WO2013051385A1 - Emergency molten salt assembly cell and method for using same, and emergency power supply device - Google Patents
Emergency molten salt assembly cell and method for using same, and emergency power supply device Download PDFInfo
- Publication number
- WO2013051385A1 WO2013051385A1 PCT/JP2012/073599 JP2012073599W WO2013051385A1 WO 2013051385 A1 WO2013051385 A1 WO 2013051385A1 JP 2012073599 W JP2012073599 W JP 2012073599W WO 2013051385 A1 WO2013051385 A1 WO 2013051385A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molten salt
- battery
- emergency
- heating device
- starting
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/615—Heating or keeping warm
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
- H01M10/39—Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
- H01M10/399—Cells with molten salts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/657—Means for temperature control structurally associated with the cells by electric or electromagnetic means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/66—Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
- H01M10/667—Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an electronic component, e.g. a CPU, an inverter or a capacitor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/10—Batteries in stationary systems, e.g. emergency power source in plant
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a molten salt battery, that is, a battery using molten salt as an electrolyte.
- a type using a battery mainly uses a lead storage battery or a lithium ion battery (see, for example, Patent Document 1).
- an object of the present invention is to provide a battery and an emergency power supply that can be stored maintenance-free and can be used in an emergency such as a power failure.
- the present invention is an emergency molten salt assembled battery which is configured by collecting a plurality of molten salt batteries containing a molten salt as an electrolyte, and is stored in a state where the electrolyte is solidified after charging, Molten salt battery, a first heating device for heating the plurality of operational molten salt batteries, at least one starting molten salt battery capable of operating the first heating device, and the starting It is provided at the battery container of the molten salt battery for use, and is a room temperature body that maintains the electrolyte of the molten salt battery for starting at a temperature lower than the melting point when not in operation. And a second heating device for starting.
- the electrolyte is maintained at a temperature lower than the melting point by not operating the first and second heating devices except for emergency use. Does not progress.
- the second heating device becomes a heating body, and the temperature of the molten salt battery for starting is set to a temperature equal to or higher than the melting point.
- the first heating device is operated by the electric energy to heat the molten salt battery for actual operation, so that the entire assembled battery can be used. it can. Therefore, it is possible to provide an emergency molten salt assembled battery that can normally store each battery without discharging it and output a desired voltage / current in an emergency.
- the second heating device may be an outer container for the battery container and capable of introducing a heat medium.
- the second heating device is maintained at room temperature in the absence of a heat medium, and the second heat device is introduced by introducing the heat medium.
- the heating device can be changed to a heating body. That is, the starting molten salt battery can be easily used, for example, by injecting hot water, injecting water and then heating, or passing hot air as the heat medium. Since introduction of such a heat medium is possible even at the time of a power failure, it is suitable for starting a molten salt battery in an emergency.
- the second heating device is a seal in which a substance capable of generating heat due to a chemical reaction prevents a chemical reaction from starting in a case covering the battery container. And may be enclosed.
- the second heating device is maintained at room temperature in a state where the seal is provided, and the second heating is performed by removing the seal. The device can be changed to a heating element. In the second heating device in this case, the chemical reaction is started and heat is generated by removing the seal, so that the starting molten salt battery can be easily used. Since the second heating device used in this manner can generate heat without depending on external energy, it is suitable for starting a molten salt battery in an emergency.
- the second heating device may be provided on the outer surface of the battery container and heated by a general-purpose battery.
- the second heating device generates heat by connecting a general-purpose battery such as a dry battery that is widely used and easy to use, and thus the molten salt battery for starting can be easily used.
- a general-purpose battery such as a dry battery that is widely used and easy to use
- Such a second heating device can generate heat even during a power failure, and is therefore suitable for starting a molten salt battery in an emergency.
- the second heating device includes a device that condenses and heats sunlight directly or indirectly on the outer surface of the battery container. May be. In this case, the second heating device heats the battery container simply by applying sunlight, and can easily use the starting molten salt battery. Since such a second heating device uses natural energy, it is suitable for starting a molten salt battery in an emergency.
- the emergency molten salt assembled battery of any one of (1), (2), (4), (6), (7) and the voltage output from the emergency molten salt assembled battery are: It is possible to provide an emergency power supply device including an inverter device for converting into commercial AC voltage. Such an emergency power supply device can supply power with the same AC voltage as the commercial AC voltage in the event of a power failure due to a disaster or the like.
- an emergency molten salt assembled battery that can be stored in a maintenance-free manner and can be used in an emergency such as a power failure, and an emergency power supply device using the same.
- FIG. 1 is a schematic diagram showing in principle the basic structure of a power generation element in a molten salt battery. It is a perspective view which shows simply the lamination structure of a molten salt battery main body (main-body part as a battery). It is a cross-sectional view about the structure similar to FIG. It is a perspective view which shows the outline of the external appearance of the molten salt battery of the state accommodated in the battery container. It is a perspective view which shows schematic structure of the emergency molten salt assembled battery which concerns on one Embodiment of this invention.
- FIG. 6 is a wiring diagram for starting the emergency molten salt assembled battery shown in FIG. 5. It is sectional drawing of the outer container (1st example of the heating apparatus for starting) of the molten salt battery for starting.
- an emergency molten salt assembled battery (including a method of use) according to an embodiment of the present invention and an emergency power supply device using the same will be described with reference to the drawings.
- secondary batteries with excellent energy density for example, lithium ion batteries, sodium sulfur batteries, and nickel metal hydride batteries are known, but in recent years, secondary batteries have a strong advantage of nonflammability in addition to high energy density.
- a molten salt battery using a molten salt as an electrolyte has been developed.
- the operating temperature range of the molten salt battery is 57 ° C. to 190 ° C., which is a wider temperature range than the other batteries described above. Therefore, there is no need for equipment such as exhaust heat space or fire prevention, and there is an advantage that even if individual unit cells are gathered at a high density to form an assembled battery, it is relatively compact as a whole. Such a molten salt assembled battery is suitable for power storage use at home. Further, the molten salt battery is solidified because it does not reach 57 ° C., which is the melting point of the electrolyte, at room temperature. When solidified, it does not function as a battery and does not self-discharge.
- FIG. 1 is a schematic diagram showing in principle the basic structure of a power generation element in a molten salt battery.
- the power generation element includes a positive electrode 1, a negative electrode 2, and a separator 3 interposed therebetween.
- the positive electrode 1 is composed of a positive electrode current collector 1a and a positive electrode material 1b.
- the negative electrode 2 includes a negative electrode current collector 2a and a negative electrode material 2b.
- the material of the positive electrode current collector 1a is, for example, an aluminum nonwoven fabric (wire diameter: 100 ⁇ m, porosity: 80%).
- the positive electrode material 1b is a mixture of, for example, NaCrO 2 as a positive electrode active material, acetylene black, PVDF (polyvinylidene fluoride), and N-methyl-2-pyrrolidone in a mass ratio of 85: 10: 5: 50. It is a thing. And what was kneaded in this way is filled in the positive electrode collector 1a of an aluminum nonwoven fabric, and after drying, it presses at 1000 kgf / cm ⁇ 2 >, and it forms so that the thickness of the positive electrode 1 may be set to about 1 mm.
- an Sn—Na alloy containing, for example, tin as a negative electrode active material is formed on the negative electrode current collector 2a made of aluminum by plating.
- the separator 3 interposed between the positive electrode 1 and the negative electrode 2 is obtained by impregnating a glass non-woven fabric (thickness: 200 ⁇ m) with a molten salt as an electrolyte.
- This molten salt is, for example, a mixture of NaFSA (sodium bisfluorosulfonylamide) 0.45 mol% and KFSA (potassium bisfluorosulfonylamide) 0.55 mol%, and the melting point is 57 ° C.
- the molten salt melts and becomes an electrolytic solution in which high-concentration ions are dissolved, and touches the positive electrode 1 and the negative electrode 2.
- this molten salt is nonflammable.
- the operating temperature range of this molten salt battery is 57 ° C. to 190 ° C., and is normally used while maintaining the temperature at 85 ° C. to 95 ° C.
- a mixture of LiFSA-KFSA-CsFSA is also suitable as the molten salt.
- other salts may be mixed (such as organic cations).
- a mixture containing NaFSA or LiFSA or (b) a mixture containing NaTFSA or LiTFSA is suitable as the molten salt. .
- the molten salt battery can be operated with a small amount of heating.
- FIG. 2 is a perspective view schematically showing a laminated structure of a molten salt battery main body (main body portion as a battery) 10, and FIG. 3 is a cross-sectional view of the same structure. 2 and 3, a plurality (six are shown) of rectangular flat plate-like negative electrodes 2 and a plurality (five are shown) of rectangles accommodated in a bag-like separator 3 respectively.
- the flat positive electrodes 1 are opposed to each other and are stacked in the vertical direction in FIG. 3, that is, in the stacking direction, to form a stacked structure.
- the separator 3 is interposed between the positive electrode 1 and the negative electrode 2 adjacent to each other.
- the positive electrode 1 and the negative electrode 2 are alternately stacked via the separator 3.
- the separator 3 is not limited to a bag shape, and may be 40 separated.
- the separator 3 and the negative electrode 2 are drawn so as to be separated from each other, but they are in close contact with each other when the molten salt battery is completed.
- the positive electrode 1 is also in close contact with the separator 3.
- the vertical and horizontal dimensions of the positive electrode 1 are smaller than the vertical and horizontal dimensions of the negative electrode 2 in order to prevent the generation of dendrites, and the outer edge of the positive electrode 1 passes through the separator 3. Thus, it faces the peripheral edge of the negative electrode 2.
