WO2013051110A1 - 海水淡水化前処理用分離膜および海水淡水化前処理装置 - Google Patents
海水淡水化前処理用分離膜および海水淡水化前処理装置 Download PDFInfo
- Publication number
- WO2013051110A1 WO2013051110A1 PCT/JP2011/072851 JP2011072851W WO2013051110A1 WO 2013051110 A1 WO2013051110 A1 WO 2013051110A1 JP 2011072851 W JP2011072851 W JP 2011072851W WO 2013051110 A1 WO2013051110 A1 WO 2013051110A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pretreatment
- seawater desalination
- membrane
- separation membrane
- removal rate
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/04—Feed pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/32—Polyalkenyl halides containing fluorine atoms
- B01D71/36—Polytetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/20—Specific permeability or cut-off range
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/20—Prevention of biofouling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Definitions
- the present invention relates to a separation membrane for seawater desalination pretreatment, a seawater desalination pretreatment device, a seawater desalination device, and a seawater desalination method that can effectively remove seawater turbidity.
- RO membrane Reverse Osmosis Membrane
- This reverse osmosis membrane is a semipermeable membrane having ultrafine pores with a diameter of about 0.1 to 0.5 nm, and has the property of selectively allowing only water molecules to permeate and not impurities such as salts. .
- seawater which is raw water
- turbidity composed of coarse particles. Therefore, in order to prevent the contamination of the reverse osmosis membrane due to the turbidity, a pretreatment for removing the turbidity from the raw water is generally performed before the treatment with the reverse osmosis membrane.
- Non-Patent Document 1 sand filtration, filtration with a membrane having pores larger than those of a reverse osmosis membrane, for example, microfiltration (MF), ultrafiltration (UF), and combinations thereof are performed.
- MF microfiltration
- UF ultrafiltration
- Microfiltration is a method of removing turbidity by passing raw water through a microfiltration membrane (MF membrane) with a pore size of about 100 to 1000 nm.
- Ultrafiltration is an ultrafiltration method with a pore size of about 1 to 100 nm.
- TEP transparent exopolymer particles
- the present inventors are considering removing TEP in advance using a filtration membrane (LF membrane) having an average pore diameter of 1 ⁇ m or more prior to filtration with an MF membrane or UF membrane. Even in this LF membrane, the decrease in the flux due to the occurrence of the fouling may be caused at an early stage, which is not sufficient.
- LF membrane filtration membrane
- the present invention is a seawater that can supply a sufficient amount of raw water to the RO membrane constantly without increasing the pressure while maintaining a high flux while removing TEP at a high removal rate. It is an object to provide a separation membrane for desalination pretreatment, a seawater desalination pretreatment device, and a seawater desalination method.
- PTFE polytetrafluoroethylene
- the present inventors used the standard flux A shown below as an index related to securing the flux, and the saccharide removal rate B shown below as an index related to the TEP removal rate, Evaluation was based on specific figures.
- the standard flux A is filtered at a constant flux, and P2 ⁇ 1.5 ⁇ between the initial 30-minute average transmembrane pressure P1 and the 120-minute average transmembrane pressure P2 after 30 minutes.
- Sugar removal rate B (1-saccharide amount in filtered water / saccharide amount in raw water)
- the amount of saccharide is obtained by quantitatively analyzing the amount of saccharide for each organic substance in water and totalizing them.
- the present inventors measure organic substances in water as the total amount (carbon amount) of organic carbon as a method for measuring organic substances in water more easily. The focus was on TOC (Total Organic Carbon).
- Granular carbon removal rate C (1 ⁇ POC in filtered water / POC in raw water)
- the standard flux A is 2 m / d or more
- the saccharide removal rate B or the granular carbon removal rate C is 0.3 or more, preferably 0.5. It has been found that by using the above film material, TEP can be removed at a high removal rate while ensuring a sufficient flux.
- m / d shows the filtration flow rate (m3) of 1 day (day) per unit membrane area (1m2).
- a sufficient flow rate is obtained.
- TEP can be removed at a high removal rate while securing a bundle.
- the above evaluation results are not limited to the PTFE membrane material, and it is considered that the same evaluation results can be obtained if the porous body has large pores and a fibril structure.
- PTFE also satisfies this value.
