WO2013047710A1 - Photocatalyst structure, method for producing photocatalyst structure, and air purification device - Google Patents

Photocatalyst structure, method for producing photocatalyst structure, and air purification device Download PDF

Info

Publication number
WO2013047710A1
WO2013047710A1 PCT/JP2012/074993 JP2012074993W WO2013047710A1 WO 2013047710 A1 WO2013047710 A1 WO 2013047710A1 JP 2012074993 W JP2012074993 W JP 2012074993W WO 2013047710 A1 WO2013047710 A1 WO 2013047710A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
photocatalyst
photocatalyst structure
air
gel
Prior art date
Application number
PCT/JP2012/074993
Other languages
French (fr)
Japanese (ja)
Inventor
敏男 高柳
浩美 高柳
豪 平田
Original Assignee
株式会社タカヤナギ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タカヤナギ filed Critical 株式会社タカヤナギ
Publication of WO2013047710A1 publication Critical patent/WO2013047710A1/en

Links

Images

Classifications

    • B01J35/30
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultra-violet radiation
    • A61L9/205Ultra-violet radiation using a photocatalyst or photosensitiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/39

Definitions

  • the present invention relates to a photocatalyst structure exhibiting a photocatalytic action, an air cleaning device using the photocatalyst structure, and a method for producing the photocatalyst structure, and in particular, purifies air by removing odorous substances and bacteria in the air.
  • the present invention relates to a photocatalyst structure, a photocatalyst structure manufacturing method, and an air cleaning device.
  • air odor substances examples include ammonia generated from food or generated as second-hand tobacco smoke, and VOC (volatile organic substances such as acetaldehyde) generated from building materials.
  • the air purifier cleans air odorous substances in a so-called semi-closed space such as a living space or a car.
  • the air purifier treats not only such a general air environment but also a poor environment in which a strong odor substance is continuously generated in a temporary toilet having a sealed space of about 1.5 m 3 , for example. There is a case.
  • the powerful oxidation reaction of active oxygen superoxide anion (• O 2 ⁇ ) and OH radicals generated on the photocatalyst surface decomposes and removes organic chemicals in water, decomposes malodorous substances in the air, It can be used to purify the environment in various fields such as prevention.
  • OH (hydroxy) radicals are the most reactive among the molecular species called so-called active oxygen, and are said to continue to be generated when light and water are supplied to titanium oxide, and to continue photocatalytic reactions. ing.
  • Patent Document 1 a method of applying a photocatalyst to a member surface without a binder has also been proposed (Patent Document 1). Since it is limited to those exposed on the surface of the member (base material), the surface area of the member has to be increased, which is not sufficient economically and efficiently.
  • an apparatus including at least a photocatalyst structure in which a photocatalyst is fixed and carried and a light source lamp in a casing is proposed.
  • the photocatalyst structure is mainly of a filter type and is intended to purify by passing air through the member.
  • a honeycomb body or a nonwoven fabric on which the photocatalyst is fixed and supported Patent Document 2.
  • an attempt has been made to increase the effective surface area by fixing and supporting a photocatalyst on the surface of a large number of lightweight powders to form a photocatalyst structure (Patent Document 3).
  • the conventional air purifying apparatus using a photocatalyst has a big problem that the air purification efficiency is low as a whole.
  • the surface area of the photocatalyst structure is increased and the number of each member is increased.
  • the size of the apparatus inevitably increases, resulting in problems in terms of economy and space layout. In other words, it was not suitable for air purification at least in a narrow and poor environment such as in a temporary toilet.
  • An object of the present invention is to provide a photocatalyst structure and a method for producing the photocatalyst structure which are small in size and have a good photocatalytic efficiency, and have been made in view of the above-described problems. With this, it is possible to efficiently clean in a short time even air in a poor environment such as a temporary toilet, as well as a so-called quasi-closed space such as a living space or in a car, and it is low-cost and compact. An improved air cleaning device is provided.
  • a photocatalyst structure includes a sponge-like photocatalyst layer in which a large number of voids are formed.
  • the photocatalyst layer includes a photocatalyst, a water-absorbing polymer, and It contains a water-soluble binder.
  • the photocatalyst may be titanium oxide
  • the water-absorbing polymer is (1) a crosslinked acrylic polymer comprising a monomer selected from acrylic acid or a salt thereof, an acrylic ester and acrylamide.
  • the water-absorbing polymer may be a cross-linked acrylic polymer including a monomer selected from acrylic acid or a salt thereof, an acrylic ester and acrylamide.
  • the water-soluble binder may be a polyvinyl alcohol-based or vinyl acetate resin-based binder.
  • an air cleaning apparatus includes a photocatalyst structure according to the first aspect of the present invention, a first substrate on which the photocatalyst structure is disposed, and a light source. And a second substrate on which the light source is disposed, wherein the photocatalyst structure is disposed to face the light source.
  • the air purifier may further include a water-containing gel swollen by absorbing water.
  • the water-containing gel may absorb water to such an extent that the gel form can be maintained.
  • the water-containing gel may be stored in a storage container.
  • the air cleaning device includes a housing having a first opening for taking in air and a second opening for discharging air, and the photocatalyst structure disposed on the first substrate is disposed in the housing.
  • a light emitting element that is the light source disposed on the second substrate is opposed in parallel to an axis connecting the first opening and the second opening, and the first substrate or
  • the storage container storing the hydrated gel may be disposed on at least one of the back surfaces of the second substrate.
  • the storage container may include an inner container made of a mesh sheet for storing the hydrated gel and an outer container made of a perforated plastic for storing the inner container.
  • the outer container may be a set in which two upper and lower two sets are arranged in parallel on the back surface of the first substrate or the second substrate.
  • the upper end of the first or second substrate on the side where the outer container is disposed may be lower than the upper end of the two upper containers stacked.
  • the water-containing gel may be one that has absorbed an aqueous solution containing metal ions.
  • the water-containing gel When the water-containing gel is dried, it may be regenerated and reusable by absorbing water.
  • a method for producing a photocatalyst structure according to a third aspect of the present invention is a method for producing a photocatalyst structure according to the first aspect of the present invention.
  • a step of mixing and stirring a binder to prepare a first mixture a step of mixing the first mixture and a water-absorbing polymer to prepare a second mixture, and molding the second mixture
  • a step and a step of drying the molded second mixture are a method for producing a photocatalyst structure according to the first aspect of the present invention.
  • the photocatalyst may be titanium oxide
  • the water-absorbing polymer is (1) a crosslinked acrylic polymer comprising a monomer selected from acrylic acid or a salt thereof, an acrylic ester and acrylamide.
  • the water-soluble binder may be a polyvinyl alcohol-based or vinyl acetate resin-based binder.
  • the step of mixing the water-absorbing polymer may further include adding water.
  • cleaning of air includes purification of air by decomposing / removing / adsorbing harmful substances such as odorous substances and bacteria in the air.
  • a photocatalyst layer in which a photocatalyst is uniformly dispersed and a large number of voids are formed, a photocatalyst structure having good photolysis performance can be provided, and a method for producing the photocatalyst structure therefor is provided. Can be provided. Furthermore, by providing the photocatalyst structure, it is possible to provide an air cleaning device that exhibits a suitable air cleaning function.
  • photocatalyst structure 10 is provided with the photocatalyst layer 11 and the board
  • the photocatalyst 11 a is dispersed in the photocatalyst layer 11.
  • the photocatalyst 11a for example, titanium oxide is preferable, and visible light responsive and ultraviolet responsive titanium oxide (titanium dioxide), a mixture thereof, and the like can also be used.
  • fine irregularities are formed on the surface as shown in FIGS. 1 and 2, and a large number of voids 11b are formed inside.
  • the photocatalyst structure 11 is formed, for example, in a size of 15 cm ⁇ 15 cm and a height of 4 mm.
  • the size and shape of the photocatalyst structure 11 can be appropriately changed depending on the application to be used, the required performance, the size of an air cleaning device 20 using the photocatalyst structure 11 (described later), and the like.
  • the support substrate 12 for example, cork material, veneer, plywood, paper, film, wire mesh and the like can be used.
  • a cork material is used as the support substrate 12. It is preferable.
  • the support substrate 12 may be omitted and only the photocatalyst layer 11 may be used.
  • the photocatalyst layer 11 may be formed on one surface of the wire mesh, or the photocatalyst layer 11 may be formed on both surfaces of the wire mesh.
  • the photocatalyst layer 11 is formed in a sponge shape and includes a large number of voids 11b, whereby the area where the photocatalyst 11a contained in the photocatalyst layer is in contact with air can be increased.
  • the photodecomposition efficiency of the photocatalyst can be increased (see the experimental examples described later).
  • the photocatalyst structure is described as an example of being formed in a sheet shape.
  • the present invention is not limited to this, and the shape is not limited to this, for example, a three-dimensional shape such as a honeycomb body or a fiber shape. May be.
  • the water-soluble binder is not particularly limited, and may be, for example, a paste-like vinyl acetate resin emulsion bond or a polyvinyl alcohol (PVAL) liquid paste.
  • PVAL binders are preferred because they are less sticky and have higher fluidity than vinyl acetate binders, and are easy to apply on the substrate and facilitate the manufacturing process.
  • the water-absorbing polymer is added to the mixed solution, and stirred and mixed with a mixer or the like.
  • water may be added as appropriate.
  • a water absorbing polymer From the viewpoint of the water absorbing property and stability of aqueous gel, (1) It is comprised including the monomer chosen from acrylic acid or its salt, acrylic acid ester, and acrylamide.
  • One or more selected from a crosslinked acrylic polymer, (2) a crosslinked product of isobutylene-maleic anhydride copolymer, and (3) a crosslinked polyoxyethylene are preferred.
  • acrylic systems having a molecular structure in which polymer chains having hydrophilic groups in the side chains are cross-linked such as acrylate salts (cross-linked acrylic acid polymer sodium salts, cross-linked polyacrylic acid polymer calcium salts). It may be a polymer.
  • the water-absorbing polymer begins to absorb water and swells in a gel form.
  • the titanium oxide powder coexisting in the emulsion adheres to the inside and outside of the gel and is kneaded.
  • a mixed liquid in which the water-absorbing polymer is mixed is applied onto the substrate and pressed from above the mixed liquid, or the mixed liquid is passed between two pairs of rolls, for example, to form a sheet.
  • a cork material is suitable for the support substrate 12, but veneer, plywood, paper, film, or the like may be used. Further, the sheet may be peeled from the substrate by making the substrate a plate using a metal such as iron, copper, stainless steel, aluminum, or the like.
  • the mixed solution formed into a sheet is naturally dried at room temperature.
  • the moisture evaporates from inside and outside the gel
  • the titanium oxide powder kneaded in the gel remains inside and outside the gel.
  • the water-absorbing polymer mixed gel becomes smaller and becomes a sponge structure maintaining elasticity.
  • sun-drying or hot-air drying because it is more effective to increase the drying efficiency and forcibly evaporate the water absorbed by the water-absorbing polymer.
  • the substrate is made of metal, it is peeled off from the substrate after drying. In this way, a photocatalyst structure is manufactured.
  • the photocatalyst is mixed with a water-soluble binder, and after the water-absorbing polymer is added, the water is evaporated, so the kneading step, the drying step, etc. are simple and safe.
  • the photocatalyst layer 11 including the photocatalyst 11a can be formed in a porous sponge shape having voids 11b without cost. Thereby, the area which the photocatalyst 11a contacts with air can be enlarged, and the photolysis efficiency of the photocatalyst structure 10 can be improved (refer the below-mentioned experimental example).
  • the photocatalyst structure is described as an example of being formed in a sheet shape.
  • the present invention is not limited to this, and the shape is not limited to this, for example, a three-dimensional shape such as a honeycomb body or a fiber shape. May be.
  • the air cleaning device 20 includes a photocatalyst structure 10, a support substrate 21 for the photocatalyst structure, an LED (Light Emitting Diode) 22 as a light source, and a light source. And a counter substrate 23 for facing the structure.
  • the support substrate 21 and the counter substrate 23 are each formed of a metal plate, and column portions 24 made of, for example, bolts or the like may be provided at four corners of the support substrate 21 and the counter substrate 23 as shown in FIG. 3B. .
  • the support substrate 21 and the counter substrate 23 are arranged at a predetermined distance apart as shown in FIG. 3A.
  • the light source 22 may be an LED, for example, a diode having an ultraviolet peak wavelength of 375 nm and an intensity of 0.38 mw / 1 cm 2 is used. As shown in FIG. 3B, about 42 LEDs 22 are arranged on a base of 15 cm ⁇ 15 cm, for example. LED22 is arrange
  • the photocatalyst structure has been described by taking an example in which the photocatalyst structure is formed in a sheet shape.
  • the present invention is not limited to the above-described embodiments, and various modifications and applications are possible.
  • a photocatalyst structure is manufactured by the above-described manufacturing method in an amount shown in Experiments 1 to 3 in Table 1 with ultraviolet-type titanium oxide, a water-soluble binder, and a water-absorbing polymer. Air purifiers using these photocatalyst structures were produced.
  • the UV-type titanium oxide ST-21 titanium dioxide manufactured by Ishihara Sangyo Co., Ltd. is used, and as the water-soluble binder, a vinyl acetate resin emulsion bond (manufactured by Konishi Co., Ltd.) is used.
  • An acid polymer partial sodium salt cross-linked product (Kennis Co., Ltd.) was used. Moreover, the air purifier was made into a compact size of about 17 cm ⁇ 17 cm and a height of about 37 mm.
  • An LED was used as the light source in the air cleaning device, and 42 diodes having an ultraviolet peak wavelength of 375 nm and an intensity of 0.38 mW / cm 2 were arranged on a 15 cm ⁇ 15 cm substrate in a 7 cm width. Moreover, it arrange
  • the photocatalyst structure was formed in a size of 15 cm ⁇ 15 cm and a height of 4 mm.
  • This air purifier was set in a closed temporary toilet (smell monitor value is 22.5) installed at a temperature of 33.5 ° C. and having a space volume of 1.5 m 3 . Two hours after the start of the operation of the air purifier, the odor in the temporary toilet was measured by the odor monitor.
  • the odor monitor in the temporary toilet was 22.5 before the experiment, whereas in the comparative examples (experiments 4 and 5) in which the water-absorbing polymer was not added, the deodorizing effect was not so much.
  • the odor monitor value in the temporary toilet showed 1 (fresh air level). That is, the air cleaner provided with the photocatalyst structure yielded an exceptional effect that has made the odor in the temporary toilet odorless in about 2 hours.
  • Experiment 6 is an experimental result when visible light type titanium oxide is used as a photocatalyst.
  • a photocatalyst structure manufactured by the same method as Experiments 1 to 3 using a visible light responsive titanium oxide powder (Ishihara Sangyo Co., Ltd., MPT-623) surface-treated with a platinum compound, and 10,000 Lux An air cleaning device comprising a 9W LED that emits visible light was created.
  • Experimental conditions are the same as in Table 1.
  • the odor monitor value of the temporary toilet was 1 in the measurement after 2 hours (see Table 3).
  • Table 4 shows the results of Experiments 7 and 8 using a polyacrylic acid polymer partial calcium salt crosslinked product as a water-absorbing polymer.
  • 2 g of a water-absorbing polymer made of a cross-linked polyacrylic acid polymer calcium salt manufactured by Meviol Co., Ltd. was used.
  • the titanium oxide and the binder were the same as those in Experiments 1 to 3, and the construction area was also 225 cm 2 .
  • PVAL binders Compared with vinyl acetate, PVAL binders have less stickiness and high fluidity, making it easier to apply on the substrate, making manufacturing easier, and reducing drying time. This is a preferred embodiment.
  • FIG. 12 ⁇ Deodorizing effect on cigarette smoke> Experiment 12, FIG.
  • a 32.4 L sealed plastic container was filled with smoke of two cigarettes.
  • the materials used for producing the photocatalyst structure were the same as those in Experiments 1 to 3, and 79 g of vinyl acetate bond, 6 g of titanium oxide and 6 g of water-absorbing polymer were used, and the construction area was 570 cm 2 .
  • the photocatalyst structure was irradiated with black light having a peak wavelength of 360 nm and an intensity of 5 mW / cm 2 .
  • the odor monitor value in the case of using the photocatalyst structure of the present invention was a high value of 97 before the experiment, but it was 60 after 30 minutes and 35, 1. After 5 hours, it decreased to 15 after 2 hours and to 7 after 2 hours.
  • the odor monitor value when the photocatalyst structure of the present invention is not used is initially 97, 97 after 30 minutes, 96 after 1 hour, 94 after 1.5 hours, 94 after 2 hours. 92, almost flat.
  • the air purifying apparatus of this embodiment has a deodorizing effect with respect to tobacco smoke.
  • FIG. 13 ⁇ Deodorizing effect on ammonia> Experiment 13, FIG.
  • the photocatalyst structure had a peak wavelength of 360 nm and an intensity of 5 mW. / Cm 2 of black light was irradiated.
  • the materials used for producing the photocatalyst structure are the same as those in Experiments 1 to 3, and 79 g of vinyl acetate-based bond, 6 g of titanium oxide, water-absorbing polymer (cross-linked acrylic acid polymer partial sodium salt) ) 6 g and the construction area was 570 cm 2 .
  • the odor monitor value when the photocatalyst structure of the present invention was used was a high value of 83 before the experiment, but it was 52 after 30 minutes, 26, 1. After 5 hours, it decreased dramatically to 4 and after 2 hours, it decreased to 1 and decreased to an odorless level.
  • the odor monitor value is initially 83, 83 after 30 minutes, 82 after 1 hour, 80 after 1.5 hours, 80 after 2 hours. At 80, there was little change.
  • the air purifier of this embodiment clearly has a deodorizing effect on ammonia. Since ammonia is one of the causative substances of toilet odors, it was confirmed that the air purifier equipped with the photocatalyst structure of this embodiment is effective in deodorizing temporary toilets.
  • the improved air cleaning device includes a photocatalyst structure 10, a support substrate 21 that supports the photocatalyst structure 10, and an LED (light source) that faces the photocatalyst structure support substrate 21, as shown in FIG. 9A. ) 22, a counter substrate 23 that supports the LED (light source) 22, and further includes a hydrogel 32 and a storage container 33.
  • the housing 40 includes an air intake port 35 in the vicinity of the fan 9 and an air exhaust port 36 on the opposite side.
  • the counter substrate 23 that supports the LED (light source) 22 and the hydrated gel storage container 33 are disposed opposite to each other on both sides of the support substrate 21 that supports the photocatalyst structure 10.
  • the support substrate 21 that supports the photocatalyst structure 10 and the counter substrate 23 that supports the LED (light source) 22 may be replaced, or the support substrate 21 that supports the photocatalyst structure 10 and the LED (light source). ) 22 may be arranged on both sides of the water-containing gel container.
  • the hydrogel storage container 33 includes, for example, an inner container 33a formed of a mesh sheet as shown in FIG. 7 and an outer container 33b made of perforated plastic as shown in FIG.
  • the inner container 33 a containing the hydrated gel 32 is placed in the outer container 33 b, arranged so as to be adjacent to the back surface 21 b side of the support substrate 21 of the photocatalyst structure 10, and ventilated by the suction fan 9.
  • the support substrate 21 is preferably configured so that air containing moisture (humidity) evaporated from the water-containing gel 32 by ventilation is from the water-containing gel storage container 33 (33a, 33b) side to the LED 22 side.
  • it may be arranged to serve as a partition wall. Separately, a partition wall may be provided between the support substrate 21 and the storage container 33.
  • FIG. 9B when the improved air purifying apparatus 30 is started to operate, air enters from the air intake port 35 by the fan 9, is divided inside, and merges in the vicinity of the air discharge port 36.
  • This air flow mainly comprises an air flow A passing between the photocatalyst structure 10 and the LED 6 and an air flow B passing through the hydrated gel storage container 33 side.
  • an air flow C from the hydrogel container 33 side to the photocatalyst structure 10 is also generated.
  • the support substrate 21 in the apparatus has an area of 160 cm 2 formed into a sheet using MPT-623 powder surface-treated with a platinum compound using visible light responsive titanium oxide manufactured by Ishihara Sangyo Co., Ltd.
  • a photocatalyst structure 10 is used.
  • the counter support substrate 23 is provided with a 9.5 cm ⁇ 14.5 cm LED substrate in which 42 2w LEDs are arranged. These LEDs irradiate the photocatalyst structure 10 with 15000 Lux visible light.
  • a 12 V DC suction fan 9 may be provided at a distance of about 0.5 cm to 2 cm from the set position of the hydrogel container 33 in order to suck air. Air outside the apparatus is sucked into the improved air cleaning apparatus 30 simultaneously with the rotation of the fan 9, and the wind speed is, for example, about 2 m / sec to 3 m / sec.
  • the hydrogel 32 is first stored in the inner storage container 33a, and further stored in the outer storage container 33b.
  • the inner storage container 33a is a cage made of, for example, a mesh sheet made of polyamide such as thermoplastic resin, polypropylene, or polyethylene.
  • the outer storage container is a perforated plastic container having a large number of holes 33b1 (a commercially available polystyrene deep-angle container (7.4 cm ⁇ 11.3 cm ⁇ 9 manufactured by Inomata Chemical Co., Ltd.)). .8 cm)).
  • the reason why the hydrated gel 32 is stored in the inner storage container 31 of such a mesh sheet is that when the hydrated gel is directly stored in the plastic outer storage container 32, the shape of the hydrated gel 32 in contact with the inner wall of the container 32 is crushed. Because it will end up.
  • the inner storage container 33a stores a hydrogel 32 (480 g) whose water absorption is 20 times its own weight.
  • the outer storage container 33b is preferably arranged in two rows and one row at a position adjacent to the back surface 21b side of the support substrate 21 (see FIGS. 9A, 9B, and 10).
  • the weight of the four gel outer storage containers 33b is 1920 g
  • the total surface area of the containers is 1452 cm 2 .
  • the “water-containing gel” is a gel in which the powder of the water-absorbent resin 1 is swollen with water to such an extent that its form can be retained by water absorption. In the state where a moderate air gap is secured between the gels (type 3, see below) (see FIG. 6A). The creation method is described below.
  • the water-absorbing resin is not particularly limited, but includes (1) a monomer selected from acrylic acid or a salt thereof, an acrylate ester and acrylamide from the viewpoint of water absorption and stability of the aqueous gel.
  • a monomer selected from acrylic acid or a salt thereof, an acrylate ester and acrylamide from the viewpoint of water absorption and stability of the aqueous gel.
  • One or more selected from (2) a crosslinked product of an isobutylene-maleic anhydride copolymer and (3) a crosslinked polyoxyethylene are preferable.
  • water-absorbing resins examples include, for example, acrylate-based, polyacrylic acid polymer partial sodium salt cross-linked products, polyacrylic acid polymer partial calcium salt cross-linked products, There are water-absorbing resins having a molecular structure in which polymer chains are cross-linked, and the shape is usually powder or granular. Therefore, before starting the experiment, the particle size distribution of the original water-absorbing resin before water absorption was examined. A sieve was prepared with a stainless mesh of 30 to 150 mesh, and as an example, the particle size distribution of a crosslinked acrylic acid polymer sodium salt resin (Kenith Corp., 400 g) used in the following water absorption experiment was examined. In the following, for example, “30 # on” means a case where a 30-mesh wire mesh is not passed, and “150 # pass” means a case where a 150-mesh wire mesh is passed.
  • a container for containing water or water containing metal ions, etc. is shallow with a bottom depth of about 4 to 5 cm, for example, and a frontage ( For example, it is preferable to use a wide square dish of 22 ⁇ 31 cm), and the water-absorbing resin 1 may be introduced so as to be uniform throughout the square dish. If the water is absorbed in this way, there is little variation due to the difference in absorption speed, and the water-containing gel 32 having a good water absorption can be obtained.
  • the hydrogel 32 In order for the hydrogel 32 to function as an adsorbent, it is essential to have adsorption performance, but in addition to this, it is also necessary that the aqueous solution does not ooze and the gel form is maintained.
  • the “water-containing gel” (32) referred to in the present application is a gel in which the water-absorbent resin of type 3 is swollen to the extent that the water-absorbent resin can retain its form due to water absorption, even if stored in a container. Since a gap is secured between them, this is a preferred embodiment as an adsorbent.
  • the degree of water absorption (moisture content) of the water-containing gel 32 (also simply referred to as a water-containing gel) can be appropriately adjusted depending on the type of the water-absorbing resin used so as to satisfy the above type 3 characteristics.
  • the water-containing gel 32 produced from the water-absorbent resin 1 was used, and compared with granular white birch WH2C8 / 32 coconut shell activated carbon (Nippon Enviro Chemicals Co., Ltd.).
  • the experimental box used was made of a glass plate having a length of 45 cm, a width of 45 cm, and a height of 60 cm, and its volume was 121.5 L.
  • As the storage container a 15 cm ⁇ 2.5 cm ⁇ 15.5 cm (volume 581.25 cm 3 , surface area 617 cm 2 ) made of 50 # stainless wire mesh was used.
  • a coconut shell activated carbon amount of 240 g or a water-containing gel of 377 g having a water absorption ratio of 30 times was placed in a storage container and set in a test box.
  • Ammonia water which is also one of the odorous substances, was dropped onto the floor in the experimental box so that the ammonia concentration was 1400 ppm.
  • the experiment was conducted for 3 days, once a day for 3 hours, without replacing the hydrogel or coconut shell activated carbon.
  • the same odor monitor as in the above experiments was used.
  • the improved air cleaning device 30 was placed in the 121.5 L capacity test box used in Experiments 16 and 17, and the experiment was performed under the following conditions. After dropping ammonia water having a concentration of 500 ppm into the experimental box, the fan 9 was operated, and the odor in the experimental box was measured with an odor monitor over time.
  • the “LED power supply ON state” means that the LED is irradiated and the photocatalyst structure 10 is under the condition of exerting the photocatalytic function
  • the “LED power supply OFF state” means that the LED is not irradiated. This means that the photocatalyst structure 10 is under conditions that do not exhibit the photocatalytic function.
  • the improved air cleaning device 30 using the photocatalyst structure 10 (LED / ON state) and the hydrated gel 32 in combination is an air (smell) filled with ammonia after only 11 minutes of operation.
  • the monitor value 84) showed an amazing air cleaning effect that it can be deodorized and cleaned to a level equivalent to clean air (odor monitor value 1).
  • the water-containing gel has excellent adsorption that it can trap odors and the like in a shorter time by having water content and gaps between the gels.
  • the photocatalyst structure 10 has a small deodorizing effect in a short time, it is about 2 hours from the experiment (experiments 1 to 13) of the air cleaning device provided with the photocatalyst structure 10 described above. If it passes, it has the performance which can clean air continuously.
  • the inside of the housing 40 of the improved air cleaning device 30 is partitioned into a partition 37 on the photocatalyst structure 10 side and a partition 38 on the water-containing gel storage container 33 side by a partition wall (or support substrate 21) (FIG. 9B).
  • the upper end b of the partition wall is slightly lower than the upper end a of the storage container 33 so that air flows through the upper portion of the housing 40 (airflow C, C ′) (in this embodiment, About 5 mm), which is set higher than the upper end c of the hole at the highest position of the plastic container.
  • the air that has flowed into the device by the fan 9 is mainly divided into an airflow A flowing on the compartment 37 side and an airflow B flowing on the compartment 38 side by the partition wall.
  • FIG. 9B this is shown as airflows C and C ′.
  • the humidity of the compartment 38 on the hydrated gel container side of the improved air purifier was increased to about 90% as the moisture of the hydrated gel evaporated by the fan. Note that the humidity outside the apparatus in the experimental box was about 68%.
  • this improved air cleaning device 30 comprising a photocatalyst structure and a hydrous gel exhibits an unexpected air cleaning effect:
  • the mechanism of action such as 3) to 5) can be considered (see FIG. 9B).
  • Moist air in the hydrated gel storage container side section 38 and odorous substances trapped in the airflow C flow into the section 37 from the section 38, so that moisture for photocatalysis and contamination trapped in the moisture are collected. Odor substances and the like are efficiently conveyed to the photocatalyst structure side together.
  • the photocatalyst structure according to the present application is made of a porous sponge-like water-absorbing polymer, the odorous substance and moisture necessary for the photocatalytic action continue to be present in the photocatalyst present in the numerous voids. As a result, it is presumed that the photocatalytic reaction is performed more efficiently and the odorous substance is decomposed more effectively.
  • the improved air cleaning device 30 including the photocatalyst structure 10 and the water-containing gel 32 also has the effect of sterilizing and sterilizing air.
  • the hydrogel 32 can be regenerated as follows and used many times.
  • the water-containing gel 32 used for about one month was forcibly dehydrated and dried in an atmosphere at 50 ° C. and stored for 7 months, and a water-containing gel regeneration experiment was conducted.
  • a preserved material was water-absorbed by the method implemented in Experiment 19 with a surface area of 1190 cm 2 , a regenerated water-containing gel having a water absorption ratio of 20 times could be obtained.
  • the appearance performance is not distinguishable at all, and the adsorption performance is similar to the following.
  • the improved air cleaning device 30 is used for a long period of time, if this hydrated gel has dried, it can be regenerated and used again by absorbing water again.
  • the photocatalyst structure and the method for producing the photocatalyst structure according to the present invention can be used in various fields as a structure having a good photocatalytic function and a method for producing the structure.
  • the air purification apparatus provided with the photocatalyst structure according to the present invention can be used as an air purification apparatus having good functions such as deodorization and sterilization of air.

