WO2013051178A1 - Welding device - Google Patents

Welding device Download PDF

Info

Publication number
WO2013051178A1
WO2013051178A1 PCT/JP2012/004854 JP2012004854W WO2013051178A1 WO 2013051178 A1 WO2013051178 A1 WO 2013051178A1 JP 2012004854 W JP2012004854 W JP 2012004854W WO 2013051178 A1 WO2013051178 A1 WO 2013051178A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
flow rate
valve
gas
gas flow
Prior art date
Application number
PCT/JP2012/004854
Other languages
French (fr)
Japanese (ja)
Inventor
香介 竹村
英樹 井原
田中 義朗
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280003815.4A priority Critical patent/CN103228390B/en
Priority to JP2013506391A priority patent/JP5263462B1/en
Publication of WO2013051178A1 publication Critical patent/WO2013051178A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories
    • B23K9/325Devices for supplying or evacuating shielding gas

Definitions

  • the present invention relates to a welding apparatus that performs welding using a shielding gas.
  • Patent Document 1 As a welding apparatus equipped with a conventional welder, one having a valve for controlling the supply of shield gas in the welder is known (for example, see Patent Document 1).
  • the gas regulator attached to the gas cylinder is opened to the maximum extent, or the gas flow rate required during welding varies, but the gas regulator is opened according to the required maximum gas flow rate, and the shielding gas is removed. Some of them were welded while being supplied.
  • FIG. 8 is a front view showing a schematic configuration of a conventional welding apparatus and its peripheral devices.
  • the welding machine 101 is connected to a welding torch 114 and a gas cylinder 105.
  • the welding machine 1 is provided with a gas valve 102 that is a valve for controlling the supply of shield gas.
  • the gas cylinder 105 is provided with a gas regulator 106 as a flow rate regulator for adjusting the flow rate of the shield gas.
  • the flow rate of the shield gas is set by the gas regulator 106.
  • a torch switch (not shown) provided on the welding torch 114 is pressed, a welding start signal is sent to the welding machine 101.
  • the welding machine 101 that has received the welding start signal opens the gas valve 102, the shielding gas is supplied to the welding torch 114.
  • gas valve 102 performs an operation of closing or opening, and does not have a function of opening only half, for example.
  • the gas regulator 106 is set in accordance with the period during which the gas flow rate is the highest during the welding period. For this reason, a large amount of gas flows unnecessarily even during a welding period in which a very small amount of gas is used, resulting in wasted shielding gas.
  • the present invention provides a welding apparatus that can prevent gas from protruding at the start of welding and suppress waste of shielding gas.
  • the welding apparatus of the present invention is a welding apparatus having a welding machine in the middle of a shield gas supply path from a gas supply source to a welding torch.
  • at least two valves including a first valve and a second valve are provided in series in the shield gas supply path, and the first valve is disposed on the side close to the welding torch, The second valve is disposed on the side close to the gas supply source.
  • the first valve is opened, and after the first predetermined time has elapsed since the first valve is opened, The second valve is configured to be opened.
  • This configuration can prevent gas from protruding at the start of welding and suppress waste of shielding gas.
  • FIG. 1 is a front view showing a schematic configuration of a welding apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a front view showing a schematic configuration of the gas flow rate adjusting apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a plan view showing a schematic configuration of a main part of the welding apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a perspective view showing an appearance of the welding machine according to Embodiment 2 of the present invention.
  • FIG. 5 is a front view showing a schematic configuration of an operation unit of the welding machine according to Embodiment 2 of the present invention.
  • FIG. 6 is a characteristic diagram showing the relationship between the welding current and the gas flow rate in the second embodiment of the present invention.
  • FIG. 7 is a characteristic diagram showing the relationship between the welding current and the gas flow rate in the second embodiment of the present invention.
  • FIG. 8 is a front view showing a schematic configuration of a conventional welding apparatus.
  • FIG. 1 is a front view showing a schematic configuration of a welding apparatus and its peripheral devices in the first embodiment.
  • FIG. 2 is a front view showing a schematic configuration of the gas flow rate adjusting device according to the first embodiment.
  • FIG. 3 is a plan view showing a schematic configuration of a main part of the welding apparatus according to the first embodiment.
  • the welding machine 1 is connected to a welding torch 14 and a gas flow rate adjusting device 3.
  • the gas flow rate adjusting device 3 is connected to a gas cylinder 5 as a gas supply source via a gas regulator 6.
  • the welding device includes at least the welding machine 1 and the gas flow rate adjusting device 3.
  • the pipe 5 a is a pipe that connects the gas cylinder 5 to the welding torch 14, and supplies a shielding gas from the gas cylinder 5 to the welding torch 14.
  • the welding machine 1 is provided with a gas valve 2 as a first valve 2 for controlling the supply of shield gas.
  • the gas flow rate adjusting device 3 is provided with a gas valve 4 as a second valve 4 for controlling the supply of shield gas.
  • the gas cylinder 5 is provided with a gas regulator 6 as a flow rate regulator for adjusting the flow rate of the shield gas.
  • the gas flow rate adjusting device 3 includes a gas valve 4 as a second valve 4 that controls the supply of shield gas, a control unit 7 that controls the gas flow rate adjusting device 3, and a flow rate of the shield gas. And a flow rate sensor 8 for measuring.
  • the welding machine 1 includes a welding control unit 9 that controls the welding machine 1. Information is exchanged between the welding control unit 9 of the welding machine 1 and the control unit 7 of the gas flow rate adjusting device 3 as indicated by an arrow 19.
  • the welding machine 1 is configured to include a storage unit 16, a welding current setting unit 18, and a flow rate determining unit 17, as shown in FIG.
  • the storage unit 16 stores a characteristic curve in which a quantitative relationship between the set welding current and the shield gas flow rate is associated.
  • the welding current setting unit 18 sets a set welding current.
  • the flow rate determination unit 17 determines the shield gas flow rate based on the set welding current set by the welding current setting unit 18 and the characteristic curve stored in the storage unit 16.
  • the shield gas is synchronized with the set welding current, and the shield gas can be controlled automatically.
  • the required shield gas flow rate differs between the high welding current region and the low welding current region. Therefore, when the welding current is low, the amount of shielding gas used is reduced, and the cost can be reduced by reducing wasteful shielding gas.
  • the flow rate of the shielding gas is set by the gas regulator 6 provided in the gas cylinder 5.
  • the shield gas flows from the gas cylinder 5 to the gas valve 4 of the gas flow rate adjusting device 3 through the pipe 5a.
  • the gas flow rate output value is set based on the welding current command value set in advance in the welding current setting unit 18 of the welding machine 1. It is determined. Specifically, the welding control unit 9 of the welding machine 1 stores the characteristics in which the welding current command value and the gas flow rate output value are associated with each other in the form of a table or a mathematical expression. And the welding control part 9 determines a gas flow rate output value based on the set welding current command value. That is, the welding control unit 9 determines the shield gas flow rate based on the function of the storage unit 16 that stores the characteristics in which the set welding current and the shield gas flow rate are associated with each other and the set welding current and the stored characteristics. The function of the determination unit 17 is provided. Then, the determined gas flow rate output value is sent to the control unit 7 of the gas flow rate adjusting device 3, and is sent from the control unit 7 to the gas valve 4.
  • the signal is transmitted to the welding control unit 9 of the welding machine 1, and the welding control unit 9 controls the gas valve 2 to “open” the gas valve 2.
  • the gas valve 2 performs only on-off and does not have a flow rate adjusting function.
  • the welding control unit 9 has a time measuring function, measures the elapsed time after the gas valve 2 is “opened”, and elapses after a predetermined first predetermined time has elapsed since the “open” operation is performed. Then, a signal indicating that the first predetermined time has elapsed is transmitted as information to the control unit 7 of the gas flow rate adjusting device 3.
  • the first predetermined time is, for example, about 10 msec to 100 msec.
  • the control unit 7 that has received a signal indicating that the first predetermined time has elapsed from the welding control unit 9 controls the gas valve 4 to “open” the gas valve 4.
  • the gas valve 4 has an on-off function and a flow rate adjustment function.
  • the shield gas is supplied from the gas cylinder 5 to the welding torch 14.
  • the gas valve 2 (first valve 2) of the welding machine 1, which is a gas valve close to the welding torch 14, is used. ) “Open”.
  • the gas valve 4 (second valve 4) of the gas flow rate adjusting device 3 which is the gas valve on the side close to the gas cylinder 5 is operated to “open”.
  • the gas valve 4 is “opened” to prevent the gas valve 4 from being “opened” earlier than the gas valve 2. That is, for example, the supply pressure of the shield gas is reduced as compared with the case where the gas valve 2 and the gas valve 4 are simultaneously opened. This is because if the gas valve 4 is set to “open” after the gas valve 2 is set to “open”, the residual amount of shielding gas in the pipe 5a is reduced as described above when the gas valve 4 is set to “open”. is there. Accordingly, it is possible to prevent the shielding gas from protruding from the pipe 5a.
  • the first shield gas supply distance L1 from the gas valve 2 of the welding machine 1 to the welding torch 14 and the second shield gas supply distance from the gas valve 4 of the gas flow rate adjusting device 3 to the welding torch 14 are also described.
  • the second shield gas supply distance L2 is longer than L2.
  • the shield gas supply distance in the conventional welding apparatus corresponds to the first shield gas supply distance L1
  • the shield gas supply distance in the welding apparatus of the first embodiment corresponds to the second shield gas supply distance L2.
  • the welder 1 may be used by being directly connected to the gas cylinder 5, and the gas valve 2 is provided inside in consideration of versatility.
  • the welder 1 including the gas valve 2 is widely used.
  • the welding apparatus of this Embodiment 1 is related with the welding apparatus provided with the welding machine 1 provided with such a gas valve 2.
  • the welding apparatus according to the first embodiment is a welding apparatus having a welding machine in the middle of the shield gas supply path from the gas supply source 5 to the welding torch 14.
  • at least two valves including the first valve 2 and the second valve 4 are provided in series in the shield gas supply path, and the first valve 2 is closer to the welding torch 14.
  • the second valve 4 is arranged on the side close to the gas supply source 5.
  • This configuration can prevent gas from protruding at the start of welding and suppress waste of shielding gas.
  • a torch switch (not shown) of the welding torch 14 When a torch switch (not shown) of the welding torch 14 is turned off at the end of welding, a signal indicating that the welding torch 14 is turned off is input to the welding control unit 9 of the welding machine 1. Then, the welding control unit 9 sends this signal to the control unit 7 of the gas flow rate adjusting device 3. The control unit 7 that has received the signal from the welding control unit 9 controls the gas valve 4 of the gas flow rate adjusting device 3 to perform a “closed” operation.
  • the control unit 7 has a time measuring function, measures the elapsed time after the gas valve 4 is “closed”, and when a predetermined second predetermined time elapses after the “close” operation. Then, the fact that the second predetermined time has passed is transmitted to the welding control unit 9 of the welding machine 1.
  • the second predetermined time is, for example, about 10 msec to 100 msec.
  • the welding control unit 9 that has received a signal indicating that the second predetermined time has elapsed from the control unit 7 controls the gas valve 2 and causes the gas valve 2 to be “closed”.
  • the gas valve 4 (second valve) of the gas flow rate adjusting apparatus 3 that is a gas valve close to the gas cylinder 5 is used.
  • the valve 4 is closed.