- the value is more preferably 5 or more, and even more preferably 10 or more.
- the invention described in claim 1 is a separation membrane for seawater desalination pretreatment using a reverse osmosis membrane for pretreatment of seawater desalination, wherein filtration is performed at a constant flux, and the initial 30 minutes.
- Standard flow defined as the maximum value of the flux that can satisfy P2 ⁇ 1.5 ⁇ P1 between the average transmembrane pressure P1 and the average transmembrane pressure P2 for 30 minutes after 120 minutes.
- the separation membrane for seawater desalination pretreatment is characterized in that the bundle A is 2 m / d or more and the saccharide removal rate B shown by the following formula is 0.3 or more.
- Sugar removal rate B (1-saccharide amount in filtered water / saccharide amount in raw water)
- the invention described in claim 2 is the separation membrane for seawater desalination pretreatment according to claim 1, wherein the saccharide removal rate B is 0.5 or more.
- the invention according to claim 10 is a separation membrane for seawater desalination pretreatment used for pretreatment of seawater desalination using a reverse osmosis membrane, wherein filtration is performed at a constant flux, and an initial 30 minutes Standard flow defined as the maximum value of the flux that can satisfy P2 ⁇ 1.5 ⁇ P1 between the average transmembrane pressure P1 and the average transmembrane pressure P2 for 30 minutes after 120 minutes.
- the separation membrane for pretreatment for seawater desalination is characterized in that the bundle A is 2 m / d or more and the granular carbon removal rate C shown by the following formula is 0.3 or more.
- Granular carbon removal rate C (1 ⁇ POC in filtered water / POC in raw water)
- POC Suspended organic carbon content (difference between total organic carbon content and dissolved organic carbon content)
- the invention according to claim 11 is the separation membrane for seawater desalination pretreatment according to claim 10, wherein the granular carbon removal rate C is 0.5 or more.
- the invention according to claims 3 and 12 is characterized in that the separation membrane for pretreatment of seawater desalination is made of polytetrafluoroethylene. It is a separation membrane.
- the pore size of the separation membrane for seawater desalination pretreatment is 1 ⁇ m or more. It is a separation membrane.
- an LF membrane having a pore diameter of 1 ⁇ m or more.
- the pore diameter of the membrane is expressed as an average pore diameter.
- the average pore diameter means a pore diameter determined by a bubble point method (air flow method).
- this pore diameter is determined by using IPA bubble point value (pressure) measured in accordance with ASTM F316 using isopropyl alcohol as P (Pa), liquid surface tension (dynes / cm) as ⁇ , and B as a capillary constant. Means a diameter d ( ⁇ m) represented by the following formula. The same applies to the average pore diameters of MF membranes, UF membranes, and the like.
- the LF membrane has an average pore diameter of 1 ⁇ m or more, the flow rate (flux) per unit membrane area can be increased, and from the reverse, a desired throughput can be obtained with smaller equipment.
- the smaller the average pore diameter of the LF membrane the smaller particles can be removed, and the removal rate of organic particles such as turbidity and TEP in the pretreatment is improved.
- the smaller the average pore size of the LF membrane the smaller the flow rate (flux) per unit membrane area. Accordingly, an optimum pore size is selected in consideration of a desired removal rate of organic particles such as turbidity and TEP and a flow rate (flux) per unit membrane area.
- the invention described in claims 5 and 14 is the separation membrane for pretreatment of seawater desalination according to claim 1 or 10, wherein the separation membrane for pretreatment of seawater desalination is not hydrophilized. is there.
- the membrane is a polymer membrane made of a hydrophobic material such as a PTFE membrane (hydrophobic polymer membrane), in general, in order to improve the affinity with the liquid to be treated, for example, the PTFE membrane is made of vinyl. Hydrophilization is performed by a method of surface cross-linking with a hydrophilizing compound such as alcohol.
- the hydrophilization treatment is a method in which the membrane and hydrophilic alcohol are brought into contact before the liquid to be treated is permeated and the surface of the membrane (including the inside of the pores) is covered with hydrophilic alcohol. It is preferable to use it.
- the hydrophilic alcohol include ethanol and propanol, and isopropanol is particularly preferably used.