Abstract

This photocatalyst structure comprises a sponge-like photocatalyst layer that is provided with a plurality of pores, and the photocatalyst layer contains a photocatalyst, a water absorbent polymer and a water-soluble binder. This air purification device comprises the photocatalyst structure, a first substrate on which the photocatalyst structure is arranged, a light source, and a second substrate on which the light source is arranged. The photocatalyst structure is arranged so as to face the light source. By comprising a photocatalyst layer wherein a photocatalyst is uniformly dispersed and a plurality of pores are formed, a photocatalyst structure having good photodecomposability can be provided. In addition, by comprising this photocatalyst structure, an air purification device which has good air purification function can be provided.

Description

光触媒構造体、光触媒構造体の製造方法及び空気清浄装置Photocatalyst structure, method for producing photocatalyst structure, and air cleaning device
 本発明は、光触媒作用を示す光触媒構造体、及びこの光触媒構造体を用いた空気清浄装置並びに光触媒構造体の製造方法に関し、特に、空気中の汚臭物質や雑菌等を除去して空気を浄化するための、光触媒構造体、光触媒構造体の製造方法及び空気清浄装置に関する。 The present invention relates to a photocatalyst structure exhibiting a photocatalytic action, an air cleaning device using the photocatalyst structure, and a method for producing the photocatalyst structure, and in particular, purifies air by removing odorous substances and bacteria in the air. The present invention relates to a photocatalyst structure, a photocatalyst structure manufacturing method, and an air cleaning device.
 空気の汚臭物質には、食物から発生する、あるいはタバコ副流煙として発生するアンモニアや、建材などから発生するVOC(揮発性有機物質。例えば、アセトアルデヒド)などがある。空気清浄装置は、一般的には、居住空間や車内などの所謂、準閉鎖空間内の空気汚臭物質を清浄化する。空気清浄装置は、このような一般的な空気環境のみならず、例えば、約1.5mの密閉空間を有する仮設トイレにおける、強力な汚臭物質が連続的に発生する劣悪な環境を処理する場合がある。 Examples of air odor substances include ammonia generated from food or generated as second-hand tobacco smoke, and VOC (volatile organic substances such as acetaldehyde) generated from building materials. In general, the air purifier cleans air odorous substances in a so-called semi-closed space such as a living space or a car. The air purifier treats not only such a general air environment but also a poor environment in which a strong odor substance is continuously generated in a temporary toilet having a sealed space of about 1.5 m 3 , for example. There is a case.
 近年、酸化チタンを中心とした光触媒を利用した消臭、抗菌および防汚作用が注目されている。このような光触媒の作用は、光触媒に入射した光により生成した電子及び正孔が光触媒表面にある酸素や水と反応して活性酸素種であるスーパーオキサイドアニオン(・O )及びOHラジカル(・OH)を発生させることによるものである。 In recent years, deodorizing, antibacterial and antifouling actions using photocatalysts centering on titanium oxide have attracted attention. The action of such a photocatalyst is that electrons and holes generated by light incident on the photocatalyst react with oxygen and water on the photocatalyst surface to react with superoxide anions (.O 2 ) and OH radicals (active oxygen species). -OH) is generated.
 すなわち、光触媒表面に生成した活性酸素スーパーオキサイドアニオン(・O )及びOHラジカルの強力な酸化反応によって、水中の有機化学物質の分解除去をはじめ、空気中の悪臭物質の分解、防菌・防黴などさまざまな分野の環境浄化を行うことができる。特に、OH(ヒドロキシ)ラジカルは、いわゆる活性酸素と呼ばれる分子種のなかでは最も反応性が高く、酸化チタンに光と水が供給されると発生し続けて、継続的に光触媒反応を行うといわれている。 In other words, the powerful oxidation reaction of active oxygen superoxide anion (• O 2 ) and OH radicals generated on the photocatalyst surface decomposes and removes organic chemicals in water, decomposes malodorous substances in the air, It can be used to purify the environment in various fields such as prevention. In particular, OH (hydroxy) radicals are the most reactive among the molecular species called so-called active oxygen, and are said to continue to be generated when light and water are supplied to titanium oxide, and to continue photocatalytic reactions. ing.
 このような光触媒を固定・坦持する光触媒構造体を製造する場合、光触媒を部材(基材)表面に直接付着することが難しいため、光触媒をバインダと一緒に混合・混練した後、各種部材の表面に塗布して、あるいは、シート状に形成して、光触媒構造体とするのが、一般的なその製造方法である。しかし、光触媒作用を有効に発現させるためには、光触媒(粒子)の少なくとも一部分は、部材(基材)表面から露出して、光源からの光を受容可能な状態に無ければならないが、上記の様な方法で製造すると、多くの光触媒がバインダの内部に埋没してしまい、その結果、光触媒を有効利用できず、不経済であった。 When manufacturing such a photocatalyst structure that fixes and supports the photocatalyst, it is difficult to directly attach the photocatalyst to the surface of the member (base material). Therefore, after mixing and kneading the photocatalyst with the binder, It is a common production method to apply a photocatalyst structure by coating on the surface or forming it into a sheet. However, in order to effectively exhibit the photocatalytic action, at least a part of the photocatalyst (particle) must be exposed from the surface of the member (base material) and be in a state in which light from the light source can be received. When manufactured by such a method, many photocatalysts were buried in the binder, and as a result, the photocatalyst could not be used effectively, which was uneconomical.
 そこで、光触媒構造体の形成方法として、光触媒をバインダなしで部材表面に塗布する方法も提案されている(特許文献1)が、この方法で製造しても、有効に利用される光触媒は、やはり、部材(基材)表面に露出したものに制限されることから、部材の表面積を増やさなければならず、経済的・効率的に十分なものとはいえなかった。 Therefore, as a method for forming a photocatalyst structure, a method of applying a photocatalyst to a member surface without a binder has also been proposed (Patent Document 1). Since it is limited to those exposed on the surface of the member (base material), the surface area of the member has to be increased, which is not sufficient economically and efficiently.
 一方、上記光触媒を利用して空気を浄化するための空気清浄装置としては、一般的に、ケーシング内に、少なくとも、光触媒を固定・坦持した光触媒構造体と光源ランプとを備えるものが提案されている(特許文献2、3)。これらの装置では、光触媒構造体は、主にフィルタ型であって、部材内に空気を通過させて浄化することを目的とするもので、例えば、光触媒を固定・坦持したハニカム体や不織布等から構成されている(特許文献2)。また、例えば、多数の軽量粉体表面に光触媒を固定・坦持させて光触媒構造体とし、有効な表面積を増加させる試み等もなされている(特許文献3)。 On the other hand, as an air cleaning device for purifying air using the above-mentioned photocatalyst, generally, an apparatus including at least a photocatalyst structure in which a photocatalyst is fixed and carried and a light source lamp in a casing is proposed. (Patent Documents 2 and 3). In these apparatuses, the photocatalyst structure is mainly of a filter type and is intended to purify by passing air through the member. For example, a honeycomb body or a nonwoven fabric on which the photocatalyst is fixed and supported (Patent Document 2). In addition, for example, an attempt has been made to increase the effective surface area by fixing and supporting a photocatalyst on the surface of a large number of lightweight powders to form a photocatalyst structure (Patent Document 3).
 しかしながら、上記フィルタ型の空気清浄装置の場合は、光触媒作用の効率化のためには、光触媒構造体の表面積をより大きくしたり、部材の数や光源(ブラックライト)の数を多くしたり、嵩張るフィルタ類を設置しなければならず、また、特許文献3のような態様の場合は、軽量粉体を覆うための多量の光触媒や、光触媒を坦持した軽量粉体(光触媒構造体)の乱舞を制御するための動力などを必要とし、構造が大型化したり複雑化せざるをえなかった。 However, in the case of the filter-type air cleaning device, in order to increase the efficiency of the photocatalytic action, the surface area of the photocatalyst structure is increased, the number of members and the number of light sources (black lights) are increased, Bulky filters must be installed, and in the case of an aspect such as Patent Document 3, a large amount of a photocatalyst for covering the light-weight powder or a light-weight powder (photocatalyst structure) carrying the photocatalyst is used. The power required to control the turbulence was necessary, and the structure had to be enlarged and complicated.
 このように、光触媒を利用した従来の空気清浄装置は、全体として、空気浄化効率が低いことが大きな問題であり、効率をより高めるためには、光触媒構造体の表面積を増やし、各部材の点数を増やさなければならず、その結果、必然的に装置が大型化してしまい、経済的にも空間配置的にも問題があった。つまり、少なくとも、仮設トイレ内等の狭く劣悪な環境下での空気の清浄化に適するものではなかった。 As described above, the conventional air purifying apparatus using a photocatalyst has a big problem that the air purification efficiency is low as a whole. In order to further increase the efficiency, the surface area of the photocatalyst structure is increased and the number of each member is increased. As a result, the size of the apparatus inevitably increases, resulting in problems in terms of economy and space layout. In other words, it was not suitable for air purification at least in a narrow and poor environment such as in a temporary toilet.
特開2005-007216号公報Japanese Patent Laid-Open No. 2005-007216 特開平08-121827号公報Japanese Patent Laid-Open No. 08-121827 国際公開第2004/045660号International Publication No. 2004/045660
 本発明の目的は、上述した問題に鑑みてなされたものであり、小型でも光触媒作用の効率が良好な光触媒構造体及び光触媒構造体の製造方法を提供することであり、また、上記光触媒構造体を備えることで、居住空間や車内などの所謂、準閉鎖空間はもとより、仮設トイレ内等の劣悪な環境下の空気でさえ、短時間に効率良く清浄化することが出来る、低コストでコンパクトな改良型空気清浄装置を提供することである。 An object of the present invention is to provide a photocatalyst structure and a method for producing the photocatalyst structure which are small in size and have a good photocatalytic efficiency, and have been made in view of the above-described problems. With this, it is possible to efficiently clean in a short time even air in a poor environment such as a temporary toilet, as well as a so-called quasi-closed space such as a living space or in a car, and it is low-cost and compact. An improved air cleaning device is provided.
 上記目的を達成するために、本発明の第1の観点に係る光触媒構造体は、多数の空隙が形成されたスポンジ状の光触媒層を備え、前記光触媒層は、光触媒、吸水性ポリマー、および、水溶性のバインダを含むことを特徴とするものである。 To achieve the above object, a photocatalyst structure according to the first aspect of the present invention includes a sponge-like photocatalyst layer in which a large number of voids are formed. The photocatalyst layer includes a photocatalyst, a water-absorbing polymer, and It contains a water-soluble binder.
 前記光触媒は、酸化チタンであってもよく、前記吸水性ポリマーは、(1)アクリル酸又はその塩、アクリル酸エステル及びアクリルアミドから選ばれる単量体を含んで構成される架橋されたアクリル系ポリマー、(2)イソブチレン-無水マレイン酸共重合体の架橋体、並びに、(3)ポリオキシエチレン架橋体から選ばれる1種以上であってもよい。 The photocatalyst may be titanium oxide, and the water-absorbing polymer is (1) a crosslinked acrylic polymer comprising a monomer selected from acrylic acid or a salt thereof, an acrylic ester and acrylamide. Or (2) a cross-linked product of isobutylene-maleic anhydride copolymer and (3) a cross-linked polyoxyethylene product.
 前記吸水性ポリマーは、アクリル酸又はその塩、アクリル酸エステル及びアクリルアミドから選ばれる単量体を含んで構成される架橋されたアクリル系ポリマーであってもよい。 The water-absorbing polymer may be a cross-linked acrylic polymer including a monomer selected from acrylic acid or a salt thereof, an acrylic ester and acrylamide.
 前記水溶性のバインダは、ポリビニルアルコール系又は酢酸ビニル樹脂系バインダであってもよい。 The water-soluble binder may be a polyvinyl alcohol-based or vinyl acetate resin-based binder.
 上記目的を達成するため、本発明の第2の観点に係る空気清浄装置は、本発明の第1の観点に係る光触媒構造体と、前記光触媒構造体を配置させた第1の基板と、光源と、前記光源を配置させた第2の基板とを備え、前記光触媒構造体は、前記光源に対向するように配置されることを特徴とするものである。 In order to achieve the above object, an air cleaning apparatus according to a second aspect of the present invention includes a photocatalyst structure according to the first aspect of the present invention, a first substrate on which the photocatalyst structure is disposed, and a light source. And a second substrate on which the light source is disposed, wherein the photocatalyst structure is disposed to face the light source.
 前記空気清浄装置は、さらに、吸水して膨潤した含水ゲルを備えるものであってもよい。 The air purifier may further include a water-containing gel swollen by absorbing water.
 前記含水ゲルは、ゲルの形態が維持可能な程度に吸水しているものであってもよい。 The water-containing gel may absorb water to such an extent that the gel form can be maintained.
 前記含水ゲルは、収納容器に収納されているものであってもよい。 The water-containing gel may be stored in a storage container.
 前記空気洗浄装置は、空気を取り込む第1の開口と、空気を排出する第2の開口とを有するハウジングを備え、前記ハウジング内には、前記第1の基板に配置された前記光触媒構造体と、前記第2の基板に配置された前記光源である発光素子とを、前記第1の開口と第2の開口とを結んだ軸に対して平行に対向させ、かつ、前記第1の基板または前記第2の基板の、少なくともいずれか一方の背面側に、前記含水ゲルを収納した前記収納容器を配置するものであってもよい。 The air cleaning device includes a housing having a first opening for taking in air and a second opening for discharging air, and the photocatalyst structure disposed on the first substrate is disposed in the housing. A light emitting element that is the light source disposed on the second substrate is opposed in parallel to an axis connecting the first opening and the second opening, and the first substrate or The storage container storing the hydrated gel may be disposed on at least one of the back surfaces of the second substrate.
 前記収納容器は、前記含水ゲルを収納する、メッシュシートからなる内側容器と、該内側容器を収納する、穴あきプラスチックからなる外側容器とを含むものであってもよい。 The storage container may include an inner container made of a mesh sheet for storing the hydrated gel and an outer container made of a perforated plastic for storing the inner container.
 前記外側容器は、上下2個重ねた組を2つ、前記第1の基板または前記第2の基板の背面に、並列させているものであってもよい。 The outer container may be a set in which two upper and lower two sets are arranged in parallel on the back surface of the first substrate or the second substrate.
 前記外側容器を配置する側の前記第1または第2の基板の上端は、前記2個重ねた上側容器の上端より低いものであってもよい。 The upper end of the first or second substrate on the side where the outer container is disposed may be lower than the upper end of the two upper containers stacked.
 前記含水ゲルは、金属イオンを含む水溶液を吸水したものであってもよい。 The water-containing gel may be one that has absorbed an aqueous solution containing metal ions.
 前記含水ゲルは、乾燥した場合、水を吸水させることで再生して再利用可能なものであってもよい。 When the water-containing gel is dried, it may be regenerated and reusable by absorbing water.
 上記目的を達成するために、本発明の第3の観点に係る光触媒構造体の製造方法は、本発明の第1の観点に係る光触媒構造体の製造方法であって、光触媒と、水溶性のバインダを混合、攪拌させ、第1の混合物を作製する工程と、前記第1の混合物と、吸水性ポリマーとを混合させ、第2の混合物を作製する工程と、前記第2の混合物を成形する工程と、成形された前記第2の混合物を乾燥させる工程と、を備えることを特徴とするものである。 In order to achieve the above object, a method for producing a photocatalyst structure according to a third aspect of the present invention is a method for producing a photocatalyst structure according to the first aspect of the present invention. A step of mixing and stirring a binder to prepare a first mixture, a step of mixing the first mixture and a water-absorbing polymer to prepare a second mixture, and molding the second mixture A step and a step of drying the molded second mixture.
 前記光触媒は、酸化チタンであってもよく、前記吸水性ポリマーは、(1)アクリル酸又はその塩、アクリル酸エステル及びアクリルアミドから選ばれる単量体を含んで構成される架橋されたアクリル系ポリマー、(2)イソブチレン-無水マレイン酸共重合体の架橋体、並びに、(3)ポリオキシエチレン架橋体から選ばれる1種以上であってもよい。 The photocatalyst may be titanium oxide, and the water-absorbing polymer is (1) a crosslinked acrylic polymer comprising a monomer selected from acrylic acid or a salt thereof, an acrylic ester and acrylamide. Or (2) a cross-linked product of isobutylene-maleic anhydride copolymer and (3) a cross-linked polyoxyethylene product.
 前記水溶性のバインダは、ポリビニルアルコール系又は酢酸ビニル樹脂系バインダであってもよい。 The water-soluble binder may be a polyvinyl alcohol-based or vinyl acetate resin-based binder.
 前記吸水性ポリマーを混合させる工程では、更に水を添加することを含むものであってもよい。 The step of mixing the water-absorbing polymer may further include adding water.
 なお、本願では、空気の「清浄」とは、空気中の汚臭物質や雑菌等の有害物の分解・除去・吸着等による空気の浄化を含むものである。 In the present application, “cleaning” of air includes purification of air by decomposing / removing / adsorbing harmful substances such as odorous substances and bacteria in the air.
 本発明によれば、光触媒が均一に分散し、多数の空隙が形成された光触媒層を備えることにより、良好な光分解性能を有する光触媒構造体が提供でき、そのための前記光触媒構造体の製造方法を提供することができる。さらに、前記光触媒構造体を備えることで、好適な空気清浄機能を発揮する空気清浄装置を提供することができる。 According to the present invention, by providing a photocatalyst layer in which a photocatalyst is uniformly dispersed and a large number of voids are formed, a photocatalyst structure having good photolysis performance can be provided, and a method for producing the photocatalyst structure therefor is provided. Can be provided. Furthermore, by providing the photocatalyst structure, it is possible to provide an air cleaning device that exhibits a suitable air cleaning function.
実施形態に係る光触媒構造体を模式的に示す断面図である。It is sectional drawing which shows typically the photocatalyst structure which concerns on embodiment. 実施形態に係る光触媒構造体の表面を示す画像である。It is an image which shows the surface of the photocatalyst structure which concerns on embodiment. 実施形態に係る空気清浄装置の側面図である。It is a side view of the air purifying apparatus concerning an embodiment. 実施形態に係る空気清浄装置の平面図である。It is a top view of the air purifying apparatus which concerns on embodiment. 光触媒構造体のたばこの煙に対する消臭効果の実験結果を示す図である。It is a figure which shows the experimental result of the deodorizing effect with respect to the tobacco smoke of a photocatalyst structure. 光触媒構造体のアンモニアに対する消臭効果の実験結果を示す図である。It is a figure which shows the experimental result of the deodorizing effect with respect to ammonia of a photocatalyst structure. タイプ1のゲルを模式的に示す概念図である。It is a conceptual diagram which shows the type 1 gel typically. タイプ2のゲルを模式的に示す概念図で、タイプ3からタイプ1への移行状態のものである。It is the conceptual diagram which shows the type 2 gel typically, and is a thing of the transition state from the type 3 to the type 1. FIG. 本実施形態に係る、タイプ3の含水ゲルの概念図である。It is a conceptual diagram of the type 3 hydrous gel based on this embodiment. 実施形態に係る含水ゲルのメッシュ状内側容器の画像である。It is an image of the mesh-shaped inner container of the water-containing gel which concerns on embodiment. 実施形態に係る含水ゲルのプラスチック製外側容器の画像である。It is an image of the plastic outer container of the water-containing gel which concerns on embodiment. 実施形態に係る改良型空気清浄装置のハウジング上部から見た正面図である。It is the front view seen from the housing upper part of the improved type air purifying apparatus which concerns on embodiment. 実施形態に係る改良型空気清浄装置のハウジング上部から見た正面図における、気流の流れ(A、B,C、C’)を示す図である。It is a figure which shows the flow (A, B, C, C ') of the airflow in the front view seen from the housing upper part of the improved type air purifying apparatus which concerns on embodiment. 実施形態に係る改良型空気清浄装置の含水ゲル収納容器側から見た側面図である。It is the side view seen from the water-containing gel storage container side of the improved type air purifying apparatus which concerns on embodiment.
 本発明の実施形態に係る光触媒構造体、光触媒構造体の製造方法及び空気清浄装置の実施の形態について図を用いて説明する。 Embodiments of a photocatalyst structure, a photocatalyst structure manufacturing method, and an air cleaning device according to an embodiment of the present invention will be described with reference to the drawings.
(1)光触媒構造体
 光触媒構造体10は、図1及び図2に示すように、光触媒層11と、基板12と、を備える。
(1) Photocatalyst structure The photocatalyst structure 10 is provided with the photocatalyst layer 11 and the board | substrate 12, as shown in FIG.1 and FIG.2.