- FIG. 4 is a perspective view showing an outline of the appearance of the molten salt battery B in a state of being housed in such a battery container 11. 2 and 3, terminals 1p and 1n are drawn out of the battery case 11 from the positive electrode 1 and the negative electrode 2, respectively, while being insulated from the battery case 11. Further, a safety valve 12 for releasing the pressure when the internal atmospheric pressure rises excessively is provided at the upper part of the battery container 11. In addition, the inner surface of the battery container 11 is subjected to insulation treatment, and the battery container 11 is electrically insulated from the internal electrolyte.
- the individual shape of the molten salt battery B shown in FIG. 4 is merely an example, and the shape and dimensions can be arbitrarily configured.
- the molten salt battery B as described above can be used in a state where a plurality of batteries are gathered together and connected in series or in series and parallel to form a battery pack in order to obtain a voltage and current capacity necessary for the application.
- FIG. 5 is a perspective view showing a schematic structure of an emergency molten salt assembled battery according to an embodiment of the present invention.
- the molten salt battery is composed of a plurality of actual operational molten salt batteries B1 and at least one starting molten salt battery B2.
- a heating device 14 (first heating device) is interposed between adjacent molten salt batteries B1 for actual operation.
- the starting molten salt battery B ⁇ b> 2 is accommodated in the outer container 13. 5 may be accommodated in a case (not shown).
- FIG. 6 is a wiring diagram for starting the emergency molten salt assembled battery shown in FIG. 5 (not shown in FIG. 5). Note that the output wiring of the molten salt battery B1 for actual operation is not shown.
- the terminal 1p of the starting molten salt battery B2 is connected to one terminal via a switch 15 to a plurality of heating devices 14 connected in parallel to each other.
- the terminal 1n of the starting molten salt battery B2 is connected to the other terminal of the plurality of heating devices 14 connected in parallel to each other.
- FIG. 7 is a cross-sectional view of the outer container 13 of the starting molten salt battery B2.
- support portions 13 s are provided on the bottom surface, front surface / rear surface, and both side surfaces of the inner surface of the outer container 13.
- the support portion 13s supports the starting molten salt battery B2, and does not hinder the flow of water between the outer container 13 and the starting molten salt battery B2.
- the outer container 13 In a state where water (hot water) is not contained, the outer container 13 is not particularly meaningful, and the battery container 11 is at room temperature (room temperature). Therefore, the starting molten salt battery B2 is in a sleep state as a battery and does not self-discharge.
- the electrolyte of the molten salt battery B1 for actual operation is melted and can be used as a battery.
- a temperature equal to or higher than the melting point can be maintained due to heat generated by discharge, and therefore the molten salt battery B1 for actual operation.
- the switch 15 may be opened. Note that the switch 15 is not necessarily required, and may be directly connected without a switch.
- the outer container 13 provided in association with the battery container 11 of the starting molten salt battery B2 is a starting heating device (second heating device) 100, and is in a normal state without hot water ( In other words, when the heating is not in operation, it is a room temperature body that maintains the electrolyte of the starting molten salt battery B2 at a temperature below the melting point, and becomes a heating body of the battery container 11 by pouring hot water (that is, during the heating operation). ).
- the electrolyte since the electrolyte is maintained at a temperature lower than the melting point in normal cases (without hot water) other than in an emergency, the discharge of the battery does not proceed. Therefore, if the electrolyte is solidified after the molten salt batteries B1 and B2 are fully charged in advance, there is no need to charge them again unless they are used.
- the molten salt battery B2 for starting will be in a usable state by making the electrolyte of the molten salt battery B2 for starting into temperature more than melting
- the electric energy may be used to heat the operating molten salt battery B1 using the heating device 14 so that the entire assembled battery can be used. it can. Therefore, it is possible to provide an emergency molten salt assembled battery that can normally store each battery without discharging it and output a desired voltage / current in an emergency. That is, such an emergency molten salt assembled battery can be stored maintenance-free and can be used in an emergency such as a power failure.
- the starting molten salt battery B2 can be easily used. Since introduction of such a heat medium is possible even at the time of a power failure, it is suitable for starting a molten salt battery in an emergency.
- the metal outer container 13 filled with water may be heated by burning fuel to make the water hot water.
- FIG. 8 is a cross-sectional view showing an outer container 15 as a second example of the starting heating device 100.
- a support portion 15s is provided on the inner surface of the outer container 15 as in the first example (FIG. 7).
- an opening 15a is provided and a hose 16 for sending hot air is connected. That is, the molten salt battery for start-up B2 can be similarly used by sending hot air instead of hot water. If hot air is not supplied, the battery container 11 is at room temperature (room temperature), and the starting molten salt battery B2 does not function as a battery and does not self-discharge.
- FIG. 9 is a cross-sectional view showing a third example of the starting heating device 100.
- the starting molten salt battery B2 is covered with a case 17 except for the upper surface.
- a powdery material 18 in which iron powder, salt, activated carbon, water, and vermiculite are mixed is enclosed in a state where oxygen is removed.
- the case 17 is provided with a large number of small holes, and a seal 19 is attached so as to close the holes. Normally, the powdery body 18 stored and sealed in this state does not come into contact with air.
- the powdery body 18 comes into contact with air through the hole, and heat is generated by oxidation of iron (the principle of disposable body warmers).
- the molten salt battery B2 for starting can be heated and used more than melting
- a substance that reacts with water such as magnesium oxide or calcium oxide to generate heat is sealed in a state separated from water by a seal, and reacted with water by removing or breaking the seal. It can also generate heat.
- the chemical reaction is started and heat is generated by removing the seal 19, so that the starting molten salt battery B2 can be easily used. Since the starting heating device 100 can generate heat without depending on external energy, it is suitable for starting a molten salt battery in an emergency. In this case, since the starting heating device 100 cannot be reused, it is necessary to replace the entire or part of the starting heating device 100 once used.
- FIG. 10 is a cross-sectional view showing a fourth example of the starting heating device 100.
- a sheet-like heater 20 is wound around the outer surface of the starting molten salt battery B2.
- a power supply line to the heater 20 is connected to a battery holder 21 to which a predetermined number of dry batteries 22 can be mounted, for example. Normally, the dry battery 22 is not attached. However, if the heater 20 is energized by attachment, the starting molten salt battery B2 can be heated to the melting point or higher to be usable.
- a lithium ion battery or other general-purpose battery used for a mobile phone or a digital camera may be used.
- the starting heating device 100 generates heat by connecting a general-purpose battery that is widespread and easy to use. Therefore, the starting molten salt battery can be easily used. Since such a starting heating device can generate heat even during a power failure, it is suitable for starting a molten salt battery in an emergency.
- FIG. 11 is a schematic diagram showing a fifth example of the starting heating device 100.
- This starting heating device 100 condenses sunlight by the condensing device 23 provided with the condensing lens 23L, and attempts to heat the starting molten salt battery B2 via the heat absorbing plate 24 excellent in heat ray absorption. It is the structure to do. In this case, the starting heating device 100 heats the battery container 11 only by being exposed to sunlight, and can easily use the starting molten salt battery B2.
- Such a starting heating device 100 uses natural energy and is suitable for starting a molten salt battery in an emergency.
- FIG. 12 is a block diagram showing an emergency power supply apparatus 400 mainly for home use.
- the DC voltage output from the emergency molten salt assembled battery 200 including the starting molten salt battery B2 provided with any of the above-described starting heating devices 100 is converted into AC 100V by the inverter device 300.
- a control power supply voltage for driving the inverter device 300 can also be provided from the emergency molten salt assembled battery 200.
- Such an emergency power supply apparatus 400 can supply power with the same AC voltage as the commercial AC voltage in the event of a power failure due to a disaster or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Battery Mounting, Suspending (AREA)
- Stand-By Power Supply Arrangements (AREA)
Abstract
An emergency molten salt assembly cell comprising a grouping of a plurality of molten salt cells containing molten salt as the electrolyte, the electrolyte being stored in a solidified state after charging; wherein the emergency molten salt assembly cell is provided with: a plurality of molten salt cells for main operation; a heating device (first heating device) for heating the molten salt cells for main operation; at least one starting molten salt cell capable of actuating the heating device; and a starting heating device (second heating device). The starting heating device is provided so as to accompany the cell container of the starting molten salt cell. The starting heating device is, when not in operation, a regular-temperature body for maintaining the electrolyte of the starting molten salt cell at a temperature less than the melting point of the electrolyte, but when in operation, a heating body for heating the cell container.
Description
本発明は、溶融塩電池、すなわち溶融塩を電解質とする電池に関する。
The present invention relates to a molten salt battery, that is, a battery using molten salt as an electrolyte.
災害発生によって停電が長時間に及ぶ場合に、例えば各家庭において大容量の非常用電源装置があれば、情報収集や、夜間の照明確保等が可能となり、非常に有益である。従来、このような非常用電源装置のうち、バッテリを用いるタイプでは、主として鉛蓄電池又はリチウムイオン電池が使用されている(例えば、特許文献1参照。)。
When a power outage lasts for a long time due to a disaster, for example, if there is a large-capacity emergency power supply device in each home, it is possible to collect information and ensure nighttime lighting, which is very useful. Conventionally, in such an emergency power supply device, a type using a battery mainly uses a lead storage battery or a lithium ion battery (see, for example, Patent Document 1).
しかしながら、鉛蓄電池は使用しなくても自己放電するので、常に若しくは少なくとも定期的に充電を行うことが必要である。このことは、リチウムイオン電池においても同様である。言い換えれば、日頃から、いざというときのために充電を怠らない注意が必要である。また、当然ながら、充電のために電気エネルギーを消費する。すなわち、完全にメンテナンスフリーで放置しておいて、いざとなれば使用できる、という便利で無駄のない非常用電源装置は、未だ提案されていない。
However, since lead-acid batteries are self-discharged even if they are not used, it is necessary to charge them constantly or at least regularly. The same applies to lithium ion batteries. In other words, it is necessary to be careful not to neglect charging in case of emergency. Of course, electric energy is consumed for charging. That is, there has not yet been proposed a convenient and wasteful emergency power supply device that can be used in a case where it is completely maintenance-free and can be used at any time.