- the invention described in claims 6 and 15 is a seawater desalination pretreatment device characterized in that the separation membrane for seawater desalination pretreatment described in claims 1 and 10 is used as a filtration membrane.
- the invention described in claims 7 and 16 is a pretreatment means using a microfiltration membrane or an ultrafiltration membrane after the pretreatment means using the separation membrane for seawater desalination pretreatment according to claims 1 and 10.
- seawater desalination pretreatment apparatus Excellent filtration characteristics that can further remove fine turbidity other than organic matter removed by the separation membrane for seawater desalination pretreatment by further arranging a microfiltration membrane or ultrafiltration membrane with a smaller pore size
- the seawater desalination pretreatment apparatus can be provided.
- seawater desalination pretreatment device By using a seawater desalination pretreatment device with excellent filtration characteristics, it is possible to supply raw water from which organic substances have been sufficiently removed, so a desalination treatment device using a reverse osmosis membrane for a long time, Even when the desalting treatment is performed, it is possible to provide a seawater desalination apparatus in which occurrence of fouling in the RO membrane is suppressed.
- the invention described in claims 9 and 18 is characterized in that the raw water filtered using the seawater desalination pretreatment device described in claims 6 and 15 is desalted using a reverse osmosis membrane method. It is a seawater desalination method.
- the desalting treatment is performed on the raw water from which organic substances have been sufficiently removed, the occurrence of fouling in the RO membrane is suppressed even when the desalting treatment is performed for a long time.
- a sufficient amount of raw water can be constantly supplied to the RO membrane without increasing the pressure while maintaining a high flux while removing TEP at a high removal rate.
- FIG. 1 is a diagram illustrating a separation membrane according to this embodiment.
- FIG. 1A is a schematic view of the separation membrane as viewed in plan.
- the separation membrane according to the present embodiment is a porous membrane made of PTFE, and, as shown in FIG. 1 (a), a large number of nodules 1 and a thickness of 1 ⁇ m or less connecting the nodules 1 to each other. It is composed of fine fibers (fibrils) 3, and a large number of pores 2 are formed between the knot portions 1.
- FIG. 1B is a schematic diagram showing a state where the jelly-like object M is supplemented by the structure of the knot portion 1 and the fine fiber 3. Since the fine fibers 3 are present in a state of being irregularly arranged in the plane direction and the thickness direction, even if the pore diameter of the pores 2 is large, the jelly is mainly composed of saccharides throughout the thickness direction of the membrane. Of carbon can be reliably captured. By removing the jelly-like carbon, the total carbon (TOC) in the raw water is reduced, and in particular, the granular carbon (POC) is reduced.
- TOC total carbon
- POC granular carbon
- the TOC of the sample (raw water and filtered water) is measured with a TOC meter.
- the sample is filtered with a filter having a pore size of 0.1 ⁇ m (this removes 100% of POC, leaving only DOC in the filtered water).
- DOC contained in filtered water is measured with a TOC meter.
- TOC indicates the total amount of carbon in the organic compound present in the raw water (total organic carbon, Total Organic Carbon), and DOC indicates the amount of carbon in the organic compound present in the filtered water (dissolved organic carbon, Dissolved).
- Organic Carbon indicates the removed granular carbon (Particulate Organic Carbon).
- the pretreatment device 11 includes the separation membrane having the above-described configuration.
- a single-stage filtration using only the above-described separation membrane may be used, and the first pretreatment apparatus including the separation membrane having the above-described configuration and ultrafiltration using a UF membrane or microfiltration using an MF membrane are performed.
- the pretreatment device may be configured as two-stage filtration with the second pretreatment device. Even if one-stage filtration is effective in removing saccharides sufficiently, it is effective in that the membrane area of the entire pretreatment device can be reduced. However, by using two-stage filtration, filtration including other objects to be removed is also possible. Can be improved.
- the seawater desalination apparatus configured as described above first pretreats seawater by passing it through the separation membrane described above with the pretreatment apparatus 11, and filters and removes organic turbidity and inorganic solids in the seawater. To do. Next, the seawater from which organic turbidity and inorganic solids have been removed by the pretreatment device 11 is passed through the desalting device 10 for desalting to obtain fresh water.