 図1に示すように、光触媒層11には光触媒11aが分散されている。光触媒11aとしては、例えば、酸化チタンが好ましく、可視光応答型、紫外線応答型の酸化チタン(二酸化チタン)やそれらの混合物等を用いることもできる。また、光触媒層11は、後述する方法により製造される結果、図1及び図2に示すように表面に微少な凹凸が形成され、更に内部には多数の空隙11bが形成される。光触媒構造体11は、例えば15cm×15cm、高さ4mmに形成する。光触媒構造体11の大きさや形状は、用いる用途、要求される性能、この光触媒構造体11を用いた空気清浄装置20(後述)の大きさ等により、適宜変更することが可能である。 As shown in FIG. 1, the photocatalyst 11 a is dispersed in the photocatalyst layer 11. As the photocatalyst 11a, for example, titanium oxide is preferable, and visible light responsive and ultraviolet responsive titanium oxide (titanium dioxide), a mixture thereof, and the like can also be used. Further, as a result of the photocatalyst layer 11 being manufactured by a method described later, fine irregularities are formed on the surface as shown in FIGS. 1 and 2, and a large number of voids 11b are formed inside. The photocatalyst structure 11 is formed, for example, in a size of 15 cm × 15 cm and a height of 4 mm. The size and shape of the photocatalyst structure 11 can be appropriately changed depending on the application to be used, the required performance, the size of an air cleaning device 20 using the photocatalyst structure 11 (described later), and the like.
 支持基板12としては、例えば、コルク材、ベニヤ、合板、紙、フィルム、金網等を用いることができる。なお、光触媒層11に接触する面に空気が存在すると、光触媒層11の光分解性能を向上させることができるため、より高い光分解性能が求められる場合は、支持基板12としてはコルク材を用いることが好ましい。この支持基板12を省略し、光触媒層11のみとすることも可能である。なお、ステンレス等からなる金網を支持基板12として用いると、光触媒層11の両面から光を照射することができ、更に光触媒層11が金網で保持されるため、シート状の形状を保持しやすくなり、好ましい。この場合、金網の一方の面に光触媒層11を形成してもよいし、金網の両面に光触媒層11を形成してもよい。 As the support substrate 12, for example, cork material, veneer, plywood, paper, film, wire mesh and the like can be used. In addition, when air exists in the surface which contacts the photocatalyst layer 11, since the photodecomposition performance of the photocatalyst layer 11 can be improved, when higher photodecomposition performance is calculated | required, a cork material is used as the support substrate 12. It is preferable. The support substrate 12 may be omitted and only the photocatalyst layer 11 may be used. If a metal mesh made of stainless steel or the like is used as the support substrate 12, light can be irradiated from both sides of the photocatalyst layer 11, and the photocatalyst layer 11 is held by the metal mesh, so that it is easy to maintain a sheet-like shape. ,preferable. In this case, the photocatalyst layer 11 may be formed on one surface of the wire mesh, or the photocatalyst layer 11 may be formed on both surfaces of the wire mesh.
 このように、光触媒層11がスポンジ状に形成され、多数の空隙11bを備えることにより、光触媒層に含有される光触媒11aが空気と接触する面積を大きくすることができ、その結果、以下のように、光触媒の光分解効率を高めることができる(後述の実験例、参照)。 Thus, the photocatalyst layer 11 is formed in a sponge shape and includes a large number of voids 11b, whereby the area where the photocatalyst 11a contained in the photocatalyst layer is in contact with air can be increased. In addition, the photodecomposition efficiency of the photocatalyst can be increased (see the experimental examples described later).
 (1)汚臭や細菌などを含んだ空気と光触媒11aとが接触する面積が格段に大きくなり、光触媒の光分解効率を高めることが可能となる。また、(2)周囲の湿気が高ければ、空気中の汚臭や細菌などと共に、光触媒作用に重要な水分を空気中からトラップできるため、光触媒反応がより効率的に行われて、消臭や殺菌等の効率が向上する。そして、(3)光分解効率が向上することにより、光触媒構造体10のサイズを小さくすることができ、空気清浄装置20をコンパクトなサイズとすることが可能となる。 (1) The area where the photocatalyst 11a comes into contact with air containing foul odors or bacteria and the like is remarkably increased, and the photolysis efficiency of the photocatalyst can be increased. (2) If the surrounding humidity is high, moisture important for photocatalytic action can be trapped from the air together with odors and bacteria in the air. The efficiency of sterilization and the like is improved. And (3) By improving the photolysis efficiency, the size of the photocatalyst structure 10 can be reduced, and the air cleaning device 20 can be made compact.
 上述した実施形態では、光触媒構造体はシート状に形成される例を挙げて説明したが、これに限られず、シート以外の形状、例えば、ハニカム体等の立体的形状や、繊維状等に成形してもよい。 In the above-described embodiment, the photocatalyst structure is described as an example of being formed in a sheet shape. However, the present invention is not limited to this, and the shape is not limited to this, for example, a three-dimensional shape such as a honeycomb body or a fiber shape. May be.
(2)光触媒構造体の製造方法
 次に、光触媒構造体10の製造方法を説明する。
(2) Method for Producing Photocatalyst Structure Next, a method for producing the photocatalyst structure 10 will be described.
 まず、可視光又は紫外線応答型の酸化チタンの粉末を水溶性のバインダに添加し、攪拌、混合させ、混合液を作製する。水溶性のバインダとしては、特に制限はないが、例えばペースト状酢酸ビニル樹脂系エマルジョンボンド、ポリビニルアルコール(PVAL)系の液状のりであってもよい。PVAL系のバインダでは、酢酸ビニル系と比較し、ベトツキが少なく、流動性が高いため、基板上に塗布しやすく製造時の作業が容易となるため、好ましい。 First, visible light or ultraviolet responsive titanium oxide powder is added to a water-soluble binder, and stirred and mixed to prepare a mixed solution. The water-soluble binder is not particularly limited, and may be, for example, a paste-like vinyl acetate resin emulsion bond or a polyvinyl alcohol (PVAL) liquid paste. PVAL binders are preferred because they are less sticky and have higher fluidity than vinyl acetate binders, and are easy to apply on the substrate and facilitate the manufacturing process.
 次に、吸水性ポリマーを混合液に添加し、ミキサー等で攪拌、混合する。この際、適宜水を追加してもよい。吸水性ポリマーとしては、特に制限はないが、水性ゲルの吸水性や安定性の観点から、(1)アクリル酸又はその塩、アクリル酸エステル及びアクリルアミドから選ばれる単量体を含んで構成される架橋されたアクリル系ポリマー、(2)イソブチレン-無水マレイン酸共重合体の架橋体、並びに、(3)ポリオキシエチレン架橋体から選ばれる1種以上が好ましい。さらに、アクリル酸塩系(アクリル酸重合体部分ナトリウム塩架橋物、ポリアクリル酸重合体部分カルシウム塩架橋物)等の、側鎖に親水基を有する高分子鎖を架橋した分子構造をもつアクリル系ポリマーであってもよい。 Next, the water-absorbing polymer is added to the mixed solution, and stirred and mixed with a mixer or the like. At this time, water may be added as appropriate. Although there is no restriction | limiting in particular as a water absorbing polymer, From the viewpoint of the water absorbing property and stability of aqueous gel, (1) It is comprised including the monomer chosen from acrylic acid or its salt, acrylic acid ester, and acrylamide. One or more selected from a crosslinked acrylic polymer, (2) a crosslinked product of isobutylene-maleic anhydride copolymer, and (3) a crosslinked polyoxyethylene are preferred. In addition, acrylic systems having a molecular structure in which polymer chains having hydrophilic groups in the side chains are cross-linked, such as acrylate salts (cross-linked acrylic acid polymer sodium salts, cross-linked polyacrylic acid polymer calcium salts). It may be a polymer.
 例えば、酸化チタンと水溶性の酢酸ビニル樹脂系エマルジョンボンドと、吸水性ポリマーとをミキサー等で混ぜ合わせると吸水性ポリマーが水を吸収しはじめ、ゲル状に膨潤する。エマルジョン中に共存している酸化チタン粉末は、ゲルの内外に付着し、混練される。 For example, when titanium oxide, a water-soluble vinyl acetate resin emulsion bond, and a water-absorbing polymer are mixed with a mixer or the like, the water-absorbing polymer begins to absorb water and swells in a gel form. The titanium oxide powder coexisting in the emulsion adheres to the inside and outside of the gel and is kneaded.
 続いて、吸水性ポリマーを混合させた混合液を基板上に塗布し、混合液の上からプレスする、又は混合液を二対のロール間に通すことにより、例えばシート状に成形する。 Subsequently, a mixed liquid in which the water-absorbing polymer is mixed is applied onto the substrate and pressed from above the mixed liquid, or the mixed liquid is passed between two pairs of rolls, for example, to form a sheet.
 上述したように、支持基板12としては、コルク材が適するが、ベニヤ、合板、紙、フィルム等を用いてもよい。また、基板を、例えば鉄、銅、ステンレス、アルミ等の金属を用いた板とすることにより、シートを基板から剥離させてもよい。 As described above, a cork material is suitable for the support substrate 12, but veneer, plywood, paper, film, or the like may be used. Further, the sheet may be peeled from the substrate by making the substrate a plate using a metal such as iron, copper, stainless steel, aluminum, or the like.
 続いて、シート状に成形された混合液を、室温で自然乾燥させる。乾燥させるとゲル内外から水分が蒸発する際、ゲル中に混練された酸化チタン粉末は、ゲルの内外に残存する。更に乾燥が進むとこの吸水性ポリマー混合ゲルは、小さくなり、弾力性を維持したスポンジ構造体となる。 Subsequently, the mixed solution formed into a sheet is naturally dried at room temperature. When dried, when the moisture evaporates from inside and outside the gel, the titanium oxide powder kneaded in the gel remains inside and outside the gel. As the drying progresses further, the water-absorbing polymer mixed gel becomes smaller and becomes a sponge structure maintaining elasticity.
 この際、乾燥効率をあげ、吸水ポリマーが吸収している水分を強制的に蒸発させた方が効果的にスポンジ状の構造となるため、天日乾燥や熱風乾燥とするのが好ましい。基板を金属製の物とした場合は、乾燥後、基板から剥離させる。この様にして、光触媒構造体が製造される。 At this time, it is preferable to use sun-drying or hot-air drying, because it is more effective to increase the drying efficiency and forcibly evaporate the water absorbed by the water-absorbing polymer. When the substrate is made of metal, it is peeled off from the substrate after drying. In this way, a photocatalyst structure is manufactured.
 上記の製造方法によれば、光触媒を水溶性のバインダと混合させ、更に吸水性ポリマーを添加した後に、水分を蒸発させる工程を行うことから、混練工程、乾燥工程等が簡単で、安全であり、コストをかけることなく、光触媒11aを含む光触媒層11を、空隙11bを有する多孔性のスポンジ状に形成することができる。これにより、光触媒11aが空気と接触する面積を大きくすることができ、光触媒構造体10の光分解効率を高めることができる(後述の実験例、参照)。 According to the above production method, the photocatalyst is mixed with a water-soluble binder, and after the water-absorbing polymer is added, the water is evaporated, so the kneading step, the drying step, etc. are simple and safe. The photocatalyst layer 11 including the photocatalyst 11a can be formed in a porous sponge shape having voids 11b without cost. Thereby, the area which the photocatalyst 11a contacts with air can be enlarged, and the photolysis efficiency of the photocatalyst structure 10 can be improved (refer the below-mentioned experimental example).
 上述した実施形態では、光触媒構造体はシート状に形成される例を挙げて説明したが、これに限られず、シート以外の形状、例えば、ハニカム体等の立体的形状や、繊維状等に成形してもよい。 In the above-described embodiment, the photocatalyst structure is described as an example of being formed in a sheet shape. However, the present invention is not limited to this, and the shape is not limited to this, for example, a three-dimensional shape such as a honeycomb body or a fiber shape. May be.
(3)光触媒構造体を備える空気清浄装置
 次に、上記光触媒構造体を備える空気清浄装置の実施態様について説明する。
(3) Air purifying apparatus provided with photocatalyst structure Next, the embodiment of the air purifying apparatus provided with the said photocatalyst structure is demonstrated.
<<空気清浄装置>>
 図3Aにあるように、例えば、空気清浄装置20は、光触媒構造体10と、光触媒構造体のための支持基板21と、光源としてのLED(Light Emitting Diode)22と、光源を配置させて光触媒構造体に対向させるための対向基板23と、を備える。
<< Air Cleaner >>
As shown in FIG. 3A, for example, the air cleaning device 20 includes a photocatalyst structure 10, a support substrate 21 for the photocatalyst structure, an LED (Light Emitting Diode) 22 as a light source, and a light source. And a counter substrate 23 for facing the structure.
 支持基板21と、対向基板23とは、それぞれ金属板から形成され、支持基板21と対向基板23の四隅には、図3Bに示すように例えばボルト等からなる柱部24が設けられてもよい。柱部24によって、支持基板21と対向基板23とは図3Aに示すように所定距離離間して配置される。 The support substrate 21 and the counter substrate 23 are each formed of a metal plate, and column portions 24 made of, for example, bolts or the like may be provided at four corners of the support substrate 21 and the counter substrate 23 as shown in FIG. 3B. . By the pillar portion 24, the support substrate 21 and the counter substrate 23 are arranged at a predetermined distance apart as shown in FIG. 3A.
 光源22は、LEDであってもよく、例えば紫外線ピーク波長375nm、強度が0.38mw/1cmのダイオードを用いる。このLED22は、図3Bに示すように、例えば15cm×15cmの基材に42個程度配置されている。LED22は、対向基板23の光触媒構造体10と対向する面に配置され、図示しない電源に接続される。ある実施形態では、LED22と光触媒構造体10とは1mm程度離間して配置される。なお、光触媒構造体10に分散させる光触媒11aの応答する光が可視光であるか、紫外線であるかにより、LED22は適宜変更することが可能である。 The light source 22 may be an LED, for example, a diode having an ultraviolet peak wavelength of 375 nm and an intensity of 0.38 mw / 1 cm 2 is used. As shown in FIG. 3B, about 42 LEDs 22 are arranged on a base of 15 cm × 15 cm, for example. LED22 is arrange | positioned in the surface facing the photocatalyst structure 10 of the opposing board | substrate 23, and is connected to the power supply which is not shown in figure. In an embodiment, the LED 22 and the photocatalyst structure 10 are spaced apart by about 1 mm. The LED 22 can be appropriately changed depending on whether the light that the photocatalyst 11a dispersed in the photocatalyst structure 10 responds is visible light or ultraviolet light.
 上記の空気清浄装置20では、LEDを用いる場合を例に挙げたが、これに限られず、用いる光触媒の性質に応じて、ブラックライト等の他の光源を用いることができる。また、光触媒構造体や光源の数や配置方法、光源と光触媒構造体とを離間させる距離、紫外線の強度等は適宜変更することが可能である。さらに、上述した実施形態では、光触媒構造体はシート状に形成される例を挙げて説明したが、これに限られず、シート以外の形状に成形してもよい。本発明は上述した実施形態に限られず、様々な変更、及び応用が可能である。 In the above air cleaning device 20, the case of using an LED has been described as an example. In addition, the number and arrangement method of the photocatalyst structure and the light source, the distance separating the light source and the photocatalyst structure, the intensity of the ultraviolet light, and the like can be appropriately changed. Furthermore, in the above-described embodiment, the photocatalyst structure has been described by taking an example in which the photocatalyst structure is formed in a sheet shape. The present invention is not limited to the above-described embodiments, and various modifications and applications are possible.
<<実験例>>空気清浄装置(実験1~13)
 上記光触媒構造体を備える空気清浄装置の実施態様での、空気清浄に関する実験結果を以下に示す。なお、以下の各実験では、臭気の測定は、GASTECH CO.,LTD製のにおいモニタ(GT300-VOCモデル)を用いた。ここで、においモニタ値とは、新鮮な空気を1として、空気中の炭化水素系化合物などの濃度の変化をにおいの度合として数値化されたものであり、例えば、公衆トイレは一般的に10~40、下水口20~40、喫煙室30~90の数値を示す。
<< Experiment Example >> Air Cleaner (Experiments 1-13)
The experiment result regarding air cleaning in the embodiment of the air cleaning apparatus including the photocatalyst structure is shown below. In each of the following experiments, the odor was measured using GASTTECH CO. The odor monitor (GT300-VOC model) manufactured by LTD was used. Here, the odor monitor value is a value obtained by quantifying a change in the concentration of a hydrocarbon compound or the like in the air with the fresh air as 1, and for example, public toilets generally have 10 Numerical values of -40, sewage ports 20-40, and smoking rooms 30-90 are shown.
<閉鎖型仮設トイレでの消臭実験> 実験1~3、表1
 実験では、1つの実施態様として、紫外線型の酸化チタン、水溶性のバインダ、及び、吸水性ポリマーを表1の実験1~3に示す分量で、上記の製造方法で光触媒構造体を製造し、これらの光触媒構造体を用いた空気清浄装置を作製した。紫外線型の酸化チタンとしては、石原産業(株)製ST-21の二酸化チタン、水溶性のバインダとしては、酢酸ビニル樹脂系エマルジョンボンド(コニシ株式会社製)を用い、吸水性ポリマーとしては、アクリル酸重合体部分ナトリウム塩架橋物(ケニス株式会社)を用いた。また、空気清浄装置は17cm×17cm、高さ37mm程度のコンパクトな大きさとした。空気清浄装置には光源としてLEDを用い、LEDとして、紫外線ピーク波長375nm、強度が0.38mW/cmのダイオード42個を15cm×15cmの基板に7cm幅に配置させた。また、光触媒構造体とLEDとの距離を1mm程度となるように配置した。光触媒構造体は、15cm×15cm、高さ4mmのサイズに形成した。
<Deodorization experiment in a closed temporary toilet> Experiments 1 to 3, Table 1
In the experiment, as one embodiment, a photocatalyst structure is manufactured by the above-described manufacturing method in an amount shown in Experiments 1 to 3 in Table 1 with ultraviolet-type titanium oxide, a water-soluble binder, and a water-absorbing polymer. Air purifiers using these photocatalyst structures were produced. As the UV-type titanium oxide, ST-21 titanium dioxide manufactured by Ishihara Sangyo Co., Ltd. is used, and as the water-soluble binder, a vinyl acetate resin emulsion bond (manufactured by Konishi Co., Ltd.) is used. An acid polymer partial sodium salt cross-linked product (Kennis Co., Ltd.) was used. Moreover, the air purifier was made into a compact size of about 17 cm × 17 cm and a height of about 37 mm. An LED was used as the light source in the air cleaning device, and 42 diodes having an ultraviolet peak wavelength of 375 nm and an intensity of 0.38 mW / cm 2 were arranged on a 15 cm × 15 cm substrate in a 7 cm width. Moreover, it arrange | positioned so that the distance of a photocatalyst structure and LED may be about 1 mm. The photocatalyst structure was formed in a size of 15 cm × 15 cm and a height of 4 mm.
 この空気清浄装置を、気温33.5℃下に設置した空間容積が1.5mの閉鎖型仮設トイレ(においモニタ値は、22.5)にセットした。上記空気清浄装置の運転を開始してから2時間経過後に、この仮設トイレ内の臭いを、上記においモニタによって測定した。 This air purifier was set in a closed temporary toilet (smell monitor value is 22.5) installed at a temperature of 33.5 ° C. and having a space volume of 1.5 m 3 . Two hours after the start of the operation of the air purifier, the odor in the temporary toilet was measured by the odor monitor.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<閉鎖型仮設トイレでの消臭実験> 実験4、5、表2
(吸水性ポリマーが無添加の場合)
 実験4、5では、表2の分量(吸水性ポリマーは無添加)で、その他は上記表1(実験1~3)と同様の製造方法で光触媒構造体を作製した。つまり、実験4、5では、実験1~3と同様に光触媒として紫外線型の酸化チタン粉末を、バインダとして酢酸ビニル樹脂系エマルジョンボンドを、用い、それぞれ、二酸化チタン粉末を、50g、5gとし、光触媒構造体の施工面積が、2338cm、300cmとなるように、作製した。仮設トイレでの実験条件は、上記実験1~3と同様である。なお、実験4、5ではいずれも、強度5mw/cmのブラックライト1本を5mm程度離間させて照射した。
<Deodorization experiment in a closed temporary toilet> Experiments 4, 5 and Table 2
(When no water-absorbing polymer is added)
In Experiments 4 and 5, photocatalyst structures were prepared in the same manner as in Table 1 (Experiments 1 to 3) except for the amounts shown in Table 2 (no water-absorbing polymer added). That is, in Experiments 4 and 5, as in Experiments 1 to 3, UV-type titanium oxide powder was used as the photocatalyst, vinyl acetate resin emulsion bond was used as the binder, and the titanium dioxide powder was 50 g and 5 g, respectively. construction area of the structure, so that the 2338cm 2, 300cm 2, was prepared. The experimental conditions in the temporary toilet are the same as in Experiments 1 to 3 above. In each of Experiments 4 and 5, one black light having an intensity of 5 mw / cm 2 was irradiated at a distance of about 5 mm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す実験4では、紫外線を照射しても光触媒層は青色に発色せず、光触媒が機能していない状態であった。また、実験5では、紫外線照射により光触媒層が青色に発色し、光触媒が機能している状態であることは確認できたが、酸化チタンの光分解効率が低かった。 In Experiment 4 shown in Table 2, the photocatalyst layer did not develop a blue color even when irradiated with ultraviolet rays, and the photocatalyst was not functioning. In Experiment 5, it was confirmed that the photocatalyst layer was colored blue by ultraviolet irradiation and the photocatalyst was functioning, but the photolysis efficiency of titanium oxide was low.
 上記実験1~5の結果を、施工面積あたりの酸化チタンの含量と、においモニタ値との関係でまとめると、以下のようになる。
          酸化チタン含量/施工面積    においモニタ値
            (mg/cm
実験1           1.87           1
実験2           3.69           1
実験3           5.56           1
実験4(比較例)     21.39           5
実験5(比較例)     16.67          10
The results of Experiments 1 to 5 are summarized as follows in relation to the content of titanium oxide per construction area and the odor monitor value.
Titanium oxide content / construction area Odor monitor value (mg / cm 2 )
