WO2013047857A1 - Medical solution administration device and blockage detection method - Google Patents

Medical solution administration device and blockage detection method Download PDF

Info

Publication number
WO2013047857A1
WO2013047857A1 PCT/JP2012/075278 JP2012075278W WO2013047857A1 WO 2013047857 A1 WO2013047857 A1 WO 2013047857A1 JP 2012075278 W JP2012075278 W JP 2012075278W WO 2013047857 A1 WO2013047857 A1 WO 2013047857A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
temperature
state
piston
detection signal
Prior art date
Application number
PCT/JP2012/075278
Other languages
French (fr)
Japanese (ja)
Inventor
昭彦 八木
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2013047857A1 publication Critical patent/WO2013047857A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/36Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests with means for eliminating or preventing injection or infusion of air into body
    • A61M5/365Air detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M5/14248Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body of the skin patch type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16831Monitoring, detecting, signalling or eliminating infusion flow anomalies
    • A61M2005/16863Occlusion detection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3368Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14212Pumping with an aspiration and an expulsion action
    • A61M5/14216Reciprocating piston type

Definitions

  • the present invention relates to a drug solution administration device and an occlusion detection method, and is suitable for application when, for example, a drug solution is administered into the body.
  • a device for administering a drug solution it is a portable device that is used by being attached to a user's skin, and a drug solution filled in an outer cylinder that is a drug solution container is passed through a seal member (piston).
  • a so-called syringe pump type device has been proposed that is administered into the body by being pushed out (see, for example, Patent Document 1).
  • the chemical solution filled in the outer cylinder is denatured or the cannula inserted into the user's body is deformed and the flow path through which the chemical solution flows is blocked,
  • the drug solution may not be properly administered to the user.
  • a pressure sensor is provided in the flow path to detect the pressure of the flow path through which the chemical solution flows, and the flow path is blocked if the pressure is equal to or greater than a predetermined threshold. Therefore, an apparatus has been proposed in which the operation is stopped and the user is notified that the chemical is not normally delivered.
  • a so-called piston pump type of administering a drug into the body by moving the piston in the pull back direction, pulling out the drug solution from the drug solution container, moving the piston in the pushing direction and pushing out the drug solution A device has been proposed.
  • the blockage when the blockage is detected by the pressure sensor described above, the blockage may not be detected because the pressure in the flow path does not sufficiently increase even if the piston is moved in the pushing direction. .
  • thermal marker which is a region where a temperature difference with the surroundings is intentionally formed in a part of the flow path
  • thermal marker detects how the thermal marker moves due to the pushing operation of the piston.
  • blockage detection using such a thermal marker when the flow path is closed, the chemical does not flow in the flow path, so the thermal marker does not move, and the detection unit has a large temperature before and after the piston pushing operation. Does not detect changes.
  • a detection part does not detect a big temperature change before and after the pushing operation of a piston, it can be judged that the chemical
  • bubbles may be mixed into the flow channel from, for example, a chemical solution container.
  • thermal markers are not formed on bubbles with a lower thermal conductivity than the chemical solution, so even if the bubbles move in the flow path near the detection section due to the pushing operation of the piston, the detection section Does not detect large temperature changes before and after the piston pushing operation.
  • the chemical solution administration device may erroneously determine that the state where air bubbles are mixed in the flow path is a state where the flow path is blocked and stop the operation, which may deteriorate the usability.
  • the present invention has been made in view of the above points, and an object of the present invention is to propose a drug solution administration device and an occlusion detection method that can further improve usability.
  • the present invention is a portable liquid medicine administration device that is held by a user and administers a liquid medicine into the body of the user, and includes a determination unit and a liquid medicine storage unit that stores the liquid medicine And a flow path part that forms a flow path for sending a chemical liquid from the chemical liquid storage part into the user's body, a cylinder connected at one end to the flow path part, and slides inside the cylinder, A piston that feeds the chemical liquid into the body of the user through the flow path portion by a pushing operation that moves from the opposite side of the one end to the one end side of the cylinder; and a downstream side of the flow path portion from the cylinder.
  • a heater for heating the flow path part and a temperature detection provided in the vicinity of the heater or on the downstream side of the flow path part for detecting the temperature of the flow path part and sending it as a temperature detection signal And the pushing motion of the piston
  • a temperature detection signal For detecting the temperature of the flow path part and sending it as a temperature detection signal
  • a flow path state determination part that determines whether it is in a closed state or not And.
  • the chemical solution in the flow path section that forms the liquid flow path is heated by a heating element, and the temperature of the flow path section is detected by a temperature detector provided in the vicinity of the heating element or downstream of the flow path section.
  • a blockage detection method for detecting blockage of the flow path part by sliding inside a cylinder having one end connected to the flow path part and moving from the opposite side of the cylinder to the one end side
  • the temperature detection provided on the downstream side of the flow channel portion with respect to the cylinder each time the piston is pushed through the flow channel portion into the user's body through the flow channel portion.
  • the child Determining whether there is a possibility that air bubbles are present in the flow path portion based on a temperature change of the temperature detection signal that has detected, and further determining whether the flow path portion is in a closed state And a step of performing.
  • medical solution administration can be continued, without misjudging the state in which the bubble mixed in the flow path as the state which the flow path obstruct
  • ADVANTAGE OF THE INVENTION According to this invention, it can discriminate
  • FIG. 1 is a schematic diagram illustrating a configuration of a drug solution administration device.
  • FIG. 2 is an exploded perspective view of the chemical liquid administration device.
  • FIG. 3 is a schematic diagram illustrating the configuration of the sending unit.
  • FIG. 4 is a schematic diagram illustrating the configuration of the sending unit.
  • FIG. 5 is a schematic diagram illustrating an electrical configuration of the drug solution administration device.
  • FIG. 6 is a schematic diagram illustrating a temperature detection pattern in a chemical fluid flow state.
  • FIG. 7 is a schematic diagram illustrating a temperature detection pattern in a bubble change state.
  • FIG. 8 is a schematic diagram showing a temperature detection pattern in a bubble state.
  • FIG. 9 is a schematic diagram illustrating a temperature detection pattern in a closed state.
  • FIG. 1 is a schematic diagram illustrating a configuration of a drug solution administration device.
  • FIG. 2 is an exploded perspective view of the chemical liquid administration device.
  • FIG. 3 is a schematic diagram illustrating the configuration of the sending unit.
  • FIG. 10 is a schematic diagram illustrating a functional configuration of the CPU according to the first embodiment.
  • FIG. 11 is a flowchart illustrating a blockage detection processing procedure according to the first embodiment.
  • FIG. 12 is a schematic diagram illustrating a functional configuration of a CPU according to the second embodiment.
  • FIG. 13 is a flowchart illustrating a blockage detection processing procedure according to the second embodiment.
  • FIG. 14 is a schematic diagram illustrating a temperature detection pattern in a chemical fluid flow state.
  • FIG. 15 is a schematic diagram illustrating temperature detection patterns in a chemical solution state and a bubble change state.
  • FIG. 16 is a schematic diagram illustrating a temperature detection pattern in a bubble change state.
  • FIG. 17 is a schematic diagram illustrating a temperature detection pattern in a bubble state.
  • FIG. 18 is a schematic diagram illustrating a temperature detection pattern in a closed state.
  • the drug administration device 1 is a portable device that is used by being attached to a user's skin, and has a lower housing portion that is open on the upper side and has a space inside. 2 and the upper housing part 3 fitted in the opening of the lower housing part 2 are formed into a flat and substantially rectangular parallelepiped shape.
  • the size of the drug administration device 1 may be reduced to such an extent that it can be affixed to the user's skin, and examples thereof include a substantially rectangular parallelepiped shape having a width of 32 mm, a length of 44 mm, and a height of 11 mm.
  • the lower housing part 2 is provided with a sticking part 4 made of double-sided tape or the like on the bottom surface 2A.
  • the medicinal-solution administration device 1 is held by the user when the affixing portion 4 is affixed to the user's skin.
  • the medicinal solution administration device 1 includes a puncture unit 5 made of a needle, a cannula or the like that punctures the user's skin in order to administer the medicinal solution filled therein to the bottom surface 2A of the lower casing unit 2 into the user's body.
  • a puncture unit 5 made of a needle, a cannula or the like that punctures the user's skin in order to administer the medicinal solution filled therein to the bottom surface 2A of the lower casing unit 2 into the user's body.
  • an injection part 6 which is an injection path for injecting the chemical liquid into the chemical liquid storage part 7 (FIG. 2) provided inside.
  • the drug solution administration device 1 includes an injection unit 6, a drug solution storage unit 7, a substrate unit 8, and a delivery unit 9 in a space formed by the lower housing unit 2 and the upper housing unit 3.
  • the chemical solution storage unit 7 is a container formed of a flexible material.
  • a polyolefin is included, for example.
  • a material for forming a flexible bag polyethylene, polypropylene, styrene thermoplastic elastomer such as styrene-butadiene copolymer or styrene-ethylene-butylene-styrene block copolymer, or ethylene-propylene copolymer
  • a soft resin obtained by blending and softening an olefinic thermoplastic elastomer such as an ethylene-butene copolymer or a propylene- ⁇ -olefin copolymer can be given.
  • medical solution storage part 7 is not specifically limited, For example, a 2 mL capacity
  • the chemical solution storage unit 7 is filled with a chemical solution from the outside through the injection unit 6.
  • Examples of the drug solution stored in the drug solution storage unit 7 include analgesics such as insulin, various hormones, morphine, and anti-inflammatory drugs.
  • the substrate unit 8 is provided with a power supply unit 44 (FIG. 5) for supplying power supply power, a circuit for controlling the sending unit 9, and the like.
  • the delivery unit 9 includes a piston 11, a drive unit 12 that drives the piston 11 to reciprocate according to the control of the CPU 41 (FIG.
  • a flow path portion 13 that forms a flow path through which a chemical solution flows, a cylinder 14 in which one end is connected to the flow path portion 13 and a piston 11 inserted from the other end is slid inside, and a chemical solution is allowed to pass only in one direction.
  • the directional valve 15 is included.
  • the piston 11 is driven by the drive unit 12 and slides with a predetermined stroke in the cylinder 14. Examples of the material of the piston 11 include stainless steel, copper alloy, aluminum alloy, titanium material, thermoplastic elastomer such as polypropylene and polycarbonate, and the outer diameter is about 0.8 mm, for example.
  • the piston 11 slides in the cylinder 14 to send a certain amount of chemical solution, and its stroke is, for example, about 2 mm.
  • the flow path portion 13 connects the suction pipe 13 ⁇ / b> A that forms the inflow path, the detection pipe 13 ⁇ / b> B that passes through the temperature detection section 16, the delivery pipe 13 ⁇ / b> C that forms the outflow path, and the flow path section 13 to the cylinder 14.
  • a connecting pipe 13D for connecting the detecting pipe 13B and the connecting pipe 13D.
  • the suction pipe 13A has one end connected to the chemical solution storage unit 7 and the other end connected to the connection pipe 13D.
  • the detection tube 13B has one end connected to the delivery tube 13C and the other end connected to the connection tube 13E.
  • the delivery tube 13C has one end connected to the puncture unit 5 and the other end connected to the detection tube 13B.
  • the connection pipe 13D has ends connected to the suction pipe 13A and the connection pipe 13E, respectively, and the cylinder 14 is connected to the center portion.
  • the ends of the connection pipe 13E are connected to the connection pipe 13D and the detection pipe 13B, respectively.
  • the detection tube 13B has an internal cross-sectional area so that the chemical liquid MS is sufficiently moved when the piston 11 reciprocates once.
  • the detection tube 13B is configured by a pipe having an inner diameter of 0.4 mm (preferably a pipe made of stainless metal). ing.
  • the suction pipe 13A, the delivery pipe 13C, and the connection pipe 13E are configured by pipes (preferably stainless metal) having an inner diameter of 1 mm or less.
  • the detection tube 13B, the delivery tube 13C, and the connection tube 13E may be configured integrally, but at this time, the cross-sectional area is set to match the cross-sectional area of the detection tube 13B.
  • a one-way valve 15A which is an elastically deformable so-called umbrella valve made of, for example, rubber and allows the chemical liquid to pass from the suction pipe 13A to the connection pipe 13D only in one direction. .
  • the cylinder 14 has an inner diameter larger than the outer diameter of the piston 11, one end is connected to the connecting pipe 13D, and the piston 11 is inserted from the other end side and slides inside.
  • the difference between the inner diameter of the cylinder 14 and the outer diameter of the piston 11 is, for example, about 0.01 mm. As shown in FIG.
  • the delivery unit 9 when sending the chemical solution from the chemical solution storage unit 7 to the outside, the delivery unit 9 is the most retracted position (hereinafter referred to as the most pushed position) from the position where the piston 11 is most pushed in (hereinafter also referred to as the most pushed position). (Also referred to as a retraction position) in the cylinder 14 (hereinafter, this sliding direction is also referred to as a retraction direction), and the chemical stored in the chemical storage section 7 is transferred to the cylinder via the suction pipe 13A and the connection pipe 13D. 14 suck out.
  • the delivery section 9 slides the piston 11 in the cylinder 14 from the most retracted position to the most pushed position as shown in FIG.
  • the direction is also referred to as the pushing direction.
  • the chemical liquid sucked into the cylinder 14 is sent out into the user's body through the connecting tube 13D, connecting tube 13E, detection tube 13B, delivery tube 13C and puncture unit 5.
  • the delivery unit 9 can administer about 1 ⁇ L of a chemical solution into the user's body by reciprocating the piston 11 once. By repeating this operation at a set cycle and interval, the chemical solution can be delivered at a desired administration rate and dosage. Can be administered to the user.
  • the drug solution administration device 1 has a basal mode in which a drug solution is intermittently administered to a user over a period of 24 hours (for example, once every 6 minutes), and a large amount of drug solution before a meal or during hyperglycemia.
  • the temperature detector 16 includes a heating temperature detector 17 that is a thermistor attached to the outside of the detection tube 13B that is downstream of the piston 11 in the flow direction in the flow path portion 13, and the heating temperature detector 17.
  • the temperature detector 18 is a thermistor attached to the outside of the detection tube 13B on the downstream side.
  • the heating temperature detector 17 and the temperature detector 18 are arranged in the detection tube 13B at a predetermined interval from each other.
  • the heating temperature detector 17 generates Joule heat by causing a current to flow through the thermistor at predetermined time intervals, and repeats a heating operation for heating the chemical liquid MS in the detection tube 13B to form a thermal marker MK. At the same time, the heating temperature detector 17 measures the resistance value of the thermistor whose resistance value varies with temperature, and detects the temperature of the detection tube 13B at the position where the heating temperature detector 17 is provided.
  • the temperature detector 18 measures the resistance value of a thermistor whose resistance value varies with temperature, and detects the temperature of the detection tube 13B at the position where the temperature detector 18 is provided.
  • the distance between the heating temperature detector 17 and the temperature detector 18 is the inter-sensor distance L
  • the cross-sectional area inside the detection tube 13B in the temperature detection section 16 is the flow path cross-sectional area A
  • the chemical liquid administration device 1 detects the temperature of the thermal marker MK formed in the detection tube 13B in the vicinity of the heating temperature detector 17 by heating the chemical liquid MS by the heating temperature detector 17 by one pushing operation of the piston 11. It can reach the child 18.
  • the drug administration device 1 includes a CPU (Central Processing Unit) 41, a ROM (Read Only Memory) 42, a RAM (Random Access Memory) 43, a power supply unit 44, an interface unit (I / F). Part) 45, notifying part 46, driving part 12, heating temperature detector 17 and temperature detector 18 are connected via a bus 47.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • I / F interface unit
  • the CPU (determination unit) 41, the ROM 42, the RAM 43, the power supply unit 44, and the notification unit 46 are arranged on the substrate unit 8 (not shown).
  • a battery is applied to the power supply unit 44.
  • the interface unit 45 is provided with a button (not shown) or the like that is arranged in the upper casing unit 3 or the lower casing unit 2 and receives a user input command.
  • a communication unit including an antenna and a communication circuit for performing wireless communication instead of the interface unit 45 is installed, and an input command by wireless communication is received from an operation unit (not shown) separate from the pump. But you can.
  • the CPU 41 performs overall control by reading the basic program stored in the ROM 42 into the RAM 43 and executing it, and also reads out and executes the various application programs stored in the ROM 42 into the RAM 43 to execute various processes / processes in each operation process. Perform judgment (judgment).
  • the user operates the drug solution administration device 1 and issues a command to the CPU 41 which is a control unit, whereby the CPU 41 reads the basic program and controls the drive unit 12 to administer the drug to the user.
  • the CPU 41 heats the thermistor constituting the heating temperature detector 17 by controlling the heating temperature detector 17. At this time, the power used for heating is, for example, about 1 mW to 5 mW.
  • the heating temperature detector 17 and the temperature detector 18 measure the resistance value of the thermistor to detect the temperature of the detection tube 13B at the position where the heating temperature detector 17 and the temperature detector 18 are provided, respectively.
  • the signal SU and the downstream temperature detection signal SL are sent to the CPU 41.
  • the CPU 41 acquires the temperature detected by the heating temperature detector 17 by receiving the upstream temperature detection signal SU from the heating temperature detector 17. Further, the CPU 41 receives the downstream temperature detection signal SL from the temperature detector 18 to acquire the temperature detected by the temperature detector 18.
  • the CPU 41 controls the drive unit 12 to move the piston 11 from the most retracted position to the most pushed position over 0.5 seconds once in 6 minutes in the basal mode to perform the pushing operation.
  • the CPU 41 acquires the upstream temperature detection signal SU and the downstream temperature detection signal SL from the heating temperature detector 17 and the temperature detector 18 from about 10 seconds before the pushing operation of the piston 11 to about 5 seconds later, respectively.
  • the CPU 41 starts obtaining the upstream temperature detection signal SU and the downstream temperature detection signal SL from the heating temperature detector 17 and the temperature detector 18 (that is, starts temperature measurement), and at the same time, the heating temperature.
  • the detector 17 is heated and the acquisition of the upstream temperature detection signal SU and the downstream temperature detection signal SL is completed (that is, the temperature measurement is ended), and at the same time, the heating of the heating temperature detector 17 is ended.
  • Temperature detection pattern In the flow path, when the piston 11 performs the pushing-in operation, various states such as a state in which the chemical liquid normally flows, a state in which bubbles are mixed, and a state in which the liquid is blocked can occur. Below, the temperature detection pattern which shows the characteristic curve of the upstream temperature detection signal SU and the downstream temperature detection signal SL in such various states is demonstrated with the state of a flow path. [1-4-1. Temperature detection pattern of chemical flow state] A temperature detection pattern PT1 shown in FIG. 6 is a temperature detection pattern in a chemical solution flow state that is a normal state in which bubbles are not mixed in the flow path and no blockage occurs.
  • the horizontal axis indicates the number of seconds from the start of temperature measurement, and the vertical axis indicates the temperature (degrees). Further, the piston 11 performs the pushing operation at a time point 10 seconds after the start of measurement, and the same applies to the temperature detection pattern according to the present embodiment thereafter.
  • the CPU 41 heats the heating temperature detector 17 to increase the upstream temperature detection signal SU. However, when the temperature rises to some extent, heat is released from the heating temperature detector 17 and the location heated by the heating temperature detector 17. Even if heating is continued due to the balance between the heating by the heating temperature detector 17 and the heating, the temperature does not rise, and the upstream temperature detection signal SU is in an equilibrium state where the predetermined temperature is maintained (temperature stable state).
  • the temperature of the upstream temperature detection signal SU continues to rise and is not constant (hereinafter, this state is also referred to as a pre-temperature stabilization state).
  • this state is also referred to as a pre-temperature stabilization state.
  • the thermal marker MK does not exist in the vicinity of the temperature detector 18, the temperature of the downstream temperature detection signal SL is almost the same as that at the start of measurement even immediately before the piston 11 is pushed.
  • the thermal marker MK moves to the downstream side with the movement of the chemical liquid MS as in the state B of FIG.
  • the temperature of the upstream temperature detection signal SU is 26.86 degrees as shown in the temperature detection pattern PT1. It suddenly drops by about 0.08 degrees from 26.79 degrees.
  • the temperature of the downstream temperature detection signal SL is about 0.00 from 26.6 degrees to 26.7 degrees as shown in the temperature detection pattern PT1. It rises once.
  • the chemical liquid MS is continuously heated by the heating temperature detector 17, as shown in the temperature detection pattern PT1, the temperature of the upstream temperature detection signal SU thereafter increases again toward the temperature stable state (state) C).
  • the thermal marker MK in the chemical liquid MS is thermally diffused, so that the temperature of the downstream temperature detection signal SL gradually decreases toward the normal temperature.
  • the heating temperature detector 17 finishes the heating operation so that the chemical liquid MS is not further heated.
  • the upstream temperature detection signal SU that has been gradually increased rapidly decreases immediately after the pushing operation of the piston 11 and then gradually increases, while the downstream temperature detection signal SU. A temperature change in which SL rapidly increases and gradually decreases is shown.
  • the chemical liquid MS in the vicinity of the heating temperature detector 17 is heated in the flow path portion 13 immediately before the pushing operation of the piston 11 in the temperature detection pattern PT2 (at 9 seconds).
  • the thermal marker MK is generated.
  • bubbles AR are mixed in the upstream portion of the heating temperature detector 17.
  • an unheated chemical liquid MS exists on the upstream side of the thermal marker MK.
  • the inside of the detection tube 13B at the position where the heating temperature detector 17 is provided becomes a bubble AR made of air, not a chemical liquid MS made of liquid. Since the bubble AR has a lower thermal conductivity than the chemical liquid MS, the heat generated from the heating temperature detector 17 is less likely to be transmitted to the bubble AR compared to the chemical liquid MS. For this reason, the temperature of the upstream temperature detection signal SU rises rapidly due to heat generated by the heating temperature detector 17 and not absorbed by the bubble AR. Thereafter, the upstream temperature detection signal SU rises again toward the temperature stable state at a temperature change rate substantially the same as that before the piston 11 is pushed.
  • the temperature of the downstream temperature detection signal SL rises rapidly in the same manner as the chemical solution flow state because the thermal marker MK passes through the detection tube 13B in the vicinity of the temperature detector 18, and then gradually toward the normal temperature by thermal diffusion. It will drop to.
  • the upstream temperature detection signal SU that has gradually increased slightly decreases immediately after the pushing operation of the piston 11, but then rapidly increases and gradually increases, while the downstream temperature detection signal SL does not flow in the chemical solution. Similar to the state, it shows a temperature change that rapidly increases and gradually decreases.
  • the upstream temperature detection signal SU is slightly different from the temperature detection pattern PT2 (FIG. 7), and immediately rises without a slight drop immediately after the push-in operation of the piston 11, while the downstream temperature detection signal SL is a chemical flow. Similar to the state, it shows a temperature change that rapidly increases and gradually decreases. That is, immediately after the pushing-in operation of the piston 11, a temperature sudden rise portion appears in the upstream temperature detection signal SU, and a temperature rise portion appears in the downstream temperature detection signal SL. [1-4-3.
  • Temperature detection pattern when changed to a state where bubbles may exist In the temperature detection pattern PT3 shown in FIG. 8, after the state (temperature detection pattern PT2 (FIG. 7)) has changed to a state where there is a possibility that air bubbles exist, the piston 11 further performs a pushing operation so that the air bubbles on the upstream side.
  • a state in which there is a possibility that there is a bubble in which AR moves to the downstream side and the inside of the detection tube 13B at the position where the heating temperature detector 17 is provided is a bubble AR before the piston 11 is pushed. It is a temperature detection pattern in the state changed to (2).
  • the upstream temperature detection signal SU is The temperature rises toward the temperature stable state at a temperature change rate substantially the same as that before the pushing operation of the piston 11 without a sudden temperature change.
  • the downstream temperature detection signal SL is a constant temperature without substantially changing the temperature before the push-in operation of the piston 11 because the unwarmed bubble AR is only moved from the upstream side.
  • the temperature of the upstream temperature detection signal SU gradually increases, and a thermal marker MK is generated in the chemical liquid MS in the vicinity of the heating temperature detector 17 as shown in the state A of FIG. 9B.
  • the thermal marker MK does not exist in the vicinity of the temperature detector 18, the temperature of the downstream temperature detection signal SL is almost the same as that at the start of measurement even immediately before the piston 11 is pushed.
  • the flow path is closed, and the chemical liquid MS does not move in the flow path portion 13, so the upstream temperature detection signal SU does not undergo a rapid temperature change, It rises toward a temperature stable state at a temperature change rate substantially the same as before the pushing operation of the piston 11.
  • the downstream temperature detection signal SL has a constant temperature with almost no temperature change. In this way, in the closed state where the flow path is closed, the upstream temperature detection signal SU that has gradually increased even if the piston 11 is pushed in, as in the bubble state described above, shows a large temperature change.
  • the downstream temperature detection signal SL also does not change greatly.
  • the puncture unit 5 is deformed by a user's body movement or the like, or the drug solution is denatured, so that the channels such as the puncture unit 5 and the channel unit 13 are blocked. There is a possibility that the drug solution cannot be accurately administered to the user. Therefore, the CPU 41 executes a blockage detection process for detecting whether or not the puncture unit 5 or the flow channel unit 13 is blocked based on the temperature change of the upstream temperature detection signal SU and the downstream temperature detection signal SL, thereby blocking the flow channel. Is detected. The CPU 41 develops a liquid feeding program loaded with the blockage detection algorithm stored in the ROM 42 in the RAM 43 and executes a blockage detection process.
  • the CPU 41 When executing the blockage detection process, the CPU 41 functions as a temperature measurement unit 51, a drive control unit 52, a flow path state determination unit 53, a flow path state storage unit 54, and a notification control unit 55, as shown in FIG.
  • the drug solution administration device 1 After the drug solution storage unit 7 is filled with the drug solution from the outside via the injection unit 6, the affixing unit 4 is affixed to the user's skin and the puncture unit 5 is punctured to the user's skin.
  • the dose and the administration rate are input via the interface unit 45.
  • CPU41 determines the time which performs pushing operation of piston 11 based on the inputted dosage and administration speed. Further, the temperature measurement unit 51 determines the time for starting the heating of the heating temperature detector 17.
  • the timing for starting heating of the heating temperature detector 17 is a preheating time T1 (for example, 10 seconds) before the time during which the piston 11 is pushed.
  • the temperature measuring unit 51 starts to acquire the upstream temperature detection signal SU and the downstream temperature detection signal SL from the heating temperature detector 17 and the temperature detector 18, respectively, and starts heating the heating temperature detector 17.
  • a preheating time T1 for example, 10 seconds
  • the drive control unit 52 controls the drive unit 12, and the piston 11 via the drive unit 12 is controlled.
  • Start pushing operation When the pushing operation starts, the piston 11 is in the most retracted position.
  • the flow path state determination unit 53 determines whether or not the closed state has occurred during the pushing operation of the piston 11 and there is no air bubble mixed in the flow path (chemical liquid flow state (FIG. 6)). Specifically, in the upstream temperature detection signal SU acquired by the temperature measurement unit 51, the flow path state determination unit 53 exceeds the threshold value of 0.05 degrees within one second from the time when the piston 11 performs the pushing operation. It is detected whether or not a temperature drop portion exists.
  • the flow path state determination unit 53 has a temperature rise portion exceeding the threshold value of 0.05 degrees within one second from the time when the piston 11 performs the pushing operation. Whether or not exists is detected.
  • the flow path state determination unit 53 when there is a temperature decrease part that exceeds the threshold value in the upstream temperature detection signal SU and there is a temperature increase part that exceeds the threshold value in the downstream temperature detection signal SL, the puncture part 5 and the flow path part 13 No occlusion has occurred, and it is determined that this is a normal chemical fluid flow bear (FIG. 6).
  • the flow path state determination unit 53 detects a temperature change in the opposite direction such that the temperature of the upstream temperature detection signal SU suddenly increases and the downstream temperature detection signal SL rapidly decreases, thereby changing the environmental temperature or the like. Even if there is a disturbance, it is possible to accurately detect the chemical flow state.
  • the flow path state determination unit 53 determines that the chemical liquid flow state is currently present, the flow path state storage unit 54 indicates that the flow path state is the chemical liquid flow state in the current pushing operation of the piston 11. Store state information.
  • the flow path state determination unit 53 is not present in the flow path when either the temperature decrease part exceeding the threshold value in the upstream temperature detection signal SU or the temperature increase part exceeding the threshold value in the downstream temperature detection signal SL does not exist.
  • the flow path state determination unit 53 determines that the air bubbles positioned upstream of the heating temperature detector 17 in the flow path unit 13 By moving the piston 11 to the position where the heating temperature detector 17 is provided, it is determined whether or not the bubble change state (FIG. 7) has been reached. Specifically, as shown in the temperature detection pattern PT2 (FIG. 7), in the upstream temperature detection signal SU, the temperature at the piston pushing operation time is set to the temperature Ts and a predetermined a second (for example, 2 seconds) from the piston pushing operation time point.
  • the expected temperature Texp which is a temperature after a predetermined t seconds (for example, 2 seconds) from the piston pushing operation time point, is predicted by the equation (2). That is, the predicted temperature Texp includes the slope (temperature change rate) of the temperature change for a predetermined a second before the piston pushing operation time, the predetermined number of seconds (t seconds) after the piston pushing operation time, and the temperature Ts during the piston pushing operation. Based on the above.
  • the flow path state determination unit 53 compares the measured temperature T of the upstream temperature detection signal SU after a predetermined t seconds from the piston pushing operation with the expected temperature Texp.
  • the flow path state determination unit 53 performs the piston pushing operation performed when the current temperature is being measured.
  • a predetermined threshold Tth for example, 0.05 degrees
  • the flow path state determination unit 53 determines that the current state has changed to a state in which bubbles may be present.
  • the flow path state information indicating that the state has changed to a state in which there is a possibility that bubbles may exist is stored.
  • the temperature of the upstream temperature detection signal SU may slightly decrease once after the piston pushing operation depending on the timing of mixing bubbles with respect to the movement of the chemical solution.
  • the flow path state determination unit 53 compares the measured temperature T of the upstream temperature detection signal SU 2 seconds after the piston pushing operation with the expected temperature Texp, so that the temporary temperature of the upstream temperature detection signal SU is Without being affected by the drop, it is possible to accurately detect a state that has changed to a state where bubbles may exist.
  • the flow path state determination unit 53 does not determine that the current state has changed to a state in which bubbles may exist, this means that the temperature detection pattern in this temperature measurement is the case where bubbles are present. This means that it is either the temperature detection pattern PT3 (FIG. 8) or the temperature detection pattern PT4 in the closed state (FIG. 9). As described above, the temperature detection pattern PT3 in the state where bubbles are present and the temperature detection pattern PT4 in the closed state have similar characteristic curves. For this reason, the flow path state determination unit 53 is in a state where bubbles are present or in a closed state based on only the temperature detection pattern at the time of the current temperature measurement among the repeated temperature measurements. It is difficult to determine whether there is.
  • the flow path state determination unit 53 refers to the flow path state information stored in the flow path state storage unit 54 to confirm the flow path state at the previous temperature measurement.
  • the temperature measurement unit 51 determines whether the bolus mode is set via the interface unit 45 or not. Determine.
  • the temperature measurement unit 51 determines whether the bolus mode is set via the interface unit 45. In the present embodiment, the time interval of the piston pushing operation in the bolus mode is set to about 3 to 5 seconds. For this reason, after the current piston pushing operation, the next piston pushing operation is performed at a time point before the time point when 10 seconds of the preheating time T1 elapses. For this reason, when the bolus mode is set, the temperature measurement unit 51 continues heating the heating temperature detector 17 in preparation for temperature measurement in the next piston pushing operation.
  • the temperature measurement unit 51 finishes heating the heating temperature detector 17.
  • the medicinal-solution administration device 1 can reduce power consumption by not heating the heating temperature detector 17 until immediately before the next piston pushing operation starts.
  • the flow path state determination unit 53 determines that the flow path state at the previous temperature measurement is not a state where bubbles may exist and is not a state where bubbles do not exist, the flow path is blocked. This means that it is in a state (FIG. 9).
  • the drive control unit 52 stops the operation of the drive unit 12.
  • the notification control unit 55 controls the notification unit 46 to notify the user through the notification unit 46 that the puncture unit 5 and the flow path unit 13 are closed.
  • the CPU 41 Based on the acquired upstream temperature detection signal SU and downstream temperature detection signal SL (temperature detection pattern), the CPU 41 generates a chemical flow state (a temperature decrease portion occurs in the upstream temperature detection signal SU and a temperature increase portion occurs in the downstream temperature detection signal SL). (Steps SP5 and SP6).
  • the CPU 41 determines that it is in the chemical liquid flow state (YES in step SP6), it stores the flow path state (step SP8), and starts to push the piston 11 within the preheating time T1 (for example, 10 seconds). It is determined whether or not there is (step SP12).
  • step SP12 If the CPU 41 determines that there is a plan to start the pushing operation of the piston 11 within the preheating time T1 (YES in step SP12), the heating temperature detector 17 is continuously heated and the next pushing operation of the piston 11 is performed. Start (step SP13). On the other hand, if the CPU 41 determines that there is no plan to start the pushing operation of the piston 11 within the preheating time T1 (NO in step SP12), the CPU 41 ends the heating of the heating temperature detector 17 (step SP14) and performs temperature measurement. The process ends (step SP15) and waits until the next temperature measurement starts.
  • Step SP7 when the CPU 41 determines with it not being a chemical
  • the CPU 41 determines that there is a possibility that air bubbles exist (YES in step SP7), the CPU 41 stores the flow path state (step SP8). Further, the CPU 41 determines whether or not there is a plan to start the pushing operation of the piston 11 within the preheating time T1 (step SP12), and performs the same processing as described above.
  • step SP7 determines that there is no possibility that air bubbles exist (NO in step SP7), the upstream temperature detection signal SU has not changed significantly due to the pushing operation of the piston 11, and therefore air bubbles exist. This indicates that there is a possibility or a closed state, and when the piston 11 is pushed in, it is determined whether there is a bubble or a closed state (step SP9).
  • the CPU 41 determines that the blockage state is in the blockage detection process (YES in step SP9), that is, if the upstream temperature detection signal SU has not changed significantly in the blockage detection process, the flow path is blocked. It means that it is because.
  • the drug solution administration device 1 is configured such that the piston 11 slides inside the cylinder 14 connected at one end to the flow path unit 13 for sending the drug solution from the drug solution storage unit 7 in which the drug solution is stored to the user's body.
  • the drug solution is delivered into the user's body by moving.
  • the drug solution administration device 1 starts the temperature measurement and simultaneously heats the heating temperature detector 17 and starts the pushing operation of the piston 11 after the preheating time T1 has elapsed.
  • the chemical liquid administration apparatus 1 determines that the flow path is in a chemical flow state or a state in which bubbles may exist when the pushing operation of the piston 11 is performed.
  • the chemical liquid administration apparatus 1 determines that the flow path is not blocked.
  • the pushing operation of the piston 11 is performed.
  • the medicinal solution administration device 1 performs the pushing operation of the piston 11 and determines that there is a possibility that the flow channel is in a closed state
  • the medicinal solution administration device 1 does not perform the pushing operation of the next piston 11, Notify the user that it is blocked.
  • the drug solution administration device 1 can prevent the state of bubbles that do not affect the human body from being erroneously determined as a closed state and stop the pushing operation of the piston 11, and can continue the administration of the drug solution.
  • medical solution administration apparatus 1 can stop the pushing operation of the piston 11 immediately, without misjudging the obstruction
  • the drug administration device 1 detects the state of the flow path based on the temperature change of the upstream temperature detection signal SU and the downstream temperature detection signal SL every time the piston 11 is pushed, and the flow path is blocked.
  • the detection tube 13B at the position where the heating temperature detector 17 is provided is changed from a state in which the inside of the detection tube 13B is filled with a chemical solution to a state in which bubbles are present.
  • the next pushing operation of the piston 11 is continued.
  • the drug solution administration device 1 can continue the drug solution administration without erroneously determining the state in which bubbles are mixed in the channel as a state in which the channel is blocked.
  • the drug solution administration device 101 according to the second embodiment executes a blockage detection process different from that of the drug solution administration device 1 according to the first embodiment, and other parts are the same as the drug solution administration device 1.
  • the CPU 141 when executing the blockage detection process, performs the temperature measurement unit 51, the drive control unit 52, the flow path state determination unit 53, It functions as the storage unit 54, the notification control unit 55, and the closed state counting unit 56.
  • the functional configuration of the CPU according to the second embodiment is added with a blocking state counting unit 56 as compared with the functional configuration of the CPU according to the first embodiment (FIG. 10).
  • the closed state counting unit 56 sets the number of closed states indicating the number of times the closed state is detected during temperature measurement from the initial value of 0. Increase by one. In the temperature measurement performed each time the piston 11 is repeatedly pushed, if the flow path is determined to be closed, the closed state counter 56 increases the closed state count by one. When it is determined that the flow path is not in the closed state, the closed state counting unit 56 returns the closed state count to 0, which is the initial value.
  • the closed state counting unit 56 increases the number of closed states by 1 for each temperature measurement.
  • the drive control unit 52 continues the operation of the drive unit 12 without stopping even if the flow path is closed.
  • the drive control part 52 stops operation
  • Steps SP1 to SP15 are the same as the routine RT1, and thus the description thereof is omitted.
  • the CPU 41 determines that there is a possibility that air bubbles exist (YES in step SP7), the CPU 41 stores the flow path state (step SP8). Further, the CPU 41 determines whether or not there is a plan to start the pushing operation of the piston 11 within the preheating time T1 (step SP12), and performs the same processing as described above. On the other hand, if the CPU 41 determines that the blockage state is in the blockage detection process (YES in step SP9), that is, if the upstream temperature detection signal SU has not changed significantly in the blockage detection process, the flow path is blocked.
  • step SP17 If the number of closed states is less than a threshold value (for example, 5 times) (NO in step SP17), the processing after step SP12 is performed. On the other hand, if the number of closed states is equal to or greater than a threshold value (for example, 5 times) (YES in step SP17), the CPU 141 stops the operation of the drive unit 12 and notifies the user that the flow path is closed ( Step SP10), the temperature measurement is finished (step SP11), and the process is finished. Thus, the chemical solution administration apparatus 101 does not immediately stop the operation of the piston 11 when it is determined to be in the closed state, but stops the operation of the piston 11 when it is determined to be in the closed state continuously several times.
  • a threshold value for example, 5 times
  • the medicinal solution administration device 101 prevents the operation of the piston 11 from being stopped immediately when it is erroneously determined to be in the closed state due to some error, and when the closed state has occurred reliably. Only the operation of the piston 11 can be stopped, and the usability can be improved.
  • the drug solution administration device 201 according to the third embodiment executes a blockage detection process different from that of the drug solution administration device 1 according to the first embodiment, and the other parts are the same as the drug solution administration device 1.
  • the CPU 241 raises the temperature of the upstream temperature detection signal SU to a temperature stable state before the piston 11 is pushed in by heating the heating temperature detector 17 one minute before starting the temperature measurement.
  • the temperature is maintained at a substantially constant temperature (hereinafter, this state is also referred to as a temperature stabilized state). Further, the CPU 241 does not end the heating of the heating temperature detector 17 even after the temperature measurement is ended, and continues until the next temperature measurement.
  • a substantially constant temperature hereinafter, this state is also referred to as a temperature stabilized state.
  • the CPU 241 does not end the heating of the heating temperature detector 17 even after the temperature measurement is ended, and continues until the next temperature measurement.
  • [3-1. Temperature detection pattern] [3-1-1. Temperature detection pattern of chemical flow state] As shown in FIG. 14, in the temperature detection pattern PT11, the chemical liquid MS inside the detection tube 13B in the vicinity of the heating temperature detector 17 is sufficiently heated, and the upstream temperature detection signal SU is immediately before the pushing operation of the piston 11 (at 7 seconds). ) At a constant temperature.
  • a temperature detection pattern PT12 shown in FIG. 15 is a temperature detection pattern when the state changes to a state where bubbles may exist after the chemical solution flow state. In the temperature detection pattern PT12, the piston 11 is pushed once every 10 seconds and 18 seconds.
  • the chemical liquid MS in the detection tube 13B in the vicinity of the heating temperature detector 17 is sufficiently heated, and the upstream temperature detection signal SU is constant immediately before the first pushing operation of the piston 11 (at 9 seconds).
  • a thermal marker MK is generated in the chemical liquid MS in the vicinity of the heating temperature detector 17.
  • bubbles AR are mixed in the upstream portion of the heating temperature detector 17.
  • the thermal marker MK moves to the downstream side. Therefore, as with the temperature detection pattern PT11 (FIG. 14), the upstream temperature detection signal SU includes a temperature drop portion.
  • the thermal marker MK is in direct contact with the bubble AR located on the upstream side without passing through the chemical liquid MS.
  • the inside of the detection tube 13B at the position where the heating temperature detector 17 is provided is not the chemical liquid MS, as in the state C of FIG. Since it becomes the bubble AR, the temperature of the upstream temperature detection signal SU rapidly rises due to heat that is not absorbed by the bubble AR, and then rises again at a temperature change rate almost the same as before the pushing operation of the piston 11.
  • the temperature of the downstream temperature detection signal SL rises to a normal temperature by thermal diffusion after the thermal marker MK rapidly rises in the same manner as the chemical fluid state because the thermal marker MK passes through the detection tube 13B at the position where the temperature detector 18 is provided. It gradually declines.
  • the upstream temperature detection signal SU rises rapidly without a slight drop immediately after the pushing operation of the piston 11, while the downstream temperature detection signal SL rises rapidly and gradually decreases in the same manner as the chemical fluid state. Indicates.
  • a temperature detection pattern PT13 illustrated in FIG. 16 is a temperature detection pattern in a bubble change state in which the bubbles AR are mixed in the flow path.
  • the temperature detection pattern PT13 is different in the timing of mixing the bubble AR with respect to the movement of the chemical liquid MS in the flow path unit 13 as compared with the second pushing operation of the piston 11 in the temperature detection pattern PT12.
  • the chemical liquid MS inside the detection tube 13B in the vicinity of the heating temperature detector 17 is sufficiently heated, and the upstream temperature detection signal SU becomes a constant temperature immediately before the pushing operation of the piston 11 (at 9 seconds), As shown in state A in FIG.
  • a thermal marker MK is generated in the chemical liquid MS in the vicinity of the heating temperature detector 17. Further, similarly to the temperature detection pattern PT2 (FIG. 7), an unheated chemical liquid MS exists on the upstream side of the thermal marker MK.
  • the temperature of the upstream temperature detection signal SU is slightly slightly once. descend. Thereafter, similarly to the temperature detection pattern PT2, the temperature of the upstream temperature detection signal SU rises rapidly, and becomes a constant temperature as before the pushing operation of the piston 11.
  • the upstream temperature detection signal SU which has been at a constant temperature, slightly decreases immediately after the pushing operation of the piston 11, but then rapidly increases, while the downstream temperature detection signal SL is similar to the chemical flow state. It shows a temperature change that suddenly increases and gradually decreases. That is, immediately after the pushing-in operation of the piston 11, a temperature sudden rise portion appears in the upstream temperature detection signal SU, and a temperature rise portion appears in the downstream temperature detection signal SL.
  • Bubble temperature detection pattern In the temperature detection pattern PT14 shown in FIG. 17, after the state in which bubbles may exist (temperature detection pattern PT13 (FIG. 16)), the piston 11 further performs a pushing operation so that the upstream side bubbles AR are on the downstream side.
  • This is a temperature detection pattern in a bubble state in which the inside of the detection tube 13B at the position where the heating temperature detector 17 is provided at the time before the pushing operation of the piston 11 is filled with the bubble AR.
  • the upstream temperature detection signal SU is a piston due to heat generated by the heating temperature detector 17 that is not absorbed by the bubble AR.
  • a temperature detection pattern PT15 shown in FIG. 18 is a temperature detection pattern in a closed state in which the flow path is closed. In the temperature detection pattern PT15, the chemical liquid MS inside the detection tube 13B in the vicinity of the heating temperature detector 17 is sufficiently heated, and the upstream temperature detection signal SU becomes a constant temperature immediately before the piston 11 is pushed (at 9 seconds). .
  • the medicinal-solution administration device 201 performs a blockage detection process similar to that of the medicinal-solution administration device 1 according to the first embodiment, so that the flow path is based on the above-described temperature detection patterns PT11 to PT15.
  • the medicinal solution administration device 201 can perform temperature measurement stably by performing temperature measurement in the state after temperature stabilization, compared to the case of performing temperature measurement in the state before temperature stabilization.
  • the heating temperature detector 17 is composed of a thermistor has been described.
  • the present invention is not limited to this, and may be composed of various elements that can simultaneously perform heating and temperature detection. Further, in the above-described embodiment, the case where the temperature detector 18 is constituted by a thermistor has been described.
  • the present invention is not limited to this, and may be composed of various elements capable of detecting temperature. Further, in the above-described embodiment, heating and temperature detection are performed by the heating temperature detector 17, but the present invention is not limited to this, and heating and temperature detection may be performed by separate elements. . In that case, it is desirable that the element that performs heating and the element that performs temperature detection be disposed close to each other. Furthermore, in the above-described embodiment, the case where the flow path state is determined based on the upstream temperature detection signal SU and the downstream temperature detection signal SL has been described. The present invention is not limited to this, and the flow path state may be determined based only on the upstream temperature detection signal SU.
  • the processing can be simplified.
  • the case where the puncture unit 5 and the flow channel unit 13 are separately configured has been described.
  • the flow channel through which the chemical solution flows from the chemical solution storage unit 7 to the outside is integrally formed as the flow channel unit. You may do it.
  • the CPU 41 as the determination unit, the chemical solution storage unit 7 as the chemical solution storage unit, the flow channel unit 13 as the flow channel unit, the cylinder 14 as the cylinder, and the piston 11 as the piston.
  • a heating temperature detector 17 as a heater
  • a heating temperature detector 17 and a temperature detector 18 as temperature detectors
  • a flow path state determination unit 53 as a flow path state determination unit.
  • the present invention is not limited to this, and includes a determination unit having various configurations, a chemical storage unit, a flow channel unit, a cylinder, a piston, a heater, a temperature detector, and a flow channel state determination unit.
  • a liquid administration device may be configured.
  • the present invention can be applied to the medical field, for example.

