WO2013049983A1 - 用于热释电红外传感器的半导体封装结构件及其制造方法和传感器 - Google Patents

用于热释电红外传感器的半导体封装结构件及其制造方法和传感器 Download PDF

Info

Publication number
WO2013049983A1
WO2013049983A1 PCT/CN2012/079895 CN2012079895W WO2013049983A1 WO 2013049983 A1 WO2013049983 A1 WO 2013049983A1 CN 2012079895 W CN2012079895 W CN 2012079895W WO 2013049983 A1 WO2013049983 A1 WO 2013049983A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal foil
conductive metal
infrared sensor
pin
pyroelectric infrared
Prior art date
Application number
PCT/CN2012/079895
Other languages
English (en)
French (fr)
Inventor
乐秀海
张洁伟
周云
郑超
沈志明
Original Assignee
江苏科融电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110297563.8A external-priority patent/CN103033268B/zh
Priority claimed from CN201210012563.3A external-priority patent/CN103208536B/zh
Application filed by 江苏科融电子技术有限公司 filed Critical 江苏科融电子技术有限公司
Publication of WO2013049983A1 publication Critical patent/WO2013049983A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Definitions

  • the invention relates to a pyroelectric infrared sensor technology. Background technique
  • a pyroelectric infrared sensor is a detector that converts an infrared radiation signal into an electrical signal.
  • a pyroelectric infrared sensor has a structure as shown in Fig. 1, and includes a stem 91, a substrate 92, a semiconductor element 93 for sensing element output signal conversion, a sensing element 94, and a cap 95.
  • the socket 91 is made of metal, and three through holes are formed in the socket 91.
  • the three socket pins 96a, 96b and 96c respectively pass through the three through holes, one of the pins 96c is grounded, and the pin 96c
  • the socket 91 is electrically connected; the other two pins 96a, 96b are insulated from the stem 91.
  • the substrate 92 is disposed on the stem 91, and the sensing element output signal converting semiconductor element 93 is disposed on the substrate 92.
  • the surface of the substrate 92 is provided with a printed circuit having a pin electrically connected to the pin of the sensor output signal conversion semiconductor element 93, the pair of extraction electrodes of the sensitive element 94, and the header pins 96a, 96b, 96c. .
  • a pair of brackets 97, 98 are further disposed on the upper surface of the substrate 92.
  • the side surfaces of the pair of brackets 97, 98 are provided with a conductive layer, and a pair of extraction electrode portions of the sensitive member 94 are supported on the pair of brackets 97, 98.
  • a pair of extraction electrodes of element 94 are electrically coupled to the conductive layer of bracket 97 and the conductive layer of bracket 98, respectively, and the conductive layer of bracket 97 and the conductive layer of bracket 98 are electrically coupled to the printed circuit of the substrate.
  • An infrared filter window 99 is provided on the cap 95.
  • the cap 95 is placed over the stem 91 and is sealingly connected to the stem 91.
  • the substrate 92, the sensor output signal-converting semiconductor component 93, and the sensitive component 94 are collectively defined by the cap 95 and the stem 91.
  • the above-mentioned sensitive component output signal conversion semiconductor component 93 converts the weak electrical signal outputted by the sensitive component 94 into a strong electrical signal that is easily received and processed by the subsequent circuit.
  • the sensitive element output signal converting semiconductor element 93 may be a field effect transistor FET, an operational amplifier element or a pyroelectric infrared sensor analog-digital hybrid processing integrated circuit element.
  • Fig. 2 is a circuit diagram showing a pyroelectric infrared sensor in which the sensor output signal conversion semiconductor element 93 is a field effect transistor element.
  • an extraction electrode of the sensitive component 94 is electrically connected to the gate G of the FET, and An extraction electrode is grounded.
  • the drain D and the source S of the FET are used as the power input and signal output of the pyroelectric infrared sensor.
  • Fig. 3 is a circuit diagram showing an embodiment of a pyroelectric infrared sensor in which the sensor output signal conversion semiconductor element 93 is a pyroelectric infrared sensor analog-digital hybrid processing integrated circuit element. As shown, a pair of extraction electrodes of the sensing element 94 are electrically coupled to the first signal input terminal IN1 and the second signal input terminal IN2 of the pyroelectric infrared sensor analog-digital integrated circuit component, respectively.
  • the pyroelectric infrared sensor analog-digital hybrid processing integrated circuit component includes an analog-to-digital conversion circuit 93 1 and a digital signal processing circuit 932.
  • the analog-to-digital conversion circuit 93 1 converts the analog signal transmitted by the sensitive component 94 into a digital signal and then transmits it to the digital signal processing circuit 932.
  • the digital signal processing circuit 932 performs digital signal processing such as bandpass filtering on the digital signal and passes through the signal output terminal. OUT output.
  • the ground terminal GND is used for grounding, and the power terminal VDD is used to connect to an external power supply.
  • the pyroelectric infrared sensor analog-digital hybrid processing integrated circuit component may be a component dedicated to a pyroelectric infrared sensor or a general-purpose component that can be simultaneously applied to a pyroelectric infrared sensor and other sensors.
  • Fig. 4 is a circuit diagram showing still another embodiment of a pyroelectric infrared sensor in which the sensor output signal conversion semiconductor element 93 is a pyroelectric infrared sensor analog-digital hybrid processing integrated circuit element.
  • the sensor output signal conversion semiconductor element 93 includes two sets of analog-to-digital conversion circuits 93 1 and a digital signal processing circuit 932.
  • the pyroelectric infrared sensor in which the sensor output signal conversion circuit element 93 is a pyroelectric infrared sensor analog-digital hybrid processing integrated circuit component, and the pyroelectric infrared sensor analog-digital hybrid processing
  • the internal structure of an integrated circuit component will vary from application to application. For example, some sensitive component output signal conversion circuit components are also provided with temperature measurement circuits, and some are provided with sensitivity control circuits. Due to the internal circuit structure and function of the pyroelectric infrared sensor analog-digital hybrid processing integrated circuit component, the number of header pins provided on the header also changes.
  • a pyroelectric infrared sensor using a semiconductor element for outputting a signal for outputting a signal is assembled in the form of an SMT component by FET, an operational amplifier or a pyroelectric infrared sensor analog-to-digital integrated circuit component, and then Patch mounting on the PCB substrate, followed by mounting of sensitive components and sensor housing packaging.
  • Semiconductor component and base for output signal conversion of sensitive component The board is a discrete component. In the manufacturing process, there are processes such as manufacture and mounting of the substrate, mounting and splicing of the semiconductor component for signal output conversion of the sensitive component, etc., so that the pyroelectric infrared sensor of such a structure has a high manufacturing cost.
  • the technical problem to be solved by the present invention is to provide a semiconductor package structure for a pyroelectric infrared sensor in which a semiconductor die and a conductive metal foil for sensing component output signal conversion are internally packaged, instead of the existing discrete sensor output.
  • the semiconductor component for signal conversion and the substrate having a printed circuit on the surface, thereby improving the production efficiency of the pyroelectric infrared sensor and reducing the manufacturing cost of the pyroelectric infrared sensor.
  • a further technical problem to be solved by the present invention is to provide a pyroelectric infrared sensor using the above semiconductor package structure.
  • Still another technical problem to be solved by the present invention is to provide a method of fabricating the above-described semiconductor package structure for a pyroelectric infrared sensor.
  • the present invention provides a semiconductor package structure for a pyroelectric infrared sensor, wherein the pyroelectric infrared sensor includes at least one sensitive component and a plurality of header pins; the semiconductor package for a pyroelectric infrared sensor
  • the structural member comprises: a conductive metal foil on which a circuit pattern is arranged; a semiconductor die for outputting signal conversion of the sensitive component, pasted on the conductive metal foil, and realized by the circuit pattern of the conductive metal foil and at least one sensitive component Electrical connection with a plurality of header pins; a plastic package housing, a packaged conductive metal foil and a semiconductor chip for output signal conversion of the sensitive component; the molded case exposes a portion of the conductive metal foil, and the exposed portion of the conductive metal foil is used for Electrical connection is made to at least one of the sensitive components and the plurality of header pins.
  • the semiconductor output chip for sensing component output signal conversion is a FET die, an operational amplifier die or a pyroelectric infrared sensor analog-digital hybrid processing integrated circuit die.
  • the exposed portion of the conductive metal foil comprises: at least one pair of sensitive elements corresponding to the at least one sensitive component, and an electrode tray, each pair of sensitive elements leading to the electrode tray for respectively sensitive to the corresponding one
  • the two lead electrodes of the component are electrically connected; for one-to-one correspondence Do not electrically connect multiple pin pads to multiple header pins.
  • Each pin pad has a lead through hole for the pin of the header to pass through.
  • the invention also provides a pyroelectric infrared sensor, comprising a cap with an infrared filter window, at least one sensitive component, a stem and a plurality of stem pins passing through the stem, the cap cap
  • the pyroelectric infrared sensor further includes a semiconductor package structure disposed on the stem, the semiconductor package structure comprising: a conductive metal foil, the conductive metal a circuit pattern is arranged on the foil; the semiconductor chip of the sensor output signal conversion is pasted on the conductive metal foil, and the electrical connection with the at least one sensitive component and the plurality of stem pins is realized by the circuit pattern of the conductive metal foil; a plastic package, a conductive semiconductor foil and a semiconductor chip for output signal conversion of the sensitive component; the plastic package exposes a portion of the conductive metal foil, and the exposed portion of the conductive metal foil is used for at least one sensitive component and a plurality of headers
  • the foot is electrically connected; wherein at least one sensitive component is mounted on the semiconductor package structure; each sensitive component
  • the present invention also provides a method of manufacturing the above-described semiconductor package structure for a pyroelectric infrared sensor, comprising the steps of: Step 1: providing a conductive metal foil arranged with a circuit pattern, and outputting a plurality of sensitive components
  • the semiconductor die for signal conversion is pasted on the conductive metal foil, and the semiconductor chip of each of the sensitive component output signal conversion electrodes is electrically connected with the circuit pattern of the conductive metal foil; wherein the circuit pattern of the conductive metal foil can make each The semiconductor chip with the output signal of the sensitive component is electrically connected to the corresponding sensitive component and the socket pin;
  • Step 2 molding a plurality of sensing element output signal conversion semiconductor bare chips and a conductive metal foil by a plastic sealing mold to form a plastic sealing shell exposing a portion of the conductive metal foil, and the exposed partial conductive metal foil is used for the pyroelectric infrared sensor
  • the sensitive component and the socket pin are electrically connected;
  • Step 3 Separate the completed conductive metal foil into a single semiconductor package structure for the pyroelectric infrared sensor and remove excess trim.
  • the present invention also provides a semiconductor package structure for a pyroelectric infrared sensor, the pyroelectric infrared sensor comprising a sensitive component and a stem pin; characterized in that the semiconductor package for a pyroelectric infrared sensor
  • the structural member comprises: a conductive metal foil; a FET die or an operational amplifier die bonded to the conductive metal foil and electrically connected to the conductive metal foil; a plastic package for encapsulating the conductive metal foil, and the field effect transistor Die or op amp die; the molded case exposes a portion of the conductive metal a foil, the exposed portion of the conductive metal foil is used for electrical connection with the sensitive component and the stem pin; and the support portion is for supporting the sensitive component.
  • the invention also provides a pyroelectric infrared sensor, comprising a cap with an infrared filter window, a sensitive component, a stem and a stem pin passing through the stem, and the cap is disposed on the stem And sealingly connected to the stem, wherein the pyroelectric infrared sensor further comprises a semiconductor package structure disposed on the stem, the semiconductor package structure comprises: a conductive metal foil; a FET die or An operational amplifier die bonded to the conductive metal foil and electrically connected to the conductive metal foil; a plastic package for encapsulating the conductive metal foil, and a FET die or an operational amplifier die; the plastic package
  • the exposed portion of the conductive metal foil is used for electrical connection with the sensitive component and the stem pin; the support portion is configured to support the sensitive component; wherein the sensitive component is disposed on the support portion;
  • the two extraction electrodes of the sensitive component and the stem pins are electrically connected to the corresponding exposed conductive metal foil portions, respectively.
  • the present invention also provides a method of fabricating the above-described semiconductor package structure for a pyroelectric infrared sensor, comprising the following steps: Step 1, providing a conductive metal foil, dicing a plurality of FETs or a plurality of operational amplifiers The sheet is pasted on the conductive metal foil, and each FET die or operational amplifier die is electrically connected to the conductive metal foil; Step 2, molding a plurality of FET dies or a plurality of operational amplifier dies by a plastic mold And a conductive metal foil forming a plastic molded case exposing a portion of the conductive metal foil, and simultaneously forming a support portion for supporting the sensitive element, the exposed portion of the conductive metal foil being used for the sensitive element and the stem of the pyroelectric infrared sensor The pins are electrically connected; in step 3, the completed conductive metal foil is separated into individual semiconductor package structures for pyroelectric infrared sensors, and excess trim is removed.
