WO2013047056A1 - Copper foil for lamination - Google Patents
Copper foil for lamination Download PDFInfo
- Publication number
- WO2013047056A1 WO2013047056A1 PCT/JP2012/071684 JP2012071684W WO2013047056A1 WO 2013047056 A1 WO2013047056 A1 WO 2013047056A1 JP 2012071684 W JP2012071684 W JP 2012071684W WO 2013047056 A1 WO2013047056 A1 WO 2013047056A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper foil
- layer
- group
- plated
- plating
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/14—Layered products comprising a layer of metal next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1646—Characteristics of the product obtained
- C23C18/165—Multilayered product
- C23C18/1653—Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1803—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
- C23C18/1824—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
- C23C18/1837—Multistep pretreatment
- C23C18/1844—Multistep pretreatment with use of organic or inorganic compounds other than metals, first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2046—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
- C23C18/2053—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment only one step pretreatment
- C23C18/206—Use of metal other than noble metals and tin, e.g. activation, sensitisation with metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
- C23C18/30—Activating or accelerating or sensitising with palladium or other noble metal
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/38—Coating with copper
- C23C18/40—Coating with copper using reducing agents
- C23C18/405—Formaldehyde
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/54—Electroplating of non-metallic surfaces
- C25D5/56—Electroplating of non-metallic surfaces of plastics
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/022—Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
- H05K3/025—Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/03—3 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/40—Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/538—Roughness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/08—PCBs, i.e. printed circuit boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/382—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
Definitions
- the present invention relates to a copper foil for pasting.
- Copper metal is widely used as a basic material for printed wiring boards and the like because metallic copper is a good conductor of electricity and is relatively inexpensive and easy to handle.
- a copper foil and a predetermined base material are laminated together and heat-pressed to obtain a copper-clad laminate.
- the surface of the copper foil to be bonded to the base material is subjected to a roughening treatment in order to improve adhesion with the base material (Patent Document 1).
- An object of this invention is to provide the copper foil for bonding which can form a high-definition wiring pattern, showing the favorable adhesiveness with a base material in view of the said situation.
- Another object of the present invention is to provide a laminate and a printed wiring board obtained by using the above-mentioned bonding copper foil.
- the present inventor has found that the above-mentioned problem can be solved by having a predetermined structure on the surface to be bonded to the base of the bonding copper foil. That is, it has been found that the above object can be achieved by the following means.
- a copper foil for pasting used for pasting on a substrate The surface roughness (Rz) of the surface to be attached to the substrate is 0.500 ⁇ m or less, The fractal dimension of the contour line of the surface on the side to be attached to the substrate in the cross section of the copper foil calculated by applying the box count method in which the size of one side of the square box is set to 1 nm to 10 nm is 1.020 to 1 400, a copper foil for attachment.
- a printed wiring board containing the laminate according to (2) A printed wiring board containing the laminate according to (2).
- a method for producing a bonding copper foil according to (1) A layer containing a polymer having a functional group and a polymerizable group that interacts with the plating catalyst or its precursor is formed on the support, and then energy is applied to the layer containing the polymer to Forming a layer to be plated on, Providing a plating catalyst or a precursor thereof to the layer to be plated;
- the laminated body which performs a copper plating process with respect to the to-be-plated layer provided with the plating catalyst or its precursor, forms copper foil on a to-be-plated layer, and has a support body, to-be-plated layer, and copper foil in this order Obtaining
- attachment which has a process of removing a support body and a to-be-plated layer from a laminated body, and obtaining copper foil.
- the copper foil for affixing which can form a high-definition wiring pattern can be provided, showing favorable adhesiveness with a base material.
- the laminated body and printed wiring board using the said copper foil for affixing can also be provided.
- (A) It is a typical perspective view of the copper foil for affixing of this invention.
- (B) It is an enlarged view of the surface side of the AA line cross section. It is the flowchart which showed the manufacturing process of one Embodiment of the manufacturing method of the copper foil for affixing of this invention.
- (A)-(D) are typical sectional drawings which show in order each manufacturing process of one embodiment of a manufacturing method of a pasting copper foil of the present invention.
- the bonding copper foil of the present embodiment has a predetermined surface roughness Rz and the fractal dimension of the outline of the bonding surface in the cross section calculated by the box count method has a predetermined value. Show. When the affixed surface shows a predetermined surface roughness Rz, there are few macro unevenness on the affixed surface (low profile), and as a result, a high-definition wiring pattern can be formed during pattern formation. Further, when the cross-sectional contour line of the pasting surface shows a predetermined fractal dimension, it has a micro and complicated surface property.
- the surface roughness Rz of the pasting surface is small, it has a sufficient surface area due to its complicated surface shape, and as a result, it exhibits a sufficient anchoring effect on the base material. Excellent adhesion to the material. That is, it is possible to achieve both the improvement in adhesion and the high definition of the wiring pattern, which have been a trade-off relationship.
- the aspect of the copper foil for sticking is explained in full detail below, and the manufacturing method of this copper foil is explained in full detail after that.
- FIG. 1A is a schematic perspective view of the copper foil 10 for attachment
- FIG. 1B is an enlarged view of the vicinity of the surface in the section AA in FIG. 1A
- the upper side of the copper foil 10 for affixing corresponds to the outline of the surface of the side affixed on a base material.
- the surface of the bonding copper foil 10 on the base and the side to be bonded is a small surface roughness Rz and a macroscopically flat surface, but a microscopically complicated surface shape. have.
- the surface roughness Rz of the surface to be attached to the copper foil base material is 0.500 ⁇ m or less. If it is in the said range, a high-definition wiring pattern can be formed efficiently. Among these, 0.300 ⁇ m or less is preferable and 0.200 ⁇ m or less is more preferable because a wiring pattern with a narrower gap can be formed with high definition.
- the lower limit is not particularly limited, and is most preferably 0 ⁇ m. However, from the viewpoint of industrial productivity, it is often 0.050 ⁇ m or more. When Rz is more than 0.500 ⁇ m, the variation in wiring width becomes large, and a high-definition wiring pattern cannot be obtained.
- the surface roughness Rz is the maximum height roughness specified in JIS B 0601 (2001), which is a known surface shape measuring device (for example, company name: ULVAC, device name: Dektak 150), etc. Can be measured.
- the contour line (cross-sectional contour line) of the surface to be attached to the copper foil base material is fractal, and the box count method is used in which the size of one side of the square box is set to 1 nm to 10 nm.
- the fractal dimension of the surface contour calculated in this way is 1.020 to 1.400.
- the fractal dimension is within the above range, the copper foil exhibits excellent adhesion to the substrate.
- the fractal dimension is preferably 1.050 to 1.400, more preferably 1.100 to 1.300, and even more preferably 1.150 to 1.250 in terms of better adhesion to the substrate.
- the fractal dimension is less than 1.020 and more than 1.400, the adhesion of the copper foil to the base material is inferior.
- the box count method is a method of estimating the fractal dimension by examining how much a fractal figure is included when a certain area is divided into a certain size (box size). is there.
- “Fractal dimension (box count dimension)” is an index that represents the complexity of the shape, the degree of surface irregularities, etc., and the larger the fractal dimension value, the more complex the irregularities are defined as follows: Is done. Assuming that the number of boxes necessary for covering a certain figure F with a square box (box) having a side size ⁇ is N ⁇ (F), the fractal dimension is defined by the following equation.
- the cross section of the copper foil is divided into grid-like regions with equal intervals ⁇ (divided into small square regions with one side of ⁇ ), and the copper is changed while changing the size of ⁇ .
- the number of square boxes (cells) having a side size of ⁇ including a part of the contour line on the surface of the foil attached to the substrate is counted.
- the number of counted boxes is plotted on the log-log graph with the vertical axis representing the number of boxes and the horizontal axis representing the magnitude of ⁇ , and the fractal dimension is obtained from the slope of the graph.
- ⁇ is in the range of 1 to 10 nm.
- the measurement area is 1 ⁇ m ⁇ 1 ⁇ m.
- the fractal dimension in the present invention is a value obtained by calculating the fractal dimension from at least five cross-sectional measurement regions (1 ⁇ m ⁇ 1 ⁇ m) and arithmetically averaging them.
- the fractal dimension of the present invention is calculated from a cross-sectional structure photograph of a copper foil (a photograph of a plane parallel to the thickness direction of the copper foil).
- a copper foil is sampled and a cross-section is obtained.
- the cross section is observed with a focused ion beam apparatus (SMI 9200, manufactured by Seiko Instruments Inc.) to obtain image data.
- SMI 9200 focused ion beam apparatus
- the above-mentioned box count method is used to calculate the fractal dimension (box count dimension) of the contour line in at least five measurement areas (1 ⁇ m ⁇ 1 ⁇ m), respectively, and arithmetically average them.
- the fractal dimension (average fractal dimension) of the present invention is determined.
- the surface roughness Ra of the surface of the copper foil attached to the base material is not particularly limited, but is preferably 0.200 ⁇ m or less, and preferably 0.100 ⁇ m or less in that a high-definition wiring pattern can be efficiently formed. More preferred.
- the lower limit is not particularly limited, and is most preferably 0 ⁇ m. However, from the viewpoint of industrial productivity, it is often 0.010 ⁇ m or more.
- the surface roughness Ra is defined in JIS B 0601 (2001), which can be measured with a known surface shape measuring device (for example, company name: ULVAC, device name: Dektak 150).
- the thickness of the copper foil is not particularly limited and can be appropriately adjusted according to the purpose of use. From the viewpoint of excellent adhesion to the substrate and high definition of the pattern, it is preferably 2 to 30 ⁇ m, more preferably 5 to 20 ⁇ m.
- the copper foil is usually made of copper, but may contain a part of metals other than copper (for example, silver, tin, palladium, gold, nickel, chromium, etc.).
- the surface of the copper foil substrate and the surface to be bonded need only indicate the requirements for the predetermined surface roughness Rz and fractal dimension, and only one main surface (one surface) may satisfy the requirements. . Moreover, both the main surfaces (both surfaces) of copper foil may satisfy
- copper foil can be used for various aspects (applications).
- a printed wiring board an electromagnetic wave shielding material, a continuity (earth) material, a lithium ion battery, and the like can be given.
- the copper foil may be formed in a pattern by a known method (for example, an etching method described in an etching step described later).
- FIG. 2 is a flowchart showing each step in a preferred embodiment of the method for producing a copper foil, which includes a plated layer forming step S102, a catalyst applying step S104, a plating step S106, a support removing step S108, and a plated layer.
- a removal step S110 is provided. If it is this aspect, adjustment of the surface roughness Rz and fractal dimension of the copper foil obtained is easy, and it is excellent also in productivity. Below, each process of this suitable aspect is explained in full detail.
- plating layer forming step S102 a layer containing a polymer having a functional group that interacts with the plating catalyst or its precursor (hereinafter referred to as an interactive group as appropriate) and a polymerizable group is formed on the support,
- energy is applied to the layer containing the polymer to form a layer to be plated on the support.
- the to-be-plated layer formed by this process S102 adsorbs (attaches) a plating catalyst or its precursor in the catalyst provision process S104 mentioned later according to the function of the interactive group contained in a polymer. That is, the layer to be plated functions as a good receiving layer for the plating catalyst or its precursor.
- a polymeric group is utilized for the coupling
- the materials (support, polymer, composition for forming a layer to be plated, etc.) used in this step S102 will be described in detail, and then the procedure of this step S102 will be described in detail.
- the support is a member for supporting each layer described below, and any conventionally known support substrate (for example, a resin substrate, a ceramic substrate, a glass substrate, a metal substrate, etc., preferably an insulating substrate) is used. Can be used.
- any conventionally known support substrate for example, a resin substrate, a ceramic substrate, a glass substrate, a metal substrate, etc., preferably an insulating substrate. Can be used.
- the peelable support body which has the surface which shows easy peelability from the point which can remove a support body more easily in support body removal process S108 mentioned later.
- the easy peelability which the surface of a peelable support body has is peeling at the interface of copper foil and a to-be-plated layer, when the external force for peeling a peelable support body is applied to the laminated body which has a copper foil mentioned later It means the property of peeling at the interface between the peelable support and the layer to be plated without being done.
- the water contact angle of the surface showing the easy peelability of the peelable support is preferably 70 ° or more from the viewpoint that the peeling at the interface between the peelable support and the layer to be plated proceeds more easily. 110 ° is more preferable, and 80 to 100 ° is even more preferable.
- a method for measuring the water contact angle a tangent method using two points of contact between the top of the dropped water and the support is used.
- size and thickness in particular of a support body are not restrict
- size and thickness are selected suitably.
- the shape of the support is not particularly limited, but is usually a flat plate shape.
- the polymer used has a polymerizable group and an interactive group.
- the polymerizable group is a functional group capable of forming a chemical bond between polymers by applying energy, and examples thereof include a radical polymerizable group and a cationic polymerizable group.
- a radical polymerizable group is preferable from the viewpoint of more excellent reactivity.
- examples of radical polymerizable groups include acrylic acid ester groups (acryloyloxy groups), methacrylic acid ester groups (methacryloyloxy groups), itaconic acid ester groups, crotonic acid ester groups, isocrotonic acid ester groups, maleic acid ester groups, and the like.
- Examples include unsaturated carboxylic acid ester groups, styryl groups, vinyl groups, acrylamide groups, and methacrylamide groups.
- a methacryloyloxy group, an acryloyloxy group, a vinyl group, a styryl group, an acrylamide group, and a methacrylamide group are preferable, and a methacryloyloxy group, an acryloyloxy group, and a styryl group are particularly preferable.
- An interactive group is a functional group that interacts with a plating catalyst or a precursor thereof, a functional group that can form an electrostatic interaction with the plating catalyst or a precursor thereof, or a coordination group with a plating catalyst or a precursor thereof.
- Nitrogen-containing functional groups, sulfur-containing functional groups, oxygen-containing functional groups and the like that can be formed can be used.
- Examples of interactive groups include non-dissociable functional groups (functional groups that do not generate protons by dissociation).
- an interactive group amino group, amide group, imide group, urea group, tertiary amino group, ammonium group, amidino group, triazine ring, triazole ring, benzotriazole group, imidazole group, benzimidazole Group, quinoline group, pyridine group, pyrimidine group, pyrazine group, solooline group, quinoxaline group, purine group, triazine group, piperidine group, piperazine group, pyrrolidine group, pyrazole group, aniline group, group containing alkylamine structure, isocyanuric structure
- Nitrogen-containing functional groups such as nitro group, nitroso group, azo group, diazo group, azide group, cyano group, cyanate group (R—O—CN); ether group, hydroxyl group, phenolic hydroxyl group, carboxyl group, Carbonate group, carbonyl group, ester group, group containing N-oxide structure, S An oxygen-containing functional
- a salt thereof can also be used.
- an ionic polar group such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, and a boronic acid group, an ether group, or A cyano group is particularly preferable, and a carboxyl group or a cyano group is more preferable.
- Two or more of these functional groups as interactive groups may be contained in the polymer.
- the weight average molecular weight of the polymer is not particularly limited, but is preferably 1000 or more and 700,000 or less, more preferably 2000 or more and 200,000 or less. In particular, from the viewpoint of polymerization sensitivity, it is preferably 20000 or more.
- the degree of polymerization of the polymer is not particularly limited, but is preferably a 10-mer or more, and more preferably a 20-mer or more. Moreover, 7000-mer or less is preferable, 3000-mer or less is more preferable, 2000-mer or less is still more preferable, 1000-mer or less is especially preferable.
- the polymer As a preferred embodiment of the polymer, it has a unit having a polymerizable group represented by the following formula (a) (hereinafter also referred to as a polymerizable group unit as appropriate) and an interactive group represented by the following formula (b). Examples thereof include a copolymer containing a unit (hereinafter also referred to as an interactive group unit as appropriate).
- a unit means a repeating unit.
- R 1 to R 5 are each independently a hydrogen atom or a substituted or unsubstituted alkyl group (for example, a methyl group, an ethyl group, a propyl group, a butyl group, etc. ).
- the substituent is not particularly limited, and examples thereof include a methoxy group, a chlorine atom, a bromine atom, or a fluorine atom.
- R 1 is preferably a hydrogen atom, a methyl group, or a methyl group substituted with a bromine atom.
- R 2 is preferably a hydrogen atom, a methyl group, or a methyl group substituted with a bromine atom.
- R 3 is preferably a hydrogen atom.
- R 4 is preferably a hydrogen atom.
- R 5 is preferably a hydrogen atom, a methyl group, or a methyl group substituted with a bromine atom.
- X, Y, and Z each independently represent a single bond or a substituted or unsubstituted divalent organic group.
- the divalent organic group include a substituted or unsubstituted divalent aliphatic hydrocarbon group (preferably having 1 to 8 carbon atoms, for example, an alkylene group such as a methylene group, an ethylene group, and a propylene group), a substituted or unsubstituted group.
- a divalent aromatic hydrocarbon group (preferably having 6 to 12 carbon atoms, such as a phenylene group), —O—, —S—, —SO 2 —, —N (R) — (R: alkyl group), And —CO—, —NH—, —COO—, —CONH—, or a combination thereof (for example, an alkyleneoxy group, an alkyleneoxycarbonyl group, an alkylenecarbonyloxy group, and the like).
- X, Y, and Z are preferably ester groups (—COO—) from the viewpoint that the removal efficiency of the plated layer is more excellent in the plated layer removal step described later.
- L 1 and L 2 each independently represent a single bond or a substituted or unsubstituted divalent organic group.
- a divalent organic group it is synonymous with the divalent organic group described by X, Y, and Z mentioned above.
- L 1 is an aliphatic hydrocarbon group or a divalent organic group having a urethane bond or a urea bond (for example, aliphatic carbonization) because the polymer can be easily synthesized and the catalyst adsorbability of the plated layer is excellent.
- Hydrogen group and those having a total carbon number of 1 to 9 are preferred.
- the total number of carbon atoms of L 1 means the total number of carbon atoms contained in the substituted or unsubstituted divalent organic group represented by L 1.
- L 2 is a single bond, a divalent aliphatic hydrocarbon group, a divalent aromatic hydrocarbon group, or a combination thereof in that the polymer is easily synthesized and the catalyst adsorption property of the plated layer is excellent.
- the groups are preferred.
- L 2 is preferably a single bond or an aliphatic hydrocarbon group having 1 to 15 total carbon atoms, and particularly preferably unsubstituted.
- the total number of carbon atoms of L 2 means the total number of carbon atoms contained in the substituted or unsubstituted divalent organic group represented by L 2.
- W represents a functional group that interacts with the plating catalyst or its precursor.
- the definition of the functional group is the same as the definition of the interactive group described above.
- the content of the polymerizable group unit is preferably from 5 to 50 mol%, more preferably from 5 to 40 mol%, based on all units in the polymer. If it is less than 5 mol%, the reactivity (curability, polymerizability) may be lowered, and if it exceeds 50 mol%, gelation tends to occur during synthesis and synthesis is difficult.
- the content of the interactive group unit is preferably 5 to 95 mol%, more preferably 10 to 95 mol%, based on the total unit in the polymer, from the viewpoint of adsorptivity to the plating catalyst or its precursor. 60 to 95 mol% is more preferable.
- the polymerizable group unit and the interactive group unit may contain two or more different types of units.
- the polymer may contain units other than the polymerizable group unit and the interactive group unit.
- the polymer can be produced by known methods (eg, the methods in the literature listed above).
- the method for forming a layer containing the polymer (plated layer precursor layer) on the support is not particularly limited, and a known method can be used.
- a method (coating method) of applying the composition for forming a layer to be plated containing the polymer on a support, or a method of directly laminating the polymer on the support is also included.
- the coating method is preferable because the film thickness of the layer to be plated can be easily controlled.
- the aspect of the composition for to-be-plated layer forming it mentions later.
- the method for coating the composition for forming a layer to be plated on the support is not particularly limited, and known methods (for example, spin coating, die coating, dip coating, etc.) can be used. From the viewpoint of handleability and production efficiency, the composition for forming a layer to be plated is applied on a support, and if necessary, a drying treatment is performed to remove the remaining solvent, and a layer containing a polymer (layer to be plated) A mode of forming the forming composition layer) is preferred.
- the conditions for the drying treatment are not particularly limited, but are preferably carried out at room temperature to 220 ° C. (preferably 50 to 120 ° C.) for 1 to 30 minutes (preferably 1 to 10 minutes) from the viewpoint of better productivity. .
- the method for applying energy to the layer containing the polymer on the support is not particularly limited.
- the exposure process By applying energy to the layer containing the polymer, the polymerizable group in the polymer is activated, crosslinking between the polymers occurs, and the curing of the layer proceeds.
- the exposure process light irradiation with a UV lamp, visible light, or the like is used.
- the light source include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp.
- Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays.
- Specific examples of preferred embodiments include scanning exposure with an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
- the exposure time varies depending on the reactivity of the polymer and the light source, but is usually between 10 seconds and 5 hours.
- the exposure energy may be about 10 to 8000 mJ, preferably 50 to 3000 mJ.
- a ventilation dryer, oven, an infrared dryer, a heating drum, etc. can be used.
- the thickness of the layer to be plated is not particularly limited, but is preferably 0.01 to 10 ⁇ m, more preferably 0.2 to 5 ⁇ m, and particularly preferably 0.3 to 1.0 ⁇ m from the viewpoint of productivity.
- the surface roughness Rz of the surface of the layer to be plated is not particularly limited, but is preferably 0.2 ⁇ m or less in that the surface roughness Rz of the copper foil is further reduced. More preferably, it is 1 ⁇ m or less.
- the lower limit is not particularly limited, but is often 0.01 ⁇ m or more due to manufacturing restrictions.
- composition for plating layer formation contains the polymer.
- the content of the polymer in the composition for forming a layer to be plated is not particularly limited, but is preferably 2 to 50% by mass and more preferably 3 to 20% by mass with respect to the total amount of the composition. If it is in the said range, it is excellent in the handleability of a composition and it is easy to control the layer thickness of a to-be-plated layer.
- the composition for forming a layer to be plated may contain a solvent.
- Solvents that can be used are not particularly limited, for example, alcohol solvents such as water, methanol, ethanol, propanol, ethylene glycol, glycerin, propylene glycol monomethyl ether, acids such as acetic acid, ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, Amide solvents such as formamide, dimethylacetamide, N-methylpyrrolidone, nitrile solvents such as acetonitrile and propionitrile, ester solvents such as methyl acetate and ethyl acetate, carbonate solvents such as dimethyl carbonate and diethyl carbonate, and others
- ether solvents, glycol solvents, amine solvents, thiol solvents, halogen solvents and the like can be mentioned.
- amide solvents ketone solvents, nitrile solvents, and carbonate solvents are preferable.
- acetone, dimethylacetamide, methyl ethyl ketone, cyclohexanone, acetonitrile, propionitrile, N-methylpyrrolidone, and dimethyl carbonate are preferable.
- the content of the solvent in the composition for forming a layer to be plated is not particularly limited, but is preferably 50 to 98% by mass, more preferably 90 to 97% by mass with respect to the total amount of the composition. If it is in the said range, it is excellent in the handleability of a composition and it is easy to control the layer thickness of a to-be-plated layer.
- the catalyst applying step S104 is a step of applying a plating catalyst or a precursor thereof to the layer to be plated obtained in the layer to be plated forming step S102.
- the polymer-derived interactive group adheres (adsorbs) the applied plating catalyst or its precursor depending on its function. More specifically, the plating catalyst or its precursor is adsorbed in the layer to be plated and on the surface of the layer to be plated.
- plating catalyst or its precursor functions as a catalyst or electrode for copper plating treatment in the plating step S106 described later. Therefore, the type of plating catalyst or precursor used is appropriately determined depending on the type of plating treatment.
- electroless plating or a precursor thereof will be described in detail as a plating catalyst or a precursor thereof.
- any catalyst can be used as long as it becomes an active nucleus at the time of electroless plating.
- a metal having a catalytic ability for autocatalytic reduction reaction which tends to be more ionized than Ni.
- metals capable of low electroless plating More specifically, Pd, Ag, Cu, Ni, Al, Fe, Co, etc. are mentioned. Of these, Ag and Pd are particularly preferable because of their high catalytic ability.
- metal colloid metal particles
- a metal colloid can be prepared by reducing metal ions in a solution containing a charged surfactant or a charged protective agent.
- the electroless plating catalyst precursor can be used without particular limitation as long as it can become an electroless plating catalyst by a chemical reaction.
- the metal ions of the metals mentioned as the electroless plating catalyst are mainly used.
- the metal ion that is an electroless plating catalyst precursor becomes a zero-valent metal that is an electroless plating catalyst by a reduction reaction.
- the metal ion that is an electroless plating catalyst precursor may be used as an electroless plating catalyst after being applied to the layer to be plated and before being immersed in the electroless plating solution, by separately changing to a zero-valent metal by a reduction reaction.
- the electroless plating catalyst precursor may be immersed in an electroless plating solution and changed to a metal (electroless plating catalyst) by a reducing agent in the electroless plating solution.
- the metal ion that is the electroless plating catalyst precursor is preferably applied to the layer to be plated using a metal salt.
- the metal salt used is not particularly limited as long as it is dissolved in a suitable solvent and dissociated into a metal ion and a base (anion), and M (NO 3 ) n , MCl n , M 2 / n (SO 4 ), M 3 / n (PO 4 ) (M represents an n-valent metal atom), and the like.
- a metal ion the thing which said metal salt dissociated can be used suitably. Specific examples include Ag ions, Cu ions, Al ions, Ni ions, Co ions, Fe ions, and Pd ions. Among them, those capable of multidentate coordination are preferred, and in particular, functional groups capable of coordination. In view of the number of types and catalytic ability, Ag ions and Pd ions are preferred.
- zero-valent metals other than those described above can also be used as a catalyst used for direct electroplating without electroless plating.
- the said plating catalyst or its precursor is used with the form of the plating catalyst liquid (The dispersion or solution which disperse
- the solvent used in the plating catalyst solution an organic solvent and / or water is used.
- the plating catalyst solution contains an organic solvent, the permeability of the plating catalyst solution to the layer to be plated is improved, and the plating catalyst or its precursor can be efficiently adsorbed to the interactive group.
- the organic solvent used in the plating catalyst solution is not particularly limited as long as it is a solvent that can penetrate into the layer to be plated. Specifically, acetone, methyl acetoacetate, ethyl acetoacetate, ethylene glycol diacetate, cyclohexanone, Acetylacetone, acetophenone, 2- (1-cyclohexenyl) cyclohexanone, propylene glycol diacetate, triacetin, diethylene glycol diacetate, dioxane, N-methylpyrrolidone, dimethyl carbonate, dimethyl cellosolve and the like can be used.
- the method for applying the plating catalyst or its precursor to the layer to be plated is not particularly limited.
- the above plating catalyst solution (a dispersion in which a metal is dispersed in an appropriate dispersion medium or a solution containing a metal salt dissolved in an appropriate solvent and dissociated metal ions) is prepared, and the plating catalyst solution is applied to the layer to be plated.
- coating on the top or the method of immersing the support body in which the to-be-plated layer was formed in a plating catalyst liquid are mentioned.
- the contact time between the layer to be plated and the plating catalyst solution is preferably about 30 seconds to 10 minutes, and more preferably about 1 minute to 5 minutes.
- the temperature of the plating catalyst solution at the time of contact is preferably about 20 to 60 ° C., more preferably about 30 to 50 ° C.