Abstract

In order to greatly improve usability, a medical solution administration device (1) detects the state of a flow path on the basis of the temperature changes of an upstream temperature detection signal (SU) and a downstream temperature detection signal (SL) in each pushing operation of a piston (11), and when detecting that there is a possibility that a flow path is blocked, continues the next pushing operation of the piston (11) when in the previous pushing operation of the piston (11), the interior of a detection tube (13B) in a position where a heating temperature detector (17) is provided is changed from the state of being filled with a medical solution (MS) to the state in which air bubbles (AR) are present. Consequently, the medical solution administration device (1) can continue the administration of the medical solution without erroneously determining the state in which air bubbles are mixed in the flow path as the state in which the flow path is blocked. Thus, the medical solution administration device (1) can greatly improve usability.

Description

薬液投与装置及び閉塞検出方法Chemical solution administration device and occlusion detection method
 本発明は、薬液投与装置及び閉塞検出方法に関し、例えば薬液を体内に投与する場合に適用して好適なものである。 The present invention relates to a drug solution administration device and an occlusion detection method, and is suitable for application when, for example, a drug solution is administered into the body.
 従来、薬液(インスリン)を投与する装置として、使用者の皮膚に付着させて用いられる携帯型の装置であって、薬液容器である外筒内に充填された薬液をシール部材(ピストン)を介して押し出すことにより体内に投与する、所謂シリンジポンプ型の装置が提案されている(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, as a device for administering a drug solution (insulin), it is a portable device that is used by being attached to a user's skin, and a drug solution filled in an outer cylinder that is a drug solution container is passed through a seal member (piston). A so-called syringe pump type device has been proposed that is administered into the body by being pushed out (see, for example, Patent Document 1).
特表2010−501283公報Special table 2010-501283
 ところで、上述したような薬液を投与する装置では、外筒内に充填された薬液が変性したり、使用者の体内に挿入されたカニューレが変形したりして薬液が流れる流路が閉塞し、薬液が使用者に正常に投与できなくなる可能性がある。
 流路が閉塞したことを使用者に通知するため、該流路に圧力センサを設けて薬液が流れる流路の圧力を検出し、該圧力が所定の閾値以上であった場合、流路が閉塞したために薬液が正常に送出できていないとして作動を中止して使用者に通知するようになされた装置が提案されている。
 一方、薬液を投与する薬液投与装置として、ピストンを引戻方向に移動させ薬液容器から薬液を引き出し、該ピストンを押込方向に移動させ該薬液を押し出すことにより体内に投与する、所謂ピストンポンプ型の装置が提案されている。
 このようなピストンポンプ型の装置において、上述した圧力センサにより閉塞を検知しようとすると、ピストンを押込方向に移動させたとしても流路の圧力が十分に上昇しないために閉塞を検知できない場合がある。
 このため、流路の一部分にその周囲との温度差を意図的に形成させた領域である熱マーカを形成し、ピストンの押込動作によってその熱マーカが移動する様子を検出部で検出することにより、流路の閉塞を検知する方法がある。
 このような熱マーカを用いた閉塞検出の場合、流路が閉塞しているときは薬液が流路内を流れないため熱マーカが移動せず、検出部はピストンの押込動作の前後で大きな温度変化を検出しない。
 このように検出部がピストンの押込動作の前後で大きな温度変化を検出しなかった場合、薬液投与装置は、流路が閉塞していると判断できる。
 ところで流路には、例えば薬液容器等から気泡が混入する場合がある。気泡が流路に混入した場合、薬液よりも熱伝導率の低い気泡には熱マーカが形成されないため、ピストンの押込動作によって該気泡が検出部近傍の流路内を移動しても、検出部はピストンの押込動作の前後で大きな温度変化を検出しない。
 このため薬液投与装置は、流路に気泡が混入した状態を、流路が閉塞した状態と誤判定して作動を中止してしまう可能性があり、使い勝手が悪くなってしまうおそれがあった。
 本発明は以上の点を考慮してなされたもので、一段と使い勝手を向上し得る薬液投与装置及び閉塞検出方法を提案しようとするものである。
 かかる課題を解決するため本発明は、使用者に保持され、該使用者の体内に薬液を投与するための携帯型の薬液投与装置であって、判断部と、前記薬液を貯蔵する薬液貯蔵部と、前記薬液貯蔵部から前記使用者の体内へ薬液を送液する流路を形成する流路部と、前記流路部に一端が接続されるシリンダと、前記シリンダの内部で摺動し、前記シリンダにおける前記一端の反対側から前記一端側へ移動する押込動作により前記薬液を前記流路部を介して前記使用者の体内へ送液するピストンと、前記シリンダよりも前記流路部における下流側に設けられ、前記流路部を加熱する加熱子と、前記加熱子の近傍又は前記流路部における下流側に設けられ、前記流路部の温度を検出し温度検出信号として送出する温度検出子と、前記ピストンの押込動作の度に、前記温度検出信号の温度変化に基づき、前記流路部に気泡が存在する可能性があるか否か判断し、さらに、閉塞状態であるか否かを判断する流路状態判定部と、を備えることを特徴とする。
 また本発明は、使用者に保持され、該使用者の体内に薬液を投与するための携帯型の薬液投与装置において、前記薬液を貯蔵する薬液貯蔵部から前記使用者の体内へ前記薬液を送液する流路を形成する流路部内の前記薬液を加熱子により加熱し、該加熱子の近傍又は前記流路部における下流側に設けられた温度検出子により前記流路部の温度を検出することにより前記流路部の閉塞を検出する閉塞検出方法であって、前記流路部に一端が接続されるシリンダの内部で摺動し、該シリンダにおける前記一端の反対側から前記一端側へ移動することにより前記薬液を前記流路部を介して前記使用者の体内へ送液するピストンの押込動作が行われる度に、前記シリンダよりも前記流路部における下流側に設けられた前記温度検出子が前記流路部の温度を検出した温度検出信号の温度変化に基づき前記流路部内の状態を前記流路部に気泡が存在する可能性があるか否か判断するステップと、さらに、閉塞状態であるか否かを判断するステップとを有することを特徴とする。
 これにより、流路に気泡が混入した状態を、流路が閉塞した状態と誤判定することなく、薬液投与を継続することができる。
 本発明によれば、流路に気泡が混入した状態と、流路が閉塞した状態と誤判定することなく弁別して判断でき、一段と使い勝手を向上し得る薬液投与装置及び閉塞検出方法を実現できる。
By the way, in the device that administers the chemical solution as described above, the chemical solution filled in the outer cylinder is denatured or the cannula inserted into the user's body is deformed and the flow path through which the chemical solution flows is blocked, The drug solution may not be properly administered to the user.
In order to notify the user that the flow path is blocked, a pressure sensor is provided in the flow path to detect the pressure of the flow path through which the chemical solution flows, and the flow path is blocked if the pressure is equal to or greater than a predetermined threshold. Therefore, an apparatus has been proposed in which the operation is stopped and the user is notified that the chemical is not normally delivered.
On the other hand, as a drug solution administration device for administering a drug solution, a so-called piston pump type of administering a drug into the body by moving the piston in the pull back direction, pulling out the drug solution from the drug solution container, moving the piston in the pushing direction and pushing out the drug solution. A device has been proposed.
In such a piston pump type device, when the blockage is detected by the pressure sensor described above, the blockage may not be detected because the pressure in the flow path does not sufficiently increase even if the piston is moved in the pushing direction. .
For this reason, by forming a thermal marker, which is a region where a temperature difference with the surroundings is intentionally formed in a part of the flow path, and detecting how the thermal marker moves due to the pushing operation of the piston, There is a method for detecting blockage of a flow path.
In the case of blockage detection using such a thermal marker, when the flow path is closed, the chemical does not flow in the flow path, so the thermal marker does not move, and the detection unit has a large temperature before and after the piston pushing operation. Does not detect changes.
Thus, when a detection part does not detect a big temperature change before and after the pushing operation of a piston, it can be judged that the chemical | medical solution administration apparatus has obstruct | occluded the flow path.
By the way, bubbles may be mixed into the flow channel from, for example, a chemical solution container. When bubbles are mixed into the flow path, thermal markers are not formed on bubbles with a lower thermal conductivity than the chemical solution, so even if the bubbles move in the flow path near the detection section due to the pushing operation of the piston, the detection section Does not detect large temperature changes before and after the piston pushing operation.
For this reason, the chemical solution administration device may erroneously determine that the state where air bubbles are mixed in the flow path is a state where the flow path is blocked and stop the operation, which may deteriorate the usability.
The present invention has been made in view of the above points, and an object of the present invention is to propose a drug solution administration device and an occlusion detection method that can further improve usability.
In order to solve such a problem, the present invention is a portable liquid medicine administration device that is held by a user and administers a liquid medicine into the body of the user, and includes a determination unit and a liquid medicine storage unit that stores the liquid medicine And a flow path part that forms a flow path for sending a chemical liquid from the chemical liquid storage part into the user's body, a cylinder connected at one end to the flow path part, and slides inside the cylinder, A piston that feeds the chemical liquid into the body of the user through the flow path portion by a pushing operation that moves from the opposite side of the one end to the one end side of the cylinder; and a downstream side of the flow path portion from the cylinder. A heater for heating the flow path part, and a temperature detection provided in the vicinity of the heater or on the downstream side of the flow path part for detecting the temperature of the flow path part and sending it as a temperature detection signal And the pushing motion of the piston Each time, based on the temperature change of the temperature detection signal, it is determined whether there is a possibility that air bubbles are present in the flow path part, and further, a flow path state determination part that determines whether it is in a closed state or not And.
According to the present invention, in a portable chemical solution administration device that is held by a user and administers the chemical solution into the user's body, the chemical solution is sent from the chemical solution storage unit that stores the chemical solution to the user's body. The chemical solution in the flow path section that forms the liquid flow path is heated by a heating element, and the temperature of the flow path section is detected by a temperature detector provided in the vicinity of the heating element or downstream of the flow path section. A blockage detection method for detecting blockage of the flow path part by sliding inside a cylinder having one end connected to the flow path part and moving from the opposite side of the cylinder to the one end side Thus, the temperature detection provided on the downstream side of the flow channel portion with respect to the cylinder each time the piston is pushed through the flow channel portion into the user's body through the flow channel portion. The child Determining whether there is a possibility that air bubbles are present in the flow path portion based on a temperature change of the temperature detection signal that has detected, and further determining whether the flow path portion is in a closed state And a step of performing.
Thereby, a chemical | medical solution administration can be continued, without misjudging the state in which the bubble mixed in the flow path as the state which the flow path obstruct | occluded.
ADVANTAGE OF THE INVENTION According to this invention, it can discriminate | determine and determine without misjudging the state where the bubble mixed in the flow path, and the state where the flow path was blocked, and the medicinal solution administration device and the blockage detection method that can further improve the usability can be realized.
 図1は、薬液投与装置の構成を示す略線図である。
 図2は、薬液投与装置の分解斜視図である。
 図3は、送出部の構成を示す略線図である。
 図4は、送出部の構成を示す略線図である。
 図5は、薬液投与装置の電気的構成を示す略線図である。
 図6は、薬液流動状態の温度検出パターンを示す略線図である。
 図7は、気泡変化状態の温度検出パターンを示す略線図である。
 図8は、気泡状態の温度検出パターンを示す略線図である。
 図9は、閉塞状態の温度検出パターンを示す略線図である。
 図10は、第1の実施の形態によるCPUの機能的構成を示す略線図である。
 図11は、第1の実施の形態による閉塞検出処理手順を示すフローチャートである。
 図12は、第2の実施の形態によるCPUの機能的構成を示す略線図である。
 図13は、第2の実施の形態による閉塞検出処理手順を示すフローチャートである。
 図14は、薬液流動状態の温度検出パターンを示す略線図である。
 図15は、薬液状態及び気泡変化状態の温度検出パターンを示す略線図である。
 図16は、気泡変化状態の温度検出パターンを示す略線図である。
 図17は、気泡状態の温度検出パターンを示す略線図である。
 図18は、閉塞状態の温度検出パターンを示す略線図である。
FIG. 1 is a schematic diagram illustrating a configuration of a drug solution administration device.
FIG. 2 is an exploded perspective view of the chemical liquid administration device.
FIG. 3 is a schematic diagram illustrating the configuration of the sending unit.
FIG. 4 is a schematic diagram illustrating the configuration of the sending unit.
FIG. 5 is a schematic diagram illustrating an electrical configuration of the drug solution administration device.
FIG. 6 is a schematic diagram illustrating a temperature detection pattern in a chemical fluid flow state.
FIG. 7 is a schematic diagram illustrating a temperature detection pattern in a bubble change state.
FIG. 8 is a schematic diagram showing a temperature detection pattern in a bubble state.
FIG. 9 is a schematic diagram illustrating a temperature detection pattern in a closed state.
FIG. 10 is a schematic diagram illustrating a functional configuration of the CPU according to the first embodiment.
FIG. 11 is a flowchart illustrating a blockage detection processing procedure according to the first embodiment.
FIG. 12 is a schematic diagram illustrating a functional configuration of a CPU according to the second embodiment.
FIG. 13 is a flowchart illustrating a blockage detection processing procedure according to the second embodiment.
FIG. 14 is a schematic diagram illustrating a temperature detection pattern in a chemical fluid flow state.
FIG. 15 is a schematic diagram illustrating temperature detection patterns in a chemical solution state and a bubble change state.
FIG. 16 is a schematic diagram illustrating a temperature detection pattern in a bubble change state.
FIG. 17 is a schematic diagram illustrating a temperature detection pattern in a bubble state.
FIG. 18 is a schematic diagram illustrating a temperature detection pattern in a closed state.
 以下に、図面について、本発明の一実施の形態を詳述する。
<1.第1の実施の形態>
[1−1.薬剤投与装置の構成]
 図1に示すように、薬液投与装置1は、使用者の皮膚に貼り付けることにより保持されて使用される携帯型の装置であり、上側が開口し内部に空間が設けられた下筐体部2と該下筐体部2の開口に嵌合する上筐体部3により扁平な略直方体形状に形成される。
 薬液投与装置1の大きさは、使用者の皮膚に貼り付けることができる程度にまで小型化されていればよいが、例えば横32mm、縦44mm、高さ11mmの略直方体形状が挙げられる。
 下筐体部2には、両面テープ等でなる貼付部4が底面2Aに設けられる。薬液投与装置1は、貼付部4が使用者の皮膚に貼り付けられることにより該使用者に保持される。
 薬液投与装置1は、下筐体部2の底面2Aに、内部に充填された薬液を使用者の体内へ投与するために該使用者の皮膚を穿刺する針やカニューレ等でなる穿刺部5と、内部に設けられた薬液貯蔵部7(図2)に薬液を注入するための注入路である注入部6とが設けられる。
 薬液投与装置1は、図2に示すように、下筐体部2と上筐体部3とで形成される空間に注入部6、薬液貯蔵部7、基板部8及び送出部9が配される。
 薬液貯蔵部7は、柔軟性を有する材料より形成された容器である。薬液貯蔵部7を構成する材質としては、例えば、ポリオレフィンを含むものであるのが好ましい。軟質バッグの形成材料として、特に好ましいものとして、ポリエチレンまたはポリプロピレンに、スチレン−ブタジエン共重合体やスチレン−エチレン−ブチレン−スチレンブロック共重合体等のスチレン系熱可塑性エラストマーあるいはエチレン−プロピレン共重合体やエチレン−ブテン共重合体、プロピレン−αオレフィン共重合体等のオレフィン系熱可塑性エラストマーをブレンドし柔軟化した軟質樹脂を挙げることができる。薬液貯蔵部7の容器の容量は、特に限定されるものではないが、小型化などを考慮するとたとえば2mLの容積のものが挙げられる。
 薬液貯蔵部7には、薬液が注入部6を介して外部から充填される。薬液貯蔵部7に貯蔵される薬液としては、例えばインスリンや各種ホルモン、モルヒネなどの鎮痛薬、あるいは抗炎症薬剤などが挙げられる。基板部8は、電源電力を供給する電源部44(図5)や送出部9を制御する回路などが配される。
 送出部9は、図2、図3及び図4に示すように、ピストン11、CPU41(図5)の制御に応じて該ピストン11を往復駆動させる駆動部12、薬液貯蔵部7から穿刺部5まで薬液が流れる流路を形成する流路部13、一端が流路部13に接続され他端から挿入されるピストン11が内部で摺動されるシリンダ14、薬液を一方向のみに通過させる一方向弁15を含む構成とされる。
 ピストン11は、駆動部12により駆動されてシリンダ14内で所定のストロークで摺動する。ピストン11の材質としては、例えば、ステンレス鋼、銅合金、アルミ合金、チタン材、ポリプロピレンやポリカーカーボネートなどの熱可塑性エラストマー等が挙げられ、その外径は例えば、0.8mm程度である。また、ピストン11はシリンダ14内を摺動することにより一定量の薬液を送液するが、そのストロークは例えば2mm程度である。
 流路部13は、流入路を形成する吸込管13Aと、温度検出部16内部を通過する検出管13Bと、流出路を形成する送出管13Cと、流路部13をシリンダ14へと接続するための接続管13Dと、該検出管13Bと該接続管13Dとを接続するための接続管13Eとにより構成される。
 吸込管13Aは、一端が薬液貯蔵部7と接続され、他端が接続管13Dと接続される。検出管13Bは、一端が送出管13Cと接続され、他端が接続管13Eと接続される。送出管13Cは、一端が穿刺部5と接続され、他端が検出管13Bと接続される。接続管13Dは、端部がそれぞれ吸込管13A及び接続管13Eと接続され、中央部分にシリンダ14が接続される。接続管13Eは端部がそれぞれ接続管13D及び検出管13Bと接続される。
 検出管13Bはピストン11が一往復する際に薬液MSが充分に移動するように内部の断面積が構成されており、例えば内径0.4mmのパイプ(好ましくはステンレス金属製のパイプ)で構成されている。吸込管13A、送出管13C及び接続管13Eは内径が1mm以下のパイプ(好ましくはステンレス金属)で構成されている。検出管13B、送出管13C及び接続管13Eは一体として構成してもよいが、このとき断面積は検出管13Bの断面積に合わせるものとする。
 吸込管13Aと接続管13Dとの間には、弾性変形可能な例えばゴム製の所謂アンブレラ弁でなり、薬液を吸込管13Aから接続管13Dへ一方向のみに通過させる一方向弁15Aが設けられる。接続管13Dと接続管13Eとの間には、薬液を接続管13Dから接続管13Eへ一方向のみに通過させる一方向弁15Bが設けられる。
 シリンダ14は、ピストン11の外径より大きな内径で、一端が接続管13Dと接続され、他端側からピストン11が挿入され内部で摺動する。シリンダ14の内径とピストン11の外径との差は、例えば0.01mm程度である。
 送出部9は、薬液貯蔵部7から外部に薬液を送出する際、図3に示すように、ピストン11を最も押し込まれる位置(以下、最押込位置とも呼ぶ)から最も引き戻される位置(以下、最引戻位置とも呼ぶ)までシリンダ14内で摺動させ(以下、この摺動方向を引戻方向とも呼ぶ)、薬液貯蔵部7に貯蔵された薬液を吸込管13A及び接続管13Dを介してシリンダ14内に吸い出す。
 送出部9は、ピストン11が最引戻位置に移動されると、図4に示すように該ピストン11を最引戻位置から最押込位置までシリンダ14内を摺動させ(以下、この摺動方向を押込方向とも呼ぶ)、シリンダ14の内部に吸い出された薬液を接続管13D、接続管13E、検出管13B、送出管13C及び穿刺部5を介して使用者の体内に送出する。
 送出部9は、ピストン11を一往復させる動作で約1μLの薬液を使用者の体内に投与でき、この動作を設定された周期及び間隔で繰り返し行うことにより、所望の投与速度及び投与量で薬液を使用者に投与できる。
 実際上薬液投与装置1は、24時間を通して微量ずつ薬液を使用者に間欠的(例えば6分に1回)に投与するベーサルモードと、食事の前や高血糖時等にまとまった量の薬液を使用者に追加投与するボーラスモードとの2種類の投与モードで動作する。
[1−2.温度検出部の構成]
 温度検出部16は、流路部13においてピストン11よりも薬液が流れる方向の下流側である検出管13Bの外部に取り付けられた、サーミスタでなる加熱温度検出子17と、該加熱温度検出子17よりも下流側において検出管13Bの外部に取り付けられた、サーミスタでなる温度検出子18とにより構成される。
 加熱温度検出子17と温度検出子18とは、互いに所定間隔を空けて検出管13Bに配される。加熱温度検出子17は、所定時間間隔でサーミスタに電流を流すことでジュール熱を発生させ、検出管13B内の薬液MSを加熱する加熱動作を繰り返し、熱マーカMKを形成する。それと同時に加熱温度検出子17は、温度によって抵抗値が変化するサーミスタの抵抗値を測定して、該加熱温度検出子17が設けられた位置における検出管13Bの温度を検出する。
 温度検出子18は、温度によって抵抗値が変化するサーミスタの抵抗値を測定し、該温度検出子18が設けられた位置における検出管13Bの温度を検出する。
 ここで、送出部9においては、加熱温度検出子17と温度検出子18との距離をセンサ間距離Lと、温度検出部16における検出管13Bの内部の断面積を流路断面積Aと、ピストン11が一往復する際に薬液MSを押し出す量をボリュームストローク量Vとしたとき、(1)式が成り立つよう構成されている。
Figure JPOXMLDOC01-appb-M000001
 これにより薬液投与装置1は、加熱温度検出子17により薬液MSを加熱し該加熱温度検出子17近傍の検出管13B内部に形成した熱マーカMKを、ピストン11の1回の押込動作により温度検出子18まで届かせることができる。
 因みにボリュームストローク量Vに対しセンサ間距離Lが小さいと、温度検出部16は、加熱温度検出子17と温度検出子18との間の温度差が検出し難くなってしまう。
 実際上薬液投与装置1においては、センサ間距離Lを4mmと、流路断面積Aを0.125mm2と、ボリュームストローク量Vを1μLとしている。
[1−3.薬液投与装置の電気的構成]
 薬液投与装置1は、図5に示すように、CPU(Central Processing Unit;判断部)41、ROM(Read Only Memory)42、RAM(Random Access Memory)43、電源部44、インターフェース部(I/F部)45、報知部46、駆動部12、加熱温度検出子17及び温度検出子18がバス47を介して接続される。
 CPU(判断部)41、ROM42、RAM43、電源部44及び報知部46は、基板部8上(図示せず)に配される。電源部44は電池が適応される。報知部46は、音声で報知するためのスピーカや、光で報知するためのLEDなどが適応される。
 インターフェース部45は、上筐体部3又は下筐体部2に配され使用者の入力命令を受け付けるボタン(図示せず)等が適応される。またインターフェース部45の代わりに無線による通信を行うためのアンテナ及び通信回路からなる通信部を搭載し、本ポンプとは別体となる操作部(図示せず)から無線通信による入力命令を受け付ける方式でもよい。
 CPU41は、ROM42に格納された基本プログラムをRAM43に読み出して実行することより全体を統括制御すると共に、ROM42に記憶された各種アプリケーションプログラムをRAM43に読み出して実行することにより各動作工程の各種処理・判断(判定)を実行する。使用者は薬液投与装置1を操作し、制御部であるCPU41に指令を出すことで、CPU41は基本プログラムを読み出し、駆動部12を制御することで使用者へ薬剤が投与される。
 CPU41は、加熱温度検出子17を制御することにより該加熱温度検出子17を構成するサーミスタを加熱する。このとき加熱に用いる電力は例えば1mWから5mW程度である。
 加熱温度検出子17及び温度検出子18は、サーミスタの抵抗値を測定してそれぞれ加熱温度検出子17及び温度検出子18が設けられた位置における検出管13Bの温度を検出し、それぞれ上流温度検出信号SU及び下流温度検出信号SLとしてCPU41に送出する。
 CPU41は、加熱温度検出子17から上流温度検出信号SUを受信することにより、加熱温度検出子17が検出した温度を取得する。
 またCPU41は、温度検出子18から下流温度検出信号SLを受信することで、温度検出子18が検出した温度を取得する。
 実際上CPU41は、駆動部12を制御し、ベーサルモードにおいては6分に1度、ピストン11を最引戻位置から最押込位置まで0.5秒かけて移動させ、押込動作を行わせる。
 CPU41は、ピストン11の押込動作の約10秒前から約5秒後まで、加熱温度検出子17及び温度検出子18からそれぞれ上流温度検出信号SU及び下流温度検出信号SLを取得する。
 本実施の形態においてCPU41は、加熱温度検出子17及び温度検出子18からそれぞれ上流温度検出信号SU及び下流温度検出信号SLの取得を開始する(すなわち温度測定を開始する)と同時に、該加熱温度検出子17を加熱させ、該上流温度検出信号SU及び下流温度検出信号SLの取得を終了する(すなわち温度測定を終了する)と同時に、該加熱温度検出子17の加熱を終了させる。
[1−4.温度検出パターン]
 流路においては、ピストン11が押込動作を行った際、正常に薬液が流動する状態や、気泡が混入した状態や、閉塞した状態等の様々な状態が起こり得る。以下では、そのような様々な状態における、上流温度検出信号SU及び下流温度検出信号SLの特性曲線を示す温度検出パターンについて、流路の状態と共に説明する。
[1−4−1.薬液流動状態の温度検出パターン]
 図6に示す温度検出パターンPT1は、流路に気泡が混入せず、且つ閉塞が発生していない正常な状態である薬液流動状態における温度検出パターンである。
 温度検出パターンPT1においては、横軸が温度測定開始からの秒数を、縦軸が温度(度)を示している。また、測定開始から10秒後の時点においてピストン11が押込動作を行っており、以降の本実施の形態による温度検出パターンについても同様である。
 CPU41は、加熱温度検出子17を加熱させることにより上流温度検出信号SUが上昇するが、ある程度の温度上昇が行われると加熱温度検出子17および加熱温度検出子17によって暖められた箇所からの放熱と加熱温度検出子17による加熱とのバランスにより加熱を続けても温度が上昇せず、該上流温度検出信号SUが所定の温度を保つ平衡状態になる(温度安定状態)。
 また、CPU41は過度の温度上昇による薬液MSへの影響を防ぐため、所定の温度に達した場合、上流温度検出信号SUが該所定の温度を保つ(温度安定状態)よう加熱温度検出子17を制御することも可能である。
 温度検出パターンPT1においては、温度測定開始と同時に加熱温度検出子17が加熱動作を開始することにより、温度安定状態に向かって加熱温度検出子17近傍の検出管13B内部の薬液MSが徐々に加熱されていく。これにより上流温度検出信号SUの温度は徐々に上昇し、図6(B)の状態Aに示すように加熱温度検出子17が設けられた位置の薬液MSにおいて熱マーカMKが生成される。
 ピストン11の押込動作直前(9秒時点)においても上流温度検出信号SUの温度は上昇し続けており、一定となっていない(以下この状態を温度安定前状態とも呼ぶ)。
 一方温度検出子18近傍には熱マーカMKは存在しないため、下流温度検出信号SLの温度は、ピストン11の押込動作直前においても測定開始時とほぼ同様となっている。
 10秒時点においてピストン11により押込動作が行われると、図6(B)の状態Bのように、薬液MSの移動に伴って熱マーカMKが下流側に移動する。
 このとき、検出管13Bにおける加熱温度検出子17近傍においては、加熱されていない薬液MSが上流側から流れこむため、温度検出パターンPT1に示すように上流温度検出信号SUの温度は26.86度から26.79度まで約0.08度急低下する。
 一方検出管13Bにおける温度検出子18近傍においては、熱マーカMKが通過するため、温度検出パターンPT1に示すように下流温度検出信号SLの温度は26.6度から26.7度まで約0.1度急上昇する。
 このときも加熱温度検出子17により薬液MSは加熱され続けているため、温度検出パターンPT1に示すように、その後上流温度検出信号SUの温度は温度安定状態に向かって再び上昇していく(状態C)。
 一方検出管13Bにおける温度検出子18近傍においては、薬液MS中の熱マーカMKが熱拡散するため、下流温度検出信号SLの温度は平常時の温度に向かって徐々に低下していく。
 なお、温度測定が完了すると(15秒時点)、加熱温度検出子17は加熱動作を終了し、それ以上薬液MSを加熱しないようにする。
 このように、温度安定前状態における薬液流動状態においては、徐々に上昇していた上流温度検出信号SUがピストン11の押込動作の直後に急低下した後に再び徐々に上昇する一方、下流温度検出信号SLが急上昇して徐々に低下する温度変化を示す。
 すなわち、ピストン11の押込動作の直後に、上流温度検出信号SUにおいては温度低下部分が現れ、下流温度検出信号SLにおいては温度上昇部分が現れることとなる。
[1−4−2.気泡変化状態の温度検出パターン]
 図7に示す温度検出パターンPT2は、ピストン11の押込動作の際、加熱温度検出子17が設けられた位置における検出管13B内が薬液MSで満たされた状態から気泡ARが存在する可能性がある状態に変化した温度検出パターンである。
 上流温度検出信号SUの温度は温度測定開始時点から徐々に上昇していく。これにより、図7(B)の状態Aに示すように、温度検出パターンPT2におけるピストン11の押込動作直前(9秒時点)の流路部13において加熱温度検出子17近傍の薬液MSは加熱されて熱マーカMKが生成される。
 このとき、加熱温度検出子17よりも上流部分には気泡ARが混入している。また、熱マーカMKよりも上流側には、加熱されていない薬液MSが存在している状態となっている。
 10秒時点においてピストン11により押込動作が行われると、検出管13Bにおける加熱温度検出子17近傍を加熱されていない薬液MSが通過するため、一旦上流温度検出信号SUの温度は26.9度から26.88度までやや低下する(11秒時点)。その後、図7(B)の状態Bのように、加熱温度検出子17が設けられた位置の検出管13B内部は、液体でなる薬液MSではなく空気でなる気泡ARとなる。
 気泡ARは薬液MSよりも熱伝導率が低いため、薬液MSと比べて、加熱温度検出子17から発生した熱は気泡ARには伝達し難い。
 このため上流温度検出信号SUの温度は、該加熱温度検出子17が発生させ気泡ARに吸収されない発熱により急上昇する。その後上流温度検出信号SUは、ピストン11の押込動作前とほぼ同様の温度変化率で温度安定状態に向かって再び上昇していく。
 一方下流温度検出信号SLの温度は、熱マーカMKが温度検出子18近傍の検出管13B内部を通過するため、薬液流動状態と同様に急上昇した後、熱拡散により平常時の温度に向かって徐々に低下していく。
 このように、気泡変化状態の場合、薬液MSに対する気泡ARの混入のタイミングによっては、熱マーカMKの上流側に温められていない薬液MSが存在する場合がある。
 このような場合、徐々に上昇していた上流温度検出信号SUがピストン11の押込動作の直後にやや低下するものの、その後は急上昇し徐々に上昇していく一方、下流温度検出信号SLは薬液流動状態と同様に急上昇して徐々に低下する温度変化を示す。
 一方で、気泡が存在する可能性がある状態に変化した場合、薬液MSに対する気泡ARの混入のタイミングによっては、熱マーカMKの上流側に温められていない薬液MSが存在しない場合がある。
 このような場合、上流温度検出信号SUは温度検出パターンPT2(図7)とは多少異なり、ピストン11の押込動作の直後にやや急低下することなく急上昇する一方、下流温度検出信号SLは薬液流動状態と同様に急上昇して徐々に低下する温度変化を示す。
 すなわち、ピストン11の押込動作の直後に、上流温度検出信号SUにおいては温度急上昇部分が現れ、下流温度検出信号SLにおいては温度上昇部分が現れることとなる。