かかる課題に鑑み、本発明は、メンテナンスフリーで保存でき、停電等の非常時に使用できる電池及び非常用電源装置を提供することを目的とする。
In view of such problems, an object of the present invention is to provide a battery and an emergency power supply that can be stored maintenance-free and can be used in an emergency such as a power failure.
(1)本発明は、電解質として溶融塩を含む溶融塩電池が複数個集まって構成され、充電後、電解質が固化した状態で保存される非常用溶融塩組電池であって、複数の本稼働用溶融塩電池と、前記複数の本稼働用溶融塩電池を加熱する第1の加熱装置と、前記第1の加熱装置を動作させることが可能な少なくとも1つの始動用溶融塩電池と、前記始動用溶融塩電池の電池容器に付随して設けられ、非動作時は当該始動用溶融塩電池の電解質を融点未満の温度に維持する常温体であるが、動作時は前記電池容器の加熱体となる始動用の第2の加熱装置とを備えたものである。
(1) The present invention is an emergency molten salt assembled battery which is configured by collecting a plurality of molten salt batteries containing a molten salt as an electrolyte, and is stored in a state where the electrolyte is solidified after charging, Molten salt battery, a first heating device for heating the plurality of operational molten salt batteries, at least one starting molten salt battery capable of operating the first heating device, and the starting It is provided at the battery container of the molten salt battery for use, and is a room temperature body that maintains the electrolyte of the molten salt battery for starting at a temperature lower than the melting point when not in operation. And a second heating device for starting.
上記のように構成された非常用溶融塩組電池では、非常用以外の通常は第1,第2の加熱装置を動作させないことで、電解質が融点未満の温度に維持されるので、電池の放電は進行しない。そして、電池としての始動が必要な時には、第2の加熱装置が加熱体となり、始動用溶融塩電池の電解質を融点以上の温度にすることにより、当該始動用溶融塩電池は使用可能な状態となる。始動用溶融塩電池が使用可能な状態となれば、その電気エネルギーにより、第1の加熱装置を動作させて本稼働用溶融塩電池を加熱し、組電池全体を使用可能な状態とすることができる。従って、通常は各電池を放電させずに保存し、非常時には所望の電圧・電流を出力可能な非常用溶融塩組電池を提供することができる。
In the emergency molten salt assembled battery configured as described above, the electrolyte is maintained at a temperature lower than the melting point by not operating the first and second heating devices except for emergency use. Does not progress. When the battery needs to be started, the second heating device becomes a heating body, and the temperature of the molten salt battery for starting is set to a temperature equal to or higher than the melting point. Become. If the molten salt battery for start-up becomes usable, the first heating device is operated by the electric energy to heat the molten salt battery for actual operation, so that the entire assembled battery can be used. it can. Therefore, it is possible to provide an emergency molten salt assembled battery that can normally store each battery without discharging it and output a desired voltage / current in an emergency.
(2)また、上記(1)の非常用溶融塩組電池において、第2の加熱装置は、電池容器に対する外容器であって、熱媒体を導入することができるものであってもよい。
(3)また、上記(2)の非常用溶融塩組電池の使用方法としては、熱媒体の無い状態では第2の加熱装置を常温体に維持し、熱媒体を導入することによって第2の加熱装置を加熱体に変化させることができる。
すなわち、熱媒体として例えば、湯を注入する、水を注入してから加熱する、又は、熱風を通す、等により、容易に、始動用溶融塩電池を使用可能とすることができる。このような熱媒体の導入は、停電時でも可能であるので、非常時の溶融塩電池始動に好適である。 (2) Further, in the emergency molten salt assembled battery of (1), the second heating device may be an outer container for the battery container and capable of introducing a heat medium.
(3) Also, as a method of using the emergency molten salt assembled battery of the above (2), the second heating device is maintained at room temperature in the absence of a heat medium, and the second heat device is introduced by introducing the heat medium. The heating device can be changed to a heating body.
That is, the starting molten salt battery can be easily used, for example, by injecting hot water, injecting water and then heating, or passing hot air as the heat medium. Since introduction of such a heat medium is possible even at the time of a power failure, it is suitable for starting a molten salt battery in an emergency.
(3)また、上記(2)の非常用溶融塩組電池の使用方法としては、熱媒体の無い状態では第2の加熱装置を常温体に維持し、熱媒体を導入することによって第2の加熱装置を加熱体に変化させることができる。
すなわち、熱媒体として例えば、湯を注入する、水を注入してから加熱する、又は、熱風を通す、等により、容易に、始動用溶融塩電池を使用可能とすることができる。このような熱媒体の導入は、停電時でも可能であるので、非常時の溶融塩電池始動に好適である。 (2) Further, in the emergency molten salt assembled battery of (1), the second heating device may be an outer container for the battery container and capable of introducing a heat medium.
(3) Also, as a method of using the emergency molten salt assembled battery of the above (2), the second heating device is maintained at room temperature in the absence of a heat medium, and the second heat device is introduced by introducing the heat medium. The heating device can be changed to a heating body.
That is, the starting molten salt battery can be easily used, for example, by injecting hot water, injecting water and then heating, or passing hot air as the heat medium. Since introduction of such a heat medium is possible even at the time of a power failure, it is suitable for starting a molten salt battery in an emergency.
(4)また、上記(1)の非常用溶融塩組電池において、第2の加熱装置は、電池容器を覆うケース内に、化学反応によって発熱し得る物質が、化学反応の開始を阻止するシールを設けて封入されていてもよい。
(5)また、上記(4)の非常用溶融塩組電池の使用方法としては、シールを設けた状態では第2の加熱装置を常温体に維持し、シールを除去することによって第2の加熱装置を加熱体に変化させることができる。
この場合の第2の加熱装置においては、シールを除去することによって化学反応が開始され、発熱するので、容易に、始動用溶融塩電池を使用可能とすることができる。このように使用される第2の加熱装置は外部のエネルギーに依存せず発熱できるので、非常時の溶融塩電池始動に好適である。 (4) Further, in the emergency molten salt assembled battery of (1), the second heating device is a seal in which a substance capable of generating heat due to a chemical reaction prevents a chemical reaction from starting in a case covering the battery container. And may be enclosed.
(5) In addition, as a method of using the emergency molten salt assembled battery of (4) above, the second heating device is maintained at room temperature in a state where the seal is provided, and the second heating is performed by removing the seal. The device can be changed to a heating element.
In the second heating device in this case, the chemical reaction is started and heat is generated by removing the seal, so that the starting molten salt battery can be easily used. Since the second heating device used in this manner can generate heat without depending on external energy, it is suitable for starting a molten salt battery in an emergency.
(5)また、上記(4)の非常用溶融塩組電池の使用方法としては、シールを設けた状態では第2の加熱装置を常温体に維持し、シールを除去することによって第2の加熱装置を加熱体に変化させることができる。
この場合の第2の加熱装置においては、シールを除去することによって化学反応が開始され、発熱するので、容易に、始動用溶融塩電池を使用可能とすることができる。このように使用される第2の加熱装置は外部のエネルギーに依存せず発熱できるので、非常時の溶融塩電池始動に好適である。 (4) Further, in the emergency molten salt assembled battery of (1), the second heating device is a seal in which a substance capable of generating heat due to a chemical reaction prevents a chemical reaction from starting in a case covering the battery container. And may be enclosed.
(5) In addition, as a method of using the emergency molten salt assembled battery of (4) above, the second heating device is maintained at room temperature in a state where the seal is provided, and the second heating is performed by removing the seal. The device can be changed to a heating element.
In the second heating device in this case, the chemical reaction is started and heat is generated by removing the seal, so that the starting molten salt battery can be easily used. Since the second heating device used in this manner can generate heat without depending on external energy, it is suitable for starting a molten salt battery in an emergency.
(6)また、上記(1)の非常用溶融塩組電池において、第2の加熱装置は、電池容器の外面に設けられ、汎用の電池によって加熱可能であってもよい。
この場合の第2の加熱装置は、広く普及していて利用しやすい乾電池等の汎用電池を接続することで発熱するので、容易に、始動用溶融塩電池を使用可能とすることができる。このような第2の加熱装置は、停電時でも発熱可能であるので、非常時の溶融塩電池始動に好適である。 (6) Moreover, in the emergency molten salt assembled battery of the above (1), the second heating device may be provided on the outer surface of the battery container and heated by a general-purpose battery.
In this case, the second heating device generates heat by connecting a general-purpose battery such as a dry battery that is widely used and easy to use, and thus the molten salt battery for starting can be easily used. Such a second heating device can generate heat even during a power failure, and is therefore suitable for starting a molten salt battery in an emergency.
この場合の第2の加熱装置は、広く普及していて利用しやすい乾電池等の汎用電池を接続することで発熱するので、容易に、始動用溶融塩電池を使用可能とすることができる。このような第2の加熱装置は、停電時でも発熱可能であるので、非常時の溶融塩電池始動に好適である。 (6) Moreover, in the emergency molten salt assembled battery of the above (1), the second heating device may be provided on the outer surface of the battery container and heated by a general-purpose battery.
In this case, the second heating device generates heat by connecting a general-purpose battery such as a dry battery that is widely used and easy to use, and thus the molten salt battery for starting can be easily used. Such a second heating device can generate heat even during a power failure, and is therefore suitable for starting a molten salt battery in an emergency.
(7)また、上記(1)の非常用溶融塩組電池において、第2の加熱装置は、電池容器の外面に直接又は間接に、太陽光を集光して加熱する装置を含むものであってもよい。
この場合の第2の加熱装置は、太陽光を当てるだけで電池容器を加熱し、容易に、始動用溶融塩電池を使用可能とすることができる。このような第2の加熱装置は自然のエネルギーを利用するものであるので、非常時の溶融塩電池始動に好適である。 (7) In the emergency molten salt assembled battery of (1), the second heating device includes a device that condenses and heats sunlight directly or indirectly on the outer surface of the battery container. May be.
In this case, the second heating device heats the battery container simply by applying sunlight, and can easily use the starting molten salt battery. Since such a second heating device uses natural energy, it is suitable for starting a molten salt battery in an emergency.
この場合の第2の加熱装置は、太陽光を当てるだけで電池容器を加熱し、容易に、始動用溶融塩電池を使用可能とすることができる。このような第2の加熱装置は自然のエネルギーを利用するものであるので、非常時の溶融塩電池始動に好適である。 (7) In the emergency molten salt assembled battery of (1), the second heating device includes a device that condenses and heats sunlight directly or indirectly on the outer surface of the battery container. May be.
In this case, the second heating device heats the battery container simply by applying sunlight, and can easily use the starting molten salt battery. Since such a second heating device uses natural energy, it is suitable for starting a molten salt battery in an emergency.
(8)また、上記(1),(2),(4),(6),(7)のいずれかの非常用溶融塩組電池と、当該非常用溶融塩組電池の出力する電圧を、商用交流電圧に変換するインバータ装置とを備えた非常用電源装置を提供することができる。
このような非常用電源装置は、災害等による停電時に、商用交流電圧と同じ交流電圧で電力供給を行うことができる。 (8) The emergency molten salt assembled battery of any one of (1), (2), (4), (6), (7) and the voltage output from the emergency molten salt assembled battery are: It is possible to provide an emergency power supply device including an inverter device for converting into commercial AC voltage.
Such an emergency power supply device can supply power with the same AC voltage as the commercial AC voltage in the event of a power failure due to a disaster or the like.
このような非常用電源装置は、災害等による停電時に、商用交流電圧と同じ交流電圧で電力供給を行うことができる。 (8) The emergency molten salt assembled battery of any one of (1), (2), (4), (6), (7) and the voltage output from the emergency molten salt assembled battery are: It is possible to provide an emergency power supply device including an inverter device for converting into commercial AC voltage.
Such an emergency power supply device can supply power with the same AC voltage as the commercial AC voltage in the event of a power failure due to a disaster or the like.
本発明によれば、メンテナンスフリーで保存でき、停電等の非常時に使用できる非常用溶融塩組電池及び、これを用いた非常用電源装置を提供することができる。
According to the present invention, it is possible to provide an emergency molten salt assembled battery that can be stored in a maintenance-free manner and can be used in an emergency such as a power failure, and an emergency power supply device using the same.
以下、本発明の実施形態に係る非常用溶融塩組電池(使用方法も含む。)及びこれを用いた非常用電源装置について、図面を参照して説明する。
エネルギー密度に優れた二次電池として、例えば、リチウムイオン電池、ナトリウム硫黄電池、ニッケル水素電池が知られているが、近年、高いエネルギー密度に加えて、不燃性という強力な利点を持つ二次電池として、溶融塩を電解質とする溶融塩電池が開発されている。 Hereinafter, an emergency molten salt assembled battery (including a method of use) according to an embodiment of the present invention and an emergency power supply device using the same will be described with reference to the drawings.
As secondary batteries with excellent energy density, for example, lithium ion batteries, sodium sulfur batteries, and nickel metal hydride batteries are known, but in recent years, secondary batteries have a strong advantage of nonflammability in addition to high energy density. As a result, a molten salt battery using a molten salt as an electrolyte has been developed.
エネルギー密度に優れた二次電池として、例えば、リチウムイオン電池、ナトリウム硫黄電池、ニッケル水素電池が知られているが、近年、高いエネルギー密度に加えて、不燃性という強力な利点を持つ二次電池として、溶融塩を電解質とする溶融塩電池が開発されている。 Hereinafter, an emergency molten salt assembled battery (including a method of use) according to an embodiment of the present invention and an emergency power supply device using the same will be described with reference to the drawings.
As secondary batteries with excellent energy density, for example, lithium ion batteries, sodium sulfur batteries, and nickel metal hydride batteries are known, but in recent years, secondary batteries have a strong advantage of nonflammability in addition to high energy density. As a result, a molten salt battery using a molten salt as an electrolyte has been developed.
溶融塩電池の稼働温度領域は57℃~190℃であり、これは、上記他の電池と比べて温度範囲が広い。そのため、排熱スペースや防火等の装備が不要であり、個々の素電池を高密度に集めて組電池を構成しても全体としては比較的コンパクトである、という利点がある。このような溶融塩組電池は、家庭での電力貯蔵用途に好適である。また、溶融塩電池は、常温では、電解質の融点である57℃に満たないため、固化している。固化した状態では電池として機能せず、自己放電もしない。
The operating temperature range of the molten salt battery is 57 ° C. to 190 ° C., which is a wider temperature range than the other batteries described above. Therefore, there is no need for equipment such as exhaust heat space or fire prevention, and there is an advantage that even if individual unit cells are gathered at a high density to form an assembled battery, it is relatively compact as a whole. Such a molten salt assembled battery is suitable for power storage use at home. Further, the molten salt battery is solidified because it does not reach 57 ° C., which is the melting point of the electrolyte, at room temperature. When solidified, it does not function as a battery and does not self-discharge.
《溶融塩電池の基本構造》
図1は、溶融塩電池における発電要素の基本構造を原理的に示す略図である。図において、発電要素は、正極1、負極2及びそれらの間に介在するセパレータ3を備えている。正極1は、正極集電体1aと、正極材1bとによって構成されている。負極2は、負極集電体2aと、負極材2bとによって構成されている。 <Basic structure of molten salt battery>
FIG. 1 is a schematic diagram showing in principle the basic structure of a power generation element in a molten salt battery. In the figure, the power generation element includes apositive electrode 1, a negative electrode 2, and a separator 3 interposed therebetween. The positive electrode 1 is composed of a positive electrode current collector 1a and a positive electrode material 1b. The negative electrode 2 includes a negative electrode current collector 2a and a negative electrode material 2b.
図1は、溶融塩電池における発電要素の基本構造を原理的に示す略図である。図において、発電要素は、正極1、負極2及びそれらの間に介在するセパレータ3を備えている。正極1は、正極集電体1aと、正極材1bとによって構成されている。負極2は、負極集電体2aと、負極材2bとによって構成されている。 <Basic structure of molten salt battery>
FIG. 1 is a schematic diagram showing in principle the basic structure of a power generation element in a molten salt battery. In the figure, the power generation element includes a
正極集電体1aの素材は、例えば、アルミニウム不織布(線径100μm、気孔率80%)である。正極材1bは、正極活物質としての例えばNaCrO2と、アセチレンブラックと、PVDF(ポリフッ化ビニリデン)と、N-メチル-2-ピロリドンとを、質量比85:10:5:50の割合で混練したものである。そして、このように混練したものを、アルミニウム不織布の正極集電体1aに充填し、乾燥後に、1000kgf/cm2にてプレスし、正極1の厚みが約1mmとなるように形成される。
一方、負極2においては、アルミニウム製の負極集電体2a上に、負極活物質としての例えば錫を含むSn-Na合金が、メッキにより形成される。 The material of the positive electrodecurrent collector 1a is, for example, an aluminum nonwoven fabric (wire diameter: 100 μm, porosity: 80%). The positive electrode material 1b is a mixture of, for example, NaCrO 2 as a positive electrode active material, acetylene black, PVDF (polyvinylidene fluoride), and N-methyl-2-pyrrolidone in a mass ratio of 85: 10: 5: 50. It is a thing. And what was kneaded in this way is filled in the positive electrode collector 1a of an aluminum nonwoven fabric, and after drying, it presses at 1000 kgf / cm < 2 >, and it forms so that the thickness of the positive electrode 1 may be set to about 1 mm.
On the other hand, in thenegative electrode 2, an Sn—Na alloy containing, for example, tin as a negative electrode active material is formed on the negative electrode current collector 2a made of aluminum by plating.
一方、負極2においては、アルミニウム製の負極集電体2a上に、負極活物質としての例えば錫を含むSn-Na合金が、メッキにより形成される。 The material of the positive electrode
On the other hand, in the
正極1及び負極2の間に介在するセパレータ3は、ガラスの不織布(厚さ200μm)に電解質としての溶融塩を含浸させたものである。この溶融塩は、例えば、NaFSA(ナトリウム ビスフルオロスルフォニルアミド)0.45mol%と、KFSA(カリウム ビスフルオロスルフォニルアミド)0.55mol%との混合物であり、融点は57℃である。融点以上の温度では、溶融塩は溶融し、高濃度のイオンが溶解した電解液となって、正極1及び負極2に触れている。また、この溶融塩は不燃性である。この溶融塩電池の稼働温度領域は57℃~190℃であり、通常は、85℃~95℃に温度を維持して使用される。
The separator 3 interposed between the positive electrode 1 and the negative electrode 2 is obtained by impregnating a glass non-woven fabric (thickness: 200 μm) with a molten salt as an electrolyte. This molten salt is, for example, a mixture of NaFSA (sodium bisfluorosulfonylamide) 0.45 mol% and KFSA (potassium bisfluorosulfonylamide) 0.55 mol%, and the melting point is 57 ° C. At a temperature equal to or higher than the melting point, the molten salt melts and becomes an electrolytic solution in which high-concentration ions are dissolved, and touches the positive electrode 1 and the negative electrode 2. Moreover, this molten salt is nonflammable. The operating temperature range of this molten salt battery is 57 ° C. to 190 ° C., and is normally used while maintaining the temperature at 85 ° C. to 95 ° C.
