, according to one embodiment.
  • FIG. 3 A illustrates an exploded perspective view of a head unit with respect to its primary components, according to one embodiment.
  • FIG. 3B illustrates an exploded perspective view of a backplate with respect to its primary components, according to one embodiment.
  • FIG. 4A illustrates a simplified functional block diagram for a head unit, according to one embodiment.
  • FIG. 4B illustrates a simplified functional block diagram for a backplate, according to one embodiment.
  • FIG. 5 illustrates a simplified circuit diagram of a system for managing the power consumed by a thermostat, according to one embodiment.
  • FIG. 6 illustrates steps for automated system matching that can be carried out by a thermostat, according to one embodiment.
  • FIGS. 7A-7B are diagrams showing a thermostat backplate having a plurality of wiring terminals, according to some embodiments.
  • FIG. 8 illustrates a flowchart of a method for determining an HVAC configuration using wire connectors, according to one embodiment.
  • FIG. 9 illustrates a flowchart of a method of determining whether an HVAC system uses a heat pump, according to one embodiment.
  • FIG. 10 illustrates a flowchart of a method for determining an HVAC system
  • FIG. 1 1 illustrates a flowchart of a method for determining an HVAC system
  • FIG. 12 illustrates a flowchart of a method for determining an HVAC system
  • FIG. 13 illustrates a flowchart of a method for determining an HVAC system
  • FIG. 14A illustrates a user interface of a thermostat for providing an output describing a wiring error, according to one embodiment.
  • FIG. 14B illustrates a user interface of a thermostat providing a graphical output of mechanical wiring connections that have been detected, according to one embodiment.
  • FIG. 15A illustrates a user interface of a thermostat providing a graphical output of multiple wiring connections, according to one embodiment.
  • FIG. 15B illustrates a corresponding user interface of a thermostat providing a graphical wiring diagram, according to one embodiment.
  • FIG. 16A illustrates a user interface of a thermostat providing a graphical description of a current wiring configuration, according to one embodiment.
  • FIG. 16B illustrates a thermostat user interface providing additional information for a particular connector, according to one embodiment.
  • FIG. 17A illustrates a thermostat with a user interface displaying a connection to a wildcard connector, according to one embodiment.
  • FIG. 17B illustrates a thermostat with a user interface displaying a configuration screen for the wildcard connector, according to one embodiment.
  • FIG. 18A illustrates a settings screen for accessing a professional setup interface.
  • FIG. 18B illustrates a warning that may be displayed for professional setup, according to one embodiment.
  • thermostats according to one or more of the preferred embodiments are applicable for a wide variety of enclosures having one or more HVAC systems including, without limitation, duplexes, townhomes, multi-unit apartment buildings, hotels, retail stores, office buildings, and industrial buildings.
  • Exemplary Thermostat Embodiments Provided according to one or more embodiments are systems, methods, and computer program products for controlling one or more HVAC systems based on one or more versatile sensing and control units (VSCU units), each VSCU unit being configured and adapted to provide sophisticated, customized, energy-saving HVAC control functionality while at the same time being visually appealing, non-intimidating, and easy to use.
  • VSCU units versatile sensing and control units
  • the term "thermostat” is used herein below to represent a particular type of VSCU unit (Versatile Sensing and Control) that is particularly applicable for HVAC control in an enclosure. Although “thermostat" and "VSCU unit” may be seen as generally
  • each of the embodiments herein to be applied to VSCU units having control functionality over measurable characteristics other than temperature (e.g., pressure, flow rate, height, position, velocity, acceleration, capacity, power, loudness, brightness) for any of a variety of different control systems involving the governance of one or more measurable characteristics of one or more physical systems, and/or the governance of other energy or resource consuming systems such as water usage systems, air usage systems, systems involving the usage of other natural resources, and systems involving the usage of various other forms of energy.
  • measurable characteristics other than temperature e.g., pressure, flow rate, height, position, velocity, acceleration, capacity, power, loudness, brightness
  • FIGS. 1-5 and the descriptions in relation thereto provide exemplary embodiments of thermostat hardware and/or software that can be used to implement the specific embodiments of the appended claims.
  • This thermostat hardware and/or software is not meant to be limiting, and is presented to provide an enabling disclosure.
  • FIG. 1 illustrates a perspective view of a thermostat 100, according to one embodiment.
  • the thermostat 100 can be controlled by at least two types of user input, the first being a rotation of the outer ring 1 12, and the second being an inward push on an outer cap 108 until an audible and/or tactile "click" occurs.
  • these two types of user inputs may be referred to as "manipulating" the thermostat.
  • manipulating the thermostat may also include pressing keys on a keypad, voice recognition commands, and/or any other type of input that can be used to change or adjust settings on the thermostat 100.
  • the outer cap 108 can comprise an assembly that includes the outer ring 1 12, a cover 1 14, an electronic display 116, and a metallic portion 124.
  • Each of these elements, or the combination of these elements may be referred to as a "housing" for the thermostat 100.
  • each of these elements, or the combination of these elements may also form a user interface.
  • the user interface may specifically include the electronic display 116.
  • the user interface 1 16 may be said to operate in an active display mode.
  • the active display mode may include providing a backlight for the electronic display 116.
  • the active display mode may increase the intensity and/or light output of the electronic display 1 16 such that a user can easily see displayed settings of the thermostat 100, such as a current temperature, a setpoint temperature, an HVAC function, and/or the like.
  • the active display mode may be contrasted with an inactive display mode (not shown).
  • the inactive display mode can disable a backlight, reduce the amount of information displayed, lessen the intensity of the display, and/or altogether turn off the electronic display 1 16, depending on the embodiment.
  • the active display mode and the inactive display mode of the electronic display 116 may also or instead be characterized by the relative power usage of each mode.
  • the active display mode may generally require substantially more electrical power than the inactive display mode.
  • different operating modes of the electronic display 1 16 may instead be characterized completely by their power usage.
  • the different operating modes of the electronic display 116 may be referred to as a first mode and a second mode, where the user interface requires more power when operating in the first mode than when operating in the second mode.
  • the electronic display 1 16 may comprise a dot-matrix layout (individually addressable) such that arbitrary shapes can be generated, rather than being a segmented layout. According to some embodiments, a combination of dot-matrix layout and segmented layout is employed.
  • electronic display 116 may be a backlit color liquid crystal display (LCD). An example of information displayed on the electronic display 116 is illustrated in FIG. 1, and includes central numerals 120 that are representative of a current setpoint temperature.
  • metallic portion 124 can have a number of slot-like openings so as to facilitate the use of a sensors 130, such as a passive infrared motion sensor (PIR), mounted beneath the slot-like openings.
  • PIR passive infrared motion sensor
  • the thermostat 100 can include additional components, such as a processing system 160, display driver 164, and a wireless communications system 166.
  • the processing system 160 can adapted or configured to cause the display driver 164 to cause the electronic display 1 16 to display information to the user.
  • the processing system 160 can also be configured to receive user input via the rotatable ring 112.
  • These additional components, including the processing system 160, can be enclosed within the housing, as displayed in FIG. 1. These additional components are described in further detail herein below.
  • the processing system 160 is capable of carrying out the governance of the thermostat's operation.
  • processing system 160 can be further programmed and/or configured to maintain and update a thermodynamic model for the enclosure in which the HVAC system is installed.
  • the wireless communications system 166 can be used to communicate with devices such as personal computers, remote servers, handheld devices, smart phones, and/or other thermostats or HVAC system components. These communications can be peer-to-peer communications, communications through one or more servers located on a private network, or and/or communications through a cloud-based service.
  • occupancy information can be a used in generating an effective and efficient scheduled program.
  • an active proximity sensor 170A can be provided to detect an approaching user by infrared light reflection
  • an ambient light sensor 170B can be provided to sense visible light.
  • the proximity sensor 170A can be used in conjunction with a plurality of other sensors to detect proximity in the range of about one meter so that the thermostat 100 can initiate "waking up" when the user is approaching the thermostat and prior to the user touching the thermostat.
  • proximity sensing is useful for enhancing the user experience by being “ready” for interaction as soon as, or very soon after the user is ready to interact with the thermostat. Further, the wake-up-on-proximity functionality also allows for energy savings within the thermostat by “sleeping" when no user interaction is taking place or about to take place.
  • sensors that may be used, as well as the operation of the "wake up” function are described in much greater detail throughout the remainder of this disclosure.
  • the thermostat can be physically and/or functionally divided into at least two different units. Throughout this disclosure, these two units can be referred to as a head unit and a backplate.
  • FIG. 2 illustrates an exploded perspective view 200 of a thermostat 208 having a head unit 210 and a backplate 212, according to one embodiment. Physically, this arrangement may be advantageous during an installation process.
  • the backplate 212 can first be attached to a wall, and the HVAC wires can be attached to a plurality of HVAC connectors on the backplate 212.
  • the head unit 210 can be connected to the backplate 212 in order to complete the installation of the thermostat 208.
  • FIG. 1 illustrates an exploded perspective view 200 of a thermostat 208 having a head unit 210 and a backplate 212, according to one embodiment. Physically, this arrangement may be advantageous during an installation process.
  • the backplate 212 can first be attached to a wall, and the HVAC wires can be attached to a plurality of HVAC connectors on the backplate 212.
  • the head unit 330 may include an electronic display 360.
  • the electronic display 360 may comprise an LCD module.
  • the head unit 330 may include a mounting assembly 350 used to secure the primary components in a completely assembled head unit 330.
  • the head unit 330 may further include a circuit board 340 that can be used to integrate various electronic components described further below.
  • the circuit board 340 of the head unit 330 can include a manipulation sensor 342 to detect user manipulations of the thermostat.
  • the manipulation sensor 342 may comprise an optical finger navigation module as illustrated in FIG. 3A.
  • a rechargeable battery 344 may also be included in the assembly of the head unit 330.
  • rechargeable battery 344 can be a Lithium-Ion battery, which may have a nominal voltage of 3.7 volts and a nominal capacity of 560 mAh.
  • FIG. 3B illustrates an exploded perspective view 300b of a backplate 332 with respect to its primary components, according to one embodiment.
  • the backplate 332 may include a frame 310 that can be used to mount, protect, or house a backplate circuit board 320.