[1−4−3.気泡が存在する可能性がある状態に変化した場合の温度検出パターン]
 図8に示す温度検出パターンPT3は、気泡が存在する可能性がある状態に変化した状態(温度検出パターンPT2(図7))の後に、ピストン11がさらに押込動作を行うことにより上流側の気泡ARが下流側へ移動し、ピストン11の押込動作前時点で加熱温度検出子17が設けられた位置の検出管13B内部が気泡ARとなっている状態である気泡が存在する可能性がある状態に変化した状態における温度検出パターンである。
 温度測定開始時点において、加熱温度検出子17近傍の検出管13B内部は気泡ARとなっているため、該加熱温度検出子17の発熱は該気泡ARには伝達せず、該気泡ARの温度はほとんど上昇しないが、上流温度検出信号SUの温度は、該加熱温度検出子17が発生させ気泡ARに吸収されない熱により上昇していく(図8(B)の状態A)。
 10秒時点においてピストン11により押込動作が行われると(図8(B)状態B)、加熱温度検出子17近傍の検出管13B内部の気泡ARは温められていないため、上流温度検出信号SUは、急激な温度変化をしないまま、ピストン11の押込動作前とほぼ同様の温度変化率で温度安定状態に向かって上昇していく。
 一方下流温度検出信号SLは、温められていない気泡ARが上流側から移動してくるだけであるため、ピストン11の押込動作前からほぼ温度変化をせずに一定の温度となっている。
 このように、ピストン11の押込動作前において既に加熱温度検出子17が設けられた位置の検出管13B内部に気泡ARが位置している気泡状態の場合、ピストン11の押込動作を行っても、徐々に上昇していた上流温度検出信号SUは大きな温度変化をすることなくそのまま上昇する一方、下流温度検出信号SLもまた大きな温度変化をしない。
[1−4−4.閉塞状態の温度検出パターン]
 図9に示す温度検出パターンPT4は、流路が閉塞した状態である閉塞状態における温度検出パターンである。
 温度検出パターンPT4においては、温度測定開始と同時に加熱温度検出子17が加熱動作を開始することにより、温度安定状態に向かって加熱温度検出子17近傍の検出管13B内部の薬液MSが徐々に加熱されていく。これにより上流温度検出信号SUの温度は徐々に上昇し、図9(B)の状態Aに示すように加熱温度検出子17近傍における薬液MSにおいて熱マーカMKが生成される。
 一方温度検出子18近傍には熱マーカMKは存在しないため、下流温度検出信号SLの温度は、ピストン11の押込動作直前においても測定開始時とほぼ同様となっている。
 10秒時点においてピストン11により押込動作が行われると、流路は閉塞しており、流路部13内を薬液MSが移動しないため、上流温度検出信号SUは、急激な温度変化をしないまま、ピストン11の押込動作前とほぼ同様の温度変化率で温度安定状態に向かって上昇していく。
 一方下流温度検出信号SLは、熱マーカMKが上流側から移動してこないため、ほぼ温度変化をせずに一定の温度となっている。
 このように、流路が閉塞している閉塞状態の場合、上述した気泡状態と同様に、ピストン11の押込動作を行っても、徐々に上昇していた上流温度検出信号SUは大きな温度変化をすることなくそのまま上昇する一方、下流温度検出信号SLもまた大きな温度変化をしない。
[1−5.閉塞検出処理]
 上述したように薬液投与装置1では、穿刺部5が使用者の体動などで変形したり、薬液が変性したりするなどして穿刺部5や流路部13等の流路が閉塞し、薬液が使用者に正確に投与できなくなる可能性がある。
 そこでCPU41は、上流温度検出信号SU及び下流温度検出信号SLの温度変化を基に穿刺部5や流路部13が閉塞しているか否かを検出する閉塞検出処理を実行し、流路の閉塞を検出する。
 CPU41は、ROM42に格納された閉塞検出アルゴリズムが搭載された送液プログラムをRAM43に展開し、閉塞検出処理を実行する。CPU41は閉塞検出処理を実行する際、図10に示すように、温度測定部51、駆動制御部52、流路状態判定部53、流路状態記憶部54及び報知制御部55として機能する。
 薬液投与装置1では、注入部6を介して外部から薬液貯蔵部7に薬液が充填された後、貼付部4が使用者の皮膚に貼り付けられると共に穿刺部5が使用者の皮膚に穿刺され、インターフェース部45を介して投与量及び投与速度等が入力される。
 CPU41は入力された投与量および投与速度に基づき、ピストン11の押込動作を行う時間を決定する。さらに温度測定部51によって加熱温度検出子17の加熱を開始する時間を決定する。加熱温度検出子17の加熱を開始するタイミングは具体的にはピストン11の押込動作を行う時間よりも事前加熱時間T1(例えば10秒)だけ前である。
 温度測定部51は、加熱温度検出子17及び温度検出子18からそれぞれ上流温度検出信号SU及び下流温度検出信号SLの取得を開始すると共に、加熱温度検出子17の加熱を開始させる。
 温度測定部51が加熱温度検出子17の加熱を開始させてから事前加熱時間T1(例えば10秒)が経過すると、駆動制御部52は駆動部12を制御し、駆動部12を介してピストン11の押込動作を開始させる。
 なお押込動作開始の際、ピストン11は最引戻位置にあるが、仮にピストン11が最引戻位置にない場合には、駆動制御部52の制御に基づいてピストン11を最引戻位置まで移動させてから押込動作を開始させるようにしてもよい。
 流路状態判定部53は、ピストン11の押込動作の際、閉塞状態が発生しておらず、且つ流路に気泡の混入がない(薬液流動状態(図6))か否かを判定する。
 具体的には流路状態判定部53は、温度測定部51が取得した上流温度検出信号SUにおいて、ピストン11が押込動作を行った時点から1秒以内に、閾値である0.05度を超える温度低下部分が存在するか否かを検出する。
 さらに流路状態判定部53は、温度測定部51が取得した下流温度検出信号SLにおいて、ピストン11が押込動作を行った時点から1秒以内に、閾値である0.05度を超える温度上昇部分が存在するか否かを検出する。
 流路状態判定部53は、上流温度検出信号SUにおいて閾値を超える温度低下部分が存在し、且つ下流温度検出信号SLにおいて閾値を超える温度上昇部分が存在する場合、穿刺部5及び流路部13には閉塞は発生しておらず、正常な薬液流動状熊(図6)であると判定する。
 このように流路状態判定部53は、上流温度検出信号SUの温度が急上昇すると共に下流温度検出信号SLが急低下するといった、互いに逆方向への温度変化を検出することにより、環境温度変化等の外乱があっても、正確に薬液流動状態を検知することができる。
 流路状態判定部53が現在は薬液流動状態であると判定した場合、流路状態記憶部54は、今回のピストン11の押込動作においては流路状態が薬液流動状態であることを示す流路状態情報を記憶する。
 一方流路状態判定部53は、上流温度検出信号SUにおける閾値を超える温度低下部分か、又は下流温度検出信号SLにおける閾値を超える温度上昇部分のいずれか一方でも存在しなかった場合、流路に閉塞が発生したか、又は気泡が混入した可能性があると判定する。
 流路に閉塞が発生したか、又は気泡が混入した可能性があると判定した場合、流路状態判定部53は、流路部13において加熱温度検出子17よりも上流側に位置する気泡が、ピストン11の押込動作で該加熱温度検出子17が設けられた位置に移動することにより、気泡変化状態(図7)となったか否かを判定する。
 具体的には、温度検出パターンPT2(図7)に示すように、上流温度検出信号SUにおいて、ピストン押込動作時点の温度を温度Tsと、該ピストン押込動作時点よりも所定a秒(例えば2秒)前の温度を温度Tbとすると、ピストン押込動作時点から所定t秒(例えば2秒)後の温度である予想温度Texpは、(2)式により予想される。
Figure JPOXMLDOC01-appb-M000002
 すなわち、予想温度Texpは、ピストン押込動作時点以前の所定a秒間の温度変化の傾き(温度変化率)と、ピストン押込動作時点後の所定秒数(t秒)と、ピストン押込動作時の温度Tsとに基づき求められる。
 流路状態判定部53は、ピストン押込動作から所定t秒後の上流温度検出信号SUの測定温度Tと、予想温度Texpとを比較する。測定温度Tから予想温度Texpを減算した値が所定閾値Tth(例えば0.05度)以上である場合、流路状態判定部53は、現在温度測定を行っている際に行われたピストン押込動作により、加熱温度検出子17が設けられた位置の検出管13Bの中身が薬液から気泡へと変化した(気泡が存在する可能性がある状態に変化した状態)と判定する。
 流路状態判定部53が現在は気泡が存在する可能性がある状態に変化した状態であると判定した場合、流路状態記憶部54は、今回のピストン11の押込動作においては流路状態が気泡が存在する可能性がある状態に変化した状態であることを示す流路状態情報を記憶する。
 ところで、温度検出パターンPT2のように、薬液の移動に対する気泡混入のタイミングによっては、ピストン押込動作後に、上流温度検出信号SUの温度が一旦やや低下する場合がある。
 これに対し流路状態判定部53は、ピストン押込動作から2秒後の上流温度検出信号SUの測定温度Tと予想温度Texpとを比較するため、該上流温度検出信号SUの一時的な温度の落ち込みの影響を受けることなく、気泡が存在する可能性がある状態に変化した状態を正確に検出することができる。
 一方流路状態判定部53が、現在は気泡が存在する可能性がある状態に変化した状態であると判定しない場合、このことは今回の温度測定における温度検出パターンが、気泡が存在する場合の温度検出パターンPT3(図8)か、閉塞状態の温度検出パターンPT4(図9)かのいずれかであることを意味する。
 上述したように、気泡が存在する場合の状態の温度検出パターンPT3と閉塞状態の温度検出パターンPT4とは、特性曲線が類似している。このため流路状態判定部53は、繰り返し行われる温度測定のうち、今回の1回の温度測定時の温度検出パターンのみに基づいただけでは、気泡が存在する場合の状態であるか閉塞状態であるかを判定することが困難である。
 そこで流路状態判定部53は、流路状態記憶部54に記憶された流路状態情報を参照することにより、前回温度測定時の流路状態を確認する。
 ところで、加熱温度検出子17が設けられた位置の検出管13B内に気泡ARが位置する場合、該加熱温度検出子17が発熱しても、上述したように熱が気泡にほとんど伝達せず、検出管13Bの外部が発熱する。
 この状態でピストン押込動作がされ、流路部13内の気泡が下流側に移動したとしても、該気泡が温められているわけではないため、上流温度検出信号SU及び下流温度検出信号SLには、大きな温度変化は発生しない。
 このため前回の温度測定時が気泡が存在する可能性がある状態であった場合、このことは、今回の温度測定時において上流温度検出信号SUに温度変化部分が存在しない理由が、前回の温度測定時において検出した気泡が原因であるため、現在は気泡が存在する状態であり、流路が閉塞しているわけではないことを意味する。
 流路状態判定部53が現在は気泡が存在する状態であると判定した場合、流路状態記憶部54は、今回のピストン11の押込動作においては流路状態が気泡が存在する状態であることを示す流路状態情報を記憶する。
 このように、今回の温度測定時において薬液流動状態又は気泡が存在する可能性がある状態と判定された場合、温度測定部51は、インターフェース部45を介してボーラスモードが設定されているか否かを判定する。
 また、今回の温度測定時において薬液流動状態又は気泡が存在する可能性がある状態のいずれでもないと判定され、前回の温度測定時が気泡が存在する可能性がある状態であったと判定された場合も同様に、温度測定部51は、インターフェース部45を介してボーラスモードが設定されているか否かを判定する。
 本実施の形態においてはボーラスモードにおけるピストン押込動作の時間間隔は約3秒から5秒と設定されている。このため、今回のピストン押込動作の後、事前加熱時間T1の10秒間が経過する時点より前の時点において、次回のピストン押込動作が行われる。
 このため、ボーラスモードが設定されている場合、温度測定部51は、次回のピストン押込動作における温度測定に備えて、加熱温度検出子17の加熱を継続する。
 一方ピストン押込動作がされた後の事前加熱時間T1以内に次回のピストン押込動作が予定されていない場合、温度測定部51は加熱温度検出子17の加熱を終了する。薬液投与装置1は、次回のピストン押込動作が始まる直前までは加熱温度検出子17を加熱しないことにより、消費電力を低減することができる。
 一方、流路状態判定部53が、前回の温度測定時の流路状態が、気泡が存在する可能性がある状態ではなく、かつ気泡が存在しない状態ではないと判断した場合、流路が閉塞状態(図9)であることを意味する。
 このとき駆動制御部52は駆動部12の動作を停止させる。また報知制御部55は、報知部46を制御し、穿刺部5や流路部13が閉塞している旨を報知部46を介して使用者に通知する。
[1−6.閉塞検出処理手順]
 次に、上述した閉塞検出処理の手順について図11に示すルーチンRT1のフローチャートを用いて説明する。CPU41は、加熱温度検出子17の加熱を開始させると共に、該加熱温度検出子17及び温度検出子18からそれぞれ上流温度検出信号SU及び下流温度検出信号SLの取得を開始する(ステップSP1及びSP2)。
 加熱開始から事前加熱時間T1(例えば10秒)が経過すると(ステップSP3)、CPU41は、駆動部12を介してピストン11の押込動作を開始させる(ステップSP4)。
 CPU41は、取得した上流温度検出信号SU及び下流温度検出信号SL(温度検出パターン)に基づき、薬液流動状態(上流温度検出信号SUに温度低下部分が、下流温度検出信号SLに温度上昇部分が発生した)であるか否かを判定する(ステップSP5及びSP6)。
 CPU41は、薬液流動状態であると判定した場合(ステップSP6でYES)、流路状態を記憶し(ステップSP8)、事前加熱時間T1(例えば10秒)以内にピストン11の押込動作を開始させる予定があるか否かを判定する(ステップSP12)。
 CPU41は、事前加熱時間T1以内にピストン11の押込動作を開始させる予定があると判定した場合(ステップSP12でYES)、加熱温度検出子17の加熱を継続させ、次回のピストン11の押込動作を開始させる(ステップSP13)。
 一方CPU41は、事前加熱時間T1以内にピストン11の押込動作を開始させる予定がないと判定した場合(ステップSP12でNO)、加熱温度検出子17の加熱を終了させて(ステップSP14)温度測定を終了し(ステップSP15)、次回の温度測定開始まで待機する。
 ところでCPU41は、薬液流動状態でないと判定した場合(ステップSP6でNO)、気泡が存在する可能性がある状態(上流温度検出信号SUにおける測定温度Tが予想温度Texpよりも閾値Tth以上)であるか否かを判定する(ステップSP7)。
 CPU41は、気泡が存在する可能性がある状態と判定した場合(ステップSP7でYES)、流路状態を記憶する(ステップSP8)。さらにCPU41は、事前加熱時間T1以内にピストン11の押込動作を開始させる予定があるか否かを判定し(ステップSP12)、上述と同様の処理を行う。
 一方CPU41は、気泡が存在する可能性がある状態でないと判定した場合(ステップSP7でNO)、上流温度検出信号SUがピストン11の押込動作によっても大きく温度変化していないため、気泡が存在する可能性がある状態か閉塞状態である可能性があることを示しており、ピストン11を押込動作した際、気泡が存在する状態か閉塞状態であったか否かを判定する(ステップSP9)。
 一方CPU41は、閉塞検出処理において閉塞状態であると判定した場合(ステップSP9でYES)、すなわち、閉塞検出処理において上流温度検出信号SUが大きく温度変化していない場合は、流路が閉塞しているためであることを意味する。
 CPU41は、駆動部12の動作を停止させると共に、流路が閉塞している旨を使用者に通知し(ステップSP10)、温度測定を終了して(ステップSP11)処理を終了する。
[1−7.動作及び効果]
 以上の構成において薬液投与装置1は、薬液が貯蔵される薬液貯蔵部7から使用者の体内へ該薬液を送出するための流路部13と一端が接続されたシリンダ14内部でピストン11が摺動することにより該薬液を使用者の体内に送出する。
 薬液投与装置1は、温度測定を開始すると同時に、加熱温度検出子17を加熱させ、事前加熱時間T1経過後にピストン11の押込動作を開始させる。
 薬液投与装置1は、ピストン11の押込動作を行った際に、流路が薬液流動状態又は気泡が存在する可能性がある状態であると判定した場合、流路は閉塞していないと判断し、次回のピストン11の押込動作を行う。
 次に、薬液投与装置1は、ピストン11の押込動作を行った際に、流路が閉塞状態の可能性があると判定した場合、次のピストン11の押込動作を行わずに、流路が閉塞している旨を使用者に通知する。
 これにより薬液投与装置1は、人体に影響がない程度の気泡状態を閉塞状態と誤判断してピストン11の押込動作を中止してしまうことを防ぎ、薬液の投与を継続することができる。
 また薬液投与装置1は、今回のピストン11の押込動作における閉塞状態を気泡状態と誤判断することなく、直ちにピストン11の押込動作を中止させることができる。
 さらに薬液投与装置1は、温度測定を開始すると同時に加熱温度検出子17を加熱させ、温度測定を終了すると同時に加熱を終了させる、すなわち繰り返し行われるピストンの押込動作の時間間隔よりも短い時間だけ加熱温度検出子17を加熱するようにした。
 これにより薬液投与装置1は、加熱温度検出子17を常時加熱する場合と比べて、無駄な電力を消費することを防ぎ、消費電力を低減することができる。
 以上の構成によれば、薬液投与装置1は、ピストン11の押込動作の度に、上流温度検出信号SU及び下流温度検出信号SLの温度変化に基づき流路の状態を検知し、流路が閉塞している可能性があると検知した場合、ピストン11の前回の押込動作において、加熱温度検出子17が設けられた位置における検出管13B内が薬液で満たされた状態から気泡が存在する状態に変化したとき、ピストン11の次回の押込動作を継続させる。これにより薬液投与装置1は、流路に気泡が混入した状態を、流路が閉塞した状態と誤判定することなく、薬液投与を継続することができる。かくして薬液投与装置1は、一段と使い勝手を向上し得る。
<2.第2の実施の形態>
[2−1.閉塞検出処理]
 第2の実施の形態による薬液投与装置101は、第1の実施の形態による薬液投与装置1とは異なる閉塞検出処理を実行し、それ以外の部分は薬液投与装置1と同一である。
 図10との対応部分に同一符号を付した図12に示すように、CPU141は、閉塞検出処理を実行する際、温度測定部51、駆動制御部52、流路状態判定部53、流路状態記憶部54、報知制御部55及び閉塞状態計数部56として機能する。
 第2の実施の形態によるCPUの機能的構成は、第1の実施の形態によるCPUの機能的構成(図10)と比べて、閉塞状態計数部56が追加されている。
 閉塞状態計数部56は、流路が閉塞していると流路状態判定部53が判定した場合、温度測定時において閉塞状態を検出した回数を示す閉塞状態回数を、初期値である0回から1増やす。
 繰り返し行われるピストン11の押込動作の度に行う温度測定において、流路が閉塞状態と判定されると、閉塞状態計数部56は閉塞状態回数を1ずつ増加させていく。また、流路が閉塞状態ではないと判定されると、閉塞状態計数部56は閉塞状態回数を初期値である0回に戻す。すなわち閉塞状態計数部56は、流路の閉塞状態が継続的に発生している場合、温度測定毎に閉塞状態回数を1ずつ増加させていく。
 駆動制御部52は、閉塞状態回数が閾値である5回よりも小さい場合、流路が閉塞状態であっても、駆動部12の動作を停止させず継続させる。
 一方駆動制御部52は、閉塞状態回数が閾値である5回以上となった場合、駆動部12の動作を停止させる。
[2−2.閉塞検出処理手順]
 次に、閉塞検出処理の手順について、図11との対応部分に同一符号を付した図13に示すルーチンRT2のフローチャートを用いて説明する。ルーチンRT2は、ルーチンRT1(図11)と比べてステップSP16及びSP17が追加されている。なおステップSP1~SP15まではルーチンRT1と同様であるため、説明を省略する。
 CPU41は、気泡が存在する可能性がある状態と判定した場合(ステップSP7でYES)、流路状態を記憶する(ステップSP8)。さらにCPU41は、事前加熱時間T1以内にピストン11の押込動作を開始させる予定があるか否かを判定し(ステップSP12)、上述と同様の処理を行う。
 一方CPU41は、閉塞検出処理において閉塞状態であると判定した場合(ステップSP9でYES)、すなわち、閉塞検出処理において上流温度検出信号SUが大きく温度変化していない場合は、流路が閉塞していると判断し、閉塞状態回数を1加算し(ステップSP16)、該閉塞状態回数が閾値(例えば5回)未満である場合(ステップSP17でNO)、ステップSP12以降の処理を行う。
 一方CPU141は、閉塞状態回数が閾値(例えば5回)以上である場合(ステップSP17でYES)、駆動部12の動作を停止させると共に、流路が閉塞している旨を使用者に通知し(ステップSP10)、温度測定を終了して(ステップSP11)処理を終了する。
 このように薬液投与装置101は、閉塞状態と判定した際に直ちにピストン11の動作を停止させることなく、複数回連続で閉塞状態と判定された場合にピストン11の動作を停止させる。
 これにより薬液投与装置101は、何らかのエラーが発生したために閉塞状態と誤判定してしまった場合に直ちにピストン11の動作を停止させてしまうことを防ぎ、閉塞状態が確実に発生している場合にのみ、ピストン11の動作を停止させることができ、使い勝手を向上させることができる。
 第3の実施の形態による薬液投与装置201は、第1の実施の形態による薬液投与装置1とは異なる閉塞検出処理を実行し、それ以外の部分は薬液投与装置1と同一である。
 本実施の形態においてCPU241は、温度測定を開始する1分前から加熱温度検出子17を加熱させることにより、ピストン11の押込動作前において、上流温度検出信号SUの温度を温度安定状態まで上昇させてほぼ一定の温度を保っている(以下この状態を温度安定化後状態とも呼ぶ)。
 またCPU241は、温度測定を終了した後も、該加熱温度検出子17の加熱を終了させず、次の温度測定まで継続させる。
[3−1.温度検出パターン]
[3−1−1.薬液流動状態の温度検出パターン]
 図14に示すように、温度検出パターンPT11においては、加熱温度検出子17近傍の検出管13B内部の薬液MSは十分に加熱され、上流温度検出信号SUはピストン11の押込動作直前(7秒時点)において一定の温度となっている。
 8秒時点においてピストン11により押込動作が行われると、熱マーカMKが下流側に移動するため、温度検出パターンPT1(図6)と同様に、上流温度検出信号SUには温度低下部分が現れる一方、下流温度検出信号SLには温度上昇部分が現れる。
[3−1−2.薬液流動状態及び気泡が存在する可能性がある状態の温度検出パターン]
 図15に示す温度検出パターンPT12は、薬液流動状態の後に気泡が存在する可能性がある状態に変化した場合の温度検出パターンである。温度検出パターンPT12は、10秒時点と18秒時点とにそれぞれ1回ずつピストン11の押込動作が行われている。
 温度検出パターンPT12においては、加熱温度検出子17近傍の検出管13B内部の薬液MSは十分に加熱され、上流温度検出信号SUはピストン11の1回目の押込動作直前(9秒時点)において一定の温度となり、図15(B)の状態Aに示すように、加熱温度検出子17近傍の薬液MSには熱マーカMKが生成される。このとき、加熱温度検出子17よりも上流部分には気泡ARが混入している。
 10秒時点においてピストン11により1回目の押込動作が行われると、熱マーカMKが下流側に移動するため、温度検出パターンPT11(図14)と同様に、上流温度検出信号SUには温度低下部分が現れる一方、下流温度検出信号SLには温度上昇部分が現れる。
 その後上流温度検出信号SUの温度は徐々に上昇すると共に、下流温度検出信号SLの温度は徐々に低下していく。
 このとき流路部13には、ピストン11の1回目の押込動作により、気泡ARが加熱温度検出子17の近傍上流まで運ばれている。またピストン11の2回目の押込動作直前(17秒時点)の流路部13は図15(B)の状態Bに示すように、加熱温度検出子17近傍の薬液MSは加熱され、熱マーカMKが生成されている。
 このとき、熱マーカMKが形成された部分よりも上流側には、図7(B)の状態Aとは異なり、加熱されていない薬液MSが無い状態となっている。すなわち、熱マーカMKは薬液MSを介さずに、上流側に位置する気泡ARに直接接している。
 18秒時点においてピストン11により2回目の押込動作が行われると、図15(B)の状態Cのように、加熱温度検出子17が設けられた位置の検出管13B内部は、薬液MSではなく気泡ARとなるため、上流温度検出信号SUの温度は、気泡ARに吸収されない熱で急上昇し、その後はピストン11の押込動作前とほぼ同様の温度変化率で再び上昇していく。
 一方下流温度検出信号SLの温度は、温度検出子18が設けられた位置の検出管13Bを熱マーカMKが通過するため、薬液流動状態と同様に急上昇した後、熱拡散により平常時の温度に向かって徐々に低下していく。
 このように、気泡が存在する可能性がある状態の場合、薬液MSに対する気泡ARの混入のタイミングによっては、熱マーカMKの上流側に温められていない薬液MSが存在しない場合がある。
 このような場合、上流温度検出信号SUがピストン11の押込動作の直後にやや急低下することなく急上昇する一方、下流温度検出信号SLは薬液流動状態と同様に急上昇して徐々に低下する温度変化を示す。
[3−1−3.気泡が存在する可能性がある状態の温度検出パターン]
 図16に示す温度検出パターンPT13は、気泡ARが流路内に混入する状態である気泡変化状態における温度検出パターンである。
 温度検出パターンPT13は、温度検出パターンPT12におけるピストン11の2回目の押込動作の際と比べて、流路部13における薬液MSの移動に対する気泡AR混入のタイミングが異なっている。
 温度検出パターンPT13においては、加熱温度検出子17近傍の検出管13B内部の薬液MSは十分に加熱され、上流温度検出信号SUはピストン11の押込動作直前(9秒時点)において一定の温度となり、図16(B)の状態Aに示すように、加熱温度検出子17近傍の薬液MSには熱マーカMKが生成される。
 また温度検出パターンPT2(図7)と同様に、熱マーカMKよりも上流側には、加熱されていない薬液MSが存在している状態となっている。
 10秒時点においてピストン11により押込動作が行われると、加熱温度検出子17が設けられた位置の検出管13Bを加熱されていない薬液MSが通過するため、一旦上流温度検出信号SUの温度はやや低下する。その後は温度検出パターンPT2と同様に上流温度検出信号SUの温度は急上昇し、ピストン11の押込動作前と同様に一定の温度となる。
 このように、気泡が存在する可能性がある状態の場合、薬液MSに対する気泡ARの混入のタイミングによっては、熱マーカMKの上流側に温められていない薬液MSが存在する場合がある。
 このような場合、一定の温度となっていた上流温度検出信号SUがピストン11の押込動作の直後にやや急低下するものの、その後は急上昇する一方、下流温度検出信号SLは薬液流動状態と同様に急上昇して徐々に低下する温度変化を示す。
 すなわち、ピストン11の押込動作の直後に、上流温度検出信号SUにおいては温度急上昇部分が現れ、下流温度検出信号SLにおいては温度上昇部分が現れることとなる。
[3−1−4.気泡状態の温度検出パターン]
 図17に示す温度検出パターンPT14は、気泡が存在する可能性がある状態(温度検出パターンPT13(図16))の後に、ピストン11がさらに押込動作を行うことにより上流側の気泡ARが下流側へ移動し、ピストン11の押込動作前時点で加熱温度検出子17が設けられた位置の検出管13B内部が気泡ARで満たされている状態である気泡状態における温度検出パターンである。
 温度検出パターンPT14においては、加熱温度検出子17が設けられた位置の検出管13B内部は気泡ARであるため、気泡ARに吸収されない加熱温度検出子17の発熱により、上流温度検出信号SUはピストン11の押込動作直前(9秒時点)において一定の温度となる。
 10秒時点においてピストン11により押込動作が行われると、温度検出パターンPT3(図8)と同様に、上流温度検出信号SU及び下流温度検出信号SLは、急激な温度変化をせず一定の温度を保つ。
[3−1−5.閉塞状態の温度検出パターン]
 図18に示す温度検出パターンPT15は、流路が閉塞した状態である閉塞状態における温度検出パターンである。
 温度検出パターンPT15においては、加熱温度検出子17近傍の検出管13B内部の薬液MSは十分に加熱され、上流温度検出信号SUはピストン11の押込動作直前(9秒時点)において一定の温度となる。
 10秒時点においてピストン11により押込動作が行われると、温度検出パターンPT4(図9)と同様に、上流温度検出信号SU及び下流温度検出信号SLは、急激な温度変化をせず一定の温度を保つ。
 このように、第3の実施の形態においても、第1の実施の形態と同様に、気泡状態と閉塞状態とにおける温度検出パターンは互いにほぼ同様の特性曲線となっている。
[3−2.閉塞検出処理]
 第3の実施の形態による薬液投与装置201は、第1の実施の形態による薬液投与装置1と同様の閉塞検出処理を実行することにより、上述した温度検出パターンPT11~PT15に基づき、流路が薬液流動状態、気泡が存在する可能性がある状態、気泡が存在する状態又は閉塞状態のいずれの流路状態であるかを判定する。
 このように薬液投与装置201は、温度安定化後状態において温度測定を行うことにより、温度安定前状態において温度測定を行う場合と比べて、温度測定を安定的に行うことができる。
<4.他の実施の形態>
 なお上述した実施の形態においては、加熱温度検出子17をサーミスタで構成する場合について述べた。本発明はこれに限らず、加熱と温度検出とが同時に行える種々の素子で構成しても良い。
 また上述した実施の形態においては、温度検出子18をサーミスタで構成する場合について述べた。本発明はこれに限らず、温度検出が行える種々の素子で構成しても良い。
 さらに上述した実施の形態においては、加熱温度検出子17により加熱と温度検出とを行うようにしたが、本発明はこれに限らず、加熱と温度検出とをそれぞれ別々の素子により行っても良い。その場合、加熱を行う素子と温度検出を行う素子とは、互いに近接して配置することが望ましい。
 さらに上述した実施の形態においては、上流温度検出信号SU及び下流温度検出信号SLに基づき、流路状態を判定する場合について述べた。本発明はこれに限らず、上流温度検出信号SUのみに基づき、流路状態を判定しても良い。
 流路が薬液流動状態か否かを判定する場合は、上流温度検出信号SUの温度低下部分及び下流温度検出信号SLの温度上昇部分の両方を検出する方が正確に流路状態を判定できるが、上流温度検出信号SUの温度変化のみに基づく場合、処理を簡略化できる。
 また上述した実施の形態においては、穿刺部5と流路部13が別々に構成されている場合について述べたが、薬液貯蔵部7から外部まで薬液が流れる流路を流路部として一体形成するようにしてもよい。
 さらに上述した実施の形態においては、判断部としてのCPU41と、薬液貯蔵部としての薬液貯蔵部7と、流路部としての流路部13と、シリンダとしてのシリンダ14と、ピストンとしてのピストン11と、加熱子としての加熱温度検出子17と、温度検出子としての加熱温度検出子17及び温度検出子18と、流路状態判定部としての流路状態判定部53とによって、薬液投与装置としての薬液投与装置1、101及び201を構成する場合について述べた。
 本発明はこれに限らず、その他種々の構成でなる判断部と、薬液貯蔵部と、流路部と、シリンダと、ピストンと、加熱子と、温度検出子と、流路状態判定部とによって、液投与装置を構成するようにしても良い。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
<1. First Embodiment>
[1-1. Configuration of drug administration device]
As shown in FIG. 1, the drug administration device 1 is a portable device that is used by being attached to a user's skin, and has a lower housing portion that is open on the upper side and has a space inside. 2 and the upper housing part 3 fitted in the opening of the lower housing part 2 are formed into a flat and substantially rectangular parallelepiped shape.
The size of the drug administration device 1 may be reduced to such an extent that it can be affixed to the user's skin, and examples thereof include a substantially rectangular parallelepiped shape having a width of 32 mm, a length of 44 mm, and a height of 11 mm.
The lower housing part 2 is provided with a sticking part 4 made of double-sided tape or the like on the bottom surface 2A. The medicinal-solution administration device 1 is held by the user when the affixing portion 4 is affixed to the user's skin.
The medicinal solution administration device 1 includes a puncture unit 5 made of a needle, a cannula or the like that punctures the user's skin in order to administer the medicinal solution filled therein to the bottom surface 2A of the lower casing unit 2 into the user's body. In addition, there is provided an injection part 6 which is an injection path for injecting the chemical liquid into the chemical liquid storage part 7 (FIG. 2) provided inside.
As shown in FIG. 2, the drug solution administration device 1 includes an injection unit 6, a drug solution storage unit 7, a substrate unit 8, and a delivery unit 9 in a space formed by the lower housing unit 2 and the upper housing unit 3. The
The chemical solution storage unit 7 is a container formed of a flexible material. As a material which comprises the chemical | medical solution storage part 7, it is preferable that a polyolefin is included, for example. As a material for forming a flexible bag, polyethylene, polypropylene, styrene thermoplastic elastomer such as styrene-butadiene copolymer or styrene-ethylene-butylene-styrene block copolymer, or ethylene-propylene copolymer, A soft resin obtained by blending and softening an olefinic thermoplastic elastomer such as an ethylene-butene copolymer or a propylene-α-olefin copolymer can be given. Although the capacity | capacitance of the container of the chemical | medical solution storage part 7 is not specifically limited, For example, a 2 mL capacity | capacitance is mentioned when size reduction etc. are considered.
The chemical solution storage unit 7 is filled with a chemical solution from the outside through the injection unit 6. Examples of the drug solution stored in the drug solution storage unit 7 include analgesics such as insulin, various hormones, morphine, and anti-inflammatory drugs. The substrate unit 8 is provided with a power supply unit 44 (FIG. 5) for supplying power supply power, a circuit for controlling the sending unit 9, and the like.
As shown in FIGS. 2, 3 and 4, the delivery unit 9 includes a piston 11, a drive unit 12 that drives the piston 11 to reciprocate according to the control of the CPU 41 (FIG. 5), a drug solution storage unit 7 to a puncture unit 5. A flow path portion 13 that forms a flow path through which a chemical solution flows, a cylinder 14 in which one end is connected to the flow path portion 13 and a piston 11 inserted from the other end is slid inside, and a chemical solution is allowed to pass only in one direction. The directional valve 15 is included.
The piston 11 is driven by the drive unit 12 and slides with a predetermined stroke in the cylinder 14. Examples of the material of the piston 11 include stainless steel, copper alloy, aluminum alloy, titanium material, thermoplastic elastomer such as polypropylene and polycarbonate, and the outer diameter is about 0.8 mm, for example. The piston 11 slides in the cylinder 14 to send a certain amount of chemical solution, and its stroke is, for example, about 2 mm.
The flow path portion 13 connects the suction pipe 13 </ b> A that forms the inflow path, the detection pipe 13 </ b> B that passes through the temperature detection section 16, the delivery pipe 13 </ b> C that forms the outflow path, and the flow path section 13 to the cylinder 14. A connecting pipe 13D for connecting the detecting pipe 13B and the connecting pipe 13D.
The suction pipe 13A has one end connected to the chemical solution storage unit 7 and the other end connected to the connection pipe 13D. The detection tube 13B has one end connected to the delivery tube 13C and the other end connected to the connection tube 13E. The delivery tube 13C has one end connected to the puncture unit 5 and the other end connected to the detection tube 13B. The connection pipe 13D has ends connected to the suction pipe 13A and the connection pipe 13E, respectively, and the cylinder 14 is connected to the center portion. The ends of the connection pipe 13E are connected to the connection pipe 13D and the detection pipe 13B, respectively.
The detection tube 13B has an internal cross-sectional area so that the chemical liquid MS is sufficiently moved when the piston 11 reciprocates once. For example, the detection tube 13B is configured by a pipe having an inner diameter of 0.4 mm (preferably a pipe made of stainless metal). ing. The suction pipe 13A, the delivery pipe 13C, and the connection pipe 13E are configured by pipes (preferably stainless metal) having an inner diameter of 1 mm or less. The detection tube 13B, the delivery tube 13C, and the connection tube 13E may be configured integrally, but at this time, the cross-sectional area is set to match the cross-sectional area of the detection tube 13B.
Between the suction pipe 13A and the connection pipe 13D, there is provided a one-way valve 15A which is an elastically deformable so-called umbrella valve made of, for example, rubber and allows the chemical liquid to pass from the suction pipe 13A to the connection pipe 13D only in one direction. . Between the connecting pipe 13D and the connecting pipe 13E, there is provided a one-way valve 15B that allows the chemical solution to pass from the connecting pipe 13D to the connecting pipe 13E only in one direction.
The cylinder 14 has an inner diameter larger than the outer diameter of the piston 11, one end is connected to the connecting pipe 13D, and the piston 11 is inserted from the other end side and slides inside. The difference between the inner diameter of the cylinder 14 and the outer diameter of the piston 11 is, for example, about 0.01 mm.