  • the welding apparatus according to the first embodiment causes the gas valve 2 (first valve 2) of the welding machine 1, which is a gas valve close to the welding torch 14, to be "closed".
  • the shield gas having a pressure sufficiently higher than the atmospheric pressure is released from the welding torch 14 to the atmosphere without being confined in the pipe 5a from the gas valve 4 to the gas valve 2, and the pressure of the shield gas in the pipe 5a is Reduced to the same level as atmospheric pressure. Therefore, the shield gas remaining in the pipe 5a of the shield gas supply path from the gas valve 4 of the gas flow rate adjusting device 3 to the welding torch 14, that is, the residual amount of shield gas when converted to atmospheric pressure can be reduced. And by reducing the shield gas which remains in this way, it can contribute to suppression of the protrusion of the shield gas at the time of the next welding start. That is, the waste of shielding gas at the start of welding can be suppressed.
  • the gas flow rate adjusting device 3 is provided between the welding machine 1 and the gas cylinder 5. And in the welding apparatus of this Embodiment 1, when supplying shielding gas to the welding torch 14, the gas valve 2 (1st valve 2) provided in the welding machine 1 is made “open", and after 1st predetermined time.
  • the example which made the gas valve 4 (2nd valve 4) provided in the gas flow control apparatus 3 "open" was shown.
  • the gas flow rate adjusting device 3 may be provided between the welding machine 1 and the welding torch 14.
  • the gas valve 4 provided in the gas flow rate adjusting device 3 is provided as the first valve in the welding machine 1 after a first predetermined time after being “opened”.
  • the gas valve 2 thus made is set to “open” as the second valve.
  • At least two valves including a first valve and a second valve are provided in series in the shield gas supply path from the gas cylinder 5 to the welding torch 14.
  • the first valve on the side close to the welding torch 14 is set to “open”, and after the first predetermined time has elapsed since this “opening”, the gas cylinder 5 is supplied.
  • the second valve on the near side may be “open”.
  • the second valve on the side close to the gas cylinder 5 is set to “closed”, and after this “closed”, a second predetermined time has elapsed.
  • the second valve close to the welding torch 14 may be “closed”.
  • the welding apparatus may further include a valve such as a gas valve other than the first valve and the second valve described above.
  • FIG. 4 is a perspective view showing the appearance of the welder.
  • FIG. 5 is a front view illustrating a schematic configuration of an operation unit of the welding machine.
  • FIG. 6 is a characteristic diagram showing the relationship between the welding current and the gas flow rate.
  • FIG. 7 is a characteristic diagram showing the relationship between the welding current and the gas flow rate changed from the characteristics shown in FIG.
  • the main difference between the welding apparatus of the second embodiment and the first embodiment is that the gas flow rate determined based on the set welding current command value can be changed, and the gas flow rate has been changed.
  • the characteristic in which the welding current command value and the gas flow rate output value are associated with each other is changed.
  • the welding machine 1 further includes an operation unit 15.
  • the welding machine 1 includes a welding control unit 9 in the same manner as in the first embodiment, and includes a storage unit 16, a flow rate determination unit 17, and a welding current setting unit 18.
  • the operation unit 15 includes a current setting button 10 as a part of the welding current setting unit 18, a gas flow rate setting button 11 as a part of the shield gas flow rate changing unit 20, and a display unit. 12 and a jog dial 13 are provided.
  • the display unit 12 displays a welding current value, a gas flow rate value, and the like.
  • the jog dial 13 changes the value of the welding current and the value of the gas flow rate.
  • the welding current setting unit 18 and the flow rate changing unit 20 may be provided with a numeric keypad on the surface of the operation unit 15 for inputting a welding current value, a gas flow rate value, and the like.
  • the welding machine 1 shown in FIG. 4 is configured to include the flow rate changing unit 20 that changes the shield gas flow rate determined by the flow rate determining unit 17.
  • the shield gas flow volume with respect to setting welding current can be set freely. Therefore, the amount of shield gas used is reduced depending on the welding conditions, and further cost reduction is possible.
  • the welding current is set. Then, the jog dial 13 is turned to adjust the welding current displayed on the display unit 12 to a value to be set.
  • the welding current is set to the displayed value.
  • the welding control unit 9 stores characteristics indicating the relationship between the current value of the welding current shown in FIG. 6 and the gas flow rate of the shielding gas in the storage unit 16 in advance as a table or a mathematical expression.
  • FIG. 6 shows an example in which the characteristic is represented by a linear curve (straight line).
  • the welding control unit 9 determines the gas flow rate based on this characteristic and the set current value of the welding current. The determined gas flow rate is displayed on the display unit 12.
  • the gas flow rate is determined to be 4 L / min from FIG. A case where it is desired to change the gas flow rate to 1 L / min will be described.
  • the gas flow rate is determined to be 4 L / min, and the set welding current value of 40 A and the gas flow rate value of 4 L / min are displayed on the display unit 12.
  • the gas flow rate setting button 11 is pressed, the gas flow rate can be changed.
  • the jog dial 13 is turned to adjust the gas flow rate displayed on the display unit 12 to a value to be set, here 1 L / min.
  • a new gas flow rate is set as shown below.
  • the welding machine 1 when the gas flow rate is changed as described above, the welding machine 1 according to the second embodiment creates a characteristic indicating a new relationship between the welding current and the gas flow rate based on the change, and the welding controller 9 It has a function of storing in the storage unit 16 and performing welding based on this new characteristic. Details will be described below.
  • the welding control unit 9 creates new characteristics shown in FIG. 7 based on the changed value of the gas flow rate and the characteristics shown in FIG. Is stored in the storage unit 16 of the welding control unit 9.
  • the position indicated by the welding current 40A and the changed gas flow rate 1 L / min is set as the second inflection point.
  • a position where the welding current 20A smaller than the welding current 40A by 20A and the gas flow rate is 2 L / min is defined as a first inflection point.
  • the position where the welding current larger than the welding current 40A by a predetermined value 20A is 60A and the gas flow rate is 6 L / min is defined as a third inflection point.
  • a polygonal characteristic curve is created and stored in the storage unit 16 of the welding control unit 9 as the characteristic curve shown in FIG.
  • the predetermined value 20A is an example and is not limited to this, and an appropriate value may be obtained and set in advance through experiments or the like. Further, the predetermined value may be different between the side where the welding current is reduced and the side where the welding current is increased.
  • the gas flow rate is determined based on the new characteristic curve shown in FIG. 7 until a new set current is set or the gas flow rate is newly changed.
  • the characteristic curve stored in the storage unit 16 is a linear curve
  • the flow rate change unit 20 changes the shield gas flow rate
  • the set welding current and the changed shield gas flow rate The position indicated by the relationship is the second inflection point.
  • the intersection between the welding current value smaller than the set welding current by the first predetermined value and the primary curve is taken as the first inflection point, and the intersection between the welding current value larger than the set welding current by the second predetermined value and the primary curve. Is the third inflection point.
  • a new characteristic curve is created by linear interpolation between the first inflection point and the second inflection point and linear interpolation between the second inflection point and the third inflection point.
  • the welding apparatus of this Embodiment 2 is set as the structure which determines a shield gas flow volume based on a new characteristic curve until it changes a setting welding current.
  • This configuration has a function of changing the gas flow rate determined based on the basic characteristics stored in advance, so that the gas flow rate can be set according to the welding target. Thereby, it becomes possible to reduce the waste of shielding gas. Further, a new characteristic curve can be created based on the changed gas flow rate, and welding can be performed by determining the gas flow rate according to the set welding current based on the new characteristic curve. Thereby, stable welding can be performed as compared with the case where a new characteristic curve is not created and used.
  • a steady welding current for example, 40A
  • an initial welding current for example, 10A
  • An end welding current for example, 50 A
  • the characteristic curve shown in FIG. 7 is created based on the characteristic curve shown in FIG.
  • the gas flow rate in the initial period is determined to be 1 L / min based on the characteristic curve of FIG.
  • the value of the gas flow rate is the same as that in the case of the characteristic curve of FIG.
  • the steady welding current is set to 40 A
  • the gas flow rate during the steady welding period is determined to be 1 L / min based on the characteristic curve of FIG.
  • the gas flow rate is lower than that in the case of the characteristic curve of FIG.
  • the final welding current is set to 50 A
  • the gas flow rate in the final period is determined to be 3.5 L / min based on the characteristic curve of FIG. In this case, the gas flow rate is lower than that in the case of the characteristic curve of FIG.
  • the characteristic curve is created by linear interpolation between the inflection points as described above, so that the vicinity of the welding current (here, 40 A) in which the gas flow rate is changed (here, the gas flow rate is reduced) is changed.
  • the gas flow rate determined corresponding to the welding current (welding current in the range of 20A to 60A) is also a reduced value.
  • the change of the gas flow rate with respect to the change of the welding current (20A to 60A) becomes smaller than that in the case of the characteristic curve of FIG. 6, and stable welding can be performed as compared with the case of using the characteristic curve of FIG. it can.
  • the welding current setting unit 18 causes the steady welding current in the steady welding period, the initial welding current in the initial period that is the period before the steady welding period, and the steady welding period.
  • the final welding current in the final period which is a later period, is set.
  • the welding apparatus of the second embodiment creates a new characteristic curve. Then, the shield gas flow rate corresponding to the initial welding current and the shield gas flow rate corresponding to the final welding current may be determined based on a new characteristic curve.
  • a new characteristic curve can be created based on the changed gas flow rate, and welding can be performed by determining the gas flow rate according to the set welding current based on the new characteristic curve. Thereby, stable welding can be performed as compared with the case where a new characteristic curve is not created and used.
  • the gas flow rate corresponding to the welding target can be set, so that the waste of shielding gas can be reduced.
  • the gas flow rate is changed, a new characteristic curve is created, and the gas flow rate is determined based on the new characteristic curve according to the set welding current. Thereby, the change of the gas flow rate with respect to the change of the welding current is reduced, and stable welding can be performed.
  • the gas flow rate adjusting device 3 may be attached to the surface of the welding machine 1. Alternatively, the gas flow rate adjusting device 3 may be provided at a position away from the welding machine 1. Alternatively, the gas flow rate adjusting device 3 may be provided inside the welding machine 1.
  • the first valve 2 is provided in the welding machine 1, and the second valve 4 is provided between the gas supply source 5 and the welding machine 1. It is good also as a structure provided in the gas flow volume adjustment apparatus 3 for controlling supply of shield gas.
  • Such a configuration is an optimal combination in view of suppression of gas protrusion, interference with a torch, etc., reduction of installation work, and cost reduction.
  • the present invention it is possible to prevent gas from protruding at the start of welding, suppress waste of shielding gas, and industrially useful as a welding apparatus including a welding machine having a valve for controlling shielding gas. It is.