- the capacity of the pretreatment device 11 or the desalination device 10 When the capacity of the pretreatment device 11 or the desalination device 10 is reduced due to long-term operation, it can be backwashed to restore the capability and used repeatedly for seawater desalination.
- the “hydrophobic TT method” to be described later refers to a method in the case of using a hydrophobic film that is not subjected to a hydrophilic treatment (the hydrophilic treatment with alcohol is performed first).
- (1) Hollow fiber module A hollow fiber membrane module provided with a PTFE hollow fiber membrane having a fibril structure (PORFLON (registered trademark) type: TBW-2311-200) was used. The details of this hollow fiber membrane module are as follows.
- Standard flux 10 m / d Hollow fiber membrane: 360 pieces Effective length 1000mm Hollow fiber outer diameter 2.3mm Hollow fiber inner diameter 1.1mm Hollow fiber film thickness 600 ⁇ m Pore size 2.0 ⁇ m (average particle rejection 90% or more) 70% porosity
- porosity 100 ⁇ ⁇ 1 ⁇ (hollow fiber resin volume cc) / hollow fiber bulk volume cc) ⁇
- Hollow fiber resin volume hollow fiber weight g / PTFE density
- Hollow fiber bulk volume hollow fiber cross-sectional area cm3 x length cm (2) Filtration conditions Pressure: Filtration was performed under a pressure of 50 kPa. 2.
- Measurement of flux and removal rate (1) Measurement method Measurement of flux The flux was measured by the amount of filtered water accumulated in the graduated cylinder at a fixed time.
- the solvent was distilled off with a centrifugal evaporator, and 1 mL of water was accurately added and irradiated with ultrasonic waves.
- This solution was placed in a filter unit (0.45 ⁇ m) containing an ion exchange resin and centrifuged (10000 rpm) for 1 minute to obtain a sample solution.
- Standard solution preparation Water was added to 10 mg each of arabinose, glucose, galactose, fructose, mannose, and rhamnose to make exactly 50 mL. 5 mL of this solution was accurately taken, and water was added to make exactly 50 mL to obtain a standard solution.
- the standard solution was accurately diluted with water to prepare standard solution 1 (about 0.2 ⁇ g / mL each), standard solution 2 (about 1 ⁇ g / mL each), and standard solution 3 (about 5 ⁇ g / mL each).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
上記糖類除去率Bの計算において、糖類量は、水中の各有機物毎にその糖類量を定量分析し、それらを総合計することにより求められる。しかし、水中の有機物の種類は膨大であるため、本発明者らは、より簡便に、水中の有機物をまとめて測定する方法として、水中の有機物を有機体炭素の総量(炭素量)として測定するTOC(Total Organic Carbon:全有機炭素)に着目した。
