WO2013051316A1 - Solar light collection system and solar heat generation system - Google Patents

Solar light collection system and solar heat generation system Download PDF

Info

Publication number
WO2013051316A1
WO2013051316A1 PCT/JP2012/067601 JP2012067601W WO2013051316A1 WO 2013051316 A1 WO2013051316 A1 WO 2013051316A1 JP 2012067601 W JP2012067601 W JP 2012067601W WO 2013051316 A1 WO2013051316 A1 WO 2013051316A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
condensing
mirror
receiver
transparent substrate
Prior art date
Application number
PCT/JP2012/067601
Other languages
French (fr)
Japanese (ja)
Inventor
俊泰 光成
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2013051316A1 publication Critical patent/WO2013051316A1/en
Priority to IN3243CHN2014 priority Critical patent/IN2014CN03243A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/83Other shapes
    • F24S2023/833Other shapes dish-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/86Arrangements for concentrating solar-rays for solar heat collectors with reflectors in the form of reflective coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/872Assemblies of spaced reflective elements on common support, e.g. Fresnel reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/80Arrangements for concentrating solar-rays for solar heat collectors with reflectors having discontinuous faces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar condensing system and a solar thermal power generation system.
  • a linear Fresnel method As the solar condensing system, a linear Fresnel method, a tower method, a trough method, a dish method, and the like are known. Here, the linear Fresnel method will be described.
  • European Patent Application Publication No. 2051022A2 discloses a linear Fresnel solar condensing system that condenses light on a linear receiver by reflecting sunlight with a plurality of rows of strip-shaped mirrors.
  • a heat medium flows inside the tubular receiver, and heat received by the receiver by condensing is sent to power generation equipment such as a steam turbine through the heat medium. Power generation using solar heat is performed.
  • Mirrors used in the linear Fresnel method include a type with a flat surface and a type with a surface curved like a bowl toward the receiver. Since the flat type cannot condense below the mirror width, a curved type mirror is employed when it is desired to increase the light condensing rate.
  • one of the features of the linear Fresnel method is that the receiver is fixed with respect to the ground and the mirror rotates following the movement of the sun.
  • condensing using a curved mirror becomes so-called off-axis condensing and field curvature occurs, and in many cases, condensing cannot be performed within the width of one receiver.
  • a method of reducing the leakage of reflected light is usually taken by arranging a plurality of receivers or by providing a secondary mirror that re-reflects the light deviated behind the receiver and collects it on the receiver.
  • the condensing rate per receiver is lowered and heat transfer loss is increased.
  • the method of providing a secondary mirror it is difficult to collect incident light toward a 100% receiver, and it is known that about 20% of light does not reach the receiver and escapes outside.
  • an object of the present invention is to provide a solar condensing system and a solar thermal power generation system that can improve the condensing rate.
  • the present invention is a solar condensing system including a condensing mirror that condenses sunlight to a receiver, and the condensing mirror is opposite to the surface on which sunlight is incident. And a reflective layer formed on the back surface of the transparent substrate, and the collector mirror is configured to be rotatable or swingable about the central axis and perpendicular to the central axis
  • the cross section of the transparent substrate has an arc shape that is recessed toward the reflective layer side.
  • this solar condensing system it is a catadioptric condensing mirror that performs refraction of sunlight by a transparent substrate and reflection by a reflecting layer, thereby making it possible to compare the image plane with a conventional condensing mirror that is surface reflection Since the influence of bending can be suppressed, the light collection rate with respect to the receiver can be significantly improved. As a result, the size of the condensing spot with respect to the receiver and the secondary mirror is reduced, so that the accuracy of tracking control with respect to the sun is eased, and leakage light that does not reach the receiver can be reduced.
  • the transparent substrate may be formed by injection molding.
  • an accurate curved transparent substrate can be manufactured with high efficiency compared to the conventional case of manufacturing a transparent substrate by curving a plate glass created by the float process.
  • an antireflection film may be formed on the surface of the transparent substrate. According to this configuration, it is possible to reduce the possibility that sunlight is reflected in the direction other than the receiver on the surface of the transparent substrate, so that the light collection rate can be further improved.
  • the above-mentioned solar condensing system is a linear Fresnel system in which the receiver extends linearly in the direction along the central axis, and the condensing mirror is formed in a bowl shape so as to condense sunlight toward the receiver
  • the solar condensing system may be used.
  • the so-called linear Fresnel solar condensing system the light condensing rate can be greatly improved.
  • the length of the receiver (the length of the flow path) required to bring the heat medium flowing in the receiver at a desired flow rate to the desired temperature can be shortened, so that the heat medium flowing in the receiver transfers and radiates heat. Therefore, it is possible to suppress the occurrence of heat loss and to realize more efficient use of solar heat.
  • the solar concentrator system is a tower-type solar in which a receiver is provided on a tower erected on the ground, and a collector mirror is formed in a dish shape so as to collect sunlight toward the receiver. It may be a condensing system. According to this configuration, in the so-called tower type solar condensing system, the condensing rate can be greatly improved.
  • a solar thermal power generation system includes the above-described solar condensing system, and generates power using heat obtained by a receiver. According to the solar thermal power generation system according to the present invention, it is possible to significantly improve the concentration ratio of sunlight by providing the above-described solar condensing system. As a result, sunlight can be efficiently absorbed and solar heat can be obtained, so that the efficiency of solar thermal power generation can be improved.
  • the light collection rate can be improved.
  • the size of the condensing spot with respect to the receiver and the secondary mirror is reduced, so that the accuracy of tracking control with respect to the sun is eased, and leakage light that does not reach the receiver can be reduced.
  • the solar thermal power generation system 1 is a system that generates power using solar heat obtained by condensing sunlight, and a linear Fresnel system that condenses sunlight.
  • the solar condensing system 10 is provided.
  • the linear Fresnel solar condensing system 10 includes a linearly extending receiver 11 and a plurality of rows of condensing mirrors 12 that condense sunlight T toward the receiver 11.
  • the extending direction of the receiver 11 will be described as the X-axis direction, the vertical direction as the Z-axis direction, and the direction orthogonal to both the X-axis direction and the Z-axis direction as the Y-axis direction.
  • the receiver 11 is a tubular member through which a heat medium flows.
  • the heat medium may be gaseous or liquid.
  • the receiver 11 is fixed to the ground, and is supported at a high place by left and right support bases 13.
  • Solar heat obtained by the receiver 11 by condensing by the condensing mirror 12 is supplied to the power generation facility through a heat medium flowing inside.
  • the power generation facility for example, a steam turbine or the like can be used, and power generation is performed using solar heat supplied through a heat medium.
  • the condensing mirror 12 forms a row in the X-axis direction along the receiver 11, and a plurality of rows of the condensing mirror 12 are arranged in the Y-axis direction. These condensing mirrors 12 are supported by support legs 14 and are configured to be rotatable following the movement of the sun.
  • FIG. 2 (a) and 2 (b) are side views showing how the condensing mirror 12 rotates following the movement of the sun.
  • FIG. 2A shows a case where the sun is located directly above the solar condensing system 10.
  • FIG. 2B shows a case where the sun is positioned away from directly above the solar light collecting system 10.
  • FIG. 3 is a side view showing a reflection state of one line of the collecting mirror 12.
  • FIG. 3 shows the central axis C of the condenser mirror 12.
  • the condensing mirror 12 is configured to be rotatable about a central axis C extending in the X-axis direction.
  • the sunlight that follows the movement of the sun by the condensing mirror 12 that is curved like a bowl rotates about the central axis C. T focusing is performed.
  • the condensing mirror 12 is rotationally driven by an actuator (not shown).
  • sunlight T enters from a direction other than the optical axis of the condensing mirror 12 and is reflected by the receiver 11. In most cases, so-called off-axis reflection is caused, and curvature of field occurs due to the off-axis reflection.
  • FIG. 4 is an enlarged cross-sectional view of the condensing mirror 12 along the YZ plane.
  • the collector mirror 12 includes a transparent substrate 15, an antireflection film 16, and a reflective layer 17.
  • the transparent substrate 15 is made of a highly transparent resin material such as acrylic resin.
  • the transparent substrate 15 is a plate-like member curved in a bowl shape, and a cross section perpendicular to the central axis C (cross section along the YZ plane) has an arc shape that is recessed toward the reflective layer 17 side.
  • the transparent substrate 15 has sufficient rigidity to maintain its shape.
  • the transparent substrate 15 has a surface 15a on the receiver 11 side (front side) and a back surface 15b on the opposite side of the surface 15a.
  • the cross-sectional shape (the shape on the cross section perpendicular to the central axis C) along the YZ plane of the front surface 15a and the back surface 15b forms an arc shape.
  • the front surface 15a and the back surface 15b may have the same or different curvature in the arc of the cross-sectional shape.
  • the cross-sectional shape along the YZ plane of the front surface 15a and the back surface 15b may be a parabolic shape instead of an arc shape.
  • one of the cross-sectional shapes of the front surface 15a and the back surface 15b may be an arc shape and the other may be a parabolic shape.
  • An antireflection film 16 for preventing the reflection of sunlight T is formed on the surface 15 a of the transparent substrate 15.
  • the antireflection film 16 is a film made of, for example, magnesium fluoride MgF 2 .
  • the antireflection film 16 may be a multilayer film made of a plurality of materials. By forming such an antireflection film 16, the sunlight T can be prevented from being reflected by the surface 15a. Note that the antireflection film 16 is not necessarily provided.
  • a reflective layer 17 is formed on the back surface 15 b of the transparent substrate 15.
  • the reflective layer 17 is made of, for example, aluminum Al or silver Ag.
  • the reflective layer 17 may be formed on the entire surface of the back surface 15b or may be formed on a part thereof.
  • the transparent substrate 15 is manufactured by injection molding in which a heat-melted resin material is injected and injected into a mold and cooled in the mold. Injection molding is suitable for producing a large number of molded articles having complicated shapes.
  • FIG. 5 is a diagram illustrating a change in the position of the receiver 11 with the condenser mirror 12 as a reference.
  • T1 to T4 in FIG. 5 indicate sunlight and reflected light at each time.
  • the condensing mirror 12 is comprised so that an image surface (collection point) may be formed in the position away from the distance f irrespective of the incident angle of sunlight.
  • the aberration coefficient ⁇ of the third-order field curvature aberration is expressed by the following equation (1) using the aberration coefficient ⁇ of the third-order astigmatism and the Petzval sum P. Note that the reciprocal of ⁇ corresponds to the radius of curvature of the field curvature of the sagittal image plane.
  • the sagittal image plane is at infinity, so the field curvature of the meridional image plane is significant. It will be. Further, the distance (collection distance) f between the center of the condenser mirror 12 and the receiver 11 is equal to the curvature radius of the curvature of field of the meridional image plane. For this reason, by satisfying the following formula (2), it becomes possible to control the curvature of field by approximating it in an arc shape.
  • the following formula (3) can be obtained by applying the formula (1) to the formula (2).
  • the power ⁇ of the entire system in the condenser mirror 12 will be considered.
  • the power of the surface 15a of the transparent substrate 15 at the time of light incidence is ⁇ 1
  • the power of the reflective layer 17 is ⁇ 2
  • the power of the surface 15a at the time of light emission is ⁇ 3 .
  • the power ⁇ of the entire system is expressed as the following equation (4) by thin-wall approximation assuming that the thickness of the transparent substrate 15 of the collector mirror 12 is zero.
  • ⁇ 1 and ⁇ 3 have the same value because they are the power of the same surface 15a. Since the power ⁇ is the reciprocal of the collecting point distance f, the following equation (5) is obtained.
  • the field curvature can be approximately controlled in an arc shape having the radius of the collecting point distance f.
  • ⁇ 1 and ⁇ 3 are expressed by the following equation (6) as a function of the radius of curvature r 1 of the surface 15 a and the refractive index n of the transparent substrate 15. From the above formula (6), if the refractive index n is a fixed value, ⁇ 1 or ⁇ 3 and r 1 have a one-to-one correspondence.