- plating step S106 the plating layer to which the plating catalyst or its precursor is applied in the catalyst application step S104 is subjected to copper plating, and a copper foil (corresponding to copper plating) is formed on the layer to be plated.
- a copper foil corresponding to copper plating
- This is a step of obtaining a laminate having a body, a layer to be plated, and a copper foil in this order. More specifically, as shown in FIG. 3B, in this step S106, the copper foil 10 is formed on the layer 14 to be plated, and the laminate 16 is obtained.
- Examples of the copper plating treatment performed in this step S106 include electroless copper plating, electrolytic copper plating, and the like, and are selected depending on the function of the plating catalyst or its precursor applied to the layer to be plated in the above step S104. be able to. Especially, it is preferable to perform electroless copper plating from the point from which the copper foil which shows better adhesiveness with respect to a base material is obtained. Moreover, in order to obtain the copper foil of desired layer thickness, it is a more preferable aspect to perform electrolytic copper plating after electroless copper plating.
- the copper plating process suitably performed in this process S106 is demonstrated.
- Electroless copper plating refers to an operation of depositing copper by a chemical reaction using a solution in which copper ions are dissolved.
- the electroless copper plating in this step S106 is performed by, for example, washing the layer to be plated with the electroless plating catalyst with water to remove excess electroless plating catalyst (metal) and then immersing it in an electroless copper plating bath. Do it.
- a known electroless copper plating bath can be used as the electroless copper plating bath used.
- the electroless copper plating bath is preferably an alkaline electroless copper plating bath (preferably having a pH of about 9 to 14) from the viewpoint of availability.
- the electroless plating catalyst precursor when immersed in the electroless copper plating bath while adsorbed or impregnated on the layer to be plated, the layer to be plated is washed with water to remove excess precursor (metal salt, etc.). Then, it is immersed in an electroless copper plating bath. In this case, reduction of the plating catalyst precursor and subsequent electroless copper plating are performed in the electroless copper plating bath.
- the electroless copper plating bath used here a known electroless copper plating bath can be used as described above.
- the reduction of the electroless plating catalyst precursor is performed as a separate step before electroless copper plating by preparing a catalyst activation liquid (reducing liquid) separately from the above-described embodiment using the electroless copper plating liquid.
- the catalyst activation liquid is a liquid in which a reducing agent capable of reducing an electroless plating catalyst precursor (mainly metal ions) to zero-valent metal is dissolved, and the concentration of the reducing agent with respect to the whole liquid is 0.1 to 50% by mass. Preferably, 1 to 30% by mass is more preferable.
- reducing agent known reducing agents (for example, boron-based reducing agents such as sodium borohydride or dimethylamine borane, formaldehyde, hypophosphorous acid, etc.) can be used.
- boron-based reducing agents such as sodium borohydride or dimethylamine borane, formaldehyde, hypophosphorous acid, etc.
- dipping keep the concentration of the electroless plating catalyst or its precursor near the surface of the layer to be plated in contact with the electroless plating catalyst or its precursor, and soak it with stirring or shaking. Is preferred.
- composition of a general electroless copper plating bath for example, in addition to a solvent (for example, water), 1. 1. copper ion for plating, 2. reducing agent; Additives (stabilizers) that improve the stability of copper ions are mainly included.
- the organic solvent used in the electroless copper plating bath is preferably a water-soluble solvent, and from this point, ketones such as acetone and alcohols such as methanol, ethanol and isopropanol are preferably used.
- Copper is used as the type of metal used in the electroless copper plating bath, but other metals (for example, copper, tin, lead, nickel, gold, silver, palladium, rhodium) are used in combination as required. May be.
- the thickness of the copper foil obtained by electroless copper plating can be controlled by the copper ion concentration, the immersion time in the electroless copper plating bath, or the temperature of the electroless copper plating bath.
- a copper foil of at least 0.1 ⁇ m or more is uniformly applied. From the viewpoint of conductivity, when not performing electrolytic copper plating described later, it is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and most preferably 3 to 10 ⁇ m.
- the immersion time in the electroless copper plating bath is preferably about 1 minute to 10 hours, and more preferably about 10 minutes to 3 hours.
- step S106 when the plating catalyst or precursor thereof applied in step S104 has a function as an electrode, electrolytic copper plating is applied to the layer to be plated to which the plating catalyst or precursor is applied. It can be carried out. Further, after the above-described electroless copper plating, the formed copper foil may be used as an electrode, and electrolytic copper plating may be further performed. Thereby, a copper foil having an arbitrary thickness can be easily formed.
- a conventionally known method can be used.
- copper is used as a metal used for electrolytic plating
- a metal other than copper for example, chromium, lead, nickel, gold, silver, tin, zinc, etc.
- chromium, lead, nickel, gold, silver, tin, zinc, etc. may be used in combination as necessary.
- the thickness of the copper foil obtained by electrolytic copper plating can be controlled by adjusting the copper ion concentration or current density contained in the electrolytic copper plating bath.
- the thickness of the copper foil is preferably 1 ⁇ m or more, more preferably 3 to 30 ⁇ m from the viewpoint of conductivity.
- an acidic solution for example, sulfuric acid aqueous solution
- the electroless copper plating between the electroless copper plating and the electrolytic copper plating, if necessary. You may perform the process to make.
- the support removing step S108 is a step of removing the support from the laminate obtained in the plating step S106. More specifically, as shown in FIG. 3C, the support 12 is removed from the laminate 16 shown in FIG. 3B, and the layer to be plated including the layer 14 and the copper foil 10 is included. The attached copper foil 18 is obtained.
- the method for removing the support is not particularly limited, and an optimal method is appropriately selected according to the type of support used. For example, a method in which a solution in which only the support in the laminate is dissolved is brought into contact with the laminate and the support is dissolved and removed, a method in which the support is physically separated from the laminate, and a support in the laminate For example, a method of removing by performing oxidation treatment such as plasma treatment or ozone treatment.
- the to-be-plated layer removing step S110 is a step for removing the to-be-plated layer from the laminate of the to-be-plated layer and the copper foil obtained in the support removing step S108. More specifically, as shown in FIG. 3D, the plated layer 14 is removed from the plated foil 14 with the plated layer shown in FIG.
- the method for removing the layer to be plated is not particularly limited, and an optimum method is appropriately selected according to the type of material constituting the layer to be plated.
- a solution in which only the layer to be plated dissolves for example, an alkaline aqueous solution
- the copper foil with the layer to be plated are brought into contact with each other, and the layer to be plated is dissolved and removed.
- a method of removing the target layer by subjecting the layer to be plated to oxidation treatment such as plasma treatment or ozone treatment.
- ultrasonic treatment or the like may be used in combination as necessary. By using ultrasonic treatment in combination, the removal efficiency of the layer to be plated is improved.
- a solution for dissolving the layer to be plated may be sprayed onto the layer to be plated under a certain pressure.
- the support removing step S108 and the plated layer removing step S110 may be performed separately as described above, or may be performed simultaneously. That is, you may implement the process of removing a support body and a to-be-plated layer from the laminated body obtained by said plating process S106, and obtaining copper foil. In this case, for example, a solution in which the support and the layer to be plated are dissolved is brought into contact with the laminate, and the support and the layer to be plated are dissolved and removed.
- the peeling method include a method of removing the support and the layer to be plated by performing an oxidation treatment such as plasma treatment or ozone treatment.
- the surface in contact with the plated layer of the copper foil obtained through the above steps S102 to S110 satisfies the predetermined surface roughness Rz and the fractal dimension as described above.
- the laminated body which has a base material and copper foil is obtained by bonding a copper foil and a base material so that the surface which shows predetermined surface roughness Rz and fractal dimension of the copper foil mentioned above may contact
- the adhesiveness of a base material and copper foil is excellent.
- Base material The kind in particular of base material with which copper foil is affixed is not restrict
- a resin base material, a glass base material, a ceramic base material, a paper base material, etc. are mentioned. Especially, it is excellent in adhesiveness with copper foil, and it is preferable to use a resin base material from the point of application to a printed wiring board.
- thermosetting resin examples include an epoxy resin, a phenol resin, a polyimide resin, a polyester resin, a bismaleimide resin, a polyolefin resin, and an isocyanate resin.
- thermoplastic resin examples include phenoxy resin, polyether sulfone, polysulfone, polyphenylene sulfone, polyphenylene sulfide, polyphenyl ether, polyether imide, ABS resin, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, and polymethyl methacrylate.
- Polyether ether ketone polyamide, polylactic acid, cycloolefin copolymer (COP), liquid crystal polymer (LCP), and the like.
- the resin base material may contain fillers such as glass woven fabric (glass cloth), glass nonwoven fabric, aramid woven fabric, and aramid nonwoven fabric.
- the shape of the substrate is not particularly limited, but is preferably a flat plate from the viewpoint of better adhesion.
- the method for attaching the copper foil to the substrate is not particularly limited, and a known method can be used.
- a desired laminate can be obtained by laminating and laminating a copper foil and a substrate (particularly a resin substrate), and applying pressure such as pressing.
- thermocompression bonding When crimping, heat treatment may be performed as necessary. Optimum conditions are appropriately selected depending on the base material used for thermocompression bonding, but when using a general epoxy resin base material, the adhesiveness of the copper foil is better. In view of fluidity, thermosetting property, and thermal decomposability of the resin substrate, 150 to 200 ° C. is preferable, and 165 to 185 ° C. is more preferable. In addition, the time for performing the thermocompression bonding is preferably 0.5 to 4 hours, and more preferably 1 to 2 hours from the viewpoint that the adhesiveness of the copper foil is more excellent and the productivity is more excellent.
- the obtained laminate can be used for various applications.
- the present invention can be applied to various uses such as a semiconductor package, a motherboard, an FPC, a COF, a TAB, and an antenna.
- the laminated body which equips the surface with a patterned copper foil can be manufactured by etching the copper foil in the laminated body containing the said base material and copper foil in a pattern shape. This etching process will be described in detail below.
- An etching process is a process of etching the copper foil in a laminated body in pattern shape. That is, in this step, a desired copper foil pattern can be formed by removing unnecessary portions of the formed copper foil by etching. Any method can be used to form the copper foil pattern, and specifically, a generally known subtractive method or semi-additive method is used.
- a dry film resist layer is provided on the formed copper foil, the same pattern as the copper foil pattern part is formed by pattern exposure and development, and the copper foil is removed with an etching solution using the dry film resist pattern as a mask.
- This is a method for forming a copper foil pattern. Any material can be used as the dry film resist, and negative, positive, liquid, and film-like ones can be used.
- an etching method any method used at the time of manufacturing a printed wiring board can be used, and wet etching, dry etching, and the like can be used, and may be arbitrarily selected. In terms of operation, wet etching is preferable from the viewpoint of simplicity of the apparatus.
- an etching solution for example, an aqueous solution of cupric chloride, ferric chloride, or the like can be used.
- the semi-additive method is to provide a dry film resist layer on the copper foil, form the same pattern as the non-copper foil pattern part by pattern exposure and development, perform electroplating using the dry film resist pattern as a mask, and dry film
- quick etching is performed after removing the resist pattern, and the copper foil is removed in a pattern to form a copper foil pattern.
- the dry film resist, the etching solution, etc. can use the same material as the subtractive method.
- the above-mentioned method can be used as the electroplating method.
- N-methylpyrrolidone (35 g) was placed in a 1000 ml three-necked flask and heated to 75 ° C. under a nitrogen stream. Thereto, N-methylpyrrolidone (35 g) containing 2-hydroxyethyl acrylate (Tokyo Kasei) (6.60 g), 2-cyanoethyl acrylate (28.4 g), and V-601 (Wako Pure Chemical Industries) 0.65 g. ) The solution was added dropwise over 2.5 hours. After completion of dropping, the reaction solution was heated to 80 ° C. and further stirred for 3 hours. Thereafter, the reaction solution was cooled to room temperature.
- Example 1 [Plating layer forming process] An acetonitrile solution containing 10% by weight of polymer A (a composition to be plated layer-forming composition A) is applied onto a support (company name: PANAC, product name: TP05, contact angle with water: 95 °) by spin coating. (Condition: Coating is applied so that the film thickness after drying of the layer to be plated is 0.5 ⁇ m) and dried at 80 ° C. for 10 minutes, and then UV exposure machine (manufactured by Mitsunaga Electric Co., Ltd., model number: UVF-502S, Using a lamp: UXM-501MD), exposure was performed with an exposure energy of 1000 mJ.
- a support company name: PANAC, product name: TP05, contact angle with water: 95 °
- Coating is applied so that the film thickness after drying of the layer to be plated is 0.5 ⁇ m) and dried at 80 ° C. for 10 minutes, and then UV exposure machine (manufactured by Mitsun
- the support after the exposure was immersed in a 1% by mass aqueous NaHCO 3 solution for 10 minutes, and then washed with distilled water to obtain a support A.
- the surface roughness Rz of the exposed surface of the obtained layer to be plated was 0.01 ⁇ m.
- Catalyst application process A 0.5 mass% palladium acetate aqueous solution was prepared and used as a plating catalyst solution.
- the support A was immersed in the plating catalyst solution (liquid temperature: room temperature) for 5 minutes and then washed with pure water.
- Electroless copper plating uses an electroless copper plating bath of the following composition using Sulcup PGT (manufactured by Uemura Kogyo Co., Ltd.), and the support A is immersed for 15 minutes at a bath temperature of 30 ° C., resulting in a plating deposition thickness of 0.5 ⁇ m. Thus, a copper foil was formed.
- the preparation order and raw materials of the electroless copper plating solution are as follows.
- the obtained support A with copper foil was immersed in a 1% by mass sulfuric acid aqueous solution for 15 seconds to remove the oxide film on the copper foil.
- electrolytic copper plating (2.5 A / dm 2 : 20 minutes) is performed using the copper foil obtained above as a power feeding layer so that the copper thickness becomes 12 ⁇ m using an electrolytic copper plating bath having the following composition.
- a laminate A having a copper foil was obtained. (Composition of electrolytic copper plating bath) -Water 1000 parts by weight-Copper sulfate pentahydrate 110 parts by weight-298 parts by weight of 98% sulfuric acid-0.2 parts by weight of 35% hydrochloric acid-Made by Meltex, 30 parts by weight of Capper Gream ST-901M
- Example 2 Example 1 except that the plating layer was removed by performing plasma treatment (Nissin, microwave downflow method) instead of spray removal with 4% NaOH aqueous solution performed in [Plating layer removal step].
- plasma treatment Nisin, microwave downflow method
- a double-sided copper-clad plate was obtained according to the same procedure as described above.
- Example 3 A double-sided copper-clad plate was obtained according to the same procedure as in Example 1 except that the exposure was performed with the same UV exposure machine at an exposure energy of 500 mJ in the above [plated layer forming step].
- Example 4 In the above [catalyst application step], a 0.2 mass% palladium acetate aqueous solution was prepared, and this was used as a plating catalyst solution. After immersing the support A in the plating catalyst solution (liquid temperature: room temperature) for 2 minutes, A double-sided copper-clad plate was obtained according to the same procedure as in Example 1 except that it was washed with water.
- Dual-Beam FIB apparatus manufactured by FEI, Dual Beam Nova200 Nanolab
- FEI Dual Beam Nova200 Nanolab
- the sample was processed using an acceleration voltage of 30 kV, and a cross-section was obtained. Next, the cross section was observed with a focused ion beam apparatus (SMI 9200, manufactured by Seiko Instruments Inc.) and obtained as image data.
- SMI 9200 focused ion beam apparatus
- the roughened surface portion (line segment) on the side to be brought into close contact with the prepreg of the copper foil is extracted by image processing, and the contour line is drawn in five measurement regions (1 ⁇ m ⁇ 1 ⁇ m) based on this cross-sectional photograph.
- the fractal dimensions were calculated and arithmetically averaged to obtain the fractal dimensions (average fractal dimensions) shown in Table 1.
- the box size (the size of one side of the square box) was 1 nm to 10 nm.
- DFR (Hitachi Chemical Co., Ltd., RY3310) was laminated on the copper foils of the double-sided copper-clad plates obtained in Examples 1 to 4 and Comparative Examples 1 to 4.
- a glass mask capable of forming a comb-type wiring (compliant with JPCA-BU01-2007) defined in JPCA-ET01 is closely attached to the substrate on which the dry resist film is laminated, and the resist is 70 mJ with an exposure machine having a central wavelength of 405 nm. Irradiated with light energy. Development was performed by spraying a 1% Na 2 CO 3 aqueous solution onto the exposed substrate at a spray pressure of 0.2 MPa.
- the substrate was washed with water and dried to form a subtractive resist pattern on the copper foil.
- Etching was performed by immersing the substrate on which the resist pattern was formed in an FeCl 3 / HCl aqueous solution (etching solution) at a temperature of 40 ° C. to remove the copper foil present in the region where the resist pattern was not formed.
- the resist pattern is swollen and peeled off by spraying a 3% NaOH aqueous solution onto the substrate at a spray pressure of 0.2 MPa, neutralized with a 10% sulfuric acid aqueous solution, and washed with water to form a comb-like wiring (pattern shape). Copper foil) was obtained.
- Table 1 In Comparative Examples 2 to 4, since the adhesion of the copper foil to the prepreg was low, the copper foil was peeled off during the etching, and wiring could not be formed.
- Example 1 As shown in Table 1, it was confirmed that the copper foils of the present embodiment (Examples 1 to 4) exhibited excellent peel strength even though the surface roughness Rz was very small. It was also confirmed that the wiring width variation was small and a high-definition wiring pattern could be formed.
- Comparative Example 1 a conventionally known copper foil has a high surface roughness Rz and thus has excellent peel strength, but has a wide wiring width variation and a high-definition wiring pattern. I could not. Further, as shown in Comparative Examples 2 to 4, when the fractal dimension was outside the predetermined range, the peel strength of the copper foil was inferior and wiring could not be formed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Electroplating Methods And Accessories (AREA)
- Chemically Coating (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Laminated Bodies (AREA)
Abstract
The purpose of the present invention is to provide a copper foil for lamination, said copper foil exhibiting excellent adhesion to a substrate and being capable of forming a high-precision wiring pattern. This copper foil for lamination is a copper foil to be laminated on a substrate, wherein the surface roughness (Rz) on the side to be faced to the substrate is 0.500μm or less, and the fractal dimension of a cross-sectional profile on the side to be faced to the substrate is 1.020 to 1.400 as calculated by applying a box counting method wherein the side length of the square boxes is set to 1 to 10nm.
Description
本発明は、貼り付け用銅箔に関する。
The present invention relates to a copper foil for pasting.
金属銅は電気の良導体であり比較的安価で取り扱いも容易であることから、銅箔はプリント配線基板などの基礎材料として広く使用されている。
プリント配線基板を製造する際には、通常、銅箔と所定の基材とを合わせて積層し、加熱圧着して銅張積層体を得る。なお、一般的に、銅箔の基材と貼り合わる面は、基材との密着性を向上させるために、粗面化処理が施されている(特許文献1)。 Copper metal is widely used as a basic material for printed wiring boards and the like because metallic copper is a good conductor of electricity and is relatively inexpensive and easy to handle.
When manufacturing a printed wiring board, usually, a copper foil and a predetermined base material are laminated together and heat-pressed to obtain a copper-clad laminate. In general, the surface of the copper foil to be bonded to the base material is subjected to a roughening treatment in order to improve adhesion with the base material (Patent Document 1).
プリント配線基板を製造する際には、通常、銅箔と所定の基材とを合わせて積層し、加熱圧着して銅張積層体を得る。なお、一般的に、銅箔の基材と貼り合わる面は、基材との密着性を向上させるために、粗面化処理が施されている(特許文献1)。 Copper metal is widely used as a basic material for printed wiring boards and the like because metallic copper is a good conductor of electricity and is relatively inexpensive and easy to handle.
When manufacturing a printed wiring board, usually, a copper foil and a predetermined base material are laminated together and heat-pressed to obtain a copper-clad laminate. In general, the surface of the copper foil to be bonded to the base material is subjected to a roughening treatment in order to improve adhesion with the base material (Patent Document 1).
一方、近年、プリント配線基板の高密度化、高信頼性、および小型軽量化が強く望まれており、それに伴って、幅が狭く、高精細な配線パターンを形成することが求められている。
しかしながら、従来の粗面化処理が施された銅箔を使用して配線パターンの形成を行うと、銅箔の粗面化処理が施された表面の凹凸の影響により、得られる配線パターンの配線幅のバラツキが大きくなるという問題があった。 On the other hand, in recent years, high density, high reliability, and reduction in size and weight of printed wiring boards have been strongly demanded, and accordingly, it is required to form a narrow and high-definition wiring pattern.
However, when a wiring pattern is formed using a copper foil that has been subjected to a conventional roughening treatment, the wiring pattern wiring obtained is affected by the unevenness of the surface that has been subjected to the roughening treatment of the copper foil. There was a problem that the variation in width was large.
しかしながら、従来の粗面化処理が施された銅箔を使用して配線パターンの形成を行うと、銅箔の粗面化処理が施された表面の凹凸の影響により、得られる配線パターンの配線幅のバラツキが大きくなるという問題があった。 On the other hand, in recent years, high density, high reliability, and reduction in size and weight of printed wiring boards have been strongly demanded, and accordingly, it is required to form a narrow and high-definition wiring pattern.
However, when a wiring pattern is formed using a copper foil that has been subjected to a conventional roughening treatment, the wiring pattern wiring obtained is affected by the unevenness of the surface that has been subjected to the roughening treatment of the copper foil. There was a problem that the variation in width was large.
高精細な配線パターンを形成するためには銅箔の粗面をより低プロファイル化する手がある。しかしながら、この方法では、銅箔と基材との密着性が低下するために、銅箔回路のはがれ、浮き、デラミネーションなどの問題が生じる。
このように、従来、基材との高密着性と配線パターンの高精細化とは、互いにトレードオフの関係にあり、両者を満足することは困難であった。 In order to form a high-definition wiring pattern, there is a way to lower the profile of the rough surface of the copper foil. However, in this method, since the adhesiveness between the copper foil and the substrate is lowered, problems such as peeling, floating, and delamination of the copper foil circuit occur.
Thus, conventionally, high adhesion to the substrate and high definition of the wiring pattern are in a trade-off relationship with each other, and it has been difficult to satisfy both.
このように、従来、基材との高密着性と配線パターンの高精細化とは、互いにトレードオフの関係にあり、両者を満足することは困難であった。 In order to form a high-definition wiring pattern, there is a way to lower the profile of the rough surface of the copper foil. However, in this method, since the adhesiveness between the copper foil and the substrate is lowered, problems such as peeling, floating, and delamination of the copper foil circuit occur.
Thus, conventionally, high adhesion to the substrate and high definition of the wiring pattern are in a trade-off relationship with each other, and it has been difficult to satisfy both.
本発明は、上記実情に鑑みて、基材との良好な密着性を示しつつ、高精細な配線パターンを形成することができる貼り付け用銅箔を提供することを目的とする。
また、本発明は、上記貼り付け用銅箔を用いて得られる積層体およびプリント配線基板を提供することも目的とする。 An object of this invention is to provide the copper foil for bonding which can form a high-definition wiring pattern, showing the favorable adhesiveness with a base material in view of the said situation.
Another object of the present invention is to provide a laminate and a printed wiring board obtained by using the above-mentioned bonding copper foil.
また、本発明は、上記貼り付け用銅箔を用いて得られる積層体およびプリント配線基板を提供することも目的とする。 An object of this invention is to provide the copper foil for bonding which can form a high-definition wiring pattern, showing the favorable adhesiveness with a base material in view of the said situation.
Another object of the present invention is to provide a laminate and a printed wiring board obtained by using the above-mentioned bonding copper foil.
本発明者は、鋭意検討した結果、貼り付け用銅箔の基材に貼り付ける側の表面が所定の構造を有することによって、上記課題を解決できることを見出した。
即ち、以下に示す手段により上記目的を達成しうることを見出した。 As a result of intensive studies, the present inventor has found that the above-mentioned problem can be solved by having a predetermined structure on the surface to be bonded to the base of the bonding copper foil.
That is, it has been found that the above object can be achieved by the following means.
即ち、以下に示す手段により上記目的を達成しうることを見出した。 As a result of intensive studies, the present inventor has found that the above-mentioned problem can be solved by having a predetermined structure on the surface to be bonded to the base of the bonding copper foil.
That is, it has been found that the above object can be achieved by the following means.
(1) 基材に貼り付けるために用いられる貼り付け用銅箔であって、
基材に貼り付ける側の表面の表面粗さ(Rz)が0.500μm以下であり、
正方形のボックスの一辺の大きさを1nm~10nmに設定したボックスカウント法を適用して算出した、銅箔の断面における基材に貼り付ける側の表面の輪郭線のフラクタル次元が1.020~1.400である、貼り付け用銅箔。 (1) A copper foil for pasting used for pasting on a substrate,
The surface roughness (Rz) of the surface to be attached to the substrate is 0.500 μm or less,
The fractal dimension of the contour line of the surface on the side to be attached to the substrate in the cross section of the copper foil calculated by applying the box count method in which the size of one side of the square box is set to 1 nm to 10 nm is 1.020 to 1 400, a copper foil for attachment.
基材に貼り付ける側の表面の表面粗さ(Rz)が0.500μm以下であり、
正方形のボックスの一辺の大きさを1nm~10nmに設定したボックスカウント法を適用して算出した、銅箔の断面における基材に貼り付ける側の表面の輪郭線のフラクタル次元が1.020~1.400である、貼り付け用銅箔。 (1) A copper foil for pasting used for pasting on a substrate,
The surface roughness (Rz) of the surface to be attached to the substrate is 0.500 μm or less,
The fractal dimension of the contour line of the surface on the side to be attached to the substrate in the cross section of the copper foil calculated by applying the box count method in which the size of one side of the square box is set to 1 nm to 10 nm is 1.020 to 1 400, a copper foil for attachment.
(2) 基材と、基材上に貼り付けられた(1)に記載の貼り付け用銅箔とを有する積層体。
(2) A laminate having a base material and the attaching copper foil according to (1) attached on the base material.
(3) (2)に記載の積層体を含有するプリント配線基板。
(4) (1)に記載の貼り付け用銅箔の製造方法であって、
支持体上に、めっき触媒またはその前駆体と相互作用を形成する官能基および重合性基を有するポリマーを含む層を形成し、その後ポリマーを含む層に対してエネルギーを付与して、支持体上に被めっき層を形成する工程と、
被めっき層にめっき触媒またはその前駆体を付与する工程と、
めっき触媒またはその前駆体が付与された被めっき層に対して銅めっき処理を行い、被めっき層上に銅箔を形成し、支持体と被めっき層と銅箔とをこの順で有する積層体を得る工程と、
積層体から支持体および被めっき層を除去して銅箔を得る工程とを有する、貼り付け用銅箔の製造方法。 (3) A printed wiring board containing the laminate according to (2).
(4) A method for producing a bonding copper foil according to (1),
A layer containing a polymer having a functional group and a polymerizable group that interacts with the plating catalyst or its precursor is formed on the support, and then energy is applied to the layer containing the polymer to Forming a layer to be plated on,
Providing a plating catalyst or a precursor thereof to the layer to be plated;
The laminated body which performs a copper plating process with respect to the to-be-plated layer provided with the plating catalyst or its precursor, forms copper foil on a to-be-plated layer, and has a support body, to-be-plated layer, and copper foil in this order Obtaining
The manufacturing method of the copper foil for adhesion | attachment which has a process of removing a support body and a to-be-plated layer from a laminated body, and obtaining copper foil.