上記の各指標につき、種々の実験を行い、検討した結果、標準流束Aが2m/d以上であり、かつ糖類除去率Bまたは粒状カーボン除去率Cが0.3以上、望ましくは0.5以上の膜材を用いることにより、充分な流束を確保しながら、高い除去率でTEPの除去を行うことができることが分かった。
そして、請求項2に記載の発明は、前記糖類除去率Bが0.5以上であることを特徴とする請求項1に記載の海水淡水化前処理用分離膜である。
但し、POC:懸濁体有機炭素量(全有機炭素量と溶存有機炭素量との差)
そして、請求項11に記載の発明は、前記粒状カーボン除去率Cが0.5以上であることを特徴とする請求項10に記載の海水淡水化前処理用分離膜である。
LF膜は1μm以上の平均孔径を有するので、単位膜面積当たりの流量(流束)を大きくすることができ、逆から見れば、より小さい設備で所望の処理量を得ることができる。LF膜の平均孔径が小さい程、より小さな粒子の除去が可能になり、前処理における濁質やTEP等の有機性粒子の除去率は向上する。一方、LF膜の平均孔径が小さい程、単位膜面積当たりの流量(流束)は小さくなる。従って、濁質やTEP等の有機性粒子の所望の除去率及び単位膜面積当たりの流量(流束)を考慮して最適の孔径が選択される。
1.分離膜
はじめに、本実施の形態の海水淡水化前処理用分離膜について説明する。図1は本実施の形態の分離膜を説明する図である。図1(a)は当該分離膜を平面的に見た模式図である。
2.流束の測定
流束は、一定流束で濾過を行い、初期30分の平均膜間差圧P1と、120分経過以降30分間の平均膜間差圧P2との間で、P2≦1.5×P1を満足することができる流束の最高値を求め、標準流束Aとする。
3.除去率の測定
次に、除去率の測定方法について説明する。除去率は、一般的には糖類除去率で評価されるが、測定の簡便さの観点から、糖類除去率に替えて、粒状カーボン除去率で評価することもできる。
(1)糖類除去率
糖類除去率は、
糖類除去率=1-濾過水中の糖類量/原水中の糖類量
で表され、糖分分析により濾過水中の糖類量および原水中の糖類量を測定する。
(2)粒状カーボン除去率
粒状カーボン除去率は、
粒状カーボン除去率=1-濾過水中のPOC/原水中のPOC
で表され、濾過水中および原水中のPOCは、以下の手順で算定される。
II.試料を孔径0.1μmのフィルタで濾過する(これにより、POCが100%除去され、濾過水にはDOCのみが残る。)
III.濾過水中に含まれるDOCをTOC計で測定する。
POC=TOC-DOC
によりPOCを算定する。
4.海水淡水化装置
次に、海水淡水化装置について説明する。図2に示す海水淡水化装置は、前処理装置11と前処理した海水を脱塩する脱塩装置10とから構成されている。図中の矢印は処理対象である水の流れを表し、前処理装置11の前段にはポンプが配置されている。
(1)前処理装置
前処理装置11は、前記した構成の分離膜を備えている。前述の分離膜のみでの1段濾過で構成しても良く、また、前記した構成の分離膜を備えた第1の前処理装置と、UF膜による限外濾過やMF膜による精密濾過を行う第2の前処理装置との2段濾過として前処理装置を構成してもよい。1段濾過でも充分糖類除去の効果があり、前処理装置全体の膜面積を少なくすることができる点で効果的であるが、2段濾過にすることでさらに他の除去対象物を含めた濾過の程度を向上させることができる。
(2)脱塩装置
脱塩装置10は、孔径が1~2nm程度の逆浸透膜を備えている。脱塩装置10は、逆浸透膜がスパイラル型やチューブラー型に構成されたものであってもよいし、中空糸膜から構成されたものであってもよいが、大量の海水を処理するための構造とすることが必要である。
(実施例1)
本実施例では、粒状カーボン除去率を用いて、分離膜の評価を行っている。
1.濾過
海水を原水として本発明の分離膜を備えた親水TT方式の前処理装置を用いて濾過した。ここで、親水TT方式とは、本発明に使用するフィブリル構造を有した膜を用いた処理方式を命名したものであり、表面に親水ポリマーを架橋固定して親水化加工した膜(PTFE製LF膜)を「親水TT膜」と呼び、TTはTEP Trapの頭文字から命名されたものである。後述する「疎水TT方式」は、親水化加工を施さない疎水性の膜を用いた場合(アルコールによる親水化処理は最初に行う)の方式を呼ぶ。
(1)中空糸モジュール
フィブリル構造を有するPTFE製の中空糸膜(ポアフロン(登録商標) タイプ:TBW-2311-200)を設けた中空糸膜モジュールを用いた。この中空糸膜モジュールの詳細は以下の通りである。
中空糸膜:本数 360本
有効長 1000mm
中空糸外径 2.3mm
中空糸内径 1.1mm
中空糸膜厚さ 600μm
孔径 2.0μm(平均の粒子阻止率90%以上)
気孔率 70%
ここで、気孔率=100×{1-(中空糸樹脂体積cc)/中空糸嵩体積cc)}
中空糸樹脂体積=中空糸重量g/PTFE密度
中空糸嵩体積=中空糸断面積cm3×長さcm
(2)濾過条件
圧力:50kPaの圧力の下で濾過を行った。
2.流束および除去率の測定
(1)測定方法
I.流束の測定
一定時間にメスシリンダに溜まる濾過水量により流束を測定した。
燃焼触媒酸化方式のTOC計(全有機体炭素計)、島津製作所社製、タイプTOC-Vcを用いて粒状カーボン除去率を測定した。なお、参考としてシリカ、アルミニウム、鉄についても分析を行った。
(2)測定結果
I.流束
流束は、10m/dであった。
測定結果を表1に示す。
(実施例2)
本実施例では、糖類除去率を用いて、分離膜の評価を行っている。
1.濾過
静岡県静岡市沿岸の海水を原水として本発明の分離膜を備えた親水TT方式および疎水TT方式の前処理装置を用いて濾過した。なお、比較のため2μmメッシュの金網を用いて濾過した。以下の測定以外は実施例1と同様である。
2.測定
(1)糖類除去率の測定
糖分分析によりTOCおよびガラクトース、グルコースについて除去率の測定を行った。具体的には以下の手順で分析を行った。