Experiment 1 1.87 1
Experiment 2 3.69 1
Experiment 3 5.56 1
Experiment 4 (Comparative Example) 21.39 5
Experiment 5 (comparative example) 16.67 10
 この結果から、実験前、仮設トイレ内のにおいモニタが、22.5であったのに対して、吸水性ポリマーを添加しない比較例(実験4、5)では、消臭効果はさほど無かったのに対して、本願の各実施態様の光触媒構造体(実験1~3)では、いずれの場合でも、仮設トイレ内のにおいモニタ値が、1(新鮮な空気レベル)を示した。つまり、上記光触媒構造体を備えた空気清浄装置によって、2時間程度で、仮設トイレ内の悪臭を無臭にするという、従来にない格別な効果が得られた。 From this result, the odor monitor in the temporary toilet was 22.5 before the experiment, whereas in the comparative examples (experiments 4 and 5) in which the water-absorbing polymer was not added, the deodorizing effect was not so much. On the other hand, in each case of the photocatalyst structures (Experiments 1 to 3) of the present application, the odor monitor value in the temporary toilet showed 1 (fresh air level). That is, the air cleaner provided with the photocatalyst structure yielded an exceptional effect that has made the odor in the temporary toilet odorless in about 2 hours.
 この効果は、光触媒構造体に形成される多数の空隙によって、光触媒と、空気とが接する面積が大幅に増加し、格段に光分解効率を向上させているものと推察される。つまり、本発明に係る実施態様では、より少ない酸化チタンの量で、より小さな施工面積で、より高い光分解効率を得ることができ、これにより、生産コストを下げ、よりコンパクトなサイズの空気清浄装置とすることができる。 This effect is presumed that the area where the photocatalyst and air are in contact with each other is greatly increased by the large number of voids formed in the photocatalyst structure, and the photolysis efficiency is remarkably improved. That is, in the embodiment according to the present invention, it is possible to obtain a higher photolysis efficiency with a smaller amount of titanium oxide, with a smaller construction area, thereby reducing production costs and purifying air with a more compact size. It can be a device.
<閉鎖型仮設トイレでの消臭実験> 実験6、表3
(可視光応答型酸化チタンを使用した場合)
 次に、実験6は、光触媒として可視光型の酸化チタンを用いた場合の実験結果である。実験6では、白金化合物で表面処理した可視光応答型酸化チタン粉体(石原産業(株)、MPT-623)を用いて実験1~3と同様の方法で製造した光触媒構造体と、10000Luxの可視光を照射する9W LEDとを備える、空気清浄装置を作成した。実験条件は、表1と同様である。表3に示すように、2時間経過後の測定で、仮設トイレのにおいモニタ値は1となった(表3、参照)。
<Deodorization experiment in closed temporary toilet> Experiment 6, Table 3
(When using visible light responsive titanium oxide)
Next, Experiment 6 is an experimental result when visible light type titanium oxide is used as a photocatalyst. In Experiment 6, a photocatalyst structure manufactured by the same method as Experiments 1 to 3 using a visible light responsive titanium oxide powder (Ishihara Sangyo Co., Ltd., MPT-623) surface-treated with a platinum compound, and 10,000 Lux An air cleaning device comprising a 9W LED that emits visible light was created. Experimental conditions are the same as in Table 1. As shown in Table 3, the odor monitor value of the temporary toilet was 1 in the measurement after 2 hours (see Table 3).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 このように、紫外線型酸化チタンと同様に、可視光型酸化チタンにおいても、本願発明に係る光触媒構造体を製造して、本願発明に係る空気清浄装置を作成すれば、臭気の強い仮設トイレでも、無臭にすることができる。 As described above, in the case of visible light type titanium oxide as well as ultraviolet type titanium oxide, if the photocatalyst structure according to the present invention is manufactured and the air purifying device according to the present invention is created, even a temporary toilet with strong odor can be used. Can be odorless.
<閉鎖型仮設トイレでの消臭実験> 実験7、8、表4
(他の吸水性ポリマーを用いた場合)
 次に、吸水性ポリマーとして、ポリアクリル酸重合体部分カルシウム塩架橋物を用いた実験7、8の結果を表4に示す。ここでは、メビオール株式会社製のポリアクリル酸重合体部分カルシウム塩架橋物からなる吸水性ポリマーを用い、2g添加した。酸化チタン、バインダ、については実験1~3と同じであり、施工面積も同じ225cmとした。この光触媒構造体を実験1~3と同様に仮設トイレにセットし、強度1mw/1cmの20Wブラックライトを照射したところ、においモニタ値は1を示した。これにより、吸水性ポリマーとしてポリアクリル酸重合体部分カルシウム塩架橋物を用いても同様に、臭気の強い仮設トイレを無臭にすることができた。
<Deodorization experiment in a closed temporary toilet> Experiments 7 and 8, Table 4
(When using other water-absorbing polymers)
Next, Table 4 shows the results of Experiments 7 and 8 using a polyacrylic acid polymer partial calcium salt crosslinked product as a water-absorbing polymer. Here, 2 g of a water-absorbing polymer made of a cross-linked polyacrylic acid polymer calcium salt manufactured by Meviol Co., Ltd. was used. The titanium oxide and the binder were the same as those in Experiments 1 to 3, and the construction area was also 225 cm 2 . When this photocatalyst structure was set in a temporary toilet in the same manner as in Experiments 1 to 3 and irradiated with a 20 W black light having an intensity of 1 mw / 1 cm 2 , the odor monitor value showed 1. Thereby, even if the polyacrylic acid polymer partial calcium salt cross-linked product was used as the water-absorbing polymer, the temporary toilet with strong odor could be made odorless.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<閉鎖型仮設トイレでの消臭実験> 実験9、表5
(他の水溶性バインダを用いた場合)
 次に、水溶性バインダとして、PVAL系のバインダ(株式会社ミツエ製の液状のりADMIGHT)を用いて実験した。バインダをPVAL系とした以外は、実験1~3と同じ条件とした。この光触媒構造体に、紫外線ピーク波長375nm、強度が0.38mW/1cmのダイオードを照射したところ、においモニタ値はやはり1を示した。これにより、PVAL系のバインダを用いても同様の効果があることが示された。
<Deodorization experiment in closed temporary toilet> Experiment 9, Table 5
(When using other water-soluble binder)
Next, an experiment was conducted using a PVAL-based binder (liquid glue ADMIGHT manufactured by Mitsue Corporation) as a water-soluble binder. The conditions were the same as in Experiments 1 to 3, except that the binder was PVAL. When this photocatalyst structure was irradiated with a diode having an ultraviolet peak wavelength of 375 nm and an intensity of 0.38 mW / 1 cm 2 , the odor monitor value still showed 1. Thereby, it was shown that the same effect was obtained even when a PVAL binder was used.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 PVAL系のバインダは、酢酸ビニル系と比較し、ベトツキが少なく、流動性が高いため、基板上に塗布しやすく製造時の作業が容易となり、また、乾燥時間の短縮を図ることができ、より好ましい態様である。
Compared with vinyl acetate, PVAL binders have less stickiness and high fluidity, making it easier to apply on the substrate, making manufacturing easier, and reducing drying time. This is a preferred embodiment.
<閉鎖型仮設トイレでの消臭実験> 実験10、11、表6
(水溶性でないバインダを用いた場合)
 次に、バインダとして、水溶性でない、アクリル酸系のバインダを用いて実験をした。実験10では、コニシ株式会社製のアクリルエマルジョン系接着剤FL-200を、実験11では、セメダイン株式会社のアクリル酸系接着剤EM341を用いた。バインダ以外については、いずれも実験1~3と同様とした。
<Deodorization experiment in closed temporary toilet> Experiments 10, 11, Table 6
(When using a non-water-soluble binder)
Next, an experiment was conducted using an acrylic acid binder that is not water-soluble as the binder. In Experiment 10, an acrylic emulsion adhesive FL-200 manufactured by Konishi Co., Ltd. was used, and in Experiment 11, an acrylic acid adhesive EM341 manufactured by Cemedine Co., Ltd. was used. Except for the binder, all were the same as in Experiments 1 to 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実験10、11のいずれも、混合液にべとつきが発生して、形成後の乾燥に1週間以上を要した上、更に紫外線を照射しても発色せず、光触媒が機能しなかった。従って、アクリル酸系のバインダを用いた場合、光触媒構造体を製造することはできなかった。 In each of Experiments 10 and 11, the mixed solution was sticky, and after the formation, it took 1 week or more to dry, and even when irradiated with ultraviolet rays, no color was developed and the photocatalyst did not function. Therefore, when an acrylic acid binder is used, a photocatalyst structure cannot be produced.
 次に、本実施態様の空気清浄装置の消臭効果について、たばこの煙、および、アンモニア水を用いて実験を行った。 Next, an experiment was performed on the deodorizing effect of the air cleaning device of this embodiment using cigarette smoke and ammonia water.
<たばこの煙に対する消臭効果> 実験12、図4
 今回の消臭実験は、32.4Lのプラスチック製の密閉容器に、たばこ2本分の煙を充満させて行った。光触媒構造体を作製するために用いた材料は実験1~3と同様であり、酢酸ビニル系のボンド79g、酸化チタン6g、吸水性ポリマー6gとし、施工面積を570cmとした。また、光触媒構造体にはピーク波長360nm、強度5mW/cmのブラックライトを照射した。
<Deodorizing effect on cigarette smoke> Experiment 12, FIG.
In this deodorization experiment, a 32.4 L sealed plastic container was filled with smoke of two cigarettes. The materials used for producing the photocatalyst structure were the same as those in Experiments 1 to 3, and 79 g of vinyl acetate bond, 6 g of titanium oxide and 6 g of water-absorbing polymer were used, and the construction area was 570 cm 2 . The photocatalyst structure was irradiated with black light having a peak wavelength of 360 nm and an intensity of 5 mW / cm 2 .
 図4に示すように、本発明の光触媒構造体を用いた場合のにおいモニタ値は、実験前、97という高値であったが、30分経過後は60、1時間経過後は35、1.5時間経過後は15、2時間経過後は7と、経時的に低下していった。一方、本発明の光触媒構造体を用いない場合のにおいモニタ値は、当初は97、30分経過後は97、1時間経過後は96、1.5時間経過後は94、2時間経過後は92と、ほぼ横ばい状態であった。 As shown in FIG. 4, the odor monitor value in the case of using the photocatalyst structure of the present invention was a high value of 97 before the experiment, but it was 60 after 30 minutes and 35, 1. After 5 hours, it decreased to 15 after 2 hours and to 7 after 2 hours. On the other hand, the odor monitor value when the photocatalyst structure of the present invention is not used is initially 97, 97 after 30 minutes, 96 after 1 hour, 94 after 1.5 hours, 94 after 2 hours. 92, almost flat.
 以上のことから、本実施態様の空気清浄装置には、たばこの煙に対しても消臭効果が確実にあることがわかった。 From the above, it was found that the air purifying apparatus of this embodiment has a deodorizing effect with respect to tobacco smoke.
<アンモニアに対する消臭効果> 実験13、図5
 この消臭実験では、たばこの煙を用いた消臭実験と同様に、32.4Lのプラスチック製の密閉容器内に、濃度2500ppmのアンモニアを充満させ、光触媒構造体にはピーク波長360nm、強度5mW/cmのブラックライトを照射した。本実験で、光触媒構造体を作製するために用いた材料は、実験1~3と同様であり、酢酸ビニル系のボンド79g、酸化チタン6g、吸水性ポリマー(アクリル酸重合体部分ナトリウム塩架橋物)6gとし、施工面積を570cmとした。
<Deodorizing effect on ammonia> Experiment 13, FIG.
In this deodorization experiment, as in the deodorization experiment using cigarette smoke, a 32.4 L plastic sealed container was filled with ammonia at a concentration of 2500 ppm, and the photocatalyst structure had a peak wavelength of 360 nm and an intensity of 5 mW. / Cm 2 of black light was irradiated. In this experiment, the materials used for producing the photocatalyst structure are the same as those in Experiments 1 to 3, and 79 g of vinyl acetate-based bond, 6 g of titanium oxide, water-absorbing polymer (cross-linked acrylic acid polymer partial sodium salt) ) 6 g and the construction area was 570 cm 2 .
 図5に示すように、本発明の光触媒構造体を用いた場合のにおいモニタ値は、実験前、83という高値であったが、30分経過後は52、1時間経過後は26、1.5時間経過後は4、そして、2時間経過後は1と激減し、無臭レベルにまで低下した。一方、本発明の光触媒構造体を用いない場合のにおいモニタ値は、当初は83、30分経過後は83、1時間経過後は82、1.5時間経過後は80、2時間経過後には80という状態で、ほとんど変化しなかった。 As shown in FIG. 5, the odor monitor value when the photocatalyst structure of the present invention was used was a high value of 83 before the experiment, but it was 52 after 30 minutes, 26, 1. After 5 hours, it decreased dramatically to 4 and after 2 hours, it decreased to 1 and decreased to an odorless level. On the other hand, when the photocatalyst structure of the present invention is not used, the odor monitor value is initially 83, 83 after 30 minutes, 82 after 1 hour, 80 after 1.5 hours, 80 after 2 hours. At 80, there was little change.
 以上のことから、本実施態様の空気清浄装置には、明らかにアンモニアの消臭効果があることがわかった。アンモニアはトイレのにおいの原因物質の一つであることから、本実施態様の光触媒構造体を備えた空気清浄装置が、仮設トイレの消臭に効果があることが裏付けられた。 From the above, it was found that the air purifier of this embodiment clearly has a deodorizing effect on ammonia. Since ammonia is one of the causative substances of toilet odors, it was confirmed that the air purifier equipped with the photocatalyst structure of this embodiment is effective in deodorizing temporary toilets.
(4)含水ゲルを更に備える改良型空気清浄装置
 次に、(3)の空気清浄装置に含水ゲルを加えたことにより、その空気清浄効率が格段に向上した改良型空気清浄装置について、説明する。
(4) Improved air cleaning device further provided with a water-containing gel Next, an improved air cleaning device whose air cleaning efficiency has been remarkably improved by adding a water-containing gel to the air cleaning device of (3) will be described. .
<<改良型空気清浄装置>>
 改良型空気清浄装置は、例えば、図9Aに示されるように、ハウジング40内に、光触媒構造体10、光触媒構造体10を支持する支持基板21、光触媒構造体支持基板21に対向するLED(光源)22、LED(光源)22を支持する対向基板23を備え、さらに、含水ゲル32とその収納容器33とを、備える構成である。ハウジング40は、ファン9の近傍に、空気取込み口35を備え、かつその反対側に空気排出口36を備えている。LED(光源)22を支持する対向基板23と、含水ゲル収納容器33とは、光触媒構造体10を支持する支持基板21の両側に、互いに対向して配置されている。なお、これに代えて、光触媒構造体10を支持する支持基板21とLED(光源)22を支持する対向基板23とを入れ換える配置としたり、光触媒構造体10を支持する支持基板21とLED(光源)22を支持する対向基板23とを、含水ゲルの容器を挟んで両側に、それぞれ配置してもよい。
<< Improved air cleaning device >>
For example, as shown in FIG. 9A, the improved air cleaning device includes a photocatalyst structure 10, a support substrate 21 that supports the photocatalyst structure 10, and an LED (light source) that faces the photocatalyst structure support substrate 21, as shown in FIG. 9A. ) 22, a counter substrate 23 that supports the LED (light source) 22, and further includes a hydrogel 32 and a storage container 33. The housing 40 includes an air intake port 35 in the vicinity of the fan 9 and an air exhaust port 36 on the opposite side. The counter substrate 23 that supports the LED (light source) 22 and the hydrated gel storage container 33 are disposed opposite to each other on both sides of the support substrate 21 that supports the photocatalyst structure 10. Instead of this, the support substrate 21 that supports the photocatalyst structure 10 and the counter substrate 23 that supports the LED (light source) 22 may be replaced, or the support substrate 21 that supports the photocatalyst structure 10 and the LED (light source). ) 22 may be arranged on both sides of the water-containing gel container.
 含水ゲル収納容器33は、例えば、図7の様なメッシュシート等から形成された内側容器33aと、図8の様な穴あきプラスチックで構成された外側容器33bとからなる。含水ゲル32を収納した内側容器33aを、外側容器33b内に納め、それを、光触媒構造体10の支持基板21の背面21b側に隣接するように配置し、吸引ファン9により通風させる。 The hydrogel storage container 33 includes, for example, an inner container 33a formed of a mesh sheet as shown in FIG. 7 and an outer container 33b made of perforated plastic as shown in FIG. The inner container 33 a containing the hydrated gel 32 is placed in the outer container 33 b, arranged so as to be adjacent to the back surface 21 b side of the support substrate 21 of the photocatalyst structure 10, and ventilated by the suction fan 9.
 図9A、9Bにあるように、支持基板21は、好ましくは、通風により含水ゲル32から蒸発した水分(湿気)を含む空気が、含水ゲルの収納容器33(33a、33b)側からLED22側へ過剰に流動しないようにするために、隔壁としての役割を果たすように配置してもよい。また、別途、支持基板21と収納容器33との間に、隔壁を設けてもよい。 As shown in FIGS. 9A and 9B, the support substrate 21 is preferably configured so that air containing moisture (humidity) evaporated from the water-containing gel 32 by ventilation is from the water-containing gel storage container 33 (33a, 33b) side to the LED 22 side. In order not to flow excessively, it may be arranged to serve as a partition wall. Separately, a partition wall may be provided between the support substrate 21 and the storage container 33.
 図9Bに示すように、上記改良型空気清浄装置30の運転が開始されると、ファン9によって空気取込み口35から空気が入り、内部で分流されて空気排出口36付近で合流する、気流が生じる。この気流は、主に、光触媒構造体10とLED6との間を通過する空気の流れAと含水ゲル収納容器33側を通過する空気の流れBと、からなるが、それに加えて、後に説明するように、含水ゲル収納容器33側から光触媒構造体10への空気の流れCなども生じる。 As shown in FIG. 9B, when the improved air purifying apparatus 30 is started to operate, air enters from the air intake port 35 by the fan 9, is divided inside, and merges in the vicinity of the air discharge port 36. Arise. This air flow mainly comprises an air flow A passing between the photocatalyst structure 10 and the LED 6 and an air flow B passing through the hydrated gel storage container 33 side. In addition to that, a description will be given later. As described above, an air flow C from the hydrogel container 33 side to the photocatalyst structure 10 is also generated.
 ある実施形態では、装置内の支持基板21には、石原産業株式会社製の可視光応答型酸化チタンで、白金化合物で表面処理したMPT-623の粉末を使ってシート化した160cmの面積の光触媒構造体10を、使用している。その対向支持基板23には、2w LEDが、42個、配置された9.5cm×14.5cmのLED基板が、取り付けられている。これらのLEDは、15000Luxの可視光を光触媒構造体10に照射する。 In one embodiment, the support substrate 21 in the apparatus has an area of 160 cm 2 formed into a sheet using MPT-623 powder surface-treated with a platinum compound using visible light responsive titanium oxide manufactured by Ishihara Sangyo Co., Ltd. A photocatalyst structure 10 is used. The counter support substrate 23 is provided with a 9.5 cm × 14.5 cm LED substrate in which 42 2w LEDs are arranged. These LEDs irradiate the photocatalyst structure 10 with 15000 Lux visible light.
 装置内には、空気を吸い込むために、12VのDC吸引ファン9が、含水ゲル収納容器33のセット位置から0.5cm~2cm程度離した距離に、設けられていてもよい。装置外の空気は、ファン9の回転と同時に改良型空気清浄装置30内に吸い込まれ、例えば風速は、2m/sec~3m/sec前後である。 In the apparatus, a 12 V DC suction fan 9 may be provided at a distance of about 0.5 cm to 2 cm from the set position of the hydrogel container 33 in order to suck air. Air outside the apparatus is sucked into the improved air cleaning apparatus 30 simultaneously with the rotation of the fan 9, and the wind speed is, for example, about 2 m / sec to 3 m / sec.
 含水ゲル32は、まず、内側収納容器33aに収納され、これがさらに外側収納容器33bに収納される。内側収納容器33aは、図7に示されるように、例えば、熱可塑性樹脂等のポリアミド、ポリプロピレン及びポリエチレン等のメッシュシートから作成されたかごである。外側収納容器は、例えば、図8の様に、多数の穴33b1が開けられている穴あきプラスチック容器(市販のイノマタ化学株式会社製のポリスチレン製深角容器(7.4cm×11.3cm×9.8cm))である。含水ゲル32をこのようなメッシュシートの内側収納容器31に収納する理由は、含水ゲルを、プラスチック製の外側収納容器32に直接収納すると、容器32の内壁に接した含水ゲル32の形状が潰れてしまうからである。 The hydrogel 32 is first stored in the inner storage container 33a, and further stored in the outer storage container 33b. As shown in FIG. 7, the inner storage container 33a is a cage made of, for example, a mesh sheet made of polyamide such as thermoplastic resin, polypropylene, or polyethylene. For example, as shown in FIG. 8, the outer storage container is a perforated plastic container having a large number of holes 33b1 (a commercially available polystyrene deep-angle container (7.4 cm × 11.3 cm × 9 manufactured by Inomata Chemical Co., Ltd.)). .8 cm)). The reason why the hydrated gel 32 is stored in the inner storage container 31 of such a mesh sheet is that when the hydrated gel is directly stored in the plastic outer storage container 32, the shape of the hydrated gel 32 in contact with the inner wall of the container 32 is crushed. Because it will end up.
 ある実施態様では、上記内側収納容器33aには、吸水量が自重に対して20倍の含水ゲル32(480g分)が収納される。外側収納容器33bは、好ましくは、支持基板21の背面21b側の隣接した位置に、2個ずつ重ねた組を2組1列に配置される(図9A、9B、10、参照)。この場合、例えば、4個のゲル外側収納容器33bの重量は、1920gで、容器の総表面積は1452cmになる。 In one embodiment, the inner storage container 33a stores a hydrogel 32 (480 g) whose water absorption is 20 times its own weight. The outer storage container 33b is preferably arranged in two rows and one row at a position adjacent to the back surface 21b side of the support substrate 21 (see FIGS. 9A, 9B, and 10). In this case, for example, the weight of the four gel outer storage containers 33b is 1920 g, and the total surface area of the containers is 1452 cm 2 .