  • the backplate circuit board 320 may be used to mount electronic components, including one or more processing functions, and/or one or more HVAC wire connectors 322.
  • the one or more HVAC wire connectors 322 may include integrated wire insertion sensing circuitry configured to determine whether or not a wire is mechanically and/or electrically connected to each of the one or more HVAC wire connectors 322.
  • two relatively large capacitors 324 are a part of power stealing circuitry that can be mounted to the backplate circuit board 320. The power stealing circuitry is discussed further herein below.
  • FIG. 4A illustrates a simplified functional block diagram 400a for a head unit, according to one embodiment.
  • the functions embodied by block diagram 400a are largely self- explanatory, and may be implemented using one or more processing functions.
  • the term "processing function" may refer to any combination of hardware and/or software.
  • a processing function may include a microprocessor, a microcontroller, distributed processors, a lookup table, digital logic, logical/arithmetic functions implemented in analog circuitry, and/or the like.
  • a processing function may also be referred to as a processing system, a processing circuit, or simply a circuit.
  • a processing function on the head unit may be implemented by an ARM processor.
  • the head unit processing function may interface with the electronic display 402, an audio system 404, and a manipulation sensor 406 as a part of a user interface 408.
  • the head unit processing function may also facilitate wireless
  • the head unit processing function may be configured to control the core thermostat operations 416, such as operating the HVAC system.
  • the head unit processing function may further be configured to determine or sense occupancy 418 of a physical location, and to determine building characteristics 420 that can be used to determine time-to-temperature characteristics.
  • the processing function on the head unit may also be configured to learn and manage operational schedules 422, such as diurnal heat and cooling schedules.
  • a power management module 462 may be used to interface with a corresponding power management module on the back plate, the rechargeable battery, and a power control circuit 464 on the back plate.
  • the head unit processing function may include and/or be communicatively coupled to one or more memories.
  • the one or more memories may include one or more sets of instructions that cause the processing function to operate as described above.
  • the one or more memories may also include a sensor history and global state objects 424.
  • the one or more memories may be integrated with the processing function, such as a flash memory or RAM memory available on many commercial microprocessors.
  • the head unit processing function may also be configured to interface with a cloud management system 426, and may also operate to conserve energy wherever appropriate 428.
  • An interface 432 to a backplate processing function 430 may also be included, and may be implemented using a hardware connector.
  • FIG. 4B illustrates a simplified functional block diagram for a backplate, according to one embodiment.
  • the backplate processing function can communicate with the head unit processing function 438.
  • the backplate processing function can include wire insertion sensing 440 that is coupled to external circuitry 442 configured to provide signals based on different wire connection states.
  • the backplate processing function may be configured to manage the HVAC switch actuation 444 by driving power FET circuitry 446 to control the HVAC system.
  • the backplate processing function may also include a sensor polling interface 448 to interface with a plurality of sensors.
  • the plurality of sensors may include a temperature sensor, a humidity sensor, a PIR sensor, a proximity sensor, an ambient light sensor, and or other sensors not specifically listed. This list is not meant to be exhaustive. Other types of sensors may be used depending on the particular embodiment and application, such as sound sensors, flame sensors, smoke detectors, and/or the like.
  • the sensor polling interface 448 may be communicatively coupled to a sensor reading memory 450.
  • the sensor reading memory 450 can store sensor readings and may be located internally or externally to a microcontroller or microprocessor.
  • the backplate processing function can include a power management unit 460 that is used to control various digital and/or analog components integrated with the backplate and used to manage the power system of the thermostat.
  • a power management unit 460 that is used to control various digital and/or analog components integrated with the backplate and used to manage the power system of the thermostat.
  • the power management system of this particular embodiment can include a bootstrap regulator 462, a power stealing circuit 464, a buck converter 466, and/or a battery controller 468.
  • FIG. 5 illustrates a simplified circuit diagram 500 of a system for managing the power consumed by a thermostat, according to one embodiment.
  • the powering circuitry 510 comprises a full-wave bridge rectifier 520, a storage and waveform-smoothing bridge output capacitor 522 (which can be, for example, on the order of 30 microfarads), a buck regulator circuit 524, a power-and-battery (PAB) regulation circuit 528, and a
  • PAB power-and-battery
  • the powering circuitry 510 can be configured and adapted to have the characteristics and functionality described herein below. Description of further details of the powering circuitry 510 and associated components can be found elsewhere in the instant disclosure and/or in the commonly assigned U.S. 13/034,678, supra, and U.S. 13/267,871, supra.
  • the powering circuitry 510 operates as a relatively high-powered, rechargeable-battery-assisted AC-to-DC converting power supply.
  • the powering circuitry 510 When there is not a "C” wire presented, the powering circuitry 510 operates as a power-stealing, rechargeable- battery-assisted AC-to-DC converting power supply.
  • the powering circuitry 510 generally serves to provide the voltage Vcc MAIN that is used by the various electrical components of the thermostat, which in one embodiment can be about 4.0 volts.
  • Vcc MAIN the voltage used by the various electrical components of the thermostat, which in one embodiment can be about 4.0 volts.
  • the power supplied by the "C" wire will be greater than the instantaneous power required at any time by the remaining circuits in the thermostat.
  • the powering circuitry 510 may also be configured to "steal" power from one of the other HVAC wires in the absence of a "C” wire.
  • active power stealing refers to the power stealing that is performed during periods in which there is no active call in place based on the lead from which power is being stolen.
  • active power stealing refers to the power stealing that is performed when there is no active cooling call in place.
  • active power stealing refers to the power stealing that is performed during periods in which there is an active call in place based on the lead from which power is being stolen.
  • active power stealing refers to the power stealing that is performed when there is an active cooling call in place.
  • power can be stolen from a selected one of the available call relay wires. While a complete description of the power stealing circuitry 510 can be found in the commonly assigned applications that have been previously incorporated herein by reference, the following brief explanation is sufficient for purposes of this disclosure.
  • Some components in the thermostat may consume more instantaneous power than can be provided by power stealing alone.
  • the power supplied by power stealing can be supplemented with the rechargeable battery 530.
  • the thermostat when the thermostat is engaged in operations, such as when the electronic display is in an active display mode, power may be supplied by both power stealing and the rechargeable battery 530.
  • some embodiments optimize the amount of time that the head unit processing function and the electronic display are operating in an active mode. In other words, it may be advantageous in some embodiments to keep the head unit processing function in a sleep mode or low power mode and to keep the electronic display in an inactive display mode as long as possible without affecting the user experience.
  • the backplate processing function 508 can be configured to monitor the environmental sensors in a low-power mode, and then wake the head unit processing function 532 (AM3703) when needed to control the HVAC system, etc.
  • the backplate processing function 508 can be used to monitor sensors used to detect the closeness of a user, and wake the head unit processing system 532 and/or the electronic display when it is determined that a user intends to interface with the thermostat.
  • FIGS. 1-5 are merely exemplary and not meant to be limiting. Many other hardware and/or software configurations may be used to implement a thermostat and the various functions described herein below. These embodiments should be seen as an exemplary platform in which the following embodiments can be implemented to provide an enabling disclosure. Of course, the following methods, systems, and/or software program products could also be implemented using different types of thermostats, different hardware, and/or different software.
  • FIG. 6 illustrates steps for automated system matching that are preferably carried out by the same thermostat or thermostatic control system that carries out one or more of the other HVAC control methods that are described in the instant patent specification. It has been found particularly desirable to make thermostat setup and governance as user- friendly as possible by judiciously automating the selection of which among a variety of available energy-saving and comfort-promoting control algorithms are appropriate for the particular HVAC configuration of the home in which the thermostat is installed.
  • the HVAC system features available for control by the thermostat are determined by virtue of at least one of (i) automated wire insertion detection, (ii) interactive user interview, (iii) automated inferences or deductions based on automated trial runs of the HVAC system at or near the time of thermostat installation, and (iv) automated inferences or deductions based on observed system behaviors or performance. Examples of such methods are described in one or more of the commonly assigned US20120130679A1 and US20120203379A1, as well as the present application.
  • step 606 if it is determined that the HVAC system includes air conditioning (step 604), which may be by virtue of a dedicated air conditioning system and/or a heat pump operating in the cooling direction, then at step 606 there is enabled a smart preconditioning feature for cooling mode operation.
  • air conditioning step 604
  • a smart preconditioning feature for cooling mode operation.
  • U.S. Ser. No. / [Atty. Docket No. 94021-NES0257US-852484] filed even date herewith and entitled, "Preconditioning Controls and Methods for an Environmental Control System", which is incorporated by reference herein.
  • the smart preconditioning algorithm is configured to: constantly learn how fast the home heats up or cools down by monitoring the recent heating and cooling history of the home, optionally incorporating external environmental information such as outside temperatures, sun heating effects, etc.; predict how long the HVAC system will need to actively heat or cool in order to reach a particular scheduled setpoint; and begin preconditioning toward the particular scheduled setpoint at just the right time such that the scheduled setpoint temperature will be reached at the scheduled setpoint time.
  • User comfort is promoted by virtue of not reaching the scheduled setpoint temperature too late, while energy savings is promoted by virtue of not reaching the scheduled setpoint temperature too early.
  • step 608 if it is determined that the HVAC system includes radiant heating (step 608), then at step 618 there is enabled a smart radiant control feature for heating mode operation.
  • a smart radiant control feature for heating mode operation.
  • One example of a particularly advantageous smart radiant control feature is described in the commonly assigned U.S. Ser. No. / ,
  • the smart radiant control feature is configured to monitor radiant heating cycles on an ongoing basis, compute an estimated thermal model of the home as heated by the radiant system, and predictively control the radiant system in a manner that takes into account the thermal model of the house, the time of day, and the previous heat cycle information.
