WO2013051303A1 - 三出力軸型の内燃機関 - Google Patents

三出力軸型の内燃機関 Download PDF

Info

Publication number
WO2013051303A1
WO2013051303A1 PCT/JP2012/059271 JP2012059271W WO2013051303A1 WO 2013051303 A1 WO2013051303 A1 WO 2013051303A1 JP 2012059271 W JP2012059271 W JP 2012059271W WO 2013051303 A1 WO2013051303 A1 WO 2013051303A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
piston
combustion engine
internal combustion
combustion
Prior art date
Application number
PCT/JP2012/059271
Other languages
English (en)
French (fr)
Inventor
佳行 中田
Original Assignee
Nakata Yoshiyuki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakata Yoshiyuki filed Critical Nakata Yoshiyuki
Publication of WO2013051303A1 publication Critical patent/WO2013051303A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/04Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using kinetic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B57/00Internal-combustion aspects of rotary engines in which the combusted gases displace one or more reciprocating pistons
    • F02B57/08Engines with star-shaped cylinder arrangements
    • F02B57/10Engines with star-shaped cylinder arrangements with combustion space in centre of star
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/06Engines with means for equalising torque
    • F02B75/065Engines with means for equalising torque with double connecting rods or crankshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/28Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an internal combustion engine, and more specifically, burns an air-fuel mixture in the same combustion chamber, gives mechanical power to a pair of pistons by combustion gas that explodes and expands by the combustion, and obtains rotational force on a crankshaft.
  • the present invention relates to a three-output shaft type internal combustion engine that uses a scavenged high-speed and high-pressure combustion gas (operating gas) to drive a gas turbine and obtain a rotational force on the turbine shaft.
  • An internal combustion engine that burns fuel inside the engine and converts the generated thermal energy into mechanical energy to obtain power is divided into the Otto cycle, diesel cycle, and Sabati cycle by the basic cycle, and electric spark ignition by the ignition system, It is divided into compression ignition and fireball ignition, and is divided into 4 cycles and 2 cycles according to the intake and exhaust systems, and is widely recognized as the basic operating principle of gasoline engines and diesel engines.
  • the above gasoline engine is also called a spark ignition internal combustion engine or a spark ignition engine that ignites using electric sparks, and mainly completes the four steps of intake, compression, ignition (expansion), and exhaust in two reciprocations of the piston.
  • a 4-stroke engine and a 2-stroke engine that completes the four steps (scavenging of intake and exhaust simultaneously) in one reciprocation, both of which are short in the vicinity of the volume of the air-fuel mixture being minimized in the cylinder.
  • This is called a constant volume combustion cycle or Otto cycle because it is performed at once in time and the combustion volume is almost constant. Its features are large output per displacement, easy operation at high speeds, low noise and vibration, and excellent quietness.
  • Main applications are passenger cars, small commercial vehicles, motorcycles, small size Widely used in outboard motors and small work machines.
  • 4-stroke engine there is a large mechanical energy loss in the intake and exhaust processes
  • 2-stroke engine there are various problems such as discharge of unburned gas and mixed oil.
  • a diesel engine compresses air with a piston and injects fuel into high-temperature and high-pressure air in a cylinder to cause self-ignition.
  • a gasoline engine there are a 4-stroke engine and a 2-stroke engine.
  • the flame propagation speed is slower than that of gasoline, and a lower speed is called a diesel cycle (isobaric cycle), and a higher speed is called a Sabatate cycle (combined cycle).
  • Diesel engines are excellent in thermal efficiency among internal combustion engines, and can be used with low-purity fuels, resulting in good fuel efficiency, but the compression ratio in the cylinder is high, and the mechanical strength of the engine is required, so the parts are heavy and bulky.
  • the cost of parts is increased, and the loss of mechanical kinetic energy due to the weight of the moving part is increased. Therefore, there is a problem that the output and torque per weight are lower than that of a gasoline engine and it is difficult to increase the rotation speed.
  • a cylinder of a 4-cycle engine is provided with an opening that opens near the bottom dead center, a valve such as a rotary valve and a second intake port are provided outside the opening, and the upper part of the combustion chamber is ignited
  • a plug set the second intake port so that air flows into the cylinder along the upper surface of the piston at the bottom dead center, and close the rotary valve so that it closes when the opening scavenging process is open
  • a valve With this configuration, air flows into the negative pressure cylinder from the second intake port along the upper surface of the piston.
  • an “internal combustion engine device” is proposed in which an air-fuel mixture layer is formed in the upper part of the cylinder and an air layer is formed in the lower part.
  • the internal combustion engine of the above-mentioned “internal combustion engine device” such as the above-described gasoline engine and diesel engine also has a rotating shaft driven by a mechanical transmission mechanism configured of a crank mechanism for the explosion / expansion energy in the cylinder.
  • the mechanical transmission due to energy conversion is large, and the thermal efficiency is about 20-26% for gasoline engines and only 35-45% for diesel engines. there were.
  • a gas turbine engine is an internal combustion engine that burns an air-fuel mixture in the same combustion chamber and rotates the turbine with an expanding combustion gas (operating gas) to obtain rotational energy. Therefore, it is widely used mainly as an aircraft power source. In addition, the start-up time is short, and it is also used as a power source for emergency generators.
  • the generated high-temperature and high-pressure combustion gas rotates a centrifugal or axial-flow turbine shaft to generate a power source. .
  • the turbine shaft is connected to the compressor and transmits the compression power to the compressor and continuously moves. In the gas turbine engine, all the thermal energy of the combustion gas is recovered by the turbine and the shaft output is taken out.
  • jet engines There are two types of jet engines: a type and a type that expands and exhausts while leaving the thermal energy of the combustion gas to obtain thrust.
  • a turbocharger is a kind of gas turbine.
  • a gas turbine engine is lighter in weight and has a relatively small volume and high output compared to the gasoline engine and diesel engine described above, and has an excellent power weight ratio (output load ratio) that represents acceleration performance values.
  • output load ratio output load ratio
  • the applicant of the present invention uses a single explosion / expansion energy in a cylinder like a conventional internal combustion engine as a machine of a crank mechanism.
  • gas energy generated by gas expansion due to combustion of the mixed gas can be converted into a gas turbine mechanical transmission mechanism and used as an output shaft at the same time as an output shaft via a mechanical transmission mechanism.
  • the air-fuel mixture is burned in the same combustion chamber in the internal combustion engine device.
  • the present invention combusts an air-fuel mixture in the same combustion chamber, applies mechanical power to a pair of pistons by combustion gas that explodes and expands by the combustion to obtain rotational force on a crankshaft, and also scavenges high-speed and high-pressure
  • An object of the present invention is to provide a three-output shaft type internal combustion engine that uses a combustion gas (operating gas) to drive a gas turbine and obtain a rotational force on the turbine shaft.
  • the air-fuel mixture is combusted in the same combustion chamber, and the combustion gas expanded by the combustion is mechanically applied to a pair of pistons having a predetermined inclination angle (90 degrees to 160 degrees) and located in a substantially opposed relationship.
  • Power is applied to the left and right respectively, the mechanical power is converted into the rotational direction using a crank mechanism to obtain rotational force on the left and right crankshafts, and further, the high-speed and high-pressure combustion gas that is scavenged is used.
  • a three-output shaft type internal combustion engine for driving a gas turbine and obtaining a rotational force for the turbine shaft of the gas turbine, the cylinder head, the cylinder, the piston, the connecting rod, the crankshaft, and the housing
  • the cylinder head includes a fuel injector, an air injector, and a spark plug
  • the cylinder has an operating gas scavenging at a predetermined position on the side wall.
  • a manifold and a guide portion at a predetermined position in the center upper portion of the operating gas scavenging manifold are provided.
  • the piston has a high compression type piston head portion protruding in a mountain shape, and each piston head and cylinder on each of the left and right sides at the top dead center.
  • a combustion chamber is formed by the inner wall of the head, and the crankshaft is installed in the housing case so that the shaft center is offset by a predetermined distance in the direction opposite to the operating gas scavenging manifold, and a pair of crankshafts
  • the shaft is interlocked by a reciprocating synchronization mechanism, and the connecting position of the piston, the connecting rod, and the crankshaft, and the position where the axial center of the crankshaft is linear near the top dead center is 10 to the combustion / expansion stroke side.
  • Ignition is performed at a position advanced by 25 degrees, and the combustion chamber formation (compression) process, ignition process, combustion / expansion stroke, exhaust / scavenging process, Serial piston is completed configuration in one reciprocation cycle, the gas turbine, while being connected to the centrifugal or axial flow type rotary compressor, taking the means arranged to operate the gas scavenging manifold.
  • the present invention may employ a means in which the gas turbine is disposed outside the operating gas scavenging manifold.