<含水ゲルの作成方法>
 本発明に係る「含水ゲル」は、吸水性樹脂1の粉体が、吸水により、その形態を保持可能な程度に水を含んで膨潤したゲルであって、容器内に重ねて収納しても、ゲル間に、適度な空気の隙間が確保されている状態のもの(タイプ3、下記参照)を、いう(図6A、参照)。以下にその作成方法について述べる。
<Method for creating hydrogel>
The “water-containing gel” according to the present invention is a gel in which the powder of the water-absorbent resin 1 is swollen with water to such an extent that its form can be retained by water absorption. In the state where a moderate air gap is secured between the gels (type 3, see below) (see FIG. 6A). The creation method is described below.
 まず、吸水性樹脂としては、特に制限はないが、水性ゲルの吸水性や安定性の観点から、(1)アクリル酸又はその塩、アクリル酸エステル及びアクリルアミドから選ばれる単量体を含んで構成される架橋されたアクリル系ポリマー、(2)イソブチレン-無水マレイン酸共重合体の架橋体、並びに、(3)ポリオキシエチレン架橋体から選ばれる1種以上が好ましい。 First, the water-absorbing resin is not particularly limited, but includes (1) a monomer selected from acrylic acid or a salt thereof, an acrylate ester and acrylamide from the viewpoint of water absorption and stability of the aqueous gel. One or more selected from (2) a crosslinked product of an isobutylene-maleic anhydride copolymer and (3) a crosslinked polyoxyethylene are preferable.
 一般的に市販されている吸水性樹脂としては、例えば、アクリル酸塩系の、ポリアクリル酸重合体部分ナトリウム塩架橋物、ポリアクリル酸重合体部分カルシウム塩架橋物等の側鎖に親水其を有する高分子鎖を架橋した分子構造をもつ吸水性樹脂等があり、その形状は通常、粉体又は粒状である。そこで、実験を始める前に、吸水前の本来の吸水性樹脂の粒径分布を調べてみた。30メッシュから150メッシュのステンレス金網で篩いを作成し、例として、以下の吸水実験で用いる、アクリル酸重合体部分ナトリウム塩架橋物樹脂(ケニス株式会社、400g)の粒度分布を調べた。なお、下記において、例えば、「30#on」は、30メッシュの金網をパスしない場合、「150#pass」は、150メッシュの金網をパスする場合を、それぞれ意味している。 Examples of water-absorbing resins that are generally marketed include, for example, acrylate-based, polyacrylic acid polymer partial sodium salt cross-linked products, polyacrylic acid polymer partial calcium salt cross-linked products, There are water-absorbing resins having a molecular structure in which polymer chains are cross-linked, and the shape is usually powder or granular. Therefore, before starting the experiment, the particle size distribution of the original water-absorbing resin before water absorption was examined. A sieve was prepared with a stainless mesh of 30 to 150 mesh, and as an example, the particle size distribution of a crosslinked acrylic acid polymer sodium salt resin (Kenith Corp., 400 g) used in the following water absorption experiment was examined. In the following, for example, “30 # on” means a case where a 30-mesh wire mesh is not passed, and “150 # pass” means a case where a 150-mesh wire mesh is passed.
(吸水性樹脂の粒径分布、ふるい分け実験) 予備実験、表7
Figure JPOXMLDOC01-appb-T000007
 上記の結果、開口0.288mm(50金網メッシュ)以上をパスしない比較的大きなサイズが、重量割合(wt%)で全体の72%以上を占めていたことから、特にふるい分けすることなく、以後の実験を進めることとした。
(Particle size distribution of water-absorbent resin, screening experiment) Preliminary experiment, Table 7
Figure JPOXMLDOC01-appb-T000007
As a result, a relatively large size that does not pass more than 0.288 mm (50 wire mesh) accounted for 72% or more of the total weight ratio (wt%). The experiment was decided to proceed.
<<実験例>> 含水ゲル実験14~20、改良型空気清浄装置関連実験21~24
 上記したように、吸水性樹脂をふるい分けせずに、吸水実験や含水ゲル32の作成を行うこととしたため、以下の実験では、粒径サイズによって吸水速度が異なることに、留意して吸水させた。つまり、吸水性樹脂1は粉体又は粒状であり、上記予備実験の場合、サイズが比較的大きいもので0.6mm、小さいもので0.1mm前後である。例えば、篩いで分別した30#on(0.560mm)と150#on(0.104mm)の吸水性樹脂で、樹脂量の40倍の水を吸収する吸水速度を比較すると、30#on樹脂で1.168cc/sec、150#on樹脂で4.516cc/secと、その値に4倍以上の違いがあった。
<< Experimental Example >> Hydrous Gel Experiments 14-20, Improved Air Cleaner Related Experiments 21-24
As described above, the water absorption experiment and the preparation of the water-containing gel 32 were performed without sieving the water absorbent resin, and in the following experiments, the water absorption speed was different depending on the particle size, and the water was absorbed with care. . That is, the water-absorbent resin 1 is powder or granular, and in the case of the preliminary experiment, the size is relatively large and is about 0.6 mm, and the small size is about 0.1 mm. For example, when comparing the water absorption speed of 30 # on (0.560mm) and 150 # on (0.104mm) water-absorbing resins separated by sieving and absorbing water 40 times the amount of resin, 1.168cc / sec, 150 # on resin, 4.516cc / sec, there was a difference of 4 times or more.
 そこで、吸水性樹脂をふるい分けせずに含水ゲルを作成する場合には、水又は金属イオン等を含有する水を入れる容器を、底の深さが、例えば4~5cm程度で浅く、しかも間口(例えば、22x31cm)の広い正方皿とすることが好ましく、さらに、正方皿内全体に、均一になるように吸水性樹脂1を投入するとよい。この様に吸水を行えば、吸収速度の違いによるバラツキが少なく、良好な吸水度の含水ゲル32を得ることができる。 Therefore, when preparing a hydrous gel without sieving the water-absorbent resin, a container for containing water or water containing metal ions, etc., is shallow with a bottom depth of about 4 to 5 cm, for example, and a frontage ( For example, it is preferable to use a wide square dish of 22 × 31 cm), and the water-absorbing resin 1 may be introduced so as to be uniform throughout the square dish. If the water is absorbed in this way, there is little variation due to the difference in absorption speed, and the water-containing gel 32 having a good water absorption can be obtained.
<吸水量と吸水ゲルの形態との関係> 実験14、表8
 吸水性樹脂1としては、粉末状または粒状の形状をしたアクリル酸重合体部分ナトリウム塩架橋物(ケニス株式会社)を使用し、水2は精製水を使用した。自重に対する吸水量とゲルの形態の観察結果を以下に示す。
Figure JPOXMLDOC01-appb-T000008
※1:(タイプ1)多量の吸水によりゲルが崩れて寒天状になり、水の浸み出しの可能性が大きい。
※2:(タイプ2)タイプ3からタイプ1への移行段階
※3:(タイプ3)含水ゲル32
※4:(タイプ4)樹脂投入速度よりも樹脂の吸水速度が速いケースでは吸水性が不均一なゲルとなり得る。
<Relationship between water absorption amount and form of water absorption gel> Experiment 14, Table 8
As the water-absorbent resin 1, a cross-linked acrylic acid polymer sodium salt (Kenith Co., Ltd.) having a powder or granular shape was used, and purified water was used as the water 2. The observation results of the amount of water absorption with respect to its own weight and the form of the gel are shown below.
Figure JPOXMLDOC01-appb-T000008
* 1: (Type 1) A large amount of water absorption causes the gel to collapse and become agar-like, and the possibility of water leaching is high.
* 2: (Type 2) Transition stage from Type 3 to Type 1 * 3: (Type 3) hydrous gel 32
* 4: (Type 4) In the case where the water absorption rate of the resin is faster than the resin charging rate, the gel may have non-uniform water absorption.
 実験14の実験条件での、自重に対する吸水度を段階的に増加させた場合のゲルの形態変化をまとめると以下のようになる(図6A~図6C、参照)。
(a)吸水が自重の約100倍以上の場合、個々のゲルが膨潤しすぎて形状が全体的に崩れた状態の、寒天状ゲルとなってしまう(図6A、参照)(タイプ1)。
(b)吸水が自重の約80~約90倍の場合、膨潤したゲル中の水の存在が明らかにわかり、容器に収納する等して多少の圧力を加えると水が浸み出してゲルが変形してしまう(図6B、参照)(タイプ2)。
(c)吸水が自重の約12~約70倍の場合、吸水性樹脂が、吸水により、その形態を保持可能な程度に膨潤したゲルであって、容器内に収納しても、ゲル間に隙間が確保されている状態である(図6C、参照)。吸水により適度に水分を含みつつ、ゲルの形状が維持されて、ゲル間に隙間が確保されるため、吸着剤として好ましい態様である(含水ゲル32、以下、含水ゲルともいう。)(タイプ3)。
(d)吸水が自重(樹脂量)の約10倍以下の場合、吸水性の差が大きく、膨潤が不均一な状態のゲルとなりやすい(タイプ4)。
The following is a summary of changes in gel morphology when the water absorption against its own weight is increased stepwise under the experimental conditions of Experiment 14 (see FIGS. 6A to 6C).
(A) When water absorption is about 100 times or more of its own weight, each gel will swell too much and it will become an agar-like gel in the state where the shape collapsed entirely (refer FIG. 6A) (type 1).
(B) When the water absorption is about 80 to about 90 times its own weight, the presence of water in the swollen gel can be clearly seen. Deformation (see FIG. 6B) (type 2).
(C) When the water absorption is about 12 to about 70 times its own weight, the water-absorbing resin is a gel swollen to such an extent that the water absorption resin can retain its form. A gap is secured (see FIG. 6C). This is a preferred embodiment as an adsorbent (water-containing gel 32, hereinafter also referred to as a water-containing gel) because the gel shape is maintained while water is appropriately contained by water absorption, and a gap is secured between the gels. ).
(D) When the water absorption is about 10 times or less of its own weight (resin amount), the difference in water absorption is large, and the gel tends to be unevenly swelled (type 4).
 含水ゲル32が吸着剤として機能し得るためには、吸着性能を有することが必須であるが、これに加え、水溶液が浸み出さずかつゲルの形態が維持されていることも必要である。 In order for the hydrogel 32 to function as an adsorbent, it is essential to have adsorption performance, but in addition to this, it is also necessary that the aqueous solution does not ooze and the gel form is maintained.
 つまり、本願でいう「含水ゲル」(32)は、上記タイプ3の、吸水性樹脂が、吸水により、その形態を保持可能な程度に膨潤したゲルであって、容器内に収納してもゲル間に、隙間が確保されているため、吸着剤として好ましい態様である。なお、含水ゲル32(単に、含水ゲルともいう)の吸水(含水)の度合いは、上記タイプ3の特性を満たすように、用いる吸水性樹脂の種類によって、適宜調製することができる。 In other words, the “water-containing gel” (32) referred to in the present application is a gel in which the water-absorbent resin of type 3 is swollen to the extent that the water-absorbent resin can retain its form due to water absorption, even if stored in a container. Since a gap is secured between them, this is a preferred embodiment as an adsorbent. The degree of water absorption (moisture content) of the water-containing gel 32 (also simply referred to as a water-containing gel) can be appropriately adjusted depending on the type of the water-absorbing resin used so as to satisfy the above type 3 characteristics.
<含水ゲルの防かび実験> 実験15、表9
 実験14で得られた含水ゲル32を使用中又は保存中に黒カビ等が発生する恐れがある。その対策としては、銀イオン、銅イオン等を含有させた水溶液を用いるのが最も好ましい。200mlボトルを使用し、密閉して放置試験の結果、吸水用として水道水を使用した場合は、含水ゲル32は一週間程度で黒カビが発生したが、上記のような抗菌性金属イオン水を使用した場合は、2カ月間以上経過してもカビの発生は観察されなかった。
Figure JPOXMLDOC01-appb-T000009
※1:水道水を自重の30倍吸水した含水ゲル
※2:銀イオン0.1ppm水溶液を自重の30倍吸水した含水ゲル
※3:銀イオン0.25ppm水溶液を自重の30倍吸水した含水ゲル
※4:銀イオン100ppm水溶液を自重の30倍吸水した含水ゲル
<Antifungation experiment of hydrous gel> Experiment 15, Table 9
Black mold or the like may occur during use or storage of the hydrogel 32 obtained in Experiment 14. As a countermeasure, it is most preferable to use an aqueous solution containing silver ions, copper ions and the like. As a result of standing test using a 200 ml bottle, when the tap water was used for water absorption, black mold was generated in the water-containing gel 32 in about one week, but the above antibacterial metal ion water was used. In this case, no mold was observed even after 2 months.
Figure JPOXMLDOC01-appb-T000009
* 1: Water-containing gel that absorbs tap water 30 times its own weight * 2: Water-containing gel that absorbs silver ion 0.1 ppm aqueous solution 30 times its own weight * 3: Water-containing gel that absorbs silver ion 0.25 ppm aqueous solution 30 times its own weight * 4: A hydrous gel that absorbs 100 ppm of silver ion water 30 times its own weight.
<含水ゲルの持続的消臭効果> 実験16、17、表10、11
 次に、上記方法で作成した、含水ゲルの消臭作用に関する実験結果を以下に示す。
<Sustained deodorizing effect of hydrous gel> Experiments 16 and 17, Tables 10 and 11
Next, the experimental result regarding the deodorizing action of the hydrogel prepared by the above method is shown below.
 この実験では、吸水性樹脂1から製造した含水ゲル32を用いて、粒状白鷺WH2C8/32ヤシガラ活性炭(日本エンバイロケミカルズ株式会社)と比較した。使用した実験箱は、縦45cm、横45cm、高さ60cmのガラス板で作成し、容積は121.5Lである。収納容器は、50#ステンレス金網製の15cm×2.5cm×15.5cm(容積581.25cm,表面積617cm)のものを用いた。ヤシガラ活性炭量240gまたは、吸水倍率30倍の含水ゲル377gを収納容器に入れて、実験箱内にセットした。実験箱内の床に、汚臭物質の1つでもあるアンモニア水をアンモニア濃度が1400ppmになるように滴下した。実験は、含水ゲルやヤシガラ活性炭を交換せずに、1日1回3時間の実験を4日間続けて行った。実験箱内のにおいモニタ値の測定には、上記各実験と同様のにおいモニタを用いた。 In this experiment, the water-containing gel 32 produced from the water-absorbent resin 1 was used, and compared with granular white birch WH2C8 / 32 coconut shell activated carbon (Nippon Enviro Chemicals Co., Ltd.). The experimental box used was made of a glass plate having a length of 45 cm, a width of 45 cm, and a height of 60 cm, and its volume was 121.5 L. As the storage container, a 15 cm × 2.5 cm × 15.5 cm (volume 581.25 cm 3 , surface area 617 cm 2 ) made of 50 # stainless wire mesh was used. A coconut shell activated carbon amount of 240 g or a water-containing gel of 377 g having a water absorption ratio of 30 times was placed in a storage container and set in a test box. Ammonia water, which is also one of the odorous substances, was dropped onto the floor in the experimental box so that the ammonia concentration was 1400 ppm. The experiment was conducted for 3 days, once a day for 3 hours, without replacing the hydrogel or coconut shell activated carbon. For the measurement of the odor monitor value in the experiment box, the same odor monitor as in the above experiments was used.
(実験16)ヤシガラ活性炭の消臭効果(比較例)
Figure JPOXMLDOC01-appb-T000010
(Experiment 16) Deodorizing effect of coconut shell activated carbon (comparative example)
Figure JPOXMLDOC01-appb-T000010
(実験17)含水ゲルの消臭効果
Figure JPOXMLDOC01-appb-T000011
(Experiment 17) Deodorizing effect of hydrous gel
Figure JPOXMLDOC01-appb-T000011
 実験16のヤシガラ活性炭の場合(比較例)は、1日目はほぼ順調に消臭効果を示しているように見られたが、2日目以降、使用時間が経過しても消臭効果が少なく、消臭機能が低下しているのに対して、実験17の含水ゲルの場合は、使用して1時間でかなりの消臭効果を示し、かつ、2日目以降も消臭機能の低下が見られないことから、含水ゲルの消臭効率及び消臭機能の持続性は、ヤシガラ活性炭に比べて顕著に大きいということがいえる。 In the case of the coconut husk activated carbon of Experiment 16 (comparative example), it seemed that the deodorizing effect was almost smoothly performed on the first day. The deodorizing function is low, whereas the hydrogel of Experiment 17 shows a considerable deodorizing effect after 1 hour of use, and the deodorizing function is reduced after the second day. Therefore, it can be said that the deodorizing efficiency and the deodorizing function of the hydrated gel are significantly higher than that of coconut shell activated carbon.
<タイプ1~4の吸水ゲルでの消臭効果の比較> 実験18(正方皿)、表12
 次に、自重に対する吸水が4倍から180倍の場合の吸水ゲル(タイプ1~4、上記実験14参照)の消臭効果実験を行った。吸水して膨潤したゲルの収納容器として正方皿を使用し、表面積が700cmにするように吸水ゲルを敷きつめた。用いた実験箱は、前述と同じである。今回の実験では、空試験(比較実験)として吸水ゲルを施工しないケースを用意した。実験箱にアンモニア濃度1400ppmを滴下した後、各経過時間での、においモニタ値の結果を以下に示す。
<Comparison of deodorizing effect with water-absorbing gels of types 1 to 4> Experiment 18 (square dish), Table 12
Next, a deodorizing effect experiment was conducted on the water-absorbing gel (types 1 to 4, see Experiment 14 above) when the water absorption relative to its own weight was 4 to 180 times. A square dish was used as a container for the swollen gel after water absorption, and the water-absorbing gel was spread so that the surface area became 700 cm 2 . The experimental box used is the same as described above. In this experiment, a case where no water-absorbing gel was applied was prepared as a blank test (comparison experiment). The result of the odor monitor value at each elapsed time after dropping the ammonia concentration of 1400 ppm to the experimental box is shown below.
(実験18)
Figure JPOXMLDOC01-appb-T000012
 自重に対する吸水が100~180倍(タイプ1)
 自重に対する吸水が80倍     (タイプ2)
 自重に対する吸水が20~60倍  (タイプ3)
 自重に対する吸水が4倍      (タイプ4)
(Experiment 18)
Figure JPOXMLDOC01-appb-T000012
100-180 times water absorption against its own weight (Type 1)
80 times the water absorption against its own weight (Type 2)
20-60 times water absorption against its own weight (Type 3)
4 times the water absorption against its own weight (Type 4)
 前記の吸水実験で、タイプ1からタイプ2として分類される、吸水が自重の80倍、100倍のゲルは、明らかに水の浸み出しが確認され、特に、タイプ1と分類される180倍ゲルは、正方皿でも変形しやすく、顕著に多量の水が流れ出た。消臭効果については、空試験に比較して180倍ゲルも多少の消臭効果は認められるがその効果は小さい。全体としては、吸水の程度が低いほど、即効性の消臭効果が見られた。なお、今回の実験で最も吸水度の低いゲル(自重の4倍、タイプ4)では、最速の消臭効果が得られたが、吸水度が低く直ぐ乾燥してしまうので、上記実験17の様に、継続して使用する場合は、この様な効果は得られない。 In the above water absorption experiment, gels that are classified as type 1 to type 2 and whose water absorption is 80 times and 100 times their own weight clearly show water seepage, especially 180 times that is classified as type 1. The gel was easily deformed even in a square dish, and a significant amount of water flowed out. As for the deodorizing effect, the 180-fold gel shows some deodorizing effect as compared with the blank test, but the effect is small. Overall, the lower the degree of water absorption, the faster the deodorizing effect. In this experiment, the gel with the lowest water absorption (4 times its own weight, type 4) has the fastest deodorizing effect, but it has a low water absorption and immediately dries. In addition, such an effect cannot be obtained when it is continuously used.
<施工面積と消臭効果の比較> 実験19(正方皿)、表13
 次に吸水が自重の20倍の含水ゲル32(タイプ3)を用いて、施工面積を380cmから1785cmまで、段階的に増加させて、その消臭効果を見る実験を行った。実験箱は上記と同じであるが、アンモニア水の滴下を2500ppmの高濃度とした。なお、含水ゲル32の比較用に水道水を正方皿に満たしたものを、空試験(施工面積612cm)として用いた。結果を、以下に示す。
<Comparison of construction area and deodorizing effect> Experiment 19 (square dish), Table 13
Next, using water-containing gel 32 (type 3) whose water absorption is 20 times its own weight, the construction area was gradually increased from 380 cm 2 to 1785 cm 2, and an experiment was conducted to see the deodorizing effect. The experimental box was the same as above, but the ammonia water was dropped to a high concentration of 2500 ppm. For comparison of the hydrogel 32, tap water filled in a square dish was used as a blank test (construction area 612 cm 2 ). The results are shown below.
(実験19)
Figure JPOXMLDOC01-appb-T000013
(Experiment 19)
Figure JPOXMLDOC01-appb-T000013
 上記実験19の結果(表13)により、含水ゲルの施工面積(380cm~1785cm)をふやすほど消臭効果が上がることが確認された。 From the results of the experiment 19 (Table 13), it was confirmed that the deodorizing effect increased as the construction area (380 cm 2 to 1785 cm 2 ) of the hydrogel was increased.
<吸水性樹脂の違いと消臭効果> 実験20(正方皿)、表14
 次に、吸水性樹脂として、テスト品(1)ケニス株式会社製のアクリル酸重合体部分ナトリウム塩架橋物と、テスト品(2)メビオール株式会社製のポリアクリル酸重合体部分カルシウム塩架橋物を用いて、消臭効果を比較した。吸水倍率は自重の20倍とし、施工面積は1190cm、アンモニア水の滴下は2500ppmでおこなった。経過時間毎のにおいモニタ値の結果を、表14に示す。
<Difference in water-absorbent resin and deodorizing effect> Experiment 20 (square dish), Table 14
Next, as a water-absorbent resin, a test product (1) a cross-linked acrylic acid polymer sodium salt made by Kennis Co., Ltd. and a test product (2) a cross-linked polyacrylic acid polymer partial calcium salt made by Meviol Co., Ltd. Used to compare the deodorant effect. The water absorption magnification was 20 times its own weight, the construction area was 1190 cm 2 , and ammonia water was dropped at 2500 ppm. Table 14 shows the result of the odor monitor value for each elapsed time.
(実験20)
Figure JPOXMLDOC01-appb-T000014
(Experiment 20)
Figure JPOXMLDOC01-appb-T000014