  • [Phi 2 is represented by the following equation as a function of the refractive index n of the radius of curvature r 2 and the transparent substrate 15 of the back surface 15b (7).
  • the radius of curvature r 1 of the surface 15a an arc of radius of curvature is a cross-sectional shape along the YZ plane of the surface 15a.
  • the radius of curvature r 2 of the rear surface 15b is the same. From the above formula (7), if the refractive index n is a fixed value, ⁇ 2 has a one-to-one correspondence with r 2 .
  • the aberration coefficient ⁇ of the third-order field curvature aberration and the aberration coefficient ⁇ of the third-order astigmatism are functions of ⁇ 1 and ⁇ 2 by setting the refractive index n and the thickness d of the transparent substrate 15 as fixed values.
  • the lens design method by Yoshiya Matsui, Kyoritsu Shuppan Co., Ltd.
  • Figure 6 is a graph showing the relationship between 2.alpha + beta and phi 1. This graph can be obtained by plotting 2.alpha + beta expressed as a function of [Phi 1 and [Phi 2. In this graph, when f is 10,000 mm, the reciprocal of f is 0.00010. By reflecting the value in the graph, the optimal value of ⁇ 1 -0.000070 is derived. The situation of deriving the optimum value of ⁇ 1 from the graph is visually shown as a dashed arrow.
  • the optimum value of the radius of curvature r 1 of the surface 15a is obtained.
  • the optimum value of ⁇ 2 can be obtained by substituting the optimum value of ⁇ 1 into equation (5).
  • the optimum value of the curvature radius r 2 of the back surface 15b is obtained.
  • the case of the conventional condensing mirror which is surface reflection is considered.
  • f be the distance between the center of the conventional condenser mirror and the receiver.
  • the power ⁇ 0 of the conventional collector mirror is set to be the reciprocal of f.
  • Figure 7 is a graph showing the relationship between 2.alpha + beta and phi 0 in the conventional collector mirror. As shown in FIG. 7, in the conventional collector mirror, since the power ⁇ 0 is uniquely determined from the reciprocal of f, there is no option regarding the curvature radius of the mirror surface.
  • the power ⁇ 0 which is the reciprocal of f is determined to be 0.000100.
  • 2 ⁇ + ⁇ corresponding to the power ⁇ 0 is 0.0002, which does not match the reciprocal of 2 ⁇ + ⁇ and f.
  • This situation is shown visually using dashed arrows. From the graph of FIG. 7, it is clear that there is no condition that satisfies the above formula (2) in the conventional condensing mirror that is surface reflection, and the curvature of field cannot be controlled by changing the curvature.
  • the distance f from the center of the condenser mirror 12 to the receiver 11 was 10000 mm
  • the mirror width (width in the direction orthogonal to the central axis C) was 500 mm
  • the maximum angle of view was ⁇ 45 deg.
  • the aperture ratio NA is 0.025.
  • the thickness of the transparent substrate 15 was 5 mm, and the refractive index of the transparent substrate 15 was the same as the refractive index of the acrylic resin. Specifically, the refractive index of acrylic resin under an environment of 20 ° C. and 1 atm, 1.507224857 (when the wavelength of light is 400 nm), 1.49358005 (when the wavelength of light is 550 nm), 1.48327291 ( The light wavelength was 1000 nm).
  • the cross-sectional shape along the YX plane of the surface 15a (the shape on the cross-section orthogonal to the central axis C) is an arc shape with a radius of curvature of 9219.71 mm, and the cross-sectional shape along the YZ plane of the back surface 15b is the radius of curvature of 14499.19 mm. Arc shape.
  • the distance f from the center of the collector mirror 50 to the receiver 11 was 10000 mm, the mirror width was 500 mm, and the maximum angle of view was ⁇ 45 deg.
  • the aperture ratio NA is also 0.025, which is the same value as that of the condenser mirror 12.
  • the cross-sectional shape along the YZ plane of the surface (reflection surface) of the conventional collector mirror 50 is an arc shape having a curvature radius of 21920.72 mm.
  • FIG. 8 is a diagram showing the occurrence of field curvature in the conventional condenser mirror 50.
  • U in FIG. 8 shows a locus (field curvature state) of the image plane (collection point) formed by the reflected light of the conventional condenser mirror 50.
  • W in FIG. 8 is an arc having a radius of the collecting point distance f, and indicates the movement trajectory of the receiver 11.
  • FIG. 9 is a graph showing the relationship between the angle of view and the curvature of field in the conventional condenser mirror 50. It shows the change of curvature with respect to the angle of view as F 0.
  • the conventional collector mirror 50 resulted in a large field curvature exceeding ⁇ 1000 mm.
  • FIGS. 10 and 11 simulation results in the condenser mirror 12 according to the present embodiment are shown in FIGS. 10 and 11.
  • FIG. 10 is a diagram illustrating the occurrence of curvature of field in the condensing mirror 12.
  • FIG. 11 is a graph showing the relationship between the angle of view and the curvature of field in the condenser mirror 12.
  • the light is divided according to the wavelength by refraction occurring in the transparent substrate 15.
  • the change in field curvature with respect to the field angle of light having a wavelength of 400 nm is F 1
  • the change in field curvature with respect to the field angle of light having a wavelength of 550 nm is F 2
  • the change in field curvature with respect to the field angle of light having a wavelength of 1000 nm It is shown as F 3.
  • the focusing mirror 12 according to the present embodiment generated only 200 mm of field curvature at the maximum.
  • the deterioration of the condensing property is about one fifth.
  • the surface is obtained by using the catadioptric condensing mirror 12 that performs refraction of the sunlight T by the transparent substrate 15 and reflection by the reflection layer 17.
  • the conventional condensing mirror 50 which is a reflection
  • the influence of the curvature of field can be suppressed, and the condensing rate with respect to the receiver 11 can be greatly improved.
  • the length of the receiver 11 (the length of the flow path) necessary to bring the heat medium flowing in the receiver 11 at a desired flow rate to a desired temperature can be shortened, the heat medium flowing in the receiver 11 is transmitted. Heat loss due to heat and radiation can be suppressed, and more efficient use of solar heat can be realized.
  • the size of the focused spot with respect to the receiver 11 is reduced, so that the accuracy of tracking control with respect to the sun can be eased, and leakage light that does not reach the receiver 11 can be reduced.
  • the curved shape is more accurate than the conventional case of producing a transparent substrate by curving a plate glass created by a float process by molding the transparent substrate 15 by injection molding.
  • the transparent substrate 15 can be manufactured with high efficiency. Furthermore, according to injection molding, it becomes easy to manufacture the transparent substrate 15 in which the curvature radii of the front surface 15a and the back surface 15b are greatly different.
  • the solar thermal power generation system 1 can significantly improve the light collection rate of sunlight T by including the solar light collection system 10.
  • the receiver 11 can efficiently absorb the solar light T to obtain solar heat, so that the efficiency of solar thermal power generation can be improved.
  • the solar concentrating system 10 according to the first embodiment may include a secondary mirror 20 that covers the receiver 11.
  • the substantially bowl-shaped secondary mirror 20 is arranged so as to open downward toward the receiver 11.
  • the secondary mirror 20 extends along the receiver 11 in the X axis direction.
  • the secondary mirror 20 is for causing the sunlight T to reach the receiver 11 by re-reflection when the reflected light from the condenser mirror 12 deviates from the receiver 11.
  • the secondary mirror 20 can pick up more reflected light away from the receiver 11 as the aperture area is larger. However, as the aperture area increases, the probability that the reflected light escapes without reaching the receiver 11 increases.
  • a conventional secondary mirror having a large aperture area is shown by a broken line in FIG.
  • the secondary mirror 20 since the secondary mirror 20 is provided, the light deviated from the receiver 11 can be re-reflected and reach the receiver 11. The rate can be further improved.
  • the secondary mirror 20 since the reflected light is collected at the receiver 11 due to the improvement in the light condensing rate of the light collecting mirror 12, the secondary mirror 20 can be downsized as compared with the conventional case. This is advantageous for reducing the cost of the entire system.
  • the aperture area of the secondary mirror 20 can be reduced by downsizing, the probability that the light re-reflected by the secondary mirror 20 escapes again from the aperture can be reduced.
  • the secondary mirror can be omitted even if the secondary mirror is essential in the conventional system. .
  • the solar condensing system 10 it is possible to reduce the cost of the system and to avoid the efficiency reduction due to the shadow of the secondary mirror formed on the primary mirror (condensing mirror 12).
  • the solar condensing system 30 which concerns on 2nd Embodiment is what is called a tower type solar condensing system.
  • the solar condensing system 30 includes a tower 31 erected on the ground, a receiver 32 provided on the top of the tower 31, and a condensing mirror 33 that condenses sunlight T with respect to the receiver 32. Yes.
  • the cylindrical receiver 32 is fixed to the ground via the tower 31.
  • a circulation path of a heat medium is formed inside the receiver 32, and heat obtained by the receiver 32 by light collection is supplied to various facilities through the heat medium.
  • the condenser mirror 33 is a so-called dish-shaped (dish-shaped) mirror.
  • the reflected light of the dish-shaped collector mirror 33 is collected at one point toward the receiver 32.
  • the condenser mirror 33 is disposed around the tower 31.
  • These condensing mirrors 33 have two rotation axes (center axes), and are configured to be rotatable with respect to these rotation axes.
  • the condensing mirror 33 has two orthogonal rotation axes so that it can respond to the daily movement of the sun and changes in the orbit of the sun over the course of the year.
  • FIG. 14 is an enlarged cross-sectional view of the condenser mirror 33 along the YZ plane.
  • the condensing mirror 33 includes a transparent substrate 34, an antireflection film 35, and a reflection layer 36.
  • the dish-shaped collector mirror 33 differs from the bowl-shaped collector mirror 12 according to the first embodiment only in the overall shape.
  • the transparent substrate 34 made of resin is formed in a dish shape that is recessed toward the center. This transparent substrate 34 is also formed by injection molding.
  • the front surface 34a and the back surface 34b of the transparent substrate 34 have a spherical shape, and a cross-sectional shape along the YZ plane (a shape on a cross section perpendicular to the central axis) forms an arc shape.
  • front surface 34a and the back surface 34b may have the same or different curvature in the cross-sectional arc.
  • the cross-sectional shapes of the front surface 34a and the back surface 34b may be a parabolic shape instead of an arc shape.
  • one of the cross-sectional shapes of the front surface 34a and the back surface 34b may be an arc shape and the other may be a parabolic shape.
  • An antireflection film 35 is formed on the surface 34 a of the transparent substrate 34.
  • a reflective layer 36 is formed on the back surface 34 b of the transparent substrate 34. Since the functions of the antireflection film 35 and the reflection layer 36 are the same as those in the first embodiment, description thereof is omitted.
  • the refraction of the sunlight T by the transparent substrate 34 and the reflection by the reflecting layer 36 are similar to the solar concentrating system 10 according to the first embodiment.
  • a catadioptric mirror 33 that performs the reflection the influence of the curvature of field can be suppressed and the light collection rate for the receiver 32 can be greatly improved compared to a conventional collector mirror that is a surface reflection. Can be made.
  • the total area of the condensing mirror 33 required to bring the heat medium flowing in the receiver 32 to a desired temperature is reduced, more efficient land use can be realized.
  • the present invention is not limited to the embodiment described above.
  • the solar condensing system 10 is not limited to use for solar thermal power generation.
  • Hot water supply using solar heat, steam supply, heating air conditioning, cooling air conditioning (high temperature heat source of absorption refrigeration machine) can be used in various fields. It is particularly suitable for applications such as factory air conditioning and steam supply in medium-scale plants.
  • it can also utilize as a concentrating solar cell system by arrange
  • the condensing mirrors 12 and 33 are not necessarily configured to be able to rotate 360 degrees, and may be configured to be swingable at less than 360 degrees.
  • the structure of the condensing mirrors 12 and 33 is not restricted to what was mentioned above, You may provide other members, such as a support frame.
  • the shapes of the front surfaces 15a and 34a and the back surfaces 15b and 34b of the transparent substrates 15 and 34 do not have to have an arc shape in the cross-sectional shape of all the surfaces, and may have portions having different cross-sectional shapes.
  • the arc shape means a shape including an arc shape or a parabolic shape.
  • the front surface 34a and the back surface 34b of the transparent substrate 34 may be aspherical.
  • the present invention can be used for a solar condensing system and a solar thermal power generation system capable of improving the condensing rate.
  • SYMBOLS 1 Solar thermal power generation system 10, 30 ... Solar condensing system 11, 32 ... Receiver 12, 33 ... Condensing mirror 15, 34 ... Transparent substrate 15a, 34a ... Front surface 15b, 34b ... Back surface 16, 35 ... Antireflection film 17, 36 ... Reflective layer 20 ... Secondary mirror 31 ... Tower 50 ... Conventional focusing mirror C ... Central axis T ... Sunlight