  • an uneven portion is formed on a substantially half surface of the piston head, and the uneven shape improves the confidentiality of the one piston so that the opposing piston is not in contact near the top dead center. It is also possible to adopt a configuration means that employs a piston that is formed in such a relationship that the concave portion of the first piston and the convex portion of the other piston are alternately combined and arranged.
  • tilt angle bank angle of 90 ° to 160 °, more preferably 110 ° to 130 °.
  • the three-output shaft type internal combustion engine according to the present invention has an excellent effect that it can cope with a wide range of fuels having different combustion characteristics. Specifically, for example, with hydrogen or gasoline having a high flame propagation speed, it is possible to instantaneously obtain a large force with the crankshaft with the piston being in a constant volume near top dead center, while the flame propagation speed is high. With slow light oil, propane gas, etc., it is possible to obtain the expansion pressure by combustion with the turbine blades even in the process of being exhausted to the working gas scavenging manifold.
  • the three-output shaft internal combustion engine means for transmitting the explosion / expansion energy in the cylinder to the rotating shaft by a pair of mechanical transmission mechanisms constituted by a crank mechanism, and the internal combustion engine device Since it is possible to obtain a means for supplying combustion gas generated by explosion / expansion as a direct working gas at the same time, the explosion / expansion energy generated in the explosion / expansion stroke is efficiently transmitted to the 4-cycle combustion engine and the gas turbine combustion engine. Therefore, it is possible to provide an internal combustion engine having combustion efficiency (filling efficiency) and exhaust efficiency.
  • the cylinder has a predetermined bank angle (90 ° to 160 °, more preferably within a range of 110 ° to 130 °), and the expansion direction of the combustion gas. Since the manifold for scavenging the working gas is provided, the piston head surface is not orthogonal to the pressure vector due to the expansion of the combustion gas immediately after the start of exhaust. Therefore, the stress applied to the piston head can be remarkably reduced, and in particular, an effect that contributes to durability improvement that becomes a problem when using a fuel such as hydrogen having a high combustion pressure and combustion temperature is exhibited. Furthermore, by adopting such a configuration, the stroke is halved as compared with a single piston type having the same bore, so that an extremely short stroke can be realized, and an excellent effect that a high-rotation type internal combustion engine can be provided is achieved.
  • the three-output shaft internal combustion engine means for transmitting the explosion / expansion energy in the cylinder to the rotating shaft by a pair of mechanical transmission mechanisms constituted by a crank mechanism, and the internal combustion engine device Since it is possible to obtain a means for supplying combustion gas generated by explosion / expansion as a direct working gas at the same time, the explosion / expansion energy generated in the explosion / expansion stroke is efficiently transmitted to the 4-cycle combustion engine and the gas turbine combustion engine. It has an excellent effect of being able to transmit the energy to be transmitted.
  • the three-output shaft internal combustion engine of the present invention a high-speed and high-pressure operating gas is supplied to the turbine blade, and the turbocharger that can be supercharged regardless of the rotational speed of the internal combustion engine is linked. Therefore, it is possible to obtain an excellent effect that supercharging without a turbo lag peculiar to an exhaust turbine turbocharger can be performed.
  • the three-output shaft type internal combustion engine in order to inject fuel and compressed air that are electronically controlled by a fuel injector and an air injector provided above the combustion chamber, the number of revolutions using various sensors. It is possible to achieve an excellent effect that the combustion efficiency can be further improved by performing delicate control from various conditions such as the ambient temperature, the outside air temperature, or the oxygen concentration.
  • the thermal energy exploded and expanded in the combustion chamber of the four-cycle combustion engine is converted into the rotational force of a pair of crankshafts, and is conventionally regarded as a loss.
  • a combustion gas G operating gas K
  • a turbine blade of a gas turbine combustion engine it is possible to achieve an excellent effect that exhaust loss can be extremely reduced.
  • fuel is injected into the combustion chamber by the fuel injector provided above the combustion chamber. Therefore, in addition to gasoline, light oil, LPG, natural gas, hydrogen, An excellent effect can be obtained that a wide range of fuels can be used from a fuel having a high flame propagation speed such as methanol to a fuel having a low flame propagation speed.
  • the uneven portion is formed on the substantially half surface of the piston head, and the uneven shape is not in contact with the opposing piston in the vicinity of the top dead center.
  • the piston is formed in such a relationship that the concave portion of the piston and the convex portion of the other piston are alternately meshed and arranged, so that confidentiality is maintained even in a high compression state near the top dead center.
  • the surface area for receiving the expanding combustion gas is increased, the pressure energy can be efficiently converted into kinetic energy.
  • FIG. 1 is a schematic cross-sectional explanatory view showing the entire three-output shaft type internal combustion engine according to the present invention.
  • Example 1 It is typical sectional explanatory drawing which shows the combustion chamber formation (compression) process of the 3 output shaft type internal combustion engine which concerns on this invention. It is typical sectional explanatory drawing which shows the ignition process of the internal combustion engine of a 3 output shaft type
  • FIG. 3 is a schematic cross-sectional explanatory view showing an exhaust / scavenging process of the three-output shaft internal combustion engine according to the present invention.
  • FIG. 3 is an explanatory diagram of an embodiment of a three-output shaft type internal combustion engine according to claim 2.
  • FIG. 4 is an explanatory diagram of an embodiment of a three-output shaft type internal combustion engine according to claim 3.
  • the three-output shaft type internal combustion engine of the present invention combusts an air-fuel mixture in the same combustion chamber, and a pair of pistons having a predetermined inclination angle and located in a substantially opposed relationship by a combustion gas expanded by the combustion.
  • the mechanical power is applied to the left and right, respectively, and the mechanical power is converted into the rotational direction using a crank mechanism to obtain rotational force on the left and right crankshafts.
  • the most characteristic feature is that a three-output shaft type internal combustion engine is employed in which the gas turbine is driven using gas) and the turbine shaft of the gas turbine obtains rotational force.
  • FIG. 1 is a schematic cross-sectional explanatory diagram showing the entire three-output shaft type internal combustion engine according to the present invention.
  • the three-output shaft type internal combustion engine 10 of the present invention includes a four-cycle combustion engine using a pair of piston reciprocating motion as a power source, and a scavenged combustion gas G (operating gas K) generated in the combustion chamber 24 as a power source.
  • a four-cycle combustion engine comprising a cylinder head 20, a cylinder 30, a housing case 70, a piston 40, a connecting rod 50, and a crankshaft 60;
  • the gas turbine combustion engine includes a turbine blade 81 and a turbine shaft 82 that constitute the gas turbine 80.
  • a fuel injector 21 that electronically injects fuel N such as gasoline in an atomized state or a vaporized state, and an air injector that electronically injects compressed air E compressed by a compressor or the like. 22 and a spark plug 23 for electrical ignition.
  • the fuel injector 21 includes a needle valve that is electrically opened and closed inside. When the valve is opened by the action of a plunger core, an electromagnet, and a spring, the fuel injector 21 is fed from a fuel injection pump (high-pressure fuel pump) from a tip injection port.
  • a fuel injection pump high-pressure fuel pump
  • This is an in-cylinder fuel injection device that electronically injects high-pressure fuel N at the timing of the air injector 22.
  • the air injector 22 includes a needle valve that is electrically opened and closed inside, and when the valve is opened by the action of a plunger core, an electromagnet, and a spring, the air injector 22 is fed from an air compression pump (air compressor pump) from the tip injection port. It is a cylinder air injection device that injects high-pressure compressed air E by electronic control.
  • the cylinder 30 includes a working gas scavenging manifold 32 from which the combustion gas G is discharged and a guide portion 31 at the center lower portion of the cylinder block body.
  • the bank angle is in the range of 90 ° to 160 °, more preferably 110 ° to 130 °.
  • the expansion time is instantaneous, and the piston 40 only needs to be sufficiently subjected to downward stress due to this instantaneous pressure change, and a sealed state in the cylinder 30 is ensured.
  • the stroke limit position only needs to have a slight guide portion 31 as shown in the drawing.
  • the working gas scavenging manifold 32 is provided at a predetermined position on the side wall of the cylinder 30 and is provided with a guide portion 31 at a predetermined position at the upper center. Further, the upper opening position of the internal passage of the working gas scavenging manifold 32 is arranged in such a positional relationship that it sufficiently receives the downward stress due to the instantaneous pressure change of the air-fuel mixture and opens after the piston 40 starts to descend.
  • the bottom opening position of the internal passage of the operating gas scavenging manifold 32 is positioned so that the piston 40 forms a passage cross section continuously connected to the gentle inclined surface of the piston head 41 at the bottom dead center L.
  • the thermal energy exploded and expanded in the combustion chamber 24 of the four-cycle combustion engine powers the combustion gas G (operating gas K) that is scavenged by effectively utilizing the thermal efficiency of about 30% that is lost when scavenging.
  • a gas turbine combustion engine is driven as a source.