なお、上述した各部の材質・成分や数値は好適な一例であるが、これらに限定されるものではない。
例えば、溶融塩としては、上記の他、LiFSA-KFSA-CsFSAの混合物も好適である。また、他の塩を混合する場合もあり(有機カチオン等)、一般には、溶融塩は、(a)NaFSA、又は、LiFSAを含む混合物、(b)NaTFSA、又は、LiTFSAを含む混合物、が適する。これらの場合、各混合物の溶融塩は、比較的低融点となるので、少ない加熱で溶融塩電池を作動させることができる。 In addition, although the material, component, and numerical value of each part mentioned above are suitable examples, it is not limited to these.
For example, in addition to the above, a mixture of LiFSA-KFSA-CsFSA is also suitable as the molten salt. In addition, other salts may be mixed (such as organic cations). Generally, (a) a mixture containing NaFSA or LiFSA or (b) a mixture containing NaTFSA or LiTFSA is suitable as the molten salt. . In these cases, since the molten salt of each mixture has a relatively low melting point, the molten salt battery can be operated with a small amount of heating.
例えば、溶融塩としては、上記の他、LiFSA-KFSA-CsFSAの混合物も好適である。また、他の塩を混合する場合もあり(有機カチオン等)、一般には、溶融塩は、(a)NaFSA、又は、LiFSAを含む混合物、(b)NaTFSA、又は、LiTFSAを含む混合物、が適する。これらの場合、各混合物の溶融塩は、比較的低融点となるので、少ない加熱で溶融塩電池を作動させることができる。 In addition, although the material, component, and numerical value of each part mentioned above are suitable examples, it is not limited to these.
For example, in addition to the above, a mixture of LiFSA-KFSA-CsFSA is also suitable as the molten salt. In addition, other salts may be mixed (such as organic cations). Generally, (a) a mixture containing NaFSA or LiFSA or (b) a mixture containing NaTFSA or LiTFSA is suitable as the molten salt. . In these cases, since the molten salt of each mixture has a relatively low melting point, the molten salt battery can be operated with a small amount of heating.
次に、より具体的な溶融塩電池の発電要素の構成について説明する。図2は、溶融塩電池本体(電池としての本体部分)10の積層構造を簡略に示す斜視図、図3は同様の構造についての横断面図である。
図2及び図3において、複数(図示しているのは6個)の矩形平板状の負極2と、袋状のセパレータ3に各々収容された複数(図示しているのは5個)の矩形平板状の正極1とが、互いに対向して図3における上下方向すなわち積層方向に重ね合わせられ、積層構造を成している。 Next, a more specific configuration of the power generation element of the molten salt battery will be described. FIG. 2 is a perspective view schematically showing a laminated structure of a molten salt battery main body (main body portion as a battery) 10, and FIG. 3 is a cross-sectional view of the same structure.
2 and 3, a plurality (six are shown) of rectangular flat plate-likenegative electrodes 2 and a plurality (five are shown) of rectangles accommodated in a bag-like separator 3 respectively. The flat positive electrodes 1 are opposed to each other and are stacked in the vertical direction in FIG. 3, that is, in the stacking direction, to form a stacked structure.
図2及び図3において、複数(図示しているのは6個)の矩形平板状の負極2と、袋状のセパレータ3に各々収容された複数(図示しているのは5個)の矩形平板状の正極1とが、互いに対向して図3における上下方向すなわち積層方向に重ね合わせられ、積層構造を成している。 Next, a more specific configuration of the power generation element of the molten salt battery will be described. FIG. 2 is a perspective view schematically showing a laminated structure of a molten salt battery main body (main body portion as a battery) 10, and FIG. 3 is a cross-sectional view of the same structure.
2 and 3, a plurality (six are shown) of rectangular flat plate-like
セパレータ3は、隣り合う正極1と負極2との間に介在しており、言い換えれば、セパレータ3を介して、正極1及び負極2が交互に積層されていることになる。実際に積層する数は、例えば、正極1が20個、負極2が21個、セパレータ3は「袋」としては20袋であるが、正極1・負極2間に介在する個数としては40個である。なお、セパレータ3は、袋状に限定されず、分離した40個であってもよい。
The separator 3 is interposed between the positive electrode 1 and the negative electrode 2 adjacent to each other. In other words, the positive electrode 1 and the negative electrode 2 are alternately stacked via the separator 3. For example, 20 positive electrodes 1 and 21 negative electrodes 2 and 20 separators 3 as “bags”, but 40 intervening between positive electrodes 1 and 2 are actually stacked. is there. The separator 3 is not limited to a bag shape, and may be 40 separated.
なお、図3では、セパレータ3と負極2とが互いに離れているように描いているが、溶融塩電池の完成時には互いに密着する。正極1も、当然に、セパレータ3に密着している。また、正極1の縦方向及び横方向それぞれの寸法は、デンドライトの発生を防止するために、負極2の縦方向及び横方向の寸法より小さくしてあり、正極1の外縁が、セパレータ3を介して負極2の周縁部に対向するようになっている。
In FIG. 3, the separator 3 and the negative electrode 2 are drawn so as to be separated from each other, but they are in close contact with each other when the molten salt battery is completed. Naturally, the positive electrode 1 is also in close contact with the separator 3. In addition, the vertical and horizontal dimensions of the positive electrode 1 are smaller than the vertical and horizontal dimensions of the negative electrode 2 in order to prevent the generation of dendrites, and the outer edge of the positive electrode 1 passes through the separator 3. Thus, it faces the peripheral edge of the negative electrode 2.
上記のように構成された溶融塩電池本体10は、例えばアルミニウム合金製で直方体状の電池容器に収容され、素電池すなわち、電池としての物理的な一個体を成す。
図4は、このような電池容器11に収められた状態の溶融塩電池Bの外観の概略を示す斜視図である。なお、図2,図3における正極1及び負極2のそれぞれからは、端子1p及び1nが電池容器11の外部へ、電池容器11との絶縁を保って引き出される。また、電池容器11の上部には、内部の気圧が過度に上昇したときに放圧するための安全弁12が設けられている。なお、電池容器11の内面には絶縁処理が施されており、電池容器11は、内部の電解質と電気的に絶縁されている。 The molten salt batterymain body 10 configured as described above is accommodated in a rectangular parallelepiped battery container made of, for example, an aluminum alloy, and forms a unit cell, that is, a physical individual as a battery.
FIG. 4 is a perspective view showing an outline of the appearance of the molten salt battery B in a state of being housed in such abattery container 11. 2 and 3, terminals 1p and 1n are drawn out of the battery case 11 from the positive electrode 1 and the negative electrode 2, respectively, while being insulated from the battery case 11. Further, a safety valve 12 for releasing the pressure when the internal atmospheric pressure rises excessively is provided at the upper part of the battery container 11. In addition, the inner surface of the battery container 11 is subjected to insulation treatment, and the battery container 11 is electrically insulated from the internal electrolyte.
図4は、このような電池容器11に収められた状態の溶融塩電池Bの外観の概略を示す斜視図である。なお、図2,図3における正極1及び負極2のそれぞれからは、端子1p及び1nが電池容器11の外部へ、電池容器11との絶縁を保って引き出される。また、電池容器11の上部には、内部の気圧が過度に上昇したときに放圧するための安全弁12が設けられている。なお、電池容器11の内面には絶縁処理が施されており、電池容器11は、内部の電解質と電気的に絶縁されている。 The molten salt battery
FIG. 4 is a perspective view showing an outline of the appearance of the molten salt battery B in a state of being housed in such a
図4に示した溶融塩電池Bの一個体形状は、一例に過ぎず、形状・寸法は任意に構成することができる。
上記のような溶融塩電池Bは、用途に必要な電圧や電流容量を得るべく、複数個が集まって互いに直列又は直並列に接続され、組電池を構成した状態で使用することができる。 The individual shape of the molten salt battery B shown in FIG. 4 is merely an example, and the shape and dimensions can be arbitrarily configured.
The molten salt battery B as described above can be used in a state where a plurality of batteries are gathered together and connected in series or in series and parallel to form a battery pack in order to obtain a voltage and current capacity necessary for the application.
上記のような溶融塩電池Bは、用途に必要な電圧や電流容量を得るべく、複数個が集まって互いに直列又は直並列に接続され、組電池を構成した状態で使用することができる。 The individual shape of the molten salt battery B shown in FIG. 4 is merely an example, and the shape and dimensions can be arbitrarily configured.
The molten salt battery B as described above can be used in a state where a plurality of batteries are gathered together and connected in series or in series and parallel to form a battery pack in order to obtain a voltage and current capacity necessary for the application.
《非常用溶融塩組電池》
《始動用加熱装置の第1例》
図5は、本発明の一実施形態に係る非常用溶融塩組電池の概略構造を示す斜視図である。図において、溶融塩電池は、複数の本稼働用溶融塩電池B1と、少なくとも1つの始動用溶融塩電池B2とによって構成されている。隣り合う本稼働用溶融塩電池B1の間には、加熱装置14(第1の加熱装置)が介装されている。始動用溶融塩電池B2は、外容器13に収容されている。なお、図5に示す装置全体は、ケース(図示せず。)に収容されていてもよい。 <Emergency Molten Salt Battery>
<< First Example of Heating Device for Starting >>
FIG. 5 is a perspective view showing a schematic structure of an emergency molten salt assembled battery according to an embodiment of the present invention. In the figure, the molten salt battery is composed of a plurality of actual operational molten salt batteries B1 and at least one starting molten salt battery B2. A heating device 14 (first heating device) is interposed between adjacent molten salt batteries B1 for actual operation. The starting molten salt battery B <b> 2 is accommodated in theouter container 13. 5 may be accommodated in a case (not shown).
《始動用加熱装置の第1例》
図5は、本発明の一実施形態に係る非常用溶融塩組電池の概略構造を示す斜視図である。図において、溶融塩電池は、複数の本稼働用溶融塩電池B1と、少なくとも1つの始動用溶融塩電池B2とによって構成されている。隣り合う本稼働用溶融塩電池B1の間には、加熱装置14(第1の加熱装置)が介装されている。始動用溶融塩電池B2は、外容器13に収容されている。なお、図5に示す装置全体は、ケース(図示せず。)に収容されていてもよい。 <Emergency Molten Salt Battery>
<< First Example of Heating Device for Starting >>
FIG. 5 is a perspective view showing a schematic structure of an emergency molten salt assembled battery according to an embodiment of the present invention. In the figure, the molten salt battery is composed of a plurality of actual operational molten salt batteries B1 and at least one starting molten salt battery B2. A heating device 14 (first heating device) is interposed between adjacent molten salt batteries B1 for actual operation. The starting molten salt battery B <b> 2 is accommodated in the
図6は、図5に示す非常用溶融塩組電池の始動用配線図(図5には図示せず。)である。なお、本稼働用溶融塩電池B1の出力配線は図示を省略している。始動用溶融塩電池B2の例えば端子1pは、スイッチ15を介して、互いに並列に接続された複数の加熱装置14に一方の端子に接続されている。また、始動用溶融塩電池B2の端子1nは、互いに並列に接続された複数の加熱装置14の他方の端子に接続されている。
FIG. 6 is a wiring diagram for starting the emergency molten salt assembled battery shown in FIG. 5 (not shown in FIG. 5). Note that the output wiring of the molten salt battery B1 for actual operation is not shown. For example, the terminal 1p of the starting molten salt battery B2 is connected to one terminal via a switch 15 to a plurality of heating devices 14 connected in parallel to each other. The terminal 1n of the starting molten salt battery B2 is connected to the other terminal of the plurality of heating devices 14 connected in parallel to each other.
図7は、始動用溶融塩電池B2の外容器13の断面図である。図において、外容器13の内面における底面、正面・背面及び両側面には支持部13sが設けられている。支持部13sは、始動用溶融塩電池B2を支持し、かつ、外容器13と始動用溶融塩電池B2との間での水の流通を妨げない。水(湯)が入っていない状態では、外容器13は特に意味を成さず、電池容器11は常温(室温)である。従って、始動用溶融塩電池B2は、電池としては休眠状態にあり、自己放電もしない。
FIG. 7 is a cross-sectional view of the outer container 13 of the starting molten salt battery B2. In the figure, support portions 13 s are provided on the bottom surface, front surface / rear surface, and both side surfaces of the inner surface of the outer container 13. The support portion 13s supports the starting molten salt battery B2, and does not hinder the flow of water between the outer container 13 and the starting molten salt battery B2. In a state where water (hot water) is not contained, the outer container 13 is not particularly meaningful, and the battery container 11 is at room temperature (room temperature). Therefore, the starting molten salt battery B2 is in a sleep state as a battery and does not self-discharge.
ここで、停電によって非常用溶融塩組電池を稼働させる必要が生じた場合には、外容器13と、始動用溶融塩電池B2との間の空間に、熱湯を注入し、始動用溶融塩電池B2の電池容器11を加熱すべく高温の湯に浸けた状態とする。これにより、始動用溶融塩電池B2の電解質は溶融し、電池として使用可能な状態となる。この状態で、図6のスイッチ15を閉じていることにより、始動用溶融塩電池B2から各加熱装置14に電力が供給される。
Here, when it is necessary to operate the emergency molten salt assembled battery due to a power failure, hot water is injected into the space between the outer container 13 and the starting molten salt battery B2 to start the molten salt battery for starting. The battery container 11 of B2 is immersed in high-temperature hot water to be heated. As a result, the electrolyte of the starting molten salt battery B2 is melted and can be used as a battery. In this state, the switch 15 in FIG. 6 is closed, whereby electric power is supplied from the starting molten salt battery B2 to each heating device 14.
各加熱装置14が発熱すると、本稼働用溶融塩電池B1の電解質は溶融し、電池として使用可能な状態となる。なお、本稼働用溶融塩電池B1から負荷(図示せず。)に電力を供給し始めると、通常、放電による発熱によって融点以上の温度を維持できるようになるので、本稼働用溶融塩電池B1が稼働し始めれば、スイッチ15を開いてもよい。なお、スイッチ15は必ずしも必要ではなく、スイッチ無しの直結でもよい。
When each heating device 14 generates heat, the electrolyte of the molten salt battery B1 for actual operation is melted and can be used as a battery. Note that when power is started to be supplied from the molten salt battery B1 for actual operation to a load (not shown), normally, a temperature equal to or higher than the melting point can be maintained due to heat generated by discharge, and therefore the molten salt battery B1 for actual operation. May start, the switch 15 may be opened. Note that the switch 15 is not necessarily required, and may be directly connected without a switch.
以上のように、始動用溶融塩電池B2の電池容器11に付随して設けられる外容器13は、始動用加熱装置(第2の加熱装置)100となっており、湯の無い通常の状態(すなわち加熱の非動作時)では始動用溶融塩電池B2の電解質を融点未満の温度に維持する常温体であって、湯を注入することにより電池容器11の加熱体となる(すなわち加熱の動作時)。上記の非常用溶融塩組電池では、非常時以外の通常(湯なし)は電解質が融点未満の温度に維持されるので、電池の放電は進行しない。従って、予め各溶融塩電池B1,B2を満充電の状態にしてから電解質を固化させれば、その後、使用しない限り追加的に充電する必要は無い。
As described above, the outer container 13 provided in association with the battery container 11 of the starting molten salt battery B2 is a starting heating device (second heating device) 100, and is in a normal state without hot water ( In other words, when the heating is not in operation, it is a room temperature body that maintains the electrolyte of the starting molten salt battery B2 at a temperature below the melting point, and becomes a heating body of the battery container 11 by pouring hot water (that is, during the heating operation). ). In the above-mentioned emergency molten salt assembled battery, since the electrolyte is maintained at a temperature lower than the melting point in normal cases (without hot water) other than in an emergency, the discharge of the battery does not proceed. Therefore, if the electrolyte is solidified after the molten salt batteries B1 and B2 are fully charged in advance, there is no need to charge them again unless they are used.
そして、電池としての始動が必要な時には、湯を入れるという操作によって、始動用溶融塩電池B2の電解質を融点以上の温度にすることにより、当該始動用溶融塩電池B2は使用可能な状態となる。始動用溶融塩電池B2が使用可能な状態となれば、その電気エネルギーにより、加熱装置14を使用して本稼働用溶融塩電池B1を加熱し、組電池全体を使用可能な状態とすることができる。従って、通常は各電池を放電させずに保存し、非常時には所望の電圧・電流を出力可能な非常用溶融塩組電池を提供することができる。すなわち、このような非常用溶融塩組電池はメンテナンスフリーで保存でき、停電等の非常時には使用できる。
And when starting as a battery is needed, the molten salt battery B2 for starting will be in a usable state by making the electrolyte of the molten salt battery B2 for starting into temperature more than melting | fusing point by operation which puts in hot water. . If the starting molten salt battery B2 is ready for use, the electric energy may be used to heat the operating molten salt battery B1 using the heating device 14 so that the entire assembled battery can be used. it can. Therefore, it is possible to provide an emergency molten salt assembled battery that can normally store each battery without discharging it and output a desired voltage / current in an emergency. That is, such an emergency molten salt assembled battery can be stored maintenance-free and can be used in an emergency such as a power failure.
また、熱媒体として湯を注入することにより、容易に、始動用溶融塩電池B2を使用可能とすることができる。このような熱媒体の導入は、停電時でも可能であるので、非常時の溶融塩電池始動に好適である。なお、湯を入れる以外に、水を入れた金属製の外容器13を、燃料を燃やすことで加熱し、水を湯にしてもよい。
Further, by injecting hot water as a heat medium, the starting molten salt battery B2 can be easily used. Since introduction of such a heat medium is possible even at the time of a power failure, it is suitable for starting a molten salt battery in an emergency. In addition to hot water, the metal outer container 13 filled with water may be heated by burning fuel to make the water hot water.
《始動用加熱装置の第2例》
図8は、始動用加熱装置100の第2例としての外容器15を示す断面図である。外容器15の内面には、第1例(図7)と同様に支持部15sが設けられている。一方、第1例とは異なって、開口部15aが設けられ、熱風を送り込むホース16が接続される。すなわち、湯の代わりに熱風を送り込むことで、同様に、始動用溶融塩電池B2を使用可能とすることができる。熱風を供給しなければ電池容器11は常温(室温)であり、始動用溶融塩電池B2は、電池として機能せず、自己放電もしない。 «Second example of starting heating device»
FIG. 8 is a cross-sectional view showing anouter container 15 as a second example of the starting heating device 100. A support portion 15s is provided on the inner surface of the outer container 15 as in the first example (FIG. 7). On the other hand, unlike the first example, an opening 15a is provided and a hose 16 for sending hot air is connected. That is, the molten salt battery for start-up B2 can be similarly used by sending hot air instead of hot water. If hot air is not supplied, the battery container 11 is at room temperature (room temperature), and the starting molten salt battery B2 does not function as a battery and does not self-discharge.
図8は、始動用加熱装置100の第2例としての外容器15を示す断面図である。外容器15の内面には、第1例(図7)と同様に支持部15sが設けられている。一方、第1例とは異なって、開口部15aが設けられ、熱風を送り込むホース16が接続される。すなわち、湯の代わりに熱風を送り込むことで、同様に、始動用溶融塩電池B2を使用可能とすることができる。熱風を供給しなければ電池容器11は常温(室温)であり、始動用溶融塩電池B2は、電池として機能せず、自己放電もしない。 «Second example of starting heating device»
FIG. 8 is a cross-sectional view showing an
《始動用加熱装置の第3例》
図9は、始動用加熱装置100の第3例を示す断面図である。図において、始動用溶融塩電池B2は、上面を除き、ケース17によって覆われている。ケース17内には、例えば鉄粉、塩、活性炭、水、バーミキュライトを混ぜた粉状体18が、酸素を抜いた状態で封入されている。ケース17は、多数の小さな孔が設けられており、それらの孔を塞ぐようにシール19が貼り付けられている。通常は、この状態で保存され、封入された粉状体18は空気に触れない。シール19を剥がす、という操作をすると、孔を通して粉状体18が空気に触れ、鉄の酸化による発熱が起きる(使い捨てカイロの原理)。これにより、始動用溶融塩電池B2を融点以上に加熱して使用可能とすることができる。
なお、他にも、酸化マグネシウムや酸化カルシウムのように水と反応して発熱する物質を、シールによって水と分離した状態で封入しておき、シールを除去又は破断することで水と反応させ、発熱させることもできる。 << Third example of starting heating apparatus >>
FIG. 9 is a cross-sectional view showing a third example of the startingheating device 100. In the figure, the starting molten salt battery B2 is covered with a case 17 except for the upper surface. In the case 17, for example, a powdery material 18 in which iron powder, salt, activated carbon, water, and vermiculite are mixed is enclosed in a state where oxygen is removed. The case 17 is provided with a large number of small holes, and a seal 19 is attached so as to close the holes. Normally, the powdery body 18 stored and sealed in this state does not come into contact with air. When the operation of peeling off the seal 19 is performed, the powdery body 18 comes into contact with air through the hole, and heat is generated by oxidation of iron (the principle of disposable body warmers). Thereby, the molten salt battery B2 for starting can be heated and used more than melting | fusing point.
In addition, a substance that reacts with water such as magnesium oxide or calcium oxide to generate heat is sealed in a state separated from water by a seal, and reacted with water by removing or breaking the seal. It can also generate heat.
図9は、始動用加熱装置100の第3例を示す断面図である。図において、始動用溶融塩電池B2は、上面を除き、ケース17によって覆われている。ケース17内には、例えば鉄粉、塩、活性炭、水、バーミキュライトを混ぜた粉状体18が、酸素を抜いた状態で封入されている。ケース17は、多数の小さな孔が設けられており、それらの孔を塞ぐようにシール19が貼り付けられている。通常は、この状態で保存され、封入された粉状体18は空気に触れない。シール19を剥がす、という操作をすると、孔を通して粉状体18が空気に触れ、鉄の酸化による発熱が起きる(使い捨てカイロの原理)。これにより、始動用溶融塩電池B2を融点以上に加熱して使用可能とすることができる。
なお、他にも、酸化マグネシウムや酸化カルシウムのように水と反応して発熱する物質を、シールによって水と分離した状態で封入しておき、シールを除去又は破断することで水と反応させ、発熱させることもできる。 << Third example of starting heating apparatus >>
FIG. 9 is a cross-sectional view showing a third example of the starting
In addition, a substance that reacts with water such as magnesium oxide or calcium oxide to generate heat is sealed in a state separated from water by a seal, and reacted with water by removing or breaking the seal. It can also generate heat.
この場合の始動用加熱装置100においては、シール19を除去することによって化学反応が開始され、発熱するので、容易に、始動用溶融塩電池B2を使用可能とすることができる。このような始動用加熱装置100は外部のエネルギーに依存せず発熱できるので、非常時の溶融塩電池始動に好適である。
なお、この場合の始動用加熱装置100は、再利用できないので、一度使用すると始動用加熱装置100全体又は一部を取り替える必要がある。 In the startingheating device 100 in this case, the chemical reaction is started and heat is generated by removing the seal 19, so that the starting molten salt battery B2 can be easily used. Since the starting heating device 100 can generate heat without depending on external energy, it is suitable for starting a molten salt battery in an emergency.
In this case, since the startingheating device 100 cannot be reused, it is necessary to replace the entire or part of the starting heating device 100 once used.
なお、この場合の始動用加熱装置100は、再利用できないので、一度使用すると始動用加熱装置100全体又は一部を取り替える必要がある。 In the starting
In this case, since the starting
《始動用加熱装置の第4例》
図10は、始動用加熱装置100の第4例を示す断面図である。図において、始動用溶融塩電池B2の外面には、シート状のヒータ20が巻かれている。ヒータ20への給電線は例えば所定個数の乾電池22を装着できる電池ホルダ21に接続されている。通常は、乾電池22は装着されていないが、装着によりヒータ20に通電すれば、始動用溶融塩電池B2を融点以上に加熱して使用可能とすることができる。なお、乾電池の代わりに、携帯電話やデジタルカメラに使用されるリチウムイオン電池その他の汎用電池を使用してもよい。 << Fourth example of heating device for starting >>
FIG. 10 is a cross-sectional view showing a fourth example of the startingheating device 100. In the figure, a sheet-like heater 20 is wound around the outer surface of the starting molten salt battery B2. A power supply line to the heater 20 is connected to a battery holder 21 to which a predetermined number of dry batteries 22 can be mounted, for example. Normally, the dry battery 22 is not attached. However, if the heater 20 is energized by attachment, the starting molten salt battery B2 can be heated to the melting point or higher to be usable. Instead of the dry battery, a lithium ion battery or other general-purpose battery used for a mobile phone or a digital camera may be used.
図10は、始動用加熱装置100の第4例を示す断面図である。図において、始動用溶融塩電池B2の外面には、シート状のヒータ20が巻かれている。ヒータ20への給電線は例えば所定個数の乾電池22を装着できる電池ホルダ21に接続されている。通常は、乾電池22は装着されていないが、装着によりヒータ20に通電すれば、始動用溶融塩電池B2を融点以上に加熱して使用可能とすることができる。なお、乾電池の代わりに、携帯電話やデジタルカメラに使用されるリチウムイオン電池その他の汎用電池を使用してもよい。 << Fourth example of heating device for starting >>
FIG. 10 is a cross-sectional view showing a fourth example of the starting
この場合の始動用加熱装置100は、広く普及していて利用しやすい汎用電池を接続することで発熱するので、容易に、始動用溶融塩電池を使用可能とすることができる。このような始動用加熱装置は、停電時でも発熱可能であるので、非常時の溶融塩電池始動に好適である。
In this case, the starting heating device 100 generates heat by connecting a general-purpose battery that is widespread and easy to use. Therefore, the starting molten salt battery can be easily used. Since such a starting heating device can generate heat even during a power failure, it is suitable for starting a molten salt battery in an emergency.
《始動用加熱装置の第5例》
図11は、始動用加熱装置100の第5例を示す略図である。この始動用加熱装置100は、集光レンズ23Lを備えた集光装置23によって太陽光を集光し、熱線吸収性に優れた吸熱板24を介して、始動用溶融塩電池B2を加熱しようとする構成である。
この場合の始動用加熱装置100は、太陽光を当てるだけで電池容器11を加熱し、容易に、始動用溶融塩電池B2を使用可能とすることができる。このような始動用加熱装置100は自然のエネルギーを利用するものであるので、非常時の溶融塩電池始動に好適である。 << Fifth example of starting heating apparatus >>
FIG. 11 is a schematic diagram showing a fifth example of the startingheating device 100. This starting heating device 100 condenses sunlight by the condensing device 23 provided with the condensing lens 23L, and attempts to heat the starting molten salt battery B2 via the heat absorbing plate 24 excellent in heat ray absorption. It is the structure to do.
In this case, the startingheating device 100 heats the battery container 11 only by being exposed to sunlight, and can easily use the starting molten salt battery B2. Such a starting heating device 100 uses natural energy and is suitable for starting a molten salt battery in an emergency.
図11は、始動用加熱装置100の第5例を示す略図である。この始動用加熱装置100は、集光レンズ23Lを備えた集光装置23によって太陽光を集光し、熱線吸収性に優れた吸熱板24を介して、始動用溶融塩電池B2を加熱しようとする構成である。
この場合の始動用加熱装置100は、太陽光を当てるだけで電池容器11を加熱し、容易に、始動用溶融塩電池B2を使用可能とすることができる。このような始動用加熱装置100は自然のエネルギーを利用するものであるので、非常時の溶融塩電池始動に好適である。 << Fifth example of starting heating apparatus >>
FIG. 11 is a schematic diagram showing a fifth example of the starting
In this case, the starting
《非常用電源装置》
図12は、主として家庭用の、非常用電源装置400を示すブロック図である。図において、上述のいずれかの始動用加熱装置100を備えた始動用溶融塩電池B2を含む非常用溶融塩組電池200から出力される直流電圧は、インバータ装置300によって、交流100Vに変換される。なお、インバータ装置300を駆動するための制御電源電圧も、非常用溶融塩組電池200から提供することができる。このような非常用電源装置400は、災害等による停電時に、商用交流電圧と同じ交流電圧で電力供給を行うことができる。 <Emergency power supply>
FIG. 12 is a block diagram showing an emergency power supply apparatus 400 mainly for home use. In the figure, the DC voltage output from the emergency molten salt assembled battery 200 including the starting molten salt battery B2 provided with any of the above-describedstarting heating devices 100 is converted into AC 100V by the inverter device 300. . A control power supply voltage for driving the inverter device 300 can also be provided from the emergency molten salt assembled battery 200. Such an emergency power supply apparatus 400 can supply power with the same AC voltage as the commercial AC voltage in the event of a power failure due to a disaster or the like.