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Photovoltaic Devices (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

The present invention provides a solar light collection system and a solar heat generation system in which the light collection rate can be improved. The present invention is a solar light collection system (10) provided with a light collection mirror (12) for collecting sunlight (T) onto a receiver (11); wherein the light collection mirror (12) is provided with a transparent substrate (15) having an obverse surface (15a) on which the sunlight (T) is incident and a reverse surface (15b) on the opposite side from the obverse surface (15a), and a reflecting surface (17) formed on the reverse surface (15b) of the transparent substrate (15); the light collection mirror (12) is configured so as to be capable of rotating about the center axis (C); and the cross-section of the transparent substrate (15) perpendicular to the center axis (C) has an arc shape that is indented towards the side of the reflecting surface (17).

Description

太陽集光システム及び太陽熱発電システムSolar condensing system and solar power generation system
 本発明は、太陽集光システム及び太陽熱発電システムに関する。 The present invention relates to a solar condensing system and a solar thermal power generation system.
 近年、化石燃料の枯渇や二酸化炭素排出による諸問題に鑑み、再生可能な自然エネルギーである太陽光の利用が広く検討されている。太陽光エネルギーの利用には、太陽電池により太陽光を直接電気に変換する手法と太陽光を太陽熱として吸収して利用する手法とが知られている。太陽熱として利用する手法には、その熱を利用してタービンなどにより間接的に発電するものも含まれる。 In recent years, in view of problems caused by depletion of fossil fuels and carbon dioxide emissions, the use of sunlight, which is renewable natural energy, has been widely studied. For the use of solar energy, a method of directly converting sunlight into electricity by a solar cell and a method of absorbing and using sunlight as solar heat are known. The technique used as solar heat includes a method of generating power indirectly by using a turbine or the like using the heat.
 太陽熱の利用は、蓄熱による安定供給を行うことができ、この点が太陽電池に対する優位性として注目されている。特に、発電せずに熱そのものを利用する場合に効率が高く、太陽熱を利用する意義が大きい。このため、特に産業用の蒸気の供給などの中規模なプラントにおいて太陽熱を利用できる太陽集光システムが日本だけではなく欧州などの世界各国でも検討されている。 The use of solar heat enables stable supply by heat storage, and this point is attracting attention as an advantage over solar cells. In particular, when using heat itself without generating electricity, the efficiency is high, and the significance of using solar heat is great. For this reason, solar concentrating systems that can use solar heat in medium-sized plants such as industrial steam supply are being studied not only in Japan but also in countries around the world such as Europe.
 太陽集光システムとしては、リニアフレネル方式、タワー方式、トラフ方式、ディッシュ方式などが知られており、ここではリニアフレネル方式について説明する。例えば欧州特許出願公開2051022A2号公報には、複数列並べた短冊状のミラーにより太陽光を反射することで直線状のレシーバに集光するリニアフレネル方式の太陽集光システムが開示されている。このようなリニアフレネル方式の太陽熱発電システムでは、管状のレシーバ内部を熱媒体が流れており、集光によってレシーバが受けた熱が熱媒体を介して蒸気タービンなどの発電設備へと送られることで、太陽熱を利用した発電が行われる。 As the solar condensing system, a linear Fresnel method, a tower method, a trough method, a dish method, and the like are known. Here, the linear Fresnel method will be described. For example, European Patent Application Publication No. 2051022A2 discloses a linear Fresnel solar condensing system that condenses light on a linear receiver by reflecting sunlight with a plurality of rows of strip-shaped mirrors. In such a linear Fresnel solar thermal power generation system, a heat medium flows inside the tubular receiver, and heat received by the receiver by condensing is sent to power generation equipment such as a steam turbine through the heat medium. Power generation using solar heat is performed.
欧州特許出願公開2051022A2号公報European Patent Application Publication No. 2051022A2
 リニアフレネル方式で用いるミラーには、表面がフラットなタイプと表面がレシーバに向かって樋状に湾曲したタイプとが存在する。フラットタイプは、ミラー幅以下に集光することはできないため、より集光率を上げたい場合は湾曲タイプのミラーが採用される。 Mirrors used in the linear Fresnel method include a type with a flat surface and a type with a surface curved like a bowl toward the receiver. Since the flat type cannot condense below the mirror width, a curved type mirror is employed when it is desired to increase the light condensing rate.
 ところで、リニアフレネル方式の特徴の一つとして、レシーバは地面に対して固定され、ミラーは太陽の動きに追従して回転する点が挙げられる。この構成では、湾曲タイプのミラーを用いた集光がいわゆる軸外の集光となり像面湾曲が発生するため、多くの場合、一本のレシーバの幅内に集光させることはできない。 By the way, one of the features of the linear Fresnel method is that the receiver is fixed with respect to the ground and the mirror rotates following the movement of the sun. In this configuration, condensing using a curved mirror becomes so-called off-axis condensing and field curvature occurs, and in many cases, condensing cannot be performed within the width of one receiver.
 このため、レシーバを複数列並べたり、レシーバの後方に逸れた光を再反射してレシーバに集光させる二次ミラーを設けたりすることで、反射光の漏れを少なくする手法が通常取られる。しかし、レシーバを複数列並べる手法では、レシーバ一本当たりの集光率が低下して伝熱損失が大きくなってしまう。一方、二次ミラーを設ける手法においても、入射した光を100%レシーバに向けて集光させることは難しく、20%程度の光がレシーバに到達せずに外へ逃れることが知られている。 For this reason, a method of reducing the leakage of reflected light is usually taken by arranging a plurality of receivers or by providing a secondary mirror that re-reflects the light deviated behind the receiver and collects it on the receiver. However, in the method of arranging a plurality of receivers in a row, the condensing rate per receiver is lowered and heat transfer loss is increased. On the other hand, in the method of providing a secondary mirror, it is difficult to collect incident light toward a 100% receiver, and it is known that about 20% of light does not reach the receiver and escapes outside.
 そこで、本発明は、集光率を向上させることができる太陽集光システム及び太陽熱発電システムを提供することを目的とする。 Therefore, an object of the present invention is to provide a solar condensing system and a solar thermal power generation system that can improve the condensing rate.
 上記課題を解決するため、本発明は、レシーバに対して太陽光を集光する集光ミラーを備えた太陽集光システムであって、集光ミラーは、太陽光が入射する表面と表面の反対側の裏面とを有する透明基板と、透明基板の裏面に形成された反射層と、を備え、集光ミラーは、中心軸を中心として回転可能又は揺動可能に構成され、中心軸に垂直な透明基板の断面は、反射層側に向かって凹む弧形状を成していることを特徴とする。 In order to solve the above problems, the present invention is a solar condensing system including a condensing mirror that condenses sunlight to a receiver, and the condensing mirror is opposite to the surface on which sunlight is incident. And a reflective layer formed on the back surface of the transparent substrate, and the collector mirror is configured to be rotatable or swingable about the central axis and perpendicular to the central axis The cross section of the transparent substrate has an arc shape that is recessed toward the reflective layer side.
 この太陽集光システムによれば、透明基板による太陽光の屈折及び反射層による反射を行う反射屈折系の集光ミラーとすることにより、表面反射である従来の集光ミラーと比べて、像面湾曲の影響を抑制することができるので、レシーバに対する集光率を大幅に向上させることができる。その結果、レシーバや二次ミラーに対する集光スポットの大きさが小さくなるので、太陽に対する追尾制御の精度が緩和されると共に、レシーバに到達しない漏れ光を減少させることができる。 According to this solar condensing system, it is a catadioptric condensing mirror that performs refraction of sunlight by a transparent substrate and reflection by a reflecting layer, thereby making it possible to compare the image plane with a conventional condensing mirror that is surface reflection Since the influence of bending can be suppressed, the light collection rate with respect to the receiver can be significantly improved. As a result, the size of the condensing spot with respect to the receiver and the secondary mirror is reduced, so that the accuracy of tracking control with respect to the sun is eased, and leakage light that does not reach the receiver can be reduced.
 上記太陽集光システムにおいては、透明基板は射出成形により成形されても良い。
 この場合、フロート法で作成した板ガラスを湾曲させることで透明基板を製造する従来の場合と比べて、正確な湾曲形状の透明基板を高い効率で製造することができる。
In the solar condensing system, the transparent substrate may be formed by injection molding.
In this case, an accurate curved transparent substrate can be manufactured with high efficiency compared to the conventional case of manufacturing a transparent substrate by curving a plate glass created by the float process.
 上記太陽集光システムにおいては、透明基板の表面には、反射防止膜が形成されていても良い。
 この構成によれば、太陽光が透明基板の表面でレシーバ以外の方向に反射される可能性を低減することができるので、太陽光の集光率を一層向上させることができる。
In the solar condensing system, an antireflection film may be formed on the surface of the transparent substrate.
According to this configuration, it is possible to reduce the possibility that sunlight is reflected in the direction other than the receiver on the surface of the transparent substrate, so that the light collection rate can be further improved.
 上記太陽集光システムは、レシーバが中心軸に沿う方向で直線状に延在しており、集光ミラーがレシーバに向けて太陽光を集光するように樋状に形成されているリニアフレネル方式の太陽集光システムであっても良い。
 この構成によれば、いわゆるリニアフレネル方式の太陽集光システムにおいて、集光率を大幅に向上させることができる。その結果、ある流速でレシーバ内を流れる熱媒を所望の温度にするために必要となるレシーバの長さ(流路の長さ)を短縮できるため、レシーバ内を流れる熱媒が伝熱及び放射により熱損失が生じることを抑制することができ、より効率的な太陽熱の利用を実現することができる。
The above-mentioned solar condensing system is a linear Fresnel system in which the receiver extends linearly in the direction along the central axis, and the condensing mirror is formed in a bowl shape so as to condense sunlight toward the receiver The solar condensing system may be used.
According to this configuration, in the so-called linear Fresnel solar condensing system, the light condensing rate can be greatly improved. As a result, the length of the receiver (the length of the flow path) required to bring the heat medium flowing in the receiver at a desired flow rate to the desired temperature can be shortened, so that the heat medium flowing in the receiver transfers and radiates heat. Therefore, it is possible to suppress the occurrence of heat loss and to realize more efficient use of solar heat.
 上記太陽集光システムは、レシーバが地上に立設されたタワー上に設けられており、集光ミラーがレシーバに向けて太陽光を集光するように皿状に形成されているタワー方式の太陽集光システムであっても良い。
 この構成によれば、いわゆるタワー方式の太陽集光システムにおいて、集光率を大幅に向上させることができる。
The solar concentrator system is a tower-type solar in which a receiver is provided on a tower erected on the ground, and a collector mirror is formed in a dish shape so as to collect sunlight toward the receiver. It may be a condensing system.
According to this configuration, in the so-called tower type solar condensing system, the condensing rate can be greatly improved.
 本発明に係る太陽熱発電システムは、上述した太陽集光システムを備え、レシーバが得た熱を利用して発電を行うことを特徴とする。
 本発明に係る太陽熱発電システムによれば、上述した太陽集光システムを備えることにより太陽光の集光率を大幅に向上させることができる。その結果、効率的に太陽光を吸収して太陽熱を得ることができるので、太陽熱発電の効率を向上させることができる。
A solar thermal power generation system according to the present invention includes the above-described solar condensing system, and generates power using heat obtained by a receiver.
According to the solar thermal power generation system according to the present invention, it is possible to significantly improve the concentration ratio of sunlight by providing the above-described solar condensing system. As a result, sunlight can be efficiently absorbed and solar heat can be obtained, so that the efficiency of solar thermal power generation can be improved.
 本発明によれば、集光率を向上させることができる。その結果、レシーバや二次ミラーに対する集光スポットの大きさが小さくなるので、太陽に対する追尾制御の精度が緩和されると共に、レシーバに到達しない漏れ光を減少させることができる。 According to the present invention, the light collection rate can be improved. As a result, the size of the condensing spot with respect to the receiver and the secondary mirror is reduced, so that the accuracy of tracking control with respect to the sun is eased, and leakage light that does not reach the receiver can be reduced.
第1の実施形態に係る太陽熱発電システムを示す斜視図である。It is a perspective view which shows the solar thermal power generation system which concerns on 1st Embodiment. (a)太陽が真上に位置する場合の集光状態を説明するための側面図である。(b)太陽が真上以外に位置する場合の集光状態を説明するための側面図である。(A) It is a side view for demonstrating the condensing state in case the sun is located right above. (B) It is a side view for demonstrating the condensing state in case the sun is located other than right above. 集光ミラーによる集光状態を説明するための側面図である。It is a side view for demonstrating the condensing state by a condensing mirror. YZ平面に沿った集光ミラーの拡大断面図である。It is an expanded sectional view of a condensing mirror along a YZ plane. 集光ミラーを基準とした太陽光の反射状況を示す図である。It is a figure which shows the reflective condition of sunlight on the basis of a condensing mirror. 集光ミラーにおける2β+αとφとの関係を示すグラフである。It is a graph which shows the relationship between 2 (beta) + (alpha) and (phi) 1 in a condensing mirror. 従来の集光ミラーにおける2β+αとφとの関係を示すグラフである。It is a graph which shows the relationship between 2 (beta) + (alpha) and (phi) 0 in the conventional condensing mirror. 従来の集光ミラーの像面湾曲の発生を示す図である。It is a figure which shows generation | occurrence | production of the curvature of field of the conventional condensing mirror. 従来の集光ミラーにおける画角と像面湾曲との関係を示すグラフである。It is a graph which shows the relationship between a field angle and the curvature of field in the conventional condensing mirror. 本実施形態に係る集光ミラーの像面湾曲の発生を示す図である。It is a figure which shows generation | occurrence | production of the curvature of field of the condensing mirror which concerns on this embodiment. 本実施形態に係る集光ミラーにおける画角と像面湾曲との関係を示すグラフである。It is a graph which shows the relationship between a field angle and the curvature of field in the condensing mirror which concerns on this embodiment. 第1の実施形態に係る太陽熱発電システムの変形例を示す側面図である。It is a side view which shows the modification of the solar thermal power generation system which concerns on 1st Embodiment. 第2の実施形態に係る太陽集光システムを示す側面図である。It is a side view which shows the solar condensing system which concerns on 2nd Embodiment. 第2の実施形態に係る集光ミラーの拡大断面図である。It is an expanded sectional view of the condensing mirror concerning a 2nd embodiment.