 以上の結果から、吸水性樹脂として(イ)ポリアクリル酸重合体部分カルシウム塩架橋物を用いても、短時間で(ア)アクリル酸重合体部分ナトリウム塩架橋物と同様に、においモニタ値が、清浄な空気のレベル(1)にまでに浄化する効果を得ることができた。 From the above results, even when (i) a polyacrylic acid polymer partial calcium salt cross-linked product is used as the water-absorbing resin, the odor monitor value can be obtained in a short time as in the case of (a) the acrylic acid polymer partial sodium salt cross-linked product. The effect of purifying by clean air level (1) could be obtained.
<<改良型空気清浄装置の即効的消臭効果>> 実験24、表15
 光触媒構造体と含水ゲルを備える改良型空気清浄装置30に関して、その効果を調べる実験を行った(実験21~24)。表15の含水ゲル入り収納容器「4個セット」とは、実験14等の製造方法に従い、自重に対して吸水倍率20倍の含水ゲル32を作り、4つの収納容器33に収納して(図10)、改良型空気清浄装置30内に設置したことを意味する(図9A、9B)。なお、含水ゲルの吸水には精製水を用いている。
<< Instantaneous Deodorizing Effect of Improved Air Cleaner >> Experiment 24, Table 15
With respect to the improved air cleaning device 30 including the photocatalyst structure and the water-containing gel, experiments for examining the effect were performed (Experiments 21 to 24). According to the production method of Experiment 14 and the like, the storage container “4 sets” containing the water-containing gels in Table 15 creates a water-containing gel 32 having a water absorption ratio of 20 times its own weight and stores them in the four storage containers 33 (see FIG. 10) means that it is installed in the improved air cleaning device 30 (FIGS. 9A and 9B). Note that purified water is used to absorb the water-containing gel.
 実験16、17で使用した121.5L容積の実験箱内に改良型空気清浄装置30を置いて、下記の条件で実験した。濃度500ppmのアンモニア水を実験箱内に滴下した後、ファン9を運転し、経時的に実験箱内の臭気を、においモニタで計測した。ここで、「LED電源ON状態」とは、LEDが照射されて、光触媒構造体10が光触媒機能を発揮する条件下にあること、そして、「LED電源OFF状態」とは、LEDが照射されず、光触媒構造体10が、光触媒機能を発揮しない条件下にあることを、それぞれ意味している。 The improved air cleaning device 30 was placed in the 121.5 L capacity test box used in Experiments 16 and 17, and the experiment was performed under the following conditions. After dropping ammonia water having a concentration of 500 ppm into the experimental box, the fan 9 was operated, and the odor in the experimental box was measured with an odor monitor over time. Here, the “LED power supply ON state” means that the LED is irradiated and the photocatalyst structure 10 is under the condition of exerting the photocatalytic function, and the “LED power supply OFF state” means that the LED is not irradiated. This means that the photocatalyst structure 10 is under conditions that do not exhibit the photocatalytic function.
 先の実施例の、光触媒構造体を備える空気洗浄装置では、約2時間経過後に清浄な空気レベルになるとの消臭効果が得られていたが、今回の改良型空気清浄装置の実施例では、一段と短い時間で格別な消臭効果が得られており、以下には、11分経過後のにおいモニタ値を示す。 In the air cleaning apparatus having the photocatalyst structure of the previous example, a deodorizing effect was obtained when the air level became clean after about 2 hours, but in the example of the improved air cleaning apparatus of this time, A special deodorizing effect is obtained in a much shorter time, and the odor monitor values after 11 minutes are shown below.
(実験21~24)
Figure JPOXMLDOC01-appb-T000015
(Experiments 21-24)
Figure JPOXMLDOC01-appb-T000015
 上記実験によれば、光触媒構造体10(LED・ON状態)と含水ゲル32とを併用した改良型空気清浄装置30は(実験4)、わずか11分間の運転で、アンモニアが充満した空気(においモニタ値84)を、清浄な空気と同等のレベル(においモニタ値1)まで消臭・清浄することができるという、驚異的な空気洗浄効果を示した。 According to the above experiment, the improved air cleaning device 30 using the photocatalyst structure 10 (LED / ON state) and the hydrated gel 32 in combination (Experiment 4) is an air (smell) filled with ammonia after only 11 minutes of operation. The monitor value 84) showed an amazing air cleaning effect that it can be deodorized and cleaned to a level equivalent to clean air (odor monitor value 1).
 一方、11分間という短時間での実験で、含水ゲル32単独の場合(実験3)はレベル13に低下したが、光触媒構造体10(LED・ON状態)単独の場合(実験2)は、レベル63に留まっていた。 On the other hand, in the experiment in a short time of 11 minutes, the water-containing gel 32 alone (Experiment 3) decreased to level 13, but the photocatalyst structure 10 (LED / ON state) alone (Experiment 2) He stayed at 63.
 以上の結果から、改良型空気清浄装置においては、(1)含水ゲルは、その含水性やゲル間に隙間を有することにより、より短時間で臭気等をトラップすることができるという、優れた吸着力を有し、一方、(2)光触媒構造体10は、短時間では消臭効果は小さいが、前述の光触媒構造体10を備える空気清浄装置の実験(実験1~13)より、2時間程度経過すれば、継続的に空気を清浄できる性能がある。 From the above results, in the improved air cleaning apparatus, (1) the water-containing gel has excellent adsorption that it can trap odors and the like in a shorter time by having water content and gaps between the gels. On the other hand, although (2) the photocatalyst structure 10 has a small deodorizing effect in a short time, it is about 2 hours from the experiment (experiments 1 to 13) of the air cleaning device provided with the photocatalyst structure 10 described above. If it passes, it has the performance which can clean air continuously.
 そして、(3)光触媒構造体10(LED・ON状態)と含水ゲル32とを併用した場合(実験24、においモニタ値:1)は、光触媒構造体(LED・ON状態)単独の場合(実験22、においモニタ値:63)より効果があるのはもちろんのこと、含水ゲル単独の場合(実験23、においモニタ値:13)よりさらに効果が顕著で、11分という短い時間で清浄な空気のレベルまで浄化された。この点は、繰り返して実験を行っても同様の結果であった。 (3) When the photocatalyst structure 10 (LED / ON state) and the hydrogel 32 are used in combination (Experiment 24, odor monitor value: 1), the photocatalyst structure (LED / ON state) alone (experiment) 22 and odor monitor value: 63) Of course, it is more effective than the case of water gel alone (Experiment 23, odor monitor value: 13). Purified to level. This point was the same result even if it experimented repeatedly.
 また、含水ゲル単独(実験23など)の場合、空気はある程度消臭されても、アンモニアの実験ではアンモニア臭が、たばこの煙の実験ではその臭いが、含水ゲルに残存して、ゲル自体に臭いが残ってしまうが、光触媒構造体10と含水ゲル32を併用させた改良型空気清浄装置(実験24など)の場合には、含水ゲル32に上記臭気が残存することがなく、良好であった。これは、以下に述べる、含水ゲル32を再生して再利用するためにも重要な効果である。 In the case of a hydrogel alone (such as Experiment 23), even if the air is deodorized to some extent, the ammonia odor remains in the ammonia experiment, and in the cigarette smoke experiment, the odor remains in the hydrogel and remains in the gel itself. Although the odor remains, in the case of an improved air cleaning device (such as Experiment 24) in which the photocatalyst structure 10 and the hydrated gel 32 are used in combination, the odor does not remain in the hydrated gel 32, which is good. It was. This is also an important effect for regenerating and reusing the hydrogel 32 described below.
 以上のことから、本発明に係る光触媒構造体10と含水ゲル32とを併用させた改良型空気清浄装置30の空気清浄効果は、予想以上に大きなものであることが判明した。 From the above, it was found that the air purification effect of the improved air cleaning device 30 using the photocatalyst structure 10 and the hydrogel 32 according to the present invention in combination is larger than expected.
 光触媒構造体と含水ゲルとを併置した改良型空気清浄装置での、この格別な効果は、光触媒構造体と含水ゲルの各々単独の効果の和だけではなく、以下に述べるように、両者を併用することによる、何らかの複合的効果あるいは相乗的効果が存在するためと思われる。 This extraordinary effect of the improved air cleaning device in which the photocatalyst structure and the water-containing gel are juxtaposed is not only the sum of the effects of each of the photocatalyst structure and the water-containing gel, but also a combination of both as described below. It seems that there are some complex effects or synergistic effects.
 上記の改良型空気清浄装置30のハウジング40内は、隔壁(又は支持基板21)によって、光触媒構造体10側の区画37と含水ゲルの収納容器33側の区画38とに区画されている(図9B)。図9B、図10に示すように、ハウジング40の上部を空気が流通する(気流C、C’)ように、この隔壁の上端bは、収納容器33の上端aより若干低く(本実施態様では5mm程度)、プラスチック容器の一番高い位置の穴の上端cより高く設定されている。改良型空気清浄装置30の運転を開始すると、ファン9により装置内に流れてきた空気は、隔壁によって、主に、区画37側を流れる気流Aと、区画38側を流れる気流Bに分流されるが、それだけではなく、区画37と区画38の間に亘って流れる別のタイプの気流が、実際に観察された。図9Bでは、これを気流C、C’として示している。 The inside of the housing 40 of the improved air cleaning device 30 is partitioned into a partition 37 on the photocatalyst structure 10 side and a partition 38 on the water-containing gel storage container 33 side by a partition wall (or support substrate 21) (FIG. 9B). As shown in FIGS. 9B and 10, the upper end b of the partition wall is slightly lower than the upper end a of the storage container 33 so that air flows through the upper portion of the housing 40 (airflow C, C ′) (in this embodiment, About 5 mm), which is set higher than the upper end c of the hole at the highest position of the plastic container. When the operation of the improved air cleaning device 30 is started, the air that has flowed into the device by the fan 9 is mainly divided into an airflow A flowing on the compartment 37 side and an airflow B flowing on the compartment 38 side by the partition wall. However, not only that, another type of airflow flowing between compartments 37 and 38 was actually observed. In FIG. 9B, this is shown as airflows C and C ′.
 そして、上記実験21~24において、改良型空気清浄装置の、含水ゲル容器側の区画38は、ファンにより含水ゲルの水分が蒸発することによって、湿度が約90%に上昇していた。なお、実験箱内で装置外の湿度は約68%であった。 In the experiments 21 to 24, the humidity of the compartment 38 on the hydrated gel container side of the improved air purifier was increased to about 90% as the moisture of the hydrated gel evaporated by the fan. Note that the humidity outside the apparatus in the experimental box was about 68%.
 以上の結果を総合的に勘案すると、光触媒構造体と含水ゲルとを備えるこの改良型空気清浄装置30が予想外の空気清浄効果を示す理由として、以下の1)、2)に加え、さらに、3)~5)等の作用機序が考えられる(図9B、参照)。 Considering the above results comprehensively, in addition to the following 1), 2), in addition to the following 1), 2), this improved air cleaning device 30 comprising a photocatalyst structure and a hydrous gel exhibits an unexpected air cleaning effect: The mechanism of action such as 3) to 5) can be considered (see FIG. 9B).
 1)気流Aに関する、光触媒構造体による消臭効果
 2)気流Bに関する、形態を保持する程度に吸水した含水ゲルによる消臭効果
1) Deodorization effect by photocatalyst structure regarding airflow A 2) Deodorization effect by water-containing gel that absorbs water to the extent that airflow B retains its form
 3)気流Cと光触媒構造体による消臭効果
 図9Bに示すように、前述の気流A、気流Bの他に、含水ゲル容器側区画38から光触媒構造体側区画37への気流C(例えば、0.3~1.0m/s程度)が観察されている。この気流Cは、ファン9により含水ゲル32から水分が蒸発して含水ゲル容器側区画38が高湿度となって、光触媒構造体側区画37との間に湿度の濃度勾配(不均一性)が生じ、この湿度の濃度勾配(不均一性)を緩和させる方向に空気が移動するために、生じていると思われる。気流Cによって、含水ゲル収納容器側区画38の多湿な空気とそれにトラップされた汚臭物質等が、区画38から区画37に流れ込むことによって、光触媒作用のための水分と、水分にトラップされた汚臭物質等が、一緒に効率よく光触媒構造体側へと運ばれる。さらに、本願に係る光触媒構造体は、多孔性であるスポンジ状の吸水性ポリマーからなることから、この多数の空隙に存在する光触媒にも、汚臭物質と光触媒作用に必要な水分が一緒に継続的に運ばれることになり、その結果、光触媒反応がより効率的に行われて、汚臭物質がより有効に分解されると推察される。
3) Deodorizing effect by airflow C and photocatalyst structure As shown in FIG. 9B, in addition to airflow A and airflow B described above, airflow C (for example, 0) from water-containing gel container side section 38 to photocatalyst structure side section 37 About 3 to 1.0 m / s) has been observed. The air flow C causes moisture to evaporate from the water-containing gel 32 by the fan 9 so that the water-containing gel container side section 38 becomes high humidity, and a humidity concentration gradient (nonuniformity) is generated between the air flow C and the photocatalyst structure side section 37. This seems to be caused by the movement of air in a direction that alleviates this humidity concentration gradient (non-uniformity). Moist air in the hydrated gel storage container side section 38 and odorous substances trapped in the airflow C flow into the section 37 from the section 38, so that moisture for photocatalysis and contamination trapped in the moisture are collected. Odor substances and the like are efficiently conveyed to the photocatalyst structure side together. Furthermore, since the photocatalyst structure according to the present application is made of a porous sponge-like water-absorbing polymer, the odorous substance and moisture necessary for the photocatalytic action continue to be present in the photocatalyst present in the numerous voids. As a result, it is presumed that the photocatalytic reaction is performed more efficiently and the odorous substance is decomposed more effectively.
 4)気流C’の効果
 図9Bに示すように、光触媒構造体側区画37の空気が含水ゲル容器側区画38に流れる、気流C’も観察されている。気流C’によって、区画38側の光触媒により生成された活性酸素種が含水ゲル容器区画37にも供給され得、これによって、空気の消臭効果が増すことも考えられる。
4) Effect of Air Flow C ′ As shown in FIG. 9B, an air flow C ′ in which the air in the photocatalyst structure side section 37 flows to the water-containing gel container side section 38 is also observed. The active oxygen species generated by the photocatalyst on the compartment 38 side can be supplied to the water-containing gel container compartment 37 by the air flow C ′, which may increase the deodorizing effect of the air.
 5)その他の効果
 実験23の、含水ゲル単独の消臭実験の場合、空気はある程度消臭されてもゲル自体が臭くなってしまうが、実験24の、光触媒構造体10と含水ゲル32を併用させた場合は、ゲルは無臭のままであった。このことは、吸着体であるゲル自体を下記のように再生して再利用する際にも好ましい現象である。この想定外の効果は、例えば、気流C’により運ばれる活性酸素種等によるものとも考えられる。
5) Other effects In the case of the deodorization experiment of the hydrogel alone in Experiment 23, the gel itself becomes odor even if the air is deodorized to some extent, but the photocatalyst structure 10 and the hydrogel 32 in Experiment 24 are used in combination. When allowed to run, the gel remained odorless. This is also a preferable phenomenon when the adsorbent gel itself is regenerated and reused as described below. This unexpected effect may be due to, for example, reactive oxygen species carried by the airflow C ′.
<<防菌・殺菌における、光触媒構造体と含水ゲルの併用効果>> 実験25
 改良型空気清浄装置30を、20年間使用している古いプレハブ(2.1m×5.0m×2m、容積:21m)内の片隅に設置して、24時間連続運転前後の内壁合板の一般細菌の有無について、サン化学株式会社製のサンコリの判定法で調べた。その結果、改良型空気清浄装置30を設置しない場合は、5枚の合板を用いた検査で、24時間後に、3枚から一般細菌の陽性反応が確認されたが、改良型空気清浄装置30を設置した場合は、24時間運転後の検査で、空気清浄装置の設置場所から3.5m離れた位置の5枚の合板を用いた検査で全て陰性であった。このことから、光触媒構造体10と含水ゲル32とを備える、改良型空気清浄装置30は、空気の除菌・防菌効果も併せ持つことが判明した。
<< Combination effect of photocatalyst structure and water-containing gel in antibacterial and sterilization >> Experiment 25
An improved air purifier 30 is installed in one corner of an old prefab (2.1m x 5.0m x 2m, volume: 21m 3 ) that has been used for 20 years, and the inner wall plywood before and after continuous operation for 24 hours The presence or absence of bacteria was examined by a method for determining the presence of sancori manufactured by Sun Chemical Co., Ltd. As a result, when the improved air cleaning device 30 was not installed, a positive reaction of general bacteria was confirmed from 3 sheets after 24 hours in an inspection using 5 plywood. When installed, the test after 24 hours of operation was all negative in the test using five plywoods located 3.5 m away from the place where the air purifier was installed. From this, it was found that the improved air cleaning device 30 including the photocatalyst structure 10 and the water-containing gel 32 also has the effect of sterilizing and sterilizing air.
<<含水ゲルの再生方法>> 実験26、表16
 含水ゲル32は、以下のようにして再生させて、何度も使用することが出来る。一ヶ月程度使用した含水ゲル32を、50℃の雰囲気中で強制的に脱水・乾燥させ、7カ月間保存したものを用いて、含水ゲルの再生実験を行った。このような保存物を、実験19の表面積1190cmで実施した方法で吸水させると、吸水倍率20倍の再生含水ゲルを得ることができた。新品の吸水性樹脂を吸水させて得られる含水ゲルと比較して、外見上は全く区別がつかないのはもちろんのこと、その吸着性能も以下の通り、同程度である。実際に、改良型空気清浄装置30を長期に使用する場合、この含水ゲルが乾燥してしまった場合には、再度吸水させることにより、何度も再生させて使用することができる。
<< Regeneration Method of Hydrous Gel >> Experiment 26, Table 16
The hydrogel 32 can be regenerated as follows and used many times. The water-containing gel 32 used for about one month was forcibly dehydrated and dried in an atmosphere at 50 ° C. and stored for 7 months, and a water-containing gel regeneration experiment was conducted. When such a preserved material was water-absorbed by the method implemented in Experiment 19 with a surface area of 1190 cm 2 , a regenerated water-containing gel having a water absorption ratio of 20 times could be obtained. Compared to a water-containing gel obtained by absorbing a new water-absorbing resin, the appearance performance is not distinguishable at all, and the adsorption performance is similar to the following. Actually, when the improved air cleaning device 30 is used for a long period of time, if this hydrated gel has dried, it can be regenerated and used again by absorbing water again.
(実験26)
Figure JPOXMLDOC01-appb-T000016
(Experiment 26)
Figure JPOXMLDOC01-appb-T000016
 上述の説明は、本発明の原理の単なる代表例である。本発明の多くの変更態様と変形態様は、上述の教示に鑑みて実施可能である。本発明の好ましい実施態様を開示してきたが、当業者は、幾つかの変更態様が本発明の範囲に入ることを認めるであろう。したがって、添付される請求項の範囲において、本発明を、特に説明されたものと異なる態様で実施されることがわかる。その理由のために、添付の請求項を、本発明の真の範囲と内容を判断するために検討すべきである。 The above description is merely representative of the principles of the present invention. Many modifications and variations of the present invention are possible in light of the above teachings. While preferred embodiments of the invention have been disclosed, those skilled in the art will recognize that several modifications fall within the scope of the invention. Accordingly, it is to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For that reason, the appended claims should be studied to determine the true scope and content of this invention.
 本出願は、2011年9月28日に日本国に出願された特願2011-212696号に基づく優先権を主張するものであり、その開示の全ての内容をここに援用する。 This application claims priority based on Japanese Patent Application No. 2011-212696 filed in Japan on September 28, 2011, the entire contents of which are incorporated herein by reference.
 本発明に係る光触媒構造体及び光触媒構造体の製造方法は、良好な光触媒機能を有する構造体とその製造方法として、様々な分野で利用可能である。また、本発明に係る光触媒構造体を備える空気清浄装置は、空気の消臭、殺菌などの機能が良好な空気清浄装置として利用することができる。 The photocatalyst structure and the method for producing the photocatalyst structure according to the present invention can be used in various fields as a structure having a good photocatalytic function and a method for producing the structure. Moreover, the air purification apparatus provided with the photocatalyst structure according to the present invention can be used as an air purification apparatus having good functions such as deodorization and sterilization of air.
  9・・・ファン
 10・・・光触媒構造体
 11・・・光触媒層
 11a・・・光触媒
 11b・・・空隙
 12・・・支持基板
 20・・・空気清浄装置
 21・・・支持基板
 22・・・光源(LED)
 23・・・対向基板
 24・・・柱部
 30・・・改良型空気清浄装置
 32・・・含水ゲル
 33・・・含水ゲル収納容器
 33a・・・内側容器
 33b・・・外側容器
 33b1・・・穴
 35・・・空気取込口
 36・・・空気排出口
 37・・・含水ゲル収納容器側区画
 38・・・光触媒構造体側区画
 40・・・ハウジング
DESCRIPTION OF SYMBOLS 9 ... Fan 10 ... Photocatalyst structure 11 ... Photocatalyst layer 11a ... Photocatalyst 11b ... Air gap 12 ... Support substrate 20 ... Air purifier 21 ... Support substrate 22 ...・ Light source (LED)
23 ... Counter substrate 24 ... Column 30 ... Improved air cleaning device 32 ... Hydrous gel 33 ... Hydrous gel storage container 33a ... Inner container 33b ... Outer container 33b1 ... -Hole 35 ... Air intake port 36 ... Air exhaust port 37 ... Water-containing gel container side compartment 38 ... Photocatalyst structure side compartment 40 ... Housing