  • the piston 40 is formed in a mountain shape that forms a gently curved surface in which the shape of the piston head 41 is inclined downward toward the operating gas scavenging manifold 32 side, and is reciprocated by a crank transmission mechanism including a connecting rod 50 and a crankshaft 60. By moving, the combustion gas G is scavenged. Since the piston 40 according to the present invention does not compress the air-fuel mixture in the cylinder 30, no compression ring is required. However, although not shown, it is effective to provide an oil ring as necessary.
  • the piston head 41 has a shape similar to a convex head whose so-called zenith is raised in a mountain shape, and is formed in a mountain shape that forms a gentle curved surface inclined downward toward the working gas scavenging manifold 32 side. It has a shape that guides the explosion / expansion energy of the combustion chamber 24 to the crank transmission mechanism composed of the connecting rod 50 and the crankshaft 60 and the operating gas scavenging manifold 32 located at the lower center of the cylinder body. is there.
  • the connecting rod 50 has a small end 52 serving as a piston pin insertion portion for connecting to the piston 40 at one end, and a big end 53 serving as an insertion portion by a crank pin for connecting to the crankshaft 60 at the other end. And serves to change the reciprocating motion of the piston 40 into a rotational motion.
  • a reciprocating synchronization mechanism 51 (not shown) is connected to a position opposite to a position where the pair of pistons 40 are connected to the crankshaft 60, and a timing belt, a gear, a cam to synchronize the pair of piston transmission mechanisms. It is connected and tuned by a crankshaft, a chain or the like.
  • the crankshaft 60 is installed in a journal portion in the housing case 70 through a metal, a bearing, or the like, and the journal portion is offset by a predetermined distance R in a direction opposite to the operating gas scavenging manifold 32.
  • a predetermined distance R is like an offset cylinder in which the conventional crankshaft is slightly shifted from the center position of the piston pin.
  • a balance weight 61 for preventing vibration is provided on the opposite side of the outer circumference connected to the connecting rod 50, so that the inertia force related to the weight of the piston 40 and the connecting rod 50 is offset to suppress the vibration and perform a linear operation.
  • the piston 40 is changed to a smooth rotational motion.
  • the offset amount of the predetermined distance R is that the distance R from the axis 62 of the crankshaft 60 to the axis of the big end 53 of the connecting rod 50 is Sin25 (advance angle ⁇ ). The maximum value).
  • the gas turbine 80 is arranged in the working gas scavenging manifold 32 in the gas turbine 80 according to claim 1, and is arranged at the outer outlet of the working gas scavenging manifold 32 in the gas turbine 80 according to claim 2.
  • the gas turbine 80 has a disk shape in which a plurality of turbine blades 81 are arranged in the circumferential direction, or a conical shape in which a plurality of the turbine blades 81 are provided in a plurality of stages, and is generated at the combustion chamber 24 to be scavenged.
  • the turbine shaft 82 is driven using the kinetic energy of the fluid (the working gas K) and the pressure energy associated with combustion.
  • the rotational force obtained by the gas turbine combustion engine reduces the output of the four-cycle combustion engine as a power source such as an air compressor, an oil pump, a car air conditioner, a radiator fan, and a turbocharger. It can be used effectively without any problems.
  • the three-output shaft type internal combustion engine 10 intends to convert the explosion / expansion energy of the combustion chamber 24 into mechanical and fluid operating gas energy at the same time and use it.
  • Gas turbine combustion using a four-cycle combustion engine comprising a piston 40, a connecting rod 50 and a crank mechanism driven by expansion energy, and a high-speed, high-pressure combustion gas G (operating gas K) generated in the combustion chamber 24. It consists of an organization.
  • FIG. 2 is a schematic cross-sectional explanatory view showing a combustion chamber forming (compression) step of the three-output shaft type internal combustion engine according to the present invention.
  • the combustion chamber formation (compression) step the crankshaft 60 rotates upward due to the inertia of the explosion / expansion energy in the combustion chamber 24, and the small end 52 of the connecting rod 50 at the position of the piston pin and the outer peripheral surface of the crankshaft 60.
  • the piston 40 ascends in the cylinder 30 toward the top dead center H until the big end 53 of the connecting rod 50 and the shaft core 62 of the crankshaft 60 are in a straight line, and the guide portion 31 at the bottom of the main body of the cylinder 30 is moved.
  • This is a process in which the fuel N and the compressed air E are electronically controlled and injected by the fuel injector 21 and the air injector 22 provided in the cylinder head 20 at the timing when the combustion chamber 24 is formed to the minimum volume by closing.
  • FIG. 3 is a schematic cross-sectional explanatory view showing an ignition process of the three-output shaft type internal combustion engine according to the present invention.
  • the combustion chamber 24 is formed to a minimum volume, the small end 52 of the connecting rod 50 at the position of the piston pin, the big end 53 of the connecting rod 50 located on the outer peripheral surface of the crankshaft 60, and the shaft core 62 of the crankshaft 60.
  • FIG. 4 is a schematic cross-sectional explanatory view showing a combustion / expansion stroke of the three-output shaft type internal combustion engine according to the present invention.
  • the combustion gas G exploding / expanding in the combustion chamber 24 rotates the crankshaft 60 downward with an explosion / expansion energy that pushes the piston head 41 toward the bottom dead center L, and a gas turbine 80.
  • This is a step of discharging the combustion gas G (operating gas K) that is scavenged.
  • FIG. 5 is a schematic cross-sectional explanatory view showing an exhaust / scavenging process of the three-output shaft internal combustion engine according to the present invention.
  • the exhaust and scavenging process simultaneously exhausts and scavenges the combustion chamber 24, operates the four-cycle combustion engine by the explosion / expansion energy of the combustion chamber 24, and simultaneously scavenges the high-speed and high-pressure combustion generated in the combustion chamber 24.
  • the gas G (operating gas K) is guided into a mountain shape that forms a gently curved surface in which the shape of the upper end portion of the piston 30 is inclined downward, and is scavenged and connected to the operating gas scavenging manifold 32 side. This is a step of rotationally driving the turbine blade 81 and the turbine shaft 82 disposed in the working gas scavenging manifold 32.
  • the combustion cycle of the internal combustion engine configured as described above will be briefly described.
  • the connection position of the piston 40, the connecting rod 50, and the crankshaft 60, and the position where the shaft core 62 position of the crankshaft 60 is linear near the top dead center H. Is ignited at a position where the advance angle ⁇ is 10 to 25 degrees from the first to the expansion stroke, and the explosion / expansion energy generated in the combustion chamber 24 operates the four-cycle combustion engine, and at the same time, the high-speed and high-pressure generated in the combustion chamber 24
  • a series of combustion chamber forming (compression) processes in which the combustion gas G (operating gas K) is vigorously scavenged from the operating gas scavenging manifold 32, an ignition process, a combustion / expansion stroke, and an exhaust / scavenging process are performed by the piston 40. Is formed in a configuration that is completed in one reciprocating cycle.
  • FIG. 6 is an explanatory diagram of an embodiment of a three-output shaft type internal combustion engine according to claim 2, and a three-output shaft type internal combustion engine having a configuration in which a gas turbine 80 is disposed outside the operating gas scavenging manifold 32.
  • FIG. 6A shows a state in which a gas turbine 80 having a size that cannot be provided inside the working gas scavenging manifold 32 as in the gas turbine 80 according to claim 1 is driven by one machine.
  • FIG. 6B shows a three-output shaft type internal combustion engine having a configuration in which a plurality of three-output shaft type internal combustion engines are arranged in a larger gas turbine 80. In this case, it is desirable not only to obtain rotational power by interlocking the crankshaft 60 but also to drive the gas turbine 80 in a well-balanced manner by determining synchronization and an exhaust order.
  • FIG. 7 is an explanatory diagram of an embodiment of a three-output shaft type internal combustion engine according to claim 3, and shows a state in which an uneven portion 42 is formed on a substantially half surface of the piston head 41.
  • the concave and convex portion 42 is arranged such that the concave portion of one piston 40 and the convex portion of the other piston 40 are alternately meshed with each other while the opposing piston 40 is not in contact with the top dead center. It is formed to be in a relationship. Since the shape of the piston head 41 is adopted, the confidentiality is increased even in a high compression state near the top dead center, and the surface area for receiving the expanding combustion gas is increased, so that the pressure energy is efficiently converted to kinetic energy. There is an excellent effect that it can be converted. It is conceivable that the shape of the concavo-convex portions 42 is arranged in parallel in the direction perpendicular to the discharge direction of the working gas K, or arranged so as to spread in the circumferential direction from the center of the piston head 41.
  • the three-output shaft type internal combustion engine of the present invention is small, light, and has high output, it is used as a power source for a wind power generator or supplies high-speed and high-pressure combustion gas (operating gas) scavenged by a turbine blade.
  • the turbocharger that can be supercharged regardless of the rotational speed of the internal combustion engine, and a high temperature expansion gas supply device for the balloon, etc. It is understood that the availability is great.
  • the two crankshafts 60 since the two crankshafts 60 are provided, it is also effective to set the rotation directions to the same direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