  • the smart radiant control feature is configured to achieve comfortable maintenance band temperatures while also minimizing frequent changes in HVAC on/off states and minimizing HVAC energy consumption. Among other advantages, uncomfortable and energy -wasting target temperature overshoots are avoided.
  • auxiliary resistive electrical heating i.e., so-called auxiliary or AUX heat
  • the thermostat is network-connected (such that it can receive outside temperature information based on location data and an internet-based temperature information source) or otherwise has access to outside temperature information (such as by wired or wireless connection to an outside temperature sensor)
  • auxiliary or AUX heat auxiliary resistive electrical heating
  • step 610 there is not a heat pump with AUX heat (which will most commonly be because there is a conventional gas furnace instead of a heat pump, or else because there is a heat pump in a so-called dual-fuel system that does not include AUX heat)
  • step 614 there is enabled a smart preconditioning feature for heat mode, which can be a similar or identical opposing counterpart to the preconditioning feature for cooling mode discussed supra with respect to step 606.
  • the smart heat pump control feature of step 616 is not enabled and instead the smart preconditioning feature of step 614 is enabled.
  • step 616 one example of a particularly advantageous smart heat pump control feature is described in the commonly assigned U.S. Ser. No. 13/632,093, filed even date herewith and entitled, "Intelligent Controller For An Environmental Control System", which is incorporated by reference herein.
  • the AUX heat function allows for faster heating of the home, which can be particularly useful at lower outside temperatures at which heat pump compressors alone are of lesser efficacy, the energy costs of using AUX heat can often be two to five times as high as the energy costs of using the heat pump alone.
  • the smart heat pump control feature is configured to monitor heat pump heating cycles on an ongoing basis, tracking how fast the home is heated (for example, in units of degrees F per hour) by the heat pump compressor alone in view of the associated outside air temperatures. Based on computed correlations between effective heating rates and outside air temperatures, and further including a user preference setting in a range from "Max Comfort” to "Max Savings” (including a "Balanced” selection in between these end points), the smart heat pump control feature judiciously activates the AUX heating function in a manner that achieves an appropriate balance between user comfort and AUX heating costs.
  • the factors affecting the judicious invocation of AUX heat include (i) a predicted amount of time needed for the heat pump alone to achieve the current temperature setpoint, (ii) whether the current temperature setpoint resulted from an immediate user control input versus whether it was a scheduled temperature setpoint, and (iii) the particular selected user preference within the "Max Comfort” to "Max Savings” range.
  • the AUX function determination will be more favorable to invoking AUX heat as the compressor-alone time estimate increases, more favorable to invoking AUX heat for immediate user control inputs versus scheduled setpoints, and more favorable to invoking AUX heat for "Max Comfort" directed preferences than for "Max Savings" directed preferences.
  • the smart heat pump control feature further provides for automated adjustment of a so-called AUX lockout temperature, which corresponds to an outside air temperature above which the AUX heat will never be turned on, based on the monitored heat pump heating cycle information and the user preference between "Max Comfort” and "Max Savings.”
  • AUX lockout temperatures will be lower (leading to less AUX usage) for better-performing heat pumps, and will also be lower (leading to less AUX usage) as the user preference tends toward "Max Savings".
  • the smart heat pump control feature further provides for night time temperature economization in which an overnight setpoint temperature may be raised higher than a normally scheduled overnight setpoint if, based on the overnight temperature forecast, the AUX function would be required to reach a morning setpoint temperature from the normal overnight setpoint temperature when morning comes.
  • night time temperature economization in which an overnight setpoint temperature may be raised higher than a normally scheduled overnight setpoint if, based on the overnight temperature forecast, the AUX function would be required to reach a morning setpoint temperature from the normal overnight setpoint temperature when morning comes.
  • the determinations made at one or more of steps 608 and 610 can be based on automatically observed HVAC system performance information rather than specific system identification information. For example, it may be the case that a particular heating functionality of an HVAC system is not physically a radiant system, but nevertheless tends to exhibit signs of a high thermal mass combined with substantial control lag, making it similar in nature to a radiant heating system. For such cases, the smart radiant control feature may be enabled to improve performance.
  • the HVAC system has a heat pump with AUX functionality, but it may have a two-stage heating functionality in which the first stage (which type was likely chosen as a first stage because it was more cost-effective) tends to be very slow or "fall behind" at lower outside temperatures, and in which the second stage (which type was likely chosen as a second stage because it was less cost-effective) tends to be very time-effective in heating up the home, thus making the system act very much like a heat pump system with AUX functionality.
  • the smart heat pump control feature may be enabled to improve performance.
  • modern control devices can be used to control various aspects of the home environment, including air temperature, humidity, fan speed, music, television, appliances, and/or the like.
  • These modern control devices may include a number of connections, both wired and wireless, to other household systems. Depending on the complexity of these connections, modern control devices may appear difficult to install to the average homeowner and create a perception that professional installation is required in order to enjoy the benefits of modern control devices.
  • the control device may mechanically or electrically detect the available connections to other systems within an enclosure. The control device may then intelligently analyze these connections and determine the configurations of the other systems. If the control device is able to determine the other system configurations, then the control device can operate in accordance with those configurations without requiring additional user input. However, if the control device is unable to determine these configurations (i.e. multiple system configurations are possible with the same set of connections) then a user interface on the control device may interview the user to acquire the minimal amount of information necessary to pinpoint the other system configurations. Additionally, connection errors can be detected, and-users can be alerted before possible damage can occur to the other systems.
  • thermostat the primary external system with which it will interface is an HVAC system.
  • HVAC system can communicate with the thermostat through a plurality of HVAC control wires. Depending on the configuration of the HVAC system, different wires may be available.
  • HVAC system configurations are possible depending on the climate, the geographic location, the time of year, the age of the home, the natural resources locally available, and/or the like.
  • some homes may operate using a conventional gas-powered heater and a compressor-based air conditioner.
  • Other homes may use a heat pump.
  • supplemental systems may be used, such as electrical strip heat, gas heaters, radiant flooring, boilers, and/or the like.
  • an HVAC system may also provide other features, such as humidifiers, dehumidifiers, fans, emergency heating, and/or the like.
  • a reliable inference can sometimes be made as to at least part of an HVAC system configuration. For example, if a wire is connected between the HVAC system and the O/B connector of the thermostat, then it can be reliably inferred that the HVAC system uses a heat pump. Therefore, by analyzing each of the connections to the thermostat, some or all of the system configuration can be deduced. The difficulty lies in the fact that different HVAC system configurations may use similar wire connections to the thermostat. Thus, every HVAC system configuration cannot be deduced based solely on the wire connections.
  • the Yl wire may be used to activate an air conditioner, whereas in a heat pump system, the Yl wire may be used to activate the heat pump in cooperation with an O/B wire.
  • a heat pump system it may not be possible to determine whether the system is dual-fuel or single-fuel based solely on the connections. In these cases, additional user input may be required.
  • the thermostat can operate in accordance with that system configuration without requiring additional user input.
  • a user interface of the thermostat may present an interview- style set of questions to the user in order to acquire the needed information. The user interview may include instructions to visit a website to educate the user on different HVAC configurations that will help the user understand their HVAC system.
  • FIGS. 7A-7B are diagrams showing a thermostat backplate having a plurality of user- friendly tool-free wiring terminals, according to some embodiments.
  • the thermostat 102 is separable into a head unit 540 and backplate 542.
  • FIG. 7A Shown in FIG. 7A is a plan view of backplate 542 which has been configured for easy installation by a non-expert installer, such as an end-user.
  • Back plate 542 includes two banks of HVAC wire connectors, which together provide capability for tool-free connection to up to 10 HVAC system wires.
  • a semi-circularly arranged left bank includes 5 connectors 710, 712, 714, 716 and 718.
  • a semi-circularly arranged right bank includes 5 connectors 720, 722, 724, 726 and 728.
  • 10 wiring connectors are shown in the embodiments of FIG. 7A, other numbers of connectors (for example 6, 8 or 12 connectors) can be similarly arranged in banks of circular arrangements.
  • a large central opening 692 is provided through which the HVAC wires can pass when backplate 542 is wall mounted.
  • the backplate is mounted using two screw fasteners 760 and 762 passing through backplate mounting holes 692 and 694 respectively and anchored into wall 780.
  • a number of HVAC system wires, for example wires 772 and 774 are shown protruding through wall hole 770 and through backplate central opening 692.
  • each wiring connector has a spring loaded, pushable button which allows for an HVAC wire to be inserted into a wire hole.
  • connector 726 has a spring loaded button 734 and a wire hole 736. When the button is released, the spring action within the connectors a wire securely grasps the wire inserted in the wire hole.
  • Each connector is wedge shaped as shown, with the button end being wider than the wire-hole end. In the examples shown, the button end of the connector is 8.5 mm in width and the wire-hole end is 5.1 mm in width. In the embodiment shown, each connector occupies 15.3 degrees of an arc on the backplate 542, however, it has been found that connector widths of between 10-20 degrees of arc to be suitable for many applications.
  • Another important dimension from a usability standpoint has been found to be the distance from the button surface to the wire insertion location (the wire hole). If the button to wire-hole distance is too short, it has been found that many users have difficulty in installation because the finger used to press the button tends to block a good view of the wire hole. In the embodiments shown the distance from the button center to the wire hole is 12.2 mm.
  • buttons 772 and 774 are commonly 18 gauge solid (18AWG or 1.024mm diameter). As a result the wires protruding from the hole in the wall are rather stiff and may be difficult to bend and otherwise manipulate.
  • the HVAC wires By passing the HVAC wires through a central opening 692 and arranging the connectors close to the outer periphery of backplate 542 and positioning the wire holes in an arc-shaped pattern surrounding the central opening, more space is allowed the user to bend the HVAC wires.