  • the invention adopts a semiconductor packaging process to mold a semiconductor die and a conductive metal foil for sensing element output signal conversion in a casing, and the semiconductor package structure of the semiconductor bare chip and the conductive metal foil for converting the output signal of the sensitive component is internally packaged.
  • the electrical connection function of the substrate of the existing pyroelectric infrared sensor, the support function of the bracket, and the signal conversion function can be simultaneously realized.
  • the invention can simplify the process of installing and connecting signal processing components while saving one substrate component, improve production efficiency, reduce requirements on production equipment and production environment, reduce equipment investment, and reduce production cost. . Therefore, the reliability and yield of the pyroelectric infrared sensor products have also been improved. BRIEF abstract
  • Fig. 1 is a schematic view showing the structure of a pyroelectric infrared sensor using a semiconductor element for outputting a signal for outputting a sensitive element.
  • Figure 2 shows a circuit schematic of a pyroelectric infrared sensor employing a field effect transistor.
  • Fig. 3 is a circuit diagram showing a conventional pyroelectric infrared sensor using a pyroelectric infrared sensor analog-digital hybrid processing integrated circuit component.
  • Fig. 4 is a circuit diagram showing another prior art pyroelectric infrared sensor using a pyroelectric infrared sensor analog-digital hybrid processing integrated circuit element.
  • Figure 5 is a schematic view showing the structure of an embodiment of the pyroelectric infrared sensor of the present invention.
  • FIG. 6 is a schematic circuit diagram of a conductive metal foil of an embodiment of a semiconductor package structure of the present invention, wherein the semiconductor package of the semiconductor package structure is used for pyroelectric infrared sensor analog-digital hybrid processing integration. Circuit die.
  • Figure 7 is a circuit diagram showing a conductive metal foil of a further embodiment of the semiconductor package structure of the present invention, wherein the semiconductor chip of the sensor package output signal conversion semiconductor chip is a field effect transistor die.
  • Figure 8 is a schematic cross-sectional view of the A-A direction of Figures 6 and 7, showing an arrangement of the pin chucks.
  • Fig. 9 is a schematic cross-sectional view taken along the line B-B of Figs. 6 and 7, showing a manner in which the sensitive member leads to the electrode disk.
  • FIG. 10 is a top plan view of another embodiment of a semiconductor package structure for a pyroelectric infrared sensor of the present invention, and partially showing a conductive metal foil inside the molded case, wherein the sensitive component of the semiconductor package structure
  • the semiconductor bare chip for output signal conversion is a pyroelectric infrared sensor analog-digital hybrid processing integrated circuit die.
  • FIG. 11 is a top plan view of another embodiment of a semiconductor package structure for a pyroelectric infrared sensor of the present invention, and partially showing a conductive metal foil inside the molded case, wherein the sensitive component of the semiconductor package structure
  • the semiconductor bare chip for output signal conversion is a FET die.
  • Fig. 12 is a schematic cross-sectional view taken along line BB of Figs. 10 and 11 .
  • Figure 13 is a top plan view of another embodiment of a semiconductor package structure for a pyroelectric infrared sensor of the present invention for demonstrating another exposure mode of the sensor element of the present invention, and partially showing A conductive metal foil inside the molded case.
  • Figure 14 is a top plan view of still another embodiment of a semiconductor package structure for a pyroelectric infrared sensor of the present invention for demonstrating another exposure mode of the sensor element of the present invention, and partially showing A conductive metal foil inside the molded case.
  • FIG. 15 is a side elevational view of still another embodiment of a semiconductor package structure for a pyroelectric infrared sensor of the present invention for demonstrating yet another manner of exposure of the sensor element of the present invention to the electrode tray, and partially showing A conductive metal foil inside the molded case is molded.
  • Figure 16 is an internal schematic view of still another embodiment of a semiconductor package structure for a pyroelectric infrared sensor of the present invention.
  • a semiconductor package structure of a pyroelectric infrared sensor includes a conductive metal foil, a semiconductor die for outputting a signal for outputting a sensor, and a plastic package.
  • the conductive metal foil may be made of copper foil.
  • the molded case can be made of epoxy resin.
  • the sensor output signal conversion semiconductor bare chip is an unmolded die, which may be a FET die, an operational amplifier die or a pyroelectric infrared sensor analog-digital hybrid processing integrated circuit die.
  • the semiconductor chip for sensing component output signal conversion is pasted on the conductive metal foil, and the electric circuit of the at least one sensitive component and the plurality of stem pins of the pyroelectric infrared sensor can be realized by a circuit pattern disposed on the conductive metal foil. connection.
  • the molded case is used for encapsulating a conductive metal foil and a semiconductor die for outputting signal conversion of the sensitive component, the molded case exposing a portion of the conductive metal foil, the exposed portion of the conductive metal foil being used for at least one sensitivity to the pyroelectric infrared sensor
  • the component and the plurality of header pins are electrically connected.
  • Figure 5 is a schematic view showing the structure of a pyroelectric infrared sensor of the present invention. As shown in FIG. 5, it includes a header 11, a semiconductor package structure 12, a sensing element 14, a cap 15 with an infrared filter window 19, and three header pins that pass through the header 11.
  • the three header pins include the first A pin 16a, a second pin 16b, and a third pin 16c.
  • the socket 1 1 is made of a metal material, and three through holes are formed in the stem 11 , and the first lead 16 a , the second lead 16 b and the third lead 16 c respectively pass through the three through holes, wherein the third lead
  • the pin 16c is grounded and electrically connected to the stem 11; the first pin 16a and the second pin 16b are insulated from the stem 11.
  • the semiconductor package structure 12 includes a semiconductor die 132 for sensing component output signal conversion, a conductive metal foil 122, and a molded package 123 for packaging the semiconductor chip 121 and the conductive metal foil 122 for output signal conversion.
  • the semiconductor package bare chip 121 for the sensor output signal conversion of the semiconductor package structure is a pyroelectric infrared sensor analog-digital hybrid processing integrated circuit die.
  • the conductive metal foil 122 includes a metal foil grounding end plate 122a, a metal foil power supply end disk 122b, a metal foil signal output terminal disk 122c, a metal foil first signal input terminal disk 122m, a metal a foil second signal input terminal 122n, a first pin pad 122d electrically connected to the first pin 16a, a second pin pad 122e for electrically connecting to the second pin 16b, a third lead pad 122f electrically connected to the third pin 16c, a first extraction electrode pad 122g for electrically connecting to an extraction electrode of the sensitive element 14, and another extraction electrode for the sensitive element
  • the electrically connected sensitive element is second led to the electrode disk 122h.
  • the first pin pad 122d, the second pin pad 122e, and the third pin pad 122f are respectively provided with first leads through which the first pin 16a, the second pin 16b, and the third pin 16c pass The through hole 122d1, the second lead through hole 122e1, and the third lead through hole 122fl.
  • the plastic package housing 123 exposes the first extraction electrode tray 122g of the sensitive component, the second extraction electrode tray 122h of the sensitive component, and the first A pin pad 122d, a second pin pad 122e, and a third pin pad 122f.
  • the metal foil ground terminal disk 122a is electrically connected to the third pin disk 122f through the lead 1221 on the conductive metal foil
  • the metal foil power terminal disk 122b is electrically connected to the first pin disk 122d through the lead 1222 on the conductive metal foil.
  • the metal foil signal output terminal disk 122c is electrically connected to the second pin disk 122e through a lead 1223 on the conductive metal foil, and the first extraction electrode disk 122g of the sensitive element passes through the lead 1224 and the metal foil on the conductive metal foil.
  • a signal input terminal disk 122m is electrically connected, and the second extraction electrode pad 122h of the sensitive element is electrically connected to the second signal input terminal disk 122n of the metal foil through the lead 1225 on the conductive metal foil.
  • a carrier 1220 is disposed on the conductive metal foil 122, and the back surface of the pyroelectric infrared sensor module mixed processing integrated circuit die is pasted on the conductive metal through the conductive adhesive.
  • the foil 122 is on the stage 1220.
  • the pyroelectric infrared sensor analog-digital hybrid processing integrated circuit die grounding end, power supply end, signal output end, first signal input end and second signal input end respectively pass through bonding wire 1226, bonding wire 1227, bonding The wire 1228, the bonding wire 1229 and the bonding wire 1230 and the metal foil grounding terminal 122a, a metal foil power terminal disk 122b, a metal foil signal output terminal disk 122c, and a metal foil first signal input terminal disk 122m, a metal foil second signal input end disk 122n is electrically connected.
  • the sensor output signal conversion semiconductor die 121 of the semiconductor package structure is a field effect transistor die.
  • the conductive metal foil 122 includes a metal foil gate pad 122a', a metal foil drain pad 122b', and a metal foil source pad 122c', and is electrically connected to the first pin 16a.
  • a first element of the extraction electrode electrically connected to the electrode 14 is connected to the electrode disk 122g and a second element for electrically connecting the other electrode of the sensor element.
  • the first pin pad 122d, the second pin pad 122e, and the third pin pad 122f are respectively provided with first leads through which the first pin 16a, the second pin 16b, and the third pin 16c pass
  • the exposed portion of the conductive metal foil includes a first extraction electrode pad 122g of the sensitive component, a second extraction electrode pad 122h of the sensitive component, a first pin pad 122d, a second pin pad 122e, and a third pin pad 122f.
  • the metal foil gate pad 122a is electrically connected to the first lead electrode tray 122g of the sensitive element through the lead 122 on the conductive metal foil, and the metal foil drain pad 122b' passes through the lead 1222' on the conductive metal foil and the first lead
  • the pedal tray 122d is electrically connected, and the metal foil source tray 122c' is electrically connected to the second pin tray 122e through the lead 1223' on the conductive metal foil, and the second extraction electrode tray 122h of the sensitive element passes through the conductive metal foil.
  • the lead 1224 is electrically connected to the third lead pad 122f.
  • the FET die is pasted on the conductive metal foil 122.
  • the gate of the FET die, the drain lead and the source take-up disk are respectively connected to the metal foil gate pad 122a', the metal foil drain pad 122b' and the metal foil source disk 122c' electrical connection.
  • the FET die has a major surface and a back surface opposite the main surface, and the source of the FET die leads to the drain and the drain leads to the main surface. Upper, the grid lead-out disc is placed on the back.
  • the back side of the FET die is pasted on the metal foil gate pad 122a' by a conductive paste, and the gate lead-out pad is electrically connected to the metal foil gate pad 122a' through the conductive paste.
  • the drain of the FET die leads out the turntable through the bond wire 1225' is electrically connected to the metal foil drain pad 122b', and the source lead-out pad is electrically connected to the metal foil source pad 122c' via a bonding wire 1226'.
  • the gate lead-out disk, the source lead-out pad, and the drain lead-out pad may also be disposed on the main surface of the FET die, at this time, on the conductive metal foil 122.
  • a carrier is arranged, the back surface of the FET die is pasted on the carrier by an insulating paste, and the gate lead-out disk, the drain-extracting disk and the source-extracting disk are respectively passed through the bonding wire and the metal foil
  • the gate pad 122a', the metal foil drain pad 122b' and the metal foil source pad 122c' are electrically connected.
  • the semiconductor package structure of the plastic package can be used In a similar manner, the lead pad, the first lead electrode of the sensitive element, and the second lead of the sensitive element are exposed.
  • FIG. 8 The schematic cross-sectional views of the A-A directions of Figs. 6 and 7 are as shown in Fig. 8.
  • the upper surface of the molding case 123 is respectively provided at a position corresponding to the first pin pad 122d, the second pin pad 122e, and the third pin pad 122f to expose the first pin pad 122d.
  • the lower surface of the molding case 123 is further provided with a first pin through hole 123d2 through which the first pin 16a penetrates, a second pin through hole 123e2 through which the second pin 16b penetrates, and a third pin penetration.
  • the third pin is perforated (not shown).
  • the first pin disk hole 123dl, the second pin disk hole 123e1 and the third pin disk hole are respectively connected to the first pin through hole 123d2, the second pin through hole 123e2 and the third pin through hole.
  • the apertures of the first pin disk hole 123dl, the second pin disk hole 123e1, and the third pin disk hole are respectively larger than the first pin through hole 123d2, the second pin through hole 123e2, and the third pin through hole Aperture.
  • the first pin disk hole 123d1 forms a step at the junction with the first pin hole 123d2.
  • the second pin disk hole 123e1 and the third pin disk hole also form a step at the junction with the second pin hole 123e2 and the third pin hole, respectively.
  • the aperture diameters of the first lead via 123d2, the second lead via 123e2, and the third lead via are preferably the apertures of the first lead via 122dl, the second lead via 122e, and the third lead via 122fl, respectively.
  • the header pin penetrates the lead through hole of the corresponding pin disk through the pin hole.
  • each of the pin trays can be appropriately stamped up to increase the convenience and reliability of the splicing.
  • FIG. 9 A schematic cross-sectional view of the BB directions of Figs. 6 and 7 is as shown in Fig. 9.
  • a pair of brackets 123 1 , 1232 for supporting the sensitive component 14 are protruded from the upper surface of the molding case 123.
  • the pair of brackets may be formed by integrally molding with the molded casing, or by painting, glue, or the like on the surface of the molded casing.
  • a first conductive hole 122g3 is disposed at a position of the upper surface of the plastic sealing shell abutting the side surface of the bracket 1231, and a second conductive hole 122h3 is disposed at a position of the upper surface of the plastic sealing shell abutting the side surface of the bracket 1232, the first conductive hole 122g3 and the second The conductive holes 122h3 each pass through the upper and lower surfaces of the plastic case.