(4) (1)に記載の貼り付け用銅箔の製造方法であって、
支持体上に、めっき触媒またはその前駆体と相互作用を形成する官能基および重合性基を有するポリマーを含む層を形成し、その後ポリマーを含む層に対してエネルギーを付与して、支持体上に被めっき層を形成する工程と、
被めっき層にめっき触媒またはその前駆体を付与する工程と、
めっき触媒またはその前駆体が付与された被めっき層に対して銅めっき処理を行い、被めっき層上に銅箔を形成し、支持体と被めっき層と銅箔とをこの順で有する積層体を得る工程と、
積層体から支持体および被めっき層を除去して銅箔を得る工程とを有する、貼り付け用銅箔の製造方法。 (3) A printed wiring board containing the laminate according to (2).
(4) A method for producing a bonding copper foil according to (1),
A layer containing a polymer having a functional group and a polymerizable group that interacts with the plating catalyst or its precursor is formed on the support, and then energy is applied to the layer containing the polymer to Forming a layer to be plated on,
Providing a plating catalyst or a precursor thereof to the layer to be plated;
The laminated body which performs a copper plating process with respect to the to-be-plated layer provided with the plating catalyst or its precursor, forms copper foil on a to-be-plated layer, and has a support body, to-be-plated layer, and copper foil in this order Obtaining
The manufacturing method of the copper foil for adhesion | attachment which has a process of removing a support body and a to-be-plated layer from a laminated body, and obtaining copper foil.
本発明によれば、基材との良好な密着性を示しつつ、高精細な配線パターンを形成することができる貼り付け用銅箔を提供することができる。
また、本発明によれば、上記貼り付け用銅箔を用いた積層体およびプリント配線基板を提供することもできる。 ADVANTAGE OF THE INVENTION According to this invention, the copper foil for affixing which can form a high-definition wiring pattern can be provided, showing favorable adhesiveness with a base material.
Moreover, according to this invention, the laminated body and printed wiring board using the said copper foil for affixing can also be provided.
また、本発明によれば、上記貼り付け用銅箔を用いた積層体およびプリント配線基板を提供することもできる。 ADVANTAGE OF THE INVENTION According to this invention, the copper foil for affixing which can form a high-definition wiring pattern can be provided, showing favorable adhesiveness with a base material.
Moreover, according to this invention, the laminated body and printed wiring board using the said copper foil for affixing can also be provided.
以下に、本実施形態の貼り付け用銅箔について説明する。
本実施形態の貼り付け用銅箔は、その貼り付け面が所定の表面粗さRzを示すと共に、ボックスカウント法によって算出される、断面における貼り付け面の輪郭線のフラクタル次元が所定の値を示す。貼り付け面が所定の表面粗さRzを示すことにより、該貼り付け面においてマクロな凹凸が少なく(低プロファイル)、結果としてパターン形成時において高精細な配線パターンを形成することができる。また、貼り付け面の断面輪郭線が所定のフラクタル次元を示すことにより、ミクロで複雑な表面性状を有することになる。つまり、貼り付け面の表面粗さRzが小さいものであっても、その複雑な表面形状に起因して十分な表面積を有するものとなり、結果として基材に対して十分なアンカー効果を示し、基材に対して優れた密着性を示す。つまり、従来トレードオフの関係であった、密着性の向上と、配線パターンの高精細性とを両立することができる。
まず、以下では貼り付け用銅箔の態様について詳述し、その後該銅箔の製造方法について詳述する。 Below, the copper foil for adhesion of this embodiment is demonstrated.
The bonding copper foil of the present embodiment has a predetermined surface roughness Rz and the fractal dimension of the outline of the bonding surface in the cross section calculated by the box count method has a predetermined value. Show. When the affixed surface shows a predetermined surface roughness Rz, there are few macro unevenness on the affixed surface (low profile), and as a result, a high-definition wiring pattern can be formed during pattern formation. Further, when the cross-sectional contour line of the pasting surface shows a predetermined fractal dimension, it has a micro and complicated surface property. That is, even if the surface roughness Rz of the pasting surface is small, it has a sufficient surface area due to its complicated surface shape, and as a result, it exhibits a sufficient anchoring effect on the base material. Excellent adhesion to the material. That is, it is possible to achieve both the improvement in adhesion and the high definition of the wiring pattern, which have been a trade-off relationship.
First, the aspect of the copper foil for sticking is explained in full detail below, and the manufacturing method of this copper foil is explained in full detail after that.
本実施形態の貼り付け用銅箔は、その貼り付け面が所定の表面粗さRzを示すと共に、ボックスカウント法によって算出される、断面における貼り付け面の輪郭線のフラクタル次元が所定の値を示す。貼り付け面が所定の表面粗さRzを示すことにより、該貼り付け面においてマクロな凹凸が少なく(低プロファイル)、結果としてパターン形成時において高精細な配線パターンを形成することができる。また、貼り付け面の断面輪郭線が所定のフラクタル次元を示すことにより、ミクロで複雑な表面性状を有することになる。つまり、貼り付け面の表面粗さRzが小さいものであっても、その複雑な表面形状に起因して十分な表面積を有するものとなり、結果として基材に対して十分なアンカー効果を示し、基材に対して優れた密着性を示す。つまり、従来トレードオフの関係であった、密着性の向上と、配線パターンの高精細性とを両立することができる。
まず、以下では貼り付け用銅箔の態様について詳述し、その後該銅箔の製造方法について詳述する。 Below, the copper foil for adhesion of this embodiment is demonstrated.
The bonding copper foil of the present embodiment has a predetermined surface roughness Rz and the fractal dimension of the outline of the bonding surface in the cross section calculated by the box count method has a predetermined value. Show. When the affixed surface shows a predetermined surface roughness Rz, there are few macro unevenness on the affixed surface (low profile), and as a result, a high-definition wiring pattern can be formed during pattern formation. Further, when the cross-sectional contour line of the pasting surface shows a predetermined fractal dimension, it has a micro and complicated surface property. That is, even if the surface roughness Rz of the pasting surface is small, it has a sufficient surface area due to its complicated surface shape, and as a result, it exhibits a sufficient anchoring effect on the base material. Excellent adhesion to the material. That is, it is possible to achieve both the improvement in adhesion and the high definition of the wiring pattern, which have been a trade-off relationship.
First, the aspect of the copper foil for sticking is explained in full detail below, and the manufacturing method of this copper foil is explained in full detail after that.
[貼り付け用銅箔(貼り合わせ用銅箔)]
本実施形態の貼り付け用銅箔(以後、単に銅箔とも称する)は、基材表面に貼り付けるために用いられる。使用される基材については、後述する。
図1(A)は、貼り付け用銅箔10の模式的斜視図であり、図1(B)は図1(A)中のA-A線断面における表面近傍の拡大図である。なお、図1(B)中、貼り付け用銅箔10の上辺が、基材に貼り付ける側の表面の輪郭線に該当する。該図に示すように、貼り付け用銅箔10の基材と貼り付ける側の表面は、表面粗さRzは小さく巨視的には平坦な面であるが、微視的には複雑な表面形状を有している。 [Copper foil for pasting (copper foil for pasting)]
The attaching copper foil of the present embodiment (hereinafter, also simply referred to as “copper foil”) is used for attaching to the substrate surface. The base material used will be described later.
FIG. 1A is a schematic perspective view of thecopper foil 10 for attachment, and FIG. 1B is an enlarged view of the vicinity of the surface in the section AA in FIG. 1A. In addition, in FIG.1 (B), the upper side of the copper foil 10 for affixing corresponds to the outline of the surface of the side affixed on a base material. As shown in the figure, the surface of the bonding copper foil 10 on the base and the side to be bonded is a small surface roughness Rz and a macroscopically flat surface, but a microscopically complicated surface shape. have.
本実施形態の貼り付け用銅箔(以後、単に銅箔とも称する)は、基材表面に貼り付けるために用いられる。使用される基材については、後述する。
図1(A)は、貼り付け用銅箔10の模式的斜視図であり、図1(B)は図1(A)中のA-A線断面における表面近傍の拡大図である。なお、図1(B)中、貼り付け用銅箔10の上辺が、基材に貼り付ける側の表面の輪郭線に該当する。該図に示すように、貼り付け用銅箔10の基材と貼り付ける側の表面は、表面粗さRzは小さく巨視的には平坦な面であるが、微視的には複雑な表面形状を有している。 [Copper foil for pasting (copper foil for pasting)]
The attaching copper foil of the present embodiment (hereinafter, also simply referred to as “copper foil”) is used for attaching to the substrate surface. The base material used will be described later.
FIG. 1A is a schematic perspective view of the
銅箔の基材に貼り付ける側の表面の表面粗さRzは、0.500μm以下である。上記範囲内であれば、高精細な配線パターンを効率よく形成することができる。なかでも、より間隙の狭い配線パターンを高精細に形成できる点から、0.300μm以下が好ましく、0.200μm以下がより好ましい。なお、下限は特に制限されず、最も好ましくは0μmであるが、工業的な生産性の点より、0.050μm以上の場合が多い。
なお、Rzが0.500μm超の場合、配線幅のバラツキが大きくなり、高精細な配線パターンを得ることができない。 The surface roughness Rz of the surface to be attached to the copper foil base material is 0.500 μm or less. If it is in the said range, a high-definition wiring pattern can be formed efficiently. Among these, 0.300 μm or less is preferable and 0.200 μm or less is more preferable because a wiring pattern with a narrower gap can be formed with high definition. The lower limit is not particularly limited, and is most preferably 0 μm. However, from the viewpoint of industrial productivity, it is often 0.050 μm or more.
When Rz is more than 0.500 μm, the variation in wiring width becomes large, and a high-definition wiring pattern cannot be obtained.
なお、Rzが0.500μm超の場合、配線幅のバラツキが大きくなり、高精細な配線パターンを得ることができない。 The surface roughness Rz of the surface to be attached to the copper foil base material is 0.500 μm or less. If it is in the said range, a high-definition wiring pattern can be formed efficiently. Among these, 0.300 μm or less is preferable and 0.200 μm or less is more preferable because a wiring pattern with a narrower gap can be formed with high definition. The lower limit is not particularly limited, and is most preferably 0 μm. However, from the viewpoint of industrial productivity, it is often 0.050 μm or more.
When Rz is more than 0.500 μm, the variation in wiring width becomes large, and a high-definition wiring pattern cannot be obtained.
なお、表面粗さRzとは、JIS B 0601(2001年)に規定される最大高さ粗さであり、これは公知の表面形状測定装置(例えば、会社名:ULVAC、装置名:Dektak150)等で測定できる。
The surface roughness Rz is the maximum height roughness specified in JIS B 0601 (2001), which is a known surface shape measuring device (for example, company name: ULVAC, device name: Dektak 150), etc. Can be measured.
銅箔の断面における、銅箔の基材に貼り付ける側の表面の輪郭線(断面輪郭線)はフラクタル状で、正方形のボックスの一辺の大きさを1nm~10nmに設定したボックスカウント法を適用して算出した、表面の輪郭線のフラクタル次元が1.020~1.400である。フラクタル次元が上記範囲内であれば、銅箔が基材に対して優れた密着性を示す。なかでも、基材に対する密着性がより優れる点で、フラクタル次元は1.050~1.400が好ましく、1.100~1.300がより好ましく、1.150~1.250がさらに好ましい。
なお、フラクタル次元が1.020未満および1.400超の場合、銅箔の基材に対する密着性に劣る。 In the cross section of copper foil, the contour line (cross-sectional contour line) of the surface to be attached to the copper foil base material is fractal, and the box count method is used in which the size of one side of the square box is set to 1 nm to 10 nm. The fractal dimension of the surface contour calculated in this way is 1.020 to 1.400. When the fractal dimension is within the above range, the copper foil exhibits excellent adhesion to the substrate. Of these, the fractal dimension is preferably 1.050 to 1.400, more preferably 1.100 to 1.300, and even more preferably 1.150 to 1.250 in terms of better adhesion to the substrate.
In addition, when the fractal dimension is less than 1.020 and more than 1.400, the adhesion of the copper foil to the base material is inferior.
なお、フラクタル次元が1.020未満および1.400超の場合、銅箔の基材に対する密着性に劣る。 In the cross section of copper foil, the contour line (cross-sectional contour line) of the surface to be attached to the copper foil base material is fractal, and the box count method is used in which the size of one side of the square box is set to 1 nm to 10 nm. The fractal dimension of the surface contour calculated in this way is 1.020 to 1.400. When the fractal dimension is within the above range, the copper foil exhibits excellent adhesion to the substrate. Of these, the fractal dimension is preferably 1.050 to 1.400, more preferably 1.100 to 1.300, and even more preferably 1.150 to 1.250 in terms of better adhesion to the substrate.
In addition, when the fractal dimension is less than 1.020 and more than 1.400, the adhesion of the copper foil to the base material is inferior.
以下に、ボックスカウント法について詳述する。
ボックスカウント法とは、一定の領域を一定の大きさ(ボックスサイズ)で分割して見たときに、フラクタルな図形がどの程度含まれているのかを調べることで、フラクタル次元を推定する方法である。
「フラクタル次元(ボックスカウント次元)」は、形の複雑さ、表面の凹凸の度合いなどを表す指標であって、フラクタル次元の値が大きいほど凹凸が複雑であることを示し、以下のように定義される。ある図形Fを、一辺の大きさδの正方形の箱(ボックス)で覆うために必要なボックスの個数をNδ(F)とすると、フラクタル次元は下記式で定義される。 The box count method will be described in detail below.
The box count method is a method of estimating the fractal dimension by examining how much a fractal figure is included when a certain area is divided into a certain size (box size). is there.
“Fractal dimension (box count dimension)” is an index that represents the complexity of the shape, the degree of surface irregularities, etc., and the larger the fractal dimension value, the more complex the irregularities are defined as follows: Is done. Assuming that the number of boxes necessary for covering a certain figure F with a square box (box) having a side size δ is N δ (F), the fractal dimension is defined by the following equation.
ボックスカウント法とは、一定の領域を一定の大きさ(ボックスサイズ)で分割して見たときに、フラクタルな図形がどの程度含まれているのかを調べることで、フラクタル次元を推定する方法である。
「フラクタル次元(ボックスカウント次元)」は、形の複雑さ、表面の凹凸の度合いなどを表す指標であって、フラクタル次元の値が大きいほど凹凸が複雑であることを示し、以下のように定義される。ある図形Fを、一辺の大きさδの正方形の箱(ボックス)で覆うために必要なボックスの個数をNδ(F)とすると、フラクタル次元は下記式で定義される。 The box count method will be described in detail below.
The box count method is a method of estimating the fractal dimension by examining how much a fractal figure is included when a certain area is divided into a certain size (box size). is there.
“Fractal dimension (box count dimension)” is an index that represents the complexity of the shape, the degree of surface irregularities, etc., and the larger the fractal dimension value, the more complex the irregularities are defined as follows: Is done. Assuming that the number of boxes necessary for covering a certain figure F with a square box (box) having a side size δ is N δ (F), the fractal dimension is defined by the following equation.
つまり、本発明においては、銅箔の断面を等間隔δの格子状の領域に分割し(一辺の大きさがδの正方形の小領域で分割し)、δの大きさを変化させながら、銅箔の基材に貼り付ける側の表面の輪郭線の一部を含む、一辺の大きさがδの正方形のボックス(セル)の個数をカウントする。次に、カウントしたボックスの個数を縦軸、そのときのδの大きさを横軸として両対数グラフにプロットし、そのグラフの傾きからフラクタル次元を求める。
なお、本発明において、δは1~10nmの範囲である。 In other words, in the present invention, the cross section of the copper foil is divided into grid-like regions with equal intervals δ (divided into small square regions with one side of δ), and the copper is changed while changing the size of δ. The number of square boxes (cells) having a side size of δ including a part of the contour line on the surface of the foil attached to the substrate is counted. Next, the number of counted boxes is plotted on the log-log graph with the vertical axis representing the number of boxes and the horizontal axis representing the magnitude of δ, and the fractal dimension is obtained from the slope of the graph.
In the present invention, δ is in the range of 1 to 10 nm.
なお、本発明において、δは1~10nmの範囲である。 In other words, in the present invention, the cross section of the copper foil is divided into grid-like regions with equal intervals δ (divided into small square regions with one side of δ), and the copper is changed while changing the size of δ. The number of square boxes (cells) having a side size of δ including a part of the contour line on the surface of the foil attached to the substrate is counted. Next, the number of counted boxes is plotted on the log-log graph with the vertical axis representing the number of boxes and the horizontal axis representing the magnitude of δ, and the fractal dimension is obtained from the slope of the graph.
In the present invention, δ is in the range of 1 to 10 nm.
また、本発明においては、測定面積は1μm×1μmである。
さらに、本発明においてのフラクタル次元は、少なくとも5か所以上の断面測定領域(1μm×1μm)からそれぞれフラクタル次元を計算し、それらを算術平均した値である。 In the present invention, the measurement area is 1 μm × 1 μm.
Furthermore, the fractal dimension in the present invention is a value obtained by calculating the fractal dimension from at least five cross-sectional measurement regions (1 μm × 1 μm) and arithmetically averaging them.
さらに、本発明においてのフラクタル次元は、少なくとも5か所以上の断面測定領域(1μm×1μm)からそれぞれフラクタル次元を計算し、それらを算術平均した値である。 In the present invention, the measurement area is 1 μm × 1 μm.
Furthermore, the fractal dimension in the present invention is a value obtained by calculating the fractal dimension from at least five cross-sectional measurement regions (1 μm × 1 μm) and arithmetically averaging them.
より具体的には、本発明のフラクタル次元は、銅箔の断面構造写真(銅箔の厚み方向に平行な面の写真)から算出する。まず、Dual-Beam FIB装置(FEI製、Dual Beam Nova200 Nanolab、加速電圧30kV)を用いて、銅箔をサンプル加工し、断面出しを行う。次に、その断面を集束イオンビーム装置(セイコーインスツルメンツ社製、SMI9200)にて観察して、画像データとして得る。その後、画像処理によって、銅箔の粗化表面部(線分)を抽出する。この断面写真を基に、上記ボックスカウント法を用いて、少なくとも5か所の測定領域(1μm×1μm)にて輪郭線のフラクタル次元(ボックスカウント次元)をそれぞれ算出し、それらを算術平均して本発明のフラクタル次元(平均フラクタル次元)を求める。
More specifically, the fractal dimension of the present invention is calculated from a cross-sectional structure photograph of a copper foil (a photograph of a plane parallel to the thickness direction of the copper foil). First, using a Dual-Beam FIB apparatus (manufactured by FEI, Dual Beam Nova200 Nanolab, acceleration voltage 30 kV), a copper foil is sampled and a cross-section is obtained. Next, the cross section is observed with a focused ion beam apparatus (SMI 9200, manufactured by Seiko Instruments Inc.) to obtain image data. Thereafter, the roughened surface portion (line segment) of the copper foil is extracted by image processing. Based on this cross-sectional photograph, the above-mentioned box count method is used to calculate the fractal dimension (box count dimension) of the contour line in at least five measurement areas (1 μm × 1 μm), respectively, and arithmetically average them. The fractal dimension (average fractal dimension) of the present invention is determined.
銅箔の基材に貼り付ける側の表面の表面粗さRaは特に制限されないが、高精細な配線パターンを効率よく形成することができる点で、0.200μm以下が好ましく、0.100μm以下がより好ましい。なお、下限は特に制限されず、最も好ましくは0μmであるが、工業的な生産性の点より、0.010μm以上の場合が多い。
なお、表面粗さRaとは、JIS B 0601(2001年)に規定され、これは公知の表面形状測定装置(例えば、会社名:ULVAC、装置名:Dektak150)等で測定できる。 The surface roughness Ra of the surface of the copper foil attached to the base material is not particularly limited, but is preferably 0.200 μm or less, and preferably 0.100 μm or less in that a high-definition wiring pattern can be efficiently formed. More preferred. The lower limit is not particularly limited, and is most preferably 0 μm. However, from the viewpoint of industrial productivity, it is often 0.010 μm or more.
The surface roughness Ra is defined in JIS B 0601 (2001), which can be measured with a known surface shape measuring device (for example, company name: ULVAC, device name: Dektak 150).
なお、表面粗さRaとは、JIS B 0601(2001年)に規定され、これは公知の表面形状測定装置(例えば、会社名:ULVAC、装置名:Dektak150)等で測定できる。 The surface roughness Ra of the surface of the copper foil attached to the base material is not particularly limited, but is preferably 0.200 μm or less, and preferably 0.100 μm or less in that a high-definition wiring pattern can be efficiently formed. More preferred. The lower limit is not particularly limited, and is most preferably 0 μm. However, from the viewpoint of industrial productivity, it is often 0.010 μm or more.
The surface roughness Ra is defined in JIS B 0601 (2001), which can be measured with a known surface shape measuring device (for example, company name: ULVAC, device name: Dektak 150).
銅箔の厚みは特に制限されず、使用目的に応じて適宜調整できる。基材に対する密着性、および、パターンの高精細性がより優れる点から、2~30μmが好ましく、5~20μmがより好ましい。
The thickness of the copper foil is not particularly limited and can be appropriately adjusted according to the purpose of use. From the viewpoint of excellent adhesion to the substrate and high definition of the pattern, it is preferably 2 to 30 μm, more preferably 5 to 20 μm.
銅箔は、通常、銅から構成されるが、銅以外の金属(例えば、銀、錫、パラジウム、金、ニッケル、クロムなど)が一部含まれていてもよい。
The copper foil is usually made of copper, but may contain a part of metals other than copper (for example, silver, tin, palladium, gold, nickel, chromium, etc.).
なお、上述したように、銅箔の基材と貼り付ける面が所定の表面粗さRzおよびフラクタル次元の要件を示せばよく、一方の主面(片面)のみが該要件を満たしていてもよい。また、銅箔の両主面(両面)が該要件を満たしていてもよい。
なお、一方の主面のみが該要件を満たしている場合、他方の主面の形状は特に制限されない。通常、平坦な光沢面である場合が多い。 Note that, as described above, the surface of the copper foil substrate and the surface to be bonded need only indicate the requirements for the predetermined surface roughness Rz and fractal dimension, and only one main surface (one surface) may satisfy the requirements. . Moreover, both the main surfaces (both surfaces) of copper foil may satisfy | fill this requirement.
In addition, when only one main surface satisfies the requirement, the shape of the other main surface is not particularly limited. Usually, it is often a flat glossy surface.
なお、一方の主面のみが該要件を満たしている場合、他方の主面の形状は特に制限されない。通常、平坦な光沢面である場合が多い。 Note that, as described above, the surface of the copper foil substrate and the surface to be bonded need only indicate the requirements for the predetermined surface roughness Rz and fractal dimension, and only one main surface (one surface) may satisfy the requirements. . Moreover, both the main surfaces (both surfaces) of copper foil may satisfy | fill this requirement.
In addition, when only one main surface satisfies the requirement, the shape of the other main surface is not particularly limited. Usually, it is often a flat glossy surface.
また、銅箔は種々の態様(用途)に使用することができる。例えば、プリント配線基板、電磁波シールド材料、導通(アース)用材料、リチウムイオン電池などが挙げられる。
さらに、必要に応じて、該銅箔は、公知の方法(例えば、後述するエッチング工程に記載のエッチング方法)によってパターン状に形成されてもよい。 Moreover, copper foil can be used for various aspects (applications). For example, a printed wiring board, an electromagnetic wave shielding material, a continuity (earth) material, a lithium ion battery, and the like can be given.
Furthermore, if necessary, the copper foil may be formed in a pattern by a known method (for example, an etching method described in an etching step described later).
さらに、必要に応じて、該銅箔は、公知の方法(例えば、後述するエッチング工程に記載のエッチング方法)によってパターン状に形成されてもよい。 Moreover, copper foil can be used for various aspects (applications). For example, a printed wiring board, an electromagnetic wave shielding material, a continuity (earth) material, a lithium ion battery, and the like can be given.
Furthermore, if necessary, the copper foil may be formed in a pattern by a known method (for example, an etching method described in an etching step described later).
[銅箔の製造方法]
上記銅箔の製造方法は特に制限されず、表面粗さRzおよびフラクタル次元が所定の範囲となるような方法であれば、いずれの方法も使用することができる。
図2は、銅箔の製造方法の好適態様における各工程を示すフローチャートであり、該態様は、被めっき層形成工程S102、触媒付与工程S104、めっき工程S106、支持体除去工程S108、被めっき層除去工程S110を備える。該態様であれば、得られる銅箔の表面粗さRzおよびフラクタル次元の調整が容易であると共に、生産性にもより優れる。
以下に、該好適態様の各工程について詳述する。 [Manufacturing method of copper foil]
The method for producing the copper foil is not particularly limited, and any method can be used as long as the surface roughness Rz and the fractal dimension are within a predetermined range.
FIG. 2 is a flowchart showing each step in a preferred embodiment of the method for producing a copper foil, which includes a plated layer forming step S102, a catalyst applying step S104, a plating step S106, a support removing step S108, and a plated layer. A removal step S110 is provided. If it is this aspect, adjustment of the surface roughness Rz and fractal dimension of the copper foil obtained is easy, and it is excellent also in productivity.
Below, each process of this suitable aspect is explained in full detail.
上記銅箔の製造方法は特に制限されず、表面粗さRzおよびフラクタル次元が所定の範囲となるような方法であれば、いずれの方法も使用することができる。
図2は、銅箔の製造方法の好適態様における各工程を示すフローチャートであり、該態様は、被めっき層形成工程S102、触媒付与工程S104、めっき工程S106、支持体除去工程S108、被めっき層除去工程S110を備える。該態様であれば、得られる銅箔の表面粗さRzおよびフラクタル次元の調整が容易であると共に、生産性にもより優れる。
以下に、該好適態様の各工程について詳述する。 [Manufacturing method of copper foil]
The method for producing the copper foil is not particularly limited, and any method can be used as long as the surface roughness Rz and the fractal dimension are within a predetermined range.
FIG. 2 is a flowchart showing each step in a preferred embodiment of the method for producing a copper foil, which includes a plated layer forming step S102, a catalyst applying step S104, a plating step S106, a support removing step S108, and a plated layer. A removal step S110 is provided. If it is this aspect, adjustment of the surface roughness Rz and fractal dimension of the copper foil obtained is easy, and it is excellent also in productivity.
Below, each process of this suitable aspect is explained in full detail.
(被めっき層形成工程S102)
本工程S102は、支持体上に、めっき触媒またはその前駆体と相互作用を形成する官能基(以後、適宜相互作用性基と称する)および重合性基を有するポリマーを含む層を形成し、その後ポリマーを含む層に対してエネルギーを付与して、支持体上に被めっき層を形成する工程である。
該工程S102によって形成される被めっき層は、ポリマー中に含まれる相互作用性基の機能に応じて、後述する触媒付与工程S104でめっき触媒またはその前駆体を吸着(付着)する。つまり、被めっき層は、めっき触媒またはその前駆体の良好な受容層として機能する。また、重合性基は、エネルギー付与による硬化処理によってポリマー同士の結合に利用され、硬さ・硬度に優れた被めっき層を得ることができる。
より具体的には、図3(A)に示すように、該工程S102においては支持体12上に被めっき層14が形成される。
まず、本工程S102で使用される材料(支持体、ポリマー、被めっき層形成用組成物など)について詳述し、その後該工程S102の手順について詳述する。 (Plating layer forming step S102)
In this step S102, a layer containing a polymer having a functional group that interacts with the plating catalyst or its precursor (hereinafter referred to as an interactive group as appropriate) and a polymerizable group is formed on the support, In this step, energy is applied to the layer containing the polymer to form a layer to be plated on the support.