Claims (18)

  1.  多数の空隙が形成されたスポンジ状の光触媒層を備え、
     前記光触媒層は、光触媒、吸水性ポリマー、および、水溶性のバインダを含むことを特徴とする、光触媒構造体。
    It has a sponge-like photocatalyst layer in which many voids are formed,
    The photocatalyst layer includes a photocatalyst, a water-absorbing polymer, and a water-soluble binder.
  2.  前記光触媒は、酸化チタンであり、前記吸水性ポリマーは、(1)アクリル酸またはその塩、アクリル酸エステル及びアクリルアミドから選ばれる単量体を含んで構成される架橋されたアクリル系ポリマー、(2)イソブチレン-無水マレイン酸共重合体の架橋体、並びに、(3)ポリオキシエチレン架橋体から選ばれる1種以上である、請求項1に記載の光触媒構造体。
    The photocatalyst is titanium oxide, and the water-absorbing polymer is (1) a crosslinked acrylic polymer comprising a monomer selected from acrylic acid or a salt thereof, an acrylate ester and acrylamide, (2 The photocatalyst structure according to claim 1, wherein the photocatalyst structure is at least one member selected from: a) a crosslinked product of isobutylene-maleic anhydride copolymer, and (3) a crosslinked polyoxyethylene.
  3.  前記吸水性ポリマーは、アクリル酸又はその塩、アクリル酸エステル及びアクリルアミドから選ばれる単量体を含んで構成される架橋されたアクリル系ポリマーである、請求項2に記載の光触媒構造体。
    The photocatalyst structure according to claim 2, wherein the water-absorbing polymer is a crosslinked acrylic polymer comprising a monomer selected from acrylic acid or a salt thereof, an acrylic ester and acrylamide.
  4.  前記水溶性のバインダは、ポリビニルアルコール系又は酢酸ビニル樹脂系バインダである、請求項1~3のいずれか1項に記載の光触媒構造体。
    The photocatalyst structure according to any one of claims 1 to 3, wherein the water-soluble binder is a polyvinyl alcohol-based or vinyl acetate resin-based binder.
  5.  請求項1~4のいずれか1項に記載の光触媒構造体と、前記光触媒構造体を配置させた第1の基板と、光源と、前記光源を配置させた第2の基板とを備え、前記光触媒構造体は、前記光源に対向するように配置されることを特徴とする、空気清浄装置。
    A photocatalyst structure according to any one of claims 1 to 4, a first substrate on which the photocatalyst structure is arranged, a light source, and a second substrate on which the light source is arranged, The photocatalyst structure is disposed so as to face the light source.
  6.  さらに、吸水して膨潤した含水ゲルを備える、請求項5に記載の空気清浄装置。
    Furthermore, the air cleaning apparatus of Claim 5 provided with the water-containing gel which absorbed and swollen.
  7.  前記含水ゲルは、ゲルの形態が維持可能な程度に吸水しているものである、請求項6に記載の空気清浄装置。
    The air purification apparatus according to claim 6, wherein the water-containing gel absorbs water to such an extent that the gel form can be maintained.
  8.  前記含水ゲルは、収納容器に収納されているものである、請求項6または7に記載の空気清浄装置。
    The air purification apparatus according to claim 6 or 7, wherein the hydrated gel is stored in a storage container.
  9.  空気を取り込む第1の開口と、空気を排出する第2の開口とを有するハウジングを備え、前記ハウジング内には、前記第1の基板に配置された前記光触媒構造体と、前記第2の基板に配置された前記光源である発光素子とを、前記第1の開口と前記第2の開口とを結んだ軸に対して平行に対向させ、かつ、前記第1の基板または前記第2の基板の、少なくともいずれか一方の背面側に、前記含水ゲルを収納した前記収納容器を配置する、請求項8に記載の空気清浄装置。
    A housing having a first opening for taking in air and a second opening for discharging air; and in the housing, the photocatalyst structure disposed on the first substrate, and the second substrate. A light emitting element that is the light source disposed on the surface of the light emitting element is disposed in parallel to an axis connecting the first opening and the second opening, and the first substrate or the second substrate. The air purifier according to claim 8, wherein the storage container storing the hydrated gel is disposed on at least one of the back surfaces.
  10.  前記収納容器は、前記含水ゲルを収納する、メッシュシートからなる内側容器と、該内側容器を収納する、穴あきプラスチックからなる外側容器とを含む、請求項8または9に記載の空気清浄装置。
    The air cleaning device according to claim 8 or 9, wherein the storage container includes an inner container made of a mesh sheet for storing the hydrated gel and an outer container made of a perforated plastic for storing the inner container.
  11.  前記外側容器は、上下2個重ねた組を2つ、前記第1の基板または前記第2の基板の背面に、並列させている、請求項10に記載の空気清浄装置。
    The air cleaner according to claim 10, wherein the outer container has two sets of two upper and lower layers arranged in parallel on the back surface of the first substrate or the second substrate.
  12.  前記外側容器を配置する側の前記第1または第2の基板の上端は、前記2個重ねた上側容器の上端より低い、請求項11に記載の空気清浄装置。
    The air cleaning apparatus according to claim 11, wherein an upper end of the first or second substrate on a side where the outer container is disposed is lower than an upper end of the two upper containers stacked.
  13.  前記含水ゲルは、金属イオンを含む水溶液を吸水したものである、請求項6~12のいずれか1項に記載の空気清浄装置。
    The air purification apparatus according to any one of claims 6 to 12, wherein the water-containing gel absorbs an aqueous solution containing metal ions.
  14.  前記含水ゲルは、乾燥した場合、吸水させることにより再生して再利用可能である、請求項6~13のいずれか1項に記載の空気清浄装置。
    The air purification apparatus according to any one of claims 6 to 13, wherein when the water-containing gel is dried, it can be regenerated and reused by absorbing water.
  15.  請求項1~4のいずれか1項に記載の光触媒構造体の製造方法であって、
     光触媒と、水溶性のバインダを混合、攪拌させ、第1の混合物を作製する工程と、
     前記第1の混合物と、吸水性ポリマーとを混合させ、第2の混合物を作製する工程と、
     前記第2の混合物を成形する工程と、
     成形された前記第2の混合物を乾燥させる工程と、
    を備えることを特徴とする光触媒構造体の製造方法。
    A method for producing a photocatalyst structure according to any one of claims 1 to 4,
    Mixing and stirring the photocatalyst and a water-soluble binder to produce a first mixture;
    Mixing the first mixture with a water-absorbing polymer to produce a second mixture;
    Forming the second mixture;
    Drying the molded second mixture,
    A method for producing a photocatalyst structure, comprising:
  16.  前記光触媒は、酸化チタンであり、前記吸水性ポリマーは、(1)アクリル酸またはその塩、アクリル酸エステル及びアクリルアミドから選ばれる単量体を含んで構成される架橋されたアクリル系ポリマー、(2)イソブチレン-無水マレイン酸共重合体の架橋体、並びに、(3)ポリオキシエチレン架橋体から選ばれる1種以上である、請求項15に記載の光触媒構造体の製造方法。
    The photocatalyst is titanium oxide, and the water-absorbing polymer is (1) a crosslinked acrylic polymer comprising a monomer selected from acrylic acid or a salt thereof, an acrylate ester and acrylamide, (2 The method for producing a photocatalyst structure according to claim 15, wherein the photocatalyst structure is at least one member selected from: a crosslinked product of isobutylene-maleic anhydride copolymer and (3) a crosslinked polyoxyethylene.
  17.  前記水溶性のバインダは、ポリビニルアルコール系又は酢酸ビニル樹脂系バインダである、請求項15または16に記載の光触媒構造体の製造方法。
    The method for producing a photocatalyst structure according to claim 15 or 16, wherein the water-soluble binder is a polyvinyl alcohol-based or vinyl acetate resin-based binder.
  18.  前記吸水性ポリマーを混合させる工程では、更に水を添加することを含む、請求項15~17のいずれか1項に記載の光触媒構造体の製造方法。 The method for producing a photocatalyst structure according to any one of claims 15 to 17, wherein the step of mixing the water-absorbing polymer further comprises adding water.
PCT/JP2012/074993 2011-09-28 2012-09-27 Photocatalyst structure, method for producing photocatalyst structure, and air purification device WO2013047710A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-212696 2011-09-28
JP2011212696 2011-09-28