【課題】内燃機関装置内の同一燃焼室内で混合気を燃焼させ、該燃焼により爆発・膨張する燃焼ガスによって一対のピストンに機械的動力を与えてクランク軸に回転力を得ると共に、掃気される高速・高圧の燃焼ガス(動作気体)を利用してガスタービンを駆動してタービン軸に回転力を得る三出力軸型の内燃機関を提供する。 【解決手段】本発明の三出力軸型の内燃機関は、同一燃焼室内で混合気を燃焼させ、該燃焼により爆発・膨張する燃焼ガスによって、所定の傾斜角(90度~160度)を有して略対向関係に位置する一対のピストンに機械的動力を左右其々に与え、該機械的動力をクランク機構を用いて回転方向に変換して左右其々のクランク軸に回転力を得ると共に、更に掃気される高速・高圧の燃焼ガス(動作気体)を利用してガスタービンを駆動し、該ガスタービンのタービン軸にも回転力を得る、三出力軸型の内燃機関である手段を採る。

Description

三出力軸型の内燃機関
 本発明は、内燃機関に関し、詳しくは、同一燃焼室内で混合気を燃焼させ、該燃焼により爆発・膨張する燃焼ガスによって一対のピストンに機械的動力を与えてクランク軸に回転力を得ると共に、掃気される高速・高圧の燃焼ガス(動作気体)を利用してガスタービンを駆動してタービン軸に回転力を得る三出力軸型の内燃機関に関する。
 燃料を機関内部で燃焼させ、発生する熱エネルギーを機械的エネルギーに変換して動力を得る内燃機関は、基本サイクルによってオットーサイクル、ディーゼルサイクル、サバティサイクルに分けられ、点火方式によって電気火花点火、圧縮点火、焼玉点火に分けられ、吸排気方式によって4サイクル、2サイクルに分けられ、ガソリンエンジンやディーゼルエンジンの基本的な作動原理として広く認識されている。
 上記のガソリンエンジンは、電気による火花を用いて点火する火花点火内燃機関や火花点火エンジンとも呼ばれるもので、主に、吸気・圧縮・点火(膨張)・排気の4つの工程をピストン2往復で終了する4ストロークエンジンと、前記4つの工程(吸排気同時の掃気)を一往復で終了する2ストロークエンジンとがあり、いずれも膨張現象がシリンダ内において、混合気の体積が最小となる付近で短時間に一気に行われ、燃焼容積がほぼ一定であることから定積燃焼サイクル、又はオットーサイクルと呼ばれるものである。その特徴は、排気量あたりの出力が大きく、また高速回転による運転も容易で、振動や騒音が少なく静寂性に優れていることから、主な用途としては乗用車、小型商業車、自動二輪車、小型船外機、小型作業機械などに広く利用されている。しかし、4ストロークエンジンでは、吸気工程や排気工程に大きな機械的エネルギー損失があり、2ストロークエンジンでは未燃焼ガスの排出や混合オイルの諸問題がある。
 他方、ディーゼルエンジンは、ピストンによって空気を圧縮し、シリンダ内の高温・高圧空気に燃料を噴射することで自己着火させるもので、ガソリンエンジン同様に、4ストロークエンジンと、2ストロークエンジンがある。但し、ディーゼルエンジンでは、火炎伝播速度がガソリンに比べて遅く、より低速のものがディーゼルサイクル(等圧サイクル)と呼ばれ、高速のものはサバテサイクル(複合サイクル)と呼ばれる。ディーゼルエンジンは内燃機関の中でも熱効率に優れ、低精製の燃料でも使用できて燃費が良い反面、シリンダ内の圧縮比が高くなることでエンジンの機械的強度が要求されることによって部品は重く嵩張り、部品コストも掛かる上、可動部重量による機械的運動エネルギーの損失も大きくなるため、ガソリンエンジンと比べると重量当たりの出力ならびにトルクが低く、高回転化が難しいという問題がある。
 このような問題点を解決すべく、従来からも上記のサイクル方式、点火方式、吸気方式の組み合わせや改良によって燃焼効率を上げようとする数多くの内燃機関の提案がなされている。例えば、4サイクルエンジンのシリンダに、下死点時付近で開口する開口部を設け、開口部の外側に連接してロータリー弁などの弁および第二の吸気ポートを設け、燃焼室の上部に点火プラグを設け、下死点時のピストン上面に沿って空気がシリンダ内に流入する様に、第二の吸気ポートを設定し、しかも開口部の掃気工程の開口時に閉弁する様に、前記ロータリー弁などをする。この構成により、負圧のシリンダ内に、ピストン上面に沿って第二の吸気ポートから空気が流入する。すると、シリンダ内の上部に混合気層が、下部に空気層が層状に形成される「内燃機関装置」(特許文献1参照)が提案されている。
 しかしながら、係る技術は、従来からの内燃機関同様に、燃焼室形成(圧縮)工程における圧縮や吸気工程における吸気はピストンに行わせているものである。また、前述のガソリンエンジンやディーゼルエンジンを始め、上記の「内燃機関装置」(特許文献1)の内燃機関も、シリンダ内の爆発・膨張エネルギーをクランク機構で構成される機械的伝達機構によって回転軸に伝達する構造であるため、エネルギー変換による機械的損失等が大きく、熱効率でいうと、ガソリンエンジンで約20~26%程度であり、ディ―ゼルエンジンでも35~45%程度に過ぎないものであった。
 一方、ガスタービンエンジンは、同一燃焼室内で混合気を燃焼させ、膨張する燃焼ガス(動作気体)によってタービンを回して回転エネルギーを得る内燃機関であり、重量や体積の割合には高出力のエネルギーが得られることから、主に航空機の動力源として広く用いられている。また始動時間が短く、非常用発電機の動力源としても一部に使われており、発生した高温高圧の燃焼ガスが遠心式又は軸流式タービン軸を回転させて動力源を発生させるものでる。該タービン軸は、圧縮機と連結していて圧縮機に圧縮動力を伝達して持続的に運動するもので、ガスタービンエンジンには燃焼ガスの熱エネルギーを全てタービンで回収して軸出力を取り出す方式と、燃焼ガスの熱エネルギーを残したまま膨張・排気し、推力を得る方式のジェットエンジンがある。広義的にはターボチャージャーも一種のガスタービンと言える。
 ガスタービンエンジンは、前述のガソリンエンジンやディ―ゼルエンジンなどと比較して軽量で比較的小さな体積で高出力が得られると共に、加速性能値を表すパワーウエイトレシオ(出力荷重比)に優れ、さらに低速回転時と高速回転時の燃料消費率の差が少ないことや、低周波の振動が少なく高めの周波数の騒音対策で済むことや、燃焼効率が内燃機関の中でもディ―ゼルエンジンに匹敵する35~42%の数値を示すものである。また、小型軽量で始動時間が短く、定置型発電装置として今後その需要は高くなるものと予想されるものである。
 そこで、本出願人は、前述のガソリンエンジンとディ―ゼルエンジンとガスタービンエンジンの燃焼効率の利点を踏まえ、従来の内燃機関のようなシリンダ内の一回の爆発・膨張エネルギーをクランク機構の機械的伝達機構を介して出力軸とする同時に、混合気体の燃焼に伴う気体の膨張によって発生する気体エネルギーをガスタービンの機械的伝達機構に変換して出力軸として利用できるのではないかという着想の下、内燃機関装置内で発生する爆発・膨張エネルギーをより効率よく利用するためにはどのようにすればよいかという課題を解決すべく、内燃機関装置内の同一燃焼室内で混合気を燃焼させ、膨張する燃焼ガスによって一対のピストンのクランク軸と、ガスタービンのタービン軸の三出力軸に回転力を得る熱効率に優れた「三出力軸型内燃機関」の提案に至ったものである。