The to-be-plated layer formed by this process S102 adsorbs (attaches) a plating catalyst or its precursor in the catalyst provision process S104 mentioned later according to the function of the interactive group contained in a polymer. That is, the layer to be plated functions as a good receiving layer for the plating catalyst or its precursor. Moreover, a polymeric group is utilized for the coupling | bonding of polymers by the hardening process by energy provision, and can obtain the to-be-plated layer excellent in hardness and hardness.
More specifically, as shown in FIG. 3A, alayer 14 to be plated is formed on the support 12 in step S102.
First, the materials (support, polymer, composition for forming a layer to be plated, etc.) used in this step S102 will be described in detail, and then the procedure of this step S102 will be described in detail.
本工程S102は、支持体上に、めっき触媒またはその前駆体と相互作用を形成する官能基(以後、適宜相互作用性基と称する)および重合性基を有するポリマーを含む層を形成し、その後ポリマーを含む層に対してエネルギーを付与して、支持体上に被めっき層を形成する工程である。
該工程S102によって形成される被めっき層は、ポリマー中に含まれる相互作用性基の機能に応じて、後述する触媒付与工程S104でめっき触媒またはその前駆体を吸着(付着)する。つまり、被めっき層は、めっき触媒またはその前駆体の良好な受容層として機能する。また、重合性基は、エネルギー付与による硬化処理によってポリマー同士の結合に利用され、硬さ・硬度に優れた被めっき層を得ることができる。
より具体的には、図3(A)に示すように、該工程S102においては支持体12上に被めっき層14が形成される。
まず、本工程S102で使用される材料(支持体、ポリマー、被めっき層形成用組成物など)について詳述し、その後該工程S102の手順について詳述する。 (Plating layer forming step S102)
In this step S102, a layer containing a polymer having a functional group that interacts with the plating catalyst or its precursor (hereinafter referred to as an interactive group as appropriate) and a polymerizable group is formed on the support, In this step, energy is applied to the layer containing the polymer to form a layer to be plated on the support.
The to-be-plated layer formed by this process S102 adsorbs (attaches) a plating catalyst or its precursor in the catalyst provision process S104 mentioned later according to the function of the interactive group contained in a polymer. That is, the layer to be plated functions as a good receiving layer for the plating catalyst or its precursor. Moreover, a polymeric group is utilized for the coupling | bonding of polymers by the hardening process by energy provision, and can obtain the to-be-plated layer excellent in hardness and hardness.
More specifically, as shown in FIG. 3A, a
First, the materials (support, polymer, composition for forming a layer to be plated, etc.) used in this step S102 will be described in detail, and then the procedure of this step S102 will be described in detail.
(支持体)
支持体は、後述する各層を支持するための部材であり、従来知られているいずれの支持基板(例えば、樹脂基板、セラミック基板、ガラス基板、金属基板など。好ましくは、絶縁性基板。)も使用することができる。 (Support)
The support is a member for supporting each layer described below, and any conventionally known support substrate (for example, a resin substrate, a ceramic substrate, a glass substrate, a metal substrate, etc., preferably an insulating substrate) is used. Can be used.
支持体は、後述する各層を支持するための部材であり、従来知られているいずれの支持基板(例えば、樹脂基板、セラミック基板、ガラス基板、金属基板など。好ましくは、絶縁性基板。)も使用することができる。 (Support)
The support is a member for supporting each layer described below, and any conventionally known support substrate (for example, a resin substrate, a ceramic substrate, a glass substrate, a metal substrate, etc., preferably an insulating substrate) is used. Can be used.
なかでも、後述する支持体除去工程S108において支持体をより容易に除去できる点から、易剥離性を示す表面を有する剥離性支持体を使用することが好ましい。なお、剥離性支持体の表面が有する易剥離性とは、後述する銅箔を有する積層体に剥離性支持体を剥離するための外力を加えた場合、銅箔と被めっき層の界面で剥離すること無く、剥離性支持体と被めっき層の界面で剥離する性質を意味する。
剥離性支持体の易剥離性を示す表面の水接触角は、剥離性支持体と被めっき層との界面での剥離がより進行しやすい点から、70°以上であることが好ましく、70~110°であることがより好ましく、80~100°であることがさらに好ましい。
水接触角の測定方法としては、滴下した水の頂点と支持体との2点の接点を用いる接線法を用いる。 Especially, it is preferable to use the peelable support body which has the surface which shows easy peelability from the point which can remove a support body more easily in support body removal process S108 mentioned later. In addition, the easy peelability which the surface of a peelable support body has is peeling at the interface of copper foil and a to-be-plated layer, when the external force for peeling a peelable support body is applied to the laminated body which has a copper foil mentioned later It means the property of peeling at the interface between the peelable support and the layer to be plated without being done.
The water contact angle of the surface showing the easy peelability of the peelable support is preferably 70 ° or more from the viewpoint that the peeling at the interface between the peelable support and the layer to be plated proceeds more easily. 110 ° is more preferable, and 80 to 100 ° is even more preferable.
As a method for measuring the water contact angle, a tangent method using two points of contact between the top of the dropped water and the support is used.
剥離性支持体の易剥離性を示す表面の水接触角は、剥離性支持体と被めっき層との界面での剥離がより進行しやすい点から、70°以上であることが好ましく、70~110°であることがより好ましく、80~100°であることがさらに好ましい。
水接触角の測定方法としては、滴下した水の頂点と支持体との2点の接点を用いる接線法を用いる。 Especially, it is preferable to use the peelable support body which has the surface which shows easy peelability from the point which can remove a support body more easily in support body removal process S108 mentioned later. In addition, the easy peelability which the surface of a peelable support body has is peeling at the interface of copper foil and a to-be-plated layer, when the external force for peeling a peelable support body is applied to the laminated body which has a copper foil mentioned later It means the property of peeling at the interface between the peelable support and the layer to be plated without being done.
The water contact angle of the surface showing the easy peelability of the peelable support is preferably 70 ° or more from the viewpoint that the peeling at the interface between the peelable support and the layer to be plated proceeds more easily. 110 ° is more preferable, and 80 to 100 ° is even more preferable.
As a method for measuring the water contact angle, a tangent method using two points of contact between the top of the dropped water and the support is used.
なお、支持体の大きさ、および、厚みは特に制限されず、適宜最適な大きさ、および、厚みが選択される。
また、支持体の形状は特に制限されないが、通常、平板状である。 In addition, the magnitude | size and thickness in particular of a support body are not restrict | limited, The optimal magnitude | size and thickness are selected suitably.
The shape of the support is not particularly limited, but is usually a flat plate shape.
また、支持体の形状は特に制限されないが、通常、平板状である。 In addition, the magnitude | size and thickness in particular of a support body are not restrict | limited, The optimal magnitude | size and thickness are selected suitably.
The shape of the support is not particularly limited, but is usually a flat plate shape.
(ポリマー)
使用されるポリマーは、重合性基と、相互作用性基とを有する。
重合性基は、エネルギー付与により、ポリマー同士の間に化学結合を形成しうる官能基であり、例えば、ラジカル重合性基、カチオン重合性基などが挙げられる。なかでも、反応性がより優れる点から、ラジカル重合性基が好ましい。ラジカル重合性基としては、例えば、アクリル酸エステル基(アクリロイルオキシ基)、メタクリル酸エステル基(メタクリロイルオキシ基)、イタコン酸エステル基、クロトン酸エステル基、イソクロトン酸エステル基、マレイン酸エステル基などの不飽和カルボン酸エステル基、スチリル基、ビニル基、アクリルアミド基、メタクリルアミド基などが挙げられる。なかでも、メタクリロイルオキシ基、アクリロイルオキシ基、ビニル基、スチリル基、アクリルアミド基、メタクリルアミド基が好ましく、メタクリロイルオキシ基、アクリロイルオキシ基、スチリル基が特に好ましい。 (polymer)
The polymer used has a polymerizable group and an interactive group.
The polymerizable group is a functional group capable of forming a chemical bond between polymers by applying energy, and examples thereof include a radical polymerizable group and a cationic polymerizable group. Among these, a radical polymerizable group is preferable from the viewpoint of more excellent reactivity. Examples of radical polymerizable groups include acrylic acid ester groups (acryloyloxy groups), methacrylic acid ester groups (methacryloyloxy groups), itaconic acid ester groups, crotonic acid ester groups, isocrotonic acid ester groups, maleic acid ester groups, and the like. Examples include unsaturated carboxylic acid ester groups, styryl groups, vinyl groups, acrylamide groups, and methacrylamide groups. Of these, a methacryloyloxy group, an acryloyloxy group, a vinyl group, a styryl group, an acrylamide group, and a methacrylamide group are preferable, and a methacryloyloxy group, an acryloyloxy group, and a styryl group are particularly preferable.
使用されるポリマーは、重合性基と、相互作用性基とを有する。
重合性基は、エネルギー付与により、ポリマー同士の間に化学結合を形成しうる官能基であり、例えば、ラジカル重合性基、カチオン重合性基などが挙げられる。なかでも、反応性がより優れる点から、ラジカル重合性基が好ましい。ラジカル重合性基としては、例えば、アクリル酸エステル基(アクリロイルオキシ基)、メタクリル酸エステル基(メタクリロイルオキシ基)、イタコン酸エステル基、クロトン酸エステル基、イソクロトン酸エステル基、マレイン酸エステル基などの不飽和カルボン酸エステル基、スチリル基、ビニル基、アクリルアミド基、メタクリルアミド基などが挙げられる。なかでも、メタクリロイルオキシ基、アクリロイルオキシ基、ビニル基、スチリル基、アクリルアミド基、メタクリルアミド基が好ましく、メタクリロイルオキシ基、アクリロイルオキシ基、スチリル基が特に好ましい。 (polymer)
The polymer used has a polymerizable group and an interactive group.
The polymerizable group is a functional group capable of forming a chemical bond between polymers by applying energy, and examples thereof include a radical polymerizable group and a cationic polymerizable group. Among these, a radical polymerizable group is preferable from the viewpoint of more excellent reactivity. Examples of radical polymerizable groups include acrylic acid ester groups (acryloyloxy groups), methacrylic acid ester groups (methacryloyloxy groups), itaconic acid ester groups, crotonic acid ester groups, isocrotonic acid ester groups, maleic acid ester groups, and the like. Examples include unsaturated carboxylic acid ester groups, styryl groups, vinyl groups, acrylamide groups, and methacrylamide groups. Of these, a methacryloyloxy group, an acryloyloxy group, a vinyl group, a styryl group, an acrylamide group, and a methacrylamide group are preferable, and a methacryloyloxy group, an acryloyloxy group, and a styryl group are particularly preferable.
相互作用性基は、めっき触媒またはその前駆体と相互作用する官能基であり、めっき触媒またはその前駆体と静電相互作用を形成可能な官能基、あるいは、めっき触媒またはその前駆体と配位形成可能な含窒素官能基、含硫黄官能基、含酸素官能基などを使用することができる。
相互作用性基としては、例えば、非解離性官能基(解離によりプロトンを生成しない官能基)なども挙げられる。 An interactive group is a functional group that interacts with a plating catalyst or a precursor thereof, a functional group that can form an electrostatic interaction with the plating catalyst or a precursor thereof, or a coordination group with a plating catalyst or a precursor thereof. Nitrogen-containing functional groups, sulfur-containing functional groups, oxygen-containing functional groups and the like that can be formed can be used.
Examples of interactive groups include non-dissociable functional groups (functional groups that do not generate protons by dissociation).
相互作用性基としては、例えば、非解離性官能基(解離によりプロトンを生成しない官能基)なども挙げられる。 An interactive group is a functional group that interacts with a plating catalyst or a precursor thereof, a functional group that can form an electrostatic interaction with the plating catalyst or a precursor thereof, or a coordination group with a plating catalyst or a precursor thereof. Nitrogen-containing functional groups, sulfur-containing functional groups, oxygen-containing functional groups and the like that can be formed can be used.
Examples of interactive groups include non-dissociable functional groups (functional groups that do not generate protons by dissociation).
相互作用性基としてより具体的には、アミノ基、アミド基、イミド基、ウレア基、3級のアミノ基、アンモニウム基、アミジノ基、トリアジン環、トリアゾール環、ベンゾトリアゾール基、イミダゾール基、ベンズイミダゾール基、キノリン基、ピリジン基、ピリミジン基、ピラジン基、ナゾリン基、キノキサリン基、プリン基、トリアジン基、ピペリジン基、ピペラジン基、ピロリジン基、ピラゾール基、アニリン基、アルキルアミン構造を含む基、イソシアヌル構造を含む基、ニトロ基、ニトロソ基、アゾ基、ジアゾ基、アジド基、シアノ基、シアネート基(R-O-CN)などの含窒素官能基;エーテル基、水酸基、フェノール性水酸基、カルボキシル基、カーボネート基、カルボニル基、エステル基、N-オキシド構造を含む基、S-オキシド構造を含む基、N-ヒドロキシ構造を含む基などの含酸素官能基;チオフェン基、チオール基、チオウレア基、チオシアヌール酸基、ベンズチアゾール基、メルカプトトリアジン基、チオエーテル基、チオキシ基、スルホキシド基、スルホン基、サルファイト基、スルホキシイミン構造を含む基、スルホキシニウム塩構造を含む基、スルホン酸基、スルホン酸エステル構造を含む基などの含硫黄官能基;ホスフォート基、ホスフォロアミド基、ホスフィン基、リン酸エステル構造を含む基などの含リン官能基;塩素、臭素などのハロゲン原子を含む基などが挙げられ、塩構造をとりうる官能基においてはそれらの塩も使用することができる。
なかでも、極性が高く、めっき触媒またはその前駆体などへの吸着能が高いことから、カルボキシル基、スルホン酸基、リン酸基、およびボロン酸基などのイオン性極性基や、エーテル基、またはシアノ基が特に好ましく、カルボキシル基またはシアノ基がさらに好ましい。
相互作用性基としてのこれら官能基は、ポリマー中に2種以上が含まれていてもよい。 More specifically, as an interactive group, amino group, amide group, imide group, urea group, tertiary amino group, ammonium group, amidino group, triazine ring, triazole ring, benzotriazole group, imidazole group, benzimidazole Group, quinoline group, pyridine group, pyrimidine group, pyrazine group, nazoline group, quinoxaline group, purine group, triazine group, piperidine group, piperazine group, pyrrolidine group, pyrazole group, aniline group, group containing alkylamine structure, isocyanuric structure Nitrogen-containing functional groups such as nitro group, nitroso group, azo group, diazo group, azide group, cyano group, cyanate group (R—O—CN); ether group, hydroxyl group, phenolic hydroxyl group, carboxyl group, Carbonate group, carbonyl group, ester group, group containing N-oxide structure, S An oxygen-containing functional group such as a group containing an oxide structure or a group containing an N-hydroxy structure; a thiophene group, a thiol group, a thiourea group, a thiocyanuric acid group, a benzthiazole group, a mercaptotriazine group, a thioether group, a thioxy group, a sulfoxide group, Sulfur-containing functional groups such as sulfone group, sulfite group, group containing sulfoxyimine structure, group containing sulfoxynium salt structure, sulfonic acid group, group containing sulfonic acid ester structure; Phosphate group, phosphoramide group, phosphine group And a phosphorus-containing functional group such as a group containing a phosphate ester structure; a group containing a halogen atom such as chlorine and bromine, and the like. In a functional group capable of taking a salt structure, a salt thereof can also be used.
Among them, since the polarity is high and the adsorption ability to a plating catalyst or a precursor thereof is high, an ionic polar group such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, and a boronic acid group, an ether group, or A cyano group is particularly preferable, and a carboxyl group or a cyano group is more preferable.
Two or more of these functional groups as interactive groups may be contained in the polymer.
なかでも、極性が高く、めっき触媒またはその前駆体などへの吸着能が高いことから、カルボキシル基、スルホン酸基、リン酸基、およびボロン酸基などのイオン性極性基や、エーテル基、またはシアノ基が特に好ましく、カルボキシル基またはシアノ基がさらに好ましい。
相互作用性基としてのこれら官能基は、ポリマー中に2種以上が含まれていてもよい。 More specifically, as an interactive group, amino group, amide group, imide group, urea group, tertiary amino group, ammonium group, amidino group, triazine ring, triazole ring, benzotriazole group, imidazole group, benzimidazole Group, quinoline group, pyridine group, pyrimidine group, pyrazine group, nazoline group, quinoxaline group, purine group, triazine group, piperidine group, piperazine group, pyrrolidine group, pyrazole group, aniline group, group containing alkylamine structure, isocyanuric structure Nitrogen-containing functional groups such as nitro group, nitroso group, azo group, diazo group, azide group, cyano group, cyanate group (R—O—CN); ether group, hydroxyl group, phenolic hydroxyl group, carboxyl group, Carbonate group, carbonyl group, ester group, group containing N-oxide structure, S An oxygen-containing functional group such as a group containing an oxide structure or a group containing an N-hydroxy structure; a thiophene group, a thiol group, a thiourea group, a thiocyanuric acid group, a benzthiazole group, a mercaptotriazine group, a thioether group, a thioxy group, a sulfoxide group, Sulfur-containing functional groups such as sulfone group, sulfite group, group containing sulfoxyimine structure, group containing sulfoxynium salt structure, sulfonic acid group, group containing sulfonic acid ester structure; Phosphate group, phosphoramide group, phosphine group And a phosphorus-containing functional group such as a group containing a phosphate ester structure; a group containing a halogen atom such as chlorine and bromine, and the like. In a functional group capable of taking a salt structure, a salt thereof can also be used.
Among them, since the polarity is high and the adsorption ability to a plating catalyst or a precursor thereof is high, an ionic polar group such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, and a boronic acid group, an ether group, or A cyano group is particularly preferable, and a carboxyl group or a cyano group is more preferable.
Two or more of these functional groups as interactive groups may be contained in the polymer.
ポリマーの重量平均分子量は特に制限されないが、1000以上70万以下が好ましく、更に好ましくは2000以上20万以下である。特に、重合感度の観点から、20000以上であることが好ましい。
また、ポリマーの重合度は特に制限されないが、10量体以上が好ましく、20量体以上がさらに好ましい。また、7000量体以下が好ましく、3000量体以下がより好ましく、2000量体以下が更に好ましく、1000量体以下が特に好ましい。 The weight average molecular weight of the polymer is not particularly limited, but is preferably 1000 or more and 700,000 or less, more preferably 2000 or more and 200,000 or less. In particular, from the viewpoint of polymerization sensitivity, it is preferably 20000 or more.
The degree of polymerization of the polymer is not particularly limited, but is preferably a 10-mer or more, and more preferably a 20-mer or more. Moreover, 7000-mer or less is preferable, 3000-mer or less is more preferable, 2000-mer or less is still more preferable, 1000-mer or less is especially preferable.
また、ポリマーの重合度は特に制限されないが、10量体以上が好ましく、20量体以上がさらに好ましい。また、7000量体以下が好ましく、3000量体以下がより好ましく、2000量体以下が更に好ましく、1000量体以下が特に好ましい。 The weight average molecular weight of the polymer is not particularly limited, but is preferably 1000 or more and 700,000 or less, more preferably 2000 or more and 200,000 or less. In particular, from the viewpoint of polymerization sensitivity, it is preferably 20000 or more.
The degree of polymerization of the polymer is not particularly limited, but is preferably a 10-mer or more, and more preferably a 20-mer or more. Moreover, 7000-mer or less is preferable, 3000-mer or less is more preferable, 2000-mer or less is still more preferable, 1000-mer or less is especially preferable.
ポリマーの好ましい態様として、下記式(a)で表される重合性基を有するユニット(以下、適宜重合性基ユニットとも称する)、および、下記式(b)で表される相互作用性基を有するユニット(以下、適宜相互作用性基ユニットとも称する)を含む共重合体が挙げられる。なお、ユニットとは繰り返し単位を意味する。
As a preferred embodiment of the polymer, it has a unit having a polymerizable group represented by the following formula (a) (hereinafter also referred to as a polymerizable group unit as appropriate) and an interactive group represented by the following formula (b). Examples thereof include a copolymer containing a unit (hereinafter also referred to as an interactive group unit as appropriate). In addition, a unit means a repeating unit.
上記式(a)および式(b)中、R1~R5は、それぞれ独立して、水素原子、または置換若しくは無置換のアルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基など)を表す。なお、置換基は特に制限されないが、メトキシ基、塩素原子、臭素原子、またはフッ素原子などが挙げられる。
なお、R1としては、水素原子、メチル基、または、臭素原子で置換されたメチル基が好ましい。R2としては、水素原子、メチル基、または、臭素原子で置換されたメチル基が好ましい。R3としては、水素原子が好ましい。R4としては、水素原子が好ましい。R5としては、水素原子、メチル基、または、臭素原子で置換されたメチル基が好ましい。 In the above formulas (a) and (b), R 1 to R 5 are each independently a hydrogen atom or a substituted or unsubstituted alkyl group (for example, a methyl group, an ethyl group, a propyl group, a butyl group, etc. ). The substituent is not particularly limited, and examples thereof include a methoxy group, a chlorine atom, a bromine atom, or a fluorine atom.
R 1 is preferably a hydrogen atom, a methyl group, or a methyl group substituted with a bromine atom. R 2 is preferably a hydrogen atom, a methyl group, or a methyl group substituted with a bromine atom. R 3 is preferably a hydrogen atom. R 4 is preferably a hydrogen atom. R 5 is preferably a hydrogen atom, a methyl group, or a methyl group substituted with a bromine atom.
なお、R1としては、水素原子、メチル基、または、臭素原子で置換されたメチル基が好ましい。R2としては、水素原子、メチル基、または、臭素原子で置換されたメチル基が好ましい。R3としては、水素原子が好ましい。R4としては、水素原子が好ましい。R5としては、水素原子、メチル基、または、臭素原子で置換されたメチル基が好ましい。 In the above formulas (a) and (b), R 1 to R 5 are each independently a hydrogen atom or a substituted or unsubstituted alkyl group (for example, a methyl group, an ethyl group, a propyl group, a butyl group, etc. ). The substituent is not particularly limited, and examples thereof include a methoxy group, a chlorine atom, a bromine atom, or a fluorine atom.
R 1 is preferably a hydrogen atom, a methyl group, or a methyl group substituted with a bromine atom. R 2 is preferably a hydrogen atom, a methyl group, or a methyl group substituted with a bromine atom. R 3 is preferably a hydrogen atom. R 4 is preferably a hydrogen atom. R 5 is preferably a hydrogen atom, a methyl group, or a methyl group substituted with a bromine atom.
上記式(a)および式(b)中、X、Y、およびZは、それぞれ独立して、単結合、または、置換若しく無置換の二価の有機基を表す。二価の有機基としては、置換若しくは無置換の二価の脂肪族炭化水素基(好ましくは炭素数1~8。例えば、メチレン基、エチレン基、プロピレン基などのアルキレン基)、置換若しくは無置換の二価の芳香族炭化水素基(好ましくは炭素数6~12。例えば、フェニレン基)、-O-、-S-、-SO2-、-N(R)-(R:アルキル基)、-CO-、-NH-、-COO-、-CONH-、またはこれらを組み合わせた基(例えば、アルキレンオキシ基、アルキレンオキシカルボニル基、アルキレンカルボニルオキシ基など)などが挙げられる。
In the above formulas (a) and (b), X, Y, and Z each independently represent a single bond or a substituted or unsubstituted divalent organic group. Examples of the divalent organic group include a substituted or unsubstituted divalent aliphatic hydrocarbon group (preferably having 1 to 8 carbon atoms, for example, an alkylene group such as a methylene group, an ethylene group, and a propylene group), a substituted or unsubstituted group. A divalent aromatic hydrocarbon group (preferably having 6 to 12 carbon atoms, such as a phenylene group), —O—, —S—, —SO 2 —, —N (R) — (R: alkyl group), And —CO—, —NH—, —COO—, —CONH—, or a combination thereof (for example, an alkyleneoxy group, an alkyleneoxycarbonyl group, an alkylenecarbonyloxy group, and the like).
X、Y、およびZとしては、後述する被めっき層除去工程において被めっき層の除去効率がより優れる点から、エステル基(-COO-)が好ましい。
X, Y, and Z are preferably ester groups (—COO—) from the viewpoint that the removal efficiency of the plated layer is more excellent in the plated layer removal step described later.
上記式(a)および式(b)中、L1およびL2は、それぞれ独立して、単結合、または、置換若しくは無置換の二価の有機基を表す。二価の有機基の定義としては、上述したX、Y、およびZで述べた二価の有機基と同義である。
L1としては、ポリマーの合成が容易で、被めっき層の触媒吸着性が優れる点で、脂肪族炭化水素基、または、ウレタン結合若しくはウレア結合を有する二価の有機基(例えば、脂肪族炭化水素基)が好ましく、なかでも、総炭素数1~9であるものが好ましい。なお、ここで、L1の総炭素数とは、L1で表される置換または無置換の二価の有機基に含まれる総炭素原子数を意味する。 In the above formulas (a) and (b), L 1 and L 2 each independently represent a single bond or a substituted or unsubstituted divalent organic group. As a definition of a divalent organic group, it is synonymous with the divalent organic group described by X, Y, and Z mentioned above.
L 1 is an aliphatic hydrocarbon group or a divalent organic group having a urethane bond or a urea bond (for example, aliphatic carbonization) because the polymer can be easily synthesized and the catalyst adsorbability of the plated layer is excellent. Hydrogen group), and those having a total carbon number of 1 to 9 are preferred. Incidentally, the total number of carbon atoms of L 1, means the total number of carbon atoms contained in the substituted or unsubstituted divalent organic group represented by L 1.
L1としては、ポリマーの合成が容易で、被めっき層の触媒吸着性が優れる点で、脂肪族炭化水素基、または、ウレタン結合若しくはウレア結合を有する二価の有機基(例えば、脂肪族炭化水素基)が好ましく、なかでも、総炭素数1~9であるものが好ましい。なお、ここで、L1の総炭素数とは、L1で表される置換または無置換の二価の有機基に含まれる総炭素原子数を意味する。 In the above formulas (a) and (b), L 1 and L 2 each independently represent a single bond or a substituted or unsubstituted divalent organic group. As a definition of a divalent organic group, it is synonymous with the divalent organic group described by X, Y, and Z mentioned above.
L 1 is an aliphatic hydrocarbon group or a divalent organic group having a urethane bond or a urea bond (for example, aliphatic carbonization) because the polymer can be easily synthesized and the catalyst adsorbability of the plated layer is excellent. Hydrogen group), and those having a total carbon number of 1 to 9 are preferred. Incidentally, the total number of carbon atoms of L 1, means the total number of carbon atoms contained in the substituted or unsubstituted divalent organic group represented by L 1.
また、L2は、ポリマーの合成が容易で、被めっき層の触媒吸着性が優れる点で、単結合、二価の脂肪族炭化水素基、二価の芳香族炭化水素基、またはこれらを組み合わせた基が好ましい。なかでも、L2は、単結合、または、総炭素数が1~15の脂肪族炭化水素基が好ましく、特に無置換であることが好ましい。なお、ここで、L2の総炭素数とは、L2で表される置換または無置換の二価の有機基に含まれる総炭素原子数を意味する。
L 2 is a single bond, a divalent aliphatic hydrocarbon group, a divalent aromatic hydrocarbon group, or a combination thereof in that the polymer is easily synthesized and the catalyst adsorption property of the plated layer is excellent. The groups are preferred. Among these, L 2 is preferably a single bond or an aliphatic hydrocarbon group having 1 to 15 total carbon atoms, and particularly preferably unsubstituted. Incidentally, the total number of carbon atoms of L 2, means the total number of carbon atoms contained in the substituted or unsubstituted divalent organic group represented by L 2.