Abstract

A welding device for which a welding machine is provided along the length of a shield gas supply route, running from a gas supply source equipped with a flow adjustment device to a welding torch. With this welding device at least two valves are arranged in series in the shield gas supply route, with the first valve located nearer to the welding torch and the second valve located nearer to the gas supply source. When the welding device supplies shield gas to the welding torch the first valve is opened, and after a first prescribed time has elapsed from the opening of the first valve, the second valve is opened.

Description

溶接装置Welding equipment
 本発明は、シールドガスを用いて溶接を行う溶接装置に関する。 The present invention relates to a welding apparatus that performs welding using a shielding gas.
 近年、環境やエネルギーが社会問題となり企業全体の環境や省エネに対する意識が非常に高くなっている。このような状況下で、溶接機の省エネ効果が重要視されている。 In recent years, the environment and energy have become social problems, and the awareness of the entire company regarding the environment and energy saving has become very high. Under such circumstances, the energy saving effect of the welding machine is regarded as important.
 従来の溶接機を備えた溶接装置として、溶接機内にシールドガスの送給を制御するための弁を備えたものが知られている(例えば、特許文献1参照)。 As a welding apparatus equipped with a conventional welder, one having a valve for controlling the supply of shield gas in the welder is known (for example, see Patent Document 1).
 また、従来の溶接装置では、ガスボンベに取り付けられたガスレギュレータを最大限に開く、あるいは、溶接中において必要なガス流量は変化するが必要な最大ガス流量に合わせてガスレギュレータを開き、シールドガスを供給しながら溶接を行うものがあった。 Also, with conventional welding equipment, the gas regulator attached to the gas cylinder is opened to the maximum extent, or the gas flow rate required during welding varies, but the gas regulator is opened according to the required maximum gas flow rate, and the shielding gas is removed. Some of them were welded while being supplied.
 図8を用いて、従来の溶接装置について説明する。図8は従来の溶接装置とその周辺機器等の概略構成を示す正面図である。 A conventional welding apparatus will be described with reference to FIG. FIG. 8 is a front view showing a schematic configuration of a conventional welding apparatus and its peripheral devices.
 図8に示すように、溶接機101は、溶接トーチ114とガスボンベ105とに接続されている。溶接機1には、シールドガスの供給を制御する弁であるガスバルブ102が設けられている。ガスボンベ105には、シールドガスの流量を調整するための流量調整器としてガスレギュレータ106が設けられている。 As shown in FIG. 8, the welding machine 101 is connected to a welding torch 114 and a gas cylinder 105. The welding machine 1 is provided with a gas valve 102 that is a valve for controlling the supply of shield gas. The gas cylinder 105 is provided with a gas regulator 106 as a flow rate regulator for adjusting the flow rate of the shield gas.
 次に、図8に示す溶接装置の動作について説明する。 Next, the operation of the welding apparatus shown in FIG. 8 will be described.
 溶接前の準備として、ガスレギュレータ106によりシールドガスの流量を設定する。そして、溶接トーチ114に設けられている図示しないトーチスイッチを押すと、溶接開始信号が溶接機101に送られる。溶接開始信号を受信した溶接機101がガスバルブ102を開くことにより、溶接トーチ114にシールドガスが供給される。 As a preparation before welding, the flow rate of the shield gas is set by the gas regulator 106. When a torch switch (not shown) provided on the welding torch 114 is pressed, a welding start signal is sent to the welding machine 101. When the welding machine 101 that has received the welding start signal opens the gas valve 102, the shielding gas is supplied to the welding torch 114.
 なお、ガスバルブ102は、閉じるか開くかの動作を行うものであり、例えば半分だけ開くといったような機能は有していない。 Note that the gas valve 102 performs an operation of closing or opening, and does not have a function of opening only half, for example.
 従来の溶接装置では、溶接を開始してシールドガスを流す際、ガスバルブ102を「開」とした場合に、ガスホース内に溜まったシールドガスが一気に放出されてシールドガスの突出が起こる。これにより、無駄なシールドガスが放出されてしまうといった課題があった。 In the conventional welding apparatus, when starting the welding and flowing the shield gas, when the gas valve 102 is set to “open”, the shield gas accumulated in the gas hose is released at once and the shield gas protrudes. As a result, there is a problem in that useless shielding gas is released.
 また、従来の溶接装置では、溶接期間中においてガス流量が一番多い期間に合わせてガスレギュレータ106を設定している。そのため、ガスが微量ですむ溶接期間においても無駄に多くのガスを流しており、シールドガスの無駄が生じている。 In the conventional welding apparatus, the gas regulator 106 is set in accordance with the period during which the gas flow rate is the highest during the welding period. For this reason, a large amount of gas flows unnecessarily even during a welding period in which a very small amount of gas is used, resulting in wasted shielding gas.
 なお、溶接終了ごとにガス流量の変更は可能であるが、集中配管や、ガスレギュレータ106のある場所までの距離が長い事など、作業者がわざわざ変更することが作業中断となり、効率が悪くなる。 It is possible to change the gas flow rate at the end of welding, but the operator's intentional change, such as a long distance to the centralized piping or the location where the gas regulator 106 is located, interrupts the operation, resulting in poor efficiency. .
特開平11-077309号公報Japanese Patent Laid-Open No. 11-077309
 本発明は、溶接開始時のガスの突出を防止して、シールドガスの無駄を抑制することができる溶接装置を提供する。 The present invention provides a welding apparatus that can prevent gas from protruding at the start of welding and suppress waste of shielding gas.
 上記課題を解決するために、本発明の溶接装置は、ガス供給源から溶接トーチに至るまでのシールドガスの供給経路の途中に溶接機を有する溶接装置である。本発明の溶接装置は、上記シールドガスの供給経路に第1の弁および第2の弁を含む少なくとも2つの弁を直列に設け、上記第1の弁を上記溶接トーチに近い側に配置し、上記第2の弁を上記ガス供給源に近い側に配置している。そして、本発明の溶接装置は、上記溶接トーチに上記シールドガスを供給する際に、上記第1の弁を開とし、上記第1の弁を開としてから第1の所定時間が経過した後に、上記第2の弁を開とする構成からなる。 In order to solve the above problems, the welding apparatus of the present invention is a welding apparatus having a welding machine in the middle of a shield gas supply path from a gas supply source to a welding torch. In the welding apparatus of the present invention, at least two valves including a first valve and a second valve are provided in series in the shield gas supply path, and the first valve is disposed on the side close to the welding torch, The second valve is disposed on the side close to the gas supply source. And when the welding apparatus of the present invention supplies the shielding gas to the welding torch, the first valve is opened, and after the first predetermined time has elapsed since the first valve is opened, The second valve is configured to be opened.
 この構成により、溶接開始時のガスの突出を防止して、シールドガスの無駄を抑制することができる。 This configuration can prevent gas from protruding at the start of welding and suppress waste of shielding gas.
図1は、本発明の実施の形態1における溶接装置の概略構成を示す正面図である。FIG. 1 is a front view showing a schematic configuration of a welding apparatus according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1におけるガス流量調整装置の概略構成を示す正面図である。FIG. 2 is a front view showing a schematic configuration of the gas flow rate adjusting apparatus according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1における溶接装置の要部の概略構成を示す平面図である。FIG. 3 is a plan view showing a schematic configuration of a main part of the welding apparatus according to Embodiment 1 of the present invention. 図4は、本発明の実施の形態2における溶接機の外観を示す斜視図である。FIG. 4 is a perspective view showing an appearance of the welding machine according to Embodiment 2 of the present invention. 図5は、本発明の実施の形態2における溶接機の操作部の概略構成を示す正面図である。FIG. 5 is a front view showing a schematic configuration of an operation unit of the welding machine according to Embodiment 2 of the present invention. 図6は、本発明の実施の形態2における溶接電流とガス流量との関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship between the welding current and the gas flow rate in the second embodiment of the present invention. 図7は、本発明の実施の形態2における溶接電流とガス流量との関係を示す特性図である。FIG. 7 is a characteristic diagram showing the relationship between the welding current and the gas flow rate in the second embodiment of the present invention. 図8は、従来の溶接装置の概略構成を示す正面図である。FIG. 8 is a front view showing a schematic configuration of a conventional welding apparatus.
 以下、本発明の一実施の形態について、図面を参照しながら説明する。以下の図面においては、同じ構成要素については同じ符号を付しているので説明を省略する場合がある。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following drawings, the same components are denoted by the same reference numerals, and the description thereof may be omitted.
 (実施の形態1)
 図1から図3を用いて、本発明の実施の形態1の溶接装置について説明する。図1は、本実施の形態1における溶接装置とその周辺機器の概略構成を示す正面図である。図2は、本実施の形態1におけるガス流量調整装置の概略構成を示す正面図である。図3は、本実施の形態1における溶接装置の要部の概略構成を示す平面図である。
(Embodiment 1)
A welding apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a front view showing a schematic configuration of a welding apparatus and its peripheral devices in the first embodiment. FIG. 2 is a front view showing a schematic configuration of the gas flow rate adjusting device according to the first embodiment. FIG. 3 is a plan view showing a schematic configuration of a main part of the welding apparatus according to the first embodiment.
 図1に示すように、溶接機1は、溶接トーチ14とガス流量調整装置3に接続されている。ガス流量調整装置3は、ガスレギュレータ6を介してガス供給源であるガスボンベ5に接続されている。なお、溶接装置は、溶接機1とガス流量調整装置3とを少なくとも含んで構成されている。また、配管5aは、ガスボンベ5から溶接トーチ14までをつなぐ配管であり、ガスボンベ5から溶接トーチ14へシールドガスを供給している。 As shown in FIG. 1, the welding machine 1 is connected to a welding torch 14 and a gas flow rate adjusting device 3. The gas flow rate adjusting device 3 is connected to a gas cylinder 5 as a gas supply source via a gas regulator 6. The welding device includes at least the welding machine 1 and the gas flow rate adjusting device 3. The pipe 5 a is a pipe that connects the gas cylinder 5 to the welding torch 14, and supplies a shielding gas from the gas cylinder 5 to the welding torch 14.
 溶接機1には、シールドガスの供給を制御する第1の弁2としてのガスバルブ2が設けられている。ガス流量調整装置3には、シールドガスの供給を制御する第2の弁4としてのガスバルブ4が設けられている。ガスボンベ5には、シールドガスの流量を調整するための流量調整器としてのガスレギュレータ6が設けられている。 The welding machine 1 is provided with a gas valve 2 as a first valve 2 for controlling the supply of shield gas. The gas flow rate adjusting device 3 is provided with a gas valve 4 as a second valve 4 for controlling the supply of shield gas. The gas cylinder 5 is provided with a gas regulator 6 as a flow rate regulator for adjusting the flow rate of the shield gas.
 図2に示すように、ガス流量調整装置3は、シールドガスの供給を制御する第2の弁4としてのガスバルブ4と、ガス流量調整装置3の制御を行う制御部7と、シールドガスの流量を測定する流量センサ8と、を備えている。 As shown in FIG. 2, the gas flow rate adjusting device 3 includes a gas valve 4 as a second valve 4 that controls the supply of shield gas, a control unit 7 that controls the gas flow rate adjusting device 3, and a flow rate of the shield gas. And a flow rate sensor 8 for measuring.
 図3に示すように、溶接機1は、溶接機1の制御を行う溶接制御部9を備えている。そして、溶接機1の溶接制御部9とガス流量調整装置3の制御部7との間で矢印19に示すように相互に情報のやり取りが行われる。 As shown in FIG. 3, the welding machine 1 includes a welding control unit 9 that controls the welding machine 1. Information is exchanged between the welding control unit 9 of the welding machine 1 and the control unit 7 of the gas flow rate adjusting device 3 as indicated by an arrow 19.
 溶接機1は、図3に示すように記憶部16と、溶接電流設定部18と、流量決定部17と、を備えた構成としている。ここで、記憶部16は、設定溶接電流とシールドガス流量との定量的関係を対応付けた特性曲線を記憶する。溶接電流設定部18は、設定溶接電流を設定する。流量決定部17は、溶接電流設定部18で設定された設定溶接電流と記憶部16に記憶されている特性曲線に基づいてシールドガス流量を決定する。 The welding machine 1 is configured to include a storage unit 16, a welding current setting unit 18, and a flow rate determining unit 17, as shown in FIG. Here, the storage unit 16 stores a characteristic curve in which a quantitative relationship between the set welding current and the shield gas flow rate is associated. The welding current setting unit 18 sets a set welding current. The flow rate determination unit 17 determines the shield gas flow rate based on the set welding current set by the welding current setting unit 18 and the characteristic curve stored in the storage unit 16.
