WO2013050396A1 - Plaque pour échangeur de chaleur et échangeur de chaleur muni de telles plaques - Google Patents

Plaque pour échangeur de chaleur et échangeur de chaleur muni de telles plaques Download PDF

Info

Publication number
WO2013050396A1
WO2013050396A1 PCT/EP2012/069504 EP2012069504W WO2013050396A1 WO 2013050396 A1 WO2013050396 A1 WO 2013050396A1 EP 2012069504 W EP2012069504 W EP 2012069504W WO 2013050396 A1 WO2013050396 A1 WO 2013050396A1
Authority
WO
WIPO (PCT)
Prior art keywords
pass
plate
plates
fluid
passage section
Prior art date
Application number
PCT/EP2012/069504
Other languages
English (en)
Inventor
Nicolas Vallee
Yoann Naudin
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Priority to KR1020147011761A priority Critical patent/KR20140089529A/ko
Priority to EP12769647.4A priority patent/EP2764314A1/fr
Priority to US14/349,474 priority patent/US20140246179A1/en
Priority to CN201280059742.0A priority patent/CN103988042A/zh
Publication of WO2013050396A1 publication Critical patent/WO2013050396A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/0056Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another with U-flow or serpentine-flow inside conduits; with centrally arranged openings on the plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0082Charged air coolers