As shown in FIG. 3, when sending the chemical solution from the chemical solution storage unit 7 to the outside, the delivery unit 9 is the most retracted position (hereinafter referred to as the most pushed position) from the position where the piston 11 is most pushed in (hereinafter also referred to as the most pushed position). (Also referred to as a retraction position) in the cylinder 14 (hereinafter, this sliding direction is also referred to as a retraction direction), and the chemical stored in the chemical storage section 7 is transferred to the cylinder via the suction pipe 13A and the connection pipe 13D. 14 suck out.
When the piston 11 is moved to the most retracted position, the delivery section 9 slides the piston 11 in the cylinder 14 from the most retracted position to the most pushed position as shown in FIG. (The direction is also referred to as the pushing direction.) The chemical liquid sucked into the cylinder 14 is sent out into the user's body through the connecting tube 13D, connecting tube 13E, detection tube 13B, delivery tube 13C and puncture unit 5.
The delivery unit 9 can administer about 1 μL of a chemical solution into the user's body by reciprocating the piston 11 once. By repeating this operation at a set cycle and interval, the chemical solution can be delivered at a desired administration rate and dosage. Can be administered to the user.
In practice, the drug solution administration device 1 has a basal mode in which a drug solution is intermittently administered to a user over a period of 24 hours (for example, once every 6 minutes), and a large amount of drug solution before a meal or during hyperglycemia. It operates in two types of administration modes: a bolus mode for additional administration to the user.
[1-2. Configuration of temperature detector]
The temperature detector 16 includes a heating temperature detector 17 that is a thermistor attached to the outside of the detection tube 13B that is downstream of the piston 11 in the flow direction in the flow path portion 13, and the heating temperature detector 17. The temperature detector 18 is a thermistor attached to the outside of the detection tube 13B on the downstream side.
The heating temperature detector 17 and the temperature detector 18 are arranged in the detection tube 13B at a predetermined interval from each other. The heating temperature detector 17 generates Joule heat by causing a current to flow through the thermistor at predetermined time intervals, and repeats a heating operation for heating the chemical liquid MS in the detection tube 13B to form a thermal marker MK. At the same time, the heating temperature detector 17 measures the resistance value of the thermistor whose resistance value varies with temperature, and detects the temperature of the detection tube 13B at the position where the heating temperature detector 17 is provided.
The temperature detector 18 measures the resistance value of a thermistor whose resistance value varies with temperature, and detects the temperature of the detection tube 13B at the position where the temperature detector 18 is provided.
Here, in the delivery section 9, the distance between the heating temperature detector 17 and the temperature detector 18 is the inter-sensor distance L, the cross-sectional area inside the detection tube 13B in the temperature detection section 16 is the flow path cross-sectional area A, When the amount of pushing out the chemical MS when the piston 11 reciprocates once is defined as a volume stroke amount V, the equation (1) is established.
Figure JPOXMLDOC01-appb-M000001
Thereby, the chemical liquid administration device 1 detects the temperature of the thermal marker MK formed in the detection tube 13B in the vicinity of the heating temperature detector 17 by heating the chemical liquid MS by the heating temperature detector 17 by one pushing operation of the piston 11. It can reach the child 18.
Incidentally, when the inter-sensor distance L is small with respect to the volume stroke amount V, the temperature detector 16 is difficult to detect the temperature difference between the heating temperature detector 17 and the temperature detector 18.
Actually, in the drug administration device 1, the distance L between the sensors is 4 mm, the cross-sectional area A of the flow path is 0.125 mm 2, and the volume stroke amount V is 1 μL.
[1-3. Electrical configuration of drug solution administration device]
As shown in FIG. 5, the drug administration device 1 includes a CPU (Central Processing Unit) 41, a ROM (Read Only Memory) 42, a RAM (Random Access Memory) 43, a power supply unit 44, an interface unit (I / F). Part) 45, notifying part 46, driving part 12, heating temperature detector 17 and temperature detector 18 are connected via a bus 47.
The CPU (determination unit) 41, the ROM 42, the RAM 43, the power supply unit 44, and the notification unit 46 are arranged on the substrate unit 8 (not shown). A battery is applied to the power supply unit 44. As the notification unit 46, a speaker for notification by voice, an LED for notification by light, and the like are applied.
The interface unit 45 is provided with a button (not shown) or the like that is arranged in the upper casing unit 3 or the lower casing unit 2 and receives a user input command. In addition, a communication unit including an antenna and a communication circuit for performing wireless communication instead of the interface unit 45 is installed, and an input command by wireless communication is received from an operation unit (not shown) separate from the pump. But you can.
The CPU 41 performs overall control by reading the basic program stored in the ROM 42 into the RAM 43 and executing it, and also reads out and executes the various application programs stored in the ROM 42 into the RAM 43 to execute various processes / processes in each operation process. Perform judgment (judgment). The user operates the drug solution administration device 1 and issues a command to the CPU 41 which is a control unit, whereby the CPU 41 reads the basic program and controls the drive unit 12 to administer the drug to the user.
The CPU 41 heats the thermistor constituting the heating temperature detector 17 by controlling the heating temperature detector 17. At this time, the power used for heating is, for example, about 1 mW to 5 mW.
The heating temperature detector 17 and the temperature detector 18 measure the resistance value of the thermistor to detect the temperature of the detection tube 13B at the position where the heating temperature detector 17 and the temperature detector 18 are provided, respectively. The signal SU and the downstream temperature detection signal SL are sent to the CPU 41.
The CPU 41 acquires the temperature detected by the heating temperature detector 17 by receiving the upstream temperature detection signal SU from the heating temperature detector 17.
Further, the CPU 41 receives the downstream temperature detection signal SL from the temperature detector 18 to acquire the temperature detected by the temperature detector 18.
In practice, the CPU 41 controls the drive unit 12 to move the piston 11 from the most retracted position to the most pushed position over 0.5 seconds once in 6 minutes in the basal mode to perform the pushing operation.
The CPU 41 acquires the upstream temperature detection signal SU and the downstream temperature detection signal SL from the heating temperature detector 17 and the temperature detector 18 from about 10 seconds before the pushing operation of the piston 11 to about 5 seconds later, respectively.
In the present embodiment, the CPU 41 starts obtaining the upstream temperature detection signal SU and the downstream temperature detection signal SL from the heating temperature detector 17 and the temperature detector 18 (that is, starts temperature measurement), and at the same time, the heating temperature. The detector 17 is heated and the acquisition of the upstream temperature detection signal SU and the downstream temperature detection signal SL is completed (that is, the temperature measurement is ended), and at the same time, the heating of the heating temperature detector 17 is ended.
[1-4. Temperature detection pattern]
In the flow path, when the piston 11 performs the pushing-in operation, various states such as a state in which the chemical liquid normally flows, a state in which bubbles are mixed, and a state in which the liquid is blocked can occur. Below, the temperature detection pattern which shows the characteristic curve of the upstream temperature detection signal SU and the downstream temperature detection signal SL in such various states is demonstrated with the state of a flow path.
[1-4-1. Temperature detection pattern of chemical flow state]
A temperature detection pattern PT1 shown in FIG. 6 is a temperature detection pattern in a chemical solution flow state that is a normal state in which bubbles are not mixed in the flow path and no blockage occurs.
In the temperature detection pattern PT1, the horizontal axis indicates the number of seconds from the start of temperature measurement, and the vertical axis indicates the temperature (degrees). Further, the piston 11 performs the pushing operation at a time point 10 seconds after the start of measurement, and the same applies to the temperature detection pattern according to the present embodiment thereafter.
The CPU 41 heats the heating temperature detector 17 to increase the upstream temperature detection signal SU. However, when the temperature rises to some extent, heat is released from the heating temperature detector 17 and the location heated by the heating temperature detector 17. Even if heating is continued due to the balance between the heating by the heating temperature detector 17 and the heating, the temperature does not rise, and the upstream temperature detection signal SU is in an equilibrium state where the predetermined temperature is maintained (temperature stable state).
Further, the CPU 41 prevents the influence of the excessive temperature rise on the chemical liquid MS. When the CPU 41 reaches a predetermined temperature, the CPU 41 sets the heating temperature detector 17 so that the upstream temperature detection signal SU maintains the predetermined temperature (temperature stable state). It is also possible to control.
In the temperature detection pattern PT1, when the heating temperature detector 17 starts the heating operation simultaneously with the start of temperature measurement, the chemical liquid MS inside the detection tube 13B in the vicinity of the heating temperature detector 17 is gradually heated toward the temperature stable state. It will be done. As a result, the temperature of the upstream temperature detection signal SU gradually increases, and a thermal marker MK is generated in the chemical liquid MS at the position where the heating temperature detector 17 is provided as shown in the state A of FIG.
Even immediately before the pushing operation of the piston 11 (at the time of 9 seconds), the temperature of the upstream temperature detection signal SU continues to rise and is not constant (hereinafter, this state is also referred to as a pre-temperature stabilization state).
On the other hand, since the thermal marker MK does not exist in the vicinity of the temperature detector 18, the temperature of the downstream temperature detection signal SL is almost the same as that at the start of measurement even immediately before the piston 11 is pushed.
When the pushing operation is performed by the piston 11 at the time point of 10 seconds, the thermal marker MK moves to the downstream side with the movement of the chemical liquid MS as in the state B of FIG.
At this time, since the unheated chemical liquid MS flows from the upstream side in the vicinity of the heating temperature detector 17 in the detection tube 13B, the temperature of the upstream temperature detection signal SU is 26.86 degrees as shown in the temperature detection pattern PT1. It suddenly drops by about 0.08 degrees from 26.79 degrees.
On the other hand, since the thermal marker MK passes in the vicinity of the temperature detector 18 in the detection tube 13B, the temperature of the downstream temperature detection signal SL is about 0.00 from 26.6 degrees to 26.7 degrees as shown in the temperature detection pattern PT1. It rises once.
At this time, since the chemical liquid MS is continuously heated by the heating temperature detector 17, as shown in the temperature detection pattern PT1, the temperature of the upstream temperature detection signal SU thereafter increases again toward the temperature stable state (state) C).
On the other hand, in the vicinity of the temperature detector 18 in the detection tube 13B, the thermal marker MK in the chemical liquid MS is thermally diffused, so that the temperature of the downstream temperature detection signal SL gradually decreases toward the normal temperature.
When the temperature measurement is completed (at the time of 15 seconds), the heating temperature detector 17 finishes the heating operation so that the chemical liquid MS is not further heated.
As described above, in the chemical liquid flow state before the temperature stabilization, the upstream temperature detection signal SU that has been gradually increased rapidly decreases immediately after the pushing operation of the piston 11 and then gradually increases, while the downstream temperature detection signal SU. A temperature change in which SL rapidly increases and gradually decreases is shown.
That is, immediately after the pushing operation of the piston 11, a temperature drop portion appears in the upstream temperature detection signal SU, and a temperature rise portion appears in the downstream temperature detection signal SL.
[1-4-2. Bubble detection temperature detection pattern]
In the temperature detection pattern PT2 shown in FIG. 7, when the piston 11 is pushed in, there is a possibility that the bubbles AR exist from the state in which the detection tube 13B in the position where the heating temperature detector 17 is provided is filled with the chemical MS. It is a temperature detection pattern that has changed to a certain state.
The temperature of the upstream temperature detection signal SU gradually increases from the temperature measurement start time. Thereby, as shown in the state A of FIG. 7B, the chemical liquid MS in the vicinity of the heating temperature detector 17 is heated in the flow path portion 13 immediately before the pushing operation of the piston 11 in the temperature detection pattern PT2 (at 9 seconds). Thus, the thermal marker MK is generated.
At this time, bubbles AR are mixed in the upstream portion of the heating temperature detector 17. In addition, an unheated chemical liquid MS exists on the upstream side of the thermal marker MK.
When the pushing operation is performed by the piston 11 at the time point of 10 seconds, since the unheated chemical liquid MS passes through the vicinity of the heating temperature detector 17 in the detection tube 13B, the temperature of the upstream temperature detection signal SU is once from 26.9 degrees. Slightly decreases to 26.88 degrees (at 11 seconds). Thereafter, as in state B in FIG. 7B, the inside of the detection tube 13B at the position where the heating temperature detector 17 is provided becomes a bubble AR made of air, not a chemical liquid MS made of liquid.
Since the bubble AR has a lower thermal conductivity than the chemical liquid MS, the heat generated from the heating temperature detector 17 is less likely to be transmitted to the bubble AR compared to the chemical liquid MS.
For this reason, the temperature of the upstream temperature detection signal SU rises rapidly due to heat generated by the heating temperature detector 17 and not absorbed by the bubble AR. Thereafter, the upstream temperature detection signal SU rises again toward the temperature stable state at a temperature change rate substantially the same as that before the piston 11 is pushed.
On the other hand, the temperature of the downstream temperature detection signal SL rises rapidly in the same manner as the chemical solution flow state because the thermal marker MK passes through the detection tube 13B in the vicinity of the temperature detector 18, and then gradually toward the normal temperature by thermal diffusion. It will drop to.
As described above, in the bubble change state, there is a case where there is an unwarmed chemical liquid MS on the upstream side of the thermal marker MK depending on the mixing timing of the bubble AR with respect to the chemical liquid MS.
In such a case, the upstream temperature detection signal SU that has gradually increased slightly decreases immediately after the pushing operation of the piston 11, but then rapidly increases and gradually increases, while the downstream temperature detection signal SL does not flow in the chemical solution. Similar to the state, it shows a temperature change that rapidly increases and gradually decreases.
On the other hand, when the state changes to a state where bubbles may exist, there may be no unheated chemical MS on the upstream side of the thermal marker MK depending on the timing of mixing of the bubbles AR with the chemical MS.
In such a case, the upstream temperature detection signal SU is slightly different from the temperature detection pattern PT2 (FIG. 7), and immediately rises without a slight drop immediately after the push-in operation of the piston 11, while the downstream temperature detection signal SL is a chemical flow. Similar to the state, it shows a temperature change that rapidly increases and gradually decreases.
That is, immediately after the pushing-in operation of the piston 11, a temperature sudden rise portion appears in the upstream temperature detection signal SU, and a temperature rise portion appears in the downstream temperature detection signal SL.
[1-4-3. Temperature detection pattern when changed to a state where bubbles may exist]
In the temperature detection pattern PT3 shown in FIG. 8, after the state (temperature detection pattern PT2 (FIG. 7)) has changed to a state where there is a possibility that air bubbles exist, the piston 11 further performs a pushing operation so that the air bubbles on the upstream side. A state in which there is a possibility that there is a bubble in which AR moves to the downstream side and the inside of the detection tube 13B at the position where the heating temperature detector 17 is provided is a bubble AR before the piston 11 is pushed. It is a temperature detection pattern in the state changed to (2).
Since the inside of the detection tube 13B in the vicinity of the heating temperature detector 17 is a bubble AR at the start of temperature measurement, the heat generated by the heating temperature detector 17 is not transmitted to the bubble AR, and the temperature of the bubble AR is Although the temperature hardly rises, the temperature of the upstream temperature detection signal SU rises due to heat generated by the heating temperature detector 17 and not absorbed by the bubble AR (state A in FIG. 8B).
When the pushing operation is performed by the piston 11 at the time of 10 seconds (state B in FIG. 8B), since the bubble AR inside the detection tube 13B in the vicinity of the heating temperature detector 17 is not warmed, the upstream temperature detection signal SU is The temperature rises toward the temperature stable state at a temperature change rate substantially the same as that before the pushing operation of the piston 11 without a sudden temperature change.
On the other hand, the downstream temperature detection signal SL is a constant temperature without substantially changing the temperature before the push-in operation of the piston 11 because the unwarmed bubble AR is only moved from the upstream side.
Thus, even if the pushing operation of the piston 11 is performed in the bubble state where the bubble AR is located inside the detection tube 13B at the position where the heating temperature detector 17 is already provided before the pushing operation of the piston 11, The upstream temperature detection signal SU, which has been gradually rising, rises without undergoing a large temperature change, while the downstream temperature detection signal SL also does not undergo a large temperature change.
[1-4-4. Blocking temperature detection pattern]
A temperature detection pattern PT4 shown in FIG. 9 is a temperature detection pattern in a closed state in which the flow path is closed.
In the temperature detection pattern PT4, the heating temperature detector 17 starts the heating operation simultaneously with the start of temperature measurement, so that the chemical liquid MS inside the detection tube 13B in the vicinity of the heating temperature detector 17 is gradually heated toward the temperature stable state. It will be done. As a result, the temperature of the upstream temperature detection signal SU gradually increases, and a thermal marker MK is generated in the chemical liquid MS in the vicinity of the heating temperature detector 17 as shown in the state A of FIG. 9B.