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[第1の実施形態]
 図1に示されるように、第1の実施形態に係る太陽熱発電システム1は、太陽光の集光により得られる太陽熱を利用して発電を行うシステムであり、太陽光を集光するリニアフレネル方式の太陽集光システム10を備えている。
[First Embodiment]
As shown in FIG. 1, the solar thermal power generation system 1 according to the first embodiment is a system that generates power using solar heat obtained by condensing sunlight, and a linear Fresnel system that condenses sunlight. The solar condensing system 10 is provided.
 リニアフレネル方式の太陽集光システム10は、直線状に延在するレシーバ11と、レシーバ11に向かって太陽光Tを集光する複数列の集光ミラー12と、を備えている。以下、レシーバ11の延在方向をX軸方向、鉛直方向をZ軸方向、X軸方向及びZ軸方向の両方に直交する方向をY軸方向として説明を行う。 The linear Fresnel solar condensing system 10 includes a linearly extending receiver 11 and a plurality of rows of condensing mirrors 12 that condense sunlight T toward the receiver 11. Hereinafter, the extending direction of the receiver 11 will be described as the X-axis direction, the vertical direction as the Z-axis direction, and the direction orthogonal to both the X-axis direction and the Z-axis direction as the Y-axis direction.
 レシーバ11は、内部を熱媒体が流れる管状の部材である。熱媒体はガス状であっても液体状であっても良い。レシーバ11は、地面に対して固定されており、左右の支持台13によって高所に支持されている。集光ミラー12の集光によりレシーバ11が得た太陽熱は、内部を流れる熱媒体を通じて発電設備に供給される。発電設備としては、例えば、蒸気タービンなどを用いることができ、熱媒体を通じて供給された太陽熱を利用して発電を行う。 The receiver 11 is a tubular member through which a heat medium flows. The heat medium may be gaseous or liquid. The receiver 11 is fixed to the ground, and is supported at a high place by left and right support bases 13. Solar heat obtained by the receiver 11 by condensing by the condensing mirror 12 is supplied to the power generation facility through a heat medium flowing inside. As the power generation facility, for example, a steam turbine or the like can be used, and power generation is performed using solar heat supplied through a heat medium.
 集光ミラー12は、レシーバ11に沿ってX軸方向に列をなしており、この集光ミラー12の列がY軸方向で複数配列されている。これらの集光ミラー12は、支持脚14によって支持され、太陽の動きに追従して回転可能に構成されている。 The condensing mirror 12 forms a row in the X-axis direction along the receiver 11, and a plurality of rows of the condensing mirror 12 are arranged in the Y-axis direction. These condensing mirrors 12 are supported by support legs 14 and are configured to be rotatable following the movement of the sun.
 図2(a)及び図2(b)は、太陽の動きに追従して集光ミラー12が回転する様子を示す側面図である。図2(a)は、太陽が太陽集光システム10の真上に位置する場合を示している。また、図2(b)は、太陽が太陽集光システム10の真上から外れて位置する場合を示している。図3は、一列の集光ミラー12の反射状態を示す側面図である。図3に、集光ミラー12の中心軸線Cを示す。集光ミラー12は、X軸方向に延びる中心軸線Cを中心として回転可能に構成されている。 2 (a) and 2 (b) are side views showing how the condensing mirror 12 rotates following the movement of the sun. FIG. 2A shows a case where the sun is located directly above the solar condensing system 10. Further, FIG. 2B shows a case where the sun is positioned away from directly above the solar light collecting system 10. FIG. 3 is a side view showing a reflection state of one line of the collecting mirror 12. FIG. 3 shows the central axis C of the condenser mirror 12. The condensing mirror 12 is configured to be rotatable about a central axis C extending in the X-axis direction.
 図2(a)、図2(b)、及び図3に示されるように、樋状に湾曲した集光ミラー12が中心軸線Cを中心として回転することにより、太陽の動きに追従した太陽光Tの集光が行われる。なお、集光ミラー12は、図示しないアクチュエータによって回転駆動されている。 As shown in FIG. 2A, FIG. 2B, and FIG. 3, the sunlight that follows the movement of the sun by the condensing mirror 12 that is curved like a bowl rotates about the central axis C. T focusing is performed. The condensing mirror 12 is rotationally driven by an actuator (not shown).
 図2(a)及び図2(b)に示されるように、リニアフレネル方式の太陽集光システム10では、太陽光Tが集光ミラー12の光軸以外の方向から入射してレシーバ11に反射する状況(いわゆる軸外反射の状況)がほとんどであり、この軸外反射に起因して像面湾曲が発生する。 As shown in FIGS. 2A and 2B, in the linear Fresnel solar concentrating system 10, sunlight T enters from a direction other than the optical axis of the condensing mirror 12 and is reflected by the receiver 11. In most cases, so-called off-axis reflection is caused, and curvature of field occurs due to the off-axis reflection.
 図4は、YZ平面に沿った集光ミラー12の拡大断面図である。図3及び図4に示されるように、集光ミラー12は、透明基板15、反射防止膜16、及び反射層17を備えている。 FIG. 4 is an enlarged cross-sectional view of the condensing mirror 12 along the YZ plane. As shown in FIGS. 3 and 4, the collector mirror 12 includes a transparent substrate 15, an antireflection film 16, and a reflective layer 17.
 透明基板15は、アクリル樹脂などの透明性の高い樹脂材料から構成されている。透明基板15は、樋状に湾曲した板状の部材であり、中心軸線Cに垂直な断面(YZ平面に沿った断面)は反射層17側に向かって凹む弧形状を成している。透明基板15は、その形状を維持するために十分な剛性を備えている。 The transparent substrate 15 is made of a highly transparent resin material such as acrylic resin. The transparent substrate 15 is a plate-like member curved in a bowl shape, and a cross section perpendicular to the central axis C (cross section along the YZ plane) has an arc shape that is recessed toward the reflective layer 17 side. The transparent substrate 15 has sufficient rigidity to maintain its shape.
 透明基板15は、レシーバ11側(表側)の表面15aと、表面15aの反対側の裏面15bと、を有している。樋状の透明基板15では、表面15a及び裏面15bのYZ平面に沿った断面形状(中心軸線Cに直交する断面上の形状)が円弧形状を成している。 The transparent substrate 15 has a surface 15a on the receiver 11 side (front side) and a back surface 15b on the opposite side of the surface 15a. In the bowl-shaped transparent substrate 15, the cross-sectional shape (the shape on the cross section perpendicular to the central axis C) along the YZ plane of the front surface 15a and the back surface 15b forms an arc shape.
 なお、表面15a及び裏面15bは、断面形状の円弧の曲率が同一であっても異なっていても良い。また、表面15a及び裏面15bのYZ平面に沿った断面形状は、円弧形状ではなく放物線形状などであっても良い。更に、表面15a及び裏面15bの断面形状のうち一方が円弧形状、他方が放物線形状であっても良い。 Note that the front surface 15a and the back surface 15b may have the same or different curvature in the arc of the cross-sectional shape. Moreover, the cross-sectional shape along the YZ plane of the front surface 15a and the back surface 15b may be a parabolic shape instead of an arc shape. Further, one of the cross-sectional shapes of the front surface 15a and the back surface 15b may be an arc shape and the other may be a parabolic shape.
 透明基板15の表面15aには、太陽光Tの反射を防止するための反射防止膜16が形成されている。反射防止膜16は、例えばフッ化マグネシウムMgFからなる膜である。反射防止膜16は、複数の材料からなる多層の膜であっても良い。このような反射防止膜16を形成することで、太陽光Tが表面15aで反射することを避けることができる。なお、反射防止膜16を必ずしも備える必要はない。 An antireflection film 16 for preventing the reflection of sunlight T is formed on the surface 15 a of the transparent substrate 15. The antireflection film 16 is a film made of, for example, magnesium fluoride MgF 2 . The antireflection film 16 may be a multilayer film made of a plurality of materials. By forming such an antireflection film 16, the sunlight T can be prevented from being reflected by the surface 15a. Note that the antireflection film 16 is not necessarily provided.
 透明基板15の裏面15bには、反射層17が形成されている。反射層17は、例えばアルミニウムAlや銀Agなどから形成されている。反射層17は、裏面15bの全面に形成されていても良く、一部に形成されていても良い。 A reflective layer 17 is formed on the back surface 15 b of the transparent substrate 15. The reflective layer 17 is made of, for example, aluminum Al or silver Ag. The reflective layer 17 may be formed on the entire surface of the back surface 15b or may be formed on a part thereof.
 この透明基板15は、加熱溶融させた樹脂材料を金型内に射出注入し、金型内で冷却することで成形を行う射出成形により製造される。射出成形は、複雑な形状の成形品を大量に製造することに適している。 The transparent substrate 15 is manufactured by injection molding in which a heat-melted resin material is injected and injected into a mold and cooled in the mold. Injection molding is suitable for producing a large number of molded articles having complicated shapes.
 次に、本実施形態に係る集光ミラー12の基礎設計について説明する。図5は、集光ミラー12を基準としたレシーバ11の位置変化を示す図である。図5のT1~T4は、各時刻における太陽光及び反射光を示している。 Next, the basic design of the condenser mirror 12 according to this embodiment will be described. FIG. 5 is a diagram illustrating a change in the position of the receiver 11 with the condenser mirror 12 as a reference. T1 to T4 in FIG. 5 indicate sunlight and reflected light at each time.
 図5に示されるように、集光ミラー12の中心(集光ミラー12の中心軸線Cの位置に等しい)とレシーバ11との距離fは常に一定であるため、各時刻におけるレシーバ11の移動軌跡は集光ミラー12を中心とした半径fの円弧を描く。このため、集光ミラー12は、太陽光の入射角度に関わらず、距離fだけ離れた位置に像面(集点)が形成されるよう構成されることが好ましい。 As shown in FIG. 5, since the distance f between the center of the collector mirror 12 (equal to the position of the central axis C of the collector mirror 12) and the receiver 11 is always constant, the movement trajectory of the receiver 11 at each time Draws an arc of radius f centered on the collector mirror 12. For this reason, it is preferable that the condensing mirror 12 is comprised so that an image surface (collection point) may be formed in the position away from the distance f irrespective of the incident angle of sunlight.
 ここで、三次の像面湾曲収差の収差係数αは、三次の非点収差の収差係数β及びペッツバール和Pを用いて下記の式(1)で表されることが知られている。
Figure JPOXMLDOC01-appb-M000001
 なお、αの逆数がサジタル像面の像面湾曲の曲率半径に相当する。
Here, it is known that the aberration coefficient α of the third-order field curvature aberration is expressed by the following equation (1) using the aberration coefficient β of the third-order astigmatism and the Petzval sum P.
Figure JPOXMLDOC01-appb-M000001
Note that the reciprocal of α corresponds to the radius of curvature of the field curvature of the sagittal image plane.
 本実施形態に係る樋状の集光ミラー12のように曲率方向に画角を持つ線集光シリンドリカル系の場合、サジタル像面は無限遠となるためメリジオナル像面の像面湾曲が意味を持つことになる。また、集光ミラー12の中心とレシーバ11との距離(集点距離)fはメリジオナル像面の像面湾曲の曲率半径に等しい。このため、下記の式(2)を満たすことで像面湾曲を円弧状に近似してコントロールすることが可能となる。
Figure JPOXMLDOC01-appb-M000002
 なお、式(2)に式(1)を適用することで下記の式(3)を得ることができる。
Figure JPOXMLDOC01-appb-M000003
In the case of a line condensing cylindrical system having an angle of view in the curvature direction, such as the bowl-shaped condensing mirror 12 according to the present embodiment, the sagittal image plane is at infinity, so the field curvature of the meridional image plane is significant. It will be. Further, the distance (collection distance) f between the center of the condenser mirror 12 and the receiver 11 is equal to the curvature radius of the curvature of field of the meridional image plane. For this reason, by satisfying the following formula (2), it becomes possible to control the curvature of field by approximating it in an arc shape.
Figure JPOXMLDOC01-appb-M000002
The following formula (3) can be obtained by applying the formula (1) to the formula (2).
Figure JPOXMLDOC01-appb-M000003
 次に、集光ミラー12における全系のパワーΦについて考える。光入射時の透明基板15の表面15aのパワーをΦ、反射層17(透明基板15の裏面15b)のパワーをΦ、光出射時の表面15aのパワーをΦ、とする。この場合、全系のパワーΦは、集光ミラー12の透明基板15の厚さをゼロと仮定する薄肉近似により、下記の式(4)として表される。なお、Φ及びΦは同じ表面15aのパワーであるため、等しい値となる。
Figure JPOXMLDOC01-appb-M000004
 パワーΦは集点距離fの逆数であるため、下記の式(5)が得られる。
Figure JPOXMLDOC01-appb-M000005
Next, the power Φ of the entire system in the condenser mirror 12 will be considered. The power of the surface 15a of the transparent substrate 15 at the time of light incidence is Φ 1 , the power of the reflective layer 17 (the back surface 15b of the transparent substrate 15) is Φ 2 , and the power of the surface 15a at the time of light emission is Φ 3 . In this case, the power Φ of the entire system is expressed as the following equation (4) by thin-wall approximation assuming that the thickness of the transparent substrate 15 of the collector mirror 12 is zero. Note that Φ 1 and Φ 3 have the same value because they are the power of the same surface 15a.
Figure JPOXMLDOC01-appb-M000004
Since the power Φ is the reciprocal of the collecting point distance f, the following equation (5) is obtained.
Figure JPOXMLDOC01-appb-M000005
 以上の式(2)及び式(5)が満たされる場合、集点距離fを半径とする円弧状に像面湾曲を近似的にコントロールすることができる。なお、Φ及びΦは、表面15aの曲率半径rと透明基板15の屈折率nとの関数として下記の式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
 上記の式(6)より、屈折率nを固定値とすれば、Φ又はΦとrとは一対一の対応関係となる。
When the above formulas (2) and (5) are satisfied, the field curvature can be approximately controlled in an arc shape having the radius of the collecting point distance f. Note that Φ 1 and Φ 3 are expressed by the following equation (6) as a function of the radius of curvature r 1 of the surface 15 a and the refractive index n of the transparent substrate 15.