上記式(b)中、Wは、めっき触媒またはその前駆体と相互作用する官能基を表す。該官能基の定義は、上述の相互作用性基の定義と同じである。
In the above formula (b), W represents a functional group that interacts with the plating catalyst or its precursor. The definition of the functional group is the same as the definition of the interactive group described above.
上記重合性基ユニットの含有量は、ポリマー中の全ユニットに対して、5~50モル%が好ましく、5~40モル%がより好ましい。5モル%未満では反応性(硬化性、重合性)が落ちる場合があり、50モル%超では合成の際にゲル化しやすく合成しにくい。
また、上記相互作用性基ユニットの含有量は、めっき触媒またはその前駆体に対する吸着性の観点から、ポリマー中の全ユニットに対して、5~95モル%が好ましく、10~95モル%がより好ましく、60~95モル%がさらに好ましい。
なお、重合性基ユニットおよび相互作用性基ユニットは、それぞれ異なる種類のユニットが2種以上含まれていてもよい。
また、ポリマーには、重合性基ユニットおよび相互作用性基ユニット以外のユニットが含まれていてもよい。 The content of the polymerizable group unit is preferably from 5 to 50 mol%, more preferably from 5 to 40 mol%, based on all units in the polymer. If it is less than 5 mol%, the reactivity (curability, polymerizability) may be lowered, and if it exceeds 50 mol%, gelation tends to occur during synthesis and synthesis is difficult.
In addition, the content of the interactive group unit is preferably 5 to 95 mol%, more preferably 10 to 95 mol%, based on the total unit in the polymer, from the viewpoint of adsorptivity to the plating catalyst or its precursor. 60 to 95 mol% is more preferable.
The polymerizable group unit and the interactive group unit may contain two or more different types of units.
The polymer may contain units other than the polymerizable group unit and the interactive group unit.
また、上記相互作用性基ユニットの含有量は、めっき触媒またはその前駆体に対する吸着性の観点から、ポリマー中の全ユニットに対して、5~95モル%が好ましく、10~95モル%がより好ましく、60~95モル%がさらに好ましい。
なお、重合性基ユニットおよび相互作用性基ユニットは、それぞれ異なる種類のユニットが2種以上含まれていてもよい。
また、ポリマーには、重合性基ユニットおよび相互作用性基ユニット以外のユニットが含まれていてもよい。 The content of the polymerizable group unit is preferably from 5 to 50 mol%, more preferably from 5 to 40 mol%, based on all units in the polymer. If it is less than 5 mol%, the reactivity (curability, polymerizability) may be lowered, and if it exceeds 50 mol%, gelation tends to occur during synthesis and synthesis is difficult.
In addition, the content of the interactive group unit is preferably 5 to 95 mol%, more preferably 10 to 95 mol%, based on the total unit in the polymer, from the viewpoint of adsorptivity to the plating catalyst or its precursor. 60 to 95 mol% is more preferable.
The polymerizable group unit and the interactive group unit may contain two or more different types of units.
The polymer may contain units other than the polymerizable group unit and the interactive group unit.
上記ポリマーの具体例としては、例えば、特開2009-007540号公報の段落[0106]~[0112]に記載のポリマー、特開2006-135271号公報の段落[0065]~[0070]に記載のポリマー、US2010-080964号の段落[0030]~[0108]に記載のポリマーなどが挙げられる。
該ポリマーは、公知の方法(例えば、上記で列挙された文献中の方法)により製造することができる。 Specific examples of the polymer include, for example, polymers described in paragraphs [0106] to [0112] of JP-A-2009-007540, and paragraphs [0065] to [0070] of JP-A-2006-135271. Examples thereof include polymers described in paragraphs [0030] to [0108] of US2010-080964.
The polymer can be produced by known methods (eg, the methods in the literature listed above).
該ポリマーは、公知の方法(例えば、上記で列挙された文献中の方法)により製造することができる。 Specific examples of the polymer include, for example, polymers described in paragraphs [0106] to [0112] of JP-A-2009-007540, and paragraphs [0065] to [0070] of JP-A-2006-135271. Examples thereof include polymers described in paragraphs [0030] to [0108] of US2010-080964.
The polymer can be produced by known methods (eg, the methods in the literature listed above).
(工程S102の手順)
まず、支持体上に上記ポリマーを含む層(被めっき層前駆体層)を形成する方法は特に制限されず、公知の方法を使用できる。例えば、上記ポリマーを含む被めっき層形成用組成物を支持体上に塗布する方法(塗布法)や、ポリマーを支持体上に直接ラミネートする方法も挙げられる。なかでも、被めっき層の膜厚制御がしやすい点から、塗布法が好ましい。被めっき層形成用組成物の態様については、後述する。 (Procedure of step S102)
First, the method for forming a layer containing the polymer (plated layer precursor layer) on the support is not particularly limited, and a known method can be used. For example, a method (coating method) of applying the composition for forming a layer to be plated containing the polymer on a support, or a method of directly laminating the polymer on the support is also included. Of these, the coating method is preferable because the film thickness of the layer to be plated can be easily controlled. About the aspect of the composition for to-be-plated layer forming, it mentions later.
まず、支持体上に上記ポリマーを含む層(被めっき層前駆体層)を形成する方法は特に制限されず、公知の方法を使用できる。例えば、上記ポリマーを含む被めっき層形成用組成物を支持体上に塗布する方法(塗布法)や、ポリマーを支持体上に直接ラミネートする方法も挙げられる。なかでも、被めっき層の膜厚制御がしやすい点から、塗布法が好ましい。被めっき層形成用組成物の態様については、後述する。 (Procedure of step S102)
First, the method for forming a layer containing the polymer (plated layer precursor layer) on the support is not particularly limited, and a known method can be used. For example, a method (coating method) of applying the composition for forming a layer to be plated containing the polymer on a support, or a method of directly laminating the polymer on the support is also included. Of these, the coating method is preferable because the film thickness of the layer to be plated can be easily controlled. About the aspect of the composition for to-be-plated layer forming, it mentions later.
塗布法の場合に、被めっき層形成用組成物を支持体上に塗布する方法は特に制限されず、公知の方法(例えば、スピンコート、ダイコート、ディップコートなど)を使用できる。
取り扱い性や製造効率の観点からは、被めっき層形成用組成物を支持体上に塗布し、必要に応じて乾燥処理を行って残存する溶媒を除去して、ポリマーを含む層(被めっき層形成用組成物層)を形成する態様が好ましい。
なお、乾燥処理の条件は特に制限されないが、生産性がより優れる点で、室温~220℃(好ましくは50~120℃)で、1~30分間(好ましく1~10分間)実施することが好ましい。 In the case of the coating method, the method for coating the composition for forming a layer to be plated on the support is not particularly limited, and known methods (for example, spin coating, die coating, dip coating, etc.) can be used.
From the viewpoint of handleability and production efficiency, the composition for forming a layer to be plated is applied on a support, and if necessary, a drying treatment is performed to remove the remaining solvent, and a layer containing a polymer (layer to be plated) A mode of forming the forming composition layer) is preferred.
The conditions for the drying treatment are not particularly limited, but are preferably carried out at room temperature to 220 ° C. (preferably 50 to 120 ° C.) for 1 to 30 minutes (preferably 1 to 10 minutes) from the viewpoint of better productivity. .
取り扱い性や製造効率の観点からは、被めっき層形成用組成物を支持体上に塗布し、必要に応じて乾燥処理を行って残存する溶媒を除去して、ポリマーを含む層(被めっき層形成用組成物層)を形成する態様が好ましい。
なお、乾燥処理の条件は特に制限されないが、生産性がより優れる点で、室温~220℃(好ましくは50~120℃)で、1~30分間(好ましく1~10分間)実施することが好ましい。 In the case of the coating method, the method for coating the composition for forming a layer to be plated on the support is not particularly limited, and known methods (for example, spin coating, die coating, dip coating, etc.) can be used.
From the viewpoint of handleability and production efficiency, the composition for forming a layer to be plated is applied on a support, and if necessary, a drying treatment is performed to remove the remaining solvent, and a layer containing a polymer (layer to be plated) A mode of forming the forming composition layer) is preferred.
The conditions for the drying treatment are not particularly limited, but are preferably carried out at room temperature to 220 ° C. (preferably 50 to 120 ° C.) for 1 to 30 minutes (preferably 1 to 10 minutes) from the viewpoint of better productivity. .
次に、支持体上のポリマーを含む層(被めっき層形成用組成物層)にエネルギー付与する方法は特に制限されない。例えば、加熱処理や露光処理などが用いられることが好ましく、処理が短時間で終わる点より、露光処理が好ましい。ポリマーを含む層にエネルギーを付与することにより、ポリマー中の重合性基が活性化され、ポリマー間の架橋が生じ、層の硬化が進行する。
露光処理には、UVランプ、可視光線などによる光照射等が用いられる。光源としては、例えば、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、カーボンアーク灯、等がある。放射線としては、電子線、X線、イオンビーム、遠赤外線などもある。具体的な態様としては、赤外線レーザによる走査露光、キセノン放電灯などの高照度フラッシュ露光や、赤外線ランプ露光などが好適に挙げられる。
露光時間としては、ポリマーの反応性および光源により異なるが、通常、10秒~5時間の間である。露光エネルギーとしては、10~8000mJ程度であればよく、好ましくは50~3000mJの範囲である。 Next, the method for applying energy to the layer containing the polymer on the support (composition layer forming composition layer) is not particularly limited. For example, it is preferable to use a heat treatment or an exposure process, and the exposure process is preferable from the viewpoint that the process is completed in a short time. By applying energy to the layer containing the polymer, the polymerizable group in the polymer is activated, crosslinking between the polymers occurs, and the curing of the layer proceeds.
For the exposure process, light irradiation with a UV lamp, visible light, or the like is used. Examples of the light source include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp. Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays. Specific examples of preferred embodiments include scanning exposure with an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
The exposure time varies depending on the reactivity of the polymer and the light source, but is usually between 10 seconds and 5 hours. The exposure energy may be about 10 to 8000 mJ, preferably 50 to 3000 mJ.
露光処理には、UVランプ、可視光線などによる光照射等が用いられる。光源としては、例えば、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、カーボンアーク灯、等がある。放射線としては、電子線、X線、イオンビーム、遠赤外線などもある。具体的な態様としては、赤外線レーザによる走査露光、キセノン放電灯などの高照度フラッシュ露光や、赤外線ランプ露光などが好適に挙げられる。
露光時間としては、ポリマーの反応性および光源により異なるが、通常、10秒~5時間の間である。露光エネルギーとしては、10~8000mJ程度であればよく、好ましくは50~3000mJの範囲である。 Next, the method for applying energy to the layer containing the polymer on the support (composition layer forming composition layer) is not particularly limited. For example, it is preferable to use a heat treatment or an exposure process, and the exposure process is preferable from the viewpoint that the process is completed in a short time. By applying energy to the layer containing the polymer, the polymerizable group in the polymer is activated, crosslinking between the polymers occurs, and the curing of the layer proceeds.
For the exposure process, light irradiation with a UV lamp, visible light, or the like is used. Examples of the light source include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp. Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays. Specific examples of preferred embodiments include scanning exposure with an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
The exposure time varies depending on the reactivity of the polymer and the light source, but is usually between 10 seconds and 5 hours. The exposure energy may be about 10 to 8000 mJ, preferably 50 to 3000 mJ.
なお、エネルギー付与として加熱処理を用いる場合、送風乾燥機、オーブン、赤外線乾燥機、加熱ドラムなどを用いることができる。
In addition, when using heat processing as energy provision, a ventilation dryer, oven, an infrared dryer, a heating drum, etc. can be used.
被めっき層の厚みは特に制限されないが、生産性の点から、0.01~10μmが好ましく、0.2~5μmがより好ましく、0.3~1.0μmが特に好ましい。
また、被めっき層の表面(支持体側とは反対側の表面)の表面粗さRzは特に制限されないが、銅箔の表面粗さRzがより低下する点で、0.2μm以下が好ましく、0.1μm以下がより好ましい。下限は特に制限されないが、製造上の制約から、0.01μm以上の場合が多い。 The thickness of the layer to be plated is not particularly limited, but is preferably 0.01 to 10 μm, more preferably 0.2 to 5 μm, and particularly preferably 0.3 to 1.0 μm from the viewpoint of productivity.
Further, the surface roughness Rz of the surface of the layer to be plated (the surface opposite to the support side) is not particularly limited, but is preferably 0.2 μm or less in that the surface roughness Rz of the copper foil is further reduced. More preferably, it is 1 μm or less. The lower limit is not particularly limited, but is often 0.01 μm or more due to manufacturing restrictions.
また、被めっき層の表面(支持体側とは反対側の表面)の表面粗さRzは特に制限されないが、銅箔の表面粗さRzがより低下する点で、0.2μm以下が好ましく、0.1μm以下がより好ましい。下限は特に制限されないが、製造上の制約から、0.01μm以上の場合が多い。 The thickness of the layer to be plated is not particularly limited, but is preferably 0.01 to 10 μm, more preferably 0.2 to 5 μm, and particularly preferably 0.3 to 1.0 μm from the viewpoint of productivity.
Further, the surface roughness Rz of the surface of the layer to be plated (the surface opposite to the support side) is not particularly limited, but is preferably 0.2 μm or less in that the surface roughness Rz of the copper foil is further reduced. More preferably, it is 1 μm or less. The lower limit is not particularly limited, but is often 0.01 μm or more due to manufacturing restrictions.
(被めっき層形成用組成物)
被めっき層形成用組成物には上記ポリマーが含有される。
被めっき層形成用組成物中のポリマーの含有量は特に制限されないが、組成物全量に対して、2~50質量%が好ましく、3~20質量%がより好ましい。上記範囲内であれば、組成物の取扱い性に優れ、被めっき層の層厚の制御がしやすい。 (Composition for plating layer formation)
The composition for forming a layer to be plated contains the polymer.
The content of the polymer in the composition for forming a layer to be plated is not particularly limited, but is preferably 2 to 50% by mass and more preferably 3 to 20% by mass with respect to the total amount of the composition. If it is in the said range, it is excellent in the handleability of a composition and it is easy to control the layer thickness of a to-be-plated layer.
被めっき層形成用組成物には上記ポリマーが含有される。
被めっき層形成用組成物中のポリマーの含有量は特に制限されないが、組成物全量に対して、2~50質量%が好ましく、3~20質量%がより好ましい。上記範囲内であれば、組成物の取扱い性に優れ、被めっき層の層厚の制御がしやすい。 (Composition for plating layer formation)
The composition for forming a layer to be plated contains the polymer.
The content of the polymer in the composition for forming a layer to be plated is not particularly limited, but is preferably 2 to 50% by mass and more preferably 3 to 20% by mass with respect to the total amount of the composition. If it is in the said range, it is excellent in the handleability of a composition and it is easy to control the layer thickness of a to-be-plated layer.
被めっき層形成用組成物は、溶媒を含有していてもよい。溶媒を含有することにより、取扱い性が向上する。
使用できる溶媒は特に限定されず、例えば、水、メタノール、エタノール、プロパノール、エチレングリコール、グリセリン、プロピレングリコールモノメチルエーテルなどのアルコール系溶媒、酢酸などの酸、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン系溶媒、ホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなどのアミド系溶媒、アセトニトリル、プロピオニトリルなどのニトリル系溶媒、酢酸メチル、酢酸エチルなどのエステル系溶媒、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート系溶媒、この他にも、エーテル系溶媒、グリコール系溶媒、アミン系溶媒、チオール系溶媒、ハロゲン系溶媒などが挙げられる。
この中でも、アミド系溶媒、ケトン系溶媒、ニトリル系溶媒、カーボネート系溶媒が好ましく、具体的には、アセトン、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、アセトニトリル、プロピオニトリル、N-メチルピロリドン、ジメチルカーボネートが好ましい。 The composition for forming a layer to be plated may contain a solvent. By containing the solvent, the handleability is improved.
Solvents that can be used are not particularly limited, for example, alcohol solvents such as water, methanol, ethanol, propanol, ethylene glycol, glycerin, propylene glycol monomethyl ether, acids such as acetic acid, ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, Amide solvents such as formamide, dimethylacetamide, N-methylpyrrolidone, nitrile solvents such as acetonitrile and propionitrile, ester solvents such as methyl acetate and ethyl acetate, carbonate solvents such as dimethyl carbonate and diethyl carbonate, and others In addition, ether solvents, glycol solvents, amine solvents, thiol solvents, halogen solvents and the like can be mentioned.
Among these, amide solvents, ketone solvents, nitrile solvents, and carbonate solvents are preferable. Specifically, acetone, dimethylacetamide, methyl ethyl ketone, cyclohexanone, acetonitrile, propionitrile, N-methylpyrrolidone, and dimethyl carbonate are preferable. .
使用できる溶媒は特に限定されず、例えば、水、メタノール、エタノール、プロパノール、エチレングリコール、グリセリン、プロピレングリコールモノメチルエーテルなどのアルコール系溶媒、酢酸などの酸、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン系溶媒、ホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなどのアミド系溶媒、アセトニトリル、プロピオニトリルなどのニトリル系溶媒、酢酸メチル、酢酸エチルなどのエステル系溶媒、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート系溶媒、この他にも、エーテル系溶媒、グリコール系溶媒、アミン系溶媒、チオール系溶媒、ハロゲン系溶媒などが挙げられる。
この中でも、アミド系溶媒、ケトン系溶媒、ニトリル系溶媒、カーボネート系溶媒が好ましく、具体的には、アセトン、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、アセトニトリル、プロピオニトリル、N-メチルピロリドン、ジメチルカーボネートが好ましい。 The composition for forming a layer to be plated may contain a solvent. By containing the solvent, the handleability is improved.
Solvents that can be used are not particularly limited, for example, alcohol solvents such as water, methanol, ethanol, propanol, ethylene glycol, glycerin, propylene glycol monomethyl ether, acids such as acetic acid, ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, Amide solvents such as formamide, dimethylacetamide, N-methylpyrrolidone, nitrile solvents such as acetonitrile and propionitrile, ester solvents such as methyl acetate and ethyl acetate, carbonate solvents such as dimethyl carbonate and diethyl carbonate, and others In addition, ether solvents, glycol solvents, amine solvents, thiol solvents, halogen solvents and the like can be mentioned.
Among these, amide solvents, ketone solvents, nitrile solvents, and carbonate solvents are preferable. Specifically, acetone, dimethylacetamide, methyl ethyl ketone, cyclohexanone, acetonitrile, propionitrile, N-methylpyrrolidone, and dimethyl carbonate are preferable. .
被めっき層形成用組成物中の溶媒の含有量は特に制限されないが、組成物全量に対して、50~98質量%が好ましく、90~97質量%がより好ましい。上記範囲内であれば、組成物の取扱い性に優れ、被めっき層の層厚の制御などがしやすい。
The content of the solvent in the composition for forming a layer to be plated is not particularly limited, but is preferably 50 to 98% by mass, more preferably 90 to 97% by mass with respect to the total amount of the composition. If it is in the said range, it is excellent in the handleability of a composition and it is easy to control the layer thickness of a to-be-plated layer.
[触媒付与工程S104]
触媒付与工程S104は、被めっき層形成工程S102で得られた被めっき層にめっき触媒またはその前駆体を付与する工程である。
本工程S104においては、ポリマー由来の相互作用性基がその機能に応じて、付与されためっき触媒またはその前駆体を付着(吸着)する。より具体的には、被めっき層中および被めっき層表面上に、めっき触媒またはその前駆体が吸着される。
まず、本工程S104で使用される材料(めっき触媒またはその前駆体など)について詳述し、その後該工程S104の手順について詳述する。 [Catalyst imparting step S104]
The catalyst applying step S104 is a step of applying a plating catalyst or a precursor thereof to the layer to be plated obtained in the layer to be plated forming step S102.
In this step S104, the polymer-derived interactive group adheres (adsorbs) the applied plating catalyst or its precursor depending on its function. More specifically, the plating catalyst or its precursor is adsorbed in the layer to be plated and on the surface of the layer to be plated.
First, the materials (plating catalyst or its precursor etc.) used at this process S104 are explained in full detail, and the procedure of this process S104 is explained in full detail after that.
触媒付与工程S104は、被めっき層形成工程S102で得られた被めっき層にめっき触媒またはその前駆体を付与する工程である。
本工程S104においては、ポリマー由来の相互作用性基がその機能に応じて、付与されためっき触媒またはその前駆体を付着(吸着)する。より具体的には、被めっき層中および被めっき層表面上に、めっき触媒またはその前駆体が吸着される。
まず、本工程S104で使用される材料(めっき触媒またはその前駆体など)について詳述し、その後該工程S104の手順について詳述する。 [Catalyst imparting step S104]
The catalyst applying step S104 is a step of applying a plating catalyst or a precursor thereof to the layer to be plated obtained in the layer to be plated forming step S102.
In this step S104, the polymer-derived interactive group adheres (adsorbs) the applied plating catalyst or its precursor depending on its function. More specifically, the plating catalyst or its precursor is adsorbed in the layer to be plated and on the surface of the layer to be plated.
First, the materials (plating catalyst or its precursor etc.) used at this process S104 are explained in full detail, and the procedure of this process S104 is explained in full detail after that.
(めっき触媒またはその前駆体)
めっき触媒またはその前駆体は、後述するめっき工程S106における、銅めっき処理の触媒や電極として機能するものである。そのため、使用されるめっき触媒またはその前駆体の種類は、めっき処理の種類により適宜決定される。
以下では、めっき触媒またはその前駆体として、主に、無電解めっきまたはその前駆体などについて詳述する。 (Plating catalyst or its precursor)
The plating catalyst or its precursor functions as a catalyst or electrode for copper plating treatment in the plating step S106 described later. Therefore, the type of plating catalyst or precursor used is appropriately determined depending on the type of plating treatment.
Hereinafter, mainly electroless plating or a precursor thereof will be described in detail as a plating catalyst or a precursor thereof.
めっき触媒またはその前駆体は、後述するめっき工程S106における、銅めっき処理の触媒や電極として機能するものである。そのため、使用されるめっき触媒またはその前駆体の種類は、めっき処理の種類により適宜決定される。
以下では、めっき触媒またはその前駆体として、主に、無電解めっきまたはその前駆体などについて詳述する。 (Plating catalyst or its precursor)
The plating catalyst or its precursor functions as a catalyst or electrode for copper plating treatment in the plating step S106 described later. Therefore, the type of plating catalyst or precursor used is appropriately determined depending on the type of plating treatment.
Hereinafter, mainly electroless plating or a precursor thereof will be described in detail as a plating catalyst or a precursor thereof.
無電解めっき触媒としては、無電解めっき時の活性核となるものであれば、如何なるものも用いることができ、具体的には、自己触媒還元反応の触媒能を有する金属(Niよりイオン化傾向の低い無電解めっきできる金属として知られるもの)などが挙げられる。より具体的には、Pd、Ag、Cu、Ni、Al、Fe、Coなどが挙げられる。中でも、触媒能の高さから、Ag、Pdが特に好ましい。
無電解めっき触媒として、金属コロイド(金属粒子)を用いてもよい。一般に、金属コロイドは、荷電を持った界面活性剤または荷電を持った保護剤が存在する溶液中において、金属イオンを還元することにより作製することができる。 As the electroless plating catalyst, any catalyst can be used as long as it becomes an active nucleus at the time of electroless plating. Specifically, a metal having a catalytic ability for autocatalytic reduction reaction (which tends to be more ionized than Ni). And those known as metals capable of low electroless plating). More specifically, Pd, Ag, Cu, Ni, Al, Fe, Co, etc. are mentioned. Of these, Ag and Pd are particularly preferable because of their high catalytic ability.
As the electroless plating catalyst, metal colloid (metal particles) may be used. Generally, a metal colloid can be prepared by reducing metal ions in a solution containing a charged surfactant or a charged protective agent.
無電解めっき触媒として、金属コロイド(金属粒子)を用いてもよい。一般に、金属コロイドは、荷電を持った界面活性剤または荷電を持った保護剤が存在する溶液中において、金属イオンを還元することにより作製することができる。 As the electroless plating catalyst, any catalyst can be used as long as it becomes an active nucleus at the time of electroless plating. Specifically, a metal having a catalytic ability for autocatalytic reduction reaction (which tends to be more ionized than Ni). And those known as metals capable of low electroless plating). More specifically, Pd, Ag, Cu, Ni, Al, Fe, Co, etc. are mentioned. Of these, Ag and Pd are particularly preferable because of their high catalytic ability.
As the electroless plating catalyst, metal colloid (metal particles) may be used. Generally, a metal colloid can be prepared by reducing metal ions in a solution containing a charged surfactant or a charged protective agent.
無電解めっき触媒前駆体としては、化学反応により無電解めっき触媒となりうるものであれば、特に制限なく使用することができる。主には、上記無電解めっき触媒として挙げた金属の金属イオンが用いられる。無電解めっき触媒前駆体である金属イオンは、還元反応により無電解めっき触媒である0価金属になる。無電解めっき触媒前駆体である金属イオンは、被めっき層へ付与した後、無電解めっき液への浸漬前に、別途還元反応により0価金属に変化させて無電解めっき触媒としてもよいし、無電解めっき触媒前駆体のまま無電解めっき液に浸漬し、無電解めっき液中の還元剤により金属(無電解めっき触媒)に変化させてもよい。
The electroless plating catalyst precursor can be used without particular limitation as long as it can become an electroless plating catalyst by a chemical reaction. The metal ions of the metals mentioned as the electroless plating catalyst are mainly used. The metal ion that is an electroless plating catalyst precursor becomes a zero-valent metal that is an electroless plating catalyst by a reduction reaction. The metal ion that is an electroless plating catalyst precursor may be used as an electroless plating catalyst after being applied to the layer to be plated and before being immersed in the electroless plating solution, by separately changing to a zero-valent metal by a reduction reaction. The electroless plating catalyst precursor may be immersed in an electroless plating solution and changed to a metal (electroless plating catalyst) by a reducing agent in the electroless plating solution.
無電解めっき触媒前駆体である金属イオンは、金属塩を用いて被めっき層に付与することが好ましい。使用される金属塩としては、適切な溶媒に溶解して金属イオンと塩基(陰イオン)とに解離されるものであれば特に制限はなく、M(NO3)n、MCln、M2/n(SO4)、M3/n(PO4)(Mは、n価の金属原子を表す)などが挙げられる。金属イオンとしては、上記の金属塩が解離したものを好適に用いることができる。具体例としては、Agイオン、Cuイオン、Alイオン、Niイオン、Coイオン、Feイオン、Pdイオンが挙げられ、中でも、多座配位可能なものが好ましく、特に、配位可能な官能基の種類数および触媒能の点で、Agイオン、Pdイオンが好ましい。
The metal ion that is the electroless plating catalyst precursor is preferably applied to the layer to be plated using a metal salt. The metal salt used is not particularly limited as long as it is dissolved in a suitable solvent and dissociated into a metal ion and a base (anion), and M (NO 3 ) n , MCl n , M 2 / n (SO 4 ), M 3 / n (PO 4 ) (M represents an n-valent metal atom), and the like. As a metal ion, the thing which said metal salt dissociated can be used suitably. Specific examples include Ag ions, Cu ions, Al ions, Ni ions, Co ions, Fe ions, and Pd ions. Among them, those capable of multidentate coordination are preferred, and in particular, functional groups capable of coordination. In view of the number of types and catalytic ability, Ag ions and Pd ions are preferred.