試料980mL(ミリリットル)を数回に分けて凍結乾燥を行い、水を用いて洗い込み正確に100mLとした。
調整した試料1mLと4mol/Lトリフルオロ酢酸1mLを混合し、減圧封管後、100℃で3時間加熱し、加水分解を行った。
アラビノース、グルコース、ガラクトース、フルクトース、マンノース、およびラムノース、各々10mgに水を加えて正確に50mLとした。この溶液5mLを正確にとり、水を加えて正確に50mLとし、標準溶液とした。標準溶液を水で正確に希釈し、標準溶液1(各約0.2μg/mL)、標準溶液2(各約1μg/mL)、標準溶液3(各約5μg/mL)を調整した。
糖分析計 :日本ダイオネクス製 ICS-3000
検出器 :電気化学検出器
カラム :CarboPacPA10(4mmI.D×250mm)
カラム温度:25℃付近一定温度
移動相A:10mmol/L水酸化ナトリウム溶液
移動相B:200mmol/L水酸化ナトリウム溶液
グラジエント条件は、表2に示す。
表3に結果を示す。
海水中の糖類:0.021+0.031=0.052ppm
親水TT濾過液中:0.012+0.022=0.034ppm
疎水TT濾過液中:0.006+0.012=0.018ppm
よって、
親水TTの糖類除去率B=(1-0.034/0.052)=0.34
疎水TTの糖類除去率B=(1-0.018/0.052)=0.65
このように、本発明によれば、有機濁質を高効率で除去することができ、脱塩装置の目詰まりを長期に防ぐことができ、コストを低減することができる。また、親水TT方式に比べて疎水TT方式ではその効果が大きいことが分かる。
Claims (18)
- 逆浸透膜を用いた海水淡水化の前処理に用いられる海水淡水化前処理用分離膜であって、
一定流束で濾過を行い、初期30分の平均膜間差圧P1と、120分経過以降30分間の平均膜間差圧P2との間で、P2≦1.5×P1を満足することができる流束の最高値として定義される標準流束Aが、2m/d以上であると共に、
下式で示される糖類除去率Bが、0.3以上である
ことを特徴とする海水淡水化前処理用分離膜。
糖類除去率B=(1-濾過水中の糖類量/原水中の糖類量)) - 前記糖類除去率Bが0.5以上であることを特徴とする請求項1に記載の海水淡水化前処理用分離膜。
- 前記海水淡水化前処理用分離膜が、ポリテトラフルオロエチレン製であることを特徴とする請求項1に記載の海水淡水化前処理用分離膜。
- 前記海水淡水化前処理用分離膜の孔径が、1μm以上であることを特徴とする請求項1に記載の海水淡水化前処理用分離膜。
- 前記海水淡水化前処理用分離膜が、親水化加工されてないことを特徴とする請求項1に記載の海水淡水化前処理用分離膜。
- 請求項1に記載の海水淡水化前処理用分離膜が濾過膜として用いられていることを特徴とする海水淡水化前処理装置。
- 請求項1に記載の海水淡水化前処理用分離膜を用いた前処理手段の後に、精密濾過膜または限外濾過膜を用いた前処理手段が設けられていることを特徴とする請求項6に記載の海水淡水化前処理装置。
- 請求項6に記載の海水淡水化前処理装置と、
逆浸透膜を用いた脱塩処理装置と
を有することを特徴とする海水淡水化装置。 - 請求項6に記載の海水淡水化前処理装置を用いて濾過された原水を、
逆浸透膜法を用いて脱塩処理すること
を特徴とする海水淡水化方法。 - 逆浸透膜を用いた海水淡水化の前処理に用いられる海水淡水化前処理用分離膜であって、
一定流束で濾過を行い、初期30分の平均膜間差圧P1と、120分経過以降30分間の平均膜間差圧P2との間で、P2≦1.5×P1を満足することができる流束の最高値として定義される標準流束Aが、2m/d以上であると共に、
下式で示される粒状カーボン除去率Cが、0.3以上である
ことを特徴とする海水淡水化前処理用分離膜。
粒状カーボン除去率C=(1-濾過水中のPOC/原水中のPOC)
但し、POC:懸濁体有機炭素量(全有機炭素量と溶存有機炭素量との差) - 前記粒状カーボン除去率Cが0.5以上であることを特徴とする請求項10に記載の海水淡水化前処理用分離膜。
- 前記海水淡水化前処理用分離膜が、ポリテトラフルオロエチレン製であることを特徴とする請求項10に記載の海水淡水化前処理用分離膜。
- 前記海水淡水化前処理用分離膜の孔径が、1μm以上であることを特徴とする請求項10に記載の海水淡水化前処理用分離膜。
- 前記海水淡水化前処理用分離膜が、親水化加工されてないことを特徴とする請求項10に記載の海水淡水化前処理用分離膜。
- 請求項10に記載の海水淡水化前処理用分離膜が濾過膜として用いられていることを特徴とする海水淡水化前処理装置。
- 請求項10に記載の海水淡水化前処理用分離膜を用いた前処理手段の後に、精密濾過膜または限外濾過膜を用いた前処理手段が設けられていることを特徴とする請求項15に記載の海水淡水化前処理装置。
- 請求項15に記載の海水淡水化前処理装置と、
逆浸透膜を用いた脱塩処理装置と
を有することを特徴とする海水淡水化装置。 - 請求項15に記載の海水淡水化前処理装置を用いて濾過された原水を、
逆浸透膜法を用いて脱塩処理すること
を特徴とする海水淡水化方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201490015A ES2545805R1 (es) | 2011-10-04 | 2011-10-04 | Membrana de Separación para el Pretratamiento de Desalación de Agua de Mar y Dispositivo de Pretratamiento de Desalación de Agua de Mar |
SG11201400896YA SG11201400896YA (en) | 2011-10-04 | 2011-10-04 | Separation membrane for seawater desalination pretreatment and seawater desalination pretreatment device |