Figure JPOXMLDOC01-appb-M000006
From the above formula (6), if the refractive index n is a fixed value, Φ 1 or Φ 3 and r 1 have a one-to-one correspondence.
 また、Φは、裏面15bの曲率半径rと透明基板15の屈折率nとの関数として下記の式(7)で表される。なお、表面15aの曲率半径rとは、表面15aのYZ平面に沿った断面形状である円弧の曲率半径である。裏面15bの曲率半径rも同様である。
Figure JPOXMLDOC01-appb-M000007
 上記の式(7)より、屈折率nを固定値とすれば、Φはrと一対一の対応関係となる。
Also, [Phi 2 is represented by the following equation as a function of the refractive index n of the radius of curvature r 2 and the transparent substrate 15 of the back surface 15b (7). Note that the radius of curvature r 1 of the surface 15a, an arc of radius of curvature is a cross-sectional shape along the YZ plane of the surface 15a. The radius of curvature r 2 of the rear surface 15b is the same.
Figure JPOXMLDOC01-appb-M000007
From the above formula (7), if the refractive index n is a fixed value, Φ 2 has a one-to-one correspondence with r 2 .
 一方、三次の像面湾曲収差の収差係数α及び三次の非点収差の収差係数βは、透明基板15の屈折率nと厚みdとを固定値とすることで、Φ及びΦの関数として表すことができる。すなわち、透明基板15の屈折率nと厚みdとを固定値とすることで、式(2)の左項である2β+αは、Φ及びΦの関数として表せる。なお、このような関数の導出については、例えばレンズ設計法(松居吉哉 著 共立出版(株))を参照することができる。 On the other hand, the aberration coefficient α of the third-order field curvature aberration and the aberration coefficient β of the third-order astigmatism are functions of Φ 1 and Φ 2 by setting the refractive index n and the thickness d of the transparent substrate 15 as fixed values. Can be expressed as That is, by setting the refractive index n and the thickness d of the transparent substrate 15 to fixed values, 2β + α, which is the left term of the formula (2), can be expressed as a function of Φ 1 and Φ 2 . For the derivation of such a function, for example, the lens design method (by Yoshiya Matsui, Kyoritsu Shuppan Co., Ltd.) can be referred to.
 図6は、2α+βとφとの関係を示すグラフである。このグラフは、Φ及びΦの関数として表した2α+βをプロットすることで得ることができる。このグラフにおいて、fを10000mmとすると、fの逆数は0.00010となる。この値をグラフに反映させることで、Φの最適値である-0.000070が導かれる。グラフからΦの最適値を導出する状況を破線の矢印として視覚的に示す。 Figure 6 is a graph showing the relationship between 2.alpha + beta and phi 1. This graph can be obtained by plotting 2.alpha + beta expressed as a function of [Phi 1 and [Phi 2. In this graph, when f is 10,000 mm, the reciprocal of f is 0.00010. By reflecting the value in the graph, the optimal value of Φ 1 -0.000070 is derived. The situation of deriving the optimum value of Φ 1 from the graph is visually shown as a dashed arrow.
 得られたΦの最適値を式(6)に代入することで、表面15aの曲率半径rの最適値が求められる。また、Φの最適値を式(5)に代入することで、Φの最適値を得ることができる。得られたΦの最適値を式(7)に代入することで、裏面15bの曲率半径rの最適値が求められる。これらの最適値を曲率半径として有する表面15a及び裏面15bとすることで、レシーバ11の位置に像面(集点)が形成されるように像面湾曲をコントロールすることができる。これにより、像面湾曲の影響の少ない集光ミラー12の基本設計が達成される。 By substituting the obtained optimum value of Φ 1 into equation (6), the optimum value of the radius of curvature r 1 of the surface 15a is obtained. Also, the optimum value of Φ 2 can be obtained by substituting the optimum value of Φ 1 into equation (5). By substituting the obtained optimum value of Φ 2 into Expression (7), the optimum value of the curvature radius r 2 of the back surface 15b is obtained. By using the front surface 15a and the back surface 15b having these optimum values as the curvature radii, the field curvature can be controlled so that the image plane (collection point) is formed at the position of the receiver 11. Thereby, the basic design of the condensing mirror 12 with little influence of curvature of field is achieved.
 ここで、表面反射である従来の集光ミラーの場合について考える。従来の集光ミラーにおける表面(反射面)のパワーをΦとする。また、従来の集光ミラーの中心とレシーバとの距離をfとする。この場合、レシーバに太陽光を集光させる必要性から、従来の集光ミラーのパワーΦはfの逆数となるように設定される。 Here, the case of the conventional condensing mirror which is surface reflection is considered. The power of the surface (reflecting surface) of the conventional collector mirror and [Phi 0. Also, let f be the distance between the center of the conventional condenser mirror and the receiver. In this case, because of the necessity of concentrating sunlight on the receiver, the power Φ 0 of the conventional collector mirror is set to be the reciprocal of f.
 図7は、従来の集光ミラーにおける2α+βとφとの関係を示すグラフである。図7に示されるように、従来の集光ミラーにおいては、パワーΦがfの逆数から一意に決まるため、ミラー表面の曲率半径に関する選択肢がない。 Figure 7 is a graph showing the relationship between 2.alpha + beta and phi 0 in the conventional collector mirror. As shown in FIG. 7, in the conventional collector mirror, since the power Φ 0 is uniquely determined from the reciprocal of f, there is no option regarding the curvature radius of the mirror surface.
 従来の集光ミラーの中心とレシーバとの距離fを10000mmとすると、fの逆数であるパワーΦは0.000100に決まる。このパワーΦに対応する2α+βは0.0002となり、2α+βとfの逆数とは一致しない。この状況を破線の矢印を用いて視覚的に示す。図7のグラフから、表面反射である従来の集光ミラーにおいては上記式(2)を満足する条件が存在せず、曲率の変更により像面湾曲をコントロールできないことが明らかとなる。 If the distance f between the center of the conventional condenser mirror and the receiver is 10000 mm, the power Φ 0 which is the reciprocal of f is determined to be 0.000100. 2α + β corresponding to the power Φ 0 is 0.0002, which does not match the reciprocal of 2α + β and f. This situation is shown visually using dashed arrows. From the graph of FIG. 7, it is clear that there is no condition that satisfies the above formula (2) in the conventional condensing mirror that is surface reflection, and the curvature of field cannot be controlled by changing the curvature.
 なお、図7では、2α+βの値がfの逆数の二倍に等しいため、従来の集光ミラーによる像面はfの半分の距離(5000mm)を半径とした円弧状に湾曲を発生させてしまう。その結果、従来の集光ミラーから距離f(10000mm)離れたレシーバに対する集光性の低下を招く。 In FIG. 7, since the value of 2α + β is equal to twice the reciprocal of f, the image surface by the conventional condenser mirror is curved in an arc shape with a radius half the distance of f (5000 mm). . As a result, the condensing performance of the receiver separated by a distance f (10000 mm) from the conventional condensing mirror is reduced.
 続いて、表面反射である従来の集光ミラー50と本実施形態に係る裏面反射の集光ミラー12との比較シミュレーションの結果について説明する。このシミュレーションでは、上述した基本設計に基づいて最適化による微調整を行い、詳細設計を行った状態を演算した。 Subsequently, a result of a comparison simulation between the conventional collector mirror 50 that is front-surface reflection and the rear-surface reflection collector mirror 12 according to the present embodiment will be described. In this simulation, fine adjustment by optimization was performed based on the basic design described above, and the state of detailed design was calculated.
 このシミュレーションでは、集光ミラー12の中心からレシーバ11までの距離fを10000mm、ミラー幅(中心軸線Cと直交する方向の幅)を500mm、最大画角を±45degとした。この場合の開口率NAは、0.025となる。 In this simulation, the distance f from the center of the condenser mirror 12 to the receiver 11 was 10000 mm, the mirror width (width in the direction orthogonal to the central axis C) was 500 mm, and the maximum angle of view was ± 45 deg. In this case, the aperture ratio NA is 0.025.
 また、透明基板15の厚みを5mmとし、透明基板15における屈折率をアクリル樹脂の屈折率と同じとした。具体的には、20℃、1気圧の環境下のアクリル樹脂の屈折率、1.50724857(光の波長が400nmの場合)、1.49358005(光の波長が550nmの場合)、1.48327291(光の波長が1000nmの場合)を採用した。また、表面15aのYX平面に沿った断面形状(中心軸線Cと直交する断面上の形状)を曲率半径9219.71mmの円弧形状、裏面15bのYZ平面に沿った断面形状を曲率半径14499.19mmの円弧形状とした。 The thickness of the transparent substrate 15 was 5 mm, and the refractive index of the transparent substrate 15 was the same as the refractive index of the acrylic resin. Specifically, the refractive index of acrylic resin under an environment of 20 ° C. and 1 atm, 1.507224857 (when the wavelength of light is 400 nm), 1.49358005 (when the wavelength of light is 550 nm), 1.48327291 ( The light wavelength was 1000 nm). Further, the cross-sectional shape along the YX plane of the surface 15a (the shape on the cross-section orthogonal to the central axis C) is an arc shape with a radius of curvature of 9219.71 mm, and the cross-sectional shape along the YZ plane of the back surface 15b is the radius of curvature of 14499.19 mm. Arc shape.
 従来の集光ミラー50についても、集光ミラー50の中心からレシーバ11までの距離fを10000mm、ミラー幅を500mm、最大画角を±45degとした。この場合の開口率NAも、0.025となり、集光ミラー12と同じ値となる。また、従来の集光ミラー50の表面(反射面)のYZ平面に沿った断面形状を曲率半径21920.72mmの円弧形状とした。 Also for the conventional collector mirror 50, the distance f from the center of the collector mirror 50 to the receiver 11 was 10000 mm, the mirror width was 500 mm, and the maximum angle of view was ± 45 deg. In this case, the aperture ratio NA is also 0.025, which is the same value as that of the condenser mirror 12. In addition, the cross-sectional shape along the YZ plane of the surface (reflection surface) of the conventional collector mirror 50 is an arc shape having a curvature radius of 21920.72 mm.
 従来の集光ミラー50におけるシミュレーションの結果を図8及び図9に示す。図8は、従来の集光ミラー50における像面湾曲の発生を示す図である。図8のUは、従来の集光ミラー50の反射光の形成する像面(集点)の軌跡(像面湾曲の状態)を示している。図8のWは、集点距離fを半径とする円弧であり、レシーバ11の移動軌跡を示している。図9は、従来の集光ミラー50における画角と像面湾曲との関係を示すグラフである。画角に対する像面湾曲の変化をFとして示す。 The simulation results in the conventional collector mirror 50 are shown in FIGS. FIG. 8 is a diagram showing the occurrence of field curvature in the conventional condenser mirror 50. U in FIG. 8 shows a locus (field curvature state) of the image plane (collection point) formed by the reflected light of the conventional condenser mirror 50. W in FIG. 8 is an arc having a radius of the collecting point distance f, and indicates the movement trajectory of the receiver 11. FIG. 9 is a graph showing the relationship between the angle of view and the curvature of field in the conventional condenser mirror 50. It shows the change of curvature with respect to the angle of view as F 0.
 図8及び図9に示されるように、従来の集光ミラー50では、±1000mmを超える大きな像面湾曲が発生する結果となった。 As shown in FIGS. 8 and 9, the conventional collector mirror 50 resulted in a large field curvature exceeding ± 1000 mm.
 続いて、本実施形態に係る集光ミラー12におけるシミュレーションの結果を図10及び図11に示す。図10は、集光ミラー12における像面湾曲の発生を示す図である。図11は、集光ミラー12における画角と像面湾曲との関係を示すグラフである。集光ミラー12では、透明基板15で起きる屈折により光が波長によって分けられる。波長が400nmの光の画角に対する像面湾曲の変化をF、波長が550nmの光の画角に対する像面湾曲の変化をF、波長が1000nmの光の画角に対する像面湾曲の変化をFとして示す。 Subsequently, simulation results in the condenser mirror 12 according to the present embodiment are shown in FIGS. 10 and 11. FIG. 10 is a diagram illustrating the occurrence of curvature of field in the condensing mirror 12. FIG. 11 is a graph showing the relationship between the angle of view and the curvature of field in the condenser mirror 12. In the condensing mirror 12, the light is divided according to the wavelength by refraction occurring in the transparent substrate 15. The change in field curvature with respect to the field angle of light having a wavelength of 400 nm is F 1 , the change in field curvature with respect to the field angle of light having a wavelength of 550 nm is F 2 , and the change in field curvature with respect to the field angle of light having a wavelength of 1000 nm It is shown as F 3.
 図10及び図11に示されるように、本実施形態に係る集光ミラー12では、最大でも200mmの像面湾曲しか発生しなかった。本実施形態に係る集光ミラー12では、従来の集光ミラー50の結果と比べて、集光性の悪化が約五分の一となった。 As shown in FIGS. 10 and 11, the focusing mirror 12 according to the present embodiment generated only 200 mm of field curvature at the maximum. In the condensing mirror 12 according to the present embodiment, compared with the result of the conventional condensing mirror 50, the deterioration of the condensing property is about one fifth.
 以上説明した第1の実施形態に係る太陽集光システム10によれば、透明基板15による太陽光Tの屈折及び反射層17による反射を行う反射屈折系の集光ミラー12とすることにより、表面反射である従来の集光ミラー50と比べて、像面湾曲の影響を抑制することができ、レシーバ11に対する集光率を大幅に向上させることができる。その結果、ある流速でレシーバ11内を流れる熱媒を所望の温度にするために必要となるレシーバ11の長さ(流路の長さ)を短縮できるため、レシーバ11内を流れる熱媒が伝熱及び放射により熱損失が生じることを抑制することができ、より効率的な太陽熱の利用を実現することができる。その結果、レシーバ11に対する集光スポットの大きさが小さくなるので、太陽に対する追尾制御の精度が緩和されると共に、レシーバ11に到達しない漏れ光を減少させることができる。 According to the solar condensing system 10 according to the first embodiment described above, the surface is obtained by using the catadioptric condensing mirror 12 that performs refraction of the sunlight T by the transparent substrate 15 and reflection by the reflection layer 17. Compared with the conventional condensing mirror 50 which is a reflection, the influence of the curvature of field can be suppressed, and the condensing rate with respect to the receiver 11 can be greatly improved. As a result, since the length of the receiver 11 (the length of the flow path) necessary to bring the heat medium flowing in the receiver 11 at a desired flow rate to a desired temperature can be shortened, the heat medium flowing in the receiver 11 is transmitted. Heat loss due to heat and radiation can be suppressed, and more efficient use of solar heat can be realized. As a result, the size of the focused spot with respect to the receiver 11 is reduced, so that the accuracy of tracking control with respect to the sun can be eased, and leakage light that does not reach the receiver 11 can be reduced.