Publications (1)

Publication Number Publication Date
WO2013047710A1 true WO2013047710A1 (en) 2013-04-04

Family

ID=47995737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074993 WO2013047710A1 (en) 2011-09-28 2012-09-27 Photocatalyst structure, method for producing photocatalyst structure, and air purification device

Country Status (2)

Country Link
JP (1) JPWO2013047710A1 (en)
WO (1) WO2013047710A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014193252A1 (en) * 2013-05-31 2014-12-04 Phu Dytrych Sp. Z O.O. Device for photocatalytic removal of volatile organic and inorganic contamination as well as microorganisms especially from automobile air conditioning systems
WO2019188199A1 (en) * 2018-03-28 2019-10-03 富士フイルム株式会社 Substrate provided with photocatalytic particles, breathable sheet, and mask
JP2021511161A (en) * 2018-01-26 2021-05-06 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Fluid processing equipment

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829846A (en) * 1981-08-17 1983-02-22 Kuraray Co Ltd Water-absorbing composite body
JPH0745132A (en) * 1993-07-29 1995-02-14 Toyo Chem Co Ltd Water cut-off tape and manufacture thereof
JPH07284634A (en) * 1994-04-21 1995-10-31 Fuji Electric Co Ltd Harmful gas removing device
WO1997038048A1 (en) * 1996-04-05 1997-10-16 Kaneka Corporation Hydrous polyolefin resin composition, preexpanded particles produced therefrom, process for producing the same, and expanded moldings
JPH11279446A (en) * 1998-03-27 1999-10-12 Tokushu Paper Mfg Co Ltd Photocatalytic coating material, its production and photocatalytic deodorizing paper produced by using the coating material
JP2000295955A (en) * 1999-04-13 2000-10-24 Ryobi Ltd Container for fishing
JP2000295954A (en) * 1999-04-13 2000-10-24 Ryobi Ltd Bait box for fishing
JP2002369868A (en) * 2001-06-15 2002-12-24 Yoshiki Matsui Air purifier
JP2003510442A (en) * 1999-09-30 2003-03-18 オウェンス コーニング Super absorbent water resistant coating
JP2004047261A (en) * 2002-07-11 2004-02-12 Nippon Zeon Co Ltd Photo-electrode, method of manufacturing photo-electrode and solar battery
JP2006341250A (en) * 2000-12-28 2006-12-21 Showa Denko Kk High activity photo-catalyst
JP2010017670A (en) * 2008-07-11 2010-01-28 Taiyo Kogyo Corp Method for producing photocatalytic sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949228B2 (en) * 2002-07-23 2005-09-27 Chieh Ou Yang Sterilizing photo catalyst device of air conditioner
US20080178738A1 (en) * 2007-01-29 2008-07-31 Foamex L.P. Absorbent and/or filter materials comprising open cell foams coated with photocatalytic titanium dioxide, and methods of making and using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829846A (en) * 1981-08-17 1983-02-22 Kuraray Co Ltd Water-absorbing composite body
JPH0745132A (en) * 1993-07-29 1995-02-14 Toyo Chem Co Ltd Water cut-off tape and manufacture thereof
JPH07284634A (en) * 1994-04-21 1995-10-31 Fuji Electric Co Ltd Harmful gas removing device
WO1997038048A1 (en) * 1996-04-05 1997-10-16 Kaneka Corporation Hydrous polyolefin resin composition, preexpanded particles produced therefrom, process for producing the same, and expanded moldings
JPH11279446A (en) * 1998-03-27 1999-10-12 Tokushu Paper Mfg Co Ltd Photocatalytic coating material, its production and photocatalytic deodorizing paper produced by using the coating material
JP2000295955A (en) * 1999-04-13 2000-10-24 Ryobi Ltd Container for fishing
JP2000295954A (en) * 1999-04-13 2000-10-24 Ryobi Ltd Bait box for fishing
JP2003510442A (en) * 1999-09-30 2003-03-18 オウェンス コーニング Super absorbent water resistant coating
JP2006341250A (en) * 2000-12-28 2006-12-21 Showa Denko Kk High activity photo-catalyst
JP2002369868A (en) * 2001-06-15 2002-12-24 Yoshiki Matsui Air purifier
JP2004047261A (en) * 2002-07-11 2004-02-12 Nippon Zeon Co Ltd Photo-electrode, method of manufacturing photo-electrode and solar battery
JP2010017670A (en) * 2008-07-11 2010-01-28 Taiyo Kogyo Corp Method for producing photocatalytic sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014193252A1 (en) * 2013-05-31 2014-12-04 Phu Dytrych Sp. Z O.O. Device for photocatalytic removal of volatile organic and inorganic contamination as well as microorganisms especially from automobile air conditioning systems
JP2021511161A (en) * 2018-01-26 2021-05-06 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Fluid processing equipment
US11788746B2 (en) 2018-01-26 2023-10-17 Seoul Viosys Co., Ltd. Fluid treatment device
JP7433234B2 (en) 2018-01-26 2024-02-19 ソウル バイオシス カンパニー リミテッド Fluid treatment equipment
WO2019188199A1 (en) * 2018-03-28 2019-10-03 富士フイルム株式会社 Substrate provided with photocatalytic particles, breathable sheet, and mask

Also Published As

Publication number Publication date
JPWO2013047710A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
JP2005342509A (en) Air sterilizer/deodorizer
CN105180272B (en) A kind of air cleaning unit
CN201260930Y (en) High-efficient air purification device
WO2013047710A1 (en) Photocatalyst structure, method for producing photocatalyst structure, and air purification device
JPH03106420A (en) Deodorizing method for photo-catalyst
JP2007275292A (en) Deodorization filter and deodorizing device
CN1625417A (en) Removal or reduction of malodorous substances in the air
CN200939259Y (en) Indoor air cleaner for decoration
JP4697598B2 (en) Ozone deodorizer
JP4030234B2 (en) Air purification method
JP2001314491A (en) Air purifying filter
JP3745857B2 (en) Deodorizing agent, deodorizing filter and deodorizing device using the same
JP2008086599A (en) Air sterilizer
JP2000107276A (en) Air cleaner
JPH10286436A (en) Deodorizing body for deodorizing device, and deodorizing device
JPH08266902A (en) Environment purifying material using photocatalyst and its composition
JP2003181285A (en) Adsorbent for air purification and air purifying device
JP2000210372A (en) Air cleaning film and deodorant filter
JP2003126227A (en) Apparatus and method for treating polluted air
JPH01231926A (en) Air cleaner
JPH11262340A (en) Deodorizing device for livestock excreta
CN202086828U (en) Indoor air purifier
CN206510731U (en) A kind of efficient champignon air purifier
JP2010115499A (en) Air cleaning device
JP2002028412A (en) Photocatalytic filter

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013506024

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835032

Country of ref document: EP

Kind code of ref document: A1