 このように、特性曲線を記憶する構成とすることで、シールドガスが設定溶接電流と同期し、自動でシールドガスをコントロールできる。高い溶接電流域と低い溶接電流域では、必要なシールドガス流量が異なる。そのため、低い溶接電流の時はシールドガス使用量が少なくなり、無駄なシールドガスを削減することでコストの削減が可能になる。 As described above, by configuring the characteristic curve to be stored, the shield gas is synchronized with the set welding current, and the shield gas can be controlled automatically. The required shield gas flow rate differs between the high welding current region and the low welding current region. Therefore, when the welding current is low, the amount of shielding gas used is reduced, and the cost can be reduced by reducing wasteful shielding gas.
 以上のように構成された溶接装置について、その動作を説明する。なお、最初に溶接開始時の動作について説明し、次いで、溶接終了時の動作について説明する。 The operation of the welding apparatus configured as described above will be described. First, the operation at the start of welding will be described, and then the operation at the end of welding will be described.
 先ず、本実施の形態1の溶接装置の溶接開始時の動作について説明する。 First, the operation at the start of welding of the welding apparatus of the first embodiment will be described.
 溶接前の準備として、ガスボンベ5に設けられたガスレギュレータ6によりシールドガスの流量を設定する。これにより、ガスボンベ5からガス流量調整装置3のガスバルブ4まで配管5aを介してシールドガスが流れる。 As a preparation before welding, the flow rate of the shielding gas is set by the gas regulator 6 provided in the gas cylinder 5. As a result, the shield gas flows from the gas cylinder 5 to the gas valve 4 of the gas flow rate adjusting device 3 through the pipe 5a.
 そして、溶接トーチ14の図示しないトーチスイッチがオンされて、溶接機1が動作を開始すると、予め溶接機1の溶接電流設定部18において設定された溶接電流指令値に基づいてガス流量出力値が決定される。具体的には、溶接機1の溶接制御部9は、溶接電流指令値とガス流量出力値とを対応付けた特性を、テーブルや数式などの形態で記憶している。そして、溶接制御部9は、設定された溶接電流指令値に基づいてガス流量出力値を決定する。すなわち、溶接制御部9は、設定溶接電流とシールドガス流量とを対応付けた特性を記憶する記憶部16の機能と、設定溶接電流と記憶している特性に基づいてシールドガス流量を決定する流量決定部17の機能を有している。そして、決定されたガス流量出力値は、ガス流量調整装置3の制御部7に送られ、制御部7からガスバルブ4に送信される。 When a torch switch (not shown) of the welding torch 14 is turned on and the welding machine 1 starts operating, the gas flow rate output value is set based on the welding current command value set in advance in the welding current setting unit 18 of the welding machine 1. It is determined. Specifically, the welding control unit 9 of the welding machine 1 stores the characteristics in which the welding current command value and the gas flow rate output value are associated with each other in the form of a table or a mathematical expression. And the welding control part 9 determines a gas flow rate output value based on the set welding current command value. That is, the welding control unit 9 determines the shield gas flow rate based on the function of the storage unit 16 that stores the characteristics in which the set welding current and the shield gas flow rate are associated with each other and the set welding current and the stored characteristics. The function of the determination unit 17 is provided. Then, the determined gas flow rate output value is sent to the control unit 7 of the gas flow rate adjusting device 3, and is sent from the control unit 7 to the gas valve 4.
 また、溶接トーチ14の図示しないトーチスイッチがオンされると、その信号が溶接機1の溶接制御部9に送信され、溶接制御部9はガスバルブ2を制御し、ガスバルブ2を「開」動作させる。ここで、ガスバルブ2は、オン-オフのみを行うものであり、流量調整機能は有していない。 When a torch switch (not shown) of the welding torch 14 is turned on, the signal is transmitted to the welding control unit 9 of the welding machine 1, and the welding control unit 9 controls the gas valve 2 to “open” the gas valve 2. . Here, the gas valve 2 performs only on-off and does not have a flow rate adjusting function.
 なお、溶接制御部9は計時機能を有しており、ガスバルブ2を「開」動作させてからの経過時間を計時し、「開」動作させてから予め決められた第1の所定時間が経過すると、第1の所定時間が経過したことを示す信号をガス流量調整装置3の制御部7に情報として送信する。ここで、第1の所定時間は、例えば10msecから100msec程度である。 The welding control unit 9 has a time measuring function, measures the elapsed time after the gas valve 2 is “opened”, and elapses after a predetermined first predetermined time has elapsed since the “open” operation is performed. Then, a signal indicating that the first predetermined time has elapsed is transmitted as information to the control unit 7 of the gas flow rate adjusting device 3. Here, the first predetermined time is, for example, about 10 msec to 100 msec.
 溶接制御部9から第1の所定時間が経過したことを示す信号を受信した制御部7は、ガスバルブ4を制御し、ガスバルブ4を「開」動作させる。ここで、ガスバルブ4は、オン-オフ機能および流量調整機能を有している。 The control unit 7 that has received a signal indicating that the first predetermined time has elapsed from the welding control unit 9 controls the gas valve 4 to “open” the gas valve 4. Here, the gas valve 4 has an on-off function and a flow rate adjustment function.
 以上の動作により、ガスボンベ5から溶接トーチ14にシールドガスが供給される。 By the above operation, the shield gas is supplied from the gas cylinder 5 to the welding torch 14.
 本実施の形態1の溶接装置では、上述のように、溶接トーチ14にシールドガスを供給する際、まず、溶接トーチ14に近い側のガスバルブである溶接機1のガスバルブ2(第1の弁2)を「開」動作させる。それから第1の所定時間が経過すると、ガスボンベ5に近い側のガスバルブであるガス流量調整装置3のガスバルブ4(第2の弁4)を「開」動作させる。これにより、ガス流量調整装置3を備えていない従来の溶接装置と比べ、シールドガスの圧力を抑制することができ、溶接開始時のシールドガスの突出を防止することができる。すなわち、溶接開始時のシールドガスの無駄を抑制することができる。 In the welding apparatus according to the first embodiment, as described above, when supplying the shielding gas to the welding torch 14, first, the gas valve 2 (first valve 2) of the welding machine 1, which is a gas valve close to the welding torch 14, is used. ) “Open”. Then, when the first predetermined time has elapsed, the gas valve 4 (second valve 4) of the gas flow rate adjusting device 3 which is the gas valve on the side close to the gas cylinder 5 is operated to “open”. Thereby, compared with the conventional welding apparatus which is not equipped with the gas flow volume adjusting apparatus 3, the pressure of shield gas can be suppressed and protrusion of the shield gas at the time of a welding start can be prevented. That is, the waste of shielding gas at the start of welding can be suppressed.
 その理由は、ガスバルブ2を「開」動作させることにより、ガスバルブ4から溶接トーチ14までのシールドガス供給経路の配管5a内のシールドガスが溶接トーチ14側から排出され、この経路内のシールドガスの残留量、すなわち大気圧で換算したときのシールドガスの残留量が低減する。そして、この状態でガスバルブ4を「開」動作させることにより、ガスバルブ4をガスバルブ2より早く「開」動作させない。すなわち、例えばガスバルブ2とガスバルブ4とを同時に「開」動作させる場合よりも、シールドガスの供給圧力が低減される。なぜなら、ガスバルブ2を「開」とした後にガスバルブ4を「開」とすると、ガスバルブ4を「開」とする時に、上述のように配管5a内のシールドガスの残留量が低減しているからである。したがって、配管5aからのシールドガスの突出を防止することができる。 The reason is that by opening the gas valve 2, the shield gas in the pipe 5 a of the shield gas supply path from the gas valve 4 to the welding torch 14 is discharged from the welding torch 14 side, and the shield gas in this path The residual amount, that is, the residual amount of shield gas when converted by atmospheric pressure is reduced. In this state, the gas valve 4 is “opened” to prevent the gas valve 4 from being “opened” earlier than the gas valve 2. That is, for example, the supply pressure of the shield gas is reduced as compared with the case where the gas valve 2 and the gas valve 4 are simultaneously opened. This is because if the gas valve 4 is set to “open” after the gas valve 2 is set to “open”, the residual amount of shielding gas in the pipe 5a is reduced as described above when the gas valve 4 is set to “open”. is there. Accordingly, it is possible to prevent the shielding gas from protruding from the pipe 5a.
 また、他の理由として、溶接機1のガスバルブ2から溶接トーチ14までの第1のシールドガス供給距離L1と、ガス流量調整装置3のガスバルブ4から溶接トーチ14までの第2のシールドガス供給距離L2とは、第2のシールドガス供給距離L2の方が長い。そして、従来の溶接装置におけるシールドガス供給距離は第1のシールドガス供給距離L1に相当し、本実施の形態1の溶接装置におけるシールドガス供給距離は第2のシールドガス供給距離L2に相当する。シールドガスが配管5aを介して供給される場合には、その配管5aの長さが長いほど、シールドガスの圧力は低減されて抑制される。従って、本実施の形態1の溶接装置の方が、シールドガスの圧力を抑制する効果が高く、溶接開始時のシールドガスの無駄を抑制することができる。 As other reasons, the first shield gas supply distance L1 from the gas valve 2 of the welding machine 1 to the welding torch 14 and the second shield gas supply distance from the gas valve 4 of the gas flow rate adjusting device 3 to the welding torch 14 are also described. The second shield gas supply distance L2 is longer than L2. The shield gas supply distance in the conventional welding apparatus corresponds to the first shield gas supply distance L1, and the shield gas supply distance in the welding apparatus of the first embodiment corresponds to the second shield gas supply distance L2. When the shield gas is supplied via the pipe 5a, the longer the pipe 5a is, the lower the pressure of the shield gas is suppressed. Therefore, the welding apparatus of the first embodiment has a higher effect of suppressing the pressure of the shield gas, and can suppress the waste of the shield gas at the start of welding.
 なお、溶接機1は、ガスボンベ5と直接接続されて使用される場合もあり、汎用性を考慮して内部にガスバルブ2が設けられており、このようにガスバルブ2を備えた溶接機1は広く知られている。そして、本実施の形態1の溶接装置は、このようなガスバルブ2を備えた溶接機1を備えた溶接装置に関するものである。 Note that the welder 1 may be used by being directly connected to the gas cylinder 5, and the gas valve 2 is provided inside in consideration of versatility. Thus, the welder 1 including the gas valve 2 is widely used. Are known. And the welding apparatus of this Embodiment 1 is related with the welding apparatus provided with the welding machine 1 provided with such a gas valve 2. FIG.
 すなわち、本実施の形態1の溶接装置は、ガス供給源5から溶接トーチ14に至るまでのシールドガスの供給経路の途中に溶接機を有する溶接装置である。本実施の形態1の溶接装置は、シールドガスの供給経路に第1の弁2および第2の弁4を含む少なくとも2つの弁を直列に設け、第1の弁2を溶接トーチ14に近い側に配置し、第2の弁4をガス供給源5に近い側に配置している。そして、本実施の形態1の溶接装置は、溶接トーチ14にシールドガスを供給する際に、第1の弁2を開とし、第1の弁2を開としてから第1の所定時間が経過した後に、第2の弁4を開とする構成からなる。 That is, the welding apparatus according to the first embodiment is a welding apparatus having a welding machine in the middle of the shield gas supply path from the gas supply source 5 to the welding torch 14. In the welding apparatus according to the first embodiment, at least two valves including the first valve 2 and the second valve 4 are provided in series in the shield gas supply path, and the first valve 2 is closer to the welding torch 14. The second valve 4 is arranged on the side close to the gas supply source 5. And when the welding apparatus of this Embodiment 1 supplies shield gas to the welding torch 14, the 1st predetermined time passed since the 1st valve 2 was opened and the 1st valve 2 was opened. Later, the second valve 4 is opened.
 この構成により、溶接開始時のガスの突出を防止して、シールドガスの無駄を抑制することができる。 This configuration can prevent gas from protruding at the start of welding and suppress waste of shielding gas.
 次に、溶接終了時の動作について説明する。 Next, the operation at the end of welding will be described.
 溶接終了に際し、溶接トーチ14の図示しないトーチスイッチがオフされると、オフされたことを示す信号が溶接機1の溶接制御部9に入力される。そして、溶接制御部9は、この信号をガス流量調整装置3の制御部7に送る。溶接制御部9からの信号を受信した制御部7は、ガス流量調整装置3のガスバルブ4を制御して「閉」動作させる。 When a torch switch (not shown) of the welding torch 14 is turned off at the end of welding, a signal indicating that the welding torch 14 is turned off is input to the welding control unit 9 of the welding machine 1. Then, the welding control unit 9 sends this signal to the control unit 7 of the gas flow rate adjusting device 3. The control unit 7 that has received the signal from the welding control unit 9 controls the gas valve 4 of the gas flow rate adjusting device 3 to perform a “closed” operation.
 なお、制御部7は計時機能を有しており、ガスバルブ4を「閉」動作させてからの経過時間を計時し、「閉」動作させてから予め決められた第2の所定時間が経過すると、第2の所定時間が経過したことを溶接機1の溶接制御部9に送信する。ここで、第2の所定時間は、例えば10msecから100msec程度である。 The control unit 7 has a time measuring function, measures the elapsed time after the gas valve 4 is “closed”, and when a predetermined second predetermined time elapses after the “close” operation. Then, the fact that the second predetermined time has passed is transmitted to the welding control unit 9 of the welding machine 1. Here, the second predetermined time is, for example, about 10 msec to 100 msec.
 制御部7から第2の所定時間が経過したことを示す信号を受信した溶接制御部9は、ガスバルブ2を制御し、ガスバルブ2を「閉」動作させる。 The welding control unit 9 that has received a signal indicating that the second predetermined time has elapsed from the control unit 7 controls the gas valve 2 and causes the gas valve 2 to be “closed”.
 以上の動作により、ガスボンベ5から溶接トーチ14に供給されるシールドガスの供給が停止される。 By the above operation, the supply of the shielding gas supplied from the gas cylinder 5 to the welding torch 14 is stopped.