  • the first extraction electrode tray 122g and the second extraction electrode tray 122h of the sensitive element are both bent upward by a press forming process, respectively forming a vertical portion 122gl exposed and vertically extending in the first conductive hole 122g3 and a vertical portion 122hl that is exposed and vertically extends in the second conductive hole 122h3, wherein the vertical portion 122g of the first extraction electrode disk 122g of the sensitive element abuts the side of the bracket 1231, and the top surface of the vertical portion 122gg and the bracket The top surface of the 1231 is flush; and the vertical portion 122hl of the second extraction electrode tray 122h of the sensitive component abuts the bracket 1232.
  • the top surface of the vertical portion 122hl is flush with the top surface of the bracket 1232, and the vertical portion 122gl, 122hl
  • the functions of the conductive layer disposed on the side of the stent in the prior art are the same.
  • the conductive paste is electrically connected to the vertical portion 122gl and the vertical portion 122hl, respectively.
  • the first conductive hole 1233 and the second conductive hole 1234 are respectively disposed on the top surfaces of the bracket 1231 and the bracket 1232.
  • the first conductive via 1233 exposes the first extraction electrode pad 122g of the sensitive component located underneath
  • the second conductive via 1234 exposes the sensitive component second extraction electrode pad 122h located below it.
  • the first conductive via 1233 and the second conductive via 1234 may be filled with a conductive paste 80.
  • the conductive paste may be, for example, a conductive silver paste, and the two extraction electrodes of the sensitive component 14 are electrically connected to the sensitive component first extraction electrode pad 122g and the sensitive component second extraction electrode pad 122h via the conductive adhesive 80, respectively.
  • the first conductive hole 1233 and the second conductive hole 1234 are circular in shape and are respectively disposed at the center positions of the top surfaces of the bracket 1231 and the bracket 1232.
  • the first conductive holes 1233 and the The two conductive holes 1234 may also be square, elliptical or the like.
  • the first surface of the plastic housing is exposed to the opposite sides of the brackets 1231 and 1232, respectively.
  • the first conductive via 1237 of the electrode pad 122g and the second conductive via 1238 exposing the sensitive component second lead electrode pad 122h. Opening on the opposite sides of the brackets 1231 and 1232 There is a first conductive slot 1231A and a second conductive slot 1232A.
  • the first conductive slot 123 1A extends vertically from the top surface of the bracket 1231 to the bottom of the bracket 123 1
  • the second conductive slot 1232A extends vertically from the top surface of the bracket 1232 to
  • the first conductive via 1231A and the second conductive via 1232A are in communication with the first conductive via 1237 and the second conductive via 1238, respectively.
  • the first conductive via 1237 and the second conductive via 1238 are not limited to being disposed adjacent to the opposite sides of the brackets 1231, 1232 as a variation, for example, may be disposed in the plastic housing adjacent to the brackets 123 1 , 1232 The position of the opposite side sides.
  • the conductive paste coated on the pair of brackets 1231 and 1232 easily flows through the first conductive groove 1231A and the second conductive groove 1232A.
  • the first conductive via 1237 and the second conductive via 1238, so that the sensitive component is bonded and fixed on the pair of brackets, and the first extraction electrode tray 122g and the second extraction electrode of the sensitive component are also realized. Electrical connection of disk 122h.
  • Figure 14 is a schematic top plan view of still another embodiment of a semiconductor package structure for a pyroelectric infrared sensor of the present invention.
  • the first extraction electrode tray 122g and the second extraction electrode tray 122h of the sensitive element are not exposed to the outside of the plastic housing by providing a conductive hole, but are directly exposed outside the plastic housing. And bend upwards.
  • a pair of brackets 1235, 1236 protruding from the upper surface of the molded casing 123 are used for supporting the sensitive components.
  • the pair of brackets 1235, 1236 are adjacent to the edge of the molded casing, and the outer side 1235A of the bracket 1235 and the outer side of the molded casing
  • the 123A is located substantially in the same plane, and the outer side 1236A of the bracket 1236 is substantially flush with the outer side surface 123B of the molded casing.
  • the bent sensing element first lead electrode pad 122g and the sensitive element second lead electrode pad 122h respectively abut the outer sides 1235A, 1236A of the pair of brackets 1235, 1236, and the top surface and the pair of brackets 1235 respectively The top surface of the 1236 is flush.
  • the two extraction electrodes of the sensitive component can be respectively connected to the bent sensitive component by the conductive adhesive, the first extraction electrode, and the second component of the sensitive component. Electrical connection.
  • the portion of the conductive metal foil exposed to the outside of the molded casing 123 and used for electrical connection with the sensitive component may constitute a support portion for supporting the sensitive component, and it is not necessary to provide the plasticized casing at this time. support.
  • the upwardly bent sensitive element first take-up electrode disk 122g and the sensitive element second take-up electrode disk 122h as shown in Fig. 14 can be used to support the sensitive element if its top is higher than the upper surface of the molded case. In order to obtain a more stable support effect, the first component of the sensitive component is taken out.
  • the top of the electrode disk 122g and the second extraction electrode disk 122h of the sensitive element may be further bent in the horizontal direction as shown in FIG.
  • a pair of extraction electrode portions of the sensitive component 14 are respectively supported on the first extraction electrode tray 122g of the sensitive component and the second extraction electrode tray 122h of the sensitive component, and the two extraction electrodes of the sensitive component and the first sensitive component of the bending are respectively The extraction electrode disk and the second extraction electrode of the sensitive component are electrically connected.
  • the sensitive component can be supported by a recess formed in the upper surface of the molding case 123 or an opposite side edge of the axial through hole extending through the upper and lower surfaces of the molding case; a first conductive hole and a second conductive hole are respectively defined in the top surface of the opposite side of the groove or the axial through hole, and the first conductive hole and the second conductive hole respectively expose the sensitive component located below An extraction electrode tray 122g and a second extraction electrode tray 122h are provided.
  • the sensitive component 14 spans the opposite side edges of the recess, and a pair of extraction electrode portions of the sensitive component 14 respectively correspond to the first conductive via and the second conductive via.
  • the pair of extraction electrodes of the sensitive component 14 are electrically connected to the first end of the sensitive component 122c and the second end of the sensitive component 122h by a conductive adhesive, for example, a conductive silver paste.
  • the semiconductor package structure 12 is disposed on the stem 1 1 , and the upper portions of the stem pins of the respective headers are sequentially inserted into the corresponding pin through holes and lead through holes, and are electrically connected to the corresponding pin pads.
  • the upper portion of the first pin 16a sequentially penetrates the first pin through hole 123d2 and the first lead through hole 122d1, and is electrically connected to the first pin disk 122d;
  • the upper portion of the second pin 16b sequentially penetrates the second pin
  • the through hole 123e2 and the second lead through hole 122el are electrically connected to the second lead plate 122e;
  • the upper portion of the third pin 16c sequentially penetrates the third pin through hole and the third lead through hole 122fl, and the third lead
  • the pedal disk 122f is electrically connected.
  • the sensitive component 14 is adhesively attached to the semiconductor package structure 12, and the two extraction electrodes of the sensitive component 14 are electrically connected to the first extraction electrode pad of the sensitive component and the second extraction electrode pad of the sensitive component, respectively.
  • a cap 15 having an infrared filter window 19 is placed over the stem 11 and is sealingly connected to the stem 11.
  • the sensitive component 14 and the semiconductor package structure 12 are covered by the cap 15 and the stem 1 Within a shared space.
  • a pair of extraction electrode portions of the sensitive member may be disposed on the pair of brackets 1231 and 1232 .
  • the second extraction electrode tray 122h of the second conductive hole bonding the sensitive component with conductive adhesive
  • the conductive adhesive can also easily enter the first and second conductive holes, so that the support and the fixing of the sensitive components and the first extraction of the sensitive components 14 and the sensitive components can be completed simultaneously in one process.
  • the electrode tray 122g is electrically connected to the second extraction electrode tray 122h of the sensitive element.
  • a bracket, a groove or an axial through hole is not disposed on the upper surface of the molding case 123, but a pair of conductive holes are directly opened to respectively expose a pair of sensitive holes under the pair of conductive holes.
  • the component leads to the electrode tray.
  • a certain amount of conductive adhesive is injected into the pair of conductive holes to form a pair of protrusions protruding from the upper surface of the molded casing, thereby functioning like a bracket, and a pair of sensitive components
  • the lead electrode portions are respectively supported on the pair of raised conductive pastes, so that the sensitive components are spaced apart at a predetermined distance from the surface of the plastic sealing shell, and at the same time, a pair of extraction electrodes of the sensitive component and a pair of sensitive components are taken out The electrical connection of the electrode tray.
  • the description is exemplified by a single sensitive component, and the present invention is also applicable to the case where two or more sensitive components are provided.
  • the molded case 123 exposes a portion of the conductive metal foil, the exposed portion of the conductive metal foil includes two pairs of sensitive elements corresponding to the two sensitive elements, and an electrode tray, and A plurality of pin disks respectively electrically connected to the plurality of header pins, and each pair of sensitive component extraction electrode pads are respectively electrically connected to the two extraction electrodes of the corresponding one of the sensitive components.
  • a support portion for supporting the two sensitive elements may be provided on the molded casing 123.
  • the supporting portion may be formed, for example, by at least one pair of brackets protruding from the upper surface of the molding housing; or by at least one groove or at least one opening through the upper surface of the molding housing through the upper and lower surfaces of the molding housing
  • the opposite sides of the axial through hole are formed; or, the two pairs of sensitive elements lead to the electrode disk, and the two pairs of sensitive elements lead out of the electrode plate and protrude out of the plastic case, and are higher than the plastic case Upper surface.
  • the number of pin pins provided on the stem will also change. As shown in FIG.
  • the pyroelectric infrared sensor analog-digital hybrid processing integrated circuit die 121 has three grounding ends, a power supply end, a signal output end, a first signal input end, and a second signal input end, and three The power supply end, the signal output end, the ground end, the first signal input end, the second signal input end and the three measurement and control ends of the integrated circuit die 121 and the conductive metal foil 122 respectively.
  • the disk 122i, the fifth pin pad 122j, and the sixth pin pad 122k are electrically connected.
  • the first to sixth pin disks are respectively associated with The six header pins are electrically connected.
  • the semiconductor package structure for a pyroelectric infrared sensor of the present invention can be manufactured by the following steps:
  • Step 1 providing a conductive metal foil with a circuit pattern, and bonding a plurality of semiconductor output chips for output signal conversion of the sensitive component to the conductive metal foil, and outputting the semiconductor chip and the conductive metal foil for signal conversion of each sensitive component
  • the circuit pattern forms an electrical connection; wherein the circuit pattern of the conductive metal foil enables each of the sensitive component output signal conversion semiconductor bare chips to electrically connect with the corresponding sensitive component and the header pin; used in the step 1
  • the conductive metal foil is elongated, and the elongated conductive metal foil is provided with a process edge and a positioning hole.
  • Step 2 molding a plurality of sensing element output signal conversion semiconductor bare chips and a conductive metal foil by a plastic sealing mold to form a plastic sealing shell exposing a portion of the conductive metal foil, and the exposed partial conductive metal foil is used for the pyroelectric infrared sensor
  • the sensitive components and the header pins are electrically connected.
  • the portion of the conductive metal foil to be exposed may be pre-formed, such as bent, or stamped to protrude toward one side of the conductive metal foil 122, and then exposed when molded by a plastic mold, and the material used for the plastic seal is, for example, a ring.
  • the oxy-resin; the support portion supporting the sensitive component may be disposed on the plastic-molded casing and integrally formed with the plastic-molded casing.
  • Step 3 Separate the completed conductive metal foil into a single semiconductor package structure for the pyroelectric infrared sensor and remove excess trim.
  • the invention adopts a semiconductor packaging process to mold a semiconductor die and a conductive metal foil for sensing component output signal conversion in a casing, and the semiconductor package structure of the semiconductor bare chip and the conductive metal foil for converting the output signal of the sensitive component is internally packaged.
  • Replacement of existing discrete sensors The output signal conversion semiconductor element and the substrate having the printed circuit on the surface can simultaneously realize the electrical connection function of the substrate of the conventional pyroelectric infrared sensor, the support function of the support, and the signal conversion function.
  • the invention can simplify the process of installing and connecting signal processing components while saving one substrate component, improve production efficiency, reduce requirements on production equipment and production environment, reduce equipment investment, and reduce production cost. . Therefore, the reliability and yield of the pyroelectric infrared sensor products have also been improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

公开了一种热释电红外传感器、用于热释电红外传感器的半导体封装结构及其制造方法。半导体封装结构包括导电金属箔(122)、敏感元件输出信号转换用半导体裸芯片(121)及塑封壳体(123)。敏感元件输出信号转换用半导体裸芯片(121)粘贴在导电金属箔(122)上,并与之电连接;塑封壳体(123)用于封装导电金属箔(122)和裸芯片(121)。塑封壳体(123)暴露了部分导电金属箔(122),暴露的部分导电金属箔(122)用于实现导电金属箔(122)与敏感元件(14)及管座引脚(16a,16b,16c)的电连接。将敏感元件输出信号转换用半导体裸芯片(121)封装成热释电红外传感器所需的基板结构和形状,同时这种封装结构还具有现有热释电红外传感器基板的电连接功能,支承功能以及信号转换功能,从而简化了传感器内部结构,提高了可靠性,降低了成本。

Description

用于热释电红外传感器的半导体封装结构件及其制造方法和传感器 技术领域
本发明涉及热释电红外传感器技术。 背景技术
热释电红外传感器是一种将红外线辐射信号转变为电信号的探测器。 现有 的一种热释电红外传感器的结构如图 1所示, 其包括管座 91、 基板 92、 敏感 元件输出信号转换用半导体元件 93、 敏感元件 94和管帽 95。 管座 91为金属 材质, 在管座 91上设有三个通孔, 三根管座引脚 96a、 96b和 96c分别穿过该 三个通孔, 其中一根引脚 96c接地, 该引脚 96c与管座 91电连接; 另外两根引 脚 96a、 96b与管座 91保持绝缘。 基板 92设置在管座 91上, 敏感元件输出信 号转换用半导体元件 93设置在基板 92上。 基板 92的表面设有印刷电路, 该 印刷电路具有与敏感元件输出信号转换用半导体元件 93 的引脚、 敏感元件 94 的一对引出电极以及管座引脚 96a、 96b、 96c电连接的悍盘。 在基板 92的上表 面还设有一对支架 97、 98, 该一对支架 97、 98的侧面设有导电层, 敏感元件 94的一对引出电极部位支承在该一对支架 97、 98上, 敏感元件 94的一对引出 电极分别与支架 97的导电层和支架 98 的导电层电连接, 该支架 97的导电层 和支架 98的导电层与基板的印刷电路电连接。 管帽 95上设有红外滤光片窗口 99。 管帽 95罩在管座 91上, 并与该管座 91密封连接, 将基板 92、 敏感元件 输出信号转换用半导体元件 93以及敏感元件 94罩在由管帽 95和管座 91所共 同限定的空间内。 上述的敏感元件输出信号转换用半导体元件 93 把敏感元件 94输出的微弱电信号转换成后续电路易接收和处理的较强电信号,这种转换可 能是对电压或者电流的放大, 也可能把模拟信号转换成数字信号。 该敏感元件 输出信号转换用半导体元件 93可以是场效应管 FET、运算放大器元件或热释电 红外传感器模数混合处理集成电路元件。
图 2示出了敏感元件输出信号转换用半导体元件 93 为场效应管元件的热 释电红外传感器的电路原理图。
如图所示, 敏感元件 94 的一个引出电极与场效应管的栅极 G 电连接, 另 一个引出电极接地。 场效应管的漏极 D和源极 S作为热释电红外传感器的电源 输入端和信号输出端。
图 3示出了敏感元件输出信号转换用半导体元件 93 为热释电红外传感器 模数混合处理集成电路元件的热释电红外传感器的一个实施例的电路原理图。 如图所示, 敏感元件 94 的一对引出电极分别与热释电红外传感器模数混合处 理集成电路元件的第一信号输入端 IN1和第二信号输入端 IN2电连接。 热释电 红外传感器模数混合处理集成电路元件包括模数转换电路 93 1和数字信号处理 电路 932。模数转换电路 93 1将敏感元件 94传送的模拟信号转换为数字信号后 再传送给数字信号处理电路 932, 数字信号处理电路 932对该数字信号进行带 通滤波等数字信号处理后通过信号输出端 OUT输出。 接地端 GND用于接地, 电源端 VDD用于与外接电源相连。 该热释电红外传感器模数混合处理集成电路 元件可以是专用于热释电红外传感器的元件, 也可以是能同时应用于热释电红 外传感器及其它传感器的通用型元件。
图 4示出了敏感元件输出信号转换用半导体元件 93 为热释电红外传感器 模数混合处理集成电路元件的热释电红外传感器的又一实施例的电路原理图。
在图 4所示的热释电红外传感器中, 采用了两个敏感元件 94, 敏感元件输 出信号转换用半导体元件 93包括两组模数转换电路 93 1和一数字信号处理电 路 932。
图 3和图 4仅仅示出了敏感元件输出信号转换电路元件 93为热释电红外 传感器模数混合处理集成电路元件的热释电红外传感器的两个示例, 热释电红 外传感器模数混合处理集成电路元件的内部结构会随着具体应用的不同而有 所不同。 例如, 有些敏感元件输出信号转换电路元件内还设有温度测量电路, 有些设有灵敏度控制电路等。 由于热释电红外传感器模数混合处理集成电路元 件的内部电路结构和功能的不同, 在管座上所设置的管座引脚的数量也会随之 变化。
目前, 采用敏感元件输出信号转换用半导体元件的热释电红外传感器的装 配方式是把场效应管元件、 运算放大器或热释电红外传感器模数混合处理集成 电路元件封装成 SMT元件形式, 然后在 PCB基板上进行贴片安装, 之后安装敏 感元件和进行传感器外壳封装。 由于敏感元件输出信号转换用半导体元件与基 板是分立元件, 在制造环节中, 存在着基板的制造和安装、 敏感元件输出信号 转换用半导体元件安装及悍接等工序, 致使这种结构的热释电红外传感器具有 较高的制造成本。 发明内容
本发明所要解决的技术问题在于提供一种内部封装有敏感元件输出信号 转换用半导体裸芯片和导电金属箔的用于热释电红外传感器的半导体封装结 构件, 以替代现有分立的敏感元件输出信号转换用半导体元件和表面有印刷线 路的基板, 从而提高热释电红外传感器的生产效率, 降低热释电红外传感器的 制造成本。
本发明所要解决的进一步的技术问题在于提供一种采用上述半导体封装结构 件的热释电红外传感器。
本发明所要解决的又一技术问题在于提供一种上述的用于热释电红外传感器 的半导体封装结构件的制造方法。
本发明提供了一种用于热释电红外传感器的半导体封装结构件, 其中, 热 释电红外传感器包括至少一个敏感元件和多根管座引脚; 该用于热释电红外传 感器的半导体封装结构件包括: 导电金属箔,该导电金属箔上布置有电路图案; 敏感元件输出信号转换用半导体裸芯片, 粘贴在导电金属箔上, 并通过该导电 金属箔的电路图案实现与至少一个敏感元件和多根管座引脚的电连接; 塑封壳 体, 封装导电金属箔和敏感元件输出信号转换用半导体裸芯片; 该塑封壳体暴 露了部分导电金属箔, 该暴露的部分导电金属箔用于与至少一个敏感元件及多 根管座引脚实现电连接。
上述的半导体封装结构件, 其中, 敏感元件输出信号转换用半导体裸芯片 为场效应管裸片、 运算放大器裸片或热释电红外传感器模数混合处理集成电路 裸片。
上述的半导体封装结构件, 其中, 暴露的部分导电金属箔包括: 对应于至 少一个敏感元件的至少一对敏感元件引出电极悍盘, 每对敏感元件引出电极悍 盘用于分别与对应的那个敏感元件的两个引出电极电连接; 用于一一对应地分 别与多根管座引脚电连接多个引脚悍盘, 每一引脚悍盘设有供管座引脚穿过的 引线通孔。
本发明还提供了一种热释电红外传感器, 包括带有红外滤光片窗口的管 帽、 至少一个敏感元件、 管座以及穿过该管座的多根管座引脚, 管帽罩设在管 座上, 并与该管座密封连接, 其特点在于, 该热释电红外传感器还包括设置在 管座上的半导体封装结构件, 该半导体封装结构件包括: 导电金属箔, 该导电 金属箔上布置有电路图案; 敏感元件输出信号转换用半导体裸芯片, 粘贴在 导电金属箔上, 并通过该导电金属箔的电路图案实现与至少一个敏感元件和多 根管座引脚的电连接; 塑封壳体, 封装导电金属箔和敏感元件输出信号转换用 半导体裸芯片; 该塑封壳体暴露了部分导电金属箔, 该暴露的部分导电金属箔 用于与至少一个敏感元件及多根管座引脚实现电连接; 其中, 至少一个敏感元 件安装在半导体封装结构件上; 每一敏感元件的一对引出电极以及多根管座引 脚分别与所对应的被暴露的导电金属箔部分电连接。
本发明还提供了一种制造上述的用于热释电红外传感器的半导体封装结 构件的方法, 其包括以下步骤: 步骤 1, 提供一布置有电路图案的导电金属箔, 将多个敏感元件输出信号转换用半导体裸芯片粘贴在该导电金属箔上, 并使各 敏感元件输出信号转换用半导体裸芯片与导电金属箔的电路图案形成电连接; 其中, 该导电金属箔的电路图案可使得每一敏感元件输出信号转换用半导体裸 芯片与相对应的敏感元件和管座引脚实现电连接;
步骤 2, 通过塑封模具塑封多个敏感元件输出信号转换用半导体裸芯片以 及导电金属箔, 形成暴露了部分导电金属箔的塑封壳体, 该暴露的部分导电金 属箔用于与热释电红外传感器的敏感元件及管座引脚实现电连接;
步骤 3, 将完成封装的导电金属箔分离成单个用于热释电红外传感器的半 导体封装结构件, 并去除多余的边料。
本发明还提供了一种用于热释电红外传感器的半导体封装结构件, 该热释 电红外传感器包括敏感元件和管座引脚; 其特点在于, 该用于热释电红外传感 器的半导体封装结构件包括: 导电金属箔; 场效应管裸片或运算放大器裸片, 粘贴在导电金属箔上, 并与该导电金属箔电连接; 塑封壳体, 用于封装导电金 属箔、 以及场效应管裸片或运算放大器裸片; 该塑封壳体暴露了部分导电金属 箔,该暴露的部分导电金属箔用于与敏感元件及管座引脚实现电连接;支承部, 用于支承敏感元件。
本发明还提供了一种热释电红外传感器, 包括带有红外滤光片窗口的管 帽、 敏感元件、 管座以及穿过该管座的管座引脚, 管帽罩设在管座上, 并与该 管座密封连接, 其特点是, 该热释电红外传感器还包括设置在管座上的一半导 体封装结构件, 该半导体封装结构件包括: 导电金属箔; 场效应管裸片或运算 放大器裸片, 粘贴在所述的导电金属箔上, 并与该导电金属箔电连接; 塑封壳 体, 用于封装导电金属箔、 以及场效应管裸片或运算放大器裸片; 该塑封壳体 暴露了部分导电金属箔, 该暴露的部分导电金属箔用于与所述敏感元件及管座 引脚实现电连接; 支承部, 用于支承敏感元件; 其中, 敏感元件设置在支承 部上; 该敏感元件的两个引出电极以及管座引脚分别与所对应的被暴露的导电 金属箔部分电连接。
本发明还提供了制造上述的用于热释电红外传感器的半导体封装结构件 的方法, 包括以下步骤: 步骤 1, 提供一导电金属箔, 将多个场效应管裸片或 多个运算放大器裸片粘贴在该导电金属箔上, 并使各场效应管裸片或运算放大 器裸片与导电金属箔电连接; 步骤 2, 通过塑封模具塑封多个场效应管裸片或 多个运算放大器裸片、 以及导电金属箔, 形成暴露了部分导电金属箔的塑封壳 体, 同时形成用于支承敏感元件的支承部, 该暴露的部分导电金属箔用于与热 释电红外传感器的敏感元件及管座引脚实现电连接; 步骤 3, 将完成封装的导 电金属箔分离成单个用于热释电红外传感器的半导体封装结构件, 并去除多余 的边料。
本发明采用半导体封装工艺将敏感元件输出信号转换用半导体裸芯片 ( die )和导电金属箔塑封在壳体内, 利用该内部封装有敏感元件输出信号转换 用半导体裸芯片和导电金属箔的半导体封装结构件, 替代现有分立的敏感元件 输出信号转换用半导体元件和表面有印刷线路的基板, 可同时实现现有热释电 红外传感器的基板的电连接功能、 支架的支承功能以及信号转换功能。 与现有 技术相比, 本发明在节约一个基板部件的同时, 可以简化安装、 悍接信号处理 元件的工序, 提高生产效率, 降低对生产设备和生产环境的要求, 减少设备投 入, 降低生产成本。 因此热释电红外传感器成品的可靠性和成品率也获得了提 附图概述
图 1是现有的一种采用敏感元件输出信号转换用半导体元件的热释电红外 传感器的结构示意图。
图 2示出了采用场效应管的热释电红外传感器的电路原理图。
图 3示出了一种现有的采用热释电红外传感器模数混合处理集成电路元件 的热释电红外传感器的电路原理图。
图 4示出了另一种现有的采用热释电红外传感器模数混合处理集成电路元 件的热释电红外传感器的电路原理图。
图 5是本发明热释电红外传感器的一个实施例的结构示意图。
图 6是本发明的半导体封装结构件一个实施例的导电金属箔的电路图案示意 图, 其中, 该半导体封装结构件的敏感元件输出信号转换用半导体裸芯片为热释 电红外传感器模数混合处理集成电路裸片。
图 7是本发明的半导体封装结构件又一个实施例的导电金属箔的电路图案示 意图, 其中, 该半导体封装结构件的敏感元件输出信号转换用半导体裸芯片为场 效应管裸片。
图 8是图 6和图 7的 A-A方向的示意性剖视图,示出了引脚悍盘的一种布置方 式。
图 9是图 6和图 7的 B-B方向的示意性剖视图, 示出了敏感元件引出电极悍 盘的一种暴露方式。
图 10 是本发明用于热释电红外传感器的半导体封装结构件另一个实施例的 俯视示意图, 并部分地示出了塑封壳体内部的导电金属箔, 其中, 该半导体封装结 构件的敏感元件输出信号转换用半导体裸芯片为热释电红外传感器模数混合处 理集成电路裸片。
图 11是本发明用于热释电红外传感器的半导体封装结构件另一个实施例的俯 视示意图, 并部分地示出了塑封壳体内部的导电金属箔, 其中, 该半导体封装结构 件的敏感元件输出信号转换用半导体裸芯片为场效应管裸片。
图 12是图 10和图 11的 B-B方向的示意性剖视图。 图 13 是本发明用于热释电红外传感器的半导体封装结构件另一个实施例的 俯视示意图, 用于展示本发明的敏感元件引出电极悍盘的又一种暴露方式, 并部 分地示出了塑封壳体内部的导电金属箔。
图 14是本发明用于热释电红外传感器的半导体封装结构件又一个实施例的俯 视示意图, 用于展示本发明的敏感元件引出电极悍盘的又一种暴露方式, 并部分 地示出了塑封壳体内部的导电金属箔。
图 15是本发明用于热释电红外传感器的半导体封装结构件又一个实施例的侧 视示意图, 用于展示本发明的敏感元件引出电极悍盘的又一种暴露方式, 并部分 地示出了塑封壳体内部的导电金属箔。
图 16 是本发明用于热释电红外传感器的半导体封装结构件又一个实施例的 内部示意图。 本发明的最佳实施方式
通过下面结合附图对本发明具体实施方式的详细说明, 可以更清楚了解本 发明的构思及优点。
根据本发明一实施例的热释电红外传感器的半导体封装结构件包括导电 金属箔、 敏感元件输出信号转换用半导体裸芯片和塑封壳体。 其中, 导电金属 箔可以采用铜箔。 塑封壳体可采用环氧树脂制成。 该敏感元件输出信号转换用 半导体裸芯片是未经过塑封的裸片, 其可以是场效应管裸片、运算放大器裸片或 热释电红外传感器模数混合处理集成电路裸片。
敏感元件输出信号转换用半导体裸芯片粘贴在导电金属箔上, 并可通过布 置在该导电金属箔上的电路图案实现与热释电红外传感器的至少一个敏感元 件和多根管座引脚的电连接。 塑封壳体用于封装导电金属箔以及敏感元件输出 信号转换用半导体裸芯片, 该塑封壳体暴露了部分导电金属箔, 该暴露的部分 导电金属箔用于与热释电红外传感器的至少一个敏感元件及多根管座引脚实 现电连接。
图 5是本发明热释电红外传感器的一个具体实施例的结构示意图。 如图 5 所示, 其包括管座 11、 半导体封装结构件 12、 敏感元件 14、 带有红外滤光片 窗口 19的管帽 15 以及穿过管座 11 的三根管座引脚。 该三根管座引脚包括第 一引脚 16a、 第二引脚 16b和第三引脚 16c。
管座 1 1为金属材质, 在管座 1 1上设有三个通孔, 第一引脚 16a、 第二引 脚 16b和第三引脚 16c分别穿过该三个通孔, 其中第三引脚 16c接地, 与管座 11电连接; 第一引脚 16a和第二引脚 16b与管座 11保持绝缘。
半导体封装结构件 12包括一敏感元件输出信号转换用半导体裸芯片(die ) 121、 一导电金属箔 122 以及封装敏感元件输出信号转换用半导体裸芯片 121 和导电金属箔 122的塑封壳体 123。
在图 6中,半导体封装结构件的敏感元件输出信号转换用半导体裸芯片 121 为热释电红外传感器模数混合处理集成电路裸片。 此时, 导电金属箔 122包括 一金属箔接地端悍盘 122a、一金属箔电源端悍盘 122b、一金属箔信号输出端悍 盘 122c、 一金属箔第一信号输入端悍盘 122m、 一金属箔第二信号输入端悍盘 122η, 用于与第一引脚 16a电连接的第一引脚悍盘 122d、 用于与第二引脚 16b 电连接的第二引脚悍盘 122e、用于与第三引脚 16c电连接的第三引脚悍盘 122f、 用于与敏感元件 14的一个引出电极电连接的敏感元件第一引出电极悍盘 122g 以及用于与敏感元件的另一个引出电极电连接的敏感元件第二引出电极悍盘 122h。 第一引脚悍盘 122d、 第二引脚悍盘 122e和第三引脚悍盘 122f分别设有 供第一引脚 16a、第二引脚 16b和第三引脚 16c穿过的第一引线通孔 122dl、第 二引线通孔 122e l 和第三引线通孔 122fl。 为了实现与热释电红外传感器的敏 感元件及多根管座引脚的电连接, 塑封壳体 123暴露了敏感元件第一引出电极 悍盘 122g、 敏感元件第二引出电极悍盘 122h、 第一引脚悍盘 122d、 第二引脚 悍盘 122e和第三引脚悍盘 122f。 金属箔接地端悍盘 122a通过导电金属箔上的 引线 1221与第三引脚悍盘 122f 电连接,金属箔电源端悍盘 122b通过导电金属 箔上的引线 1222与第一引脚悍盘 122d 电连接, 金属箔信号输出端悍盘 122c 通过导电金属箔上的引线 1223与第二引脚悍盘 122e电连接, 敏感元件第一引 出电极悍盘 122g通过导电金属箔上的引线 1224与金属箔第一信号输入端悍盘 122m电连接,敏感元件第二引出电极悍盘 122h通过导电金属箔上的引线 1225 与金属箔第二信号输入端悍盘 122η电连接。
在图 6示出的实施方式中, 在导电金属箔 122上设置一载片台 1220, 热释 电红外传感器模数混合处理集成电路裸片的背面通过导电胶粘贴在导电金属 箔 122 的载片台 1220上。 该热释电红外传感器模数混合处理集成电路裸片的 接地端、 电源端、 信号输出端、 第一信号输入端和第二信号输入端分别通过键 合线 1226、 键合线 1227、 键合线 1228、 键合线 1229和键合线 1230与金属箔 接地端悍盘 122a、 一金属箔电源端悍盘 122b、 一金属箔信号输出端悍盘 122c、 一金属箔第一信号输入端悍盘 122m、 一金属箔第二信号输入端悍盘 122η电连 接。
在图 7中,半导体封装结构件的敏感元件输出信号转换用半导体裸芯片 121 为场效应管裸片。 此时, 导电金属箔 122包括一金属箔栅极悍盘 122a'、 一金 属箔漏极悍盘 122b'和一金属箔源极悍盘 122c'、 用于与第一引脚 16a电连接的 第一引脚悍盘 122d、用于与第二引脚 16b电连接的第二引脚悍盘 122e、用于与 第三引脚 16c 电连接的第三引脚悍盘 122f、 用于与敏感元件 14的一个引出电 极电连接的敏感元件第一引出电极悍盘 122g 以及用于与敏感元件的另一引出 电极电连接的敏感元件第二引出电极悍盘 122h。 第一引脚悍盘 122d、 第二引 脚悍盘 122e和第三引脚悍盘 122f分别设有供第一引脚 16a、 第二引脚 16b和 第三引脚 16c穿过的第一引线通孔 122dl、 第二引线通孔 122el和第三引线通 孔 122fl。 上述暴露的部分导电金属箔包括敏感元件第一引出电极悍盘 122g、 敏感元件第二引出电极悍盘 122h、 第一引脚悍盘 122d、 第二引脚悍盘 122e和 第三引脚悍盘 122f。金属箔栅极悍盘 122a,通过导电金属箔上的引线 122Γ与敏 感元件第一引出电极悍盘 122g电连接, 金属箔漏极悍盘 122b'通过导电金属箔 上的引线 1222'与第一引脚悍盘 122d电连接, 金属箔源极悍盘 122c'通过导电 金属箔上的引线 1223 '与第二引脚悍盘 122e电连接, 敏感元件第二引出电极悍 盘 122h通过导电金属箔上的引线 1224,与第三引脚悍盘 122f 电连接。
场效应管裸片粘贴在导电金属箔 122上。该场效应管裸片的栅极引出悍盘、 漏极引出悍盘和源极引出悍盘分别与金属箔栅极悍盘 122a'、 金属箔漏极悍盘 122b'和金属箔源极悍盘 122c'电连接。 在图 7示出的实施方式中, 场效应管裸 片具有一主表面和一与该主表面相对的背面, 场效应管裸片的源极引出悍盘和 漏极引出悍盘设置在主表面上, 栅极引出悍盘设置在背面上。 场效应管裸片的 背面通过导电胶粘贴在金属箔栅极悍盘 122a'上, 栅极引出悍盘通过导电胶与 金属箔栅极悍盘 122a'形成电连接。 场效应管裸片的漏极引出悍盘通过键合线 1225 '与金属箔漏极悍盘 122b'电连接, 源极引出悍盘通过键合线 1226'与金属 箔源极悍盘 122c'电连接。 在另一种实施方式中, 也可以将栅极引出悍盘、 源 极引出悍盘和漏极引出悍盘均设置于场效应管裸片的主表面上, 此时, 在导电 金属箔 122上设置一载片台, 场效应管裸片的背面通过绝缘胶粘贴于该载片台 上, 栅极引出悍盘、 漏极引出悍盘和源极引出悍盘分别通过键合线与金属箔栅 极悍盘 122a'、 金属箔漏极悍盘 122b'和金属箔源极悍盘 122c'电连接。
不论半导体封装结构件的敏感元件输出信号转换用半导体裸芯片是采用热 释电红外传感器模数混合处理集成电路裸片还是采用场效应管裸片, 该半导体 封装结构件的塑封壳体均可以采用类似的方式暴露引脚悍盘、 敏感元件第一引出 电极悍盘和敏感元件第二引出电极悍盘。
图 6和图 7的 A-A方向的示意性剖视图均如图 8所示。 参考图 8。 塑封壳体 123的上表面在与第一引脚悍盘 122d、 第二引脚悍盘 122e、第三引脚悍盘 122f 相对应的位置处分别设有暴露第一引脚悍盘 122d的第一引脚悍盘孔 123dl、暴 露第二引脚悍盘 122e 的第二引脚悍盘孔 123e l、 暴露第三引脚悍盘 123f 的第 三引脚悍盘孔(图中未示出)。该塑封壳体 123的下表面还设有供第一引脚 16a 穿入的第一引脚穿孔 123d2、 供第二引脚 16b穿入的第二引脚穿孔 123e2以及 供第三引脚穿入的第三引脚穿孔 (图中未示出) 。 第一引脚悍盘孔 123dl、 第 二引脚悍盘孔 123e l和第三引脚悍盘孔分别与第一引脚穿孔 123d2、 第二引脚 穿孔 123e2和第三引脚穿孔贯通连接。 第一引脚悍盘孔 123dl、 第二引脚悍盘 孔 123e l和第三引脚悍盘孔的孔径分别大于第一引脚穿孔 123d2、 第二引脚穿 孔 123e2 和第三引脚穿孔的孔径。 第一引脚悍盘孔 123dl 在与第一引脚穿孔 123d2衔接处形成了台阶。 同样, 第二引脚悍盘孔 123e l和第三引脚悍盘孔在 分别与第二引脚穿孔 123e2和第三引脚穿孔的衔接处也形成台阶。 第一引脚穿 孔 123d2、 第二引脚穿孔 123e2和第三引脚穿孔的孔径大小最好是分别与第一 引线通孔 122dl、 第二引线通孔 122e l和第三引线通孔 122fl 的孔径相等, 管 座引脚通过引脚穿孔穿入所对应的引脚悍盘的引线通孔。 在一种实施方式中, 各引脚悍盘可以向上做适当的冲压成型以增加悍接的方便性、 可靠性。
图 6和图 7的 B-B方向的示意性剖视图均如图 9所示。 在图 9的实施例中, 在塑封壳体 123上表面凸设有用于支承敏感元件 14的一对支架 123 1、 1232, 该一对支架可通过与塑封壳体一体成型的方式形成, 或者是通过在塑封壳体表 面涂漆、 胶等的方式形成。 在塑封壳体上表面紧靠支架 1231 侧面的位置设有 第一导电孔 122g3,在塑封壳体上表面紧靠支架 1232侧面的位置设有第二导电 孔 122h3, 第一导电孔 122g3和第二导电孔 122h3均贯通塑封壳体的上、 下表 面。 敏感元件第一引出电极悍盘 122g和敏感元件第二引出电极悍盘 122h均通 过冲压成型的工艺向上弯折, 分别形成在第一导电孔 122g3中暴露并竖直延伸 的竖直部分 122gl和在第二导电孔 122h3中暴露并竖直延伸的竖直部分 122hl, 其中, 敏感元件第一引出电极悍盘 122g的竖直部分 122gl紧贴支架 1231的侧 面, 该竖直部分 122gl 的顶面与支架 1231 的顶面齐平; 而敏感元件第二引出 电极悍盘 122h的竖直部分 122hl紧贴支架 1232, 该竖直部分 122hl的顶面与 支架 1232的顶面齐平, 竖直部分 122gl、 122hl与现有技术中设置于支架侧面 上的导电层所起的作用相同, 敏感元件 14 的一对引出电极部位支承在该一对 支架 1231、 1232上时, 敏感元件 14的两个引出电极可通过导电胶分别与竖直 部分 122gl和竖直部分 122hl电连接。
在另一种暴露敏感元件引出电极悍盘的实施方式中, 如图 10、 图 11 和图 12所示, 在支架 1231和支架 1232的顶面分别设置第一导电孔 1233和第二导 电孔 1234, 第一导电孔 1233将位于其下方的敏感元件第一引出电极悍盘 122g 暴露,第二导电孔 1234将位于其下方的敏感元件第二引出电极悍盘 122h暴露。 在需要将敏感元件 14与敏感元件第一引出电极悍盘 122g、 敏感元件第二引出 电极悍盘 122h电连接时, 可在第一导电孔 1233和第二导电孔 1234中填充导 电胶 80, 该导电胶例如可以是导电银胶, 敏感元件 14的两个引出电极通过导 电胶 80分别与敏感元件第一引出电极悍盘 122g和敏感元件第二引出电极悍盘 122h电连接。 在图 10和图 11中, 第一导电孔 1233和第二导电孔 1234的形状 为圆形, 并分别设置于支架 1231和支架 1232顶面的中心位置, 然而, 该第一 导电孔 1233和第二导电孔 1234也可以是方形、 椭圆形等其它形状。
如图 13 所示, 在暴露敏感元件引出电极悍盘的又一种实施方式中, 在塑 封壳体上表面紧邻支架 1231、 1232 两背对侧侧面的位置处分别开设有暴露敏 感元件第一引出电极悍盘 122g的第一导电孔 1237和暴露敏感元件第二引出电 极悍盘 122h的第二导电孔 1238。 在支架 1231、 1232的两背对侧侧面分别开设 有第一导电槽 1231A和第二导电槽 1232A, 第一导电槽 123 1A由支架 1231的 顶面竖向延伸至支架 123 1的底部, 第二导电槽 1232A由支架 1232的顶面竖向 延伸至支架 1232的底部, 该第一导电槽 1231A和第二导电槽 1232A分别与第 一导电孔 1237和第二导电孔 1238连通。 第一导电孔 1237和第二导电孔 1238 并不仅限于设置于紧邻支架 1231、 1232 两背对侧侧面的位置处, 作为一种变 化, 例如, 也可以设置在塑封壳体紧邻支架 123 1、 1232 两相对侧侧面的位置 处。
敏感元件 14的两个引出电极部位支承在该一对支架 123 1、 1232上时, 涂 在该一对支架 1231、 1232上的导电胶很容易通过第一导电槽 1231A和第二导 电槽 1232A流入第一导电孔 1237和第二导电孔 1238内, 从而使敏感元件在粘 接固定在一对支架上的同时, 也实现了与敏感元件第一引出电极悍盘 122g 和 敏感元件第二引出电极悍盘 122h的电连接。
图 14 是本发明用于热释电红外传感器的半导体封装结构件又一个实施例的 内部俯视示意图。 在该实施例中, 敏感元件第一引出电极悍盘 122g和敏感元件 第二引出电极悍盘 122h不是通过设置导电孔的方式暴露于塑封壳体外部,而是直 接露在塑封壳体之外, 并向上弯折。 凸设在塑封壳体 123 上表面上的一对支架 1235、 1236用于支承敏感元件, 该一对支架 1235、 1236靠近塑封壳体的边缘, 支架 1235的外侧面 1235A与塑封壳体的外侧面 123A大致位于同一平面,支架 1236的外侧面 1236A与塑封壳体的外侧面 123B大致位于同一平面。 该弯折的 敏感元件第一引出电极悍盘 122g和敏感元件第二引出电极悍盘 122h分别紧贴该一 对支架 1235、 1236的外侧面 1235A、 1236A, 且顶面分别与该一对支架 1235、 1236的顶面齐平。 当敏感元件 14设置在该一对支架 1235、 1236上时, 敏感元 件的两个引出电极可通过导电胶分别与该弯折的敏感元件第一引出电极悍盘和 敏感元件第二引出电极悍盘电连接。
在又一种实施方式中, 可直接由暴露于塑封壳体 123外部、 并用于与敏感 元件实现电连接的部分导电金属箔构成支承敏感元件的支承部, 此时不需要在 塑封壳体上设置支架。 如图 14 中所示的向上弯折的敏感元件第一引出电极悍 盘 122g和敏感元件第二引出电极悍盘 122h, 如果其顶部高于塑封壳体的上表 面, 即可用于支承敏感元件。 为了获得更加平稳的支承效果, 敏感元件第一引出 电极悍盘 122g和敏感元件第二引出电极悍盘 122h的顶部还可以朝水平方向进 一步相对弯折, 如图 15所示。 敏感元件 14的一对引出电极部位分别支承在敏 感元件第一引出电极悍盘 122g和敏感元件第二引出电极悍盘 122h上, 敏感元 件的两个引出电极分别与该弯折的敏感元件第一引出电极悍盘和敏感元件第二 引出电极悍盘电连接。
在又一实施例中, 可通过开设于塑封壳体 123上表面的一个凹槽或一个贯 通该塑封壳体上、 下表面的轴向通孔的相对的两侧边来支承敏感元件; 在该凹 槽或该轴向通孔的相对的两侧边的顶面分别开设有第一导电孔和第二导电孔, 该第一导电孔和第二导电孔分别暴露出位于其下方的敏感元件第一引出电极 悍盘 122g和敏感元件第二引出电极悍盘 122h。 在安装敏感元件 14时, 敏感元 件 14横跨在该凹槽的相对的两侧边上, 敏感元件 14的一对引出电极部位分别 与该第一导电孔和第二导电孔相对应。 敏感元件 14 的一对引出电极通过导电 胶分别与敏感元件第一端悍盘 122g和敏感元件第二端悍盘 122h电连接, 该导 电胶例如可采用导电银胶。
装配时, 半导体封装结构件 12设置在管座 1 1上, 各管座引脚的上部依次 穿入所对应的引脚穿孔和引线通孔,并与对应的引脚悍盘电连接。第一引脚 16a 的上部依次穿入第一引脚穿孔 123d2和第一引线通孔 122dl, 并与第一引脚悍 盘 122d电连接;第二引脚 16b的上部依次穿入第二引脚穿孔 123e2和第二引线 通孔 122el, 并与第二引脚悍盘 122e电连接; 第三引脚 16c的上部依次穿入第 三引脚穿孔和第三引线通孔 122fl, 并与第三引脚悍盘 122f 电连接。 敏感元件 14粘接固定在半导体封装结构件 12上,敏感元件 14的两个引出电极分别与敏 感元件第一引出电极悍盘和敏感元件第二引出电极悍盘电连接。 设有红外滤光 片窗口 19的管帽 15罩在管座 1 1上,并与该管座 1 1密封连接,将敏感元件 14、 半导体封装结构件 12罩在由管帽 15和管座 1 1所共同限定的空间内。
在采用凸设在塑封壳体上表面上的一对支架 123 1、 1232 作为用于支承敏 感元件的支承部时, 可将敏感元件的一对引出电极部位设置在该一对支架 1231、 1232上。 由于在一对支架的顶面或塑封壳体紧邻该一对支架的侧面的位 置处分别开设有暴露敏感元件第一引出电极悍盘 122g 的第一导电孔和暴露敏 感元件第二引出电极悍盘 122h 的第二导电孔, 在用导电胶将敏感元件粘接固 定在一对支架上时, 导电胶也很容易进入到第一和第二导电孔内, 这样只要一 道工序就能同时完成支架对敏感元件的支承固定、 以及敏感元件 14 与敏感元 件第一引出电极悍盘 122g和敏感元件第二引出电极悍盘 122h的电连接。
在另一实施方式中, 在塑封壳体 123的上表面没有设置支架、 凹槽或轴向 通孔, 而是直接开设一对导电孔, 分别暴露出位于该一对导电孔下方的一对敏 感元件引出电极悍盘。 装配敏感元件时, 在该一对导电孔内注入一定量的导电 胶, 使之形成凸出于塑封壳体上表面的一对凸起, 从而可以起到类似支架的功 能, 敏感元件的一对引出电极部位分别支承在该一对凸起的导电胶上, 使敏感 元件被隔开在离塑封壳体表面预定的距离处, 同时, 完成了敏感元件的一对引 出电极与一对敏感元件引出电极悍盘的电连接。
在上述的实施例中, 是以单个敏感元件举例说明, 本发明也适用于设置两个 以上敏感元件的情况。 以设置两个敏感元件的情况为例, 塑封壳体 123暴露了部 分导电金属箔, 该暴露的部分导电金属箔包括对应于该两个敏感元件的两对敏 感元件引出电极悍盘、 以及用于一一对应地分别与多个管座引脚电连接的多个 引脚悍盘, 每对敏感元件引出电极悍盘用于分别与对应的那个敏感元件的两个 引出电极电连接。 塑封壳体 123上可设有用于支承两个敏感元件的支承部。 该 支承部例如可以是由凸设在塑封壳体上表面上的至少一对支架构成; 或者, 由 开设于塑封壳体上表面的至少一个凹槽或至少一个贯通该塑封壳体上、 下表面 的轴向通孔的相对的两侧边构成; 或者, 由两对敏感元件引出电极悍盘构成, 该两对敏感元件引出电极悍盘伸出塑封壳体外, 并高于所述塑封壳体的上表 面。 另外, 对于在热释电红外传感器模数混合处理集成电路芯片内设置一些测 量电路和控制电路的, 在管座上所设置的管座引脚的数量也会随之变化。 如图 16所示, 热释电红外传感器模数混合处理集成电路裸片 121除了设有接地端、 电源端、 信号输出端、 第一信号输入端和第二信号输入端外, 还设有三个测控 端,热释电红外传感器模数混合处理集成电路裸片 121的电源端、信号输出端、 接地端、第一信号输入端、第二信号输入端和三个测控端分别与导电金属箔 122 的第一引脚悍盘 122d、 第二引脚悍盘 122e、 第三引脚悍盘 122f、 敏感元件第 一引出电极悍盘 122g、 敏感元件第二引出电极悍盘 122h、 第四引脚悍盘 122i、 第五引脚悍盘 122j和第六引脚悍盘 122k电连接。 第一至第六引脚悍盘分别与 六根管座引脚电连接。
本发明的用于热释电红外传感器的半导体封装结构件可通过以下步骤制 造:
步骤 1, 提供一布置有电路图案的导电金属箔, 将多个敏感元件输出信号 转换用半导体裸芯片粘贴在该导电金属箔上, 并使各敏感元件输出信号转换用 半导体裸芯片与导电金属箔的电路图案形成电连接; 其中, 该导电金属箔的电 路图案可使得每一敏感元件输出信号转换用半导体裸芯片与相对应的敏感元 件和管座引脚实现电连接; 在该步骤 1中使用的导电金属箔为长条状, 该长条 状的导电金属箔上设有工艺边以及定位孔。
步骤 2, 通过塑封模具塑封多个敏感元件输出信号转换用半导体裸芯片以 及导电金属箔, 形成暴露了部分导电金属箔的塑封壳体, 该暴露的部分导电金 属箔用于与热释电红外传感器的敏感元件及管座引脚实现电连接。
要暴露的部分导电金属箔可先进行预成型, 如弯折、 或冲压成向导电金属 箔 122的一侧方向凸出, 再在通过塑封模具塑封时将其暴露, 塑封采用的材料 例如为环氧树脂; 支承敏感元件的支承部可以是设置在塑封壳体上, 与塑封壳 体一体成形。 通过对塑封模具的设计, 很容易形成暴露导电金属箔的孔以及作 为支承部的支架及凹槽或轴向通孔;
步骤 3, 将完成封装的导电金属箔分离成单个用于热释电红外传感器的半 导体封装结构件, 并去除多余的边料。
以上实施例仅用以说明而非限制本发明的技术方案, 尽管参照上述实施例 对本发明进行详细说明, 本领域的普通技术人员应当理解: 对本发明的部件进 行等同替换, 而不脱离本发明的精神和范围的任何修改或局部替换, 其均应涵 盖在本发明的权利要求当中。 工业应用性
本发明的有益效果在于:
本发明采用半导体封装工艺将敏感元件输出信号转换用半导体裸芯片 ( die)和导电金属箔塑封在壳体内, 利用该内部封装有敏感元件输出信号转换 用半导体裸芯片和导电金属箔的半导体封装结构件, 替代现有分立的敏感元件 输出信号转换用半导体元件和表面有印刷线路的基板, 可同时实现现有热释电 红外传感器的基板的电连接功能、 支架的支承功能以及信号转换功能。 与现有 技术相比, 本发明在节约一个基板部件的同时, 可以简化安装、 悍接信号处理 元件的工序, 提高生产效率, 降低对生产设备和生产环境的要求, 减少设备投 入, 降低生产成本。 因此热释电红外传感器成品的可靠性和成品率也获得了提 m。