On the other hand, since the thermal marker MK does not exist in the vicinity of the temperature detector 18, the temperature of the downstream temperature detection signal SL is almost the same as that at the start of measurement even immediately before the piston 11 is pushed.
When the pushing operation is performed by the piston 11 at the time of 10 seconds, the flow path is closed, and the chemical liquid MS does not move in the flow path portion 13, so the upstream temperature detection signal SU does not undergo a rapid temperature change, It rises toward a temperature stable state at a temperature change rate substantially the same as before the pushing operation of the piston 11.
On the other hand, since the thermal marker MK does not move from the upstream side, the downstream temperature detection signal SL has a constant temperature with almost no temperature change.
In this way, in the closed state where the flow path is closed, the upstream temperature detection signal SU that has gradually increased even if the piston 11 is pushed in, as in the bubble state described above, shows a large temperature change. On the other hand, the downstream temperature detection signal SL also does not change greatly.
[1-5. Blockage detection processing]
As described above, in the drug solution administration device 1, the puncture unit 5 is deformed by a user's body movement or the like, or the drug solution is denatured, so that the channels such as the puncture unit 5 and the channel unit 13 are blocked. There is a possibility that the drug solution cannot be accurately administered to the user.
Therefore, the CPU 41 executes a blockage detection process for detecting whether or not the puncture unit 5 or the flow channel unit 13 is blocked based on the temperature change of the upstream temperature detection signal SU and the downstream temperature detection signal SL, thereby blocking the flow channel. Is detected.
The CPU 41 develops a liquid feeding program loaded with the blockage detection algorithm stored in the ROM 42 in the RAM 43 and executes a blockage detection process. When executing the blockage detection process, the CPU 41 functions as a temperature measurement unit 51, a drive control unit 52, a flow path state determination unit 53, a flow path state storage unit 54, and a notification control unit 55, as shown in FIG.
In the drug solution administration device 1, after the drug solution storage unit 7 is filled with the drug solution from the outside via the injection unit 6, the affixing unit 4 is affixed to the user's skin and the puncture unit 5 is punctured to the user's skin. The dose and the administration rate are input via the interface unit 45.
CPU41 determines the time which performs pushing operation of piston 11 based on the inputted dosage and administration speed. Further, the temperature measurement unit 51 determines the time for starting the heating of the heating temperature detector 17. Specifically, the timing for starting heating of the heating temperature detector 17 is a preheating time T1 (for example, 10 seconds) before the time during which the piston 11 is pushed.
The temperature measuring unit 51 starts to acquire the upstream temperature detection signal SU and the downstream temperature detection signal SL from the heating temperature detector 17 and the temperature detector 18, respectively, and starts heating the heating temperature detector 17.
When a preheating time T1 (for example, 10 seconds) elapses after the temperature measurement unit 51 starts heating the heating temperature detector 17, the drive control unit 52 controls the drive unit 12, and the piston 11 via the drive unit 12 is controlled. Start pushing operation.
When the pushing operation starts, the piston 11 is in the most retracted position. However, if the piston 11 is not in the most retracted position, the piston 11 is moved to the most retracted position based on the control of the drive control unit 52. After that, the pushing operation may be started.
The flow path state determination unit 53 determines whether or not the closed state has occurred during the pushing operation of the piston 11 and there is no air bubble mixed in the flow path (chemical liquid flow state (FIG. 6)).
Specifically, in the upstream temperature detection signal SU acquired by the temperature measurement unit 51, the flow path state determination unit 53 exceeds the threshold value of 0.05 degrees within one second from the time when the piston 11 performs the pushing operation. It is detected whether or not a temperature drop portion exists.
Furthermore, in the downstream temperature detection signal SL acquired by the temperature measurement unit 51, the flow path state determination unit 53 has a temperature rise portion exceeding the threshold value of 0.05 degrees within one second from the time when the piston 11 performs the pushing operation. Whether or not exists is detected.
The flow path state determination unit 53, when there is a temperature decrease part that exceeds the threshold value in the upstream temperature detection signal SU and there is a temperature increase part that exceeds the threshold value in the downstream temperature detection signal SL, the puncture part 5 and the flow path part 13 No occlusion has occurred, and it is determined that this is a normal chemical fluid flow bear (FIG. 6).
As described above, the flow path state determination unit 53 detects a temperature change in the opposite direction such that the temperature of the upstream temperature detection signal SU suddenly increases and the downstream temperature detection signal SL rapidly decreases, thereby changing the environmental temperature or the like. Even if there is a disturbance, it is possible to accurately detect the chemical flow state.
When the flow path state determination unit 53 determines that the chemical liquid flow state is currently present, the flow path state storage unit 54 indicates that the flow path state is the chemical liquid flow state in the current pushing operation of the piston 11. Store state information.
On the other hand, the flow path state determination unit 53 is not present in the flow path when either the temperature decrease part exceeding the threshold value in the upstream temperature detection signal SU or the temperature increase part exceeding the threshold value in the downstream temperature detection signal SL does not exist. It is determined that there is a possibility that an occlusion has occurred or air bubbles are mixed in.
When it is determined that there is a possibility that the flow path is clogged or that air bubbles are mixed, the flow path state determination unit 53 determines that the air bubbles positioned upstream of the heating temperature detector 17 in the flow path unit 13 By moving the piston 11 to the position where the heating temperature detector 17 is provided, it is determined whether or not the bubble change state (FIG. 7) has been reached.
Specifically, as shown in the temperature detection pattern PT2 (FIG. 7), in the upstream temperature detection signal SU, the temperature at the piston pushing operation time is set to the temperature Ts and a predetermined a second (for example, 2 seconds) from the piston pushing operation time point. ) Assuming that the previous temperature is the temperature Tb, the expected temperature Texp, which is a temperature after a predetermined t seconds (for example, 2 seconds) from the piston pushing operation time point, is predicted by the equation (2).
Figure JPOXMLDOC01-appb-M000002
That is, the predicted temperature Texp includes the slope (temperature change rate) of the temperature change for a predetermined a second before the piston pushing operation time, the predetermined number of seconds (t seconds) after the piston pushing operation time, and the temperature Ts during the piston pushing operation. Based on the above.
The flow path state determination unit 53 compares the measured temperature T of the upstream temperature detection signal SU after a predetermined t seconds from the piston pushing operation with the expected temperature Texp. When the value obtained by subtracting the predicted temperature Texp from the measured temperature T is equal to or greater than a predetermined threshold Tth (for example, 0.05 degrees), the flow path state determination unit 53 performs the piston pushing operation performed when the current temperature is being measured. Thus, it is determined that the content of the detection tube 13B at the position where the heating temperature detector 17 is provided has changed from a chemical solution to a bubble (a state in which there is a possibility that a bubble may exist).
When the flow path state determination unit 53 determines that the current state has changed to a state in which bubbles may be present, the flow path state storage unit 54 determines that the flow path state is in the current pushing operation of the piston 11. The flow path state information indicating that the state has changed to a state in which there is a possibility that bubbles may exist is stored.
Incidentally, like the temperature detection pattern PT2, the temperature of the upstream temperature detection signal SU may slightly decrease once after the piston pushing operation depending on the timing of mixing bubbles with respect to the movement of the chemical solution.
On the other hand, the flow path state determination unit 53 compares the measured temperature T of the upstream temperature detection signal SU 2 seconds after the piston pushing operation with the expected temperature Texp, so that the temporary temperature of the upstream temperature detection signal SU is Without being affected by the drop, it is possible to accurately detect a state that has changed to a state where bubbles may exist.
On the other hand, if the flow path state determination unit 53 does not determine that the current state has changed to a state in which bubbles may exist, this means that the temperature detection pattern in this temperature measurement is the case where bubbles are present. This means that it is either the temperature detection pattern PT3 (FIG. 8) or the temperature detection pattern PT4 in the closed state (FIG. 9).
As described above, the temperature detection pattern PT3 in the state where bubbles are present and the temperature detection pattern PT4 in the closed state have similar characteristic curves. For this reason, the flow path state determination unit 53 is in a state where bubbles are present or in a closed state based on only the temperature detection pattern at the time of the current temperature measurement among the repeated temperature measurements. It is difficult to determine whether there is.
Therefore, the flow path state determination unit 53 refers to the flow path state information stored in the flow path state storage unit 54 to confirm the flow path state at the previous temperature measurement.
By the way, when the bubble AR is located in the detection tube 13B at the position where the heating temperature detector 17 is provided, even if the heating temperature detector 17 generates heat, the heat is hardly transmitted to the bubble as described above. The outside of the detection tube 13B generates heat.
Even if the piston is pushed in this state and the bubbles in the flow path section 13 move downstream, the bubbles are not warmed. Therefore, the upstream temperature detection signal SU and the downstream temperature detection signal SL include Large temperature change does not occur.
For this reason, when there is a possibility that air bubbles may exist at the previous temperature measurement, this is because the temperature change portion does not exist in the upstream temperature detection signal SU at the current temperature measurement. Since the bubble detected at the time of measurement is the cause, it means that the bubble is present and the channel is not blocked.
When the flow path state determination unit 53 determines that a bubble is currently present, the flow path state storage unit 54 indicates that the flow path state is a state where a bubble is present in the current pushing operation of the piston 11. Is stored.
As described above, when it is determined that there is a possibility that a chemical fluid state or bubbles may exist during the current temperature measurement, the temperature measurement unit 51 determines whether the bolus mode is set via the interface unit 45 or not. Determine.
In addition, it was determined that neither the chemical solution flow state nor the state in which bubbles might exist was present at the time of the current temperature measurement, and it was determined that the previous temperature measurement was in a state in which bubbles might be present. Similarly, in this case, the temperature measurement unit 51 determines whether the bolus mode is set via the interface unit 45.
In the present embodiment, the time interval of the piston pushing operation in the bolus mode is set to about 3 to 5 seconds. For this reason, after the current piston pushing operation, the next piston pushing operation is performed at a time point before the time point when 10 seconds of the preheating time T1 elapses.
For this reason, when the bolus mode is set, the temperature measurement unit 51 continues heating the heating temperature detector 17 in preparation for temperature measurement in the next piston pushing operation.
On the other hand, when the next piston pushing operation is not scheduled within the preheating time T1 after the piston pushing operation is performed, the temperature measurement unit 51 finishes heating the heating temperature detector 17. The medicinal-solution administration device 1 can reduce power consumption by not heating the heating temperature detector 17 until immediately before the next piston pushing operation starts.
On the other hand, when the flow path state determination unit 53 determines that the flow path state at the previous temperature measurement is not a state where bubbles may exist and is not a state where bubbles do not exist, the flow path is blocked. This means that it is in a state (FIG. 9).
At this time, the drive control unit 52 stops the operation of the drive unit 12. The notification control unit 55 controls the notification unit 46 to notify the user through the notification unit 46 that the puncture unit 5 and the flow path unit 13 are closed.
[1-6. Blockage detection procedure]
Next, the procedure of the blockage detection process described above will be described with reference to the flowchart of routine RT1 shown in FIG. The CPU 41 starts heating the heating temperature detector 17 and starts acquiring the upstream temperature detection signal SU and the downstream temperature detection signal SL from the heating temperature detector 17 and the temperature detector 18, respectively (steps SP1 and SP2). .
When preheating time T1 (for example, 10 seconds) elapses from the start of heating (step SP3), the CPU 41 starts the pushing operation of the piston 11 via the drive unit 12 (step SP4).
Based on the acquired upstream temperature detection signal SU and downstream temperature detection signal SL (temperature detection pattern), the CPU 41 generates a chemical flow state (a temperature decrease portion occurs in the upstream temperature detection signal SU and a temperature increase portion occurs in the downstream temperature detection signal SL). (Steps SP5 and SP6).
When the CPU 41 determines that it is in the chemical liquid flow state (YES in step SP6), it stores the flow path state (step SP8), and starts to push the piston 11 within the preheating time T1 (for example, 10 seconds). It is determined whether or not there is (step SP12).
If the CPU 41 determines that there is a plan to start the pushing operation of the piston 11 within the preheating time T1 (YES in step SP12), the heating temperature detector 17 is continuously heated and the next pushing operation of the piston 11 is performed. Start (step SP13).
On the other hand, if the CPU 41 determines that there is no plan to start the pushing operation of the piston 11 within the preheating time T1 (NO in step SP12), the CPU 41 ends the heating of the heating temperature detector 17 (step SP14) and performs temperature measurement. The process ends (step SP15) and waits until the next temperature measurement starts.
By the way, when CPU41 determines with it not being a chemical | medical solution flow state (it is NO at step SP6), it is a state (the measured temperature T in the upstream temperature detection signal SU is more than threshold value Tth rather than the expected temperature Texp) in the presence of a bubble. (Step SP7).
When the CPU 41 determines that there is a possibility that air bubbles exist (YES in step SP7), the CPU 41 stores the flow path state (step SP8). Further, the CPU 41 determines whether or not there is a plan to start the pushing operation of the piston 11 within the preheating time T1 (step SP12), and performs the same processing as described above.
On the other hand, if the CPU 41 determines that there is no possibility that air bubbles exist (NO in step SP7), the upstream temperature detection signal SU has not changed significantly due to the pushing operation of the piston 11, and therefore air bubbles exist. This indicates that there is a possibility or a closed state, and when the piston 11 is pushed in, it is determined whether there is a bubble or a closed state (step SP9).
On the other hand, if the CPU 41 determines that the blockage state is in the blockage detection process (YES in step SP9), that is, if the upstream temperature detection signal SU has not changed significantly in the blockage detection process, the flow path is blocked. It means that it is because.
The CPU 41 stops the operation of the drive unit 12 and notifies the user that the flow path is closed (step SP10), ends the temperature measurement (step SP11), and ends the process.
[1-7. Operation and effect]
In the above-described configuration, the drug solution administration device 1 is configured such that the piston 11 slides inside the cylinder 14 connected at one end to the flow path unit 13 for sending the drug solution from the drug solution storage unit 7 in which the drug solution is stored to the user's body. The drug solution is delivered into the user's body by moving.
The drug solution administration device 1 starts the temperature measurement and simultaneously heats the heating temperature detector 17 and starts the pushing operation of the piston 11 after the preheating time T1 has elapsed.
When the chemical liquid administration device 1 determines that the flow path is in a chemical flow state or a state in which bubbles may exist when the pushing operation of the piston 11 is performed, the chemical liquid administration apparatus 1 determines that the flow path is not blocked. Next, the pushing operation of the piston 11 is performed.
Next, when the medicinal solution administration device 1 performs the pushing operation of the piston 11 and determines that there is a possibility that the flow channel is in a closed state, the medicinal solution administration device 1 does not perform the pushing operation of the next piston 11, Notify the user that it is blocked.
As a result, the drug solution administration device 1 can prevent the state of bubbles that do not affect the human body from being erroneously determined as a closed state and stop the pushing operation of the piston 11, and can continue the administration of the drug solution.
Moreover, the chemical | medical solution administration apparatus 1 can stop the pushing operation of the piston 11 immediately, without misjudging the obstruction | occlusion state in the pushing operation of the piston 11 this time as a bubble state.
Furthermore, the chemical administration device 1 heats the heating temperature detector 17 at the same time as starting the temperature measurement, and ends the heating at the same time as finishing the temperature measurement, that is, heating for a time shorter than the time interval of the repeated piston pushing operation. The temperature detector 17 was heated.
Thereby, compared with the case where the heating temperature detector 17 is always heated, the chemical solution administration device 1 can prevent wasteful power consumption and can reduce power consumption.