  • the distance d from the center 704 of the central opening 692 (and of the backplate 542) to the wire hole in each connector is 21 mm. Also, since the wire holes are arranged in a circular pattern around the central opening 692, the distance d from the wire hole to the center of the backplate is equal for each connector, thereby aiding the installation of many wires being the same length protruding from wall 780 from the same hole 770.
  • the radial direction between the hole 770 and the wire holes of the conductors also allows for few and less complicated bending of the HVAC wires during installation, since each hole is directly facing the hole 770.
  • the placement, shape orientation and arrangement of the connectors on the backplate 542 has been found to greatly increase the user install ability of the thermostat.
  • An example of user's finger 702 is shown pressing the button of connector 728.
  • FIG. 7B is a perspective view of a backplate being installed on a wall, according to some embodiments.
  • the backplate 542 is shown attached to surface of wall 780.
  • the user has a left hand 704 that is pressing the button of connector 716 while a right hand 706 is inserting a wire 750 into the wire hole 746 of wiring connector 716. Note that due to the adequate distance between the button and wire hole of the connector, the user's finger used to press the button does not block the user's view of the wire hole. It has been found that the combination of pressing a spring loaded button and inserting the wire in a wire hole is much easier for non-expert installers than conventional screw-type wire terminals which require carefully holding a wire in place while positioning and turning a relatively small sized screw driver.
  • the backplate of the thermostat can be equipped with a small mechanical detection switch (not shown) for each distinct input port, such that the insertion of a wire (and, of course, the non-insertion of a wire) is automatically detected and a corresponding indication signal is provided to a processing system of the thermostat upon initial docking.
  • the thermostat can have knowledge for each individual input port whether a wire has, or has not, been inserted into that port.
  • the thermostat can be also provided with electrical sensors (e.g., voltmeter, ammeter, and ohmmeter) corresponding to each of the input wiring connectors. The thermostat can thereby be enabled, by suitable programming, to perform some fundamental "sanity checks" at initial installation.
  • the thermostat itself to be self-contained such that a knowledge base of possible HVAC system configurations is stored within the thermostat.
  • the user interface may provide wiring charts, scenario diagrams, interview-style questions, and so forth that have been preloaded on the thermostat in order to facilitate easy installation. This may provide a user with all of the instructions necessary for installation without requiring network activity to access a URL or website information.
  • the thermostat may instead be provided with wire insertion sensors using mechanical detection or electrical detection in combination with a communication chip and a user interface. In this case, the thermostat may provide wiring configuration information to the cloud server from which is retrieved possible HVAC system configurations.
  • the cloud-based configuration database can be updated constantly at the cloud server.
  • the thermostat need not require a user interface at all.
  • the interface may be provided by a smart phone, PDA, or other mobile computing device.
  • the user may interface with the thermostat using the mobile computing device. This may allow the cost of the thermostat to be greatly reduced as a user interface may be eliminated. Additionally, the power usage of the thermostat may be conserved by not requiring a user interface.
  • the installation methods described herein for determining an HVAC system configuration may also operate using the mobile computing interface. It will be understood in light of this disclosure that one having skill in the art could readily combine any of these methods for providing installation information.
  • information may be stored a priori on the thermostat, provided by a cloud server, and or interfaced with a mobile computing device, depending on the particular embodiment and use thereof.
  • a cloud server provides a mobile computing device.
  • storing all or most of the information required for installation on the thermostat can be most advantageous because no network connection is required. This avoids a so-called “chicken and egg” problem, wherein users without network connections cannot access installation information, and they are unable to diagnose the problem because they have no network connection. This scenario causes many users to simply give up and return the thermostat in exchange for a more basic model that does not provide advanced functionality.
  • FIG. 8 illustrates a flowchart 800 of a method for determining an HVAC configuration using wire connectors, according to one embodiment.
  • the method may include detecting a change in the thermostat wiring (802).
  • the change may be detected using mechanical detection techniques and/or electrical detection techniques as described above.
  • a delay may be added such that these changes are not detected until after a batch of changes has been made, such as during installation process after the thermostat is assembled.
  • This detection may also be carried out by a connection sensing module coupled to a plurality of HVAC connectors.
  • the connection sensing module may be configured to determine the identities of a first subset of the plurality of HVAC connectors into which corresponding HVAC wires have been inserted.
  • the method may also include determining identities of the wire connectors (804).
  • this step may comprise a processing system that is configured to process the identities of the subset of HVAC connectors to determine a configuration of the HVAC system to be controlled.
  • the method may further include determining whether multiple HVAC system
  • this may be determined by identifying, based on the identities of the first subset of identified HVAC connectors, whether (i) only a single possible HVAC system configuration is indicated thereby, or (ii) multiple possible HVAC system configurations are indicated thereby.
  • the method may include operating the HVAC system according to the single possible HVAC system configuration (810).
  • the method may include resolving the multiple possible HVAC system configurations down to a particular one HVAC configuration (808).
  • the multiple HVAC system configurations may be resolved based on at least one user response to at least one inquiry to a user presented on a user interface. Examples of such user interfaces may be discussed further herein below. After the multiple HVAC system configurations have been resolved to a single HVAC configuration, the system may then operate in according to the particular HVAC system configuration (810).
  • the method described above can be implemented using virtually any control unit for an enclosure.
  • the method described above can be used to configure the thermostat to be compatible with virtually any HVAC system configuration.
  • the particular thermostat described herein includes ten distinct HVAC wire connectors. However, it will be understood that other thermostat embodiments may include more or fewer HVAC wire connectors, which may have different names or labels associated with HVAC wires. Depending on which wires are available, and which wire connectors are used by the particular thermostat embodiment, different logical algorithms may be used to determine an HVAC configuration.
  • FIG. 9 illustrates a flowchart 900 of a method of determining whether an HVAC system uses a heat pump, according to one embodiment.
  • it can first be determined whether a wire has been mechanically inserted into an O/B connector of the thermostat (902).
  • the O/B wire can be used to control the direction of a heat pump, i.e. whether the heat pump is heating or cooling the inside of the enclosure.
  • the O/B wire is not used in a conventional HVAC system.
  • conventional may be used to refer to any HVAC system that does not use a heat pump. Therefore, if a wire is not mechanically detected in the O/B connector, it can be reliably determined that the HVAC system uses a conventional heater and/or air conditioner (904). The discussion for conventional systems continues in relation to FIG. 10 described herein below.
  • the method may determine whether a wire is mechanically detected at the Yl connector (906).
  • the Yl wire is used to activate the heat pump. If no wire is detected at the Yl connector, then this may result in an error condition (908). For example, a message can be displayed on the user interface informing the user that a Yl wire is not detected, and the heat pump requires a Yl wire.
  • the user could also be referred to a website explaining the issue and providing more information. Refer to FIGS. 14-18 later in this disclosure for a discussion of addressing errors and/or ambiguities using the user interface of the thermostat. If a wire is detected at the Yl connector, it may next be determined whether a wire is mechanically detected at the W3 connector (910).
  • the thermostat knows that it is dealing with a heat pump based HVAC system; however, many different heat pump configurations can exist.
  • the W3 wire can be used to segregate the various possible heat pump configurations into two categories.
  • the first category of heat pump systems uses the W3 wire (914), and will be discussed in relation to FIG. 12 below.
  • the second category of heat pump system does not use the W3 wire (912), and will be discussed in relation to FIG. 13 below.
  • FIG. 10 illustrates a flowchart 1000 of a method for determining an HVAC system configuration for a conventional HVAC system, according to one embodiment.
  • Flowchart 1000 may be considered a continuation of flowchart 900 from FIG. 9.
  • a conventional HVAC system - rather than a heat pump - is connected to the thermostat because no O/B wire was connected (1002).
  • a W3 wire is not detected, then it may be possible to determine that a one-stage or a two-stage conventional heating unit is connected to the thermostat (1010). This option may be processed in accordance with the flowchart discussed below in relation to FIG. 1 1 below. If a W3 wire is mechanically detected, then it can next be determined whether a wire is mechanically detected at the W2/AUX connector (1012). If a W2/AUX wire is not detected, then an error may be displayed on a user interface explaining that a W3 wire also requires a W2/AUX wire (1014). Next, it can be determined whether a wire is mechanically detected at the Wl connector (1016). If a Wl wire is not detected, then an error may be displayed on the user interface that additional wires may be required because the W2/AUX wire has been detected by itself (1034).
  • a wire is mechanically detected at the Y2 connector (1018), as well as whether a wire is mechanically detected at the Yl connector (1020, 1026). If a Y2 wire is connected but a Yl wire is not connected, then an error may be displayed on a user interface informing a user that a Y2 wire requires a Yl wire (1022). If both a Yl wire and a Y2 wire are connected, then the thermostat may determine that a three-stage conventional heating with a two-stage conventional cooling HVAC system configuration is present (1024). If a Yl wire is connected without a Y2 wire, then the thermostat may determine that a three-stage conventional heating and one-stage conventional cooling HVAC system configuration is present (1030). Finally, if it is determined that neither the Yl wire nor the Y2 wire is connected, then it may be determined that a three-stage conventional heating HVAC system configuration is present (1028).
  • FIG. 11 illustrates a flowchart 1100 of a method for determining an HVAC system configuration for one-stage or two-stage conventional heating, according to one embodiment.
  • a one-stage or two-stage conventional heating HVAC system configuration may be present (1102).
  • it may be determined whether a wire is mechanically detected at the W2/AUX connector of the thermostat (1 104), as well as whether a wire is mechanically detected at the Wl connector of the thermostat (1 106, 11 12).