KR1020147009232A KR20140085444A (ko) | 2011-10-04 | 2011-10-04 | 해수 담수화 전처리용 분리막 및 해수 담수화 전처리 장치 |
PCT/JP2011/072851 WO2013051110A1 (ja) | 2011-10-04 | 2011-10-04 | 海水淡水化前処理用分離膜および海水淡水化前処理装置 |
CN201180073959.2A CN103874661B (zh) | 2011-10-04 | 2011-10-04 | 海水淡化预处理用分离膜和海水淡化预处理装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/072851 WO2013051110A1 (ja) | 2011-10-04 | 2011-10-04 | 海水淡水化前処理用分離膜および海水淡水化前処理装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013051110A1 true WO2013051110A1 (ja) | 2013-04-11 |
Family
ID=48043302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/072851 WO2013051110A1 (ja) | 2011-10-04 | 2011-10-04 | 海水淡水化前処理用分離膜および海水淡水化前処理装置 |
Country Status (5)
Country | Link |
---|---|
KR (1) | KR20140085444A (ja) |
CN (1) | CN103874661B (ja) |
ES (1) | ES2545805R1 (ja) |
SG (1) | SG11201400896YA (ja) |
WO (1) | WO2013051110A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4525857B1 (ja) * | 2009-12-11 | 2010-08-18 | 住友電気工業株式会社 | 水処理システムの前処理装置及び前処理方法 |
JP2011031122A (ja) * | 2009-07-29 | 2011-02-17 | Sumitomo Electric Ind Ltd | 多孔質複層中空糸、中空糸膜モジュールおよび濾過装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE532576T1 (de) * | 2005-09-20 | 2011-11-15 | Aquaporin As | Bei der erzeugung von energie aus salzgradienten verwendete biomimetische wassermembran, umfassend aquasporine |
KR20120052324A (ko) * | 2009-08-06 | 2012-05-23 | 스미토모덴키고교가부시키가이샤 | 수처리 장치 및 수처리 방법 |
-
2011
- 2011-10-04 CN CN201180073959.2A patent/CN103874661B/zh not_active Expired - Fee Related
- 2011-10-04 SG SG11201400896YA patent/SG11201400896YA/en unknown
- 2011-10-04 WO PCT/JP2011/072851 patent/WO2013051110A1/ja active Application Filing
- 2011-10-04 ES ES201490015A patent/ES2545805R1/es active Pending
- 2011-10-04 KR KR1020147009232A patent/KR20140085444A/ko not_active Application Discontinuation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011031122A (ja) * | 2009-07-29 | 2011-02-17 | Sumitomo Electric Ind Ltd | 多孔質複層中空糸、中空糸膜モジュールおよび濾過装置 |
JP4525857B1 (ja) * | 2009-12-11 | 2010-08-18 | 住友電気工業株式会社 | 水処理システムの前処理装置及び前処理方法 |
Also Published As
Publication number | Publication date |
---|---|
SG11201400896YA (en) | 2014-10-30 |
ES2545805R1 (es) | 2015-10-08 |
ES2545805A2 (es) | 2015-09-15 |
CN103874661B (zh) | 2015-11-25 |
KR20140085444A (ko) | 2014-07-07 |
CN103874661A (zh) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tul Muntha et al. | Advances in polymeric nanofiltration membrane: A review | |
CN109173746B (zh) | 一种高效过滤水中微污染物的复合膜制备方法 | |