図12は、主として家庭用の、非常用電源装置400を示すブロック図である。図において、上述のいずれかの始動用加熱装置100を備えた始動用溶融塩電池B2を含む非常用溶融塩組電池200から出力される直流電圧は、インバータ装置300によって、交流100Vに変換される。なお、インバータ装置300を駆動するための制御電源電圧も、非常用溶融塩組電池200から提供することができる。このような非常用電源装置400は、災害等による停電時に、商用交流電圧と同じ交流電圧で電力供給を行うことができる。 <Emergency power supply>
FIG. 12 is a block diagram showing an emergency power supply apparatus 400 mainly for home use. In the figure, the DC voltage output from the emergency molten salt assembled battery 200 including the starting molten salt battery B2 provided with any of the above-described
なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
11:電池容器
13:外容器
14:加熱装置(第1の加熱装置)
15:外容器
17:ケース
18:粉状体(物質)
19:シール
22:乾電池(汎用電池)
23:集光装置
100:始動用加熱装置(第2の加熱装置)
200:非常用溶融塩組電池
300:インバータ装置
400:非常用電源装置
B:溶融塩電池
B1:本稼働用溶融塩電池
B2:始動用溶融塩電池 11: Battery container 13: Outer container 14: Heating device (first heating device)
15: Outer container 17: Case 18: Powdered body (substance)
19: Seal 22: Dry battery (general-purpose battery)
23: Condensing device 100: Heating device for starting (second heating device)
200: Emergency molten salt assembled battery 300: Inverter device 400: Emergency power supply device B: Molten salt battery B1: Molten salt battery for actual operation B2: Molten salt battery for starting
13:外容器
14:加熱装置(第1の加熱装置)
15:外容器
17:ケース
18:粉状体(物質)
19:シール
22:乾電池(汎用電池)
23:集光装置
100:始動用加熱装置(第2の加熱装置)
200:非常用溶融塩組電池
300:インバータ装置
400:非常用電源装置
B:溶融塩電池
B1:本稼働用溶融塩電池
B2:始動用溶融塩電池 11: Battery container 13: Outer container 14: Heating device (first heating device)
15: Outer container 17: Case 18: Powdered body (substance)
19: Seal 22: Dry battery (general-purpose battery)
23: Condensing device 100: Heating device for starting (second heating device)
200: Emergency molten salt assembled battery 300: Inverter device 400: Emergency power supply device B: Molten salt battery B1: Molten salt battery for actual operation B2: Molten salt battery for starting
Claims (8)
- 電解質として溶融塩を含む溶融塩電池が複数個集まって構成され、充電後、電解質が固化した状態で保存される非常用溶融塩組電池であって、
複数の本稼働用溶融塩電池と、
前記複数の本稼働用溶融塩電池を加熱する第1の加熱装置と、
前記第1の加熱装置を動作させることが可能な少なくとも1つの始動用溶融塩電池と、
前記始動用溶融塩電池の電池容器に付随して設けられ、非動作時は当該始動用溶融塩電池の電解質を融点未満の温度に維持する常温体であるが、動作時は前記電池容器の加熱体となる始動用の第2の加熱装置と
を備えていることを特徴とする非常用溶融塩組電池。 It is an emergency molten salt battery that is composed of a plurality of molten salt batteries containing molten salt as an electrolyte, and is stored in a state where the electrolyte is solidified after being charged,
A plurality of production molten salt batteries;
A first heating device for heating the plurality of production-use molten salt batteries;
At least one starting molten salt battery capable of operating the first heating device;
It is provided at the battery container of the starting molten salt battery, and is a room temperature body that maintains the electrolyte of the starting molten salt battery at a temperature below the melting point when not in operation, but heating the battery container during operation An emergency molten salt assembled battery comprising: a starting second heating device as a body. - 前記第2の加熱装置は、前記電池容器に対する外容器であって、熱媒体を導入することができるものである請求項1記載の非常用溶融塩組電池。 The emergency molten salt assembled battery according to claim 1, wherein the second heating device is an outer container for the battery container, and is capable of introducing a heat medium.
- 請求項2の非常用溶融塩組電池の使用方法であって、前記熱媒体の無い状態では前記第2の加熱装置を常温体に維持し、前記熱媒体を導入することによって前記第2の加熱装置を加熱体に変化させる非常用溶融塩組電池の使用方法。 3. The method of using an emergency molten salt battery according to claim 2, wherein the second heating device is maintained at room temperature in the absence of the heating medium, and the second heating is performed by introducing the heating medium. A method of using an emergency molten salt assembled battery in which the apparatus is changed to a heating element.
- 前記第2の加熱装置は、前記電池容器を覆うケース内に、化学反応によって発熱し得る物質が、化学反応の開始を阻止するシールを設けて封入されている請求項1記載の非常用溶融塩組電池。 2. The emergency molten salt according to claim 1, wherein the second heating device encloses a substance capable of generating heat due to a chemical reaction in a case covering the battery container with a seal for preventing the start of the chemical reaction. Assembled battery.
- 請求項4の非常用溶融塩組電池の使用方法であって、前記シールを設けた状態では前記第2の加熱装置を常温体に維持し、前記シールを除去することによって前記第2の加熱装置を加熱体に変化させる非常用溶融塩組電池の使用方法。 5. The method for using an emergency molten salt assembled battery according to claim 4, wherein the second heating device is maintained by maintaining the second heating device at a normal temperature in a state where the seal is provided, and removing the seal. To use the molten salt assembled battery for emergency which changes the heat to a heating element.
- 前記第2の加熱装置は、前記電池容器の外面に設けられ、汎用の電池によって加熱可能である請求項1記載の非常用溶融塩組電池。 The emergency molten salt assembled battery according to claim 1, wherein the second heating device is provided on an outer surface of the battery container and can be heated by a general-purpose battery.
- 前記第2の加熱装置は、前記電池容器の外面に直接又は間接に、太陽光を集光して加熱する装置を含む請求項1記載の非常用溶融塩組電池。 2. The emergency molten salt assembled battery according to claim 1, wherein the second heating device includes a device that condenses and heats sunlight directly or indirectly on an outer surface of the battery container.
- 請求項1,2,4,6,7のいずれか1項に記載の非常用溶融塩組電池と、当該非常用溶融塩組電池の出力する電圧を、商用交流電圧に変換するインバータ装置とを備えた非常用電源装置。 The emergency molten salt assembled battery according to any one of claims 1, 2, 4, 6, and 7, and an inverter device that converts a voltage output from the emergency molten salt assembled battery into a commercial AC voltage. Emergency power supply equipped.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137017371A KR20140073460A (en) | 2011-10-05 | 2012-09-14 | Emergency molten salt assembled battery, method for using the same, and emergency power supply apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011221066A JP2013080663A (en) | 2011-10-05 | 2011-10-05 | Emergency molten salt battery pack and usage thereof and emergency power supply device |
JP2011-221066 | 2011-10-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013051385A1 true WO2013051385A1 (en) | 2013-04-11 |
Family
ID=48043549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/073599 WO2013051385A1 (en) | 2011-10-05 | 2012-09-14 | Emergency molten salt assembly cell and method for using same, and emergency power supply device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2013080663A (en) |
KR (1) | KR20140073460A (en) |
WO (1) | WO2013051385A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6387609B2 (en) * | 2013-12-09 | 2018-09-12 | 日産自動車株式会社 | Battery system |
WO2020178946A1 (en) * | 2019-03-04 | 2020-09-10 | 東光鉄工株式会社 | Recognition marker and flight vehicle |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08138732A (en) * | 1994-11-10 | 1996-05-31 | Mitsubishi Heavy Ind Ltd | Secondary battery using sodium |
JP2010051074A (en) * | 2008-08-20 | 2010-03-04 | Ngk Insulators Ltd | Heater power supply method of sodium-sulfur battery |
-
2011
- 2011-10-05 JP JP2011221066A patent/JP2013080663A/en not_active Withdrawn
-
2012
- 2012-09-14 KR KR1020137017371A patent/KR20140073460A/en not_active Application Discontinuation
- 2012-09-14 WO PCT/JP2012/073599 patent/WO2013051385A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08138732A (en) * | 1994-11-10 | 1996-05-31 | Mitsubishi Heavy Ind Ltd | Secondary battery using sodium |
JP2010051074A (en) * | 2008-08-20 | 2010-03-04 | Ngk Insulators Ltd | Heater power supply method of sodium-sulfur battery |
Also Published As
Publication number | Publication date |
---|---|
JP2013080663A (en) | 2013-05-02 |
KR20140073460A (en) | 2014-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8968902B2 (en) | Low temperature molten sodium secondary cell with sodium ion conductive electrolyte membrane | |
JP4928824B2 (en) | Method for manufacturing lithium ion storage element | |
JP5922019B2 (en) | Sealing method of heat-sealing separator for nickel-zinc cell and jelly roll electrode assembly | |
JP5664114B2 (en) | Molten salt battery | |
WO2012114951A1 (en) | Molten salt battery and method for producing same | |
JP7007297B2 (en) | Pressurized Lithium Metal Polymer Battery | |
WO2014032594A1 (en) | Battery | |
WO2002049126A9 (en) | Multi-cell battery | |
CA2902908C (en) | Low temperature battery with molten sodium-fsa electrolyte | |
Krivik et al. | Electrochemical energy storage | |
CN106602099A (en) | Novel reserve cell adopting thermal activation mode | |
WO2012137618A1 (en) | Molten salt cell | |
WO2013161549A1 (en) | Molten salt cell system | |
JP5617746B2 (en) | Closed molten salt battery | |
JP5786666B2 (en) | Power system | |
WO2013051385A1 (en) | Emergency molten salt assembly cell and method for using same, and emergency power supply device | |
JP2019102244A (en) | Partition member and battery pack | |
JP5690353B2 (en) | Non-aqueous secondary battery | |
JP2012243732A (en) | Molten salt battery pack and warm-up method thereof | |
JP5696648B2 (en) | Method for manufacturing molten salt battery | |
JP2011119093A (en) | Method for manufacturing solid battery module, and solid battery module obtained by the method | |
JP2014056811A (en) | Molten salt battery system and method for charging and discharging the same | |
JP2014011061A (en) | Molten salt battery system | |
JP2012221683A (en) | Molten salt battery and molten salt battery pack | |
JP2013143335A (en) | Charging method and power supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12839100 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137017371 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12839100 Country of ref document: EP Kind code of ref document: A1 |