According to the above configuration, the drug administration device 1 detects the state of the flow path based on the temperature change of the upstream temperature detection signal SU and the downstream temperature detection signal SL every time the piston 11 is pushed, and the flow path is blocked. In the previous push-in operation of the piston 11, when the detection temperature is detected, the detection tube 13B at the position where the heating temperature detector 17 is provided is changed from a state in which the inside of the detection tube 13B is filled with a chemical solution to a state in which bubbles are present. When changed, the next pushing operation of the piston 11 is continued. Thereby, the drug solution administration device 1 can continue the drug solution administration without erroneously determining the state in which bubbles are mixed in the channel as a state in which the channel is blocked. Thus, the medicinal solution administration device 1 can further improve the usability.
<2. Second Embodiment>
[2-1. Blockage detection processing]
The drug solution administration device 101 according to the second embodiment executes a blockage detection process different from that of the drug solution administration device 1 according to the first embodiment, and other parts are the same as the drug solution administration device 1.
As shown in FIG. 12 in which the same reference numerals are assigned to corresponding parts to FIG. 10, when executing the blockage detection process, the CPU 141 performs the temperature measurement unit 51, the drive control unit 52, the flow path state determination unit 53, It functions as the storage unit 54, the notification control unit 55, and the closed state counting unit 56.
The functional configuration of the CPU according to the second embodiment is added with a blocking state counting unit 56 as compared with the functional configuration of the CPU according to the first embodiment (FIG. 10).
When the flow path state determination unit 53 determines that the flow path is blocked, the closed state counting unit 56 sets the number of closed states indicating the number of times the closed state is detected during temperature measurement from the initial value of 0. Increase by one.
In the temperature measurement performed each time the piston 11 is repeatedly pushed, if the flow path is determined to be closed, the closed state counter 56 increases the closed state count by one. When it is determined that the flow path is not in the closed state, the closed state counting unit 56 returns the closed state count to 0, which is the initial value. That is, when the closed state of the flow path is continuously generated, the closed state counting unit 56 increases the number of closed states by 1 for each temperature measurement.
When the number of closed states is smaller than the threshold value of 5 times, the drive control unit 52 continues the operation of the drive unit 12 without stopping even if the flow path is closed.
On the other hand, the drive control part 52 stops operation | movement of the drive part 12, when the obstruction | occlusion state frequency | count becomes 5 times or more which is a threshold value.
[2-2. Blockage detection procedure]
Next, the procedure of the blocking detection process will be described with reference to the flowchart of the routine RT2 shown in FIG. Routine RT2 has steps SP16 and SP17 added as compared to routine RT1 (FIG. 11). Steps SP1 to SP15 are the same as the routine RT1, and thus the description thereof is omitted.
When the CPU 41 determines that there is a possibility that air bubbles exist (YES in step SP7), the CPU 41 stores the flow path state (step SP8). Further, the CPU 41 determines whether or not there is a plan to start the pushing operation of the piston 11 within the preheating time T1 (step SP12), and performs the same processing as described above.
On the other hand, if the CPU 41 determines that the blockage state is in the blockage detection process (YES in step SP9), that is, if the upstream temperature detection signal SU has not changed significantly in the blockage detection process, the flow path is blocked. If the number of closed states is less than a threshold value (for example, 5 times) (NO in step SP17), the processing after step SP12 is performed.
On the other hand, if the number of closed states is equal to or greater than a threshold value (for example, 5 times) (YES in step SP17), the CPU 141 stops the operation of the drive unit 12 and notifies the user that the flow path is closed ( Step SP10), the temperature measurement is finished (step SP11), and the process is finished.
Thus, the chemical solution administration apparatus 101 does not immediately stop the operation of the piston 11 when it is determined to be in the closed state, but stops the operation of the piston 11 when it is determined to be in the closed state continuously several times.
As a result, the medicinal solution administration device 101 prevents the operation of the piston 11 from being stopped immediately when it is erroneously determined to be in the closed state due to some error, and when the closed state has occurred reliably. Only the operation of the piston 11 can be stopped, and the usability can be improved.
The drug solution administration device 201 according to the third embodiment executes a blockage detection process different from that of the drug solution administration device 1 according to the first embodiment, and the other parts are the same as the drug solution administration device 1.
In the present embodiment, the CPU 241 raises the temperature of the upstream temperature detection signal SU to a temperature stable state before the piston 11 is pushed in by heating the heating temperature detector 17 one minute before starting the temperature measurement. The temperature is maintained at a substantially constant temperature (hereinafter, this state is also referred to as a temperature stabilized state).
Further, the CPU 241 does not end the heating of the heating temperature detector 17 even after the temperature measurement is ended, and continues until the next temperature measurement.
[3-1. Temperature detection pattern]
[3-1-1. Temperature detection pattern of chemical flow state]
As shown in FIG. 14, in the temperature detection pattern PT11, the chemical liquid MS inside the detection tube 13B in the vicinity of the heating temperature detector 17 is sufficiently heated, and the upstream temperature detection signal SU is immediately before the pushing operation of the piston 11 (at 7 seconds). ) At a constant temperature.
When the pushing operation is performed by the piston 11 at the time of 8 seconds, the thermal marker MK moves to the downstream side, so that, as in the temperature detection pattern PT1 (FIG. 6), a temperature drop portion appears in the upstream temperature detection signal SU. In the downstream temperature detection signal SL, a temperature rise portion appears.
[3-1-2. Temperature detection pattern in the state of chemical fluid flow and the possibility of air bubbles]
A temperature detection pattern PT12 shown in FIG. 15 is a temperature detection pattern when the state changes to a state where bubbles may exist after the chemical solution flow state. In the temperature detection pattern PT12, the piston 11 is pushed once every 10 seconds and 18 seconds.
In the temperature detection pattern PT12, the chemical liquid MS in the detection tube 13B in the vicinity of the heating temperature detector 17 is sufficiently heated, and the upstream temperature detection signal SU is constant immediately before the first pushing operation of the piston 11 (at 9 seconds). As shown in the state A in FIG. 15B, a thermal marker MK is generated in the chemical liquid MS in the vicinity of the heating temperature detector 17. At this time, bubbles AR are mixed in the upstream portion of the heating temperature detector 17.
When the first pushing operation is performed by the piston 11 at the time point of 10 seconds, the thermal marker MK moves to the downstream side. Therefore, as with the temperature detection pattern PT11 (FIG. 14), the upstream temperature detection signal SU includes a temperature drop portion. On the other hand, a temperature rise portion appears in the downstream temperature detection signal SL.
Thereafter, the temperature of the upstream temperature detection signal SU gradually increases, and the temperature of the downstream temperature detection signal SL gradually decreases.
At this time, the air bubbles AR are carried to the upstream of the vicinity of the heating temperature detector 17 by the first pushing operation of the piston 11 into the flow path portion 13. In addition, as shown in the state B of FIG. 15B, the flow path portion 13 immediately before the second pushing operation of the piston 11 is heated in the vicinity of the heating temperature detector 17, and the thermal marker MK. Has been generated.
At this time, unlike the state A in FIG. 7B, there is no unheated chemical solution MS upstream of the portion where the thermal marker MK is formed. That is, the thermal marker MK is in direct contact with the bubble AR located on the upstream side without passing through the chemical liquid MS.
When a second pushing operation is performed by the piston 11 at 18 seconds, the inside of the detection tube 13B at the position where the heating temperature detector 17 is provided is not the chemical liquid MS, as in the state C of FIG. Since it becomes the bubble AR, the temperature of the upstream temperature detection signal SU rapidly rises due to heat that is not absorbed by the bubble AR, and then rises again at a temperature change rate almost the same as before the pushing operation of the piston 11.
On the other hand, the temperature of the downstream temperature detection signal SL rises to a normal temperature by thermal diffusion after the thermal marker MK rapidly rises in the same manner as the chemical fluid state because the thermal marker MK passes through the detection tube 13B at the position where the temperature detector 18 is provided. It gradually declines.
As described above, in the state where there is a possibility that bubbles exist, there may be no unwarmed chemical liquid MS on the upstream side of the thermal marker MK depending on the mixing timing of the bubble AR with respect to the chemical liquid MS.
In such a case, the upstream temperature detection signal SU rises rapidly without a slight drop immediately after the pushing operation of the piston 11, while the downstream temperature detection signal SL rises rapidly and gradually decreases in the same manner as the chemical fluid state. Indicates.
[3-1-3. Temperature detection pattern in the presence of air bubbles]
A temperature detection pattern PT13 illustrated in FIG. 16 is a temperature detection pattern in a bubble change state in which the bubbles AR are mixed in the flow path.
The temperature detection pattern PT13 is different in the timing of mixing the bubble AR with respect to the movement of the chemical liquid MS in the flow path unit 13 as compared with the second pushing operation of the piston 11 in the temperature detection pattern PT12.
In the temperature detection pattern PT13, the chemical liquid MS inside the detection tube 13B in the vicinity of the heating temperature detector 17 is sufficiently heated, and the upstream temperature detection signal SU becomes a constant temperature immediately before the pushing operation of the piston 11 (at 9 seconds), As shown in state A in FIG. 16B, a thermal marker MK is generated in the chemical liquid MS in the vicinity of the heating temperature detector 17.
Further, similarly to the temperature detection pattern PT2 (FIG. 7), an unheated chemical liquid MS exists on the upstream side of the thermal marker MK.
When the pushing operation is performed by the piston 11 at the time point of 10 seconds, since the unheated chemical liquid MS passes through the detection tube 13B at the position where the heating temperature detector 17 is provided, the temperature of the upstream temperature detection signal SU is slightly slightly once. descend. Thereafter, similarly to the temperature detection pattern PT2, the temperature of the upstream temperature detection signal SU rises rapidly, and becomes a constant temperature as before the pushing operation of the piston 11.
As described above, in a state where there is a possibility that air bubbles exist, there may be an unwarmed chemical liquid MS on the upstream side of the thermal marker MK depending on the mixing timing of the bubble AR with respect to the chemical liquid MS.
In such a case, the upstream temperature detection signal SU, which has been at a constant temperature, slightly decreases immediately after the pushing operation of the piston 11, but then rapidly increases, while the downstream temperature detection signal SL is similar to the chemical flow state. It shows a temperature change that suddenly increases and gradually decreases.
That is, immediately after the pushing-in operation of the piston 11, a temperature sudden rise portion appears in the upstream temperature detection signal SU, and a temperature rise portion appears in the downstream temperature detection signal SL.
[3-1-4. Bubble temperature detection pattern]
In the temperature detection pattern PT14 shown in FIG. 17, after the state in which bubbles may exist (temperature detection pattern PT13 (FIG. 16)), the piston 11 further performs a pushing operation so that the upstream side bubbles AR are on the downstream side. This is a temperature detection pattern in a bubble state in which the inside of the detection tube 13B at the position where the heating temperature detector 17 is provided at the time before the pushing operation of the piston 11 is filled with the bubble AR.
In the temperature detection pattern PT14, since the inside of the detection tube 13B at the position where the heating temperature detector 17 is provided is a bubble AR, the upstream temperature detection signal SU is a piston due to heat generated by the heating temperature detector 17 that is not absorbed by the bubble AR. 11 immediately before the pushing operation (at 9 seconds), the temperature is constant.
When the pushing operation is performed by the piston 11 at the time point of 10 seconds, the upstream temperature detection signal SU and the downstream temperature detection signal SL have a constant temperature without a sudden temperature change, similarly to the temperature detection pattern PT3 (FIG. 8). keep.
[3-1-5. Blocking temperature detection pattern]
A temperature detection pattern PT15 shown in FIG. 18 is a temperature detection pattern in a closed state in which the flow path is closed.
In the temperature detection pattern PT15, the chemical liquid MS inside the detection tube 13B in the vicinity of the heating temperature detector 17 is sufficiently heated, and the upstream temperature detection signal SU becomes a constant temperature immediately before the piston 11 is pushed (at 9 seconds). .
When the pushing operation is performed by the piston 11 at the time point of 10 seconds, the upstream temperature detection signal SU and the downstream temperature detection signal SL have a constant temperature without a sudden temperature change, similarly to the temperature detection pattern PT4 (FIG. 9). keep.
As described above, also in the third embodiment, as in the first embodiment, the temperature detection patterns in the bubble state and the closed state have substantially the same characteristic curves.
[3-2. Blockage detection processing]
The medicinal-solution administration device 201 according to the third embodiment performs a blockage detection process similar to that of the medicinal-solution administration device 1 according to the first embodiment, so that the flow path is based on the above-described temperature detection patterns PT11 to PT15. It is determined whether the flow path state is a chemical solution flow state, a state where bubbles may be present, a state where bubbles are present, or a closed state.
As described above, the medicinal solution administration device 201 can perform temperature measurement stably by performing temperature measurement in the state after temperature stabilization, compared to the case of performing temperature measurement in the state before temperature stabilization.
<4. Other embodiments>
In the above-described embodiment, the case where the heating temperature detector 17 is composed of a thermistor has been described. The present invention is not limited to this, and may be composed of various elements that can simultaneously perform heating and temperature detection.
Further, in the above-described embodiment, the case where the temperature detector 18 is constituted by a thermistor has been described. The present invention is not limited to this, and may be composed of various elements capable of detecting temperature.
Further, in the above-described embodiment, heating and temperature detection are performed by the heating temperature detector 17, but the present invention is not limited to this, and heating and temperature detection may be performed by separate elements. . In that case, it is desirable that the element that performs heating and the element that performs temperature detection be disposed close to each other.
Furthermore, in the above-described embodiment, the case where the flow path state is determined based on the upstream temperature detection signal SU and the downstream temperature detection signal SL has been described. The present invention is not limited to this, and the flow path state may be determined based only on the upstream temperature detection signal SU.
When determining whether or not the flow path is in a chemical flow state, it is possible to accurately determine the flow path state by detecting both the temperature drop portion of the upstream temperature detection signal SU and the temperature rise portion of the downstream temperature detection signal SL. In the case where it is based only on the temperature change of the upstream temperature detection signal SU, the processing can be simplified.
In the above-described embodiment, the case where the puncture unit 5 and the flow channel unit 13 are separately configured has been described. However, the flow channel through which the chemical solution flows from the chemical solution storage unit 7 to the outside is integrally formed as the flow channel unit. You may do it.
Furthermore, in the above-described embodiment, the CPU 41 as the determination unit, the chemical solution storage unit 7 as the chemical solution storage unit, the flow channel unit 13 as the flow channel unit, the cylinder 14 as the cylinder, and the piston 11 as the piston. And a heating temperature detector 17 as a heater, a heating temperature detector 17 and a temperature detector 18 as temperature detectors, and a flow path state determination unit 53 as a flow path state determination unit. The case where the chemical liquid administration apparatuses 1, 101, and 201 are configured has been described.
The present invention is not limited to this, and includes a determination unit having various configurations, a chemical storage unit, a flow channel unit, a cylinder, a piston, a heater, a temperature detector, and a flow channel state determination unit. Alternatively, a liquid administration device may be configured.
 本発明は、例えば医療分野に適用することができる。 The present invention can be applied to the medical field, for example.
 1、101、201……薬液投与装置、2……下筐体部、3……上筐体部、4……貼付部、5……穿刺部、6……注入部、7……薬液貯蔵部、8……基板部、9、309……送出部、11……ピストン、12……駆動部、13……流路部、14……シリンダ、15……一方向弁、16……温度検出部、17……加熱温度検出子、18……温度検出子、41……CPU、42……ROM、43……RAM、44……電源部、45……インターフェース部、46……報知部、47……バス、51……温度測定部、52……駆動制御部、53……流路状態判定部、54……流路状態記憶部、55……報知制御部、56……閉塞状態計数部、MS……薬液、AR……気泡、MK……熱マーカ DESCRIPTION OF SYMBOLS 1,101,201 ... Chemical solution administration apparatus, 2 ... Lower housing | casing part, 3 ... Upper housing | casing part, 4 ... Pasting part, 5 ... Puncture part, 6 ... Injection | pouring part, 7 ... Chemical solution storage , 8 ... Substrate part, 9, 309 ... Delivery part, 11 ... Piston, 12 ... Drive part, 13 ... Flow path part, 14 ... Cylinder, 15 ... One-way valve, 16 ... Temperature Detection unit, 17 ... heating temperature detector, 18 ... temperature detector, 41 ... CPU, 42 ... ROM, 43 ... RAM, 44 ... power supply unit, 45 ... interface unit, 46 ... notification unit , 47 …… Bus, 51 …… Temperature measurement unit, 52 …… Drive control unit, 53 …… Flow path state determination unit, 54 …… Flow path state storage unit, 55 …… Notification control unit, 56 …… Blocking state Counting unit, MS ... chemical solution, AR ... bubble, MK ... thermal marker

Claims (5)

  1.  使用者に保持され、該使用者の体内に薬液を投与するための携帯型の薬液投与装置であって、
     判断部と、
     前記薬液を貯蔵する薬液貯蔵部と、
     前記薬液貯蔵部から前記使用者の体内へ薬液を送液する流路を形成する流路部と、
     前記流路部に一端が接続されるシリンダと、
     前記シリンダの内部で摺動し、前記シリンダにおける前記一端の反対側から前記一端側へ移動する押込動作により前記薬液を前記流路部を介して前記使用者の体内へ送液するピストンと、
     前記シリンダよりも前記流路部における下流側に設けられ、前記流路部を加熱する加熱子と、
     前記加熱子の近傍又は前記流路部における下流側に設けられ、前記流路部の温度を検出し温度検出信号として送出する温度検出子と、
     前記ピストンの押込動作の度に、前記温度検出信号の温度変化に基づき、前記流路部に気泡が存在する可能性があるか否か判断し、さらに、閉塞状態であるか否かを判断する流路状態判定部と、
     を備えることを特徴とする薬液投与装置。
    A portable drug administration device that is held by a user and administers the drug into the user's body,
    A determination unit;
    A chemical storage section for storing the chemical liquid;
    A flow path section that forms a flow path for feeding a chemical liquid from the chemical liquid storage section to the user's body; and
    A cylinder having one end connected to the flow path portion;
    A piston that slides inside the cylinder and feeds the drug solution into the body of the user through the flow path portion by a pushing operation of moving from the opposite side of the one end to the one end side in the cylinder;
    A heater that is provided downstream of the cylinder in the flow path section and heats the flow path section;
    A temperature detector provided in the vicinity of the heating element or on the downstream side of the flow path section, and detects the temperature of the flow path section and sends it as a temperature detection signal;
    Each time the piston is pushed in, it is determined whether there is a possibility that air bubbles are present in the flow path portion based on a temperature change of the temperature detection signal, and further, it is determined whether or not it is in a closed state. A flow path state determination unit;
    A medicinal-solution administration device comprising:
  2.  前記流路部が閉塞している場合、前記ピストンの押込動作の度に、閉塞状態が発生した回数を計数する閉塞状態計数部をさらに有し、
     前記流路状態判定部は、前記閉塞状態が発生した回数が予め設定された所定の回数以上となった場合、前記流路部が閉塞していると判定することを特徴とする
     請求項1に記載の薬液投与装置。
    When the flow path portion is closed, it further has a closed state counting unit that counts the number of times the closed state has occurred each time the piston is pushed in,
    The flow channel state determination unit determines that the flow channel unit is blocked when the number of occurrences of the blocked state is equal to or greater than a predetermined number of times set in advance. The chemical solution administration device described.
  3.  前記温度検出子は、前記加熱子の近傍に設けられた上流温度検出子と、該上流温度検出子よりも前記流路部における下流側に設けられた下流温度検出子とからなり、
     前記上流温度検出子は、前記流路部の温度を検出し上流温度検出信号として前記流路状態判定部に送出し、
     前記下流温度検出子は、前記流路部の温度を検出し下流温度検出信号として前記流路状態判定部に送出し、
     前記流路状態判定部は、前記ピストンの押込動作の際、前記上流温度検出信号と前記下流温度検出信号との互いに逆方向の温度変化に基づき、前記流路部が閉塞している可能性があるか否かを検知する
     請求項1に記載の薬液投与装置。
    The temperature detector is composed of an upstream temperature detector provided in the vicinity of the heater and a downstream temperature detector provided on the downstream side of the flow path section from the upstream temperature detector,
    The upstream temperature detector detects the temperature of the flow path part and sends it to the flow path state determination part as an upstream temperature detection signal,
    The downstream temperature detector detects the temperature of the flow path part and sends it to the flow path state determination part as a downstream temperature detection signal,
    The flow path state determination unit may block the flow path unit based on temperature changes in opposite directions of the upstream temperature detection signal and the downstream temperature detection signal during the pushing operation of the piston. The medicinal-solution administration device according to claim 1 that detects whether or not it exists.
  4.  前記加熱子は、繰り返し行われる前記ピストンの押込動作の時間間隔よりも短い時間だけ前記流路部を加熱する
     請求項1に記載の薬液投与装置。
    The medicinal-solution administration device according to claim 1, wherein the heating element heats the flow path part for a time shorter than a time interval of the piston pushing operation that is repeatedly performed.
  5.  使用者に保持され、該使用者の体内に薬液を投与するための携帯型の薬液投与装置において、前記薬液を貯蔵する薬液貯蔵部から前記使用者の体内へ前記薬液を送液する流路を形成する流路部内の前記薬液を加熱子により加熱し、該加熱子の近傍又は前記流路部における下流側に設けられた温度検出子により前記流路部の温度を検出することにより前記流路部の閉塞を検出する閉塞検出方法であって、
     前記流路部に一端が接続されるシリンダの内部で摺動し、該シリンダにおける前記一端の反対側から前記一端側へ移動することにより前記薬液を前記流路部を介して前記使用者の体内へ送液するピストンの押込動作が行われる度に、前記シリンダよりも前記流路部における下流側に設けられた前記温度検出子が前記流路部の温度を検出した温度検出信号の温度変化に基づき前記流路部内の状態を前記流路部に気泡が存在する可能性があるか否か判断するステップと、
     さらに、閉塞状態であるか否かを判断するステップと
     を有することを特徴とする閉塞検出方法。
    In a portable drug solution administration device for holding a drug solution in a user's body, the flow path for feeding the drug solution from the drug solution storage unit for storing the drug solution to the user's body is provided. The chemical liquid in the flow path portion to be formed is heated by a heating element, and the temperature of the flow path section is detected by a temperature detector provided in the vicinity of the heating element or on the downstream side of the flow path section. A blockage detection method for detecting blockage of a part,
    The inside of the user's body is slid inside the cylinder whose one end is connected to the flow path portion and moves from the opposite side of the one end to the one end side in the cylinder through the flow path portion. Each time the piston that feeds liquid is pushed in, the temperature detector provided on the downstream side of the flow channel portion from the cylinder detects the temperature change of the temperature detection signal that detects the temperature of the flow channel portion. Determining whether there is a possibility that air bubbles are present in the flow path part based on the state in the flow path part; and
    And a step of determining whether or not it is in a closed state.
PCT/JP2012/075278 2011-09-28 2012-09-24 Medical solution administration device and blockage detection method WO2013047857A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011212829A JP5909066B2 (en) 2011-09-28 2011-09-28 Chemical solution administration device
JP2011-212829 2011-09-28

Publications (1)

Publication Number Publication Date
WO2013047857A1 true WO2013047857A1 (en) 2013-04-04

Family

ID=47995880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075278 WO2013047857A1 (en) 2011-09-28 2012-09-24 Medical solution administration device and blockage detection method

Country Status (2)

Country Link
JP (1) JP5909066B2 (en)
WO (1) WO2013047857A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3119991A1 (en) * 2021-02-22 2022-08-26 L'air Liquide Société Anonyme Pour L’Étude Et L'exploitation Des Procédés Georges Claude Insulin Delivery Set with Insulin Rate Estimation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6676627B2 (en) * 2014-09-22 2020-04-08 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Plate with integrated fluid channel
CN108472437B (en) * 2015-12-03 2021-04-13 Unl控股公司 System and method for controlled drug delivery pump
USD857191S1 (en) 2016-01-21 2019-08-20 Becton, Dickinson And Company Wearable drug delivery device
KR102168759B1 (en) * 2018-11-01 2020-10-22 주식회사 에스티엔 Unit for injecting medicinal fluid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177762A (en) * 1981-04-10 1982-11-01 Parker Hannifin Corp Liquid injecting apparatus
JPH0339166A (en) * 1989-06-30 1991-02-20 B Braun Melsungen Ag Drop-injection apparatus
JP2000271216A (en) * 1999-03-26 2000-10-03 Terumo Corp Device for sensing bubble and method therefor
JP2007528236A (en) * 2003-11-04 2007-10-11 メデックス インコーポレーテッド Quick detection system for syringe pump blockage

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5096286B2 (en) * 2008-10-28 2012-12-12 日機装株式会社 Bubble detection device and biological component measurement device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177762A (en) * 1981-04-10 1982-11-01 Parker Hannifin Corp Liquid injecting apparatus
JPH0339166A (en) * 1989-06-30 1991-02-20 B Braun Melsungen Ag Drop-injection apparatus
JP2000271216A (en) * 1999-03-26 2000-10-03 Terumo Corp Device for sensing bubble and method therefor
JP2007528236A (en) * 2003-11-04 2007-10-11 メデックス インコーポレーテッド Quick detection system for syringe pump blockage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3119991A1 (en) * 2021-02-22 2022-08-26 L'air Liquide Société Anonyme Pour L’Étude Et L'exploitation Des Procédés Georges Claude Insulin Delivery Set with Insulin Rate Estimation

Also Published As

Publication number Publication date
JP5909066B2 (en) 2016-04-26
JP2013070863A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
US20240108819A1 (en) Infusion Pump Apparatus, Method and System
JP7054349B2 (en) Injection pump system including temperature compensation for injection rate adjustment
US11813427B2 (en) Pumping fluid delivery systems and methods using force application assembly
WO2013047857A1 (en) Medical solution administration device and blockage detection method
US20090259176A1 (en) Transdermal patch system
JP6401162B2 (en) Substance delivery device
US20190254797A1 (en) Substance delivery device
JP2022101639A (en) Medical fluid transfer and injection apparatus and method with compliance monitoring
JP6637199B2 (en) Flow detector
JP2014064780A (en) Liquid medicine administration device
CN104107490A (en) Portable infusion device
JP2012200419A (en) Liquid chemical dosing apparatus and blocking detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835900

Country of ref document: EP

Kind code of ref document: A1