Machodi et al. | Synthesis and performance evaluation of PES/chitosan membranes coated with polyamide for acid mine drainage treatment | |
Moarefian et al. | Removal of amoxicillin from wastewater by self-made Polyethersulfone membrane using nanofiltration | |
Song et al. | Solar-intensified ultrafiltration system based on porous photothermal membrane for efficient water treatment | |
JP5633540B2 (ja) | 海水淡水化前処理用分離膜、海水淡水化前処理装置、海水淡水化装置および海水淡水化方法 | |
Ahmed et al. | Importance and significance of UF/MF membrane systems in desalination water treatment | |
JP5019276B2 (ja) | 海水淡水化装置および海水淡水化方法 | |
JP2012196618A (ja) | 濾過膜、膜濾過方法及び膜濾過装置 | |
JP2017170319A (ja) | ポリフッ化ビニリデン製多孔膜とその製造方法 | |
WO2016027302A1 (ja) | 逆浸透膜装置及びその運転方法 | |
US20130081997A1 (en) | Separation membrane for seawater desalination pretreatment, seawater desalination pretreatment device, seawater desalination apparatus, and seawater desalination method | |
Kimura et al. | Confirmation of the correlation between membrane fouling in microfiltration and biopolymer concentrations in various Japanese surface waters | |
Zeng et al. | Rejection of trace level perfluorohexanoic acid (PFHxA) in pure water by loose nanofiltration membrane | |
Ghosh et al. | Preparation of silica-polysulfone based high flux fouling resistant nanocomposite ultrafiltration membranes for separation of proteins, polysaccharides and humic substances | |
WO2013051110A1 (ja) | 海水淡水化前処理用分離膜および海水淡水化前処理装置 | |
Cadogan et al. | Characterization, fouling, and performance of synthesized chitosan–glycerol membranes in bacterial removal from municipal wastewater | |
Lipp et al. | Characterization of nanoparticulate fouling and breakthrough during low-pressure membrane filtration | |
TW201315531A (zh) | 海水淡化前處理用分離膜、海水淡化前處理裝置、海水淡化裝置及海水淡化方法 | |
WO2013054675A1 (ja) | 分離膜、水処理ユニットおよび水処理装置 | |
Shirazi et al. | Membrane distillation | |
Vatsa et al. | Nanofiltration: principles, process modeling, and applications | |
Chen et al. | Study of sodium alginate/polysulfone composite nanofi ltration membrane | |
Prabhakar et al. | Outside skin tubular ultrafiltration membranes for separation of proteins and polysaccharides and removal of turbidity from seawater | |
Sarbatly | Membrane Technology for Water and Wastewater Treatment in Rural Regions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11873605 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: P201490015 Country of ref document: ES |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147009232 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11873605 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |