WO2013047950A1 - Variable tilt omnidirectional antenna in a parallel power feeding scheme - Google Patents

Variable tilt omnidirectional antenna in a parallel power feeding scheme Download PDF

Info

Publication number
WO2013047950A1
WO2013047950A1 PCT/KR2011/009195 KR2011009195W WO2013047950A1 WO 2013047950 A1 WO2013047950 A1 WO 2013047950A1 KR 2011009195 W KR2011009195 W KR 2011009195W WO 2013047950 A1 WO2013047950 A1 WO 2013047950A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
variable
substrate
phase
parallel
Prior art date
Application number
PCT/KR2011/009195
Other languages
French (fr)
Korean (ko)
Inventor
김상기
최홍기
유리신옐리코프
김종성
Original Assignee
주식회사 감마누
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 감마누 filed Critical 주식회사 감마누
Publication of WO2013047950A1 publication Critical patent/WO2013047950A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • H01Q1/46Electric supply lines or communication lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage

Definitions

  • the present invention relates to a variable tilt omni antenna of a parallel feed method, and more particularly, to an omni antenna that includes a phase variable and supplies a signal to antenna elements by a parallel feed method to enable electrical beam tilting. It is about.
  • an omni antenna When using an omni antenna in the construction of a base station for a communication network, it is possible to secure a national network quickly at a low cost. Accordingly, an omni antenna is frequently used for laying a new network.
  • next-generation mobile networks such as Long Term Evolution (LTE) are sensitive to interference and should be able to vary the beam tilt angle for optimization.Once the existing omni antennas have been developed with a fixed tilt angle of a serial feed method, the beam tilt It was difficult to vary the angle.
  • LTE Long Term Evolution
  • a series feeding method for feeding a signal in the center of the antenna elements and propagating the signal up and down is used.
  • the phase shifter is applied and the beam tilting is performed.
  • the beam tilting was difficult to implement.
  • the present invention has been invented to meet the technical needs described above, and solved the above problems, as well as invented by adding techniques that can be easily developed by those skilled in the art.
  • variable tilt omni antenna of the parallel feeding method is to provide a signal to the antenna elements constituting the omni antenna by the parallel feeding method, rather than the conventional serial feeding method.
  • variable tilt omni antenna of the parallel feeding method to enable the electric beam tilting through the parallel feeding method and the phase variable as a problem.
  • variable tilt omni antenna of the parallel feeding method according to the present invention by varying the tilt angle electrically, it is a problem to be able to optimize a mobile communication network sensitive to interference such as LTE.
  • variable-tilt omni antenna of the parallel feeding method according to the present invention to make it possible to remotely control the electrical beam tilting of the omni antenna.
  • variable-tilt omni antenna of the parallel feeding method according to the present invention is to implement the omnidirectional propagation characteristics using a variety of substrates and patch antenna elements, such as a flexible (flexible) substrate.
  • variable-tilt omni antenna of the parallel feeding method according to the present invention has a problem of enabling radio transmission of multiple bands to support multiple input multiple output (MIMO).
  • variable tilt omni antenna of the parallel feeding method a plurality of antenna element portion having a non-directional propagation characteristics; And a phase shifter connected to the plurality of antenna element units in a parallel feeding manner and transmitting a signal whose phase is variable to each of the plurality of antenna element units.
  • variable tilt omni antenna of the parallel feeding method the phase variable, the fixed substrate is formed on one surface of a portion of the line pattern for distributing the input signal and vary the phase; And a pattern formed by contacting one surface of the fixed substrate with an insulating layer at a boundary and dynamically capacitively coupling the pattern formed on the fixed substrate, thereby dynamically moving the line together with the fixed substrate.
  • variable tilt omni antenna generates an output signal having the phase variable in phase with the input signal and an output signal in which the phase of the input signal is changed positively or negatively. And supplying the output signals to the plurality of antenna elements to enable electrical beam tilting.
  • the phase variable is a circular type (type) phase variable, characterized in that it further comprises a variable substrate driver for rotating the variable substrate. do.
  • variable tilt omni antenna of the parallel feeding method characterized in that it further comprises a control unit for controlling the operation of the variable substrate driver of the phase variable.
  • variable tilt omni antenna of the parallel feeding method characterized in that the plurality of antenna elements are formed in a layer on the outer surface of the rod-shaped substrate.
  • variable tilt omni antenna of the parallel feeding method the cross section of the rod-shaped substrate is formed in a polygon, the antenna element portion forming a layer, patches formed on each outer surface of the rod-shaped substrate It is characterized by including the elements.
  • variable tilt omni antenna of the parallel feeding method the polygon is a triangle
  • the patch elements formed on the three outer surface of the rod-shaped substrate transmits radio waves in each direction
  • the omni-directional of the antenna element portion Characterized in that the propagation characteristics are implemented.
  • variable tilt omni antenna of the parallel feeding method the cross section of the rod-shaped substrate is formed in a circle, the patch of the antenna element portion forming the layer formed on the outer surface of the rod-shaped substrate
  • the device is characterized by realizing non-directional propagation characteristics.
  • variable tilt omni antenna of the parallel feeding method characterized in that the rod-shaped substrate is formed of a flexible (flexible) material.
  • variable tilt omni antenna of the parallel feeding method characterized in that the rod-shaped substrate is formed of a ceramic material.
  • the plurality of antenna element includes a patch element capable of realizing vertical / horizontal polarization, the dual band operation through the patch element It is characterized by the implementation.
  • variable tilt omni antenna of the parallel feeding method is characterized by dividing the plurality of antenna elements into two or more groups and implementing multi-band operation.
  • variable tilt omni antenna may further include a radome accommodating the plurality of antenna elements.
  • variable tilt omni antenna of the parallel feeding method can supply a signal to the antenna elements constituting the omni antenna by the parallel feeding method, rather than the conventional serial feeding method.
  • variable tilt omni antenna of the parallel feeding method enables electric beam tilting through the phase variable and the parallel feeding method. Therefore, by varying the beam tilt angle of the omni antenna, it is possible to optimize a mobile communication network sensitive to interference such as LTE.
  • variable tilt omni antenna of the parallel feeding method according to the present invention may be configured to remotely control the electrical beam tilting of the omni antenna.
  • remote control of the beam tilt angle from the base station can be enabled.
  • variable tilt omni antenna of the parallel feeding method according to the present invention can realize omnidirectional propagation characteristics by using a flexible substrate and a patch antenna element. Therefore, the productivity of the omni-directional antenna can be improved, and the weight or size of the antenna itself can be reduced.
  • variable tilt omni antenna of the parallel feeding method according to the present invention can enable multi-band radio wave transmission. Therefore, it can be used as an omni antenna for a base station for a multiband frequency operation operator, and can also support MIMO (Multiple Input Multiple Output).
  • MIMO Multiple Input Multiple Output
  • FIG. 1 is a diagram showing a conventional omni antenna that supplies a signal by a series power feeding method.
  • Figure 2 is an external view showing the external appearance of the omni antenna according to an embodiment of the present invention.
  • 3 to 5 are diagrams illustrating parallel feeding of omni antennas according to embodiments of the present invention.
  • FIG. 6 is a block diagram illustrating a configuration of a phase shifter of an omni antenna according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a state in which an omni antenna phase shifter is installed according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a configuration of a remote control unit for remotely controlling an omni antenna according to an embodiment of the present invention.
  • FIG. 9 is a computer simulation screen showing beam tilting of an omni antenna according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a transmission rate according to a beam tilt angle in an LTE network.
  • FIG. 11 is a diagram illustrating an antenna element of an omni antenna according to an embodiment of the present invention.
  • FIG. 12 is a view showing a patch element of the antenna element of the omni antenna according to an embodiment of the present invention.
  • 13 to 16 illustrate an antenna element of an omni antenna according to other embodiments of the present invention.
  • 17 is a computer simulation screen illustrating omnidirectional characteristics of an omni antenna according to one embodiment of the present invention.
  • variable substrate 221 coupling pattern
  • variable substrate drive unit 240 remote control unit
  • variable tilt omni antenna according to an embodiment of the present invention will be described with reference to the accompanying drawings.
  • the described embodiments are provided to enable those skilled in the art to easily understand the technical spirit of the present invention, and the present invention is not limited thereto.
  • matters represented in the accompanying drawings may be different from the form actually embodied in the schematic drawings in order to easily explain the embodiments of the present invention.
  • variable tilt omni antenna according to embodiments of the present invention will be described in detail with reference to FIGS. 2 to 10.
  • variable tilt omni antenna of the parallel feeding method a plurality of antenna element portion 100 having an omnidirectional propagation characteristic, the plurality of antenna element portion and It may include a phase changer 200 connected in a parallel feeding method 300 and transmitting a signal whose phase is changed to each of the plurality of antenna elements, and a radome 400 accommodating the plurality of antenna elements.
  • the plurality of antenna element units 100 are configured to radiate radio waves, and are configured to radiate radio waves by receiving signals in a parallel feeding manner.
  • the plurality of antenna element units 100 are preferably formed in layers in a specific direction to form omni antennas, more preferably, each antenna element unit 100 is configured to have omnidirectional propagation characteristics, so that the overall omni antenna It can be configured to have a non-directional propagation characteristic.
  • the plurality of antenna element units 100 may include patch elements 120 formed on an outer surface of the rod-shaped substrate 110. It may be formed while forming a layer along the longitudinal direction of the substrate 110.
  • the patch elements 120 included in one antenna element unit 100 may be evenly disposed in all directions along the circumference of the rod-shaped substrate 110 to implement omnidirectional propagation characteristics. For example, FIG. As such, by arranging three patch elements 120 at intervals of 120 degrees along the circumference of the cylindrical rod-shaped substrate 110, one antenna element unit 100 having non-directional propagation characteristics may be formed. have.
  • the rod-shaped substrate 110 may be made of a flexible material such as a flexible PCB (flexible PCB), through which the patch elements 120 are formed on a flat substrate as shown in FIG.
  • the rod-shaped substrate 110 may be formed by rolling a planar substrate through processing. Therefore, the efficiency of the omni antenna manufacturing process can be increased, and the weight of the antenna can be reduced.
  • the rod-shaped substrate 110 may be made of a ceramic material.
  • the cylindrical rod-shaped substrate 110 is formed using a ceramic material, and the antenna element portion is formed by plating the outer surface of the cylinder. 100 can be formed.
  • by using a ceramic material to form two rod-shaped substrates (110) having a vertical vertical cross-section in the longitudinal direction, and after coupling the outer surface of each of the rod-shaped substrates 110 to be cylindrical to combine the antenna
  • the device unit 100 may be formed.
  • the plurality of antenna element unit 100 may be configured in the form of a slot or the like as well as the patch element described above, in addition to this can be variously configured in a range easy to those skilled in the art. Can be.
  • the phase shifter 200 is connected to the plurality of antenna element units 100 in a parallel feeding manner and transmits a signal whose phase is variable to each of the plurality of antenna element units 100.
  • the phase shifter 200 generates an output signal having a phase in phase with an input signal, an output signal in which the phase of the input signal is changed positively or negatively, and outputs the output signals to the plurality of antenna element units 100. In this way, the electrical beam tilting of the omniantenna may be possible.
  • phase shifter 200 may be configured in various forms such as a trombone type and a circular type.
  • the phase shifter 200 of a circular type will be described in detail.
  • the phase changer 200 which may be included in the omni antenna according to the present invention is not limited to a circular type, and may be configured in various forms.
  • the phase shifter 200 includes a fixed substrate 210 having one side of a pattern of a line for distributing an input signal and varying phases, wherein the phase shifter 200 is formed on one surface of the phase shifter 200.
  • One surface of the fixed substrate and the insulating layer are in contact with each other, and a pattern is formed which is dynamically capacitively coupled with the pattern formed on the fixed substrate, thereby dynamically forming the line together with the fixed substrate.
  • the variable substrate 220 may include a variable substrate driver 230 for rotating the variable substrate, preferably a circular type, and a controller 240 for controlling the operation of the variable substrate driver.
  • the fixed substrate 210 is a configuration in which a portion of a line for distributing an input signal and changing a phase is formed on one surface, and an input cable for an input signal and an output cable for an output signal are connected.
  • the phase variable line has one input pattern 216 and a plurality of output patterns, and is capacitively coupled with a pattern formed on the variable substrate 220.
  • FIG. 6 an embodiment of a pattern formed on the fixed substrate 210 will be described.
  • the fixed substrate 210 may include an input pattern 216, a first output pattern 211, a second output pattern 212, and the like.
  • the fifth output pattern 215 refers to a pattern in which a signal having a phase identical to that of the input pattern 216 is output.
  • each of the first to fourth output patterns 211 to 214 means a pattern in which the signal of the input pattern 216 is changed in phase and in this case, a phase formed in each of the output patterns 211 to 214.
  • Variables are made positively or negatively proportional to one another (+ 2A, + A, -A, -2A).
  • the pattern formed on the fixed substrate 210 may be variously formed by changing the number of output patterns, the shape of a connection pattern, and the like. Specifically, the number of output patterns is not limited to 5 as shown in FIG. 6. You can change this to three, seven, eleven, and so on.
  • the variable substrate 220 is provided by contacting one surface of the fixed substrate 210 with an insulating layer at a boundary, and has a pattern that is dynamically capacitively coupled with a pattern formed on the fixed substrate 210. It is formed, it is configured to dynamically form a phase variable line with the fixed substrate 210. Patterns corresponding to the patterns of the fixed substrate 210 are formed on the variable substrate 220, and the patterns form capacitive coupling with the patterns formed on the fixed substrate 210.
  • the phase shifter 200 is formed. 6, one or more patterns of the variable substrate 220 are capacitively coupled to the arc-shaped pattern 217 on the fixed substrate 210.
  • the coupling pattern 221 may be configured, where the coupling pattern 221 is preferably formed of a pattern corresponding to the arc pattern 217 of the fixed substrate 210 to be in contact with each other. Specifically, it is preferable to be formed in a short arc-shaped pattern having the same curvature as the curvature of the arc-shaped pattern 217, the pattern is formed in such a form that the variable substrate 220 is in contact with the fixed substrate 210 This is because a dynamic coupling occurs when rotating in the state.
  • the number of the coupling pattern 221 may be changed according to the number of arc-shaped pattern 217 and the output pattern on the fixed substrate 210, as shown in Figure 6 consists of two or 1, 3, 4 And five.
  • the fixed substrate 210 and the variable substrate 220 vary the phase of an input signal.
  • the fixed substrate 210 and the variable substrate 220 abut an insulating layer at a boundary.
  • a capacitive coupling is formed between the patterns formed on the substrates to be electrically connected to each other.
  • a phase variable line is formed from the input pattern 216 to the first to fifth output patterns 211 to 215 via an arc-shaped pattern 217.
  • phase shift does not occur and signals in phase with the input signal are output to the output patterns.
  • the variable substrate 220 is rotated clockwise or counterclockwise at the position as shown in FIG.
  • the coupling of the substrates is dynamically changed and the phase is changed in the output pattern.
  • the signal of the output cable connected to the pattern existing in the direction of the phase is ahead of the phase, the signal of the output cable connected to the pattern existing on the opposite side of the rotation direction is delayed.
  • the signal of the first output pattern 211 has a reduced physical distance through which the phase is advanced (+ A)
  • the second The signal of the output pattern 212 is increased by the same physical distance to pass the phase is delayed (-A).
  • the physical distance through which the signal of the third output pattern 213 passes also decreases, thereby leading the phase (+ 2A), and the physical distance through which the signal of the fourth output pattern 214 passes also increases by the same size.
  • the phase will be delayed (-2A).
  • the signals of the first to fourth output patterns 211 to 214 whose phases are variable are transmitted to the plurality of antenna element units 100 together with the fifth output pattern 215 in phase with the input signal. Electrical beam tilting occurs.
  • the variable substrate driver 230 is configured to move the variable substrate 220, and the patterns of the variable substrate 220 form a capacitive coupling with the patterns of the fixed substrate 210.
  • the variable substrate 220 is moved to change the phase of the output signals.
  • the variable substrate driver 230 may be configured as a motor for rotating the variable substrate 220 when the phase variable unit 200 is a circular type phase variable unit as shown in FIG. 7, and the variable substrate 220. ) Rotates to generate a phase variation of the output signal.
  • the controller is configured to control the operation of the variable substrate driver 230, and is configured to control the tilting of the omni antenna by controlling the variable substrate driver 230.
  • the variable substrate driver 230 is controlled through the controller to control the motion of the variable substrate 220, thereby controlling beam tilting generated by the phase variable signals.
  • the control unit may be configured to remotely control a plurality of variable board driver 230 included in a plurality of omni antennas, such as a remote control unit 240. And it may include a remote control unit (RCU, Remote Control Unit) installed in the antenna installation pillar.
  • RCU Remote Control Unit
  • variable tilt omni antenna of the parallel feeding method as shown in Figure 3 the plurality of antenna element unit 100 output port of the phase changer 200, respectively Is connected to. Therefore, an input signal is divided into a plurality of output signals through the phase changer 200, and a parallel feed circuit is formed in which the plurality of distributed output signals are fed in parallel to each of the plurality of phase changers 200. .
  • the parallel feeding circuit unlike the conventional serial feeding method of feeding a signal in the center of the antenna elements and propagating the signal up and down the antenna, it is possible to feed the signal in parallel to each of the plurality of antenna element unit 100.
  • a phase delayed signal is supplied to each of the plurality of antenna element units 100 through a parallel feeding method via the phase changer 200, and the plurality of antenna element units 100 are supplied by these signals. Emission of radio waves makes it possible to implement electrical beam tilting.
  • the signals of which the phase is changed by the phase variable unit 200 are transmitted through the respective output ports 1, 2, 3, 4, 5, 6, and 7.
  • the output port 1 signal is in phase with the input signal
  • the output port 2 signal is + A
  • the output port 3 signal is + 2A
  • the output port 4 signal is + 3A
  • output port 5 is + 3A
  • the signal may be -A
  • the output port 6 signal is -2A
  • the output port 7 signal is -3A phase.
  • such electrical beam tilting can be implemented in various ways depending on the required environment, such as 5 degrees, 10 degrees, 15 degrees, as shown in Figure 9, accordingly, even if the next generation communication network, such as LTE network with the omni antenna Change to optimize the network.
  • the tilt angle may be changed to minimize cell interference, thereby providing a communication service having a high transmission rate.
  • the radome 400 is configured to accommodate the plurality of antenna element units 100 therein, and serves to protect the antenna element unit 100 from an external environment such as wind or rain.
  • the radome 400 is preferably manufactured so as to have excellent transmittance of radio waves.
  • the radome 400 is made of an electrical insulator, and it is preferable that the radome 400 is integrally formed without a seam.
  • variable tilt omni antenna of the parallel feeding method it is possible to implement a multi-band operation by dividing the plurality of antenna elements into two or more groups.
  • the antenna element unit 100 operating in one band (groups connected to 1, 2, 3, 4, 5, 6, and 7 ports) and the antenna element unit 100 operating in a different band as shown in FIG. 4. )
  • You can configure multi-band operation by organizing groups (group connected with port a, b, c, d, e, f, g) together.
  • each group is supplied with a signal in a parallel feeding manner by the phase changer 200.
  • the phase changer 200 is provided for each group to enable independent beam tilting for each band of an operating frequency. It can be done. Therefore, it is possible to optimize the communication network for each band and can be used as an omni antenna for base stations for multi-band frequency operators.
  • the antenna element group 100 is formed of alternating (4, d, 3, c, 2, b, 1, a, 5, e, 6, f, 7, g, as shown in Figure 4, or a group Gathered by stars (4, 3, 2, 1, 5, 6, 7, d, c, b, a, e, f, g) can be formed, in addition to this can be configured in various forms.
  • the plurality of antenna element portion 100 includes a patch element 120 capable of realizing the vertical / horizontal polarization
  • a dual band operation may be implemented through the patch device 120.
  • the variable tilt omni antenna of the parallel feeding method includes six antenna elements 100 including six patch elements 120 capable of implementing vertical / horizontal polarization.
  • a plurality of such antenna elements 100 may be formed on a flexible substrate.
  • the patch device 120 includes a vertical polarization feeder 121 and a horizontal polarization feeder 122, as shown in FIG. 12, so that vertical / horizontal polarization can be implemented, and the operating frequency is adjusted by adjusting the respective resonance lengths.
  • the dual operation can be implemented. Accordingly, by supplying a signal to the plurality of antenna element units 100 in a parallel feeding manner as shown in FIG. 5, an omni antenna capable of operating in multiple bands and capable of tilting beams can be implemented.
  • the vertically polarized power feeding portion 121 and the horizontally polarized power feeding portion 122 of the plurality of antenna element portions 100 may be divided and separately fed in parallel as shown in FIG. 5, whereby each polarized beam is beamed. It can be tilted and dual band operation is realized by the respective polarizations.
  • variable tilt omni antenna of the parallel feeding method may be used as a base station antenna for securing a communication network by integrally forming a plurality of omni antennas as shown in FIG. 2 and varying the beam tilt angle. It can be used for laying next-generation mobile communication networks such as LTE, which are greatly affected by interference.
  • variable tilt omni antenna of the parallel feeding method is installed in the base station, and the beam tilt angle is controlled by remotely controlling the phase changers 200 included in the plurality of omni antennas as shown in FIG. 8.
  • the transmission speed of the LTE network can be optimized by varying the beam tilt angle as shown in FIG. 10.
  • the antenna element unit 100 of the omni antenna may include a patch element 120.
  • the vertical polarization feeding unit 121 and the horizontal polarization as shown in FIG. may include a patch device 120 having a power feeding portion (122). Accordingly, it is possible to implement vertical / horizontal polarization, to realize dual band operation by varying the operating frequency by adjusting each resonance length, and to implement MIMO of polarization diversity operation.
  • the antenna element unit 100 of the omni antenna may include patch elements 120 for implementing only one polarization, in this case one patch element 120 as shown in FIG. Even if the dual band operation is not implemented on the multi-band, patch devices 120 operating in different bands may be configured together as shown in FIG. 4.
  • the antenna element unit 100 of the omni antenna may be configured not only with the patch elements 120 described above, but also with antenna elements that can be easily developed by those skilled in the art. Can be.
  • an antenna element portion 100 of an omni antenna may be formed in a plurality of layers on the outer surface of a rod-shaped substrate, and an antenna element portion 100 forming one layer. May include patch elements 120 formed on an outer surface of the rod-shaped substrate 110.
  • the cross section of the rod-shaped substrate 110 may be formed in a polygon, such as a triangle, a square, etc., the patch elements 120 formed on each outer surface of the rod-shaped substrate 110 to radiate radio waves in each direction
  • Non-directional propagation characteristics as shown in FIG. 17 are realized.
  • the cross-section of the rod-shaped substrate 110 may be configured as a triangle as shown in Figure 11, the patch elements 120 formed on three outer surfaces at a predetermined position in the longitudinal direction of the rod-shaped substrate 110
  • the antenna element unit 100 may be formed by forming a layer.
  • the patch elements 120 formed on three outer surfaces to form a layer may be configured as one patch element 120.
  • the patch elements 120 may be formed by connecting a plurality of patch elements 120.
  • the patch element 120 is formed while forming a layer on the outer surface of the rod-shaped substrate 110, the cross section ) May be included.
  • the patch elements 120 are formed on the outer surface of the rod-shaped substrate 110 to transmit radio waves in all directions perpendicular to the longitudinal direction of the rod-shaped substrate 110. Accordingly, the non-directional propagation as shown in FIG. The property can be implemented.
  • patch elements configured as shown in FIG. 14, FIG. 15, or FIG. 16 may form a layer and form one antenna element unit 100.
  • the one antenna element unit 100 may be formed as shown in FIG. 13.
  • a plurality of antenna element units 100 are formed by forming a plurality of layers on the outer surface of the rod-shaped substrate 110.
  • the substrate can be formed by rolling the flexible material (flexible), or can be formed directly from the cylindrical substrate of a ceramic material.
  • variable tilt omni antenna of the parallel feeding method can supply a signal to the antenna elements constituting the omni antenna by the parallel feeding method, rather than the conventional serial feeding method.
  • It may also be configured to remotely control the electrical beam tilting of the omni antenna.
  • remote control of the beam tilt angle from the base station can be enabled.
  • the omnidirectional propagation characteristics may be realized by using a flexible substrate and a patch antenna element. Therefore, the productivity of the omni-directional antenna can be improved, and the weight or size of the antenna itself can be reduced.
  • MIMO Multiple Input Multiple Output

Abstract

The present invention relates to a variable tilt omnidirectional antenna in a parallel power feeding scheme, which comprises: a plurality of antenna element units having omnidirectional propagation characteristics; and a phase-varying unit connected to said plurality of antenna element units in a parallel feeding scheme and transmitting a phase-varied signal to each of said plurality of antenna element units.

Description

병렬급전 방식의 가변틸트 옴니안테나Parallel tiltable tilt omni antenna
본 발명은 병렬급전 방식의 가변틸트 옴니안테나에 관한 것으로서, 더욱 상세하게는 위상가변기를 포함하고 병렬급전 방식으로 안테나소자들에 신호를 공급하여서 전기적인 빔 틸팅(Beam Tilting)을 가능하게 하는 옴니안테나에 관한 것이다. The present invention relates to a variable tilt omni antenna of a parallel feed method, and more particularly, to an omni antenna that includes a phase variable and supplies a signal to antenna elements by a parallel feed method to enable electrical beam tilting. It is about.
통신망을 위한 기지국 건설에 있어서 옴니안테나를 사용하면 적은 비용으로 빠르게 전국망을 확보할 수 있는데, 이에 따라 신규 통신망 부설에는 옴니안테나가 많이 사용되고 있다. When using an omni antenna in the construction of a base station for a communication network, it is possible to secure a national network quickly at a low cost. Accordingly, an omni antenna is frequently used for laying a new network.
하지만, LTE(Long Term Evolution) 등과 같은 차세대 이동통신망들은 간섭에 민감하여 최적화를 위해서는 빔 틸트각을 가변시킬 수 있어야 하는데, 기존의 옴니안테나는 직렬 급전방식의 고정 틸트각으로 개발되어 있기 때문에 빔 틸트각을 가변시키기가 어려웠다. However, next-generation mobile networks such as Long Term Evolution (LTE) are sensitive to interference and should be able to vary the beam tilt angle for optimization.Once the existing omni antennas have been developed with a fixed tilt angle of a serial feed method, the beam tilt It was difficult to vary the angle.
구체적으로, 기존의 옴니안테나에는 도 1과 같이 안테나 소자들의 중앙에 신호를 급전하고 안테나 상하로 신호를 전파시키는 직렬급전 방식이 사용되었는데, 이러한 직렬급전 방식 하에서는 위상가변기의 적용과 빔 틸팅(Beam Tilting)의 구현이 어려웠다. 또한, 기존의 직렬급전 방식 하에서 슬롯 간의 간격을 조절하여 안테나 빔 틸트각을 가변시키는 기술이 존재하였지만, 설치 후에는 틸트 각을 임의로 바꾸기가 어려웠다. Specifically, in the conventional omni antenna, as shown in FIG. 1, a series feeding method for feeding a signal in the center of the antenna elements and propagating the signal up and down is used. In this series feeding method, the phase shifter is applied and the beam tilting is performed. ) Was difficult to implement. In addition, there has been a technique of varying the antenna beam tilt angle by adjusting the spacing between slots under the conventional series feeding method, but it is difficult to arbitrarily change the tilt angle after installation.
따라서, 설치 후에 빔 틸트각을 자유롭게 가변하여, LTE 등 차세대 이동통신망의 전국망 확보에도 사용될 수 있는 옴니안테나의 개발이 요구되고 있다. Accordingly, there is a demand for the development of an omni antenna that can be used to secure a nationwide network of a next generation mobile communication network such as LTE by freely varying the beam tilt angle after installation.
본 발명은 이상에서 살펴본 기술적인 요구를 충족시키기 위해서 발명되었으며, 상기와 같은 문제점을 해결함은 물론, 본 기술분야에서 통상의 지식을 가진자가 용이하게 개발할 수 없는 기술들을 부가하여 발명되었다. The present invention has been invented to meet the technical needs described above, and solved the above problems, as well as invented by adding techniques that can be easily developed by those skilled in the art.
본 발명에 따른 병렬급전 방식의 가변틸트 옴니안테나는, 기존의 직렬급전 방식이 아닌, 병렬급전 방식으로 옴니안테나를 이루는 안테나소자들에 신호를 공급하는 것을 해결과제로 한다. The variable tilt omni antenna of the parallel feeding method according to the present invention is to provide a signal to the antenna elements constituting the omni antenna by the parallel feeding method, rather than the conventional serial feeding method.
또한, 본 발명에 따른 병렬급전 방식의 가변틸트 옴니안테나는, 병렬급전 방식과 위상가변기를 통해 전기적인 빔 틸팅을 가능하게 하는 것을 해결과제로 한다. In addition, the variable tilt omni antenna of the parallel feeding method according to the present invention, to enable the electric beam tilting through the parallel feeding method and the phase variable as a problem.
또한, 본 발명에 따른 병렬급전 방식의 가변틸트 옴니안테나는, 전기적으로 틸트각을 가변시켜서, LTE와 같은 간섭에 민감한 이동통신망도 최적화시킬 수 있게 하는 것을 해결과제로 한다. In addition, the variable tilt omni antenna of the parallel feeding method according to the present invention, by varying the tilt angle electrically, it is a problem to be able to optimize a mobile communication network sensitive to interference such as LTE.
또한, 본 발명에 따른 병렬급전 방식의 가변틸트 옴니안테나는, 옴니안테나의 전기적인 빔 틸팅을 원격으로 제어할 수 있게 하는 것을 해결과제로 한다. In addition, the variable-tilt omni antenna of the parallel feeding method according to the present invention, to make it possible to remotely control the electrical beam tilting of the omni antenna.
또한, 본 발명에 따른 병렬급전 방식의 가변틸트 옴니안테나는, 플레시블(flexible)한 재질의 기판 등 다양한 소재기판과 패치 안테나소자를 사용하여 무지향의 전파특성을 구현하는 것을 해결과제로 한다. In addition, the variable-tilt omni antenna of the parallel feeding method according to the present invention is to implement the omnidirectional propagation characteristics using a variety of substrates and patch antenna elements, such as a flexible (flexible) substrate.
그리고, 본 발명에 따른 병렬급전 방식의 가변틸트 옴니안테나는, MIMO(Multiple Input Multiple Output)를 지원하기 위해 다중대역의 전파 전송을 가능하게 하는 것을 해결과제로 한다. In addition, the variable-tilt omni antenna of the parallel feeding method according to the present invention has a problem of enabling radio transmission of multiple bands to support multiple input multiple output (MIMO).
상기와 같은 과제를 해결하기 위한, 본 발명의 일 실시예에 따른 병렬급전 방식의 가변틸트 옴니안테나는, 무지향의 전파 특성을 갖는 복수 개의 안테나소자부; 및 상기 복수 개의 안테나소자부와 병렬급전 방식으로 연결되며, 상기 복수 개의 안테나소자부 각각에 위상이 가변된 신호를 전송하는 위상가변기를 포함하는 것을 특징으로 한다. In order to solve the above problems, the variable tilt omni antenna of the parallel feeding method according to an embodiment of the present invention, a plurality of antenna element portion having a non-directional propagation characteristics; And a phase shifter connected to the plurality of antenna element units in a parallel feeding manner and transmitting a signal whose phase is variable to each of the plurality of antenna element units.
또한, 본 발명의 일 실시예에 따른 병렬급전 방식의 가변틸트 옴니안테나는,상기 위상가변기가, 입력신호를 분배하고 위상을 가변시키는 선로의 일부패턴이 일면에 형성되어 있는 고정기판; 및 상기 고정기판의 일면과 절연막을 경계로 맞닿아 설치되고, 상기 고정기판에 형성된 패턴과 동적으로 커패시티브 커플링(capacitive coupling)되는 패턴이 형성되어 있어서, 상기 고정기판과 함께 상기 선로를 동적으로 형성하는 가변기판을 포함하는 것을 특징으로 한다. In addition, the variable tilt omni antenna of the parallel feeding method according to an embodiment of the present invention, the phase variable, the fixed substrate is formed on one surface of a portion of the line pattern for distributing the input signal and vary the phase; And a pattern formed by contacting one surface of the fixed substrate with an insulating layer at a boundary and dynamically capacitively coupling the pattern formed on the fixed substrate, thereby dynamically moving the line together with the fixed substrate. Characterized in that it comprises a variable substrate formed to.
또한, 본 발명의 일 실시예에 따른 병렬급전 방식의 가변틸트 옴니안테나는,상기 위상가변기가 입력신호와 동위상을 가지는 출력신호, 및 입력신호의 위상을 양 또는 음으로 가변시킨 출력신호를 생성하고, 상기 출력신호들을 상기 복수 개의 안테나소자부에 공급하여서, 전기적인 빔 틸팅(Beam Tilting)을 가능하게 하는 것을 특징으로 한다. The variable tilt omni antenna according to the embodiment of the present invention generates an output signal having the phase variable in phase with the input signal and an output signal in which the phase of the input signal is changed positively or negatively. And supplying the output signals to the plurality of antenna elements to enable electrical beam tilting.
또한, 본 발명의 일 실시예에 따른 병렬급전 방식의 가변틸트 옴니안테나는,상기 위상가변기가 원형 타입(type)의 위상가변기이고, 상기 가변기판을 회전시키는 가변기판구동부를 더 포함하는 것을 특징으로 한다. In addition, the variable tilt omni antenna of the parallel feeding method according to an embodiment of the present invention, the phase variable is a circular type (type) phase variable, characterized in that it further comprises a variable substrate driver for rotating the variable substrate. do.
또한, 본 발명의 일 실시예에 따른 병렬급전 방식의 가변틸트 옴니안테나는,상기 위상가변기의 상기 가변기판구동부의 동작을 제어하는 제어부를 더 포함하는 것을 특징으로 한다. In addition, the variable tilt omni antenna of the parallel feeding method according to an embodiment of the present invention, characterized in that it further comprises a control unit for controlling the operation of the variable substrate driver of the phase variable.
또한, 본 발명의 일 실시예에 따른 병렬급전 방식의 가변틸트 옴니안테나는,상기 복수 개의 안테나소자부가 막대형상 기판 외면에 층을 이루며 형성되는 것을 특징으로 한다. In addition, the variable tilt omni antenna of the parallel feeding method according to an embodiment of the present invention, characterized in that the plurality of antenna elements are formed in a layer on the outer surface of the rod-shaped substrate.
또한, 본 발명의 일 실시예에 따른 병렬급전 방식의 가변틸트 옴니안테나는,상기 막대형상 기판의 단면이 다각형으로 형성되고, 한 층을 이루는 안테나소자부는, 상기 막대형상 기판의 각 외면에 형성된 패치소자들을 포함하는 것을 특징으로 한다. In addition, the variable tilt omni antenna of the parallel feeding method according to an embodiment of the present invention, the cross section of the rod-shaped substrate is formed in a polygon, the antenna element portion forming a layer, patches formed on each outer surface of the rod-shaped substrate It is characterized by including the elements.
또한, 본 발명의 일 실시예에 따른 병렬급전 방식의 가변틸트 옴니안테나는,상기 다각형이 삼각형이며, 상기 막대형상 기판의 세 외면에 형성된 패치소자들이 각 방향으로 전파를 전송하여 상기 안테나소자부의 무지향 전파특성을 구현하는 것을 특징으로 한다. In addition, the variable tilt omni antenna of the parallel feeding method according to an embodiment of the present invention, the polygon is a triangle, the patch elements formed on the three outer surface of the rod-shaped substrate transmits radio waves in each direction, the omni-directional of the antenna element portion Characterized in that the propagation characteristics are implemented.
또한, 본 발명의 일 실시예에 따른 병렬급전 방식의 가변틸트 옴니안테나는,상기 막대형상 기판의 단면이 원으로 형성되고, 상기 한 층을 이루는 안테나소자부가 상기 막대형상 기판의 외면에 형성되는 패치소자에 의해 무지향 전파특성을 구현하는 것을 특징으로 한다.In addition, the variable tilt omni antenna of the parallel feeding method according to an embodiment of the present invention, the cross section of the rod-shaped substrate is formed in a circle, the patch of the antenna element portion forming the layer formed on the outer surface of the rod-shaped substrate The device is characterized by realizing non-directional propagation characteristics.
또한, 본 발명의 일 실시예에 따른 병렬급전 방식의 가변틸트 옴니안테나는,상기 막대형상 기판이 플랙시블(flexible)한 소재로 형성되는 것을 특징으로 한다.In addition, the variable tilt omni antenna of the parallel feeding method according to an embodiment of the present invention, characterized in that the rod-shaped substrate is formed of a flexible (flexible) material.
또한, 본 발명의 일 실시예에 따른 병렬급전 방식의 가변틸트 옴니안테나는,상기 막대형상 기판이 세라믹소재로 형성되는 것을 특징으로 한다.In addition, the variable tilt omni antenna of the parallel feeding method according to an embodiment of the present invention, characterized in that the rod-shaped substrate is formed of a ceramic material.
또한, 본 발명의 일 실시예에 따른 병렬급전 방식의 가변틸트 옴니안테나는,상기 복수 개의 안테나소자부가 수직/수평 편파의 구현이 가능한 패치소자를 포함하고, 상기 패치소자를 통해 이중대역의 동작을 구현하는 것을 특징으로 한다.In addition, the variable tilt omni antenna of the parallel feeding method according to an embodiment of the present invention, the plurality of antenna element includes a patch element capable of realizing vertical / horizontal polarization, the dual band operation through the patch element It is characterized by the implementation.
또한, 본 발명의 일 실시예에 따른 병렬급전 방식의 가변틸트 옴니안테나는,상기 복수 개의 안테나소자부를 2개 이상의 그룹으로 나누고 다중대역의 동작을 구현하는 것을 특징으로 한다.In addition, the variable tilt omni antenna of the parallel feeding method according to an embodiment of the present invention is characterized by dividing the plurality of antenna elements into two or more groups and implementing multi-band operation.
또한, 본 발명의 일 실시예에 따른 병렬급전 방식의 가변틸트 옴니안테나는,상기 복수 개의 안테나소자부를 내부에 수용하는 레이돔을 더 포함하는 것을 특징으로 한다.The variable tilt omni antenna according to the embodiment of the present invention may further include a radome accommodating the plurality of antenna elements.
본 발명에 따른 병렬급전 방식의 가변틸트 옴니안테나는, 기존의 직렬급전 방식이 아닌, 병렬급전 방식으로 옴니안테나를 이루는 안테나소자들에 신호를 공급할 수 있다. The variable tilt omni antenna of the parallel feeding method according to the present invention can supply a signal to the antenna elements constituting the omni antenna by the parallel feeding method, rather than the conventional serial feeding method.
또한, 본 발명에 따른 병렬급전 방식의 가변틸트 옴니안테나는, 위상가변기와 병렬급전 방식을 통해 전기적인 빔 틸팅을 가능하게 한다. 따라서, 옴니안테나의 빔틸트각을 가변시켜서, LTE와 같이 간섭에 민감한 이동통신망도 최적화시킬 수 있다. In addition, the variable tilt omni antenna of the parallel feeding method according to the present invention enables electric beam tilting through the phase variable and the parallel feeding method. Therefore, by varying the beam tilt angle of the omni antenna, it is possible to optimize a mobile communication network sensitive to interference such as LTE.
또한, 본 발명에 따른 병렬급전 방식의 가변틸트 옴니안테나는, 옴니안테나의 전기적인 빔 틸팅을 원격으로 제어할 수 있게 구성될 수 있다. 따라서, 기지국으로부터 빔 틸트각의 원격 제어가 가능하게 할 수 있다. In addition, the variable tilt omni antenna of the parallel feeding method according to the present invention may be configured to remotely control the electrical beam tilting of the omni antenna. Thus, remote control of the beam tilt angle from the base station can be enabled.
또한, 본 발명에 따른 병렬급전 방식의 가변틸트 옴니안테나는, 플랙시블(flexible)한 소재의 기판과 패치 안테나소자를 사용하여 무지향의 전파특성을 구현할 수 있다. 따라서, 무지향 안테나의 생산성을 향상시킬 수 있으며 안테나 자체의 무게나 크기도 줄일 수 있다. In addition, the variable tilt omni antenna of the parallel feeding method according to the present invention can realize omnidirectional propagation characteristics by using a flexible substrate and a patch antenna element. Therefore, the productivity of the omni-directional antenna can be improved, and the weight or size of the antenna itself can be reduced.
그리고, 본 발명에 따른 병렬급전 방식의 가변틸트 옴니안테나는, 다중대역의 전파 전송을 가능하게 할 수 있다. 따라서, 멀티밴드 주파수 운용 사업자를 위한 기지국용 옴니안테나로서 사용될 수 있으며, MIMO(Multiple Input Multiple Output)의 지원도 가능하다. In addition, the variable tilt omni antenna of the parallel feeding method according to the present invention can enable multi-band radio wave transmission. Therefore, it can be used as an omni antenna for a base station for a multiband frequency operation operator, and can also support MIMO (Multiple Input Multiple Output).
도 1은, 직렬급전 방식에 의해 신호를 공급하는 종래의 옴니안테나를 나타내는 도면이다. 1 is a diagram showing a conventional omni antenna that supplies a signal by a series power feeding method.
도 2는, 본 발명의 일 실시예에 따른 옴니안테나의 외형을 나타내는 외형도이다. Figure 2 is an external view showing the external appearance of the omni antenna according to an embodiment of the present invention.
도 3 내지 5는, 본 발명의 실시예들에 따른 옴니안테나의 병렬급전 연결을 나타내는 도면이다. 3 to 5 are diagrams illustrating parallel feeding of omni antennas according to embodiments of the present invention.
도 6은, 본 발명의 일 실시예에 따른 옴니안테나의 위상가변기의 구성을 나타내는 구성도이다. 6 is a block diagram illustrating a configuration of a phase shifter of an omni antenna according to an embodiment of the present invention.
도 7은, 본 발명의 일 실시예에 따른 옴니안테나의 위상가변기가 설치된 모습을 나타내는 도면이다. 7 is a diagram illustrating a state in which an omni antenna phase shifter is installed according to an embodiment of the present invention.
도 8은, 본 발명의 일 실시예에 따른 옴니안테나를 원격제어하는 원격제어부의 구성을 나타내는 도면이다. 8 is a diagram illustrating a configuration of a remote control unit for remotely controlling an omni antenna according to an embodiment of the present invention.
도 9는, 본 발명의 일 실시예에 따른 옴니안테나의 빔 틸팅을 나타내는 컴퓨터시뮬레이션 화면이다. 9 is a computer simulation screen showing beam tilting of an omni antenna according to an embodiment of the present invention.
도 10은, LTE 망에서의 빔 틸트각에 따른 전송속도를 나타내는 도면이다. 10 is a diagram illustrating a transmission rate according to a beam tilt angle in an LTE network.
도 11은, 본 발명의 일 실시예에 따른 옴니안테나의 안테나소자부를 나타내는 도면이다.11 is a diagram illustrating an antenna element of an omni antenna according to an embodiment of the present invention.
도 12는, 본 발명의 일 실시예에 따른 옴니안테나의 안테나소자부의 패치소자를 나타내는 도면이다. 12 is a view showing a patch element of the antenna element of the omni antenna according to an embodiment of the present invention.
도 13 내지 16은, 본 발명의 다른 실시예들에 따른 옴니안테나의 안테나소자부를 나타내는 도면이다. 13 to 16 illustrate an antenna element of an omni antenna according to other embodiments of the present invention.
도 17은, 본 발명의 일 실시예들에 따른 옴니안테나의 무지향의 특성을 나타내는 컴퓨터시뮬레이션 화면이다. 17 is a computer simulation screen illustrating omnidirectional characteristics of an omni antenna according to one embodiment of the present invention.
또한, 도면에 사용된 부호를 설명하면 다음과 같다.In addition, the reference numerals used in the drawings are as follows.
100 : 안테나소자부 110 : 막대형상 기판100: antenna element portion 110: rod-shaped substrate
120 : 패치소자 121 : 수직편파 급전부120: patch element 121: vertical polarization feeder
122 : 수평편파 급전부 200 : 위상가변기122: horizontal polarization feeder 200: phase variable
210 : 고정기판 211 : 제1출력패턴210: fixed substrate 211: first output pattern
212 : 제2출력패턴 213 : 제3출력패턴212: second output pattern 213: third output pattern
214 : 제4출력패턴 215 : 제5출력패턴214: fourth output pattern 215: fifth output pattern
216 : 입력패턴 217 : 원호모양 패턴216: input pattern 217: arc pattern
220 : 가변기판 221 : 커플링패턴220: variable substrate 221: coupling pattern
230 : 가변기판구동부 240 : 원격제어부 230: variable substrate drive unit 240: remote control unit
300 : 병렬급전선 400 : 레이돔300: parallel feeder 400: radome
이하, 첨부된 도면들을 참조하여 본 발명의 일 실시예에 따른 병렬급전 방식의 가변틸트 옴니안테나를 설명한다. 설명하는 실시 예들은 본 발명의 기술 사상을 당업자가 용이하게 이해할 수 있도록 제공되는 것으로 이에 의해 본 발명이 한정되지 않는다. 또한, 첨부된 도면에 표현된 사항들은 본 발명의 실시 예들을 쉽게 설명하기 위해 도식화된 도면으로 실제로 구현되는 형태와 상이할 수 있다.Hereinafter, a variable tilt omni antenna according to an embodiment of the present invention will be described with reference to the accompanying drawings. The described embodiments are provided to enable those skilled in the art to easily understand the technical spirit of the present invention, and the present invention is not limited thereto. In addition, matters represented in the accompanying drawings may be different from the form actually embodied in the schematic drawings in order to easily explain the embodiments of the present invention.
이하, 도 2 내지 도 10을 참조하여 본 발명의 실시예들에 따른 병렬급전 방식의 가변틸트 옴니안테나에 대해 상세하게 설명한다. Hereinafter, a variable tilt omni antenna according to embodiments of the present invention will be described in detail with reference to FIGS. 2 to 10.
도 2,3 및 7을 참조하면, 본 발명의 일 실시예에 따른 병렬급전 방식의 가변틸트 옴니안테나는, 무지향의 전파특성을 갖는 복수 개의 안테나소자부(100), 상기 복수 개의 안테나소자부와 병렬급전(300) 방식으로 연결되며 상기 복수 개의 안테나소자부 각각에 위상이 가변된 신호를 전송하는 위상가변기(200), 상기 복수 개의 안테나소자부를 내부에 수용하는 레이돔(400)을 포함할 수 있다. 2, 3 and 7, the variable tilt omni antenna of the parallel feeding method according to an embodiment of the present invention, a plurality of antenna element portion 100 having an omnidirectional propagation characteristic, the plurality of antenna element portion and It may include a phase changer 200 connected in a parallel feeding method 300 and transmitting a signal whose phase is changed to each of the plurality of antenna elements, and a radome 400 accommodating the plurality of antenna elements. .
상기 복수 개의 안테나소자부(100)는 전파를 방사하는 구성으로서, 병렬급전 방식으로 신호를 공급받아서 전파를 방사하게 되는 구성이다. 이러한 상기 복수 개의 안테나소자부(100)는 특정 방향으로 층을 이루어 옴니안테나를 형성하는 것이 바람직한데, 더욱 바람직하게는 각각의 안테나소자부(100)가 무지향의 전파 특성을 갖도록 구성하여 전체적인 옴니안테나가 무지향의 전파특성을 갖도록 구성할 수 있다. The plurality of antenna element units 100 are configured to radiate radio waves, and are configured to radiate radio waves by receiving signals in a parallel feeding manner. The plurality of antenna element units 100 are preferably formed in layers in a specific direction to form omni antennas, more preferably, each antenna element unit 100 is configured to have omnidirectional propagation characteristics, so that the overall omni antenna It can be configured to have a non-directional propagation characteristic.
도 2와 3을 참조하여 일 실시예를 살펴보면, 상기 복수 개의 안테나소자부(100)는 막대형상 기판(110)의 외면에 형성되는 패치소자(120)들을 포함하여 구성될 수 있고, 상기 막대형상 기판(110)의 길이방향을 따라 층을 이루면서 형성될 수 있다.Referring to FIGS. 2 and 3, the plurality of antenna element units 100 may include patch elements 120 formed on an outer surface of the rod-shaped substrate 110. It may be formed while forming a layer along the longitudinal direction of the substrate 110.
여기서 하나의 안테나소자부(100)에 포함된 상기 패치소자(120)들은 상기 막대형상 기판(110)의 둘레를 따라 모든 방향에 고르게 배치되어서 무지향의 전파특성을 구현할 수 있는데, 예를 들면 도 3과 같이, 원통으로 형성되는 막대형상 기판(110)의 둘레를 따라 3개의 패치소자(120)들을 120도 간격으로 배치하여, 무지향의 전파특성을 갖는 하나의 안테나소자부(100)를 형성할 수 있다. Here, the patch elements 120 included in one antenna element unit 100 may be evenly disposed in all directions along the circumference of the rod-shaped substrate 110 to implement omnidirectional propagation characteristics. For example, FIG. As such, by arranging three patch elements 120 at intervals of 120 degrees along the circumference of the cylindrical rod-shaped substrate 110, one antenna element unit 100 having non-directional propagation characteristics may be formed. have.
또한, 상기 막대형상 기판(110)은 연성 PCB(flexible PCB) 등의 플랙시블(flexible)한 소재로 구성될 수 있는데, 이를 통해 도 3과 같이 평면 형태의 기판에 패치소자(120)들을 형성하고, 가공을 통해 평면형태의 기판을 말아서 상기 막대형상 기판(110)을 형성할 수 있다. 따라서, 옴니안테나 제조 공정의 효율을 증가시킬 수 있으며, 안테나의 무게도 줄일 수 있다. In addition, the rod-shaped substrate 110 may be made of a flexible material such as a flexible PCB (flexible PCB), through which the patch elements 120 are formed on a flat substrate as shown in FIG. The rod-shaped substrate 110 may be formed by rolling a planar substrate through processing. Therefore, the efficiency of the omni antenna manufacturing process can be increased, and the weight of the antenna can be reduced.
그리고, 상기 막대형상 기판(110)은, 세라믹 소재에 의해서도 구성될 수 있는데, 구체적으로 세라믹 소재를 사용하여 원통형의 막대형상 기판(110)을 형성하고, 원통의 외면을 도금처리하여 상기 안테나소자부(100)를 형성할 수 있다. 또한, 세라믹 소재를 사용하여, 길이방향의 수직단면이 반원형인 막대형상 기판(110) 두 개를 형성하고, 각각의 막대형상 기판(110)의 외면을 도금처리한 후에 원통형이 되도록 결합시켜 상기 안테나소자부(100)를 형성할 수도 있다. In addition, the rod-shaped substrate 110 may be made of a ceramic material. Specifically, the cylindrical rod-shaped substrate 110 is formed using a ceramic material, and the antenna element portion is formed by plating the outer surface of the cylinder. 100 can be formed. In addition, by using a ceramic material, to form two rod-shaped substrates (110) having a vertical vertical cross-section in the longitudinal direction, and after coupling the outer surface of each of the rod-shaped substrates 110 to be cylindrical to combine the antenna The device unit 100 may be formed.
한편, 상기 복수 개의 안테나소자부(100)는 위에서 살펴본 패치소자뿐만 아니라 슬롯 등의 형태로도 구성될 수 있으며, 이 이외에도 본 기술분야에서 통상의 지식을 가진자에게 용이한 범위에서 다양하게 구성될 수 있다. On the other hand, the plurality of antenna element unit 100 may be configured in the form of a slot or the like as well as the patch element described above, in addition to this can be variously configured in a range easy to those skilled in the art. Can be.
상기 위상가변기(200)는, 상기 복수 개의 안테나소자부(100)와 병렬급전 방식으로 연결되며, 상기 복수 개의 안테나소자부(100) 각각에 위상이 가변된 신호를 전송하는 구성이다. The phase shifter 200 is connected to the plurality of antenna element units 100 in a parallel feeding manner and transmits a signal whose phase is variable to each of the plurality of antenna element units 100.
이러한 상기 위상가변기(200)는, 입력신호와 동위상을 가지는 출력신호, 입력신호의 위상을 양 또는 음으로 가변시킨 출력신호를 생성하고, 상기 출력신호들을 상기 복수 개의 안테나소자부(100)에 공급하는데, 이에 따라 옴니안테나의 전기적인 빔 틸팅(Beam Tilting)을 가능할 수 있다. The phase shifter 200 generates an output signal having a phase in phase with an input signal, an output signal in which the phase of the input signal is changed positively or negatively, and outputs the output signals to the plurality of antenna element units 100. In this way, the electrical beam tilting of the omniantenna may be possible.
한편, 상기 위상가변기(200)는 트롬본(trombone) 타입, 원형 타입 등 다양한 형태로 구성될 수 있는데, 이하에서는 원형 타입의 위상가변기(200)를 예로 들어 상세하게 설명한다. 하지만, 본 발명에 따른 옴니안테나에 포함될 수 있는 위상가변기(200)는 원형 타입(type)으로 한정되지 않으며, 다양한 형태로 구성되어서 적용될 수 있다. Meanwhile, the phase shifter 200 may be configured in various forms such as a trombone type and a circular type. Hereinafter, the phase shifter 200 of a circular type will be described in detail. However, the phase changer 200 which may be included in the omni antenna according to the present invention is not limited to a circular type, and may be configured in various forms.
도 6 내지 8을 참조하여 상기 위상가변기(200)를 살펴보면, 상기 위상가변기(200)는, 입력신호를 분배하고 위상을 가변시키는 선로의 일부패턴이 일면에 형성되어 있는 고정기판(210), 상기 고정기판의 일면과 절연막을 경계로 맞닿아 설치되고, 상기 고정기판에 형성된 패턴과 동적으로 커패시티브 커플링(capacitive coupling)되는 패턴이 형성되어 있어서, 상기 고정기판과 함께 상기 선로를 동적으로 형성하는 가변기판(220), 바람직하게는 원형 타입으로 구성되는 가변기판을 회전시키는 가변기판구동부(230), 및 상기 가변기판구동부의 동작을 제어하는 제어부(240)를 포함할 수 있다. Referring to FIGS. 6 to 8, the phase shifter 200 includes a fixed substrate 210 having one side of a pattern of a line for distributing an input signal and varying phases, wherein the phase shifter 200 is formed on one surface of the phase shifter 200. One surface of the fixed substrate and the insulating layer are in contact with each other, and a pattern is formed which is dynamically capacitively coupled with the pattern formed on the fixed substrate, thereby dynamically forming the line together with the fixed substrate. The variable substrate 220 may include a variable substrate driver 230 for rotating the variable substrate, preferably a circular type, and a controller 240 for controlling the operation of the variable substrate driver.
상기 고정기판(210)은, 입력신호를 분배하고 위상을 가변시키는 선로의 일부 패턴이 일면에 형성되어 있는 구성으로서, 입력신호를 위한 입력케이블과 출력신호를 위한 출력케이블이 연결되는 구성이다. 이러한 상기 고정기판(210)의 패턴을 살펴보면, 하나의 입력패턴(216)과 다수의 출력패턴을 가지고, 상기 가변기판(220)에 형성된 패턴과 커패시티브 커플링(capacitive coupling)되어 위상 가변 선로를 형성하는데, 이에 따라 하나의 입력신호를 수신하여 다수의 위상 가변신호들을 출력하는 위상가변기(200)를 형성하게 된다. 도 6을 참조하여 상기 고정기판(210)에 형성된 패턴의 일 실시예를 살펴보면, 상기 고정기판(210)은 입력패턴(216), 제1출력패턴(211), 제2출력패턴(212), 제3출력패턴(213), 제4출력패턴(214), 제5출력패턴(215), 원호모양 등의 연결패턴(217)으로 구성될 수 있는데, 여기서 상기 입력패턴(216)은 신호가 입력되는 패턴을 의미하고, 제5출력패턴(215)은 상기 입력패턴(216)의 신호와 같은 위상의 신호가 출력되는 패턴을 의미한다. 또한 각각의 제 1 내지 제 4 출력패턴(211 내지 214)은 상기 입력패턴(216)의 신호가 위상이 가변되어 출력되는 패턴을 의미하며, 이 경우 각각의 출력패턴(211 내지 214)에서 이루어지는 위상 가변은 서로 간에 양 또는 음으로 비례하게(+2A, +A, -A, -2A) 이루어진다. 한편, 상기 고정기판(210)에 형성되는 패턴은, 출력패턴의 수, 연결패턴의 모양 등을 변화시켜서 다양하게 형성될 수 있는데, 구체적으로 출력패턴의 수를 도 6과 같이 5로 제한하지 않고, 3개, 7개, 11개 등으로도 변화시킬 수 있다. The fixed substrate 210 is a configuration in which a portion of a line for distributing an input signal and changing a phase is formed on one surface, and an input cable for an input signal and an output cable for an output signal are connected. Referring to the pattern of the fixed substrate 210, the phase variable line has one input pattern 216 and a plurality of output patterns, and is capacitively coupled with a pattern formed on the variable substrate 220. This forms a phase changer 200 that receives one input signal and outputs a plurality of phase variable signals. Referring to FIG. 6, an embodiment of a pattern formed on the fixed substrate 210 will be described. The fixed substrate 210 may include an input pattern 216, a first output pattern 211, a second output pattern 212, and the like. The third output pattern 213, the fourth output pattern 214, the fifth output pattern 215, and an arc-shaped connection pattern 217, where the input pattern 216 has a signal input thereto. The fifth output pattern 215 refers to a pattern in which a signal having a phase identical to that of the input pattern 216 is output. In addition, each of the first to fourth output patterns 211 to 214 means a pattern in which the signal of the input pattern 216 is changed in phase and in this case, a phase formed in each of the output patterns 211 to 214. Variables are made positively or negatively proportional to one another (+ 2A, + A, -A, -2A). The pattern formed on the fixed substrate 210 may be variously formed by changing the number of output patterns, the shape of a connection pattern, and the like. Specifically, the number of output patterns is not limited to 5 as shown in FIG. 6. You can change this to three, seven, eleven, and so on.
상기 가변기판(220)은, 상기 고정기판(210)의 일면과 절연막을 경계로 맞닿아 설치되고, 상기 고정기판(210)에 형성된 패턴과 동적으로 커패시티브 커플링(capacitive coupling)되는 패턴이 형성되어 있어서, 상기 고정기판(210)과 함께 위상 가변 선로를 동적으로 형성하는 구성이다. 이러한 상기 가변기판(220)에는 상기 고정기판(210)의 패턴과 대응되는 패턴들이 형성되어 있으며, 상기 패턴들이 상기 고정기판(210)에 형성된 패턴들과 커패시티브 커플링을 이루게 되는데, 이에 따라 상기 위상가변기(200)를 형성하게 된다. 도 6을 참조하여 상기 가변기판(220)의 일 실시예를 살펴보면, 상기 가변기판(220)의 패턴은 상기 고정기판(210)상의 원호모양 패턴(217)과 커패시티브 커플링되는 한 개 이상의 커플링패턴(221)으로 구성될 수 있는데, 여기서 상기 커플링패턴(221)은 맞닿게 되는 상기 고정기판(210)의 원호모양 패턴(217)과 대응되는 패턴으로 구성되는 것이 바람직하다. 구체적으로 상기 원호모양 패턴(217)의 곡률과 같은 곡률을 갖는 짧은 원호모양의 패턴으로 형성되는 것이 바람직한데, 이러한 형태로 패턴이 형성되어야 상기 가변기판(220)이 상기 고정기판(210)과 맞닿은 상태에서 회전할 때 동적인 커플링이 이루어지기 때문이다. 한편, 상기 커플링패턴(221)의 수는 상기 고정기판(210)상의 원호모양 패턴(217)과 출력패턴의 수에 따라 변경될 수 있으며, 도 6과 같이 2개로 구성되거나 1, 3, 4, 5 개 등 다양하게 구성될 수 있다. The variable substrate 220 is provided by contacting one surface of the fixed substrate 210 with an insulating layer at a boundary, and has a pattern that is dynamically capacitively coupled with a pattern formed on the fixed substrate 210. It is formed, it is configured to dynamically form a phase variable line with the fixed substrate 210. Patterns corresponding to the patterns of the fixed substrate 210 are formed on the variable substrate 220, and the patterns form capacitive coupling with the patterns formed on the fixed substrate 210. The phase shifter 200 is formed. 6, one or more patterns of the variable substrate 220 are capacitively coupled to the arc-shaped pattern 217 on the fixed substrate 210. The coupling pattern 221 may be configured, where the coupling pattern 221 is preferably formed of a pattern corresponding to the arc pattern 217 of the fixed substrate 210 to be in contact with each other. Specifically, it is preferable to be formed in a short arc-shaped pattern having the same curvature as the curvature of the arc-shaped pattern 217, the pattern is formed in such a form that the variable substrate 220 is in contact with the fixed substrate 210 This is because a dynamic coupling occurs when rotating in the state. On the other hand, the number of the coupling pattern 221 may be changed according to the number of arc-shaped pattern 217 and the output pattern on the fixed substrate 210, as shown in Figure 6 consists of two or 1, 3, 4 And five.
상기 고정기판(210)과 가변기판(220)이 입력신호의 위상을 가변시키는 동작을 도 6을 참조하여 살펴보면, 먼저 상기 고정기판(210)과 상기 가변기판(220)이 절연막을 경계로 맞닿아 설치되며, 상기 기판들에 형성된 패턴들 사이에 커패시티브 커플링이 이루어져 전기적으로 연결된다. 이에 따라 상기 입력패턴(216)에서 원호모양 패턴(217)을 거쳐 제 1 내지 5 출력패턴(211 내지 215)로 이어지는 위상 가변 선로가 형성되는데, 도 6의 좌측과 같이 상기 가변기판(220)이 회전하지 않은 상태에서는 위상 가변이 발생하지 않고 출력패턴들에 입력신호와 동위상의 신호들이 출력되게 된다. 하지만, 상기 가변기판(220)이 도 6과 같은 위치에서 시계방향 혹은 반시계 방향으로 회전하게 되면, 상기 기판들이 커플링이 동적으로 변화하게 되고 출력패턴에서 위상의 가변이 일어나게 되는데, 이 경우 회전하는 방향 쪽에 존재하는 패턴과 연결되는 출력케이블의 신호는 위상이 앞서고, 회전하는 방향의 반대쪽에 존재하는 패턴과 연결된 출력케이블의 신호는 지연되게 된다. 구체적으로, 도 6에서 상기 가변기판(220)이 시계방향으로 회전한다고 가정하면, 제1출력패턴(211)의 신호는 통과하는 물리적인 거리가 감소하여 위상이 앞서게 되고(+A), 제2출력패턴(212)의 신호는 통과하는 물리적인 거리가 같은 크기만큼 증가하여 위상이 지연(-A)되게 된다. 또한, 제3출력패턴(213)의 신호도 통과하는 물리적인 거리가 감소하여 위상이 앞서게 되며(+2A), 제4출력패턴(214)의 신호도 통과하는 물리적인 거리가 같은 크기만큼 증가하여 위상이 지연(-2A)되게 된다. 이러한 위상이 가변된 제 1 내지 4 출력패턴(211 내지 214)의 신호들은 입력신호와 동위상인 제5출력패턴(215)과 함께 복수 개의 안테나소자부(100)에 전달되는데, 이러한 신호들에 의해 전기적인 빔 틸팅이 일어나게 된다. Referring to FIG. 6, the fixed substrate 210 and the variable substrate 220 vary the phase of an input signal. First, the fixed substrate 210 and the variable substrate 220 abut an insulating layer at a boundary. And a capacitive coupling is formed between the patterns formed on the substrates to be electrically connected to each other. Accordingly, a phase variable line is formed from the input pattern 216 to the first to fifth output patterns 211 to 215 via an arc-shaped pattern 217. As shown in the left side of FIG. In the non-rotating state, phase shift does not occur and signals in phase with the input signal are output to the output patterns. However, when the variable substrate 220 is rotated clockwise or counterclockwise at the position as shown in FIG. 6, the coupling of the substrates is dynamically changed and the phase is changed in the output pattern. The signal of the output cable connected to the pattern existing in the direction of the phase is ahead of the phase, the signal of the output cable connected to the pattern existing on the opposite side of the rotation direction is delayed. Specifically, in FIG. 6, when the variable substrate 220 is rotated in the clockwise direction, the signal of the first output pattern 211 has a reduced physical distance through which the phase is advanced (+ A), and the second The signal of the output pattern 212 is increased by the same physical distance to pass the phase is delayed (-A). In addition, the physical distance through which the signal of the third output pattern 213 passes also decreases, thereby leading the phase (+ 2A), and the physical distance through which the signal of the fourth output pattern 214 passes also increases by the same size. The phase will be delayed (-2A). The signals of the first to fourth output patterns 211 to 214 whose phases are variable are transmitted to the plurality of antenna element units 100 together with the fifth output pattern 215 in phase with the input signal. Electrical beam tilting occurs.
상기 가변기판구동부(230)는 상기 가변기판(220)을 운동시키는 구성으로서, 상기 가변기판(220)의 패턴들이 상기 고정기판(210)의 패턴들과 커패시티브(capacitive coupling)을 이룬 상태에서 상기 가변기판(220)을 운동시켜서 출력신호들의 위상을 가변시키는 구성이다. 이러한 상기 가변기판구동부(230)는 상기 위상가변기(200)가 원형 타입의 위상가변기인 경우에는 도 7과 같이 상기 가변기판(220)을 회전시키는 모터 등으로 구성될 수 있는데, 상기 가변기판(220)을 회전시켜서 출력신호의 위상 가변을 발생시키게 된다. The variable substrate driver 230 is configured to move the variable substrate 220, and the patterns of the variable substrate 220 form a capacitive coupling with the patterns of the fixed substrate 210. The variable substrate 220 is moved to change the phase of the output signals. The variable substrate driver 230 may be configured as a motor for rotating the variable substrate 220 when the phase variable unit 200 is a circular type phase variable unit as shown in FIG. 7, and the variable substrate 220. ) Rotates to generate a phase variation of the output signal.
상기 제어부는, 상기 가변기판구동부(230)의 동작을 제어하는 구성으로서, 상기 가변기판구동부(230)를 제어하여 옴니안테나의 빔 틸팅을 제어할 수 있도록 하는 구성이다. 구체적으로 상기 제어부를 통해 상기 가변기판구동부(230)를 제어하여 상기 가변기판(220)의 운동을 제어하는데, 이에 따라 위상 가변 신호들에 의해 발생하는 빔 틸팅을 제어하게 된다. 도 8을 참조하여 일 실시예를 살펴보면, 상기 제어부는 다수의 옴니안테나가 포함하는 다수의 가변기판구동부(230)를 통합하여 원격으로 제어하도록 구성될 수 있는데, 이러한 원격제어부(240)는 제어컴퓨터와 안테나 설치 기둥부에 설치된 원격제어장치(RCU, Remote Control Unit)를 포함할 수 있다. The controller is configured to control the operation of the variable substrate driver 230, and is configured to control the tilting of the omni antenna by controlling the variable substrate driver 230. Specifically, the variable substrate driver 230 is controlled through the controller to control the motion of the variable substrate 220, thereby controlling beam tilting generated by the phase variable signals. Referring to FIG. 8, the control unit may be configured to remotely control a plurality of variable board driver 230 included in a plurality of omni antennas, such as a remote control unit 240. And it may include a remote control unit (RCU, Remote Control Unit) installed in the antenna installation pillar.
상기 병렬급전 방식을 자세히 살펴보면, 본 발명의 일 실시예에 따른 병렬급전 방식의 가변틸트 옴니안테나는, 도 3과 같이 상기 복수 개의 안테나소자부(100)가 각각 상기 위상가변기(200)의 출력포트와 연결이 된다. 따라서, 입력신호가 상기 위상가변기(200)를 통해 다수의 출력신호로 분배되고, 분배된 다수의 출력신호가 상기 복수 개의 위상가변기(200) 각각에 병렬적으로 급전되는 병렬급전 회로가 형성되게 된다. Looking at the parallel feeding method in detail, the variable tilt omni antenna of the parallel feeding method according to an embodiment of the present invention, as shown in Figure 3 the plurality of antenna element unit 100 output port of the phase changer 200, respectively Is connected to. Therefore, an input signal is divided into a plurality of output signals through the phase changer 200, and a parallel feed circuit is formed in which the plurality of distributed output signals are fed in parallel to each of the plurality of phase changers 200. .
이러한 상기 병렬급전 회로는, 안테나소자들의 중앙에 신호를 급전하고 안테나 상하로 신호를 전파시키는 기존의 직렬급전 방식과 달리, 상기 복수 개의 안테나소자부(100) 각각에 신호를 병렬적으로 급전할 수 있는데, 이에 따라 옴니안테나의 전기적인 빔 틸팅의 구현을 가능하게 한다. 구체적으로 상기 위상가변기(200)를 경유시키는 병렬 급전방식을 통해 상기 복수 개의 안테나소자부(100) 각각에 위상이 지연된 신호들을 공급하며, 이러한 신호들에 의해 상기 복수 개의 안테나소자부(100)가 전파를 방사하도록 하여 전기적인 빔 틸팅을 구현할 수 있게 한다. The parallel feeding circuit, unlike the conventional serial feeding method of feeding a signal in the center of the antenna elements and propagating the signal up and down the antenna, it is possible to feed the signal in parallel to each of the plurality of antenna element unit 100. This makes it possible to implement the electrical beam tilting of the omni antenna. Specifically, a phase delayed signal is supplied to each of the plurality of antenna element units 100 through a parallel feeding method via the phase changer 200, and the plurality of antenna element units 100 are supplied by these signals. Emission of radio waves makes it possible to implement electrical beam tilting.
도 3을 참조하여 예를 들면, 상기 위상가변기(200)에 의해 위상이 가변된 신호들이 각각의 출력포트(①, ②, ③, ④, ⑤, ⑥, ⑦)를 통해 상기 복수 개의 안테나소자부(100)에 병렬적으로 급전되게 되는데, 여기서 출력포트①신호는 입력신호와 동위상, 출력포트②신호는 +A, 출력포트③신호는 +2A, 출력포트④신호는 +3A, 출력포트⑤ 신호는 -A, 출력포트⑥신호는 -2A, 출력포트⑦신호는 -3A 위상일 수 있다. 이러한 신호들이 상기 복수 개의 안테나 소자부에 병렬적으로 급전되어 상기 복수 개의 안테나 소자부가 전파를 방사하게 되며, 이에 따라 전기적인 빔 틸팅이 구현된다. For example, with reference to FIG. 3, the signals of which the phase is changed by the phase variable unit 200 are transmitted through the respective output ports ①, ②, ③, ④, ⑤, ⑥, and ⑦. The output port ① signal is in phase with the input signal, the output port ② signal is + A, the output port ③ signal is + 2A, the output port ④ signal is + 3A, and output port ⑤. The signal may be -A, the output port ⑥ signal is -2A, and the output port ⑦ signal is -3A phase. These signals are fed in parallel to the plurality of antenna element portions so that the plurality of antenna element portions radiate radio waves, thereby implementing electrical beam tilting.
한편, 이러한 전기적인 빔 틸팅은 도 9와 같이 5도, 10도, 15도 등 필요한 환경에 따라 다양하게 구현될 수 있는데, 이에 따라 옴니안테나로 LTE 망 등의 차세대 통신망을 부설하더라도 빔 틸트각을 변화시켜서 망을 최적화시킬 수 있게 한다. 구체적으로 도 10과 같이 틸트각을 변화시켜 셀 간섭을 최소화시킬 수 있게 하며, 이에 따라 빠른 전송 속도의 통신 서비스를 제공할 수 있게 한다. On the other hand, such electrical beam tilting can be implemented in various ways depending on the required environment, such as 5 degrees, 10 degrees, 15 degrees, as shown in Figure 9, accordingly, even if the next generation communication network, such as LTE network with the omni antenna Change to optimize the network. In detail, as shown in FIG. 10, the tilt angle may be changed to minimize cell interference, thereby providing a communication service having a high transmission rate.
상기 레이돔(400)은, 상기 복수 개의 안테나소자부(100)를 내부에 수용하는 구성으로서, 상기 안테나소자부(100)를 풍우 등의 외부환경으로부터 보호하는 역할을 한다. The radome 400 is configured to accommodate the plurality of antenna element units 100 therein, and serves to protect the antenna element unit 100 from an external environment such as wind or rain.
이러한 상기 레이돔(400)은, 전파의 투과성이 우수하도록 제작되는 것이 바람직한데, 이를 위해 상기 레이돔(400)의 재질을 전기절연체로 하며, 이음매가 없는 일체로 구성하는 것이 바람직하다. The radome 400 is preferably manufactured so as to have excellent transmittance of radio waves. For this purpose, the radome 400 is made of an electrical insulator, and it is preferable that the radome 400 is integrally formed without a seam.
도 4를 참조하여 본 발명의 다른 실시예에 따른 병렬급전 방식의 가변틸트 옴니안테나를 살펴보면, 상기 복수 개의 안테나 소자부를 2개 이상의 그룹으로 나누어서 다중대역의 동작을 구현할 수 있다. Looking at the variable tilt omni antenna of the parallel feeding method according to another embodiment of the present invention with reference to Figure 4, it is possible to implement a multi-band operation by dividing the plurality of antenna elements into two or more groups.
구체적으로, 도 4와 같이 하나의 대역에서 동작하는 안테나소자부(100) 그룹(①, ②, ③, ④, ⑤, ⑥, ⑦ 포트와 연결된 그룹)과 다른 대역에서 동작하는 안테나소자부(100) 그룹(ⓐ, ⓑ, ⓒ, ⓓ, ⓔ, ⓕ, ⓖ 포트와 연결된 그룹)을 함께 구성하여 다중대역의 동작을 구성할 수 있다. Specifically, as shown in FIG. 4, the antenna element unit 100 operating in one band (groups connected to ①, ②, ③, ④, ⑤, ⑥, and ⑦ ports) and the antenna element unit 100 operating in a different band as shown in FIG. 4. ) You can configure multi-band operation by organizing groups (group connected with port ⓐ, ⓑ, ⓒ, ⓓ, ⓔ, ⓕ, ⓖ) together.
여기서 각 그룹은 위상가변기(200)에 의해 병렬급전 방식으로 신호를 공급받게 되는데, 바람직하게는 도 4와 같이 각 그룹별로 위상가변기(200)를 구비하여 동작주파수의 대역별로 독립적인 빔 틸팅을 가능하게 할 수 있다. 따라서 각각의 대역별로 통신망을 최적화시킬 수 있으며 멀티밴드 주파수 운용 사업자를 위한 기지국용 옴니안테나로 사용될 수 있다. Here, each group is supplied with a signal in a parallel feeding manner by the phase changer 200. Preferably, as shown in FIG. 4, the phase changer 200 is provided for each group to enable independent beam tilting for each band of an operating frequency. It can be done. Therefore, it is possible to optimize the communication network for each band and can be used as an omni antenna for base stations for multi-band frequency operators.
한편, 상기 안테나소자부(100) 그룹들은 도 4와 같이 교대(④, ⓓ, ③, ⓒ, ②, ⓑ, ①, ⓐ, ⑤, ⓔ, ⑥, ⓕ, ⑦, ⓖ)로 형성되거나, 그룹별로 모여서(④, ③, ②, ①, ⑤, ⑥, ⑦, ⓓ, ⓒ, ⓑ, ⓐ, ⓔ, ⓕ, ⓖ) 형성될 수 있는데, 이 이외에도 다양한 형태로 구성될 수 있다. On the other hand, the antenna element group 100 is formed of alternating (④, ⓓ, ③, ⓒ, ②, ⓑ, ①, ⓐ, ⑤, ⓔ, ⑥, ⓕ, ⑦, ⓖ, as shown in Figure 4, or a group Gathered by stars (④, ③, ②, ①, ⑤, ⑥, ⑦, ⓓ, ⓒ, ⓑ, ⓐ, ⓔ, ⓕ, ⓖ) can be formed, in addition to this can be configured in various forms.
도 5를 참조하여 본 발명의 또 다른 실시예에 따른 병렬급전 방식의 가변틸트 옴니안테나를 살펴보면, 상기 복수 개의 안테나소자부(100)는 수직/수평 편파의 구현이 가능한 패치소자(120)를 포함하고, 상기 패치소자(120)를 통해 이중대역의 동작을 구현할 수 있다. Looking at the variable tilt omni antenna of the parallel feeding method according to another embodiment of the present invention with reference to Figure 5, the plurality of antenna element portion 100 includes a patch element 120 capable of realizing the vertical / horizontal polarization In addition, a dual band operation may be implemented through the patch device 120.
도 5를 참조하여 예를 들면, 본 발명의 다른 실시예에 따른 병렬급전 방식의 가변틸트 옴니안테나는, 수직/수평 편파의 구현이 가능한 패치소자(120) 6개를 하나의 안테나소자부(100)로 구성하며, 이러한 상기 안테나소자부(100)를 플랙시블(flexible) 기판 위에 복수 개 형성할 수 있다. 여기서 상기 패치소자(120)는 도 12와 같이 수직편파 급전부(121)와 수평편파 급전부(122)를 포함하므로 수직/수평 편파의 구현이 가능한데, 각각의 공진 길이를 조절함으로써 동작 주파수를 달리하여 이중동작의 구현을 가능하게 할 수 있다. 따라서, 상기 복수 개의 안테나소자부(100)에 도 5와 같이 병렬급전 방식으로 신호를 공급하여, 다중대역에서 동작하고 빔 틸팅이 가능한 옴니안테나를 구현할 수 있다. 구체적으로, 상기 복수 개의 안테나소자부(100)의 수직편파 급전부(121)들과 수평편파 급전부(122)들을 구분하여 도 5와 같이 따로 병렬급전 시킬 수 있는데, 이에 따라 각각의 편파들을 빔 틸팅시킬 수 있으며, 각각의 편파들에 의해 2중대역의 동작이 구현된다. For example, with reference to FIG. 5, the variable tilt omni antenna of the parallel feeding method according to another embodiment of the present invention includes six antenna elements 100 including six patch elements 120 capable of implementing vertical / horizontal polarization. ) And a plurality of such antenna elements 100 may be formed on a flexible substrate. Here, the patch device 120 includes a vertical polarization feeder 121 and a horizontal polarization feeder 122, as shown in FIG. 12, so that vertical / horizontal polarization can be implemented, and the operating frequency is adjusted by adjusting the respective resonance lengths. The dual operation can be implemented. Accordingly, by supplying a signal to the plurality of antenna element units 100 in a parallel feeding manner as shown in FIG. 5, an omni antenna capable of operating in multiple bands and capable of tilting beams can be implemented. Specifically, the vertically polarized power feeding portion 121 and the horizontally polarized power feeding portion 122 of the plurality of antenna element portions 100 may be divided and separately fed in parallel as shown in FIG. 5, whereby each polarized beam is beamed. It can be tilted and dual band operation is realized by the respective polarizations.
이상에서 살핀 본 발명의 실시예들에 따른 병렬급전 방식의 가변틸트 옴니안테나는, 도 2와 같이 다수의 옴니안테나를 일체로 형성하여 통신망 확보를 위한 기지국 안테나로 사용될 수 있으며, 빔 틸트각을 가변시킬 수 있으므로 간섭에 큰 영향을 받는 LTE 등의 차세대 이동통신망의 부설에도 사용될 수 있다. As described above, the variable tilt omni antenna of the parallel feeding method according to the embodiments of the present invention may be used as a base station antenna for securing a communication network by integrally forming a plurality of omni antennas as shown in FIG. 2 and varying the beam tilt angle. It can be used for laying next-generation mobile communication networks such as LTE, which are greatly affected by interference.
구체적으로, 본 발명의 실시예들에 따른 병렬급전 방식의 가변틸트 옴니안테나를 기지국에 설치하고, 도 8과 같이 다수의 옴니안테나들에 포함된 위상가변기(200)들을 원격제어하여 빔 틸트각을 원격으로 가변시킬 수 있으며, 도 10과 같이 빔 틸트각의 가변을 통해 LTE 망의 전송속도를 최적화시킬 수 있다. Specifically, the variable tilt omni antenna of the parallel feeding method according to the embodiments of the present invention is installed in the base station, and the beam tilt angle is controlled by remotely controlling the phase changers 200 included in the plurality of omni antennas as shown in FIG. 8. The transmission speed of the LTE network can be optimized by varying the beam tilt angle as shown in FIG. 10.
이하, 도 11 내지 17을 참조하여 본 발명의 실시예들에 따른 옴니안테나의 안테나소자부(100)들을 더 살펴본다. Hereinafter, the antenna element units 100 of the omni antenna according to the embodiments of the present invention will be further described with reference to FIGS. 11 to 17.
이하에서 살펴볼 본 발명의 실시예들에 따른 옴니안테나의 안테나소자부(100)는, 패치소자(120)를 포함할 수 있는데, 바람직하게는 도 12와 같이 수직편파 급전부(121)와 수평편파 급전부(122)를 갖는 패치소자(120)를 포함할 수 있다. 따라서, 수직/수평 편파의 구현이 가능하며, 각각의 공진길이를 조절함으로써 동작주파수를 달리하여 이중대역 동작 구현이 가능하고, 편파 다이버시티 동작의 MIMO 구현 또한 가능하다. The antenna element unit 100 of the omni antenna according to the embodiments of the present invention to be described below may include a patch element 120. Preferably, the vertical polarization feeding unit 121 and the horizontal polarization as shown in FIG. It may include a patch device 120 having a power feeding portion (122). Accordingly, it is possible to implement vertical / horizontal polarization, to realize dual band operation by varying the operating frequency by adjusting each resonance length, and to implement MIMO of polarization diversity operation.
또한, 본 발명의 실시예들에 따른 옴니안테나의 안테나소자부(100)는, 하나의 편파만을 구현하는 패치소자(120)들을 포함할 수도 있는데, 이 경우에는 도 12처럼 하나의 패치소자(120) 상에서 이중대역의 동작을 구현하지 않더라도, 위에서 살펴본 도 4처럼 다른 대역에서 동작하는 패치소자(120)들을 함께 구성하여 다중대역을 구현할 수 있다. In addition, the antenna element unit 100 of the omni antenna according to the embodiments of the present invention may include patch elements 120 for implementing only one polarization, in this case one patch element 120 as shown in FIG. Even if the dual band operation is not implemented on the multi-band, patch devices 120 operating in different bands may be configured together as shown in FIG. 4.
그리고, 본 발명의 실시예에 따른 옴니안테나의 안테나소자부(100)는 위에서 살펴본 패치소자(120)들 뿐 아니라, 본 기술분야에서 통상의 지식을 가진 자가 용이하게 개발할 수 있는 안테나소자들로도 구성될 수 있다. In addition, the antenna element unit 100 of the omni antenna according to the embodiment of the present invention may be configured not only with the patch elements 120 described above, but also with antenna elements that can be easily developed by those skilled in the art. Can be.
도 11을 참조하면, 본 발명의 일 실시예에 따른 옴니안테나의 안테나소자부(100)는 막대형상의 기판 외면에 층을 이루며 복수 개가 형성될 수 있는데, 한 층을 이루는 안테나소자부(100)는 상기 막대형상 기판(110)의 외면에 형성된 패치소자(120)들을 포함할 수 있다. Referring to FIG. 11, an antenna element portion 100 of an omni antenna according to an embodiment of the present invention may be formed in a plurality of layers on the outer surface of a rod-shaped substrate, and an antenna element portion 100 forming one layer. May include patch elements 120 formed on an outer surface of the rod-shaped substrate 110.
여기서, 상기 막대형상 기판(110)의 단면은 삼각형, 사각형 등의 다각형으로 형성될 수 있는데, 상기 막대형상 기판(110)의 각 외면에 형성된 패치소자(120)들이 각 방향으로 전파를 방사하게 되어 도 17과 같은 무지향의 전파특성이 구현되게 된다. Here, the cross section of the rod-shaped substrate 110 may be formed in a polygon, such as a triangle, a square, etc., the patch elements 120 formed on each outer surface of the rod-shaped substrate 110 to radiate radio waves in each direction Non-directional propagation characteristics as shown in FIG. 17 are realized.
구체적으로 살펴보면, 상기 막대형상 기판(110)의 단면은 도 11과 같이 삼각형으로 구성될 수 있고, 상기 막대형상 기판(110)의 길이방향의 일정한 위치에서 세 외면에 형성된 패치소자(120)들이 한 층을 이루어서 상기 안테나소자부(100)를 형성할 수 있다. 여기서 세 외면에 형성되어 한 층을 이루는 패치소자(120)들은, 하나의 패치소자(120)로 구성할 수 있는데, 이 이외에도 다수의 패치소자(120)들을 연결한 형태로 구성할 수 있다. Specifically, the cross-section of the rod-shaped substrate 110 may be configured as a triangle as shown in Figure 11, the patch elements 120 formed on three outer surfaces at a predetermined position in the longitudinal direction of the rod-shaped substrate 110 The antenna element unit 100 may be formed by forming a layer. Here, the patch elements 120 formed on three outer surfaces to form a layer may be configured as one patch element 120. In addition to this, the patch elements 120 may be formed by connecting a plurality of patch elements 120.
다음으로, 도 13 내지 16을 살펴보면, 본 발명의 다른 실시예에 따른 옴니안테나의 안테나소자부(100)는, 단면이 원인 막대형상 기판(110)의 외면에 층을 이루면서 형성되는 패치소자(120)들을 포함할 수 있다. 이러한, 상기 패치소자(120)들은 막대형상 기판(110)의 길이방향에 수직인 모든 방향으로 전파를 전송할 수 있도록 막대형상 기판(110)의 외면에 형성되는데, 이에 따라 도 17과 같은 무지향의 전파특성이 구현될 수 있다. Next, referring to Figures 13 to 16, the antenna element portion 100 of the omni antenna according to another embodiment of the present invention, the patch element 120 is formed while forming a layer on the outer surface of the rod-shaped substrate 110, the cross section ) May be included. The patch elements 120 are formed on the outer surface of the rod-shaped substrate 110 to transmit radio waves in all directions perpendicular to the longitudinal direction of the rod-shaped substrate 110. Accordingly, the non-directional propagation as shown in FIG. The property can be implemented.
구체적으로 도 14, 도 15, 또는 도 16과 같이 구성된 패치소자들이 한 층을 이루고 하나의 안테나소자부(100)를 형성할 수 있으며, 이러한 하나의 안테나소자부(100)가 도 13과 같이 상기 막대형상 기판(110)의 외면에 복층으로 형성되어서 복수 개의 안테나소자부(100)를 형성하게 된다. In detail, patch elements configured as shown in FIG. 14, FIG. 15, or FIG. 16 may form a layer and form one antenna element unit 100. The one antenna element unit 100 may be formed as shown in FIG. 13. A plurality of antenna element units 100 are formed by forming a plurality of layers on the outer surface of the rod-shaped substrate 110.
한편, 상기 단면이 원인 막대형상의 기판은, 플랙시블(flexible)한 소재로 기판을 제작하고 말아서 형성하거나, 세라믹소재로 원통의 기판을 직접 형성할 수 있다. On the other hand, the rod-shaped substrate caused by the cross section, the substrate can be formed by rolling the flexible material (flexible), or can be formed directly from the cylindrical substrate of a ceramic material.
이상에서 살핀, 본 발명에 따른 병렬급전 방식의 가변틸트 옴니안테나는, 기존의 직렬급전 방식이 아닌, 병렬급전 방식으로 옴니안테나를 이루는 안테나소자들에 신호를 공급할 수 있다. As described above, the variable tilt omni antenna of the parallel feeding method according to the present invention can supply a signal to the antenna elements constituting the omni antenna by the parallel feeding method, rather than the conventional serial feeding method.
또한, 위상가변기(200)와 병렬급전 방식을 통해 전기적인 빔 틸팅을 가능하게 한다. 따라서, 옴니안테나의 빔틸트각을 가변시켜서, LTE와 같이 간섭에 민감한 이동통신망도 최적화시킬 수 있다. In addition, it enables electrical beam tilting through the phase shifter 200 and the parallel feeding method. Therefore, by varying the beam tilt angle of the omni antenna, it is possible to optimize a mobile communication network sensitive to interference such as LTE.
또한, 옴니안테나의 전기적인 빔 틸팅을 원격으로 제어할 수 있게 구성될 수 있다. 따라서, 기지국으로부터 빔 틸트각의 원격 제어가 가능하게 할 수 있다. It may also be configured to remotely control the electrical beam tilting of the omni antenna. Thus, remote control of the beam tilt angle from the base station can be enabled.
또한, 플랙시블(flexible)한 소재의 기판과 패치 안테나소자를 사용하여 무지향의 전파특성을 구현할 수 있다. 따라서, 무지향 안테나의 생산성을 향상시킬 수 있으며 안테나 자체의 무게나 크기도 줄일 수 있다. In addition, the omnidirectional propagation characteristics may be realized by using a flexible substrate and a patch antenna element. Therefore, the productivity of the omni-directional antenna can be improved, and the weight or size of the antenna itself can be reduced.
그리고, 다중대역의 전파 전송을 가능하게 할 수 있다. 따라서, 멀티밴드 주파수 운용 사업자를 위한 기지국용 옴니안테나로서 사용될 수 있으며, MIMO(Multiple Input Multiple Output)의 지원도 가능하다. In addition, it is possible to enable multi-band radio wave transmission. Therefore, it can be used as an omni antenna for a base station for a multiband frequency operation operator, and can also support MIMO (Multiple Input Multiple Output).
위에서 설명된 본 발명의 실시 예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대한 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 본 특허청구범위에 속하는 것으로 보아야 할 것이다.The embodiments of the present invention described above are disclosed for the purpose of illustration, and those skilled in the art may make various modifications, changes, and additions within the spirit and scope of the present invention. Changes, changes, and additions should be considered to be within the scope of the claims.

Claims (14)

  1. 무지향의 전파 특성을 갖는 복수 개의 안테나소자부; 및A plurality of antenna element portions having non-directional propagation characteristics; And
    상기 복수 개의 안테나소자부와 병렬급전 방식으로 연결되며, 상기 복수 개의 안테나소자부 각각에 위상이 가변된 신호를 전송하는 위상가변기;A phase shifter connected to the plurality of antenna element units in a parallel feeding manner and transmitting a signal having a variable phase to each of the plurality of antenna element units;
    를 포함하는, 병렬급전 방식의 가변틸트 옴니안테나. Including, the variable tilt omni antenna of the parallel feeding method.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 위상가변기는, The phase shifter,
    입력신호를 분배하고 위상을 가변시키는 선로의 일부패턴이 일면에 형성되어 있는 고정기판; 및A fixed substrate on one surface of which a partial pattern of a line for distributing an input signal and changing a phase is formed; And
    상기 고정기판의 일면과 절연막을 경계로 맞닿아 설치되고, 상기 고정기판에 형성된 패턴과 동적으로 커패시티브 커플링(capacitive coupling)되는 패턴이 형성되어 있어서, 상기 고정기판과 함께 상기 선로를 동적으로 형성하는 가변기판; One surface of the fixed substrate and the insulating layer are in contact with each other, and a pattern is formed which is dynamically capacitively coupled with the pattern formed on the fixed substrate, thereby dynamically connecting the line together with the fixed substrate. A variable substrate to be formed;
    을 포함하는 것을 특징으로 하는, 병렬급전 방식의 가변틸트 옴니안테나.Characterized in that it comprises a variable tilt omni antenna of a parallel feeding method.
  3. 제 2 항에 있어서, The method of claim 2,
    상기 위상가변기는,The phase shifter,
    입력신호와 동위상을 가지는 출력신호 및 입력신호의 위상을 양 또는 음으로 가변시킨 출력신호를 생성하고, 상기 출력신호들을 상기 복수 개의 안테나소자부에 공급하여서, 전기적인 빔 틸팅(Beam Tilting)을 가능하게 하는 것을 특징으로 하는, 병렬급전 방식의 가변틸트 옴니안테나. Generates an output signal having an in phase with the input signal and an output signal in which the phase of the input signal is changed positively or negatively, and supplies the output signals to the plurality of antenna elements to provide electrical beam tilting. A variable tilt omni antenna of a parallel feeding method, characterized in that enabled.
  4. 제 2 항에 있어서, The method of claim 2,
    상기 위상가변기는 원형 타입(type)의 위상가변기이고, The phase shifter is a circular type phase shifter,
    상기 가변기판을 회전시키는 가변기판구동부를 더 포함하는 것을 특징으로 하는, 병렬급전 방식의 가변틸트 옴니안테나.The variable tilt omni antenna of the parallel feeding method, characterized in that it further comprises a variable substrate driving unit for rotating the variable substrate.
  5. 제 4 항에 있어서.The method of claim 4.
    상기 위상가변기의 상기 가변기판구동부의 동작을 제어하는 제어부;A control unit controlling an operation of the variable substrate driver of the phase variable unit;
    를 더 포함하는 것을 특징으로 하는, 병렬급전 방식의 가변틸트 옴니안테나.The variable tilt omni antenna of the parallel feeding method characterized in that it further comprises.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 복수 개의 안테나소자부는, The plurality of antenna element portion,
    막대형상 기판 외면에 층을 이루며 형성되는 것을 특징으로 하는, 병렬급전 방식의 가변틸트 옴니안테나. A parallel tilt type variable tilt omni antenna, characterized in that formed in a layer on the outer surface of the bar-shaped substrate.
  7. 제 6 항에 있어서, The method of claim 6,
    상기 막대형상 기판의 단면은 다각형으로 형성되고, The cross section of the bar-shaped substrate is formed of a polygon,
    한 층을 이루는 안테나소자부는, 상기 막대형상 기판의 각 외면에 형성된 패치소자들을 포함하는 것을 특징으로 하는, 병렬급전 방식의 가변틸트 옴니안테나. The antenna element unit forming a layer, characterized in that it comprises a patch element formed on each outer surface of the rod-shaped substrate, parallel tilt type variable tilt omni antenna.
  8. 제 7 항에 있어서, The method of claim 7, wherein
    상기 다각형은 삼각형이며, 상기 막대형상 기판의 세 외면에 형성된 패치소자들이 각 방향으로 전파를 전송하여 상기 안테나소자부의 무지향 전파특성을 구현하는 것을 특징으로 하는, 병렬급전 방식의 가변틸트 옴니안테나. The polygon is a triangle, the patch element formed on the three outer surface of the bar-shaped substrate transmits radio waves in each direction, characterized in that the omni-directional propagation characteristics of the antenna element portion, the variable tilt omni antenna of the parallel feed method.
  9. 제 6 항에 있어서, The method of claim 6,
    상기 막대형상 기판의 단면은 원으로 형성되고, The cross section of the rod-shaped substrate is formed in a circle,
    상기 한 층을 이루는 안테나소자부는, 원통으로 형성되는 상기 막대형상 기판의 외면에 형성되는 패치소자에 의해 무지향 전파특성을 구현하는 것을 특징으로 하는, 병렬급전 방식의 가변틸트 옴니안테나. The one-layer antenna element portion, characterized in that the non-directional propagation characteristics by the patch element formed on the outer surface of the rod-shaped substrate formed in a cylindrical, parallel tilt type variable tilt omni antenna.
  10. 제 9 항에서 있어서, The method of claim 9,
    상기 막대형상 기판은 플랙시블(flexible)한 소재로 형성되는 것을 특징으로 하는, 병렬급전 방식의 가변틸트 옴니안테나. The rod-shaped substrate is a variable tilt omni antenna of the parallel feeding method, characterized in that formed of a flexible (flexible) material.
  11. 제 9 항에 있어서, The method of claim 9,
    상기 막대형상 기판은 세라믹소재로 형성되는 것을 특징으로 하는, 병렬급전 방식의 가변틸트 옴니안테나. The rod-shaped substrate is a variable tilt omni antenna of the parallel feeding method, characterized in that formed of a ceramic material.
  12. 제 1 항에 있어서, The method of claim 1,
    상기 복수 개의 안테나소자부는 수직/수평 편파의 구현이 가능한 패치소자를 포함하고, 상기 패치소자를 통해 이중대역의 동작을 구현하는 것을 특징으로 하는, 병렬급전 방식의 가변틸트 옴니안테나. The plurality of antenna element portion includes a patch element capable of realizing vertical / horizontal polarization, and characterized in that for implementing a dual band operation through the patch element, parallel tilt type variable tilt omni antenna.
  13. 제 1 항에 있어서,  The method of claim 1,
    상기 복수 개의 안테나소자부를 2개 이상의 그룹으로 나누고 다중대역의 동작을 구현하는 것을 특징으로 하는, 병렬급전 방식의 가변틸트 옴니안테나. And dividing the plurality of antenna elements into two or more groups to implement multi-band operation.
  14. 제 1 항에 있어서, The method of claim 1,
    상기 복수 개의 안테나소자부를 내부에 수용하는 레이돔;A radome accommodating the plurality of antenna elements therein;
    을 더 포함하는 것을 특징으로 하는, 병렬급전 방식의 가변틸트 옴니안테나. The variable tilt omni antenna of the parallel feeding method characterized in that it further comprises.
PCT/KR2011/009195 2011-09-29 2011-11-30 Variable tilt omnidirectional antenna in a parallel power feeding scheme WO2013047950A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0099292 2011-09-29
KR1020110099292A KR20130035052A (en) 2011-09-29 2011-09-29 A variable electrical tilt omni-antenna using a parallel feeding method

Publications (1)

Publication Number Publication Date
WO2013047950A1 true WO2013047950A1 (en) 2013-04-04

Family

ID=47995955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009195 WO2013047950A1 (en) 2011-09-29 2011-11-30 Variable tilt omnidirectional antenna in a parallel power feeding scheme

Country Status (2)

Country Link
KR (1) KR20130035052A (en)
WO (1) WO2013047950A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019157016A1 (en) 2018-02-09 2019-08-15 Avx Corporation Tube-shaped phased array antenna
WO2020033000A2 (en) 2018-02-09 2020-02-13 Avx Corporation Dome-shaped phased array antenna

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102293354B1 (en) * 2014-08-22 2021-08-24 주식회사 케이엠더블유 Omni-directional antenna for mobile communication service
KR102172187B1 (en) * 2014-08-22 2020-10-30 주식회사 케이엠더블유 Omni-directional antenna for mobile communication service

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198185A (en) * 2004-01-09 2005-07-21 Yagi Antenna Co Ltd Parallel feeding colinear antenna
JP2005311551A (en) * 2004-04-20 2005-11-04 Denki Kogyo Co Ltd Omnidirectional antenna
JP2005340939A (en) * 2004-05-24 2005-12-08 Furuno Electric Co Ltd Array antenna
JP2010124436A (en) * 2008-11-21 2010-06-03 Hitachi Kokusai Electric Inc Two-frequency shared omnidirectional antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198185A (en) * 2004-01-09 2005-07-21 Yagi Antenna Co Ltd Parallel feeding colinear antenna
JP2005311551A (en) * 2004-04-20 2005-11-04 Denki Kogyo Co Ltd Omnidirectional antenna
JP2005340939A (en) * 2004-05-24 2005-12-08 Furuno Electric Co Ltd Array antenna
JP2010124436A (en) * 2008-11-21 2010-06-03 Hitachi Kokusai Electric Inc Two-frequency shared omnidirectional antenna

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019157016A1 (en) 2018-02-09 2019-08-15 Avx Corporation Tube-shaped phased array antenna
WO2020033000A2 (en) 2018-02-09 2020-02-13 Avx Corporation Dome-shaped phased array antenna
EP3724951A4 (en) * 2018-02-09 2021-08-18 AVX Corporation Tube-shaped phased array antenna
EP3724950A4 (en) * 2018-02-09 2021-08-25 AVX Corporation Dome-shaped phased array antenna

Also Published As

Publication number Publication date
KR20130035052A (en) 2013-04-08

Similar Documents

Publication Publication Date Title
WO2019124844A1 (en) Dual polarized antenna and dual polarized antenna assembly comprising same
WO2013012295A2 (en) Method and apparatus for transmitting and receiving information for random access in wireless communication system
WO2016027997A1 (en) Omnidirectional antenna for mobile communication service
WO2013047950A1 (en) Variable tilt omnidirectional antenna in a parallel power feeding scheme
WO2015105386A1 (en) Planar beam steerable lens antenna system using non-uniform feed array
CN104221218A (en) Antenna control system and multi-frequency shared antenna
WO2015041422A1 (en) Antenna apparatus and electronic device having same
WO2014175664A1 (en) Method and apparatus for controlling power of uplink in a beam forming system
EP3553885B1 (en) Array antenna and network apparatus
WO2019194357A1 (en) One-dimensional tightly coupled dipole array antenna
CN102263328A (en) Multifrequency antenna remote control device and multifrequency antenna system
WO2019143211A1 (en) Antenna module including insulator, and base station including same antenna module
WO2018159988A1 (en) Dual polarized omni-directional antenna and base station including same
WO2019151796A1 (en) Antenna module comprising reflector, and electronic device comprising same
WO2017007075A1 (en) End-fire antenna using via and method for manufacturing same
WO2019066308A1 (en) Antenna device including phase shifter
WO2011065706A9 (en) N-port feeding system using slow-wave structure and feeding device included in same
WO2022102862A1 (en) 5g dual port beamforming antenna
CN202839907U (en) Phase shifter and antenna with same
WO2015056989A1 (en) Device for forming wireless high-frequency signal path and method for controlling same
WO2010150934A1 (en) N-port feeding system and phase shifter and delay element included in same
WO2020231045A1 (en) Dual polarized antenna using shift series feed
WO2022154412A1 (en) Hidden antenna apparatus and vehicle comprising same
WO2021125829A1 (en) Adjustable communication equipment assembly structure and apparatus including same
WO2020141918A1 (en) Automotive array antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873035

Country of ref document: EP

Kind code of ref document: A1