 また、この太陽集光システム10では、射出成形により透明基板15の成形を行うことで、フロート法で作成した板ガラスを湾曲させることで透明基板を製造する従来の場合と比べて、正確な湾曲形状の透明基板15を高い効率で製造することができる。更に、射出成形によれば、表面15a及び裏面15bの曲率半径が大きく異なっている透明基板15を製造することも容易となる。 Moreover, in this solar condensing system 10, the curved shape is more accurate than the conventional case of producing a transparent substrate by curving a plate glass created by a float process by molding the transparent substrate 15 by injection molding. The transparent substrate 15 can be manufactured with high efficiency. Furthermore, according to injection molding, it becomes easy to manufacture the transparent substrate 15 in which the curvature radii of the front surface 15a and the back surface 15b are greatly different.
 なお、反射層17をインサート材とした射出成形により、反射層17を備えた透明基板15を一工程で製造するようにしても良い。この場合、集光ミラー12の製造効率をより一層向上させることができる。 In addition, you may make it manufacture the transparent substrate 15 provided with the reflection layer 17 by one process by the injection molding which used the reflection layer 17 as an insert material. In this case, the manufacturing efficiency of the condensing mirror 12 can be further improved.
 また、この太陽集光システム10によれば、集光ミラー12における透明基板15の表面15aに反射防止膜16が形成されているので、太陽光Tが表面15aでレシーバ11以外の方向に反射される可能性を低減することができるので、太陽光Tの集光率を一層向上させることができる。 Moreover, according to this solar condensing system 10, since the anti-reflective film 16 is formed in the surface 15a of the transparent substrate 15 in the condensing mirror 12, sunlight T is reflected in directions other than the receiver 11 by the surface 15a. Therefore, the condensing rate of sunlight T can be further improved.
 本実施形態に係る太陽熱発電システム1は、太陽集光システム10を備えることにより太陽光Tの集光率を大幅に向上させることができる。その結果、効率的にレシーバ11に太陽光Tを吸収させて太陽熱を得ることができるので、太陽熱発電の効率を向上させることができる。 The solar thermal power generation system 1 according to the present embodiment can significantly improve the light collection rate of sunlight T by including the solar light collection system 10. As a result, the receiver 11 can efficiently absorb the solar light T to obtain solar heat, so that the efficiency of solar thermal power generation can be improved.
 ここで、図12を参照して第1の実施形態に係る太陽集光システム10の変形例を説明する。図12に示されるように、第1の実施形態に係る太陽集光システム10は、レシーバ11の上方を覆う二次ミラー20を備えることができる。 Here, a modified example of the solar concentrating system 10 according to the first embodiment will be described with reference to FIG. As shown in FIG. 12, the solar concentrating system 10 according to the first embodiment may include a secondary mirror 20 that covers the receiver 11.
 略樋状の二次ミラー20は、レシーバ11に向かって下向きに開口して配置されている。二次ミラー20は、レシーバ11に沿ってX軸方向に延在して配置されている。この二次ミラー20は、集光ミラー12からの反射光がレシーバ11を逸れた場合に、再反射によって太陽光Tをレシーバ11に到達させるためのものである。 The substantially bowl-shaped secondary mirror 20 is arranged so as to open downward toward the receiver 11. The secondary mirror 20 extends along the receiver 11 in the X axis direction. The secondary mirror 20 is for causing the sunlight T to reach the receiver 11 by re-reflection when the reflected light from the condenser mirror 12 deviates from the receiver 11.
 二次ミラー20は、開口面積が大きいほど多くのレシーバ11から離れた反射光を拾うことができるが、開口面積が大きくなると再反射した光がレシーバ11に到達せずに逃れる確率が高くなる。開口面積の大きい従来の二次ミラーを破線で図12に示す。 The secondary mirror 20 can pick up more reflected light away from the receiver 11 as the aperture area is larger. However, as the aperture area increases, the probability that the reflected light escapes without reaching the receiver 11 increases. A conventional secondary mirror having a large aperture area is shown by a broken line in FIG.
 図12に示す構成の太陽集光システム10によれば、二次ミラー20を備えることで、レシーバ11から逸れた光を再反射してレシーバ11に到達させることができるので、システム全体の集光率の更なる向上を図ることができる。しかも、集光ミラー12の集光率向上により反射光がレシーバ11に集まるので、従来と比べて二次ミラー20の小型化を実現することができる。このことは、システム全体の低コスト化に有利である。 According to the solar condensing system 10 having the configuration shown in FIG. 12, since the secondary mirror 20 is provided, the light deviated from the receiver 11 can be re-reflected and reach the receiver 11. The rate can be further improved. In addition, since the reflected light is collected at the receiver 11 due to the improvement in the light condensing rate of the light collecting mirror 12, the secondary mirror 20 can be downsized as compared with the conventional case. This is advantageous for reducing the cost of the entire system.
 また、小型化により二次ミラー20の開口面積を小さくすることができるので、二次ミラー20で再反射した光が開口から再び外へ逃れる確率を低減させることができる。 Moreover, since the aperture area of the secondary mirror 20 can be reduced by downsizing, the probability that the light re-reflected by the secondary mirror 20 escapes again from the aperture can be reduced.
 なお、太陽集光システム10では、集光率の向上により集光スポットを小さくすることができるので、従来のシステムにおいては二次ミラーが必須な場合でも、二次ミラーを不要とすることもできる。その結果、太陽集光システム10では、システムのコスト削減を図ることができると共に、一次ミラー(集光ミラー12)上にできる二次ミラーの影による効率低下を避けることができる。 In the solar condensing system 10, since the condensing spot can be reduced by improving the condensing rate, the secondary mirror can be omitted even if the secondary mirror is essential in the conventional system. . As a result, in the solar condensing system 10, it is possible to reduce the cost of the system and to avoid the efficiency reduction due to the shadow of the secondary mirror formed on the primary mirror (condensing mirror 12).
[第2の実施形態]
 図13に示されるように、第2の実施形態に係る太陽集光システム30は、いわゆるタワー方式の太陽集光システムである。太陽集光システム30は、地上に立設されたタワー31と、タワー31の上部に設けられたレシーバ32と、レシーバ32に対して太陽光Tを集光する集光ミラー33と、を備えている。
[Second Embodiment]
As FIG. 13 shows, the solar condensing system 30 which concerns on 2nd Embodiment is what is called a tower type solar condensing system. The solar condensing system 30 includes a tower 31 erected on the ground, a receiver 32 provided on the top of the tower 31, and a condensing mirror 33 that condenses sunlight T with respect to the receiver 32. Yes.
 円筒形状のレシーバ32は、タワー31を介して地面に固定されている。レシーバ32の内部には熱媒体の循環流路が形成されており、集光によりレシーバ32が得た熱は熱媒体を通じて各種設備に供給される。 The cylindrical receiver 32 is fixed to the ground via the tower 31. A circulation path of a heat medium is formed inside the receiver 32, and heat obtained by the receiver 32 by light collection is supplied to various facilities through the heat medium.
 集光ミラー33は、いわゆるディッシュ状(皿状)のミラーである。皿状の集光ミラー33の反射光は、レシーバ32に向かって一点に集光する。集光ミラー33は、タワー31の周囲に配置されている。これらの集光ミラー33は、二つの回転軸線(中心軸線)を有しており、これらの回転軸線に対してそれぞれ回転可能に構成されている。集光ミラー33は、太陽の一日の動き及び太陽の一年間の軌道の変化に対応できるよう、直交する二つの回転軸線を有している。 The condenser mirror 33 is a so-called dish-shaped (dish-shaped) mirror. The reflected light of the dish-shaped collector mirror 33 is collected at one point toward the receiver 32. The condenser mirror 33 is disposed around the tower 31. These condensing mirrors 33 have two rotation axes (center axes), and are configured to be rotatable with respect to these rotation axes. The condensing mirror 33 has two orthogonal rotation axes so that it can respond to the daily movement of the sun and changes in the orbit of the sun over the course of the year.
 図14は、集光ミラー33のYZ平面に沿った拡大断面図である。図14に示されるように、集光ミラー33は、透明基板34、反射防止膜35、及び反射層36を有している。皿状の集光ミラー33は、第1の実施形態に係る樋状の集光ミラー12と比べて、全体形状のみが異なっている。 FIG. 14 is an enlarged cross-sectional view of the condenser mirror 33 along the YZ plane. As shown in FIG. 14, the condensing mirror 33 includes a transparent substrate 34, an antireflection film 35, and a reflection layer 36. The dish-shaped collector mirror 33 differs from the bowl-shaped collector mirror 12 according to the first embodiment only in the overall shape.
 樹脂製の透明基板34は、中央に向かって凹む皿状に形成されている。この透明基板34も、射出成形により成形される。透明基板34の表面34a及び裏面34bは、球面形状であり、YZ平面に沿った断面形状(中心軸線に直交する断面上の形状)は円弧形状を成している。 The transparent substrate 34 made of resin is formed in a dish shape that is recessed toward the center. This transparent substrate 34 is also formed by injection molding. The front surface 34a and the back surface 34b of the transparent substrate 34 have a spherical shape, and a cross-sectional shape along the YZ plane (a shape on a cross section perpendicular to the central axis) forms an arc shape.
 なお、表面34a及び裏面34bは、断面形状の円弧の曲率が同一であっても異なっていても良い。また、表面34a及び裏面34bの断面形状は、円弧形状ではなく放物線形状などであっても良い。更に、表面34a及び裏面34bの断面形状のうち一方が円弧形状、他方が放物線形状であっても良い。 Note that the front surface 34a and the back surface 34b may have the same or different curvature in the cross-sectional arc. Further, the cross-sectional shapes of the front surface 34a and the back surface 34b may be a parabolic shape instead of an arc shape. Furthermore, one of the cross-sectional shapes of the front surface 34a and the back surface 34b may be an arc shape and the other may be a parabolic shape.
 透明基板34の表面34aには、反射防止膜35が形成されている。また、透明基板34の裏面34bには、反射層36が形成されている。反射防止膜35及び反射層36の機能については、第1の実施形態と同じであるため説明を省略する。 An antireflection film 35 is formed on the surface 34 a of the transparent substrate 34. A reflective layer 36 is formed on the back surface 34 b of the transparent substrate 34. Since the functions of the antireflection film 35 and the reflection layer 36 are the same as those in the first embodiment, description thereof is omitted.
 以上説明した第2の実施形態に係る太陽集光システム30によれば、第1の実施形態に係る太陽集光システム10と同様に、透明基板34による太陽光Tの屈折及び反射層36による反射を行う反射屈折系の集光ミラー33とすることにより、表面反射である従来の集光ミラーと比べて、像面湾曲の影響を抑制することができ、レシーバ32に対する集光率を大幅に向上させることができる。その結果、レシーバ32内を流れる熱媒を所望の温度にするために必要となる集光ミラー33の合計面積が少なくなるので、より効率的な土地利用を実現することができる。 According to the solar concentrating system 30 according to the second embodiment described above, the refraction of the sunlight T by the transparent substrate 34 and the reflection by the reflecting layer 36 are similar to the solar concentrating system 10 according to the first embodiment. By using a catadioptric mirror 33 that performs the reflection, the influence of the curvature of field can be suppressed and the light collection rate for the receiver 32 can be greatly improved compared to a conventional collector mirror that is a surface reflection. Can be made. As a result, since the total area of the condensing mirror 33 required to bring the heat medium flowing in the receiver 32 to a desired temperature is reduced, more efficient land use can be realized.
 本発明は、上述した実施形態に限定されるものではない。 The present invention is not limited to the embodiment described above.
 例えば、本実施形態に係る太陽集光システム10は、太陽熱発電への利用に限られない。太陽熱を利用した給湯、蒸気供給、暖房空調、冷房空調(吸収式冷凍機の高温熱源)など、様々な分野に活用することができる。特に、中規模プラントにおける工場の空調や蒸気供給などの用途に適している。また、レシーバ11に太陽電池を配置することにより、集光型の太陽電池システムとして活用することもできる。 For example, the solar condensing system 10 according to the present embodiment is not limited to use for solar thermal power generation. Hot water supply using solar heat, steam supply, heating air conditioning, cooling air conditioning (high temperature heat source of absorption refrigeration machine) can be used in various fields. It is particularly suitable for applications such as factory air conditioning and steam supply in medium-scale plants. Moreover, it can also utilize as a concentrating solar cell system by arrange | positioning a solar cell to the receiver 11. FIG.
 また、集光ミラー12,33は、必ずしも360度回転可能な構成である必要はなく、360度未満で揺動可能な構成であっても良い。集光ミラー12,33の構成は、上述したものに限られず、支持フレームなどの他の部材を備えていても良く。また、透明基板15,34における表面15a,34a及び裏面15b,34bの形状は、全ての面の断面形状が弧状である必要はなく、一部に断面形状が異なる部位を有していても良い。なお、弧状とは、円弧状や放物線状を含む形状を意味する。例えば、透明基板34の表面34a及び裏面34bは、非球面形状であっても良い。 Further, the condensing mirrors 12 and 33 are not necessarily configured to be able to rotate 360 degrees, and may be configured to be swingable at less than 360 degrees. The structure of the condensing mirrors 12 and 33 is not restricted to what was mentioned above, You may provide other members, such as a support frame. In addition, the shapes of the front surfaces 15a and 34a and the back surfaces 15b and 34b of the transparent substrates 15 and 34 do not have to have an arc shape in the cross-sectional shape of all the surfaces, and may have portions having different cross-sectional shapes. . Note that the arc shape means a shape including an arc shape or a parabolic shape. For example, the front surface 34a and the back surface 34b of the transparent substrate 34 may be aspherical.
 本発明は、集光率を向上させることができる太陽集光システム及び太陽熱発電システムに利用可能である。 The present invention can be used for a solar condensing system and a solar thermal power generation system capable of improving the condensing rate.
1…太陽熱発電システム 10,30…太陽集光システム 11,32…レシーバ 12,33…集光ミラー 15,34…透明基板 15a,34a…表面 15b,34b…裏面 16,35…反射防止膜 17,36…反射層 20…二次ミラー 31…タワー 50…従来の集光ミラー C…中心軸線 T…太陽光 DESCRIPTION OF SYMBOLS 1 ... Solar thermal power generation system 10, 30 ... Solar condensing system 11, 32 ... Receiver 12, 33 ... Condensing mirror 15, 34 ... Transparent substrate 15a, 34a ... Front surface 15b, 34b ... Back surface 16, 35 ... Antireflection film 17, 36 ... Reflective layer 20 ... Secondary mirror 31 ... Tower 50 ... Conventional focusing mirror C ... Central axis T ... Sunlight

Claims (6)

  1.  レシーバに対して太陽光を集光する集光ミラーを備えた太陽集光システムであって、
     前記集光ミラーは、
     太陽光が入射する表面と前記表面の反対側の裏面とを有する透明基板と、
     前記透明基板の前記裏面に形成された反射層と、を備え、
     前記集光ミラーは、所定の中心軸線を中心として回転可能又は揺動可能に構成され、
     前記透明基板のうち前記中心軸線に垂直な断面は、前記反射層側に向かって凹む弧形状を成していることを特徴とする太陽集光システム。
    A solar condensing system including a condensing mirror that condenses sunlight to a receiver,
    The condensing mirror is
    A transparent substrate having a surface on which sunlight is incident and a back surface opposite to the surface;
    A reflective layer formed on the back surface of the transparent substrate,
    The condensing mirror is configured to be rotatable or swingable about a predetermined center axis,
    The solar light condensing system, wherein a cross section of the transparent substrate perpendicular to the central axis has an arc shape that is recessed toward the reflective layer.
  2.  前記透明基板は、射出成形により成形される樹脂製の基板であることを特徴とする請求項1に記載の太陽集光システム。 2. The solar condensing system according to claim 1, wherein the transparent substrate is a resin substrate formed by injection molding.
  3.  前記透明基板の前記表面には、反射防止膜が形成されていることを特徴とする請求項1又は2に記載の太陽集光システム。 3. The solar condensing system according to claim 1, wherein an antireflection film is formed on the surface of the transparent substrate.
  4.  前記レシーバは前記中心軸に沿う方向で直線状に延在しており、前記集光ミラーは前記レシーバに向けて太陽光を集光するように樋状に形成されているリニアフレネル方式の太陽集光システムであることを特徴とする請求項1~3の何れか一項に記載の太陽集光システム。 The receiver extends linearly in a direction along the central axis, and the collector mirror is a linear Fresnel type solar collector formed in a bowl shape so as to collect sunlight toward the receiver. The solar light collecting system according to any one of claims 1 to 3, wherein the solar light collecting system is an optical system.
  5.  前記レシーバは地上に立設されたタワー上に設けられており、前記集光ミラーは前記レシーバに向けて太陽光を集光するように皿状に形成されているタワー方式の太陽集光システムであることを特徴とする請求項1~3の何れか一項に記載の太陽集光システム。 The receiver is provided on a tower erected on the ground, and the collecting mirror is a tower-type solar condensing system formed in a dish shape so as to collect sunlight toward the receiver. The solar condensing system according to any one of claims 1 to 3, wherein the solar concentrating system is provided.
  6.  請求項1~5のうち何れか一項に記載の太陽集光システムを備え、前記レシーバが得た熱を利用して発電を行うことを特徴とする太陽熱発電システム。 A solar thermal power generation system comprising the solar condensing system according to any one of claims 1 to 5 and generating power using heat obtained by the receiver.
PCT/JP2012/067601 2011-10-05 2012-07-10 Solar light collection system and solar heat generation system WO2013051316A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
IN3243CHN2014 IN2014CN03243A (en) 2011-10-05 2014-04-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011220990A JP5734803B2 (en) 2011-10-05 2011-10-05 Solar condensing system and solar power generation system
JP2011-220990 2011-10-05