  • a W2/AUX wire is detected without a Wl wire, then an error may be displayed on the user interface that additional wires may be required because the W2/AUX wire has been detected by itself (1108). If a W2/AUX wire and a Wl wire are both detected, then a two-stage conventional heating system may be determined to be present (1 110). Depending on the presence of the Yl and Y2 wires, either a one-stage or a two-stage cooling system may also be present. If no W2/AUX wire is connected, but a Wl wire is connected, then an error may be present. Again, depending on the presence of the Y 1 and Y2 wires, either a one-stage or a two-stage cooling system may also be present. Finally, if neither a W2/AUX wire or a Wl wire are connected, then depending upon the presence of the Yl and Y2 wires, either a one-stage or a two-stage cooling system may be present without a heating system.
  • FIG. 12 illustrates a flowchart 1200 of a method for determining an HVAC system configuration for a heat pump system with the W3 wire connection (continuing from step 914 of FIG. 9), according to one embodiment.
  • it may next be determined whether connections are made to the W2/AUX connector and/or the Wl connector (1204, 1214, 1224, 1234). The next step in the method can be modified to include inputs other than mechanical wire connections.
  • a user interface may be configured to present a user with an interview-style question(s) to determine whether the heat pump is single- fuel or dual-fuel. Depending upon one or more inputs provided to the user interface in response to the interview style question(s), the thermostat may then determine whether a final HVAC system configuration can be determined, or whether an error message should be presented on the user interface.
  • FIG. 13 illustrates a flowchart 1300 of a method for determining an HVAC system configuration for a heat pump system without the W3 wire connection (continuing from step 912 of FIG. 9), according to one embodiment.
  • a user interface may be configured to present a user with an interview-style question(s) to determine whether the heat pump is single-fuel or dual-fuel.
  • the thermostat may then determine whether a final HVAC system configuration can be determined, or whether an error message should be presented on the user interface.
  • W2/AUX detected mechanically but Wl not detected mechanically
  • Dual fuel selected [OK] 1. 0/B, Yl, W3, W2/AUX [one-stage heat pump heating and cooling with two-stage conventional heating]
  • the thermostat may ascertain that the wires mechanically connected to the wiring connectors form an invalid combination that is not supported by the thermostat.
  • a user interface of the thermostat may be used to provide an output.
  • the output may indicate that there is an error with the wiring configuration.
  • the output may also indicate possible solutions for the error, the severity of the error, external references that may be consulted to solve the error, and/or possible effects of the error.
  • FIG. 14A illustrates a user interface of a thermostat for providing an output describing a wiring error, according to one embodiment.
  • a user may have previously made wire connections to the wire connectors of the thermostat before turning the thermostat on.
  • the thermostat may run through a hardware or software implementation of the logic and flowcharts described elsewhere herein to determine whether an HVAC system
  • a wire may be mechanically detected at the Rc connector.
  • the thermostat may determine that at least a Yl or a Wl wire is necessary to run a valid HVAC system.
  • a wiring report 1402 may be presented on the user interface.
  • the wiring report 1402 may include an error code 1404 as well as a message 1406 providing additional information about the error condition.
  • the message 1406 may explain that no heating or cooling wires were detected, and that at least a Yl or a Wl wire is required.
  • the wiring report 1402 may include a reference 1408 to an external data source where more information regarding the error condition may be found, such as a website.
  • FIG. 14B illustrates a user interface of a thermostat providing a graphical output of mechanical wiring connections that have been detected, according to one embodiment.
  • each of a plurality of HVAC wire connectors 1410 may be illustrated for user.
  • the plurality of HVAC wire connectors 1410 may be arranged graphically on the user interface to match the actual physical arrangement provided by the thermostat.
  • the plurality of HVAC connectors 1410 displayed by the user interface are arranged similarly to the physical arrangement shown in FIG. 7A.
  • the connectors are arranged radially along the perimeter of the thermostat. In other embodiments, they may be arranged in a grid pattern, and oval pattern, or any other arrangement.
  • the user interface can show an electrical connection made for each of the plurality of HVAC wire connectors 1410.
  • electrical connection 1412 made to the Rc wire connector shows that a power wire has been electrically sensed at the connector.
  • the wire connectors that are implicated by the error may also be highlighted.
  • the Yl and the Wl connectors may have a different color, outline, or other such indicator arranged to draw a user's attention to those connectors.
  • a color or shading of the connectors implicated by the error has been altered compared to the connectors not responsible for or related to the error in the graphic display.
  • FIG. 15A illustrates a user interface of a thermostat providing a graphical output of multiple wiring connections, according to one embodiment.
  • a wiring report 1502 an error code 1504, a message 1506, and a reference 1508 may be provided by the user interface.
  • the message 1506 may inform a user that additional wires are connected in addition to the AUX/W2 wire. This may correspond to a case similar to that of step 1034 of FIG. 10, where a conventional HVAC system is detected with an AUX/W2 connection without a Wl connection.
  • FIG. 15B illustrates a corresponding user interface of a thermostat providing a graphical wiring diagram, according to one embodiment.
  • the plurality of HVAC wire connectors 1510 may show connections 1512 that have been mechanically detected.
  • valid connections have been made to the Yl connector, the Rc connector, and the
  • FIG. 16A illustrates a user interface of a thermostat providing a graphical description of a current wiring configuration, according to one embodiment.
  • each wire at which a mechanical connection is detected may be selected using the user interface in order to bring up additional information related to that connection.
  • the user interface may allow a user to cycle through each connection and verify that it is being interpreted correctly by the thermostat.
  • Each connection may be color-coded or otherwise highlighted to show users connections that have been checked and connections that still need to be checked.
  • a message 1602 may be displayed for each connection describing how the thermostat is interpreting the connection.
  • the Yl connection may be interpreted by the thermostat to control an electric air conditioner using forced air. If a user determines that this is an incorrect interpretation of the wiring connection, the user may select the Y 1 connection using the user interface and navigate to a screen providing interactive options for changing the way the Yl connection is interpreted.
  • FIG. 16B illustrates a thermostat user interface providing additional information for a particular connector, according to one embodiment. If a user selects the Yl connection in the previous interface, the interface of FIG. 16B may show that the thermostat will operate according to the displayed characteristics of the Yl wire.
  • the Yl wire may be construed to operate a conventional cooling system.
  • the source may be electrical, and the cooling system may operate with a forced air delivery.
  • a user may select either the source, type, or delivery associated with the Yl wire and choose a different option from a menu that may be displayed on the user interface.
  • the user interface may also be adaptable such that it can handle many different types of HVAC system configurations.
  • Some HVAC systems may include additional wires that are not specifically labeled on the HVAC connectors of the thermostat. Additional features such as radiant floor heating, humidifiers, dehumidifiers, emergency heating systems, second stages for heating and cooling systems, and/or the like may be numerous, and thus it would be impractical to provide a dedicated wire connector for each option that may be rarely used.
  • certain embodiments described herein will include a wildcard connector labeled with, for example, an asterisk or a star.
  • the thermostat function associated with this connector may be configured by a user using the user interface to handle one of the many various optional HVAC features that may be available.
  • FIG. 17A illustrates a thermostat with a user interface displaying a connection to the wildcard connector, according to one embodiment.
  • the user interface may display a currently selected function 1702 when the wildcard connector is selected.
  • the wildcard connector is configured to operate a bypass humidifier (i.e. a humidifier that requires concurrent heat).
  • the functions associated with the wildcard connector are displayed as part of a check routine for each connector.
  • the thermostat may provide a graphical display similar to that of FIG. 17A such that the user can configure the function of the wildcard connector before the thermostat begins operating. This may take place during an installation routine.
  • FIG. 17B illustrates a thermostat with a user interface displaying a configuration screen for the wildcard connector, according to one embodiment.
  • the user interface may be used to change the function of the wildcard connector to a dehumidifier used with the air conditioner (i.e. an air conditioner with a dehumidifying mode).
  • the dehumidifier may be activated by energizing the wildcard connector.
  • Both of these settings along with other settings that may not be shown explicitly, may be changed using this or a similar user interface.
  • the user interfaces provided thus far may allow users to make both simple and complex changes to the way their thermostat interacts with their HVAC system. These user interfaces may provide a simplified process that enables the average homeowner to perform even difficult installation procedures. However, in some cases the installation process may become too difficult for the average homeowner. Modern HVAC systems may become very complex, and incorrect wiring may cause unexpected HVAC activity, uncomfortable environmental conditions, or even equipment damage.
  • some embodiments may intelligently determine when an installation process or HVAC configuration may require a professional installer. This determination may be made while the thermostat is analyzing the mechanically-sensed wire connections. This determination may also be made while the thermostat is receiving configuration inputs from a user via the user interface.
  • the thermostat may be configured to detect common errors, configurations that are known to cause damage, unknown configurations, or even user confusion. For example, a user making numerous changes throughout the installation process may be determined to be ill- equipped to confidently install his or her own thermostat without causing damage.
  • the thermostat may provide a message on the user interface recommending a professional installer.
  • Some embodiments may provide a reference to a website or to another resource for finding professional installers well-versed with the particular type of HVAC system and/or thermostat. A user may then heed the warning provided by the thermostat and contact the professional installer, or the user may override the warning and continue with the installation process.
  • FIG. 18A illustrates a settings screen for accessing a professional setup interface.
  • a professional setup interface may provide additional options that are not provided to a regular homeowner. These options may be segregated into the professional setup interface in order to simplify the installation process for a regular homeowner. Additionally, these options may be complex and may require special training and/or experience. In one embodiment, a warning may be presented to a user when selecting the professional setup interface.
  • FIG. 18B
  • a warning may provide a description of the dangers of proceeding with the professional setup interface without proper training.
  • the interface may also provide an option 1802 allowing the user to continue with the professional setup interface or to go back to the regular setup interface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Air Conditioning Control Device (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)
  • Toilet Supplies (AREA)