特開平7-279670号公報
 本発明は、同一燃焼室内で混合気を燃焼させ、該燃焼により爆発・膨張する燃焼ガスによって一対のピストンに機械的動力を与えてクランク軸に回転力を得ると共に、掃気される高速・高圧の燃焼ガス(動作気体)を利用してガスタービンを駆動してタービン軸に回転力を得る三出力軸型の内燃機関を提供しようとするものである。
 本発明は、同一燃焼室内で混合気を燃焼させ、該燃焼により膨張する燃焼ガスによって、所定の傾斜角(90度~160度)を有して略対向関係に位置する一対のピストンに機械的動力を左右其々に与え、該機械的動力をクランク機構を用いて回転方向に変換して左右其々のクランク軸に回転力を得ると共に、更に掃気される高速・高圧の前記燃焼ガスを利用してガスタービンを駆動し、該ガスタービンのタービン軸にも回転力を得る、三出力軸型の内燃機関であって、シリンダヘッドと、シリンダと、ピストンと、コンロッドと、クランク軸と、ハウジングケースと、ガスタービンと、から成り、前記シリンダヘッドには、燃料インジェクターとエアーインジェクターと点火プラグとを備え、前記シリンダには、側壁の所定位置に動作気体掃気用マニホールドと、該動作気体掃気用マニホールドの中央上部所定位置にガイド部とを備え、前記ピストンは、ピストンヘッド部がハイコンプレッションタイプで山形に突出しており、上死点において左右各々のピストンヘッドとシリンダヘッドの内壁により燃焼室を形成し、前記クランク軸は、軸芯が前記動作気体掃気用マニホールドと反対方向に所定距離だけオフセットするように其々前記ハウジングケースに内設されると共に、一対のクランク軸は往復動同調機構で連動され、前記ピストンと前記コンロッドと前記クランク軸の連結位置と、前記クランク軸の軸芯位置が上死点付近で直線状となる位置から燃焼・膨張行程側に10~25度進角した位置で点火し、燃焼室形成(圧縮)工程と点火工程と燃焼・膨張行程と排気・掃気工程とを、前記ピストンが一往復サイクルで完了する構成であり、前記ガスタービンは、遠心式又は軸流式の回転圧縮機に連結されると共に、動作気体掃気用マニホールド内に配置されている手段を採る。
 また、本発明は、前記ガスタービンが前記動作気体掃気用マニホールド外に配置されている手段を採ることもできる。
 また、本発明は、前記ピストンにおいて、ピストンヘッド略半面に凹凸部が形成され、該凹凸形状は、対向するピストンが上死点付近において非接触ながらも機密性を向上させるように、一方のピストンの凹部と他方のピストンの凸部が交互に噛み合い状に組み合わされて配置される関係に形成されているピストンを採用した構成手段を採ることもできる。
 本発明に係る三出力軸型内燃機関によれば、一対の4サイクル燃焼機関が逆V字型(傾斜角=バンク角90度~160度、より好ましくは110度~130度)を有して配置されることによって、エンジン配置スペースを削減し、さらに対向位置に配置することによってエンジン駆動による動作振動を相殺し、さらに、タービンブレードを動作気体掃気用マニホールド内に円錐状に複数設けた構成を採用する場合は、該動作気体掃気用マニホールド内に背圧が掛かることになり、排気脈動による動作振動の抑制が図られるという優れた効果を奏する。
 また、本発明に係る三出力軸型内燃機関によれば、燃焼特性が異なる広範囲の燃料に対応できるといった優れた効果を奏する。具体的に、例えば、火炎伝播速度の速い水素やガソリン等では、ピストンが上死点付近の容積一定状態で瞬間的に大きな力をクランク軸で得ることが可能であり、他方、火炎伝播速度の遅い軽油やプロパンガス等では、動作気体掃気用マニホールドに排気される過程でも燃焼による膨張圧力をタービンブレードで得ることが可能である。
 また、本発明に係る三出力軸型内燃機関によれば、シリンダ内の爆発・膨張エネルギーをクランク機構で構成される一対の機械的伝達機構によって回転軸に伝達する手段と、内燃機関装置内で発生する爆発・膨張による燃焼ガスを直接の動作気体として供給する手段を同時に得ることができるため、爆発・膨張行程で発生する爆発・膨張エネルギーを4サイクル燃焼機関とガスタービン燃焼機関に効率良く伝達することができ、燃焼効率(充填効率)ならびに排気効率の内燃機関を提供できるという優れた効果を奏する。
 また、本発明に係る三出力軸型内燃機関によれば、シリンダーに所定のバンク角(90度~160度、より好ましくは110度~130度の範囲内)を有すると共に、燃焼ガスの膨張方向に向かって動作気体掃気用マニホールドが設けられているため、排気開始直後からは燃焼ガスの膨張による圧力ベクトルに対してピストンヘッド表面が直交する関係になく、また、該圧力を二つのピストンヘッドで受けるため、ピストンヘッドに掛かる応力を極めて軽減でき、特に、燃焼圧力及び燃焼温度の高い水素等の燃料を用いる場合に問題となる耐久性向上にも資する効果を発揮する。さらにまた、係る構成の採用により、同一ボアのシングルピストン形式と比べてストロークが半分となることから、超ショートストローク化を実現でき、高回転型の内燃機関を提供できるという優れた効果を奏する。
 また、本発明に係る三出力軸型内燃機関によれば、シリンダ内の爆発・膨張エネルギーをクランク機構で構成される一対の機械的伝達機構によって回転軸に伝達する手段と、内燃機関装置内で発生する爆発・膨張による燃焼ガスを直接の動作気体として供給する手段を同時に得ることができるため、爆発・膨張行程で発生する爆発・膨張エネルギーを4サイクル燃焼機関とガスタービン燃焼機関に効率良く機械的伝達エネルギーを伝達することができるという優れた効果を奏する。
 また、本発明に係る三出力軸型内燃機関によれば、タービンブレードに高速・高圧の動作気体を供給して、内燃機関の回転数と無関係に過給できるターボチャージャーを駆動する方式に連動することができるため、排気タービン式ターボチャージャー特有のターボラグのない過給を行うことができるという優れた効果も奏し得る。
 また、本発明に係る三出力軸型内燃機関によれば、燃焼室の上方に設けられる燃料インジェクターとエアーインジェクターによって電子制御された燃料と圧縮空気を噴射させるため、種々のセンサーを用いて回転数や外気温度、或いは酸素濃度等といった諸条件から繊細な制御をさせて、より燃焼効率を上げることができるという優れた効果を奏し得る。
 また、本発明に係る三出力軸型内燃機関によれば、4サイクル燃焼機関の燃焼室で爆発・膨張した熱エネルギーを一対のクランク軸の回転力に変換すると共に、従来では損失とされた凡そ30%の熱エネルギーを有する燃焼ガスG(動作気体K)を動力源として、ガスタービン燃焼機関のタービンブレードを駆動することで排気損失を極めて小さくすることができるという優れた効果を奏し得る。
 また、本発明に係る三出力軸型内燃機関によれば、燃焼室の上方に設けられる燃料インジェクターにより燃料を燃焼室内に噴射するため、ガソリンの他にも、軽油、LPG、天然ガス、水素、メタノールなどの火炎伝播速度の速い燃料から遅い燃料まで広範な燃料を使用することができるという優れた効果を奏し得る。