Definitions

  • the invention relates to plates for heat exchangers and to plate heat exchangers, in particular for motor vehicles.
  • Stacked plate charge air coolers are known, as mentioned above, in which each plate guides the cooling liquid in a circuit forming several passes of identical section and inside which the coolant circulates according to a orthogonal direction to the supercharging air flow. Between each pass, the coolant changes direction of flow. While traveling through the circuit, the temperature of the coolant increases, which causes a variation of its physical properties (in particular its density, its viscosity). However, when the physical properties of the coolant change, the pressure drop also changes. In existing solutions, the widths of the passes are identical within the same circuit and does not adapt to the evolution of the pressure losses mentioned above, which has the effect of degrading the performance of the exchanger.
  • the pressure losses can indeed contribute positively to the heat efficiency of the exchanger because it is known that the greater the pressure loss, the more the flow flow can be turbulent mode, which is favorable to heat exchange, at least to a certain extent.
  • the pumps used for the circulation of coolant have limited characteristics, in order to avoid too much penalize the energy consumption taken from the engine of the vehicle.
  • the invention thus relates to a plate intended to allow a heat exchange between a first and a second fluid flowing in contact with the plate, said plate being configured to define a circuit comprising several successive passes in which the first fluid flows in one direction. flow by changing flow direction from one pass to another, each of the passes having a passage section of the first fluid.
  • the passage section of a pass is larger than the passage section of another pass, called downstream, located downstream of the upstream pass in the direction of flow of the first fluid. in the circuit.
  • the first fluid circulates through passes whose passage section decreases which has the effect of accompanying the change in pressure losses due to the increase in temperature.
  • the coefficient of pressure loss can then be kept relatively constant along the circuit.
  • the first fluid corresponds to a coolant and the second fluid corresponds to the charge air.
  • said plate comprises an initial pass and a final pass and the pass passage sections decrease by one pass. the other since the initial pass to the final pass. They decrease, for example, linearly or proportionally.
  • the passage section of the initial pass is between 40 and 60% larger than the passage section of the final pass.
  • said plate comprises four passes, said first pass, second pass, third pass and fourth pass, the first pass being connected to an input of the circuit, the second pass being connected to the first pass, the third pass being connected to the second pass and the fourth pass being connected on the one hand to the third pass and on the other hand to an output of the circuit.
  • the passage section then decreases from the first pass until the fourth pass.
  • the passage section of the first pass is between 5 and 15% larger than the passage section of the second pass.
  • the passage section of the second pass is between 20 and 40% larger than the passage section of the third pass.
  • the passage section of the third pass is between 5 and 15% larger than the passage section of the fourth pass.
  • the distance between edges defining the first pass is between 30 and 35 mm
  • the distance between edges defining the second pass is between 27 and 32 mm
  • the distance between edges defining the third pass is between between 22 and 25 mm and / or the distance between edges defining the fourth pass is between 20 and 23 mm.
  • the borders defining a pass are, in particular, parallel to each other so that the passage section of a pass is constant.
  • the passage section is measured in a plane perpendicular to an extension plane of the plate.
  • the passes comprise disruptors of the fluid flow.
  • the invention also relates to a heat exchanger, in particular intended for a motor vehicle, comprising plates as defined above, at least two of said plates being stacked one on the other in a pair of plates so that the circuit one of the two plates mirrors the circuit of the other of the two plates. It is understood here that two plates forming a pair of plates are stacked one on the other so that their circuit together form a circulation channel of the first fluid.
  • FIG. 1 is a perspective view exploding exploded heat exchanger according to the invention comprising four-pass plates;
  • FIG. 2 is a top view of a plate comprising four passes, for identifying the differences of sections of passages of the different passes according to the invention.
  • the invention relates to a heat exchanger 1 allowing a heat exchange between a fluid to be cooled, in particular a gas G, and a coolant C. It could be a cooler of supercharging air in which a flow of compressed air for supplying a heat engine, for example a motor vehicle engine, is cooled by a coolant, especially a mixture of water and glycol.
  • the exchanger 1 comprises a heat exchange beam 2 consisting of a stack of plates 4 between them determining alternating circuits 6, 8 for the fluid to be cooled and for the cooling liquid.
  • the beam here is of generally parallelepipedal shape and has an exit face 10 and a face opposite inlet, not visible, the fluid to be cooled. It is completed on both sides of the stack of a plate, said upper, 12 and a plate, said lower, 14.
  • the exchanger 1 may also include a housing 5 in which the beam 2 is located. It guides the fluid to be cooled between the plates of the inlet face to the exit face 10 of the bundle 2. It consists here of two lateral walls 18, each coming against the edges 16, 16 'of the side plates 4, 12 14, of an upper wall 20, coming into contact with the upper plate 12 and a lower wall 22, coming into contact with the lower plate 14.
  • the upper wall 20 may be provided with orifices 24, 26 allowing the passage, at the outlet and at the inlet, of the coolant C in the bundle 2.
  • the exchanger 1 may further comprise nozzles 28, 30 for outlet and / or inlet of the cooling liquid communicating with said orifices 24, 26 provided in the housing.
  • the various components of the exchanger are, for example, aluminum or aluminum alloy. They are, in particular, soldered to each other.
  • Each plate 4, 12, 14 comprises, for example, a bottom 31, substantially plane, surrounded by a peripheral edge 32 terminated by a flat portion 34, for brazing the plates together.
  • the coolant circuit 8 is defined, on the one hand, by said peripheral rim 32 and, on the other hand, by one or more edges 60, 60 ', for example made from material of the bottom 31 of the plate.
  • the plates 4, 12, 14 are grouped in pairs and assembled by their flats 34 and / or the edges 60, 60 '.
  • the circuit of an upper plate 4 and a lower plate 4 of the same pair of plates complement each other to form a circulation channel for the coolant C.
  • the plates 4 are stacked in pairs so that the coolant circuit C 8 of one of the two plates is vis-à-vis the coolant circuit 8 C of the other of the two plates of the same pair to form the circulation channel coolant C.
  • Circuits 6 for circulation fluid to be cooled are provided between two plates 4 vis-à-vis two pairs of adjacent plates 4.
  • top 12 and bottom 14 plates of the stack are assembled with the top and bottom walls 22 of the housing to define a coolant flow channel.
  • the plates 4, 12, 14 have, for example, the general shape of an elongated rectangle having two long sides and two short sides, each plate having two bosses 38, a first of the bosses 38 having an inlet 42 of the circulation channel 8 coolant C and the other bosses 38 having an outlet 40 of the coolant circulation channel C.
  • the bosses 38 are located along the same small side of the plate 4, 12, 14. They are here pierced with a hole 50 for the passage of coolant C and are intended to come into contact with the bosses 38 of the an adjacent plate 4 for respectively forming an inlet manifold 44, and an outlet manifold, not visible, for the coolant C.
  • the inlet manifold 44 opens, for example, into the inlet manifold 30 through the inlet port 26 of the housing and / or the outlet manifold opens, for example, into the outlet pipe 28 through the outlet 24 of the housing.
  • the cooling fluid enters the beam through the inlet pipe 30 and is distributed between the plates 4 in the circuits 8 for circulating coolant through the inlet manifold 44. It flows into the circuits 8 flow of coolant C from their inputs 42 to their outputs 40 where it enters the outlet manifold. It then leaves the exchanger through the outlet pipe 30.
  • the bosses 38 of two pairs of plates 4 between them determine the height of the circulating circuits 6 for the fluid to be cooled.
  • An inlet manifold and an outlet manifold may be adapted to the periphery of the housing to bring and evacuate the fluid to be cooled.
  • the exchanger may also comprise secondary exchange surfaces, for example corrugated disturbers reported between the plates 4 in the circulation circuits 6 of the fluid to be cooled G. These disrupters can disrupt the flow of the fluid to be cooled G to improve the heat exchange between the two fluids.
  • Each plate 4, 12, 14 for example comprises corrugations 52 arranged in the circuits 8 for circulating coolant C. These corrugations 52 extend between the pockets 38 constituting the inlet manifold and the outlet manifold 44 of the liquid C and the second longitudinal end of the plates 4, 12, 14.
  • the corrugations 52 are, for example, derived from the bottom material 31 of the plates 4, 12, 14, in particular by stamping the plates 4, 12, 14.
  • the circuit 8 defined by the plates 4, 12, 14 makes it possible to guide the cooling liquid C in a number n of successive passes, here four, in which the liquid flows between the inlet 42 and the outlet 40 of the circuit 8. Two adjacent passes are separated, for example, by the borders 32, 60, 60 'of the plates 4, 12, 14.
  • the passes are arranged parallel to each other in an extension direction, here the long side of the plates. They may be provided in series one after the other.
  • the borders 60, 60 ' are thus oriented along the long side of the plates 4 to define a cooling coil circulation in each of the passes of each of the circulation circuits 8 of the cooling liquid C.
  • Some 60 of the borders extend from the edge 16 provided with the bosses 38 to the opposite edge 16 'while leaving a passage so that the fluid can flow from the pass located from one side of the edge 60 to the other passes. They alternate with borders 60 'extending from the edge 16' opposite that 16 provided with the bosses 38 to the edge 1 6 provided with the bosses 38 while leaving a passage for the fluid to flow from the pass located on one side of the edge 60 'to another.
  • first pass 71 or initial pass 71, extending from the inlet 40 to the edge 16 'opposite to that 1 6 provided with bosses 38; a second pass 72 connected to the first and extending from the edge 1 'opposed to the edge 16 provided with the bosses 38 to the edge 1 6 provided with the bosses 38; a third pass 73 connected to the second pass and extending from the edge 1 6 provided with the bosses 38 to the edge 1 6 'opposite that 1 6 provided with the bosses 38; and a fourth pass 74 connected on the one hand to the third pass 73 and on the other hand to the outlet 42 so that it extends from the edge 16 'opposite the edge 16 provided with the bosses 38 to the edge 1 6 provided with the bosses 38.
  • a plate according to the invention is shown in Figure 2.
  • Such a plate has a length L in the direction of extension of the passes and a width I in a direction D orthogonal to the direction of extension of the passes.
  • the direction D thus corresponds to the direction of flow of the fluid to be cooled.
  • each pass has a width In corresponding to the distance along the direction D between two edges 32, 60, 60 'defining this pass.
  • the first pass 71 has a width 11, the second passes 72 a width 12, the third passes a width 13 and the fourth passes 74 a width 14.
  • the passage section of a pass is larger than the passage section of another pass, called downstream, located downstream of the upstream pass in the direction of flow of the liquid of cooling in the circuit 8 for circulation of the coolant.
  • the section of passage of a pass is defined by its width multiplied by the height of the borders 32, 60, 60 'which define it.
  • the borders 32, 60, 60 ' being here substantially parallel to each other and of identical height, the comparison of the widths of passes is equivalent in the following description to a comparison of the passage sections of each pass.
  • the width of the first pass 71 is between 5 and 15% larger than the width 1 2 of the second pass 72.
  • the width l 2 of the second pass is here between 20 and 40% greater than the width l 3 of the third pass 73.
  • the width l 3 of the third pass 73 is for example between 5 and 15% greater than the width l 4 of the fourth pass 74.
  • the width of the initial pass, here the first pass 71, is between 40 and 60% greater than the width of the final pass, here the fourth pass 74.
  • the plate width I of the plate 4, 12, 14 is, in particular, equal to 120 mm and its length L is, for example, equal to 200 mm.
  • the width of the first pass 71 is in particular between 30 and 35 mm
  • the width 1 2 of the second pass 72 is, for example, between 27 and 32 mm
  • the width l 3 of the third pass 73 is in particular between 22 and 25 mm
  • the width l 4 of the fourth pass 74 is advantageously between 20 and 23 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

L'invention concerne une plaque (4, 12, 14) destinée à permettre un échange de chaleur entre un premier et un deuxième fluide circulant au contact de la plaque (4, 12, 14), ladite plaque (4, 12, 14) étant configurée pour définir un circuit (8) comprenant plusieurs passes successives (71, 72, 73, 74) dans lequel le premier fluide circule selon une direction d'écoulement en changeant de sens d'écoulement d'une passe à l'autre, chacune des passes (71, 72, 73, 74) possédant une section de passage du premier fluide. Selon l'invention, la section de passage d'une passe (71, 72, 73, 74), dite amont, est plus grande que la section de passage d'une autre passe (71, 72, 73, 74), dite avale, située en avale de la passe amont selon la direction d'écoulement du premier fluide dans le circuit (8). L'invention concerne aussi un échangeur de chaleur muni de telles plaques.

Description

Plaque pour échanqeur de chaleur et échanqeur de chaleur muni de telles plaques
L'invention se rapporte aux plaques pour échangeurs de chaleur et aux échangeurs de chaleur à plaques, notamment pour véhicules automobiles.
Dans ce domaine, il est connu des échangeurs, dits refroidisseurs d'air de suralimentation, permettant un échange de chaleur entre de l'air de suralimentation, destiné à alimenter le moteur du véhicule, et un liquide de refroidissement. Ils comprennent un faisceau d'échange de chaleur constitué d'un empilement de plaques déterminant entre elles des canaux de circulation alternés pour l'air de suralimentation et pour le liquide de refroidissement.
Il est connu des refroidisseurs d'air de suralimentation à plaques empilés tels qu'évoqués plus haut dans lesquels chaque plaque guide le liquide de refroidissement dans un circuit formant plusieurs passes de section identique et à l'intérieur desquelles le liquide de refroidissement circule selon une direction orthogonale au flux d'air de suralimentation. Entre chaque passe, le liquide de refroidissement change de sens de circulation. En parcourant le circuit, la température du liquide de refroidissement augmente, ce qui entraîne une variation de ses propriétés physiques (notamment sa masse volumique, sa viscosité). Or, lorsque les propriétés physiques du liquide de refroidissement changent, la perte de charge évolue également. Dans les solutions existantes, les largeurs des passes sont identique au sein d'un même circuit et ne s'adapte pas à l'évolution des pertes de charges évoquée précédemment, ce qui a pour conséquence de dégrader les performances de l'échangeur. Les pertes de charges peuvent contribuer en effet de façon positive à l'efficacité thermique de l'échangeur car l'on sait que plus la perte de charge est importante, plus le mode d'écoulement du flux peut être turbulent, ce qui est favorable à l'échange thermique, au moins dans une certaine limite. Cependant, les pompes mises en œuvre pour la circulation du liquide de refroidissement possèdent des caractéristiques limitées, ceci afin d'éviter de trop pénaliser la consommation d'énergie prélevée sur le moteur du véhicule.
Il a ainsi été découvert dans le cadre de l'invention qu'une relation favorable existait entre l'évolution de la dimension des sections de passages des passes et révolution des changements des propriétés physiques du fluide de refroidissement afin de diminuer la perte de charge total du circuit sans trop pénaliser la performance thermique de l'échangeur.
L'invention porte ainsi sur une plaque destinée à permettre un échange de chaleur entre un premier et un deuxième fluide circulant au contact de la plaque, ladite plaque étant configurée pour définir un circuit comprenant plusieurs passes successives dans lequel le premier fluide circule selon une direction d'écoulement en changeant de sens d'écoulement d'une passe à l'autre, chacune des passes possédant une section de passage du premier fluide.
Selon l'invention, la section de passage d'une passe, dite amont, est plus grande que la section de passage d'une autre passe, dite avale, située en avale de la passe amont selon la direction d'écoulement du premier fluide dans le circuit.
Ainsi, en parcourant le circuit, le premier fluide circule par des passes dont la section de passage va en diminuant ce qui a pour effet d'accompagner l'évolution des pertes de charge dues à l'augmentation de sa température. Le coefficient de perte de charge peut alors être conservé relativement constant le long du circuit.
Dans le cas des refroidisseurs d'air de suralimentation, le premier fluide correspond à un liquide de refroidissement et le deuxième fluide correspond à l'air de suralimentation.
Selon un aspect de l'invention ladite plaque comprend une passe initiale et une passe finale et les sections de passage des passes décroissent d'une passe à l'autre depuis la passe initiale vers la passe finale. Elles décroissent, par exemple, de manière linéaire ou proportionnelle.
Selon un autre aspect de l'invention, la section de passage de la passe initiale est entre 40 et 60% plus grande que la section de passage de la passe finale.
Selon un mode de réalisation particulier, ladite plaque comprend quatre passes, dites première passe, deuxième passe, troisième passe et quatrième passe, la première passe étant reliée à une entrée du circuit, la deuxième passe étant reliée à la première passe, la troisième passe étant relié à la deuxième passe et la quatrième passe étant reliée d'une part à la troisième passe et d'autre part à une sortie du circuit. La section de passage va alors en diminuant de la première passe jusqu'à la quatrième passe.
Avantageusement, la section de passage de la première passe est entre 5 et 15% plus grande que la section de passage de la deuxième passe. Toujours avantageusement, la section de passage de la deuxième passe est entre 20 et 40% plus grande que la section de passage de la troisième passe. En particulier, la section de passage de la troisième passe est entre 5 et 15% plus grande que la section de passage de la quatrième passe.
Selon un exemple de réalisation la distance entre des bordures définissant la première passe est comprise entre 30 et 35 mm, la distance entre des bordures définissant la deuxième passe est comprise entre 27 et 32 mm, la distance entre des bordures définissant la troisième passe est comprise entre 22 et 25 mm et/ou la distance entre des bordures définissant la quatrième passe est comprise entre 20 et 23 mm. Les bordures définissant une passe sont, en particulier, parallèles entre elles de sorte que la section de passage d'une passe est constante. La section de passage est mesurée dans un plan perpendiculaire à un plan d'extension de la plaque. Selon un autre aspect de l'invention, les passes comprennent des perturbateurs de l'écoulement du fluide.
L'invention concerne aussi un échangeur de chaleur, notamment destiné à un véhicule automobile, comprenant des plaques telles que définies précédemment, au moins deux desdites plaques étant empilées l'une sur l'autre en une paire de plaques de sorte que le circuit d'une des deux plaques est en miroir du circuit de l'autre des deux plaques. On comprend ici que deux plaques formant une paire de plaques sont empilées l'une sur l'autre de sorte que leur circuit forment ensemble un canal de circulation du premier fluide.
D'autres caractéristiques et avantages de l'invention apparaîtront encore à la lecture de la description qui suit d'exemples de réalisation donnés à titre illustratif en référence aux figures annexées. Sur ces figures :
- la figure 1 est une vue en perspective illustrant de façon éclatée un échangeur de chaleur conforme à l'invention comprenant des plaques à quatre passes;
- la figure 2 est une vue de dessus d'une plaque comprenant quatre passes, destinée à repérer les différences de sections de passages des différentes passes selon l'invention.
Comme illustré à la figure 1 , l'invention concerne un échangeur de chaleur 1 permettant un échange de chaleur entre un fluide à refroidir, notamment un gaz G, et un liquide de refroidissement C. Il pourra s'agir d'un refroidisseur d'air de suralimentation dans lequel un flux d'air comprimé, destiné à alimenter un moteur thermique, par exemple un moteur de véhicule automobile, est refroidi par un liquide de refroidissement, notamment un mélange d'eau et de glycol. L'échangeur 1 comprend un faisceau 2 d'échange de chaleur constitué d'un empilement de plaques 4 déterminant entre elles des circuits 6, 8 alternés pour le fluide à refroidir et pour le liquide de refroidissement. Le faisceau est ici de forme globalement parallélépipédique et présente une face de sortie 10 et une face d'entrée opposée, non visible, du fluide à refroidir. Il est terminé de part et d'autre de l'empilement d'une plaque, dite supérieure, 12 et d'une plaque, dite inférieure, 14.
L'échangeur 1 pourra également comprendre un boîtier 5 dans lequel le faisceau 2 est situé. Il guide le fluide à refroidir entre les plaques de la face d'entrée à la face de sortie 10 du faisceau 2. Il est ici constitué de deux parois latérales 18, venant chacune contre des bords 16, 16' latéraux des plaques 4, 12, 14, d'une paroi supérieure 20, venant au contact de la plaque supérieure 12 et d'une paroi inférieure 22, venant au contact de la plaque inférieure 14. La paroi supérieure 20 pourra être munie d'orifices 24, 26 permettant le passage, en sortie et en entrée, du liquide de refroidissement C dans le faisceau 2.
L'échangeur 1 pourra encore comprendre de tubulures 28, 30 de sortie et/ou d'entrée du liquide de refroidissement communiquant avec lesdits orifices 24, 26 prévus dans le boîtier.
Les différents composants de l'échangeur sont, par exemple, en aluminium ou alliage d'aluminium. Ils sont, notamment, brasés entre eux. Chaque plaque 4, 12, 14 comporte, par exemple, un fond 31 , sensiblement plan, entouré par une bordure périphérique 32 terminé par un méplat 34, permettant le brasage des plaques entre elles. Le circuit 8 de liquide de refroidissement est défini, d'une part, par ladite bordure périphérique 32 et, d'autre part, par une ou des bordures 60, 60', par exemple issues de matière du fond 31 de la plaque.
Les plaques 4, 12, 14 sont groupées par paires et assemblées par leurs méplats 34 et/ou les bordures 60, 60'. De la sorte, le circuit d'une plaque supérieure 4 et d'une plaque inférieure 4 d'une même paire de plaques se complètent pour constituer un canal de circulation du liquide de refroidissement C. Autrement dit, les plaques 4 sont empilées par paire de sorte que le circuit 8 de liquide de refroidissement C d'une des deux plaques est en vis-à-vis du circuit 8 de liquide de refroidissement C de l'autre des deux plaques de la même paire afin de former le canal de circulation du liquide de refroidissement C. Les circuits 6 pour la circulation du fluide à refroidir sont prévus entre deux plaques 4 en vis-à-vis de deux paires de plaques 4 adjacentes.
Dans l'exemple illustré, les plaques supérieure 12 et inférieure 14 de l'empilement sont assemblées avec les parois supérieure 20 et inférieure 22 du boîtier pour définir un canal de circulation de liquide de refroidissement.
Les plaques 4, 12, 14 ont, par exemple, la forme générale d'un rectangle allongé ayant deux grands côtés et deux petits côtés, chaque plaque comportant deux bossages 38, un premier des bossages 38 présentant une entrée 42 du canal 8 de circulation de liquide de refroidissement C et l'autre des bossages 38 présentant une sortie 40 du canal de circulation du liquide de refroidissement C.
Les bossages 38 sont situés le long d'un même petit côté de la plaque 4, 12, 14. Ils sont ici percés d'un orifice 50 de passage du liquide de refroidissement C et sont destinés à venir en contact avec les bossages 38 d'une plaque 4 adjacente pour former respectivement un collecteur d'entrée 44, et un collecteur de sortie, non visible, pour le fluide de refroidissement C. Le collecteur d'entrée 44 débouche, par exemple, dans la tubulure d'entrée 30 par l'orifice d'entrée 26 du boîtier et/ou le collecteur de sortie débouche, par exemple, dans la tubulure de sortie 28 par l'orifice de sortie 24 du boîtier.
Autrement dit, le fluide de refroidissement pénètre dans le faisceau par la tubulure d'entrée 30 puis est réparti entre les plaques 4 dans les circuits 8 de circulation de liquide de refroidissement par le collecteur d'entrée 44. Il s'écoule dans les circuits 8 de circulation du liquide de refroidissement C depuis leurs entrées 42 jusqu'au à leurs sorties 40 où il pénètre dans le collecteur de sortie. Il sort alors de l'échangeur par la tubulure de sortie 30. Les bossages 38 de deux paires de plaques 4 déterminent entre eux la hauteur des circuits 6 de circulation pour le fluide à refroidir. Une boîte collectrice d'entrée et une boîte collectrice de sortie (non représentées) pourront être adaptées à la périphérie du boîtier pour amener et évacuer le fluide à refroidir. L'échangeur pourra aussi comprendre des surfaces d'échanges secondaires, par exemple, des perturbateurs ondulés rapportés entre les plaques 4 dans les circuits 6 de circulation du fluide à refroidir G. Ces perturbateurs permettent de perturber le flux du fluide à refroidir G de manière à améliorer l'échange thermique entre les deux fluides.
Chaque plaque 4, 12, 14 comprend par exemple des corrugations 52 disposés dans les circuits 8 de circulation du liquide de refroidissement C. Ces corrugations 52 s'étendent entre les poches 38 constituant le collecteur d'entrée et le collecteur de sortie 44 du liquide de refroidissement C et la deuxième extrémité longitudinale des plaques 4, 12, 14. Les corrugations 52 sont, par exemple, issues de matière du fond 31 des plaques 4, 12, 14, notamment par emboutissage des plaques 4, 12, 14.
Le circuit 8 défini par les plaques 4, 12, 14 permet de guider le liquide de refroidissement C en un nombre n de passes successives, ici quatre, dans lequel le liquide circule entre l'entrée 42 et la sortie 40 du circuit 8. Deux passes adjacentes sont séparées, par exemple, par les bordures 32, 60, 60' des plaques 4, 12, 14.
Les passes sont disposées parallèlement les unes aux autres selon une direction d'extension, ici le grand côté des plaques. Elles pourront être prévues en série les unes à la suite des autres.
Les bordures 60, 60' sont ainsi orientées selon le grand côté des plaques 4 pour définir une circulation en serpentin du liquide de refroidissement dans chacune des passes de chacun des circuits 8 de circulation du liquide de refroidissement C. Certaines 60 des bordures s'étendent depuis le bord 16 muni des bossages 38 vers le bord opposé 16' tout en laissant un passage pour que le fluide puisse s'écouler de la passe se trouvant d'un côté de la bordure 60 à l'autre passe. Elles alternent avec des bordures 60' s'étendant depuis le bord 16' opposé à celui 16 muni des bossages 38 vers le bord 1 6 muni des bossages 38 tout en laissant un passage pour que le fluide puisse s'écouler de la passe se trouvant d'un côté de la bordure 60' à l'autre.
Dans l'exemple illustré sur les figures 1 et 2 où la plaque est munie de quatre passes, on observe une première passe 71 , ou passe initiale 71 , s'étendant depuis l'entrée 40 jusqu'au bord 16' opposé à celui 1 6 muni des bossages 38 ; une deuxième passe 72 liée à la première et s'étendant depuis le bord 1 6' opposé au bord 16 muni des bossages 38 jusqu'au bord 1 6 muni des bossages 38 ; une troisième passe 73 liée à la deuxième passe et s'étendant depuis le bord 1 6 muni des bossages 38 jusqu'au bord 1 6' opposé à celui 1 6 muni des bossages 38 ; et une quatrième passe 74 liée d'une part à la troisième passe 73 et d'autre part à la sortie 42 de sorte qu'elle s'étend depuis le bord 16' opposé au bord 16 muni des bossages 38 jusqu'au bord 1 6 muni des bossages 38. La circulation du fluide à refroidir D dans les circuits 6 de circulation du fluide à refroidir s'effectue ainsi dans une direction globalement perpendiculaire à celle de l'écoulement du liquide de refroidissement, le liquide de refroidissement changeant de sens d'écoulement d'une passe à l'autre. Une plaque conforme à l'invention est représentée sur la figure 2. Une telle plaque présente une longueur L selon la direction d'extension des passes et une largeur I dans une direction D orthogonale à la direction d'extension des passes. Dans l'échangeur, la direction D correspond ainsi à la direction d'écoulement du fluide à refroidir. De la même manière, dans une plaque comprenant n passes, chaque passe présente une largeur In correspondant à la distance suivant la direction D entre deux bordures 32, 60, 60' définissant cette passe. Ainsi, dans l'exemple illustré, la première passe 71 présente une largeur 11 , la deuxième passe 72 une largeur 12, la troisième passe une largeur 13 et la quatrième passe 74 une largeur 14.
Selon l'invention, la section de passage d'une passe, dite amont, est plus grande que la section de passage d'une autre passe, dite avale, située en avale de la passe amont selon la direction d'écoulement du liquide de refroidissement dans le circuit 8 de circulation du liquide de refroidissement. Le liquide de refroidissement s'écoulant de la passe initiale vers la passe finale, c'est-à-dire ici de la première passe 71 vers la quatrième passe 74, la section de passage décroît de la première passe 71 vers la quatrième passe 74. On observe ainsi une optimisation du ratio perte de charge/performance thermique.
On définit la section de passage d'une passe par sa largeur multiplié par la hauteur des bordures 32, 60, 60' qui la définissent. Les bordures 32, 60, 60' étant ici sensiblement parallèle entre elles et de hauteur identique, la comparaison des largeurs de passes équivaut dans la suite de la description à une comparaison des sections de passages de chaque passe.
Selon un aspect de l'invention, la largeur de la première passe 71 est entre 5 et 15% plus grande que la largeur l2 de la deuxième passe 72.
La largeur l2 de la deuxième passe est ici entre 20 et 40% plus grande que la largeur l3 de la troisième passe 73.
La largeur l3 de la troisième passe 73 est par exemple entre 5 et 15% plus grande que la largeur l4 de la quatrième passe 74.
Dans un exemple de réalisation, la largeur de la passe initiale, ici la première passe 71 , est entre 40 et 60% plus grande que la largeur de la passe finale, ici la quatrième passe 74 .
Dans l'exemple illustré sur la figure 2 la plaque la largeur I de la plaque 4, 12, 14 est, notamment, égale à 120 mm et sa longueur L est, par exemple, égale à 200 mm. Dans ce cas, la largeur de la première passe 71 est, notamment, comprise entre 30 et 35 mm, la largeur l2 de la deuxième passe 72 est, par exemple, comprise entre 27 et 32 mm, la largeur l3 de la troisième passe 73 est, en particulier, comprise entre 22 et 25 mm et la largeur l4 de la quatrième passe 74 est avantageusement comprise entre 20 et 23 mm.