Abstract

Un thermostat comprend un boîtier, une interface utilisateur et un système de traitement configuré pour commander un système CVCA (Chauffage, Ventilation et Climatisation) en utilisant des valeurs de point de régulage de température. Le thermostat peut également comporter une pluralité de connecteurs CVCA configurés pour recevoir des conducteurs de commande CVCA correspondants, et un module de détection de connexion configuré pour déterminer les identités de connecteurs CVCA dans lesquels des conducteurs correspondants ont été insérés. Le système de traitement peut en outre être configuré pour identifier, sur la base du sous-ensemble de connecteurs CVCA si (i) une seule configuration possible du système CVCA est ainsi indiquée ou (ii) si de multiples configurations possibles du système CVCA sont ainsi indiquées, résoudre une configuration particulière parmi celles possibles du système CVCA pouvant être appliquée sur la base d'une réponse de l'utilisateur à une demande présentée sur l'interface utilisateur, et faire fonctionner le système CVCA conformément à la configuration du système CVCA.
PCT/US2012/058207 2011-10-07 2012-09-30 Contrôleur cvca présentant des caractéristiques d'installation conviviales favorisant à la fois des scénarios d'installation du type bricolage et professionnels WO2013052389A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2851367A CA2851367C (fr) 2011-10-07 2012-09-30 Controleur cvca presentant des caracteristiques d'installation conviviales favorisant a la fois des scenarios d'installation du type bricolage et professionnels