 また、本発明の請求項3に係る三出力軸型内燃機関によれば、ピストンヘッド略半面に凹凸部が形成され、該凹凸形状は、対向するピストンが上死点付近において非接触ながらも一方のピストンの凹部と他方のピストンの凸部が交互に噛み合い状に組み合わされて配置される関係に形成されているピストンを採用していることから、上死点付近での高圧縮状態でも機密性が高まり、また、膨張する燃焼ガスを受ける表面積が増えるため、圧力エネルギーを効率よく運動エネルギーへ変換できるという優れた効果を奏する。
本発明に係る三出力軸型の内燃機関の全体を示す模式的断面説明図である。(実施例1) 本発明に係る三出力軸型の内燃機関の燃焼室形成(圧縮)工程を示す模式的断面説明図である。 本発明に係る三出力軸型の内燃機関の点火工程を示す模式的断面説明図である。 本発明に係る三出力軸型の内燃機関の燃焼・膨張行程を示す模式的断面説明図である。 本発明に係る三出力軸型の内燃機関の排気・掃気工程を示す模式的断面説明図である。 請求項2に係る三出力軸型の内燃機関の実施形態説明図である。 請求項3に係る三出力軸型の内燃機関の実施形態説明図である。
 本発明の三出力軸型の内燃機関は、同一燃焼室内で混合気を燃焼させ、該燃焼により膨張する燃焼ガスによって、所定の傾斜角を有して略対向関係に位置する一対のピストンに機械的動力を左右其々に与え、該機械的動力をクランク機構を用いて回転方向に変換して左右其々のクランク軸に回転力を得ると共に、更に掃気される高速・高圧の燃焼ガス(動作気体)を利用してガスタービンを駆動し、該ガスタービンのタービン軸にも回転力を得る、三出力軸型の内燃機関とする手段を採ったことを最大の特徴とするものである。以下、実施例を図面に基づいて説明する。
 図1は、本発明に係る三出力軸型の内燃機関の全体を示す模式的断面説明図である。
本発明の三出力軸型の内燃機関10は、一対のピストン往復動を動力源とする4サイクル燃焼機関と、その燃焼室24で発生する掃気される燃焼ガスG(動作気体K)を動力源とするガスタービン燃焼機関で構成される三出力軸型の内燃機関であって、シリンダヘッド20とシリンダ30とハウジングケース70とピストン40とコンロッド50とクランク軸60とから成る4サイクル燃焼機関と、ガスタービン80を構成するタービンブレード81とタービン軸82からなるガスタービン燃焼機関で構成される。
 シリンダヘッド20の燃焼室24の上部には、ガソリン等の燃料Nを霧化状態あるいは気化状態で電子制御噴射する燃料インジェクター21と、コンプレッサー等で圧縮された圧縮空気Eを電子制御噴射するエアーインジェクター22と、電気的点火する点火プラグ23とを備えるものである。
 燃料インジェクター21は、内部に電気的に開閉するニードルバルブを備え、そのバルブがプランジャーコアと電磁石とスプリングの働きによって開くと先端の噴射口から燃料噴射ポンプ(高圧フューエルポンプ)から送られてくる高圧の燃料Nをエアーインジェクター22とのタイミングを計って電子制御噴射する筒内燃料噴射装置である。
 エアーインジェクター22は、内部に電気的に開閉するニードルバルブを備え、そのバルブがプランジャーコアと電磁石とスプリングの働きによって開くと先端の噴射口から空気圧縮ポンプ(エアーコンプレッサーポンプ)から送られてくる高圧の圧縮空気Eを電子制御によって噴射する筒内空気噴射装置である。
 シリンダ30は、シリンダブロック本体の中央下部に燃焼ガスGが排出される動作気体掃気用マニホールド32と、ガイド部31とを備えている。バンク角は90度~160度、より好ましくは110度~130度の範囲内となる。ガソリンや水素のような火炎伝播速度の速い燃料では膨張時間は瞬間的であり、ピストン40はこの瞬間的な圧力変化による下向きの応力を十分に受ければよく、シリンダ30内の密閉状態を確保するストローク限界位置は図面に示すような、わずかなガイド部31があればよい。但し、点火のタイミングを10~25度の範囲で進角θさせているため、実際の上死点Hにおいてピストンヘッド41が該ガイド部31に衝突しないように、クリアランスCを確保しておくことはいうまでもない。なお、シリンダ30の冷却に関しては図示していないが、放熱板等のヒートシンクによる空令や水冷式などが考え得る。
 動作気体掃気用マニホールド32は、シリンダ30の側壁の所定位置に設けられ、該中央上部所定位置にガイド部31を備えて形成される。また、動作気体掃気用マニホールド32の内部通路の上部開口位置は、混合気の瞬間的な圧力変化による下向きの応力を十分に受け、ピストン40が降下し始めてから開口するような位置関係に配置し、動作気体掃気用マニホールド32の内部通路の底部開口位置は、ピストン40が下死点Lにおいて、ピストンヘッド41のなだらかな傾斜面と、連続して繋がるような通路断面を形成するように位置することによって、4サイクル燃焼機関の燃焼室24で爆発・膨張した熱エネルギーは、掃気される際に損失する凡そ30%の熱効率を有効利用して掃気される燃焼ガスG(動作気体K)を動力源としてガスタービン燃焼機関を駆動させるものである。
 ピストン40は、ピストンヘッド41の形状が動作気体掃気用マニホールド32側に向かって下方に傾斜するなだらかな曲面を形成する山形状に形成され、コンロッド50とクランク軸60とから成るクランク伝達機構よって往復動することで、燃焼ガスGを掃気するものである。なお、本発明に係るピストン40はシリンダ30内で混合気を圧縮するものではないのでコンプレッションリングは不要である。但し、図示はしていないが、オイルリングについては必要に応じて設けることは有効である。
 ピストンヘッド41は、所謂天頂部が山形に盛り上がったコンベックスヘッドに類似した形状を有するもので、動作気体掃気用マニホールド32側に向かって下方に傾斜するなだらかな曲面を形成する山形状に形成し、燃焼室24の爆発・膨張エネルギーをそのなだらかな曲面で、コンロッド50とクランク軸60とから成るクランク伝達機構と、シリンダ本体の中央下部に位置する動作気体掃気用マニホールド32に導く形状を有するものである。
 コンロッド50は、一端に、ピストン40と連結するためのピストンピン挿入部となるスモールエンド52を有し、他端には、クランク軸60と連結するためのクランクピンにより挿入部となるビックエンド53を設け、ピストン40の往復運動を回転運動に変える役割を果たすものである。
 往復動同調機構51(図示なし)は、一対のピストン40がクランク軸60に連結される位置と対向する位置に其々連結され、一対のピストン伝達機構を同調させるためにタイミングベルト、ギア、カムクランク軸、チェーン等によって連結同調されるものである。
 クランク軸60は、ハウジングケース70内のジャーナル部にメタルやベアリング等を介して内設され、該ジャーナル部は、軸芯62が動作気体掃気用マニホールド32と反対方向に所定距離Rだけオフセットさせた(従来のクランクシャフトをピストンピンの中心位置から僅かにずらしたオフセットシリンダの様なもの)位置に設けられる。また、コンロッド50との連結する外周円上の反対側に振動を防止するバランスウエイト61を設け、ピストン40やコンロッド50の重量に係る慣性力と相殺させて振動を抑え、直線的な動作をしようとするピストン40を滑らかな回転運動に変えるものである。なお、所定距離Rのオフセット量は、クランク軸60の軸芯62からコンロッド50のビッグエンド53の軸芯までの長さをMとしたとき、距離Rは、長さMにSin25(進角θの最大値)を乗じた値となる。
 ガスタービン80は、請求項1に係るガスタービン80では動作気体掃気用マニホールド32内に配置され、請求項2に係るガスタービン80では動作気体掃気用マニホールド32の外側出口に配置される。該ガスタービン80は、タービンブレード81を円周方向に複数配置した円盤状、又はこれを複数段設けて円錐状に構成され、燃焼室24で発生して掃気される高速・高圧の燃焼ガスG(動作気体K)の流体による運動エネルギーと、燃焼に伴う圧力エネルギーを利用してタービン軸82を駆動する。
 また、ガスタービン燃焼機関で得られる回転力は、例えば自動車に装着される場合は、エアーコンプレッサーや、オイルポンプ、カーエアコン、ラジエターファン、ターボチャージャーなどの動力源として4サイクル燃焼機関の出力を落とすことなく有効に利用されるものである。
 本発明に係る三出力軸型の内燃機関10は、燃焼室24の爆発・膨張エネルギーを機械的ならびに流動的な動作気体エネルギーに同時に変換して利用しようとするもので、燃焼室24の爆発・膨張エネルギーによって駆動するピストン40とコンロッド50とクランク機構とから成る4サイクル燃焼機関と、その燃焼室24で発生した掃気される高速・高圧の燃焼ガスG(動作気体K)を利用したガスタービン燃焼機関で構成されるものである。
 図2は、本発明に係る三出力軸型の内燃機関の燃焼室形成(圧縮)工程を示す模式的断面説明図である。
燃焼室形成(圧縮)工程は、燃焼室24での爆発・膨張エネルギーの慣性によってクランク軸60が上方に回転し、ピストンピンの位置にあるコンロッド50のスモールエンド52とクランク軸60の外周面に位置するコンロッド50のビックエンド53とクランク軸60の軸芯62が直線状になる位置までピストン40が上死点Hに向かってシリンダ30内を上昇し、シリンダ30の本体下部のガイド部31を塞いで燃焼室24が最小容積に形成したタイミングで、シリンダヘッド20に設けられている燃料インジェクター21とエアーインジェクター22によって燃料Nならびに圧縮空気Eが電子制御されて噴射される工程である。
 図3は、本発明に係る三出力軸型の内燃機関の点火工程を示す模式的断面説明図である。
点火工程は、燃焼室24が最小容積に形成され、ピストンピンの位置にあるコンロッド50のスモールエンド52とクランク軸60の外周面に位置するコンロッド50のビッグエンド53とクランク軸60の軸芯62が直線状となる位置から燃焼・膨張行程側に10~25度進角θした位置でデェストリビューターによって配電される点火プラグ23が電気的点火される工程である。
 図4は、本発明に係る三出力軸型の内燃機関の燃焼・膨張行程を示す模式的断面説明図である。
燃焼・膨張行程は、燃焼室24内で爆発・膨張した燃焼ガスGは、ピストンヘッド41を下死点Lに向かって押し下げる爆発・膨張エネルギーでクランク軸60を下方に回転させると共に、ガスタービン80に掃気される燃焼ガスG(動作気体K)を排出する工程である。
 図5は、本発明に係る三出力軸型の内燃機関の排気・掃気工程を示す模式的断面説明図である。
排気・掃気工程は、燃焼室24の排気ならびに掃気を同時に行なうもので燃焼室24の爆発・膨張エネルギーによって4サイクル燃焼機関を作動させると同時に燃焼室24で発生した掃気される高速・高圧の燃焼ガスG(動作気体K)は、ピストン30の上端部の形状が下方に傾斜するなだらかな曲面を形成する山形状に導かれ、動作気体掃気用マニホールド32側に向かって勢いよく掃気され、連結する動作気体掃気用マニホールド32内に配置されるタービンブレード81ならびにタービン軸82を回転駆動させる工程である。
 以上で構成される内燃機関の燃焼サイクルを簡単に説明すると、ピストン40とコンロッド50とクランク軸60の連結位置と、クランク軸60の軸芯62位置が上死点H付近で直線状となる位置から膨張行程側に10~25度進角θした位置で点火し、燃焼室24で発生した爆発・膨張エネルギーが4サイクル燃焼機関を作動させると同時に燃焼室24で発生した掃気される高速・高圧の燃焼ガスG(動作気体K)が動作気体掃気用マニホールド32から勢いよく掃気される一連の燃焼室形成(圧縮)工程と、点火工程と、燃焼・膨張行程と、排気・掃気工程をピストン40が一往復サイクルで完了する構成で形成されるものである。
 図6は、請求項2に係る三出力軸型の内燃機関の実施形態説明図であり、ガスタービン80が前記動作気体掃気用マニホールド32の外側に配置されている構成の三出力軸型の内燃機関を示している。図6(a)は、請求項1に記載のガスタービン80のように、動作気体掃気用マニホールド32の内部に設けることができない大きさのガスタービン80を一機で駆動する状態を示し、図6(b)は、さらに大きなガスタービン80に複数機の前記三出力軸型の内燃機関を配置した構成の三出力軸型の内燃機関を示している。この場合、クランク軸60を連動させて回転動力を得るだけでなく、同期や排気順序を定めてバランスよくガスタービン80を駆動することが望ましい。
 図7は、請求項3に係る三出力軸型の内燃機関の実施形態説明図であり、ピストンヘッド41の略半面に凹凸部42が形成されている状態を示している。該凹凸部42の形状は、対向するピストン40が上死点付近において非接触ながらも一方のピストン40の該凹部と他方のピストン40の該凸部が交互に噛み合い状に組み合わされて配置される関係になるように形成されている。係るピストンヘッド41の形状を採用していることから、上死点付近での高圧縮状態でも機密性が高まり、また、膨張する燃焼ガスを受ける表面積が増えるため、圧力エネルギーを効率よく運動エネルギーへ変換できるという優れた効果を奏する。なお、係る凹凸部42の形状は、動作気体Kの排出方向に垂直方向に向かって平行に並べたり、ピストンヘッド41の中心から円周方向に広がるように並べることなどが考えられる。
 本発明の三出力軸型の内燃機関は、小型軽量で高出力であることから、風力発電機の動力源としたり、タービンブレードに掃気される高速・高圧の燃焼ガス(動作気体)を供給して内燃機関の回転数と無関係に過給できるターボチャージャー、気球の高温膨張気体の供給装置など、多方面に利用することができるもので、本発明の三出力軸型の内燃機関の産業上の利用可能性は大とするものと解する。なお、本発明では、二本のクランク軸60を有するため、これらの回転方向を同一方向とすることも有効である。
10 三出力軸型の内燃機関
20 シリンダヘッド
21 燃料インジェクター
22 エアーインジェクター
23 点火プラグ
24 燃焼室
30 シリンダ
31 ガイド部
32 動作気体掃気用マニホールド
40 ピストン
41 ピストンヘッド
42 凹凸部
50 コンロッド
51 往復動同調機構
52 スモールエンド
53 ビックエンド
60 クランク軸
61 バランスウエイト
62 軸芯
70 ハウジングケース
80 ガスタービン
81 タービンブレード
82 タービン軸
H  上死点
L  下死点
C  クリアランス
R  所定距離
K  動作気体
N  燃料
E  圧縮空気
G  燃焼ガス
θ  進角