本工程において、無電解めっきを行わず直接電気めっきを行うために用いられる触媒として、上述した以外の0価金属を使用することもできる。
In this step, zero-valent metals other than those described above can also be used as a catalyst used for direct electroplating without electroless plating.
上記めっき触媒またはその前駆体は、これらを含むめっき触媒液(めっき触媒またはその前駆体を、溶媒に分散または溶解させた分散液または溶液)の形態で使用されることが好ましい。
めっき触媒液で使用される溶媒は、有機溶媒および/または水が用いられる。めっき触媒液が有機溶媒を含有することで、被めっき層に対するめっき触媒液の浸透性が向上し、相互作用性基に効率よくめっき触媒またはその前駆体を吸着させることができる。 It is preferable that the said plating catalyst or its precursor is used with the form of the plating catalyst liquid (The dispersion or solution which disperse | distributed or dissolved the plating catalyst or its precursor in the solvent) containing these.
As the solvent used in the plating catalyst solution, an organic solvent and / or water is used. When the plating catalyst solution contains an organic solvent, the permeability of the plating catalyst solution to the layer to be plated is improved, and the plating catalyst or its precursor can be efficiently adsorbed to the interactive group.
めっき触媒液で使用される溶媒は、有機溶媒および/または水が用いられる。めっき触媒液が有機溶媒を含有することで、被めっき層に対するめっき触媒液の浸透性が向上し、相互作用性基に効率よくめっき触媒またはその前駆体を吸着させることができる。 It is preferable that the said plating catalyst or its precursor is used with the form of the plating catalyst liquid (The dispersion or solution which disperse | distributed or dissolved the plating catalyst or its precursor in the solvent) containing these.
As the solvent used in the plating catalyst solution, an organic solvent and / or water is used. When the plating catalyst solution contains an organic solvent, the permeability of the plating catalyst solution to the layer to be plated is improved, and the plating catalyst or its precursor can be efficiently adsorbed to the interactive group.
めっき触媒液に用いられる有機溶媒としては、被めっき層に浸透しうる溶媒であれば特に制限はないが、具体的には、アセトン、アセト酢酸メチル、アセト酢酸エチル、エチレングリコールジアセテート、シクロヘキサノン、アセチルアセトン、アセトフェノン、2-(1-シクロヘキセニル)シクロヘキサノン、プロピレングリコールジアセテート、トリアセチン、ジエチレングリコールジアセテート、ジオキサン、N-メチルピロリドン、ジメチルカーボネート、ジメチルセロソルブなどを用いることができる。
The organic solvent used in the plating catalyst solution is not particularly limited as long as it is a solvent that can penetrate into the layer to be plated. Specifically, acetone, methyl acetoacetate, ethyl acetoacetate, ethylene glycol diacetate, cyclohexanone, Acetylacetone, acetophenone, 2- (1-cyclohexenyl) cyclohexanone, propylene glycol diacetate, triacetin, diethylene glycol diacetate, dioxane, N-methylpyrrolidone, dimethyl carbonate, dimethyl cellosolve and the like can be used.
(工程S104の手順)
めっき触媒またはその前駆体を被めっき層に付与する方法は、特に制限されない。
例えば、上記めっき触媒液(金属を適当な分散媒に分散した分散液、または、金属塩を適切な溶媒で溶解し、解離した金属イオンを含む溶液)を調製し、めっき触媒液を被めっき層上に塗布する方法、または、めっき触媒液中に被めっき層が形成された支持体を浸漬する方法などが挙げられる。
被めっき層とめっき触媒液との接触時間は、30秒~10分程度であることが好ましく、1分~5分程度であることがより好ましい。
接触時のめっき触媒液の温度は、20~60℃程度であることが好ましく、30~50℃程度であることがより好ましい。 (Procedure of step S104)
The method for applying the plating catalyst or its precursor to the layer to be plated is not particularly limited.
For example, the above plating catalyst solution (a dispersion in which a metal is dispersed in an appropriate dispersion medium or a solution containing a metal salt dissolved in an appropriate solvent and dissociated metal ions) is prepared, and the plating catalyst solution is applied to the layer to be plated. The method of apply | coating on the top or the method of immersing the support body in which the to-be-plated layer was formed in a plating catalyst liquid are mentioned.
The contact time between the layer to be plated and the plating catalyst solution is preferably about 30 seconds to 10 minutes, and more preferably about 1 minute to 5 minutes.
The temperature of the plating catalyst solution at the time of contact is preferably about 20 to 60 ° C., more preferably about 30 to 50 ° C.
めっき触媒またはその前駆体を被めっき層に付与する方法は、特に制限されない。
例えば、上記めっき触媒液(金属を適当な分散媒に分散した分散液、または、金属塩を適切な溶媒で溶解し、解離した金属イオンを含む溶液)を調製し、めっき触媒液を被めっき層上に塗布する方法、または、めっき触媒液中に被めっき層が形成された支持体を浸漬する方法などが挙げられる。
被めっき層とめっき触媒液との接触時間は、30秒~10分程度であることが好ましく、1分~5分程度であることがより好ましい。
接触時のめっき触媒液の温度は、20~60℃程度であることが好ましく、30~50℃程度であることがより好ましい。 (Procedure of step S104)
The method for applying the plating catalyst or its precursor to the layer to be plated is not particularly limited.
For example, the above plating catalyst solution (a dispersion in which a metal is dispersed in an appropriate dispersion medium or a solution containing a metal salt dissolved in an appropriate solvent and dissociated metal ions) is prepared, and the plating catalyst solution is applied to the layer to be plated. The method of apply | coating on the top or the method of immersing the support body in which the to-be-plated layer was formed in a plating catalyst liquid are mentioned.
The contact time between the layer to be plated and the plating catalyst solution is preferably about 30 seconds to 10 minutes, and more preferably about 1 minute to 5 minutes.
The temperature of the plating catalyst solution at the time of contact is preferably about 20 to 60 ° C., more preferably about 30 to 50 ° C.
[めっき工程S106]
めっき工程S106は、触媒付与工程S104でめっき触媒またはその前駆体が付与された被めっき層に対して銅めっき処理を行い、被めっき層上に銅箔(銅めっきに相当)を形成し、支持体と被めっき層と銅箔とをこの順で有する積層体を得る工程である。より具体的には、図3(B)に示すように、本工程S106において、被めっき層14上に銅箔10が形成され、積層体16が得られる。 [Plating step S106]
In the plating step S106, the plating layer to which the plating catalyst or its precursor is applied in the catalyst application step S104 is subjected to copper plating, and a copper foil (corresponding to copper plating) is formed on the layer to be plated. This is a step of obtaining a laminate having a body, a layer to be plated, and a copper foil in this order. More specifically, as shown in FIG. 3B, in this step S106, thecopper foil 10 is formed on the layer 14 to be plated, and the laminate 16 is obtained.
めっき工程S106は、触媒付与工程S104でめっき触媒またはその前駆体が付与された被めっき層に対して銅めっき処理を行い、被めっき層上に銅箔(銅めっきに相当)を形成し、支持体と被めっき層と銅箔とをこの順で有する積層体を得る工程である。より具体的には、図3(B)に示すように、本工程S106において、被めっき層14上に銅箔10が形成され、積層体16が得られる。 [Plating step S106]
In the plating step S106, the plating layer to which the plating catalyst or its precursor is applied in the catalyst application step S104 is subjected to copper plating, and a copper foil (corresponding to copper plating) is formed on the layer to be plated. This is a step of obtaining a laminate having a body, a layer to be plated, and a copper foil in this order. More specifically, as shown in FIG. 3B, in this step S106, the
本工程S106において行われる銅めっき処理の種類は、無電解銅めっき、電解銅めっき等が挙げられ、上記工程S104において、被めっき層に付与されためっき触媒またはその前駆体の機能によって、選択することができる。
なかでも、基材に対してより良好な密着性を示す銅箔が得られる点から、無電解銅めっきを行うことが好ましい。また、所望の層厚の銅箔を得るために、無電解銅めっきの後に、更に電解銅めっきを行うことがより好ましい態様である。
以下、本工程S106において好適に行われる銅めっき処理について説明する。 Examples of the copper plating treatment performed in this step S106 include electroless copper plating, electrolytic copper plating, and the like, and are selected depending on the function of the plating catalyst or its precursor applied to the layer to be plated in the above step S104. be able to.
Especially, it is preferable to perform electroless copper plating from the point from which the copper foil which shows better adhesiveness with respect to a base material is obtained. Moreover, in order to obtain the copper foil of desired layer thickness, it is a more preferable aspect to perform electrolytic copper plating after electroless copper plating.
Hereinafter, the copper plating process suitably performed in this process S106 is demonstrated.
なかでも、基材に対してより良好な密着性を示す銅箔が得られる点から、無電解銅めっきを行うことが好ましい。また、所望の層厚の銅箔を得るために、無電解銅めっきの後に、更に電解銅めっきを行うことがより好ましい態様である。
以下、本工程S106において好適に行われる銅めっき処理について説明する。 Examples of the copper plating treatment performed in this step S106 include electroless copper plating, electrolytic copper plating, and the like, and are selected depending on the function of the plating catalyst or its precursor applied to the layer to be plated in the above step S104. be able to.
Especially, it is preferable to perform electroless copper plating from the point from which the copper foil which shows better adhesiveness with respect to a base material is obtained. Moreover, in order to obtain the copper foil of desired layer thickness, it is a more preferable aspect to perform electrolytic copper plating after electroless copper plating.
Hereinafter, the copper plating process suitably performed in this process S106 is demonstrated.
(無電解銅めっき)
無電解銅めっきとは、銅イオンを溶かした溶液を用いて、化学反応によって銅を析出させる操作のことをいう。
本工程S106における無電解銅めっきは、例えば、無電解めっき触媒が付与された被めっき層を、水洗して余分な無電解めっき触媒(金属)を除去した後、無電解銅めっき浴に浸漬して行う。使用される無電解銅めっき浴としては、公知の無電解銅めっき浴を使用することができる。なお、無電解銅めっき浴としては、入手のしやすさの点から、アルカリ性の無電解銅めっき浴(pHが9~14程度が好ましい)を使用する場合が好ましい。
また、無電解めっき触媒前駆体が被めっき層に吸着または含浸した状態で無電解銅めっき浴に浸漬する場合には、被めっき層を水洗して余分な前駆体(金属塩など)を除去した後、無電解銅めっき浴中へ浸漬させる。この場合には、無電解銅めっき浴中において、めっき触媒前駆体の還元とこれに引き続き無電解銅めっきが行われる。ここで使用される無電解銅めっき浴としても、上記同様、公知の無電解銅めっき浴を使用することができる。 (Electroless copper plating)
Electroless copper plating refers to an operation of depositing copper by a chemical reaction using a solution in which copper ions are dissolved.
The electroless copper plating in this step S106 is performed by, for example, washing the layer to be plated with the electroless plating catalyst with water to remove excess electroless plating catalyst (metal) and then immersing it in an electroless copper plating bath. Do it. As the electroless copper plating bath used, a known electroless copper plating bath can be used. The electroless copper plating bath is preferably an alkaline electroless copper plating bath (preferably having a pH of about 9 to 14) from the viewpoint of availability.
In addition, when the electroless plating catalyst precursor is immersed in the electroless copper plating bath while adsorbed or impregnated on the layer to be plated, the layer to be plated is washed with water to remove excess precursor (metal salt, etc.). Then, it is immersed in an electroless copper plating bath. In this case, reduction of the plating catalyst precursor and subsequent electroless copper plating are performed in the electroless copper plating bath. As the electroless copper plating bath used here, a known electroless copper plating bath can be used as described above.
無電解銅めっきとは、銅イオンを溶かした溶液を用いて、化学反応によって銅を析出させる操作のことをいう。
本工程S106における無電解銅めっきは、例えば、無電解めっき触媒が付与された被めっき層を、水洗して余分な無電解めっき触媒(金属)を除去した後、無電解銅めっき浴に浸漬して行う。使用される無電解銅めっき浴としては、公知の無電解銅めっき浴を使用することができる。なお、無電解銅めっき浴としては、入手のしやすさの点から、アルカリ性の無電解銅めっき浴(pHが9~14程度が好ましい)を使用する場合が好ましい。
また、無電解めっき触媒前駆体が被めっき層に吸着または含浸した状態で無電解銅めっき浴に浸漬する場合には、被めっき層を水洗して余分な前駆体(金属塩など)を除去した後、無電解銅めっき浴中へ浸漬させる。この場合には、無電解銅めっき浴中において、めっき触媒前駆体の還元とこれに引き続き無電解銅めっきが行われる。ここで使用される無電解銅めっき浴としても、上記同様、公知の無電解銅めっき浴を使用することができる。 (Electroless copper plating)
Electroless copper plating refers to an operation of depositing copper by a chemical reaction using a solution in which copper ions are dissolved.
The electroless copper plating in this step S106 is performed by, for example, washing the layer to be plated with the electroless plating catalyst with water to remove excess electroless plating catalyst (metal) and then immersing it in an electroless copper plating bath. Do it. As the electroless copper plating bath used, a known electroless copper plating bath can be used. The electroless copper plating bath is preferably an alkaline electroless copper plating bath (preferably having a pH of about 9 to 14) from the viewpoint of availability.
In addition, when the electroless plating catalyst precursor is immersed in the electroless copper plating bath while adsorbed or impregnated on the layer to be plated, the layer to be plated is washed with water to remove excess precursor (metal salt, etc.). Then, it is immersed in an electroless copper plating bath. In this case, reduction of the plating catalyst precursor and subsequent electroless copper plating are performed in the electroless copper plating bath. As the electroless copper plating bath used here, a known electroless copper plating bath can be used as described above.
なお、無電解めっき触媒前駆体の還元は、上記のような無電解銅めっき液を用いる態様とは別に、触媒活性化液(還元液)を準備し、無電解銅めっき前の別工程として行うことも可能である。触媒活性化液は、無電解めっき触媒前駆体(主に金属イオン)を0価金属に還元できる還元剤を溶解した液で、液全体に対する該還元剤の濃度が0.1~50質量%が好ましく、1~30質量%がより好ましい。還元剤としては、公知の還元剤(例えば、水素化ホウ素ナトリウムまたはジメチルアミンボランなどのホウ素系還元剤、ホルムアルデヒド、次亜リン酸など)を使用できる。
浸漬の際には、無電解めっき触媒またはその前駆体が接触する被めっき層表面付近の無電解めっき触媒またはその前駆体の濃度を一定に保つ上で、攪拌または揺動を加えながら浸漬することが好ましい。 In addition, the reduction of the electroless plating catalyst precursor is performed as a separate step before electroless copper plating by preparing a catalyst activation liquid (reducing liquid) separately from the above-described embodiment using the electroless copper plating liquid. It is also possible. The catalyst activation liquid is a liquid in which a reducing agent capable of reducing an electroless plating catalyst precursor (mainly metal ions) to zero-valent metal is dissolved, and the concentration of the reducing agent with respect to the whole liquid is 0.1 to 50% by mass. Preferably, 1 to 30% by mass is more preferable. As the reducing agent, known reducing agents (for example, boron-based reducing agents such as sodium borohydride or dimethylamine borane, formaldehyde, hypophosphorous acid, etc.) can be used.
When dipping, keep the concentration of the electroless plating catalyst or its precursor near the surface of the layer to be plated in contact with the electroless plating catalyst or its precursor, and soak it with stirring or shaking. Is preferred.
浸漬の際には、無電解めっき触媒またはその前駆体が接触する被めっき層表面付近の無電解めっき触媒またはその前駆体の濃度を一定に保つ上で、攪拌または揺動を加えながら浸漬することが好ましい。 In addition, the reduction of the electroless plating catalyst precursor is performed as a separate step before electroless copper plating by preparing a catalyst activation liquid (reducing liquid) separately from the above-described embodiment using the electroless copper plating liquid. It is also possible. The catalyst activation liquid is a liquid in which a reducing agent capable of reducing an electroless plating catalyst precursor (mainly metal ions) to zero-valent metal is dissolved, and the concentration of the reducing agent with respect to the whole liquid is 0.1 to 50% by mass. Preferably, 1 to 30% by mass is more preferable. As the reducing agent, known reducing agents (for example, boron-based reducing agents such as sodium borohydride or dimethylamine borane, formaldehyde, hypophosphorous acid, etc.) can be used.
When dipping, keep the concentration of the electroless plating catalyst or its precursor near the surface of the layer to be plated in contact with the electroless plating catalyst or its precursor, and soak it with stirring or shaking. Is preferred.
一般的な無電解銅めっき浴の組成としては、例えば、溶媒(例えば、水)の他に、1.めっき用の銅イオン、2.還元剤、3.銅イオンの安定性を向上させる添加剤(安定剤)が主に含まれている。
As a composition of a general electroless copper plating bath, for example, in addition to a solvent (for example, water), 1. 1. copper ion for plating, 2. reducing agent; Additives (stabilizers) that improve the stability of copper ions are mainly included.
無電解銅めっき浴に用いられる有機溶媒としては、水に可溶な溶媒であることが好ましく、その点から、アセトンなどのケトン類、メタノール、エタノール、イソプロパノールなどのアルコール類が好ましく用いられる。
The organic solvent used in the electroless copper plating bath is preferably a water-soluble solvent, and from this point, ketones such as acetone and alcohols such as methanol, ethanol and isopropanol are preferably used.
無電解銅めっき浴に用いられる金属の種類としては、銅が使用されるが、必要に応じて、他の金属(例えば、銅、すず、鉛、ニッケル、金、銀、パラジウム、ロジウム)を併用してもよい。
Copper is used as the type of metal used in the electroless copper plating bath, but other metals (for example, copper, tin, lead, nickel, gold, silver, palladium, rhodium) are used in combination as required. May be.
無電解銅めっきにより得られる銅箔の厚みは、銅イオン濃度、無電解銅めっき浴への浸漬時間、または、無電解銅めっき浴の温度などにより制御することができるが、無電解銅めっきによる銅箔を導通層として、後述する電解銅めっきを行う場合は、少なくとも0.1μm以上の銅箔が均一に付与されていることが好ましい。また、導電性の観点から、後述する電解銅めっきを行わない場合には、0.1μm以上が好ましく、1μm以上がより好ましく、3~10μmが最も好ましい。
また、無電解銅めっき浴への浸漬時間としては、1分~10時間程度であることが好ましく、10分~3時間程度であることがより好ましい。 The thickness of the copper foil obtained by electroless copper plating can be controlled by the copper ion concentration, the immersion time in the electroless copper plating bath, or the temperature of the electroless copper plating bath. When performing copper electroplating to be described later using the copper foil as a conductive layer, it is preferable that a copper foil of at least 0.1 μm or more is uniformly applied. From the viewpoint of conductivity, when not performing electrolytic copper plating described later, it is preferably 0.1 μm or more, more preferably 1 μm or more, and most preferably 3 to 10 μm.
In addition, the immersion time in the electroless copper plating bath is preferably about 1 minute to 10 hours, and more preferably about 10 minutes to 3 hours.
また、無電解銅めっき浴への浸漬時間としては、1分~10時間程度であることが好ましく、10分~3時間程度であることがより好ましい。 The thickness of the copper foil obtained by electroless copper plating can be controlled by the copper ion concentration, the immersion time in the electroless copper plating bath, or the temperature of the electroless copper plating bath. When performing copper electroplating to be described later using the copper foil as a conductive layer, it is preferable that a copper foil of at least 0.1 μm or more is uniformly applied. From the viewpoint of conductivity, when not performing electrolytic copper plating described later, it is preferably 0.1 μm or more, more preferably 1 μm or more, and most preferably 3 to 10 μm.
In addition, the immersion time in the electroless copper plating bath is preferably about 1 minute to 10 hours, and more preferably about 10 minutes to 3 hours.
(電解銅めっき(電気銅めっき))
本工程S106においては、上記工程S104において付与されためっき触媒またはその前駆体が電極としての機能を有する場合、そのめっき触媒またはその前駆体が付与された被めっき層に対して、電解銅めっきを行うことができる。
また、前述の無電解銅めっきの後、形成された銅箔を電極とし、更に、電解銅めっきを行ってもよい。これにより、新たに任意の厚みをもつ銅箔を容易に形成することができる。 (Electrolytic copper plating (electro copper plating))
In this step S106, when the plating catalyst or precursor thereof applied in step S104 has a function as an electrode, electrolytic copper plating is applied to the layer to be plated to which the plating catalyst or precursor is applied. It can be carried out.
Further, after the above-described electroless copper plating, the formed copper foil may be used as an electrode, and electrolytic copper plating may be further performed. Thereby, a copper foil having an arbitrary thickness can be easily formed.
本工程S106においては、上記工程S104において付与されためっき触媒またはその前駆体が電極としての機能を有する場合、そのめっき触媒またはその前駆体が付与された被めっき層に対して、電解銅めっきを行うことができる。
また、前述の無電解銅めっきの後、形成された銅箔を電極とし、更に、電解銅めっきを行ってもよい。これにより、新たに任意の厚みをもつ銅箔を容易に形成することができる。 (Electrolytic copper plating (electro copper plating))
In this step S106, when the plating catalyst or precursor thereof applied in step S104 has a function as an electrode, electrolytic copper plating is applied to the layer to be plated to which the plating catalyst or precursor is applied. It can be carried out.
Further, after the above-described electroless copper plating, the formed copper foil may be used as an electrode, and electrolytic copper plating may be further performed. Thereby, a copper foil having an arbitrary thickness can be easily formed.
電解銅めっきの方法としては、従来公知の方法を用いることができる。なお、電解めっきに用いられる金属としては、銅が使用されるが、必要に応じて銅以外の金属(例えば、クロム、鉛、ニッケル、金、銀、すず、亜鉛など)を併用してもよい。
As a method of electrolytic copper plating, a conventionally known method can be used. In addition, although copper is used as a metal used for electrolytic plating, a metal other than copper (for example, chromium, lead, nickel, gold, silver, tin, zinc, etc.) may be used in combination as necessary. .
また、電解銅めっきにより得られる銅箔の厚みは、電解銅めっき浴中に含まれる銅イオン濃度、または、電流密度などを調整することで制御することができる。
なお、一般的な電気配線などに適用する場合、銅箔の厚みは、導電性の観点から、1μm以上であることが好ましく、3~30μmがより好ましい。
なお、無電解銅めっきと電解銅めっきとの間に、必要に応じて、無電解銅めっき上の酸化銅を除去するために、酸性溶液(例えば、硫酸水溶液)と無電解銅めっきとを接触させる処理を施してもよい。 Moreover, the thickness of the copper foil obtained by electrolytic copper plating can be controlled by adjusting the copper ion concentration or current density contained in the electrolytic copper plating bath.
When applied to general electric wiring, the thickness of the copper foil is preferably 1 μm or more, more preferably 3 to 30 μm from the viewpoint of conductivity.
In addition, in order to remove the copper oxide on the electroless copper plating, contact an acidic solution (for example, sulfuric acid aqueous solution) and the electroless copper plating between the electroless copper plating and the electrolytic copper plating, if necessary. You may perform the process to make.
なお、一般的な電気配線などに適用する場合、銅箔の厚みは、導電性の観点から、1μm以上であることが好ましく、3~30μmがより好ましい。
なお、無電解銅めっきと電解銅めっきとの間に、必要に応じて、無電解銅めっき上の酸化銅を除去するために、酸性溶液(例えば、硫酸水溶液)と無電解銅めっきとを接触させる処理を施してもよい。 Moreover, the thickness of the copper foil obtained by electrolytic copper plating can be controlled by adjusting the copper ion concentration or current density contained in the electrolytic copper plating bath.
When applied to general electric wiring, the thickness of the copper foil is preferably 1 μm or more, more preferably 3 to 30 μm from the viewpoint of conductivity.
In addition, in order to remove the copper oxide on the electroless copper plating, contact an acidic solution (for example, sulfuric acid aqueous solution) and the electroless copper plating between the electroless copper plating and the electrolytic copper plating, if necessary. You may perform the process to make.
[支持体除去工程]
支持体除去工程S108は、上記めっき工程S106で得られた積層体から支持体を除去する工程である。より具体的には、図3(C)に示すように、図3(B)に記載の積層体16から支持体12を除去して、被めっき層14と銅箔10とを含む被めっき層付き銅箔18を得る。 [Support removal step]
The support removing step S108 is a step of removing the support from the laminate obtained in the plating step S106. More specifically, as shown in FIG. 3C, thesupport 12 is removed from the laminate 16 shown in FIG. 3B, and the layer to be plated including the layer 14 and the copper foil 10 is included. The attached copper foil 18 is obtained.
支持体除去工程S108は、上記めっき工程S106で得られた積層体から支持体を除去する工程である。より具体的には、図3(C)に示すように、図3(B)に記載の積層体16から支持体12を除去して、被めっき層14と銅箔10とを含む被めっき層付き銅箔18を得る。 [Support removal step]
The support removing step S108 is a step of removing the support from the laminate obtained in the plating step S106. More specifically, as shown in FIG. 3C, the
支持体を除去する方法は特に制限されず、使用される支持体の種類に応じて適宜最適な方法が選択される。
例えば、積層体中の支持体のみが溶解する溶液と積層体とを接触させ、支持体を溶解除去する方法、積層体中から支持体を物理的に剥離する方法、積層体中の支持体にプラズマ処理やオゾン処理などの酸化処理を施して除去する方法などが挙げられる。 The method for removing the support is not particularly limited, and an optimal method is appropriately selected according to the type of support used.
For example, a method in which a solution in which only the support in the laminate is dissolved is brought into contact with the laminate and the support is dissolved and removed, a method in which the support is physically separated from the laminate, and a support in the laminate For example, a method of removing by performing oxidation treatment such as plasma treatment or ozone treatment.
例えば、積層体中の支持体のみが溶解する溶液と積層体とを接触させ、支持体を溶解除去する方法、積層体中から支持体を物理的に剥離する方法、積層体中の支持体にプラズマ処理やオゾン処理などの酸化処理を施して除去する方法などが挙げられる。 The method for removing the support is not particularly limited, and an optimal method is appropriately selected according to the type of support used.
For example, a method in which a solution in which only the support in the laminate is dissolved is brought into contact with the laminate and the support is dissolved and removed, a method in which the support is physically separated from the laminate, and a support in the laminate For example, a method of removing by performing oxidation treatment such as plasma treatment or ozone treatment.
上述したように、支持体として剥離性支持体を用いた場合は、物理的な作用によって被めっき層と支持体との界面で剥離を生じさせ、容易に剥離性支持体を分離除去することができる。
As described above, when a peelable support is used as the support, it is possible to cause separation at the interface between the layer to be plated and the support by a physical action, and to easily separate and remove the peelable support. it can.
[被めっき層除去工程]
被めっき層除去工程S110は、上記支持体除去工程S108で得られた被めっき層と銅箔との積層体から、被めっき層を除去する工程である。より具体的には、図3(D)に示すように、図3(C)に記載の被めっき層付き銅箔18から被めっき層14を除去して、銅箔10を得る。 [Plating layer removal process]
The to-be-plated layer removing step S110 is a step for removing the to-be-plated layer from the laminate of the to-be-plated layer and the copper foil obtained in the support removing step S108. More specifically, as shown in FIG. 3D, the platedlayer 14 is removed from the plated foil 14 with the plated layer shown in FIG.