Claims

REVENDICATIONS
1 . Plaque (4, 12, 14) destinée à permettre un échange de chaleur entre un premier et un deuxième fluide (C, G) circulant au contact de la plaque (4, 12, 14), ladite plaque (4, 12, 14) étant configurée pour définir un circuit (8) comprenant plusieurs passes successives (71 , 72, 73, 74) dans lequel le premier fluide (C) circule selon une direction d'écoulement en changeant de sens d'écoulement d'une passe à l'autre, chacune des passes (71 , 72, 73, 74) possédant une section de passage du premier fluide (C), caractérisé par le fait que la section de passage d'une passe (71 , 72, 73, 74), dite amont, est plus grande que la section de passage d'une autre passe (71 , 72, 73, 74), dite avale, située en avale de la passe amont selon la direction d'écoulement du premier fluide dans le circuit (8).
2. Plaque (4, 12, 14) selon la revendication 1 , ladite plaque (4, 12, 14) comprenant une passe initiale (71 ) et une passe finale (74), les sections de passage des passes (71 , 72, 73, 74) décroissent d'une passe à l'autre depuis la passe initiale
(71 ) vers la passe finale (74).
3. Plaque (4, 12, 14) selon la revendication 2, dans laquelle la section de passage de la passe initiale (71 ) est entre 40 et 60% plus grande que la section de passage de la passe finale (74).
4. Plaque (4, 12, 14) selon l'une quelconque des revendications précédentes, ladite plaque (4, 12, 14) comprenant quatre passes (71 , 72, 73, 74), dites première passe (71 ), deuxième passe (72), troisième passe (73) et quatrième passe (74), la première passe (71 ) étant reliée à une entrée (42) du circuit (8), la deuxième passe
(72) étant reliée à la première passe (71 ), la troisième passe (73) étant relié à la deuxième passe (72) et la quatrième passe (74) étant reliée d'une part à la troisième passe (73) et d'autre part à une sortie du circuit (40).
5. Plaque (4, 12, 14) selon la revendication 4, dans laquelle la section de passage de la première passe (71 ) est entre 5 et 15% plus grande que la section de passage de la deuxième passe (72).
6. Plaque (4, 12, 14) selon l'une quelconque des revendications 4 ou 5, dans laquelle la section de passage de la deuxième passe (72) est entre 20 et 40% plus grande que la section de passage de la troisième passe (73).
7. Plaque (4, 12, 14) selon l'une quelconque des revendications 4 à 6, dans laquelle la section de passage de la troisième passe (73) est entre 5 et 15% plus grande que la section de passage de la quatrième passe (74).
8. Plaque (4, 12, 14) selon l'une des revendications 4 à 7, dans laquelle la distance entre des bordures (38, 60) définissant la première passe (71 ) est comprise entre 30 et 35 mm, la distance entre des bordures (60, 60') définissant la deuxième passe (72) est comprise entre 27 et 32 mm, la distance entre des bordures (60', 60) définissant la troisième passe (73) est comprise entre 22 et 25 mm et/ou la distance entre des bordures (60, 38) définissant la quatrième passe (74) est comprise entre 20 et 23 mm.
9. Plaque (4, 12, 14) selon l'une quelconque des revendications précédentes, dans laquelle les passes (71 , 72, 73, 74) comprennent des perturbateurs (52) de l'écoulement du fluide.
10. Echangeur de chaleur (1 ), notamment destiné à un véhicule automobile, comprenant des plaques (4) selon l'une quelconque des revendications précédentes, au moins deux desdites plaques (4) étant empilées l'une sur l'autre en une paire de plaques de sorte que le circuit (8) d'une des deux plaques (4) est en miroir du circuit (8) de l'autre des deux plaques (4).
PCT/EP2012/069504 2011-10-04 2012-10-02 Plaque pour échangeur de chaleur et échangeur de chaleur muni de telles plaques WO2013050396A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147011761A KR20140089529A (ko) 2011-10-04 2012-10-02 열교환기용 플레이트 및 이러한 플레이트를 구비한 열교환기
EP12769647.4A EP2764314A1 (fr) 2011-10-04 2012-10-02 Plaque pour échangeur de chaleur et échangeur de chaleur muni de telles plaques
US14/349,474 US20140246179A1 (en) 2011-10-04 2012-10-02 Plate For A Heat Exchanger And Heat Exchanger Equipped With Such Plates
CN201280059742.0A CN103988042A (zh) 2011-10-04 2012-10-02 用于热交换器的板和配备有这样的板的热交换器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1158951A FR2980840A1 (fr) 2011-10-04 2011-10-04 Plaque pour echangeur de chaleur et echangeur de chaleur muni de telles plaques
FR1158951 2011-10-04

Publications (1)

Publication Number Publication Date
WO2013050396A1 true WO2013050396A1 (fr) 2013-04-11

Family

ID=47002861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/069504 WO2013050396A1 (fr) 2011-10-04 2012-10-02 Plaque pour échangeur de chaleur et échangeur de chaleur muni de telles plaques

Country Status (6)

Country Link
US (1) US20140246179A1 (fr)
EP (1) EP2764314A1 (fr)
KR (1) KR20140089529A (fr)
CN (1) CN103988042A (fr)
FR (1) FR2980840A1 (fr)
WO (1) WO2013050396A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6281467B2 (ja) * 2014-01-14 2018-02-21 株式会社デンソー インタークーラ
FR3024771B1 (fr) * 2014-08-06 2019-03-22 Valeo Systemes Thermiques Faisceau d'echangeur de chaleur et echangeur de chaleur comprenant ledit faisceau
US20160138874A1 (en) * 2014-11-14 2016-05-19 Hamilton Sundstrand Corporation Shear flow condenser
US9920686B2 (en) * 2015-09-28 2018-03-20 Hanon Systems Water-cooled charge air cooler with integrated multi-stage cooling
US10309732B2 (en) 2015-12-11 2019-06-04 Hanon Systems Internal degas feature for plate-fin heat exchangers
EP3404710A1 (fr) * 2017-05-18 2018-11-21 Diabatix BVBA Dissipateur thermique et son procédé de production
EP3809090A1 (fr) * 2019-10-18 2021-04-21 Valeo Autosystemy SP. Z.O.O. Ensemble de connexion
EP3929520A3 (fr) * 2020-01-03 2022-05-04 Raytheon Technologies Corporation Ensemble échangeur de chaleur d'aéronef
US11448132B2 (en) 2020-01-03 2022-09-20 Raytheon Technologies Corporation Aircraft bypass duct heat exchanger
US11525637B2 (en) 2020-01-19 2022-12-13 Raytheon Technologies Corporation Aircraft heat exchanger finned plate manufacture
US11674758B2 (en) 2020-01-19 2023-06-13 Raytheon Technologies Corporation Aircraft heat exchangers and plates
US20220373263A1 (en) * 2020-01-19 2022-11-24 Raytheon Technologies Corporation Aircraft Heat Exchanger
US11585273B2 (en) 2020-01-20 2023-02-21 Raytheon Technologies Corporation Aircraft heat exchangers
US11585605B2 (en) 2020-02-07 2023-02-21 Raytheon Technologies Corporation Aircraft heat exchanger panel attachment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171591A (ja) * 1988-12-26 1990-07-03 Hitachi Ltd 積層形熱交換器
JP2001041674A (ja) * 1999-08-03 2001-02-16 Mitsubishi Heavy Ind Ltd 熱交換器
JP2003194488A (ja) * 2001-12-28 2003-07-09 Calsonic Kansei Corp 熱交換器
FR2869680A1 (fr) * 2004-04-29 2005-11-04 Valeo Thermique Moteur Sas Echangeur de chaleur a plaques
WO2007026432A1 (fr) * 2005-08-31 2007-03-08 Hitachi, Ltd. Générateur d’énergie à gaz de rge
DE102007021726A1 (de) * 2006-05-09 2007-11-15 Modine Manufacturing Co., Racine Dualer gestapelter Plattenwärmetauscher mit zwei Durchläufen
EP2345844A2 (fr) * 2010-01-15 2011-07-20 Lennox Industries Inc. Échangeur de chaleur à double coque