 

Claims (3)

  1.  同一燃焼室内で混合気を燃焼させ、該燃焼により爆発・膨張する燃焼ガスによって、所定の傾斜角(90度~160度)を有して略対向関係に位置する一対のピストンに機械的動力を左右其々に与え、該機械的動力をクランク機構を用いて回転方向に変換して左右其々のクランク軸に回転力を得ると共に、更に掃気される高速・高圧の前記燃焼ガスを利用してガスタービンを駆動し、該ガスタービンのタービン軸にも回転力を得る、三出力軸型の内燃機関であって、
    シリンダヘッドと、
    シリンダと、
    ピストンと、
    コンロッドと、
    クランク軸と、
    ハウジングケースと
    ガスタービンと、から成り、
    前記シリンダヘッドには、燃料インジェクターとエアーインジェクターと点火プラグとを備え、
    前記シリンダには、側壁の所定位置に動作気体掃気用マニホールドと、該動作気体掃気用マニホールドの中央上部所定位置にガイド部とを備え、
    前記ピストンは、ピストンヘッドがハイコンプレッションタイプで山形に突出しており、上死点において左右其々のピストンヘッドとシリンダヘッドの内壁により燃焼室を形成し、
    前記クランク軸は、軸芯が前記動作気体掃気用マニホールドと反対方向に所定距離だけオフセットするように其々前記ハウジングケースに内設されると共に、一対のクランク軸は往復動同調機構で連動され、
    前記ピストンと前記コンロッドと前記クランク軸の連結位置と、前記クランク軸の軸芯位置が上死点付近で直線状となる位置から燃焼・膨張行程側に10~25度進角した位置で点火し、
    燃焼室形成(圧縮)工程と点火工程と燃焼・膨張行程と排気・掃気工程とを、前記ピストンが一往復サイクルで完了する構成であり、
    前記ガスタービンは、遠心式又は軸流式の回転圧縮機に連結されると共に、動作気体掃気用マニホールド内に配置され、
    ていることを特徴とする三出力軸型の内燃機関。
  2. 前記ガスタービンが前記動作気体掃気用マニホールド外に配置されていることを特徴とする請求項1に記載の三出力軸型の内燃機関。
  3. 前記ピストンにおいて、ピストンヘッド略半面に凹凸部が形成され、
    該凹凸形状は、対向するピストンが上死点付近において非接触ながらも機密性を向上させるように、一方のピストンの凹部と他方のピストンの凸部が交互に噛み合い状に組み合わされて配置される関係に形成されているピストンを採用したことを特徴とする前記請求項1又は前記請求項2に記載の三出力軸型の内燃機関。
PCT/JP2012/059271 2011-10-02 2012-04-05 三出力軸型の内燃機関 WO2013051303A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-218812 2011-10-02
JP2011218812A JP4951143B1 (ja) 2011-10-02 2011-10-02 三出力軸型の内燃機関

Publications (1)

Publication Number Publication Date
WO2013051303A1 true WO2013051303A1 (ja) 2013-04-11

Family

ID=46498752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059271 WO2013051303A1 (ja) 2011-10-02 2012-04-05 三出力軸型の内燃機関

Country Status (2)

Country Link
JP (1) JP4951143B1 (ja)
WO (1) WO2013051303A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016145931A1 (zh) * 2015-03-15 2016-09-22 陈小辉 改进型节能单维内燃机
GB2597603A (en) * 2020-07-01 2022-02-02 Porsche Ag Exhaust-gas turbocharger and motor vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013007489B4 (de) * 2013-04-30 2016-08-25 Georg Focken Anlage zum Abführen von Abgasvolumenströmen, umfassend wenigstens eine Leitung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62501161A (ja) * 1984-12-18 1987-05-07 ガイル,ヨ−ゼフ 内燃機関
JPH03138421A (ja) * 1989-10-23 1991-06-12 Mazda Motor Corp エンジンの吸気装置
JP2007032394A (ja) * 2005-07-26 2007-02-08 Hino Motors Ltd V型エンジン
JP2008505282A (ja) * 2004-07-05 2008-02-21 オットー・ドーデ 対向ピストンエンジン用ガス交換制御機構

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62501161A (ja) * 1984-12-18 1987-05-07 ガイル,ヨ−ゼフ 内燃機関
JPH03138421A (ja) * 1989-10-23 1991-06-12 Mazda Motor Corp エンジンの吸気装置
JP2008505282A (ja) * 2004-07-05 2008-02-21 オットー・ドーデ 対向ピストンエンジン用ガス交換制御機構
JP2007032394A (ja) * 2005-07-26 2007-02-08 Hino Motors Ltd V型エンジン

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016145931A1 (zh) * 2015-03-15 2016-09-22 陈小辉 改进型节能单维内燃机
GB2597603A (en) * 2020-07-01 2022-02-02 Porsche Ag Exhaust-gas turbocharger and motor vehicle
US11280256B2 (en) 2020-07-01 2022-03-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Exhaust-gas turbocharger and motor vehicle
GB2597603B (en) * 2020-07-01 2022-11-30 Porsche Ag Turbine and compressor system and motor vehicle

Also Published As

Publication number Publication date
JP2013079583A (ja) 2013-05-02
JP4951143B1 (ja) 2012-06-13

Similar Documents

Publication Publication Date Title
US8127544B2 (en) Two-stroke HCCI compound free-piston/gas-turbine engine
JP3016485B2 (ja) クランク無し往復運動2サイクル内燃機関
US7556014B2 (en) Reciprocating machines
US8613269B2 (en) Internal combustion engine with direct air injection
KR20090027603A (ko) 풀링 로드 엔진
US5970924A (en) Arc-piston engine
US7621253B2 (en) Internal turbine-like toroidal combustion engine
CA2620602C (en) Homogeneous charge compression ignition (hcci) vane-piston rotary engine
JP4951143B1 (ja) 三出力軸型の内燃機関
JP2015529296A (ja) 内燃機関のための可変行程機構
CN101072934B (zh) 旋转机械场组件
JP4951145B1 (ja) 二軸出力型の逆v型略対向エンジン
US6021746A (en) arc-piston engine
JP3939294B2 (ja) ガソリンエンジンの2次燃焼システム
US20090320794A1 (en) Novel Internal Combustion Torroidal Engine
JP5002721B1 (ja) 動作気体発生装置
RU2613753C1 (ru) Двигатель внутреннего сгорания
PL145453B2 (en) Turbine combustion engine in particular for powering vehicles
WO2008073082A2 (en) Internal turbine-like toroidal combustion engine
KR102066306B1 (ko) 내연기관 및 내연기관의 작동 방법
KR101129125B1 (ko) 혼합기체압축기
KR20060027834A (ko) 자동차용의 엔진으로 회전피스톤에 의한 동력 발생 장치
CN85102435A (zh) 一冲程发动机
Bhargav et al. A Review on Advanced Engines Technology
JPH084551A (ja) カム式エンジン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838995

Country of ref document: EP

Kind code of ref document: A1