 本実施の形態1の溶接装置では、上述のように、溶接トーチ14へのシールドガスの供給を停止する際に、ガスボンベ5に近い側のガスバルブであるガス流量調整装置3のガスバルブ4(第2の弁4)を「閉」動作させる。それから第2の所定時間が経過すると、本実施の形態1の溶接装置は、溶接トーチ14に近い側のガスバルブである溶接機1のガスバルブ2(第1の弁2)を「閉」動作させる。 In the welding apparatus according to the first embodiment, as described above, when the supply of the shielding gas to the welding torch 14 is stopped, the gas valve 4 (second valve) of the gas flow rate adjusting apparatus 3 that is a gas valve close to the gas cylinder 5 is used. The valve 4) is closed. Then, when the second predetermined time has elapsed, the welding apparatus according to the first embodiment causes the gas valve 2 (first valve 2) of the welding machine 1, which is a gas valve close to the welding torch 14, to be "closed".
 これにより、大気圧よりも十分に高い圧力のシールドガスがガスバルブ4からガスバルブ2までの配管5aに閉じ込められることなく、溶接トーチ14から大気に放出され、この配管5a内のシールドガスの圧力は、大気圧と同等程度に低減される。したがって、ガス流量調整装置3のガスバルブ4から溶接トーチ14に至るシールドガス供給経路の配管5a内に残留するシールドガス、すなわち大気圧で換算したときのシールドガスの残留量を低減することができる。そして、このように残留するシールドガスを低減することで、次回の溶接開始の際のシールドガスの突出の抑制に寄与することができる。すなわち、溶接開始時のシールドガスの無駄を抑制することができる。 Thereby, the shield gas having a pressure sufficiently higher than the atmospheric pressure is released from the welding torch 14 to the atmosphere without being confined in the pipe 5a from the gas valve 4 to the gas valve 2, and the pressure of the shield gas in the pipe 5a is Reduced to the same level as atmospheric pressure. Therefore, the shield gas remaining in the pipe 5a of the shield gas supply path from the gas valve 4 of the gas flow rate adjusting device 3 to the welding torch 14, that is, the residual amount of shield gas when converted to atmospheric pressure can be reduced. And by reducing the shield gas which remains in this way, it can contribute to suppression of the protrusion of the shield gas at the time of the next welding start. That is, the waste of shielding gas at the start of welding can be suppressed.
 以上のように、本実施の形態1の溶接装置では、溶接機1とガスボンベ5との間にガス流量調整装置3を設けている。そして、本実施の形態1の溶接装置では、溶接トーチ14にシールドガスを供給する際、溶接機1に設けられたガスバルブ2(第1の弁2)を「開」として第1の所定時間後にガス流量調整装置3に設けられたガスバルブ4(第2の弁4)を「開」とする例を示した。 As described above, in the welding apparatus of the first embodiment, the gas flow rate adjusting device 3 is provided between the welding machine 1 and the gas cylinder 5. And in the welding apparatus of this Embodiment 1, when supplying shielding gas to the welding torch 14, the gas valve 2 (1st valve 2) provided in the welding machine 1 is made "open", and after 1st predetermined time. The example which made the gas valve 4 (2nd valve 4) provided in the gas flow control apparatus 3 "open" was shown.
 しかし、ガス流量調整装置3を溶接機1と溶接トーチ14との間に設けるようにしてもよい。この場合、溶接トーチ14にシールドガスを供給する際には、ガス流量調整装置3に設けられたガスバルブ4を第1の弁として、「開」としてから第1の所定時間後に溶接機1に設けられたガスバルブ2を第2の弁として、「開」とする。 However, the gas flow rate adjusting device 3 may be provided between the welding machine 1 and the welding torch 14. In this case, when supplying the shielding gas to the welding torch 14, the gas valve 4 provided in the gas flow rate adjusting device 3 is provided as the first valve in the welding machine 1 after a first predetermined time after being “opened”. The gas valve 2 thus made is set to “open” as the second valve.
 すなわち、ガスボンベ5から溶接トーチ14に至るまでのシールドガスの供給経路の途中に第1の弁および第2の弁を含む少なくとも2つの弁を直列に設ける。そして、溶接トーチ14にシールドガスを供給する際には、溶接トーチ14に近い側の第1の弁を「開」とし、この「開」としてから第1の所定時間が経過した後にガスボンベ5に近い側の第2の弁を「開」とすればよい。 That is, at least two valves including a first valve and a second valve are provided in series in the shield gas supply path from the gas cylinder 5 to the welding torch 14. When supplying the shielding gas to the welding torch 14, the first valve on the side close to the welding torch 14 is set to “open”, and after the first predetermined time has elapsed since this “opening”, the gas cylinder 5 is supplied. The second valve on the near side may be “open”.
 また、溶接トーチ14へのシールドガスの供給を停止する際も同様に、ガスボンベ5に近い側の第2の弁を「閉」とし、この「閉」としてから第2の所定時間が経過した後に溶接トーチ14に近い側の第2の弁を「閉」とすればよい。 Similarly, when the supply of the shielding gas to the welding torch 14 is stopped, the second valve on the side close to the gas cylinder 5 is set to “closed”, and after this “closed”, a second predetermined time has elapsed. The second valve close to the welding torch 14 may be “closed”.
 この構成により、溶接開始時のガスの突出を防止して、シールドガスの無駄を抑制することができる。なお、溶接装置は、上述の第1の弁および第2の弁以外の、例えばガスバルブ等の弁をさらに備えた構成としてもよい。 This configuration can prevent gas from protruding at the start of welding and suppress waste of shielding gas. The welding apparatus may further include a valve such as a gas valve other than the first valve and the second valve described above.
 (実施の形態2)
 本発明の実施の形態2について、図4から図7を用いて説明する。図4は、溶接機の外観を示す斜視図である。図5は、溶接機の操作部の概略構成を示す正面図である。図6は、溶接電流とガス流量との関係を示す特性図である。図7は、図6の特性から変更された溶接電流とガス流量との関係を示す特性図である。
(Embodiment 2)
A second embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a perspective view showing the appearance of the welder. FIG. 5 is a front view illustrating a schematic configuration of an operation unit of the welding machine. FIG. 6 is a characteristic diagram showing the relationship between the welding current and the gas flow rate. FIG. 7 is a characteristic diagram showing the relationship between the welding current and the gas flow rate changed from the characteristics shown in FIG.
 本実施の形態2の溶接装置が、実施の形態1と異なる主な点は、設定された溶接電流指令値に基づいて決定されたガス流量を変更可能とした点と、ガス流量を変更したことにより溶接電流指令値とガス流量出力値とを対応付けた特性を変更するようにした点である。 The main difference between the welding apparatus of the second embodiment and the first embodiment is that the gas flow rate determined based on the set welding current command value can be changed, and the gas flow rate has been changed. Thus, the characteristic in which the welding current command value and the gas flow rate output value are associated with each other is changed.
 図4に示すように、溶接機1は、操作部15をさらに備えている。なお、溶接機1は、その内部に実施の形態1と同様に溶接制御部9を有し、記憶部16、流量決定部17および溶接電流設定部18を備えている。 As shown in FIG. 4, the welding machine 1 further includes an operation unit 15. Note that the welding machine 1 includes a welding control unit 9 in the same manner as in the first embodiment, and includes a storage unit 16, a flow rate determination unit 17, and a welding current setting unit 18.
 図5に示すように、操作部15には、溶接電流設定部18の一部としての電流設定ボタン10と、シールドガスの流量変更部20の一部としてのガス流量設定ボタン11と、表示部12と、ジョグダイヤル13と、が設けられている。ここで、表示部12は、溶接電流の値やガス流量の値等を表示する。ジョグダイヤル13は、溶接電流の値やガス流量の値を変更する。また、溶接電流設定部18および流量変更部20には、溶接電流の値やガス流量の値などを入力するためのテンキーが操作部15の表面に備えられていてもよい。 As shown in FIG. 5, the operation unit 15 includes a current setting button 10 as a part of the welding current setting unit 18, a gas flow rate setting button 11 as a part of the shield gas flow rate changing unit 20, and a display unit. 12 and a jog dial 13 are provided. Here, the display unit 12 displays a welding current value, a gas flow rate value, and the like. The jog dial 13 changes the value of the welding current and the value of the gas flow rate. Further, the welding current setting unit 18 and the flow rate changing unit 20 may be provided with a numeric keypad on the surface of the operation unit 15 for inputting a welding current value, a gas flow rate value, and the like.
 したがって、図4に示す溶接機1は、流量決定部17で決定されたシールドガス流量を変更する流量変更部20を備えた構成としている。このように、流量変更部20を備える構成とすることで、設定溶接電流に対するシールドガス流量を自由に設定できる。従って、溶接条件によってシールドガス使用量が減り、更なるコストの削減が可能である。 Therefore, the welding machine 1 shown in FIG. 4 is configured to include the flow rate changing unit 20 that changes the shield gas flow rate determined by the flow rate determining unit 17. Thus, by setting it as the structure provided with the flow volume change part 20, the shield gas flow volume with respect to setting welding current can be set freely. Therefore, the amount of shield gas used is reduced depending on the welding conditions, and further cost reduction is possible.
 先ず、溶接電流の設定とガス流量の決定について説明する。 First, the setting of the welding current and the determination of the gas flow rate will be described.
 図5の電流設定ボタン10を押すと、溶接電流を設定するモードとなる。そして、ジョグダイヤル13を回して表示部12に表示される溶接電流を設定したい値に合わせる。この状態で、再度、電流設定ボタン10を押すと、溶接電流が表示された値に設定される。 When the current setting button 10 in FIG. 5 is pressed, the welding current is set. Then, the jog dial 13 is turned to adjust the welding current displayed on the display unit 12 to a value to be set. When the current setting button 10 is pressed again in this state, the welding current is set to the displayed value.
 溶接制御部9は、図6に示す溶接電流の電流値とシールドガスのガス流量との関係を示す特性を、テーブルあるいは数式等として予め記憶部16に記憶している。なお、図6は、特性が一次曲線(直線)で表される一例を示している。溶接制御部9は、この特性と設定された溶接電流の電流値に基づいてガス流量を決定する。決定されたガス流量は、表示部12に表示される。 The welding control unit 9 stores characteristics indicating the relationship between the current value of the welding current shown in FIG. 6 and the gas flow rate of the shielding gas in the storage unit 16 in advance as a table or a mathematical expression. FIG. 6 shows an example in which the characteristic is represented by a linear curve (straight line). The welding control unit 9 determines the gas flow rate based on this characteristic and the set current value of the welding current. The determined gas flow rate is displayed on the display unit 12.
 次に、上記で決定されたガス流量を変更する場合について説明する。 Next, the case where the gas flow rate determined above is changed will be described.
 例えば、設定溶接電流として40Aが設定された場合、図6より、ガス流量は4L/minと決定される。このガス流量を、1L/minに変更したい場合について説明する。 For example, when 40 A is set as the set welding current, the gas flow rate is determined to be 4 L / min from FIG. A case where it is desired to change the gas flow rate to 1 L / min will be described.
 上記のようにして設定溶接電流を40Aに設定すると、ガス流量が4L/minと決定され、設定溶接電流の値である40Aとガス流量の値である4L/minが、表示部12に表示される。この状態で、ガス流量設定ボタン11を押すと、ガス流量が変更可能なモードとなる。そして、ジョグダイヤル13を回して表示部12に表示されるガス流量を設定したい値、ここでは、1L/minに合わせる。その状態で、再度、ガス流量設定ボタン11を押すと、新たなガス流量が次に示すように設定される。 When the set welding current is set to 40 A as described above, the gas flow rate is determined to be 4 L / min, and the set welding current value of 40 A and the gas flow rate value of 4 L / min are displayed on the display unit 12. The In this state, when the gas flow rate setting button 11 is pressed, the gas flow rate can be changed. Then, the jog dial 13 is turned to adjust the gas flow rate displayed on the display unit 12 to a value to be set, here 1 L / min. When the gas flow rate setting button 11 is pressed again in this state, a new gas flow rate is set as shown below.
 また、本実施の形態2の溶接機1は、上述のようにガス流量を変更すると、その変更に基づいて新たな溶接電流とガス流量との関係を示す特性を作成して溶接制御部9の記憶部16に記憶し、この新たな特性に基づいて溶接を行う機能を有している。以下にその詳細を説明する。 In addition, when the gas flow rate is changed as described above, the welding machine 1 according to the second embodiment creates a characteristic indicating a new relationship between the welding current and the gas flow rate based on the change, and the welding controller 9 It has a function of storing in the storage unit 16 and performing welding based on this new characteristic. Details will be described below.
 上述のように溶接電流40Aのときのガス流量を1L/minに変更すると、溶接制御部9は、変更されたガス流量の値と図6に示す特性に基づいて、図7に示す新たな特性を作成して溶接制御部9の記憶部16に記憶する。 As described above, when the gas flow rate at the welding current of 40A is changed to 1 L / min, the welding control unit 9 creates new characteristics shown in FIG. 7 based on the changed value of the gas flow rate and the characteristics shown in FIG. Is stored in the storage unit 16 of the welding control unit 9.