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370868A (en) * 1981-01-05 1983-02-01 Borg-Warner Corporation Distributor for plate fin evaporator
AU624662B2 (en) * 1988-12-12 1992-06-18 Vulcan Australia Limited Heat exchanger
US5137082A (en) * 1989-10-31 1992-08-11 Nippondenso Co., Ltd. Plate-type refrigerant evaporator
US5099913A (en) * 1990-02-05 1992-03-31 General Motors Corporation Tubular plate pass for heat exchanger with high volume gas expansion side
GB9426208D0 (en) * 1994-12-23 1995-02-22 British Tech Group Usa Plate heat exchanger
US6318455B1 (en) * 1999-07-14 2001-11-20 Mitsubishi Heavy Industries, Ltd. Heat exchanger
US6866955B2 (en) * 2002-05-22 2005-03-15 General Motors Corporation Cooling system for a fuel cell stack
FR2933176B1 (fr) * 2008-06-26 2017-12-15 Valeo Systemes Thermiques Branche Thermique Moteur Echangeur de chaleur comportant un faisceau d'echange de chaleur et un boitier

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171591A (ja) * 1988-12-26 1990-07-03 Hitachi Ltd 積層形熱交換器
JP2001041674A (ja) * 1999-08-03 2001-02-16 Mitsubishi Heavy Ind Ltd 熱交換器
JP2003194488A (ja) * 2001-12-28 2003-07-09 Calsonic Kansei Corp 熱交換器
FR2869680A1 (fr) * 2004-04-29 2005-11-04 Valeo Thermique Moteur Sas Echangeur de chaleur a plaques
WO2007026432A1 (fr) * 2005-08-31 2007-03-08 Hitachi, Ltd. Générateur d’énergie à gaz de rge
DE102007021726A1 (de) * 2006-05-09 2007-11-15 Modine Manufacturing Co., Racine Dualer gestapelter Plattenwärmetauscher mit zwei Durchläufen
EP2345844A2 (fr) * 2010-01-15 2011-07-20 Lennox Industries Inc. Échangeur de chaleur à double coque

Also Published As

Publication number Publication date
US20140246179A1 (en) 2014-09-04
FR2980840A1 (fr) 2013-04-05
EP2764314A1 (fr) 2014-08-13
CN103988042A (zh) 2014-08-13
KR20140089529A (ko) 2014-07-15

Similar Documents

Publication Publication Date Title
WO2013050396A1 (fr) Plaque pour échangeur de chaleur et échangeur de chaleur muni de telles plaques
EP2872848B1 (fr) Échangeur thermique à plaques
EP2737269B1 (fr) Plaque d'echangeur de chaleur
EP2726804B1 (fr) Echangeur thermique notamment pour vehicule automobile
EP1646780B1 (fr) Module de refroidissement de l`air de suralimentation et des gaz d`echappement recircules d`un moteur a combustion interne de vehicule automobile
EP2726805B1 (fr) Lame d'echangeur de chaleur a zone de contournement
WO2014037122A1 (fr) Intercalaire d'echangeur de chaleur
EP2764313A1 (fr) Echangeur de chaleur à plaques empilées
WO2012062716A1 (fr) Echangeur de chaleur et procede de formation de perturbateurs associe
EP2872847A1 (fr) Echangeur de chaleur, notamment refroidisseur d'air de suralimentation de moteur de véhicule automobile
EP3289302B1 (fr) Echangeur de chaleur a plaques empilees
WO2013011136A1 (fr) Echangeur thermique, tube plat et plaque correspondants
WO2020234056A1 (fr) Plaque d'un echangeur de chaleur pour vehicule
FR2973491A1 (fr) Plaque pour echangeur de chaleur et echangeur de chaleur muni de telles plaques
FR2986312A1 (fr) Echangeur thermique, tube plat et plaque correspondants
WO2024008649A1 (fr) Dispositif de regulation thermique, notamment de refroidissement
FR2873796A1 (fr) Radiateur de chauffage avec distribution d'eau centrale
FR3024771A1 (fr) Faisceau d'echangeur de chaleur et echangeur de chaleur comprenant ledit faisceau
EP2463610A1 (fr) Échangeur de chaleur notamment pour véhicule automobile
WO2004090448A2 (fr) Module d’echange de chaleur, notamment pour vehicule automobile
FR2825792A1 (fr) Evaporateur fournissant une homogeneite de temperature amelioree pour boucle de climatisation de vehicule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12769647

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14349474

Country of ref document: US

Ref document number: 2012769647

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147011761

Country of ref document: KR

Kind code of ref document: A