Publications (1)

Publication Number Publication Date
WO2013051316A1 true WO2013051316A1 (en) 2013-04-11

Family

ID=48043488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067601 WO2013051316A1 (en) 2011-10-05 2012-07-10 Solar light collection system and solar heat generation system

Country Status (3)

Country Link
JP (1) JP5734803B2 (en)
IN (1) IN2014CN03243A (en)
WO (1) WO2013051316A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2601222A1 (en) * 2016-10-11 2017-02-14 Universidad De Oviedo Fresnel linear solar concentrator with triple movement (Machine-translation by Google Translate, not legally binding)
WO2017145328A1 (en) * 2016-02-25 2017-08-31 日立造船株式会社 Solar heat recovery system
CN110057116A (en) * 2019-04-04 2019-07-26 浙江中控太阳能技术有限公司 A kind of tower type solar photo-thermal Jing Chang and its arrangement method based on secondary reflection

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118360A (en) * 2013-11-18 2015-06-25 株式会社SolarFlame Heliostat device, solar heat collection apparatus, and sunlight collection and power generation apparatus
CN103837972B (en) * 2013-12-10 2017-05-17 厦门市和奕华光电科技有限公司 Repeated refraction light gathering device
CN112710094B (en) * 2021-02-01 2022-06-03 上海晶电新能源有限公司 Secondary reflection system and solar light-gathering and heat-collecting system with same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53145859U (en) * 1977-04-21 1978-11-16
JPS5835359A (en) * 1981-08-21 1983-03-02 グラヴルベル Composite mirror panel
JPS59184061U (en) * 1983-05-25 1984-12-07 日本板硝子株式会社 Mirror mounting angle adjustment device for solar heat collector
JP2003501606A (en) * 1999-05-29 2003-01-14 レオナード クルツ ゲーエムベーハー ウント コンパニー Optical device
JP2004221119A (en) * 2003-01-09 2004-08-05 Sharp Corp Solar cell and installing method therefor
JP2010190565A (en) * 2009-02-18 2010-09-02 Palo Alto Research Center Inc Solar energy collection device and method
WO2011052381A1 (en) * 2009-10-27 2011-05-05 三鷹光器株式会社 Compact heliostat
JP2011132846A (en) * 2009-12-24 2011-07-07 Mitsubishi Heavy Ind Ltd Solar light heat receiver, and solar light collecting and heat receiving system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1867935A1 (en) * 2006-06-13 2007-12-19 Matthias Eisenbacher Rotating and pivoting device for solar collectors

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53145859U (en) * 1977-04-21 1978-11-16
JPS5835359A (en) * 1981-08-21 1983-03-02 グラヴルベル Composite mirror panel
JPS59184061U (en) * 1983-05-25 1984-12-07 日本板硝子株式会社 Mirror mounting angle adjustment device for solar heat collector
JP2003501606A (en) * 1999-05-29 2003-01-14 レオナード クルツ ゲーエムベーハー ウント コンパニー Optical device
JP2004221119A (en) * 2003-01-09 2004-08-05 Sharp Corp Solar cell and installing method therefor
JP2010190565A (en) * 2009-02-18 2010-09-02 Palo Alto Research Center Inc Solar energy collection device and method
WO2011052381A1 (en) * 2009-10-27 2011-05-05 三鷹光器株式会社 Compact heliostat
JP2011132846A (en) * 2009-12-24 2011-07-07 Mitsubishi Heavy Ind Ltd Solar light heat receiver, and solar light collecting and heat receiving system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145328A1 (en) * 2016-02-25 2017-08-31 日立造船株式会社 Solar heat recovery system
ES2601222A1 (en) * 2016-10-11 2017-02-14 Universidad De Oviedo Fresnel linear solar concentrator with triple movement (Machine-translation by Google Translate, not legally binding)
CN110057116A (en) * 2019-04-04 2019-07-26 浙江中控太阳能技术有限公司 A kind of tower type solar photo-thermal Jing Chang and its arrangement method based on secondary reflection

Also Published As

Publication number Publication date
JP2013079787A (en) 2013-05-02
IN2014CN03243A (en) 2015-07-03
JP5734803B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5734803B2 (en) Solar condensing system and solar power generation system
Canavarro et al. New second-stage concentrators (XX SMS) for parabolic primaries; Comparison with conventional parabolic trough concentrators
US20130247961A1 (en) Solar collector having a concentrator arrangement formed from several sections
Coughenour et al. Dish-based high concentration PV system with Köhler optics
US20090114213A1 (en) Solar concentrator with square mirrors
EP2122268A1 (en) Optical concentrator, especially for solar photovoltaics
CN102893415A (en) Concentrated photovoltaic and thermal system
WO2005043049A1 (en) A device for collecting and use solar energy
CN102563919B (en) Solar furnace adopting self-spinning and elevation tracking mode
US20160079461A1 (en) Solar generator with focusing optics including toroidal arc lenses
US20100218817A1 (en) Solar concentration system
CN101655287A (en) Optical collector with multi-section circular arc
CN101368764A (en) Solar furnace adopting spin-elevation tracking mode
CN103165717A (en) Concentrating photovoltaic module comprising small Fresnel lens array
CN101872063A (en) Conical concentrating system
Ma et al. A review on solar concentrators with multi-surface and multi-element (MS/ME) combinations
US20120312349A1 (en) Stationary concentrated solar power module
US20120227789A1 (en) Solar Collector Comprising Receiver Positioned External to Inflation Space of Reflective Solar Concentrator
Zheng et al. A new optical concentrator design and analysis for rooftop solar applications
KR102030850B1 (en) Solar Energy Hybrid Generation System, And Hydrogen Production System Having The Same
CN2884537Y (en) High performance solar plant
US20190312544A1 (en) Sun tracking solar system
WO2013005479A1 (en) Solar light collection system and solar thermal electric power generation system
KR102481842B1 (en) Multi-layered lenses capable of forming custom focal points
Angel et al. Development and On‐Sun Performance of Dish‐Based HCPV

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838626

Country of ref document: EP

Kind code of ref document: A1