 より具体的には、図7に示すように溶接電流40Aと変更されたガス流量1L/minで示される位置を第2の変極点とする。そして、溶接電流40Aから所定値20Aだけ小さい溶接電流が20Aとガス流量が2L/minで示される位置を第1の変極点とする。そして、溶接電流40Aから所定値20Aだけ大きい溶接電流が60Aとガス流量が6L/minで示される位置を第3の変極点とする。このように3つの変極点を決定した後に、第1の変極点と第2の変極点との間を直線補完し、第2の変極点と第3の変極点との間を直線補完した新たな折れ線型の特性曲線を作成し、図7に示す特性曲線として溶接制御部9の記憶部16に記憶する。なお、所定値20Aは、一例で、これに限るものではなく、実験等により適切な値を予め求めて設定するようにしておけばよい。また、溶接電流を小さくする側と大きくする側とで、所定値が異なっても良い。 More specifically, as shown in FIG. 7, the position indicated by the welding current 40A and the changed gas flow rate 1 L / min is set as the second inflection point. A position where the welding current 20A smaller than the welding current 40A by 20A and the gas flow rate is 2 L / min is defined as a first inflection point. The position where the welding current larger than the welding current 40A by a predetermined value 20A is 60A and the gas flow rate is 6 L / min is defined as a third inflection point. After determining the three inflection points in this way, a new line is obtained by linear interpolation between the first inflection point and the second inflection point, and linear interpolation between the second inflection point and the third inflection point. A polygonal characteristic curve is created and stored in the storage unit 16 of the welding control unit 9 as the characteristic curve shown in FIG. The predetermined value 20A is an example and is not limited to this, and an appropriate value may be obtained and set in advance through experiments or the like. Further, the predetermined value may be different between the side where the welding current is reduced and the side where the welding current is increased.
 そして、新たに設定電流が設定される、あるいは、新たにガス流量が変更されるまでは、この図7に示す新たな特性曲線に基づいてガス流量が決定される。 The gas flow rate is determined based on the new characteristic curve shown in FIG. 7 until a new set current is set or the gas flow rate is newly changed.
 すなわち、本実施の形態2の溶接装置において、記憶部16に記憶された特性曲線は一次曲線であり、流量変更部20でシールドガス流量を変更すると、設定溶接電流と変更されたシールドガス流量との関係が示す位置を第2の変極点とする。そして、設定溶接電流から第1の所定値だけ小さい溶接電流値と一次曲線との交点を第1の変極点とし、設定溶接電流から第2の所定値だけ大きい溶接電流値と一次曲線との交点を第3の変極点とする。そして、第1の変極点と第2の変極点との間を直線補完し、かつ、第2の変極点と第3の変極点との間を直線補完した新たな特性曲線を作成する。このようにした後に、本実施の形態2の溶接装置は、設定溶接電流を変更するまでは、新たな特性曲線に基づいてシールドガス流量を決定する構成としている。 That is, in the welding apparatus according to the second embodiment, the characteristic curve stored in the storage unit 16 is a linear curve, and when the flow rate change unit 20 changes the shield gas flow rate, the set welding current and the changed shield gas flow rate The position indicated by the relationship is the second inflection point. The intersection between the welding current value smaller than the set welding current by the first predetermined value and the primary curve is taken as the first inflection point, and the intersection between the welding current value larger than the set welding current by the second predetermined value and the primary curve. Is the third inflection point. Then, a new characteristic curve is created by linear interpolation between the first inflection point and the second inflection point and linear interpolation between the second inflection point and the third inflection point. After doing in this way, the welding apparatus of this Embodiment 2 is set as the structure which determines a shield gas flow volume based on a new characteristic curve until it changes a setting welding current.
 この構成により、予め記憶された基本の特性に基づいて決定されたガス流量を変更する機能を有しているので、溶接対象に応じたガス流量を設定できる。これにより、シールドガスの無駄を削減することも可能となる。また、変更したガス流量に基づいて新たな特性曲線を作成し、この新たな特性曲線に基づき、設定されている溶接電流に応じてガス流量を決定して溶接を行うことができる。これにより、新たな特性曲線を作成して用いない場合と比べて安定した溶接を行うことができる。 This configuration has a function of changing the gas flow rate determined based on the basic characteristics stored in advance, so that the gas flow rate can be set according to the welding target. Thereby, it becomes possible to reduce the waste of shielding gas. Further, a new characteristic curve can be created based on the changed gas flow rate, and welding can be performed by determining the gas flow rate according to the set welding current based on the new characteristic curve. Thereby, stable welding can be performed as compared with the case where a new characteristic curve is not created and used.
 次に、この新たな特性曲線に基づいてガス流量が決定される例について説明する。 Next, an example in which the gas flow rate is determined based on this new characteristic curve will be described.
 まず、溶接機1の操作部15を用いて、定常溶接期間の定常溶接電流(例えば、40A)と、定常溶接期間の前の期間である初期期間の初期溶接電流(例えば、10A)と、定常溶接電流の後の期間である終期期間の終期溶接電流(例えば、50A)を設定しておく。そして、定常溶接電流40Aのガス流量を4L/minから1L/minに変更すると、上記のように、図6に示す特性曲線を基にして図7に示す特性曲線が作成される。 First, using the operation unit 15 of the welding machine 1, a steady welding current (for example, 40A) in a steady welding period, an initial welding current (for example, 10A) in an initial period that is a period before the steady welding period, An end welding current (for example, 50 A) of an end period that is a period after the welding current is set. When the gas flow rate of the steady welding current 40A is changed from 4 L / min to 1 L / min, the characteristic curve shown in FIG. 7 is created based on the characteristic curve shown in FIG.
 ここで、初期溶接電流は10Aと設定されているので、図7の特性曲線に基づいて、初期期間のガス流量は1L/minと決定される。なお、この場合は、図6の特性曲線の場合と同じガス流量の値となる。また、定常溶接電流は40Aと設定されているので、図7の特性曲線に基づいて、定常溶接期間のガス流量は1L/minと決定される。なお、この場合は、図6の特性曲線の場合と比べてガス流量は低い値となる。また、終期溶接電流は50Aと設定されているので、図7の特性曲線に基づいて、終期期間のガス流量は3.5L/minと決定される。なお、この場合は、図6の特性曲線の場合と比べてガス流量は低い値となる。 Here, since the initial welding current is set to 10 A, the gas flow rate in the initial period is determined to be 1 L / min based on the characteristic curve of FIG. In this case, the value of the gas flow rate is the same as that in the case of the characteristic curve of FIG. Since the steady welding current is set to 40 A, the gas flow rate during the steady welding period is determined to be 1 L / min based on the characteristic curve of FIG. In this case, the gas flow rate is lower than that in the case of the characteristic curve of FIG. Since the final welding current is set to 50 A, the gas flow rate in the final period is determined to be 3.5 L / min based on the characteristic curve of FIG. In this case, the gas flow rate is lower than that in the case of the characteristic curve of FIG.
 ここで、上述のように変極点間を直線補完して特性曲線を作成することで、ガス流量の変更(ここでは、ガス流量の低減)を行った溶接電流(ここでは、40A)の近傍の溶接電流(20Aから60Aの範囲の溶接電流)に対応して決められるガス流量も低減された値となる。これにより、溶接電流の変化(20Aから60A)に対するガス流量の変化が、図6の特性曲線の場合と比べて小さくなり、図6の特性曲線を用いる場合と比べて安定した溶接を行うことができる。 Here, the characteristic curve is created by linear interpolation between the inflection points as described above, so that the vicinity of the welding current (here, 40 A) in which the gas flow rate is changed (here, the gas flow rate is reduced) is changed. The gas flow rate determined corresponding to the welding current (welding current in the range of 20A to 60A) is also a reduced value. Thereby, the change of the gas flow rate with respect to the change of the welding current (20A to 60A) becomes smaller than that in the case of the characteristic curve of FIG. 6, and stable welding can be performed as compared with the case of using the characteristic curve of FIG. it can.
 すなわち、本実施の形態2の溶接装置は、溶接電流設定部18により、定常溶接期間の定常溶接電流と、この定常溶接期間の前の期間である初期期間の初期溶接電流と、定常溶接期間の後の期間である終期期間の終期溶接電流と、を設定しておく。そして、流量変更部20で定常溶接期間のシールドガス流量を変更すると、本実施の形態2の溶接装置は、新たな特性曲線を作成する。そうすると、初期溶接電流に対応するシールドガス流量と終期溶接電流に対応するシールドガス流量は、新たな特性曲線に基づいて決定される構成としてもよい。 That is, in the welding apparatus of the second embodiment, the welding current setting unit 18 causes the steady welding current in the steady welding period, the initial welding current in the initial period that is the period before the steady welding period, and the steady welding period. The final welding current in the final period, which is a later period, is set. When the flow rate changing unit 20 changes the shield gas flow rate during the steady welding period, the welding apparatus of the second embodiment creates a new characteristic curve. Then, the shield gas flow rate corresponding to the initial welding current and the shield gas flow rate corresponding to the final welding current may be determined based on a new characteristic curve.
 この構成により、変更したガス流量に基づいて新たな特性曲線を作成し、この新たな特性曲線に基づき、設定されている溶接電流に応じてガス流量を決定して溶接を行うことができる。これにより、新たな特性曲線を作成して用いない場合と比べて安定した溶接を行うことができる。 With this configuration, a new characteristic curve can be created based on the changed gas flow rate, and welding can be performed by determining the gas flow rate according to the set welding current based on the new characteristic curve. Thereby, stable welding can be performed as compared with the case where a new characteristic curve is not created and used.
 以上のように、本実施の形態2の溶接機1によれば、溶接対象に応じたガス流量を設定できるので、シールドガスの無駄を削減することも可能となる。また、ガス流量を変更すると新たな特性曲線を作成し、設定されている溶接電流に応じて、この新たな特性曲線に基づきガス流量を決定する。これにより、溶接電流の変化に対するガス流量の変化が小さくなり、安定した溶接を行うことができる。 As described above, according to the welding machine 1 of the second embodiment, the gas flow rate corresponding to the welding target can be set, so that the waste of shielding gas can be reduced. When the gas flow rate is changed, a new characteristic curve is created, and the gas flow rate is determined based on the new characteristic curve according to the set welding current. Thereby, the change of the gas flow rate with respect to the change of the welding current is reduced, and stable welding can be performed.
 なお、実施の形態1と実施の形態2において、ガス流量調整装置3は、溶接機1の表面に取り付けるようにしても良い。あるいは、ガス流量調整装置3は、溶接機1と離れた位置に設けるようにしても良い。あるいは、ガス流量調整装置3は、溶接機1の内部に設けるようにしても良い。このような構成とすることで、大掛かりな工事や設備変更の必要がなく、設置が容易となる。 In the first and second embodiments, the gas flow rate adjusting device 3 may be attached to the surface of the welding machine 1. Alternatively, the gas flow rate adjusting device 3 may be provided at a position away from the welding machine 1. Alternatively, the gas flow rate adjusting device 3 may be provided inside the welding machine 1. By adopting such a configuration, there is no need for large-scale construction and equipment change, and installation becomes easy.
 また、実施の形態1と実施の形態2において、第1の弁2は、溶接機1に設けられ、第2の弁4は、ガス供給源5と溶接機1との間に設けられておりシールドガスの供給を制御するためのガス流量調整装置3に設けられた構成としてもよい。 In the first and second embodiments, the first valve 2 is provided in the welding machine 1, and the second valve 4 is provided between the gas supply source 5 and the welding machine 1. It is good also as a structure provided in the gas flow volume adjustment apparatus 3 for controlling supply of shield gas.
 このような構成が、ガスの突出抑制やトーチ等への干渉の抑制、設置工事の手間の削減、コスト削減などの観点に鑑み、最適な組み合わせである。 Such a configuration is an optimal combination in view of suppression of gas protrusion, interference with a torch, etc., reduction of installation work, and cost reduction.
 本発明によれば、溶接開始時のガスの突出を防止して、シールドガスの無駄を抑制することができ、シールドガスを制御するための弁を有する溶接機を備えた溶接装置として産業上有用である。 According to the present invention, it is possible to prevent gas from protruding at the start of welding, suppress waste of shielding gas, and industrially useful as a welding apparatus including a welding machine having a valve for controlling shielding gas. It is.
 1  溶接機
 2  ガスバルブ(第1の弁)
 3  ガス流量調整装置
 4  ガスバルブ(第2の弁)
 5  ガスボンベ(ガス供給源)
 5a  配管
 6  ガスレギュレータ(流量調整器)
 7  制御部
 8  流量センサ
 9  溶接制御部
 10  電流設定ボタン
 11  ガス流量設定ボタン
 12  表示部
 13  ジョグダイヤル
 14  溶接トーチ
 15  操作部
 16  記憶部
 17  流量決定部
 18  溶接電流設定部
 19  矢印
 20  流量変更部
1 Welding machine 2 Gas valve (first valve)
3 Gas flow control device 4 Gas valve (second valve)
5 Gas cylinder (gas supply source)
5a Piping 6 Gas regulator (flow rate regulator)
DESCRIPTION OF SYMBOLS 7 Control part 8 Flow sensor 9 Welding control part 10 Current setting button 11 Gas flow rate setting button 12 Display part 13 Jog dial 14 Welding torch 15 Operation part 16 Memory | storage part 17 Flow rate determination part 18 Welding current setting part 19 Arrow 20 Flow rate change part