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13/269,501 US8918219B2 (en) 2010-11-19 2011-10-07 User friendly interface for control unit
US13/269,501 2011-10-07
US201161627996P 2011-10-21 2011-10-21
US61/627,996 2011-10-21

Publications (1)

Publication Number Publication Date
WO2013052389A1 true WO2013052389A1 (fr) 2013-04-11

Family

ID=48044092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/058207 WO2013052389A1 (fr) 2011-10-07 2012-09-30 Contrôleur cvca présentant des caractéristiques d'installation conviviales favorisant à la fois des scénarios d'installation du type bricolage et professionnels

Country Status (2)

Country Link
CA (3) CA3188172A1 (fr)
WO (1) WO2013052389A1 (fr)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8918219B2 (en) 2010-11-19 2014-12-23 Google Inc. User friendly interface for control unit
US9026232B2 (en) 2010-11-19 2015-05-05 Google Inc. Thermostat user interface
US9092039B2 (en) 2010-11-19 2015-07-28 Google Inc. HVAC controller with user-friendly installation features with wire insertion detection
US9175871B2 (en) 2011-10-07 2015-11-03 Google Inc. Thermostat user interface
US9291359B2 (en) 2011-10-21 2016-03-22 Google Inc. Thermostat user interface
US9298196B2 (en) 2010-11-19 2016-03-29 Google Inc. Energy efficiency promoting schedule learning algorithms for intelligent thermostat
US9459018B2 (en) 2010-11-19 2016-10-04 Google Inc. Systems and methods for energy-efficient control of an energy-consuming system
US9885492B2 (en) 2013-11-22 2018-02-06 Honeywell International Inc. Methods systems and tools for determining a wiring configuration for an HVAC controller
US9890971B2 (en) 2015-05-04 2018-02-13 Johnson Controls Technology Company User control device with hinged mounting plate
US9952573B2 (en) 2010-11-19 2018-04-24 Google Llc Systems and methods for a graphical user interface of a controller for an energy-consuming system having spatially related discrete display elements
US10078319B2 (en) 2010-11-19 2018-09-18 Google Llc HVAC schedule establishment in an intelligent, network-connected thermostat
US10162327B2 (en) 2015-10-28 2018-12-25 Johnson Controls Technology Company Multi-function thermostat with concierge features
US10318266B2 (en) 2015-11-25 2019-06-11 Johnson Controls Technology Company Modular multi-function thermostat
US10410300B2 (en) 2015-09-11 2019-09-10 Johnson Controls Technology Company Thermostat with occupancy detection based on social media event data
US10458669B2 (en) 2017-03-29 2019-10-29 Johnson Controls Technology Company Thermostat with interactive installation features
US10546472B2 (en) 2015-10-28 2020-01-28 Johnson Controls Technology Company Thermostat with direction handoff features
US10606724B2 (en) 2010-11-19 2020-03-31 Google Llc Attributing causation for energy usage and setpoint changes with a network-connected thermostat
US10655881B2 (en) 2015-10-28 2020-05-19 Johnson Controls Technology Company Thermostat with halo light system and emergency directions
US10677484B2 (en) 2015-05-04 2020-06-09 Johnson Controls Technology Company User control device and multi-function home control system
US10712038B2 (en) 2017-04-14 2020-07-14 Johnson Controls Technology Company Multi-function thermostat with air quality display
US10760809B2 (en) 2015-09-11 2020-09-01 Johnson Controls Technology Company Thermostat with mode settings for multiple zones
CN111694341A (zh) * 2020-06-05 2020-09-22 中国第一汽车股份有限公司 一种故障数据存储方法、装置、车载设备及存储介质
CN112083033A (zh) * 2020-09-09 2020-12-15 杨媛婷 一种可检测老年人冷热舒适度的建筑及方法
US10941951B2 (en) 2016-07-27 2021-03-09 Johnson Controls Technology Company Systems and methods for temperature and humidity control
US11107390B2 (en) 2018-12-21 2021-08-31 Johnson Controls Technology Company Display device with halo
US11131474B2 (en) 2018-03-09 2021-09-28 Johnson Controls Tyco IP Holdings LLP Thermostat with user interface features
US11162698B2 (en) 2017-04-14 2021-11-02 Johnson Controls Tyco IP Holdings LLP Thermostat with exhaust fan control for air quality and humidity control
US11216020B2 (en) 2015-05-04 2022-01-04 Johnson Controls Tyco IP Holdings LLP Mountable touch thermostat using transparent screen technology
US11277893B2 (en) 2015-10-28 2022-03-15 Johnson Controls Technology Company Thermostat with area light system and occupancy sensor
US11334034B2 (en) 2010-11-19 2022-05-17 Google Llc Energy efficiency promoting schedule learning algorithms for intelligent thermostat

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971136A (en) * 1989-11-28 1990-11-20 Electric Power Research Institute Dual fuel heat pump controller
US5065813A (en) * 1988-12-09 1991-11-19 Arnold D. Berkeley Interactive electronic thermostat with installation assistance
US20050103875A1 (en) * 2003-11-14 2005-05-19 Ranco Incorporated Of Delaware Thermostat with configurable service contact information and reminder timers
US20070132503A1 (en) * 2005-12-06 2007-06-14 Panduit Corp. Power patch panel with guided mac capability
US20070157639A1 (en) * 2006-01-06 2007-07-12 York International Corporation HVAC system analysis tool
US20070221741A1 (en) * 2006-03-27 2007-09-27 Ranco Incorporated Of Delaware Connector terminal system and wiring method for thermostat
US20070296280A1 (en) * 2004-08-11 2007-12-27 Carrier Corporation Power Stealing for a Thermostat Using a Triac With Fet Control
US20100076605A1 (en) * 2008-09-19 2010-03-25 Johnson Controls Technology Company HVAC System Controller Configuration
US20110016017A1 (en) * 2009-05-11 2011-01-20 Carlin James A Interactive Internet Platform for Assessing and Executing Residential Energy Solutions
US20110077758A1 (en) * 2007-05-24 2011-03-31 Alexander Bach Tran Smart air ventilation system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5065813A (en) * 1988-12-09 1991-11-19 Arnold D. Berkeley Interactive electronic thermostat with installation assistance
US4971136A (en) * 1989-11-28 1990-11-20 Electric Power Research Institute Dual fuel heat pump controller
US20050103875A1 (en) * 2003-11-14 2005-05-19 Ranco Incorporated Of Delaware Thermostat with configurable service contact information and reminder timers
US20070296280A1 (en) * 2004-08-11 2007-12-27 Carrier Corporation Power Stealing for a Thermostat Using a Triac With Fet Control
US20070132503A1 (en) * 2005-12-06 2007-06-14 Panduit Corp. Power patch panel with guided mac capability
US20070157639A1 (en) * 2006-01-06 2007-07-12 York International Corporation HVAC system analysis tool
US20070221741A1 (en) * 2006-03-27 2007-09-27 Ranco Incorporated Of Delaware Connector terminal system and wiring method for thermostat
US20110077758A1 (en) * 2007-05-24 2011-03-31 Alexander Bach Tran Smart air ventilation system
US20100076605A1 (en) * 2008-09-19 2010-03-25 Johnson Controls Technology Company HVAC System Controller Configuration
US20110016017A1 (en) * 2009-05-11 2011-01-20 Carlin James A Interactive Internet Platform for Assessing and Executing Residential Energy Solutions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Advanced Model Owner's Manual", BAY WEB THERMOSTAT, MANUAL, 6 October 2011 (2011-10-06), Retrieved from the Internet <URL:http://www.bayweb.com/wp-content/uploads/BW-WT4-2DOC.pdf> [retrieved on 20121107] *