Claims

1.一种用于热释电红外传感器的半导体封装结构件, 所述的热释电红外传 感器包括至少一个敏感元件和多根管座引脚; 其特征在于, 该用于热释电红外 传感器的半导体封装结构件包括:
导电金属箔, 该导电金属箔上布置有电路图案;
敏感元件输出信号转换用半导体裸芯片, 粘贴在所述的导电金属箔上, 并 通过该导电金属箔的电路图案实现与所述至少一个敏感元件和所述多根管座引 脚的电连接;
塑封壳体, 封装所述的导电金属箔和所述的敏感元件输出信号转换用半导 体裸芯片; 该塑封壳体暴露了部分导电金属箔, 该暴露的部分导电金属箔用于 与所述至少一个敏感元件及多根管座引脚实现电连接。
2. 如权利要求 1 所述的用于热释电红外传感器的半导体封装结构件, 其 特征在于, 所述的敏感元件输出信号转换用半导体裸芯片为热释电红外传感器 模数混合处理集成电路裸片。
3. 如权利要求 1 所述的用于热释电红外传感器的半导体封装结构件, 其 特征在于, 所述的敏感元件输出信号转换用半导体裸芯片为场效应管裸片或运 算放大器裸片。
4. 如权利要求 1或 2或 3所述的用于热释电红外传感器的半导体封装结 构件, 其特征在于, 所述的暴露的部分导电金属箔包括:
对应于所述的至少一个敏感元件的至少一对敏感元件引出电极悍盘, 每对 敏感元件引出电极悍盘用于分别与对应的那个敏感元件的两个引出电极电连 接;
用于一一对应地分别与多根管座引脚电连接的多个引脚悍盘, 每一所述的 引脚悍盘设有供管座引脚穿过的引线通孔。
5. 如权利要求 4 所述的用于热释电红外传感器的半导体封装结构件, 其 特征在于, 所述的塑封壳体包括:
多个引脚悍盘孔, 开设在所述塑封壳体的上表面, 并一一对应地分别暴露 了所述的多个引脚悍盘;
多个引脚穿孔, 开设在所述塑封壳体的下表面, 并一一对应地分别与所述 的多个引脚悍盘孔贯通连接, 以使管座引脚穿入引脚悍盘的引线通孔。
6. 如权利要求 1所述的用于热释电红外传感器的半导体封装结构件,其特 征在于, 所述塑封壳体的上表面上凸设有至少一对用于支承所述至少一对敏感 元件的支架。
7. 如权利要求 4所述的用于热释电红外传感器的半导体封装结构件,其特 征在于,
所述敏感元件的数量为一个; 所述的敏感元件引出电极悍盘的数量为一 对, 包括与该敏感元件的一个引出电极电连接的敏感元件第一引出电极悍盘和 与该敏感元件的另一个引出电极电连接的敏感元件第二引出电极悍盘;
所述塑封壳体的上表面凸设有一对支架, 在该一对支架的顶面分别开设有 暴露敏感元件第一引出电极悍盘的第一导电孔和暴露敏感元件第二引出电极 悍盘的第二导电孔。
8. 如权利要求 4所述的用于热释电红外传感器的半导体封装结构件,其特 征在于,
所述敏感元件的数量为一个; 所述的敏感元件引出电极悍盘的数量为一 对, 包括与该敏感元件的一个引出电极电连接的敏感元件第一引出电极悍盘和 与该敏感元件的另一个引出电极电连接的敏感元件第二引出电极悍盘;
所述塑封壳体的上表面凸设有一对支架, 在塑封壳体紧邻该一对支架的侧 面的位置处分别开设有暴露敏感元件第一引出电极悍盘的第一导电孔和暴露 敏感元件第二引出电极悍盘的第二导电孔;
在所述一对支架的侧面分别开设有第一导电槽和第二导电槽, 该第一导电 槽和第二导电槽由支架的顶面竖向延伸至支架的底部, 并分别与第一导电孔和 第二导电孔连通。
9. 如权利要求 1所述的用于热释电红外传感器的半导体封装结构件,其特 征在于, 所述塑封壳体的上表面开设有至少一个凹槽或至少一个贯通该塑封壳 体上、 下表面的轴向通孔, 该至少一个凹槽或至少一个轴向通孔的相对的两侧 边用于支承所述的至少一个敏感元件。
10. 如权利要求 4所述的用于热释电红外传感器的半导体封装结构件, 其 特征在于,
所述敏感元件的数量为一个; 所述的敏感元件引出电极悍盘的数量为一 对, 包括与该敏感元件的一个引出电极电连接的敏感元件第一引出电极悍盘和 与该敏感元件的另一个引出电极电连接的敏感元件第二引出电极悍盘;
所述塑封壳体的上表面开设有一个凹槽或一个贯通该塑封壳体上、 下表面 的轴向通孔, 该凹槽或该轴向通孔的相对的两侧边用于支承该一个敏感元件; 在该凹槽或该轴向通孔的相对的两侧边的顶面分别开设有暴露敏感元件第一 引出电极悍盘的第一导电孔和暴露敏感元件第二引出电极悍盘的第二导电孔。
11. 如权利要求 4所述的用于热释电红外传感器的半导体封装结构件, 其 特征在于, 所述的塑封壳体包括: 至少一对导电孔, 开设在所述塑封壳体的 上表面, 用于一一对应地分别暴露所述的至少一对敏感元件引出电极悍盘。
12. 如权利要求 1所述的用于热释电红外传感器的半导体封装结构件, 其 特征在于, 所述至少一对敏感元件引出电极悍盘伸出塑封壳体外, 并高于所述 塑封壳体的上表面。
13. 一种热释电红外传感器, 包括带有红外滤光片窗口的管帽、 至少一个 敏感元件、 管座以及穿过该管座的多根管座引脚, 所述的管帽罩设在所述的管 座上, 并与该管座密封连接, 其特征在于, 该热释电红外传感器包括权利要求 1至 12中任意一项所述的半导体封装结构件,该半导体封装结构件设置在所述 管座上;
其中, 所述至少一个敏感元件安装在所述的半导体封装结构件上; 每一敏 感元件的一对引出电极以及所述的多根管座引脚分别与所对应的被暴露的导 电金属箔部分电连接。
14. 一种制造如权利要求 1所述的用于热释电红外传感器的半导体封装结 构件的方法, 其特征在于, 包括以下步骤:
步骤 1, 提供一布置有电路图案的导电金属箔, 将多个敏感元件输出信号 转换用半导体裸芯片粘贴在该导电金属箔上, 并使各敏感元件输出信号转换用 半导体裸芯片与导电金属箔的电路图案形成电连接; 其中, 该导电金属箔的电 路图案可使得每一敏感元件输出信号转换用半导体裸芯片与相对应的敏感元 件和管座引脚实现电连接;
步骤 2, 通过塑封模具塑封多个敏感元件输出信号转换用半导体裸芯片以 及导电金属箔, 形成暴露了部分导电金属箔的塑封壳体, 该暴露的部分导电金 属箔用于与热释电红外传感器的敏感元件及管座引脚实现电连接;
步骤 3, 将完成封装的导电金属箔分离成单个用于热释电红外传感器的半 导体封装结构件, 并去除多余的边料。
15. 一种用于热释电红外传感器的半导体封装结构件, 所述的热释电红外 传感器包括敏感元件和管座引脚; 其特征在于, 该用于热释电红外传感器的半 导体封装结构件包括:
导电金属箔;
场效应管裸片或运算放大器裸片, 粘贴在所述的导电金属箔上, 并与该导 电金属箔电连接;
塑封壳体, 用于封装所述的导电金属箔、 以及场效应管裸片或运算放大器 裸片; 该塑封壳体暴露了部分导电金属箔, 该暴露的部分导电金属箔用于与所 述敏感元件及管座引脚实现电连接;
支承部, 用于支承所述敏感元件。
16. 如权利要求 15所述的用于热释电红外传感器的半导体封装结构件,其 特征在于,
所述的管座引脚包括第一引脚、 第二引脚和接地的第三引脚;
所述的导电金属箔包括用于与所述敏感元件的一个引出电极电连接的敏 感元件第一引出电极悍盘、 用于与所述敏感元件的另一个引出电极电连接的敏 感元件第二引出电极悍盘、 用于与第一引脚电连接的第一引脚悍盘、 用于与第 二引脚电连接的第二引脚悍盘和用于与第三引脚电连接的第三引脚悍盘; 所述 的第一引脚悍盘、 第二引脚悍盘和第三引脚悍盘分别设有供第一引脚、 第二引 脚和第三引脚穿过的第一引线通孔、 第二引线通孔和第三引线通孔;
所述的暴露的部分导电金属箔包括: 敏感元件第一引出电极悍盘、 敏感元 件第二引出电极悍盘、 第一引脚悍盘、 第二引脚悍盘和第三引脚悍盘。
17. 如权利要求 15所述的热释电红外传感器, 其特征在于,
所述的支承部由凸设在塑封壳体上表面上的一对支架构成; 或者, 所述的支承部由开设于塑封壳体上表面的一个凹槽的相对的两侧边 或一个贯通该塑封壳体上、 下表面的轴向通孔的相对的两侧边构成;
或者,所述的支承部由所述的敏感元件第一引出电极悍盘和敏感元件第二 引出电极悍盘构成, 该敏感元件第一引出电极悍盘和敏感元件第二引出电极悍 盘伸出塑封壳体外, 并高于所述塑封壳体的上表面。
18. 一种热释电红外传感器, 包括带有红外滤光片窗口的管帽、 敏感元件、 管座以及穿过该管座的管座引脚, 所述的管帽罩设在所述的管座上, 并与该管 座密封连接, 其特征在于, 该热释电红外传感器还包括设置在所述管座上的一 半导体封装结构件, 该半导体封装结构件包括:
导电金属箔;
场效应管裸片或运算放大器裸片, 粘贴在所述的导电金属箔上, 并与该导 电金属箔电连接;
塑封壳体, 用于封装所述的导电金属箔、 以及场效应管裸片或运算放大器 裸片; 该塑封壳体暴露了部分导电金属箔, 该暴露的部分导电金属箔用于与所 述敏感元件及管座引脚实现电连接;
支承部, 用于支承所述敏感元件;
其中, 所述的敏感元件设置在所述的支承部上; 该敏感元件的两个引出电 极以及所述的管座引脚分别与所对应的被暴露的导电金属箔部分电连接。
19. 一种制造如权利要求 15 所述的用于热释电红外传感器的半导体封装 结构件的方法, 其特征在于, 包括以下步骤:
步骤 1, 提供一导电金属箔, 将多个场效应管裸片或多个运算放大器裸片 粘贴在该导电金属箔上, 并使各场效应管裸片或运算放大器裸片与导电金属箔 电连接;
步骤 2, 通过塑封模具塑封多个场效应管裸片或多个运算放大器裸片、 以 及导电金属箔, 形成暴露了部分导电金属箔的塑封壳体, 同时形成用于支承敏 感元件的支承部, 该暴露的部分导电金属箔用于与热释电红外传感器的敏感元 件及管座引脚实现电连接;
步骤 3,将完成封装的导电金属箔分离成单个用于热释电红外传感器的半导 体封装结构件, 并去除多余的边料。
PCT/CN2012/079895 2011-10-08 2012-08-09 用于热释电红外传感器的半导体封装结构件及其制造方法和传感器 WO2013049983A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110297563.8 2011-10-08
CN201110297563.8A CN103033268B (zh) 2011-10-08 2011-10-08 用于热释电红外传感器的半导体封装结构件及其制造方法和传感器
CN201210012563.3 2012-01-16
CN201210012563.3A CN103208536B (zh) 2012-01-16 2012-01-16 用于热释电红外传感器的半导体封装结构件及其制造方法和传感器

Publications (1)

Publication Number Publication Date
WO2013049983A1 true WO2013049983A1 (zh) 2013-04-11

Family

ID=48043173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079895 WO2013049983A1 (zh) 2011-10-08 2012-08-09 用于热释电红外传感器的半导体封装结构件及其制造方法和传感器

Country Status (1)

Country Link
WO (1) WO2013049983A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106706135A (zh) * 2015-11-16 2017-05-24 上海新微技术研发中心有限公司 集成asic的红外温度传感器的封装结构及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1158010A (zh) * 1995-12-22 1997-08-27 株式会社村田制作所 红外探测器
CN2438108Y (zh) * 2000-08-07 2001-07-04 上海尼赛拉传感器有限公司 抗振动和冲击的热释电火焰探测器
CN1545752A (zh) * 2002-06-25 2004-11-10 ���µ繤��ʽ���� 红外传感器组件
CN101111749A (zh) * 2005-11-22 2008-01-23 松下电工株式会社 红外探测器及其制造方法
JP2009128227A (ja) * 2007-11-26 2009-06-11 Panasonic Electric Works Co Ltd 赤外線検出器
CN202284971U (zh) * 2011-10-08 2012-06-27 江苏科融电子技术有限公司 用于热释电红外传感器的半导体封装结构件及其传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1158010A (zh) * 1995-12-22 1997-08-27 株式会社村田制作所 红外探测器
CN2438108Y (zh) * 2000-08-07 2001-07-04 上海尼赛拉传感器有限公司 抗振动和冲击的热释电火焰探测器
CN1545752A (zh) * 2002-06-25 2004-11-10 ���µ繤��ʽ���� 红外传感器组件
CN101111749A (zh) * 2005-11-22 2008-01-23 松下电工株式会社 红外探测器及其制造方法
JP2009128227A (ja) * 2007-11-26 2009-06-11 Panasonic Electric Works Co Ltd 赤外線検出器
CN202284971U (zh) * 2011-10-08 2012-06-27 江苏科融电子技术有限公司 用于热释电红外传感器的半导体封装结构件及其传感器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106706135A (zh) * 2015-11-16 2017-05-24 上海新微技术研发中心有限公司 集成asic的红外温度传感器的封装结构及其制造方法

Similar Documents

Publication Publication Date Title
CN104485321B (zh) 半导体管芯封装件及其制造方法
US7737537B2 (en) Electronic device
US6002165A (en) Multilayered lead frame for semiconductor packages
JP4501279B2 (ja) 集積型電子部品及びその集積方法
US20070158826A1 (en) Semiconductor device
US20090072334A1 (en) Semiconductor device, pre-mold package, and manufacturing method therefor
US8643189B1 (en) Packaged semiconductor die with power rail pads
JPH1022447A (ja) 樹脂封止型半導体装置及びその製造方法
WO2007027790B1 (en) Reversible-multiple footprint package and method of manufacturing
US7973393B2 (en) Stacked micro optocouplers and methods of making the same
US20090014854A1 (en) Lead frame, semiconductor package including the lead frame and method of forming the lead frame
US20090065882A1 (en) Semiconductor device, lead frame, and microphone package therefor
CN202616238U (zh) 用于热释电红外传感器的半导体封装结构件及其传感器
CN103208536B (zh) 用于热释电红外传感器的半导体封装结构件及其制造方法和传感器
JP4933934B2 (ja) 半導体装置及び半導体装置の製造方法
CN102804363B (zh) 半导体装置及半导体装置的制造方法
CN103033268B (zh) 用于热释电红外传感器的半导体封装结构件及其制造方法和传感器
US20080056524A1 (en) Microphone package
WO2013049983A1 (zh) 用于热释电红外传感器的半导体封装结构件及其制造方法和传感器
JP2000299423A (ja) リードフレームおよびそれを用いた半導体装置ならびにその製造方法
US8153976B2 (en) Infrared sensor and manufacturing method thereof
US20150029678A1 (en) Substrateless device and the method to fabricate thereof
TW200812021A (en) Packaging substrate board and manufacturing method thereof
JP6487584B1 (ja) 圧力センサーパッケージ構造
JP2006066551A5 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837946

Country of ref document: EP

Kind code of ref document: A1