被めっき層除去工程S110は、上記支持体除去工程S108で得られた被めっき層と銅箔との積層体から、被めっき層を除去する工程である。より具体的には、図3(D)に示すように、図3(C)に記載の被めっき層付き銅箔18から被めっき層14を除去して、銅箔10を得る。 [Plating layer removal process]
The to-be-plated layer removing step S110 is a step for removing the to-be-plated layer from the laminate of the to-be-plated layer and the copper foil obtained in the support removing step S108. More specifically, as shown in FIG. 3D, the plated
被めっき層を除去する方法は特に制限されず、被めっき層を構成する材料の種類に応じて適宜最適な方法が選択される。
例えば、被めっき層のみが溶解する溶液(例えば、アルカリ水溶液)と被めっき層付き銅箔とを接触させ、被めっき層を溶解除去する方法、被めっき層付き銅箔中から被めっき層を物理的に剥離する方法、被めっき層にプラズマ処理やオゾン処理などの酸化処理を施して除去する方法などが挙げられる。 The method for removing the layer to be plated is not particularly limited, and an optimum method is appropriately selected according to the type of material constituting the layer to be plated.
For example, a solution in which only the layer to be plated dissolves (for example, an alkaline aqueous solution) and the copper foil with the layer to be plated are brought into contact with each other, and the layer to be plated is dissolved and removed. And a method of removing the target layer by subjecting the layer to be plated to oxidation treatment such as plasma treatment or ozone treatment.
例えば、被めっき層のみが溶解する溶液(例えば、アルカリ水溶液)と被めっき層付き銅箔とを接触させ、被めっき層を溶解除去する方法、被めっき層付き銅箔中から被めっき層を物理的に剥離する方法、被めっき層にプラズマ処理やオゾン処理などの酸化処理を施して除去する方法などが挙げられる。 The method for removing the layer to be plated is not particularly limited, and an optimum method is appropriately selected according to the type of material constituting the layer to be plated.
For example, a solution in which only the layer to be plated dissolves (for example, an alkaline aqueous solution) and the copper foil with the layer to be plated are brought into contact with each other, and the layer to be plated is dissolved and removed. And a method of removing the target layer by subjecting the layer to be plated to oxidation treatment such as plasma treatment or ozone treatment.
なお、上記被めっき層を溶解除去する方法においては、必要に応じて、超音波処理などを併用してもよい。超音波処理を併用することにより、被めっき層の除去効率が向上する。また、被めっき層を溶解する溶液を、一定の圧力をかけて被めっき層に噴きつけてもよい。
In addition, in the method for dissolving and removing the plated layer, ultrasonic treatment or the like may be used in combination as necessary. By using ultrasonic treatment in combination, the removal efficiency of the layer to be plated is improved. Alternatively, a solution for dissolving the layer to be plated may be sprayed onto the layer to be plated under a certain pressure.
なお、支持体除去工程S108と被めっき層除去工程S110は、上述したように別々に実施してもよいし、同時に実施してもよい。
つまり、上記めっき工程S106で得られた積層体から、支持体および被めっき層を除去して銅箔を得る工程を実施してもよい。この場合、例えば、支持体と被めっき層とが溶解する溶液と積層体とを接触させ、支持体と被めっき層を溶解除去する方法、積層体中から被めっき層付き支持体を物理的に剥離する方法、支持体および被めっき層にプラズマ処理やオゾン処理などの酸化処理を施して除去する方法などが挙げられる。 The support removing step S108 and the plated layer removing step S110 may be performed separately as described above, or may be performed simultaneously.
That is, you may implement the process of removing a support body and a to-be-plated layer from the laminated body obtained by said plating process S106, and obtaining copper foil. In this case, for example, a solution in which the support and the layer to be plated are dissolved is brought into contact with the laminate, and the support and the layer to be plated are dissolved and removed. Examples of the peeling method include a method of removing the support and the layer to be plated by performing an oxidation treatment such as plasma treatment or ozone treatment.
つまり、上記めっき工程S106で得られた積層体から、支持体および被めっき層を除去して銅箔を得る工程を実施してもよい。この場合、例えば、支持体と被めっき層とが溶解する溶液と積層体とを接触させ、支持体と被めっき層を溶解除去する方法、積層体中から被めっき層付き支持体を物理的に剥離する方法、支持体および被めっき層にプラズマ処理やオゾン処理などの酸化処理を施して除去する方法などが挙げられる。 The support removing step S108 and the plated layer removing step S110 may be performed separately as described above, or may be performed simultaneously.
That is, you may implement the process of removing a support body and a to-be-plated layer from the laminated body obtained by said plating process S106, and obtaining copper foil. In this case, for example, a solution in which the support and the layer to be plated are dissolved is brought into contact with the laminate, and the support and the layer to be plated are dissolved and removed. Examples of the peeling method include a method of removing the support and the layer to be plated by performing an oxidation treatment such as plasma treatment or ozone treatment.
上記工程S102~S110を経て得られる銅箔の被めっき層と接していた表面は、上述したように所定の表面粗さRzとフラクタル次元とを満たす。
The surface in contact with the plated layer of the copper foil obtained through the above steps S102 to S110 satisfies the predetermined surface roughness Rz and the fractal dimension as described above.
[銅箔を有する積層体(銅箔含有積層体)]
上述した銅箔の所定の表面粗さRzおよびフラクタル次元を示す表面を基材表面と接するように、銅箔と基材と貼り合わせることにより、基材と銅箔とを有する積層体が得られる。
該積層体中において、銅箔表面の微細な凹凸構造を有する面上に基材が隣接するため、基材と銅箔との密着性が優れる。
まず、以下では使用される基材について詳述し、その後積層体を得る手順について詳述する。 [Laminated body having copper foil (laminated body containing copper foil)]
The laminated body which has a base material and copper foil is obtained by bonding a copper foil and a base material so that the surface which shows predetermined surface roughness Rz and fractal dimension of the copper foil mentioned above may contact | connect a base material surface. .
In this laminated body, since a base material adjoins on the surface which has a fine uneven structure on the surface of copper foil, the adhesiveness of a base material and copper foil is excellent.
First, the base material used is explained in full detail below, and the procedure for obtaining a laminated body is explained in full detail after that.
上述した銅箔の所定の表面粗さRzおよびフラクタル次元を示す表面を基材表面と接するように、銅箔と基材と貼り合わせることにより、基材と銅箔とを有する積層体が得られる。
該積層体中において、銅箔表面の微細な凹凸構造を有する面上に基材が隣接するため、基材と銅箔との密着性が優れる。
まず、以下では使用される基材について詳述し、その後積層体を得る手順について詳述する。 [Laminated body having copper foil (laminated body containing copper foil)]
The laminated body which has a base material and copper foil is obtained by bonding a copper foil and a base material so that the surface which shows predetermined surface roughness Rz and fractal dimension of the copper foil mentioned above may contact | connect a base material surface. .
In this laminated body, since a base material adjoins on the surface which has a fine uneven structure on the surface of copper foil, the adhesiveness of a base material and copper foil is excellent.
First, the base material used is explained in full detail below, and the procedure for obtaining a laminated body is explained in full detail after that.
(基材)
銅箔が貼り付けられる基材の種類は特に制限されず、公知の基材を使用することができる。例えば、樹脂基材、ガラス基材、セラミック基材、紙基材などが挙げられる。なかでも、銅箔との密着性に優れ、プリント配線基板への応用の点から、樹脂基材を使用することが好ましい。 (Base material)
The kind in particular of base material with which copper foil is affixed is not restrict | limited, A well-known base material can be used. For example, a resin base material, a glass base material, a ceramic base material, a paper base material, etc. are mentioned. Especially, it is excellent in adhesiveness with copper foil, and it is preferable to use a resin base material from the point of application to a printed wiring board.
銅箔が貼り付けられる基材の種類は特に制限されず、公知の基材を使用することができる。例えば、樹脂基材、ガラス基材、セラミック基材、紙基材などが挙げられる。なかでも、銅箔との密着性に優れ、プリント配線基板への応用の点から、樹脂基材を使用することが好ましい。 (Base material)
The kind in particular of base material with which copper foil is affixed is not restrict | limited, A well-known base material can be used. For example, a resin base material, a glass base material, a ceramic base material, a paper base material, etc. are mentioned. Especially, it is excellent in adhesiveness with copper foil, and it is preferable to use a resin base material from the point of application to a printed wiring board.
樹脂基材を構成する材料の種類は特に制限されないが、熱可塑性樹脂または熱硬化性樹脂が挙げられる。
熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂、ビスマレイミド樹脂、ポリオレフィン樹脂、イソシアネート樹脂などが挙げられる。
熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリエーテルスルフォン、ポリスルフォン、ポリフェニレンスルフォン、ポリフェニレンサルファイド、ポリフェニルエーテル、ポリエーテルイミド、ABS樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリスチレン、ポリメタクリル酸メチル、ポリエーテルエーテルケトン、ポリアミド、ポリ乳酸、シクロオレフィンコポリマー(COP)、液晶ポリマー(LCP)などが挙げられる。 Although the kind of material which comprises a resin base material is not restrict | limited in particular, A thermoplastic resin or a thermosetting resin is mentioned.
Examples of the thermosetting resin include an epoxy resin, a phenol resin, a polyimide resin, a polyester resin, a bismaleimide resin, a polyolefin resin, and an isocyanate resin.
Examples of the thermoplastic resin include phenoxy resin, polyether sulfone, polysulfone, polyphenylene sulfone, polyphenylene sulfide, polyphenyl ether, polyether imide, ABS resin, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, and polymethyl methacrylate. , Polyether ether ketone, polyamide, polylactic acid, cycloolefin copolymer (COP), liquid crystal polymer (LCP), and the like.
熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂、ビスマレイミド樹脂、ポリオレフィン樹脂、イソシアネート樹脂などが挙げられる。
熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリエーテルスルフォン、ポリスルフォン、ポリフェニレンスルフォン、ポリフェニレンサルファイド、ポリフェニルエーテル、ポリエーテルイミド、ABS樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリスチレン、ポリメタクリル酸メチル、ポリエーテルエーテルケトン、ポリアミド、ポリ乳酸、シクロオレフィンコポリマー(COP)、液晶ポリマー(LCP)などが挙げられる。 Although the kind of material which comprises a resin base material is not restrict | limited in particular, A thermoplastic resin or a thermosetting resin is mentioned.
Examples of the thermosetting resin include an epoxy resin, a phenol resin, a polyimide resin, a polyester resin, a bismaleimide resin, a polyolefin resin, and an isocyanate resin.
Examples of the thermoplastic resin include phenoxy resin, polyether sulfone, polysulfone, polyphenylene sulfone, polyphenylene sulfide, polyphenyl ether, polyether imide, ABS resin, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, and polymethyl methacrylate. , Polyether ether ketone, polyamide, polylactic acid, cycloolefin copolymer (COP), liquid crystal polymer (LCP), and the like.
なお、樹脂基材には、ガラス織布(ガラスクロス)、ガラス不織布、アラミド織布、アラミド不織布などのフィラーが含まれていてもよい。
The resin base material may contain fillers such as glass woven fabric (glass cloth), glass nonwoven fabric, aramid woven fabric, and aramid nonwoven fabric.
また、基材の形状は特に制限されないが、密着性がより良好である点から、平板状であることが好ましい。
The shape of the substrate is not particularly limited, but is preferably a flat plate from the viewpoint of better adhesion.
(積層体の製造方法)
基材に銅箔を貼り付ける方法は特に制限されず、公知の方法を使用することができる。例えば、銅箔と基材(特に、樹脂基材)とを張り合わせて積層し、プレスなど圧力をかけて圧着することにより所望の積層体を得ることができる。 (Laminate manufacturing method)
The method for attaching the copper foil to the substrate is not particularly limited, and a known method can be used. For example, a desired laminate can be obtained by laminating and laminating a copper foil and a substrate (particularly a resin substrate), and applying pressure such as pressing.
基材に銅箔を貼り付ける方法は特に制限されず、公知の方法を使用することができる。例えば、銅箔と基材(特に、樹脂基材)とを張り合わせて積層し、プレスなど圧力をかけて圧着することにより所望の積層体を得ることができる。 (Laminate manufacturing method)
The method for attaching the copper foil to the substrate is not particularly limited, and a known method can be used. For example, a desired laminate can be obtained by laminating and laminating a copper foil and a substrate (particularly a resin substrate), and applying pressure such as pressing.
圧着の際には、必要に応じて、加熱処理を合わせて実施してもよい。
加熱圧着する際の温度は使用される基材の材料によって適宜最適な条件が選択されるが、汎用的に用いられるエポキシ系の樹脂基材を使用する場合は、銅箔の密着性がより優れ、樹脂基材の流動性、熱硬化性、熱分解性などの点で、150~200℃が好ましく、165~185℃がより好ましい。また、加熱圧着を行う時間は、銅箔の密着性がより優れ、生産性がより優れる点で、0.5~4時間が好ましく、1~2時間がより好ましい。 When crimping, heat treatment may be performed as necessary.
Optimum conditions are appropriately selected depending on the base material used for thermocompression bonding, but when using a general epoxy resin base material, the adhesiveness of the copper foil is better. In view of fluidity, thermosetting property, and thermal decomposability of the resin substrate, 150 to 200 ° C. is preferable, and 165 to 185 ° C. is more preferable. In addition, the time for performing the thermocompression bonding is preferably 0.5 to 4 hours, and more preferably 1 to 2 hours from the viewpoint that the adhesiveness of the copper foil is more excellent and the productivity is more excellent.
加熱圧着する際の温度は使用される基材の材料によって適宜最適な条件が選択されるが、汎用的に用いられるエポキシ系の樹脂基材を使用する場合は、銅箔の密着性がより優れ、樹脂基材の流動性、熱硬化性、熱分解性などの点で、150~200℃が好ましく、165~185℃がより好ましい。また、加熱圧着を行う時間は、銅箔の密着性がより優れ、生産性がより優れる点で、0.5~4時間が好ましく、1~2時間がより好ましい。 When crimping, heat treatment may be performed as necessary.
Optimum conditions are appropriately selected depending on the base material used for thermocompression bonding, but when using a general epoxy resin base material, the adhesiveness of the copper foil is better. In view of fluidity, thermosetting property, and thermal decomposability of the resin substrate, 150 to 200 ° C. is preferable, and 165 to 185 ° C. is more preferable. In addition, the time for performing the thermocompression bonding is preferably 0.5 to 4 hours, and more preferably 1 to 2 hours from the viewpoint that the adhesiveness of the copper foil is more excellent and the productivity is more excellent.
なお、積層体を製造する際には、平板状の基材の片面のみに銅箔を貼り付けても、両面に貼り付けてもよい。
In addition, when manufacturing a laminated body, you may affix a copper foil only to the single side | surface of a flat base material, or may affix it on both surfaces.
(用途)
得られた積層体は、種々の用途に使用することができる。例えば、半導体パッケージ、マザーボード、FPC、COF、TAB、アンテナなどの種々の用途に適用することができる。 (Use)
The obtained laminate can be used for various applications. For example, the present invention can be applied to various uses such as a semiconductor package, a motherboard, an FPC, a COF, a TAB, and an antenna.
得られた積層体は、種々の用途に使用することができる。例えば、半導体パッケージ、マザーボード、FPC、COF、TAB、アンテナなどの種々の用途に適用することができる。 (Use)
The obtained laminate can be used for various applications. For example, the present invention can be applied to various uses such as a semiconductor package, a motherboard, an FPC, a COF, a TAB, and an antenna.
[エッチング工程]
必要に応じて、上記基材と銅箔とを含む積層体中の銅箔をパターン状にエッチングすることで、パターン状の銅箔を表面に備える積層体を製造することができる。
このエッチング工程について以下に詳述する。 [Etching process]
As needed, the laminated body which equips the surface with a patterned copper foil can be manufactured by etching the copper foil in the laminated body containing the said base material and copper foil in a pattern shape.
This etching process will be described in detail below.
必要に応じて、上記基材と銅箔とを含む積層体中の銅箔をパターン状にエッチングすることで、パターン状の銅箔を表面に備える積層体を製造することができる。
このエッチング工程について以下に詳述する。 [Etching process]
As needed, the laminated body which equips the surface with a patterned copper foil can be manufactured by etching the copper foil in the laminated body containing the said base material and copper foil in a pattern shape.
This etching process will be described in detail below.
エッチング工程は、積層体中の銅箔をパターン状にエッチングする工程である。即ち、本工程では、形成された銅箔の不要部分をエッチングで取り除くことで、所望の銅箔パターンを形成することができる。
この銅箔パターンの形成には、如何なる手法も使用することができ、具体的には一般的に知られているサブトラクティブ法、セミアディティブ法が用いられる。 An etching process is a process of etching the copper foil in a laminated body in pattern shape. That is, in this step, a desired copper foil pattern can be formed by removing unnecessary portions of the formed copper foil by etching.
Any method can be used to form the copper foil pattern, and specifically, a generally known subtractive method or semi-additive method is used.
この銅箔パターンの形成には、如何なる手法も使用することができ、具体的には一般的に知られているサブトラクティブ法、セミアディティブ法が用いられる。 An etching process is a process of etching the copper foil in a laminated body in pattern shape. That is, in this step, a desired copper foil pattern can be formed by removing unnecessary portions of the formed copper foil by etching.
Any method can be used to form the copper foil pattern, and specifically, a generally known subtractive method or semi-additive method is used.
サブトラクティブ法とは、形成された銅箔上にドライフィルムレジスト層を設けパターン露光、現像により銅箔パターン部と同じパターンを形成し、ドライフィルムレジストパターンをマスクとしてエッチング液で銅箔を除去し、銅箔パターンを形成する方法である。ドライフィルムレジストとしては如何なる材料も使用でき、ネガ型、ポジ型、液状、フィルム状のものが使用できる。また、エッチング方法としては、プリント配線基板の製造時に使用されている方法が何れも使用可能であり、湿式エッチング、ドライエッチング等が使用可能であり、任意に選択すればよい。作業の操作上、湿式エッチングが装置などの簡便性の点で好ましい。エッチング液として、例えば、塩化第二銅、塩化第二鉄等の水溶液を使用することができる。
In the subtractive method, a dry film resist layer is provided on the formed copper foil, the same pattern as the copper foil pattern part is formed by pattern exposure and development, and the copper foil is removed with an etching solution using the dry film resist pattern as a mask. This is a method for forming a copper foil pattern. Any material can be used as the dry film resist, and negative, positive, liquid, and film-like ones can be used. Moreover, as an etching method, any method used at the time of manufacturing a printed wiring board can be used, and wet etching, dry etching, and the like can be used, and may be arbitrarily selected. In terms of operation, wet etching is preferable from the viewpoint of simplicity of the apparatus. As an etching solution, for example, an aqueous solution of cupric chloride, ferric chloride, or the like can be used.
また、セミアディティブ法とは、銅箔上にドライフィルムレジスト層を設け、パターン露光、現像により非銅箔パターン部と同じパターンを形成し、ドライフィルムレジストパターンをマスクとして電気めっきを行い、ドライフィルムレジストパターンを除去した後にクイックエッチングを実施し、銅箔をパターン状に除去することで、銅箔パターンを形成する方法である。ドライフィルムレジスト、エッチング液等はサブトラクティブ法と同様な材料が使用できる。また、電気めっき手法としては上記記載の手法が使用できる。
The semi-additive method is to provide a dry film resist layer on the copper foil, form the same pattern as the non-copper foil pattern part by pattern exposure and development, perform electroplating using the dry film resist pattern as a mask, and dry film In this method, quick etching is performed after removing the resist pattern, and the copper foil is removed in a pattern to form a copper foil pattern. The dry film resist, the etching solution, etc. can use the same material as the subtractive method. Moreover, the above-mentioned method can be used as the electroplating method.
以下、実施例により、本発明について更に詳細に説明するが、本発明はこれらに限定されるものではない。
まず、実施例で使用されるポリマーの合成方法について詳述する。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.
First, the synthesis method of the polymer used in the examples will be described in detail.
まず、実施例で使用されるポリマーの合成方法について詳述する。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.
First, the synthesis method of the polymer used in the examples will be described in detail.
(合成例1:ポリマーAの合成)
1000mlの三口フラスコに、N-メチルピロリドン(35g)を入れ、窒素気流下、75℃まで加熱した。そこへ、2-ヒドロキシエチルアクリレート(東京化成製)(6.60g)、2-シアノエチルアクリレート(28.4g)、およびV-601(和光純薬製)0.65gを含むN-メチルピロリドン(35g)溶液を、2.5時間かけて滴下した。滴下終了後、反応溶液を80℃まで加熱し、更に3時間撹拌した。その後、室温まで、反応溶液を冷却した。
上記の反応溶液に、ジターシャリーブチルハイドロキノン(0.29g)、ジブチルチンジラウレート(0.29g)、カレンズAOI(昭和電工(株)製)(18.56g)、およびN-メチルピロリドン(19g)を加え、55℃、6時間反応を行った。その後、反応液にメタノール(3.6g)を加え、更に1.5時間反応を行った。反応終了後、水で再沈を行い、固形物を取り出し、ポリマーA(25g)を得た。 (Synthesis Example 1: Synthesis of Polymer A)
N-methylpyrrolidone (35 g) was placed in a 1000 ml three-necked flask and heated to 75 ° C. under a nitrogen stream. Thereto, N-methylpyrrolidone (35 g) containing 2-hydroxyethyl acrylate (Tokyo Kasei) (6.60 g), 2-cyanoethyl acrylate (28.4 g), and V-601 (Wako Pure Chemical Industries) 0.65 g. ) The solution was added dropwise over 2.5 hours. After completion of dropping, the reaction solution was heated to 80 ° C. and further stirred for 3 hours. Thereafter, the reaction solution was cooled to room temperature.
Ditertiary butyl hydroquinone (0.29 g), dibutyltin dilaurate (0.29 g), Karenz AOI (manufactured by Showa Denko KK) (18.56 g), and N-methylpyrrolidone (19 g) were added to the above reaction solution. In addition, the reaction was carried out at 55 ° C. for 6 hours. Thereafter, methanol (3.6 g) was added to the reaction solution, and the reaction was further performed for 1.5 hours. After completion of the reaction, reprecipitation was performed with water, and the solid matter was taken out to obtain polymer A (25 g).
1000mlの三口フラスコに、N-メチルピロリドン(35g)を入れ、窒素気流下、75℃まで加熱した。そこへ、2-ヒドロキシエチルアクリレート(東京化成製)(6.60g)、2-シアノエチルアクリレート(28.4g)、およびV-601(和光純薬製)0.65gを含むN-メチルピロリドン(35g)溶液を、2.5時間かけて滴下した。滴下終了後、反応溶液を80℃まで加熱し、更に3時間撹拌した。その後、室温まで、反応溶液を冷却した。
上記の反応溶液に、ジターシャリーブチルハイドロキノン(0.29g)、ジブチルチンジラウレート(0.29g)、カレンズAOI(昭和電工(株)製)(18.56g)、およびN-メチルピロリドン(19g)を加え、55℃、6時間反応を行った。その後、反応液にメタノール(3.6g)を加え、更に1.5時間反応を行った。反応終了後、水で再沈を行い、固形物を取り出し、ポリマーA(25g)を得た。 (Synthesis Example 1: Synthesis of Polymer A)
N-methylpyrrolidone (35 g) was placed in a 1000 ml three-necked flask and heated to 75 ° C. under a nitrogen stream. Thereto, N-methylpyrrolidone (35 g) containing 2-hydroxyethyl acrylate (Tokyo Kasei) (6.60 g), 2-cyanoethyl acrylate (28.4 g), and V-601 (Wako Pure Chemical Industries) 0.65 g. ) The solution was added dropwise over 2.5 hours. After completion of dropping, the reaction solution was heated to 80 ° C. and further stirred for 3 hours. Thereafter, the reaction solution was cooled to room temperature.
Ditertiary butyl hydroquinone (0.29 g), dibutyltin dilaurate (0.29 g), Karenz AOI (manufactured by Showa Denko KK) (18.56 g), and N-methylpyrrolidone (19 g) were added to the above reaction solution. In addition, the reaction was carried out at 55 ° C. for 6 hours. Thereafter, methanol (3.6 g) was added to the reaction solution, and the reaction was further performed for 1.5 hours. After completion of the reaction, reprecipitation was performed with water, and the solid matter was taken out to obtain polymer A (25 g).
(構造の同定)
ポリマーAを重DMSOに溶解させ、ブルカー製300MHzのNMR(AV-300)にて測定を行った。シアノ基含有ユニットに相当するピークが4.3-4.05ppm(2H分)、2.9-2.8ppm(2H分)、2.5-1.3ppm(3H分)にブロードに観察され、重合性基含有ユニットに相当するピークが7.3-7.2ppm(1H分)、6.4-6.3ppm(1H分)、6.2-6.1ppm(1H分)、6.0-5.9ppm(1H分)、4.3-4.05ppm(6H分)、3.3-3.2ppm(2H分)、2.5-1.3ppm(3H分)にブロードに観察され、重合性基含有ユニット:シアノ基含有ユニット=22:78(mol%)であることが分かった。 (Identification of structure)
Polymer A was dissolved in heavy DMSO and measured by Bruker 300 MHz NMR (AV-300). Peaks corresponding to cyano group-containing units are broadly observed at 4.3-4.05 ppm (2H min), 2.9-2.8 ppm (2H min), 2.5-1.3 ppm (3H min), Peaks corresponding to the polymerizable group-containing unit are 7.3 to 7.2 ppm (1 H min), 6.4 to 6.3 ppm (1 H min), 6.2 to 6.1 ppm (1 H min), 6.0 to 5.9 ppm (1H min), 4.3-4.05 ppm (6H min), 3.3-3.2 ppm (2H min), 2.5-1.3 ppm (3H min) broadly observed and polymerized It was found that the sex group-containing unit: cyano group-containing unit = 22: 78 (mol%).
ポリマーAを重DMSOに溶解させ、ブルカー製300MHzのNMR(AV-300)にて測定を行った。シアノ基含有ユニットに相当するピークが4.3-4.05ppm(2H分)、2.9-2.8ppm(2H分)、2.5-1.3ppm(3H分)にブロードに観察され、重合性基含有ユニットに相当するピークが7.3-7.2ppm(1H分)、6.4-6.3ppm(1H分)、6.2-6.1ppm(1H分)、6.0-5.9ppm(1H分)、4.3-4.05ppm(6H分)、3.3-3.2ppm(2H分)、2.5-1.3ppm(3H分)にブロードに観察され、重合性基含有ユニット:シアノ基含有ユニット=22:78(mol%)であることが分かった。 (Identification of structure)
Polymer A was dissolved in heavy DMSO and measured by Bruker 300 MHz NMR (AV-300). Peaks corresponding to cyano group-containing units are broadly observed at 4.3-4.05 ppm (2H min), 2.9-2.8 ppm (2H min), 2.5-1.3 ppm (3H min), Peaks corresponding to the polymerizable group-containing unit are 7.3 to 7.2 ppm (1 H min), 6.4 to 6.3 ppm (1 H min), 6.2 to 6.1 ppm (1 H min), 6.0 to 5.9 ppm (1H min), 4.3-4.05 ppm (6H min), 3.3-3.2 ppm (2H min), 2.5-1.3 ppm (3H min) broadly observed and polymerized It was found that the sex group-containing unit: cyano group-containing unit = 22: 78 (mol%).