Claims (9)

  1. ガス供給源から溶接トーチに至るまでのシールドガスの供給経路の途中に溶接機を有する溶接装置であって、
    前記シールドガスの供給経路に第1の弁および第2の弁を含む少なくとも2つの弁を直列に設け、
    前記第1の弁を前記溶接トーチに近い側に配置し、前記第2の弁を前記ガス供給源に近い側に配置し、
    前記溶接トーチに前記シールドガスを供給する際に、前記第1の弁を開とし、前記第1の弁を開としてから第1の所定時間が経過した後に、前記第2の弁を開とする溶接装置。
    A welding device having a welding machine in the middle of a shield gas supply path from a gas supply source to a welding torch,
    At least two valves including a first valve and a second valve are provided in series in the shield gas supply path;
    The first valve is disposed on the side closer to the welding torch, the second valve is disposed on the side closer to the gas supply source,
    When supplying the shielding gas to the welding torch, the first valve is opened, and after the first predetermined time has elapsed since the first valve is opened, the second valve is opened. Welding equipment.
  2. 前記溶接トーチへの前記シールドガスの供給を停止する際に、前記第2の弁を閉とし、前記第2の弁を閉としてから第2の所定時間が経過した後に、前記第1の弁を閉とする請求項1記載の溶接装置。 When stopping the supply of the shielding gas to the welding torch, the second valve is closed, and after the second predetermined time has elapsed since the second valve was closed, the first valve is turned on. The welding apparatus according to claim 1, wherein the welding apparatus is closed.
  3. 前記溶接機は、
     設定溶接電流とシールドガス流量との定量的関係を対応付けた特性曲線を記憶する記憶部と、
     前記設定溶接電流を設定するための溶接電流設定部と、
     前記溶接電流設定部で設定された前記設定溶接電流と前記記憶部に記憶されている前記特性曲線に基づいて前記シールドガス流量を決定する流量決定部と、
    を備えた請求項1記載の溶接装置。
    The welder is
    A storage unit for storing a characteristic curve in which a quantitative relationship between the set welding current and the shield gas flow rate is associated;
    A welding current setting unit for setting the set welding current;
    A flow rate determining unit that determines the shield gas flow rate based on the set welding current set by the welding current setting unit and the characteristic curve stored in the storage unit;
    The welding apparatus according to claim 1, further comprising:
  4. 前記溶接機は、
     設定溶接電流とシールドガス流量との定量的関係を対応付けた特性曲線を記憶する記憶部と、
     前記設定溶接電流を設定するための溶接電流設定部と、
     前記溶接電流設定部で設定された前記設定溶接電流と前記記憶部に記憶されている前記特性曲線に基づいて前記シールドガス流量を決定する流量決定部と、
     を備えた請求項2記載の溶接装置。
    The welder is
    A storage unit for storing a characteristic curve in which a quantitative relationship between the set welding current and the shield gas flow rate is associated;
    A welding current setting unit for setting the set welding current;
    A flow rate determining unit that determines the shield gas flow rate based on the set welding current set by the welding current setting unit and the characteristic curve stored in the storage unit;
    The welding apparatus according to claim 2, comprising:
  5. 前記溶接機は、前記流量決定部で決定された前記シールドガス流量を変更する流量変更部を備えた請求項3記載の溶接装置。 The welding apparatus according to claim 3, wherein the welding machine includes a flow rate changing unit that changes the shielding gas flow rate determined by the flow rate determining unit.
  6. 前記記憶部に記憶された前記特性曲線は一次曲線であり、
    前記流量変更部で前記シールドガス流量を変更すると、前記設定溶接電流と変更された前記シールドガス流量との関係が示す位置を第2の変極点とし、
    前記設定溶接電流から第1の所定値だけ小さい溶接電流値と前記一次曲線との交点を第1の変極点とし、
    前記設定溶接電流から第2の所定値だけ大きい溶接電流値と前記一次曲線との交点を第3の変極点とし、
    前記第1の変極点と前記第2の変極点との間を直線補完し、かつ、前記第2の変極点と前記第3の変極点との間を直線補完した新たな特性曲線を作成し、前記設定溶接電流を変更するまでは、前記新たな特性曲線に基づいて前記シールドガス流量を決定する請求項5記載の溶接装置。
    The characteristic curve stored in the storage unit is a linear curve,
    When changing the shield gas flow rate in the flow rate change unit, the position indicated by the relationship between the set welding current and the changed shield gas flow rate is a second inflection point,
    The intersection of the welding current value that is smaller than the set welding current by a first predetermined value and the primary curve is the first inflection point,
    The intersection of the welding current value larger than the set welding current by a second predetermined value and the primary curve is the third inflection point,
    A new characteristic curve is created by linear interpolation between the first inflection point and the second inflection point, and linear interpolation between the second inflection point and the third inflection point. The welding apparatus according to claim 5, wherein the shield gas flow rate is determined based on the new characteristic curve until the set welding current is changed.
  7. 前記溶接電流設定部により、定常溶接期間の定常溶接電流と、前記定常溶接期間の前の期間である初期期間の初期溶接電流と、前記定常溶接期間の後の期間である終期期間の終期溶接電流と、を設定しておき、
    前記流量変更部で前記定常溶接期間のシールドガス流量を変更すると、新たな特性曲線を作成し、前記初期溶接電流に対応するシールドガス流量と前記終期溶接電流に対応するシールドガス流量は、前記新たな特性曲線に基づいて決定される請求項6記載の溶接装置。
    By the welding current setting unit, the steady welding current in the steady welding period, the initial welding current in the initial period that is the period before the steady welding period, and the final welding current in the final period that is the period after the steady welding period. And set
    When the flow rate change unit changes the shield gas flow rate during the steady welding period, a new characteristic curve is created, and the shield gas flow rate corresponding to the initial welding current and the shield gas flow rate corresponding to the final welding current are set to the new flow rate. The welding apparatus according to claim 6, wherein the welding apparatus is determined based on a characteristic curve.
  8. 前記溶接機に前記第1の弁を設け、前記ガス供給源と前記溶接機との間に設けられており前記シールドガスの供給を制御するためのガス流量調整装置に前記第2の弁を設けた請求項1から7のいずれか1項に記載の溶接装置。 The first valve is provided in the welder, and the second valve is provided in a gas flow rate adjusting device provided between the gas supply source and the welder for controlling the supply of the shield gas. The welding apparatus according to any one of claims 1 to 7.
  9. 前記ガス流量調整装置を前記溶接機に取り付けた請求項8記載の溶接装置。 The welding apparatus according to claim 8, wherein the gas flow rate adjusting device is attached to the welding machine.
PCT/JP2012/004854 2011-10-05 2012-07-31 Welding device WO2013051178A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280003815.4A CN103228390B (en) 2011-10-05 2012-07-31 Welder
JP2013506391A JP5263462B1 (en) 2011-10-05 2012-07-31 Welding equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-220584 2011-10-05
JP2011220584 2011-10-05