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11372433B2 (en) 2010-11-19 2022-06-28 Google Llc Thermostat user interface
US10175668B2 (en) 2010-11-19 2019-01-08 Google Llc Systems and methods for energy-efficient control of an energy-consuming system
US10606724B2 (en) 2010-11-19 2020-03-31 Google Llc Attributing causation for energy usage and setpoint changes with a network-connected thermostat
US10627791B2 (en) 2010-11-19 2020-04-21 Google Llc Thermostat user interface
US10747242B2 (en) 2010-11-19 2020-08-18 Google Llc Thermostat user interface
US9298196B2 (en) 2010-11-19 2016-03-29 Google Inc. Energy efficiency promoting schedule learning algorithms for intelligent thermostat
US9459018B2 (en) 2010-11-19 2016-10-04 Google Inc. Systems and methods for energy-efficient control of an energy-consuming system
US9952573B2 (en) 2010-11-19 2018-04-24 Google Llc Systems and methods for a graphical user interface of a controller for an energy-consuming system having spatially related discrete display elements
US10241482B2 (en) 2010-11-19 2019-03-26 Google Llc Thermostat user interface
US9026232B2 (en) 2010-11-19 2015-05-05 Google Inc. Thermostat user interface
US9766606B2 (en) 2010-11-19 2017-09-19 Google Inc. Thermostat user interface
US8918219B2 (en) 2010-11-19 2014-12-23 Google Inc. User friendly interface for control unit
US9092039B2 (en) 2010-11-19 2015-07-28 Google Inc. HVAC controller with user-friendly installation features with wire insertion detection
US10078319B2 (en) 2010-11-19 2018-09-18 Google Llc HVAC schedule establishment in an intelligent, network-connected thermostat
US9575496B2 (en) 2010-11-19 2017-02-21 Google Inc. HVAC controller with user-friendly installation features with wire insertion detection
US11334034B2 (en) 2010-11-19 2022-05-17 Google Llc Energy efficiency promoting schedule learning algorithms for intelligent thermostat
US9995499B2 (en) 2010-11-19 2018-06-12 Google Llc Electronic device controller with user-friendly installation features
US9920946B2 (en) 2011-10-07 2018-03-20 Google Llc Remote control of a smart home device
US9175871B2 (en) 2011-10-07 2015-11-03 Google Inc. Thermostat user interface
US9291359B2 (en) 2011-10-21 2016-03-22 Google Inc. Thermostat user interface
US9740385B2 (en) 2011-10-21 2017-08-22 Google Inc. User-friendly, network-connected, smart-home controller and related systems and methods
US9720585B2 (en) 2011-10-21 2017-08-01 Google Inc. User friendly interface
US10678416B2 (en) 2011-10-21 2020-06-09 Google Llc Occupancy-based operating state determinations for sensing or control systems
US9885492B2 (en) 2013-11-22 2018-02-06 Honeywell International Inc. Methods systems and tools for determining a wiring configuration for an HVAC controller
US10767884B2 (en) 2013-11-22 2020-09-08 Ademco Inc. Methods systems and tools for determining a wiring configuration for an HVAC controller
US10808958B2 (en) 2015-05-04 2020-10-20 Johnson Controls Technology Company User control device with cantilevered display
US9964328B2 (en) 2015-05-04 2018-05-08 Johnson Controls Technology Company User control device with cantilevered display
US9890971B2 (en) 2015-05-04 2018-02-13 Johnson Controls Technology Company User control device with hinged mounting plate
US11216020B2 (en) 2015-05-04 2022-01-04 Johnson Controls Tyco IP Holdings LLP Mountable touch thermostat using transparent screen technology
US10907844B2 (en) 2015-05-04 2021-02-02 Johnson Controls Technology Company Multi-function home control system with control system hub and remote sensors
US10677484B2 (en) 2015-05-04 2020-06-09 Johnson Controls Technology Company User control device and multi-function home control system
US10627126B2 (en) 2015-05-04 2020-04-21 Johnson Controls Technology Company User control device with hinged mounting plate
US11087417B2 (en) 2015-09-11 2021-08-10 Johnson Controls Tyco IP Holdings LLP Thermostat with bi-directional communications interface for monitoring HVAC equipment
US10760809B2 (en) 2015-09-11 2020-09-01 Johnson Controls Technology Company Thermostat with mode settings for multiple zones
US10410300B2 (en) 2015-09-11 2019-09-10 Johnson Controls Technology Company Thermostat with occupancy detection based on social media event data
US11080800B2 (en) 2015-09-11 2021-08-03 Johnson Controls Tyco IP Holdings LLP Thermostat having network connected branding features
US10559045B2 (en) 2015-09-11 2020-02-11 Johnson Controls Technology Company Thermostat with occupancy detection based on load of HVAC equipment
US10510127B2 (en) 2015-09-11 2019-12-17 Johnson Controls Technology Company Thermostat having network connected branding features
US10769735B2 (en) 2015-09-11 2020-09-08 Johnson Controls Technology Company Thermostat with user interface features
US10655881B2 (en) 2015-10-28 2020-05-19 Johnson Controls Technology Company Thermostat with halo light system and emergency directions
US10345781B2 (en) 2015-10-28 2019-07-09 Johnson Controls Technology Company Multi-function thermostat with health monitoring features
US10180673B2 (en) 2015-10-28 2019-01-15 Johnson Controls Technology Company Multi-function thermostat with emergency direction features
US11277893B2 (en) 2015-10-28 2022-03-15 Johnson Controls Technology Company Thermostat with area light system and occupancy sensor
US10162327B2 (en) 2015-10-28 2018-12-25 Johnson Controls Technology Company Multi-function thermostat with concierge features
US10732600B2 (en) 2015-10-28 2020-08-04 Johnson Controls Technology Company Multi-function thermostat with health monitoring features
US10546472B2 (en) 2015-10-28 2020-01-28 Johnson Controls Technology Company Thermostat with direction handoff features
US10310477B2 (en) 2015-10-28 2019-06-04 Johnson Controls Technology Company Multi-function thermostat with occupant tracking features
US10969131B2 (en) 2015-10-28 2021-04-06 Johnson Controls Technology Company Sensor with halo light system
US10318266B2 (en) 2015-11-25 2019-06-11 Johnson Controls Technology Company Modular multi-function thermostat
US10941951B2 (en) 2016-07-27 2021-03-09 Johnson Controls Technology Company Systems and methods for temperature and humidity control
US10458669B2 (en) 2017-03-29 2019-10-29 Johnson Controls Technology Company Thermostat with interactive installation features
US11441799B2 (en) 2017-03-29 2022-09-13 Johnson Controls Tyco IP Holdings LLP Thermostat with interactive installation features
US11162698B2 (en) 2017-04-14 2021-11-02 Johnson Controls Tyco IP Holdings LLP Thermostat with exhaust fan control for air quality and humidity control
US10712038B2 (en) 2017-04-14 2020-07-14 Johnson Controls Technology Company Multi-function thermostat with air quality display
US11131474B2 (en) 2018-03-09 2021-09-28 Johnson Controls Tyco IP Holdings LLP Thermostat with user interface features
US11107390B2 (en) 2018-12-21 2021-08-31 Johnson Controls Technology Company Display device with halo
US12033564B2 (en) 2018-12-21 2024-07-09 Johnson Controls Technology Company Display device with halo
CN111694341A (zh) * 2020-06-05 2020-09-22 中国第一汽车股份有限公司 一种故障数据存储方法、装置、车载设备及存储介质
CN112083033A (zh) * 2020-09-09 2020-12-15 杨媛婷 一种可检测老年人冷热舒适度的建筑及方法

Also Published As

Publication number Publication date
CA3066430C (fr) 2023-03-14
CA2851367C (fr) 2020-03-10
CA3188172A1 (fr) 2013-04-11
CA2851367A1 (fr) 2013-04-11
CA3066430A1 (fr) 2013-04-11

Similar Documents

Publication Publication Date Title
US9995499B2 (en) Electronic device controller with user-friendly installation features
US9541300B2 (en) HVAC controller with user-friendly installation features facilitating both do-it-yourself and professional installation scenarios
US8544285B2 (en) HVAC controller with user-friendly installation features facilitating both do-it-yourself and professional installation scenarios
CA2851367C (fr) Controleur cvca presentant des caracteristiques d&#39;installation conviviales favorisant a la fois des scenarios d&#39;installation du type bricolage et professionnels
US10337754B2 (en) Distribution of call-home events over time to ameliorate high communications and computation peaks in intelligent control system
US10502444B2 (en) Continuous intelligent-control-system update using information requests directed to user devices
US9470430B2 (en) Preconditioning controls and methods for an environmental control system
US9720585B2 (en) User friendly interface
US10191727B2 (en) Installation of thermostat powered by rechargeable battery
CA2885867C (fr) Commandes et procedes de pre-conditionnement destines a un systeme de regulation des conditions ambiantes
US9851728B2 (en) Inhibiting deleterious control coupling in an enclosure having multiple HVAC regions
US20130221117A1 (en) Power management in single circuit hvac systems and in multiple circuit hvac systems
EP3112972A1 (fr) Dispositif domestique intelligent autoqualifiant pour une fonctionnalité d&#39;absence

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2851367

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838035

Country of ref document: EP

Kind code of ref document: A1