Publications (1)

Publication Number Publication Date
WO2013051178A1 true WO2013051178A1 (en) 2013-04-11

Family

ID=48043364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004854 WO2013051178A1 (en) 2011-10-05 2012-07-31 Welding device

Country Status (3)

Country Link
JP (1) JP5263462B1 (en)
CN (1) CN103228390B (en)
WO (1) WO2013051178A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4032650A1 (en) * 2021-01-22 2022-07-27 Illinois Tool Works, Inc. Gas surge prevention using improved flow regulators in welding-type systems
CN116441674A (en) * 2023-06-14 2023-07-18 苏芯物联技术(南京)有限公司 High-precision welding airflow control system and control method
US11724331B2 (en) 2016-08-15 2023-08-15 Illinois Tool Works Inc. System and method for controlling shielding gas flow in a welding device
US11801482B2 (en) 2021-02-17 2023-10-31 Illinois Tool Works Inc. Mixing fluids in welding-type equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108064192A (en) * 2016-12-30 2018-05-22 深圳配天智能技术研究院有限公司 A kind of arc-welding control method, control system and arc welding robot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144873A (en) * 1980-04-09 1981-11-11 Matsushita Electric Ind Co Ltd Arc welding equipment
JPS58224078A (en) * 1982-06-23 1983-12-26 Matsushita Electric Ind Co Ltd Arc welding machine
JPS62207584A (en) * 1986-03-07 1987-09-11 Osaka Denki Co Ltd Arc welding equipment
JPH08206837A (en) * 1994-10-29 1996-08-13 Hyundai Heavy Ind Co Ltd Protective gas preflow time control device of gas metal arc welding machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747209B2 (en) * 1987-10-23 1995-05-24 株式会社日立製作所 Welding condition automatic setting device
JP3116525B2 (en) * 1992-03-17 2000-12-11 松下電器産業株式会社 Consumable electrode arc welding machine
JP2005103592A (en) * 2003-09-30 2005-04-21 Daihen Corp Arc welding equipment
CN101850458B (en) * 2009-03-31 2013-04-03 株式会社三社电机制作所 Protection gas controlling device and welding device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144873A (en) * 1980-04-09 1981-11-11 Matsushita Electric Ind Co Ltd Arc welding equipment
JPS58224078A (en) * 1982-06-23 1983-12-26 Matsushita Electric Ind Co Ltd Arc welding machine
JPS62207584A (en) * 1986-03-07 1987-09-11 Osaka Denki Co Ltd Arc welding equipment
JPH08206837A (en) * 1994-10-29 1996-08-13 Hyundai Heavy Ind Co Ltd Protective gas preflow time control device of gas metal arc welding machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11724331B2 (en) 2016-08-15 2023-08-15 Illinois Tool Works Inc. System and method for controlling shielding gas flow in a welding device
EP4032650A1 (en) * 2021-01-22 2022-07-27 Illinois Tool Works, Inc. Gas surge prevention using improved flow regulators in welding-type systems
US11938574B2 (en) 2021-01-22 2024-03-26 Illinois Tool Works Inc. Gas surge prevention using improved flow regulators in welding-type systems
US11801482B2 (en) 2021-02-17 2023-10-31 Illinois Tool Works Inc. Mixing fluids in welding-type equipment
CN116441674A (en) * 2023-06-14 2023-07-18 苏芯物联技术(南京)有限公司 High-precision welding airflow control system and control method
CN116441674B (en) * 2023-06-14 2023-08-15 苏芯物联技术(南京)有限公司 High-precision welding airflow control system and control method

Also Published As

Publication number Publication date
JP5263462B1 (en) 2013-08-14
CN103228390B (en) 2016-02-24
JPWO2013051178A1 (en) 2015-03-30
CN103228390A (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5263462B1 (en) Welding equipment
US11872658B2 (en) Methods and apparatus to synergically control a welding-type output during a welding-type operation
US20130112660A1 (en) Welding torch with gas flow control
WO2009111363A3 (en) Semi-autonomous excavation control system
EP1860927A3 (en) Automatic gas control for a plasma arc torch
EP1655095A3 (en) Metering system and method for supplying gas to a torch
TW200632287A (en) System and method for measuring flow
US20190168330A1 (en) Electronic shielding gas flow regulator system applied in welding equipment
EP1845758A3 (en) Plasma torch
EP3489422A3 (en) Controlling earthmoving machine
MX2013003622A (en) Ergonomic torch regulator controller; torch comprising such ergonomic controller.
KR102190947B1 (en) Plasma cutting apparatus
MX2009008349A (en) Method for assisting at least partially manual control of a metal processing line.
KR101505298B1 (en) Shielding gas feeding apparatus for welding
KR20140070836A (en) Automatic welding device and welding method using the same
CN201462850U (en) Gas distributor structure of flame gas cutting machine
KR102314966B1 (en) Apparatus for controlling weld shielding gas
KR101467205B1 (en) Apparatus and method for controlling welding feeder
KR100995373B1 (en) Control unit for arc welding machine
JP3209619U (en) Welding equipment
US20210114130A1 (en) Systems and methods for remote weld schedule control
JP2009006346A (en) Arc welding apparatus
KR101135237B1 (en) Welding torch of semi-auto plasma arc welding
KR20140093112A (en) Gas arc welder
KR200248917Y1 (en) An oxyacetylene welding apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280003815.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013506391

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838265

Country of ref document: EP

Kind code of ref document: A1