(分子量の測定)
ポリマーAを、THFに溶解させ、東ソー製高速GPC(HLC-8220GPC)を用いて分子量の測定を行った。その結果、23.75分にピークが現れ、ポリスチレン換算でMw=5300(Mw/Mn=1.54)であることが分かった。
なお、以下のポリマーAの化学式中の数値は、各ユニットのモル%を表す。 (Measurement of molecular weight)
Polymer A was dissolved in THF, and the molecular weight was measured using a high-speed GPC (HLC-8220GPC) manufactured by Tosoh Corporation. As a result, a peak appeared at 23.75 minutes, and it was found that Mw = 5300 (Mw / Mn = 1.54) in terms of polystyrene.
In addition, the numerical value in the chemical formula of the following polymer A represents the mol% of each unit.
ポリマーAを、THFに溶解させ、東ソー製高速GPC(HLC-8220GPC)を用いて分子量の測定を行った。その結果、23.75分にピークが現れ、ポリスチレン換算でMw=5300(Mw/Mn=1.54)であることが分かった。
なお、以下のポリマーAの化学式中の数値は、各ユニットのモル%を表す。 (Measurement of molecular weight)
Polymer A was dissolved in THF, and the molecular weight was measured using a high-speed GPC (HLC-8220GPC) manufactured by Tosoh Corporation. As a result, a peak appeared at 23.75 minutes, and it was found that Mw = 5300 (Mw / Mn = 1.54) in terms of polystyrene.
In addition, the numerical value in the chemical formula of the following polymer A represents the mol% of each unit.
<実施例1>
[被めっき層形成工程]
ポリマーAを10重量%含むアセトニトリル溶液(被めっき層形成層組成物A)をスピンコート法にて支持体(会社名:PANAC、商品名:TP05、水との接触角:95°)上に塗布(条件:被めっき層の乾燥後膜厚が0.5μmになるように塗布)し、80℃で10分乾燥させた後、UV露光機(三永電機製作所社製、型番:UVF-502S、ランプ:UXM-501MD)を用い、1000mJの露光エネルギーで、露光を行った。
露光後の支持体を、1質量%NaHCO3水溶液中に10分間浸漬し、続いて、蒸留水にて洗浄し、支持体Aを得た。なお、得られた被めっき層の露出表面の表面粗さRzは、0.01μmであった。 <Example 1>
[Plating layer forming process]
An acetonitrile solution containing 10% by weight of polymer A (a composition to be plated layer-forming composition A) is applied onto a support (company name: PANAC, product name: TP05, contact angle with water: 95 °) by spin coating. (Condition: Coating is applied so that the film thickness after drying of the layer to be plated is 0.5 μm) and dried at 80 ° C. for 10 minutes, and then UV exposure machine (manufactured by Mitsunaga Electric Co., Ltd., model number: UVF-502S, Using a lamp: UXM-501MD), exposure was performed with an exposure energy of 1000 mJ.
The support after the exposure was immersed in a 1% by mass aqueous NaHCO 3 solution for 10 minutes, and then washed with distilled water to obtain a support A. In addition, the surface roughness Rz of the exposed surface of the obtained layer to be plated was 0.01 μm.
[被めっき層形成工程]
ポリマーAを10重量%含むアセトニトリル溶液(被めっき層形成層組成物A)をスピンコート法にて支持体(会社名:PANAC、商品名:TP05、水との接触角:95°)上に塗布(条件:被めっき層の乾燥後膜厚が0.5μmになるように塗布)し、80℃で10分乾燥させた後、UV露光機(三永電機製作所社製、型番:UVF-502S、ランプ:UXM-501MD)を用い、1000mJの露光エネルギーで、露光を行った。
露光後の支持体を、1質量%NaHCO3水溶液中に10分間浸漬し、続いて、蒸留水にて洗浄し、支持体Aを得た。なお、得られた被めっき層の露出表面の表面粗さRzは、0.01μmであった。 <Example 1>
[Plating layer forming process]
An acetonitrile solution containing 10% by weight of polymer A (a composition to be plated layer-forming composition A) is applied onto a support (company name: PANAC, product name: TP05, contact angle with water: 95 °) by spin coating. (Condition: Coating is applied so that the film thickness after drying of the layer to be plated is 0.5 μm) and dried at 80 ° C. for 10 minutes, and then UV exposure machine (manufactured by Mitsunaga Electric Co., Ltd., model number: UVF-502S, Using a lamp: UXM-501MD), exposure was performed with an exposure energy of 1000 mJ.
The support after the exposure was immersed in a 1% by mass aqueous NaHCO 3 solution for 10 minutes, and then washed with distilled water to obtain a support A. In addition, the surface roughness Rz of the exposed surface of the obtained layer to be plated was 0.01 μm.
[触媒付与工程]
0.5質量%酢酸パラジウム水溶液を用意し、これをめっき触媒液とした。該めっき触媒液(液温:室温)に、支持体Aを5分間浸漬した後、純水で洗浄した。 [Catalyst application process]
A 0.5 mass% palladium acetate aqueous solution was prepared and used as a plating catalyst solution. The support A was immersed in the plating catalyst solution (liquid temperature: room temperature) for 5 minutes and then washed with pure water.
0.5質量%酢酸パラジウム水溶液を用意し、これをめっき触媒液とした。該めっき触媒液(液温:室温)に、支持体Aを5分間浸漬した後、純水で洗浄した。 [Catalyst application process]
A 0.5 mass% palladium acetate aqueous solution was prepared and used as a plating catalyst solution. The support A was immersed in the plating catalyst solution (liquid temperature: room temperature) for 5 minutes and then washed with pure water.
[めっき工程]
次に、支持体Aに対して、無電解銅めっきを行った。無電解銅めっきはスルカップPGT(上村工業製)を使用した下記組成の無電解銅めっき浴を用い、浴温度30℃にて15分間支持体Aを浸漬させ、めっき析出厚みが0.5μmとなるように銅箔を形成した。
無電解銅めっき液の調液順序および原料は以下の通りである。
蒸留水 約60容量%
PGT-A 9.0容量%
PGT-B 6.0容量%
PGT-C 3.5容量%
ホルマリン液* 2.3容量%
最後に、全量が100容量%となるように蒸留水にて液面調整した。
*ここで用いたホルマリンは、和光純薬のホルムアルデヒド液(特級)である。 [Plating process]
Next, electroless copper plating was performed on the support A. Electroless copper plating uses an electroless copper plating bath of the following composition using Sulcup PGT (manufactured by Uemura Kogyo Co., Ltd.), and the support A is immersed for 15 minutes at a bath temperature of 30 ° C., resulting in a plating deposition thickness of 0.5 μm. Thus, a copper foil was formed.
The preparation order and raw materials of the electroless copper plating solution are as follows.
Approximately 60% by volume of distilled water
PGT-A 9.0% by volume
PGT-B 6.0% by volume
PGT-C 3.5% by volume
Formalin solution * 2.3% by volume
Finally, the liquid level was adjusted with distilled water so that the total amount would be 100% by volume.
* The formalin used here is a Wako Pure Chemical formaldehyde solution (special grade).
次に、支持体Aに対して、無電解銅めっきを行った。無電解銅めっきはスルカップPGT(上村工業製)を使用した下記組成の無電解銅めっき浴を用い、浴温度30℃にて15分間支持体Aを浸漬させ、めっき析出厚みが0.5μmとなるように銅箔を形成した。
無電解銅めっき液の調液順序および原料は以下の通りである。
蒸留水 約60容量%
PGT-A 9.0容量%
PGT-B 6.0容量%
PGT-C 3.5容量%
ホルマリン液* 2.3容量%
最後に、全量が100容量%となるように蒸留水にて液面調整した。
*ここで用いたホルマリンは、和光純薬のホルムアルデヒド液(特級)である。 [Plating process]
Next, electroless copper plating was performed on the support A. Electroless copper plating uses an electroless copper plating bath of the following composition using Sulcup PGT (manufactured by Uemura Kogyo Co., Ltd.), and the support A is immersed for 15 minutes at a bath temperature of 30 ° C., resulting in a plating deposition thickness of 0.5 μm. Thus, a copper foil was formed.
The preparation order and raw materials of the electroless copper plating solution are as follows.
Approximately 60% by volume of distilled water
PGT-A 9.0% by volume
PGT-B 6.0% by volume
PGT-C 3.5% by volume
Formalin solution * 2.3% by volume
Finally, the liquid level was adjusted with distilled water so that the total amount would be 100% by volume.
* The formalin used here is a Wako Pure Chemical formaldehyde solution (special grade).
次に、得られた銅箔付き支持体Aを1質量%硫酸水溶液に15秒間浸漬し、銅箔上の酸化皮膜を除去した。
次に、上記で得られた銅箔を給電層として、以下の組成の電解銅めっき浴を用いて銅厚が12μmとなるように電解銅めっき(2.5A/dm2:20分間)を施し、銅箔を有する積層体Aを得た。
(電解銅めっき浴の組成)
・水 1000重量部
・硫酸銅5水和物 110重量部
・98%硫酸 270重量部
・35%塩酸 0.2重量部
・メルテックス製、カパーグリーム ST-901M 30重量部 Next, the obtained support A with copper foil was immersed in a 1% by mass sulfuric acid aqueous solution for 15 seconds to remove the oxide film on the copper foil.
Next, electrolytic copper plating (2.5 A / dm 2 : 20 minutes) is performed using the copper foil obtained above as a power feeding layer so that the copper thickness becomes 12 μm using an electrolytic copper plating bath having the following composition. A laminate A having a copper foil was obtained.
(Composition of electrolytic copper plating bath)
-Water 1000 parts by weight-Copper sulfate pentahydrate 110 parts by weight-298 parts by weight of 98% sulfuric acid-0.2 parts by weight of 35% hydrochloric acid-Made by Meltex, 30 parts by weight of Capper Gream ST-901M
次に、上記で得られた銅箔を給電層として、以下の組成の電解銅めっき浴を用いて銅厚が12μmとなるように電解銅めっき(2.5A/dm2:20分間)を施し、銅箔を有する積層体Aを得た。
(電解銅めっき浴の組成)
・水 1000重量部
・硫酸銅5水和物 110重量部
・98%硫酸 270重量部
・35%塩酸 0.2重量部
・メルテックス製、カパーグリーム ST-901M 30重量部 Next, the obtained support A with copper foil was immersed in a 1% by mass sulfuric acid aqueous solution for 15 seconds to remove the oxide film on the copper foil.
Next, electrolytic copper plating (2.5 A / dm 2 : 20 minutes) is performed using the copper foil obtained above as a power feeding layer so that the copper thickness becomes 12 μm using an electrolytic copper plating bath having the following composition. A laminate A having a copper foil was obtained.
(Composition of electrolytic copper plating bath)
-Water 1000 parts by weight-Copper sulfate pentahydrate 110 parts by weight-298 parts by weight of 98% sulfuric acid-0.2 parts by weight of 35% hydrochloric acid-Made by Meltex, 30 parts by weight of Capper Gream ST-901M
[支持体除去工程]
次に、得られた積層体A中の支持体を手で剥離して、被めっき層と銅箔とを有する被めっき層付き銅箔Aを得た。 [Support removal step]
Next, the support body in the obtained laminated body A was peeled by hand, and the copper foil A with a to-be-plated layer which has a to-be-plated layer and copper foil was obtained.
次に、得られた積層体A中の支持体を手で剥離して、被めっき層と銅箔とを有する被めっき層付き銅箔Aを得た。 [Support removal step]
Next, the support body in the obtained laminated body A was peeled by hand, and the copper foil A with a to-be-plated layer which has a to-be-plated layer and copper foil was obtained.
[被めっき層除去工程]
さらに、被めっき層付き銅箔A中の被めっき層に対して、4質量%NaOH水溶液を0.2MPaのスプレー圧で噴き付けて、被めっき層を除去し、銅箔を得た。 [Plating layer removal process]
Furthermore, 4 mass% NaOH aqueous solution was sprayed with the spray pressure of 0.2 MPa with respect to the to-be-plated layer in the copper foil A with a to-be-plated layer, the to-be-plated layer was removed, and copper foil was obtained.
さらに、被めっき層付き銅箔A中の被めっき層に対して、4質量%NaOH水溶液を0.2MPaのスプレー圧で噴き付けて、被めっき層を除去し、銅箔を得た。 [Plating layer removal process]
Furthermore, 4 mass% NaOH aqueous solution was sprayed with the spray pressure of 0.2 MPa with respect to the to-be-plated layer in the copper foil A with a to-be-plated layer, the to-be-plated layer was removed, and copper foil was obtained.
[銅箔含有積層体の製造]
次に、得られた銅箔の被めっき層と接触していた面がプリプレグ(日立化成、GEA-67N、0.2mm)と接触するように、銅箔をプリプレグの両面に敷き、真空プレスにて接合し、両面銅張り板を得た。 [Production of copper foil-containing laminate]
Next, lay the copper foil on both sides of the prepreg so that the surface of the obtained copper foil in contact with the layer to be plated is in contact with the prepreg (Hitachi Kasei, GEA-67N, 0.2 mm). To obtain a double-sided copper-clad plate.
次に、得られた銅箔の被めっき層と接触していた面がプリプレグ(日立化成、GEA-67N、0.2mm)と接触するように、銅箔をプリプレグの両面に敷き、真空プレスにて接合し、両面銅張り板を得た。 [Production of copper foil-containing laminate]
Next, lay the copper foil on both sides of the prepreg so that the surface of the obtained copper foil in contact with the layer to be plated is in contact with the prepreg (Hitachi Kasei, GEA-67N, 0.2 mm). To obtain a double-sided copper-clad plate.
<実施例2>
上記[被めっき層除去工程]にて実施した4%NaOH水溶液によるスプレー除去の代わりに、プラズマ処理(ニッシン、マイクロ波ダウンフロー方式)を行い被めっき層の除去を実施した以外は、実施例1と同様の手順に従って、両面銅張り板を得た。 <Example 2>
Example 1 except that the plating layer was removed by performing plasma treatment (Nissin, microwave downflow method) instead of spray removal with 4% NaOH aqueous solution performed in [Plating layer removal step]. A double-sided copper-clad plate was obtained according to the same procedure as described above.
上記[被めっき層除去工程]にて実施した4%NaOH水溶液によるスプレー除去の代わりに、プラズマ処理(ニッシン、マイクロ波ダウンフロー方式)を行い被めっき層の除去を実施した以外は、実施例1と同様の手順に従って、両面銅張り板を得た。 <Example 2>
Example 1 except that the plating layer was removed by performing plasma treatment (Nissin, microwave downflow method) instead of spray removal with 4% NaOH aqueous solution performed in [Plating layer removal step]. A double-sided copper-clad plate was obtained according to the same procedure as described above.
<実施例3>
上記[被めっき層形成工程]にて、同様のUV露光機にて500mJの露光エネルギーで、露光を行った以外は、実施例1と同様の手順に従って、両面銅張り板を得た。 <Example 3>
A double-sided copper-clad plate was obtained according to the same procedure as in Example 1 except that the exposure was performed with the same UV exposure machine at an exposure energy of 500 mJ in the above [plated layer forming step].
上記[被めっき層形成工程]にて、同様のUV露光機にて500mJの露光エネルギーで、露光を行った以外は、実施例1と同様の手順に従って、両面銅張り板を得た。 <Example 3>
A double-sided copper-clad plate was obtained according to the same procedure as in Example 1 except that the exposure was performed with the same UV exposure machine at an exposure energy of 500 mJ in the above [plated layer forming step].
<実施例4>
上記[触媒付与工程]にて、0.2質量%酢酸パラジウム水溶液を用意し、これをめっき触媒液とし、該めっき触媒液(液温:室温)に支持体Aを2分間浸漬した後、純水で洗浄した以外は、実施例1と同様の手順に従って、両面銅張り板を得た。 <Example 4>
In the above [catalyst application step], a 0.2 mass% palladium acetate aqueous solution was prepared, and this was used as a plating catalyst solution. After immersing the support A in the plating catalyst solution (liquid temperature: room temperature) for 2 minutes, A double-sided copper-clad plate was obtained according to the same procedure as in Example 1 except that it was washed with water.
上記[触媒付与工程]にて、0.2質量%酢酸パラジウム水溶液を用意し、これをめっき触媒液とし、該めっき触媒液(液温:室温)に支持体Aを2分間浸漬した後、純水で洗浄した以外は、実施例1と同様の手順に従って、両面銅張り板を得た。 <Example 4>
In the above [catalyst application step], a 0.2 mass% palladium acetate aqueous solution was prepared, and this was used as a plating catalyst solution. After immersing the support A in the plating catalyst solution (liquid temperature: room temperature) for 2 minutes, A double-sided copper-clad plate was obtained according to the same procedure as in Example 1 except that it was washed with water.
<比較例1>
ロー・プロファイル電解銅箔(福田金属製、品名SV、Rz=1.840μm、銅厚12μm)を用いて、実施例1で実施した[銅箔含有積層体の製造]と同様の手順に従って、両面銅張り板を得た。 <Comparative Example 1>
Using a low profile electrolytic copper foil (made by Fukuda Metals, product name SV, Rz = 1.840 μm,copper thickness 12 μm), following the same procedure as in [Production of copper foil-containing laminate] carried out in Example 1, both sides A copper-clad plate was obtained.
ロー・プロファイル電解銅箔(福田金属製、品名SV、Rz=1.840μm、銅厚12μm)を用いて、実施例1で実施した[銅箔含有積層体の製造]と同様の手順に従って、両面銅張り板を得た。 <Comparative Example 1>
Using a low profile electrolytic copper foil (made by Fukuda Metals, product name SV, Rz = 1.840 μm,
<比較例2>
上記[めっき工程]における電解銅めっきの条件を8A/dm2、7分間とし、めっきの露出表面(被めっき層がある側とは反対側の表面)を意図的に粗化して、Rz=0.135μmのめっき表面を得た(銅厚は12μm)以外は、実施例1と同様の手順によって、銅箔を得た。次に、意図的に粗面化した銅箔の露出表面をプリプレグとの密着面として、実施例1で実施した[銅箔含有積層体の製造]と同様の手順に従って、両面銅張り板を得た。 <Comparative example 2>
The condition of electrolytic copper plating in the above [plating step] is 8 A / dm 2 for 7 minutes, and the exposed surface of the plating (the surface opposite to the side where the layer to be plated is present) is intentionally roughened, and Rz = 0 A copper foil was obtained by the same procedure as in Example 1 except that a plating surface of 135 μm was obtained (copper thickness was 12 μm). Next, a double-sided copper-clad board is obtained according to the same procedure as in [Manufacture of a copper foil-containing laminate] carried out in Example 1 with the exposed surface of the intentionally roughened copper foil as the adhesive surface with the prepreg. It was.
上記[めっき工程]における電解銅めっきの条件を8A/dm2、7分間とし、めっきの露出表面(被めっき層がある側とは反対側の表面)を意図的に粗化して、Rz=0.135μmのめっき表面を得た(銅厚は12μm)以外は、実施例1と同様の手順によって、銅箔を得た。次に、意図的に粗面化した銅箔の露出表面をプリプレグとの密着面として、実施例1で実施した[銅箔含有積層体の製造]と同様の手順に従って、両面銅張り板を得た。 <Comparative example 2>
The condition of electrolytic copper plating in the above [plating step] is 8 A / dm 2 for 7 minutes, and the exposed surface of the plating (the surface opposite to the side where the layer to be plated is present) is intentionally roughened, and Rz = 0 A copper foil was obtained by the same procedure as in Example 1 except that a plating surface of 135 μm was obtained (copper thickness was 12 μm). Next, a double-sided copper-clad board is obtained according to the same procedure as in [Manufacture of a copper foil-containing laminate] carried out in Example 1 with the exposed surface of the intentionally roughened copper foil as the adhesive surface with the prepreg. It was.
<比較例3>
上記[めっき工程]における電解銅めっきの条件を13A/dm2、4.5分間とし、めっきの露出表面(被めっき層がある側とは反対側の表面)を意図的に粗化して、Rz=0.310μmのめっき表面を得た(銅厚は12μm)以外は、実施例1と同様の手順によって、銅箔を得た。次に、意図的に粗面化した銅箔の露出表面をプリプレグとの密着面として、実施例1で実施した[銅箔含有積層体の製造]と同様の手順に従って、両面銅張り板を得た。 <Comparative Example 3>
The condition of electrolytic copper plating in the above [plating step] is 13 A / dm 2 , 4.5 minutes, and the exposed surface of the plating (the surface opposite to the side where the layer to be plated is present) is intentionally roughened to obtain Rz = A copper foil was obtained by the same procedure as in Example 1 except that a plating surface of 0.310 µm was obtained (copper thickness was 12 µm). Next, a double-sided copper-clad board is obtained according to the same procedure as in [Manufacture of a copper foil-containing laminate] carried out in Example 1 with the exposed surface of the intentionally roughened copper foil as the adhesive surface with the prepreg. It was.
上記[めっき工程]における電解銅めっきの条件を13A/dm2、4.5分間とし、めっきの露出表面(被めっき層がある側とは反対側の表面)を意図的に粗化して、Rz=0.310μmのめっき表面を得た(銅厚は12μm)以外は、実施例1と同様の手順によって、銅箔を得た。次に、意図的に粗面化した銅箔の露出表面をプリプレグとの密着面として、実施例1で実施した[銅箔含有積層体の製造]と同様の手順に従って、両面銅張り板を得た。 <Comparative Example 3>
The condition of electrolytic copper plating in the above [plating step] is 13 A / dm 2 , 4.5 minutes, and the exposed surface of the plating (the surface opposite to the side where the layer to be plated is present) is intentionally roughened to obtain Rz = A copper foil was obtained by the same procedure as in Example 1 except that a plating surface of 0.310 µm was obtained (copper thickness was 12 µm). Next, a double-sided copper-clad board is obtained according to the same procedure as in [Manufacture of a copper foil-containing laminate] carried out in Example 1 with the exposed surface of the intentionally roughened copper foil as the adhesive surface with the prepreg. It was.
<比較例4>
実施例1の[被めっき層形成工程]および[触媒付与工程]の後に、再び実施例1の[被めっき層形成工程]を実施し、触媒分布を持たせた構成で被めっき層を形成した。すなわち、下層に位置する被めっき層には触媒が担持されているが、上層の被めっき層には触媒は存在しないという状態を形成した。なお、得られた被めっき層の露出表面の表面粗さRzは、0.014μmであった。
その後、[めっき工程]での無電解銅めっき浴への浸漬時間を30分から80分に変更して、めっき析出厚みが0.5μmとなるように銅箔を形成した以外は、実施例1と同様の手順に従って、両面銅張り板を得た。 <Comparative Example 4>
After [Plating layer forming step] and [Catalyst applying step] in Example 1, [Plating layer forming step] in Example 1 was again performed to form a plated layer with a configuration having a catalyst distribution. . That is, the catalyst was supported on the layer to be plated located in the lower layer, but the catalyst was not present in the upper layer to be plated. The surface roughness Rz of the exposed surface of the obtained layer to be plated was 0.014 μm.
Thereafter, the immersion time in the electroless copper plating bath in the [plating step] was changed from 30 minutes to 80 minutes, and the copper foil was formed so that the plating deposition thickness became 0.5 μm. According to the same procedure, a double-sided copper-clad plate was obtained.
実施例1の[被めっき層形成工程]および[触媒付与工程]の後に、再び実施例1の[被めっき層形成工程]を実施し、触媒分布を持たせた構成で被めっき層を形成した。すなわち、下層に位置する被めっき層には触媒が担持されているが、上層の被めっき層には触媒は存在しないという状態を形成した。なお、得られた被めっき層の露出表面の表面粗さRzは、0.014μmであった。
その後、[めっき工程]での無電解銅めっき浴への浸漬時間を30分から80分に変更して、めっき析出厚みが0.5μmとなるように銅箔を形成した以外は、実施例1と同様の手順に従って、両面銅張り板を得た。 <Comparative Example 4>
After [Plating layer forming step] and [Catalyst applying step] in Example 1, [Plating layer forming step] in Example 1 was again performed to form a plated layer with a configuration having a catalyst distribution. . That is, the catalyst was supported on the layer to be plated located in the lower layer, but the catalyst was not present in the upper layer to be plated. The surface roughness Rz of the exposed surface of the obtained layer to be plated was 0.014 μm.
Thereafter, the immersion time in the electroless copper plating bath in the [plating step] was changed from 30 minutes to 80 minutes, and the copper foil was formed so that the plating deposition thickness became 0.5 μm. According to the same procedure, a double-sided copper-clad plate was obtained.
<各種評価>
(剥離強度の測定)
JIS C 6481:1996に基づいて、実施例1~4、および、比較例1~4で得られた両面銅張り板の銅箔に対して90℃剥離強度試験を行った。結果を表1にまとめて示す。 <Various evaluations>
(Measurement of peel strength)
Based on JIS C 6481: 1996, a 90 ° C. peel strength test was performed on the copper foils of the double-sided copper-clad plates obtained in Examples 1 to 4 and Comparative Examples 1 to 4. The results are summarized in Table 1.
(剥離強度の測定)
JIS C 6481:1996に基づいて、実施例1~4、および、比較例1~4で得られた両面銅張り板の銅箔に対して90℃剥離強度試験を行った。結果を表1にまとめて示す。 <Various evaluations>
(Measurement of peel strength)
Based on JIS C 6481: 1996, a 90 ° C. peel strength test was performed on the copper foils of the double-sided copper-clad plates obtained in Examples 1 to 4 and Comparative Examples 1 to 4. The results are summarized in Table 1.
(表面粗さRzおよびRaの測定)
実施例1~4の[被めっき層除去工程]にて得られた銅箔の被めっき層と接した表面、および、比較例1~4の銅箔のプリプレグと密着させる側の表面の表面粗さRzおよびRaを、JIS B 0601:2001に基づいて測定した。なお、測定に際しては、表面形状測定装置(会社名:ULVAC、装置名:Dektak150)を使用した。結果を表1にまとめて示す。 (Measurement of surface roughness Rz and Ra)
Surface roughness of the surface of the copper foil obtained in Examples 1 to 4 in contact with the layer to be plated and the surface of the copper foil of Comparative Examples 1 to 4 in contact with the prepreg The thickness Rz and Ra were measured based on JIS B 0601: 2001. In the measurement, a surface shape measuring device (company name: ULVAC, device name: Dektak 150) was used. The results are summarized in Table 1.
実施例1~4の[被めっき層除去工程]にて得られた銅箔の被めっき層と接した表面、および、比較例1~4の銅箔のプリプレグと密着させる側の表面の表面粗さRzおよびRaを、JIS B 0601:2001に基づいて測定した。なお、測定に際しては、表面形状測定装置(会社名:ULVAC、装置名:Dektak150)を使用した。結果を表1にまとめて示す。 (Measurement of surface roughness Rz and Ra)
Surface roughness of the surface of the copper foil obtained in Examples 1 to 4 in contact with the layer to be plated and the surface of the copper foil of Comparative Examples 1 to 4 in contact with the prepreg The thickness Rz and Ra were measured based on JIS B 0601: 2001. In the measurement, a surface shape measuring device (company name: ULVAC, device name: Dektak 150) was used. The results are summarized in Table 1.
(フラクタル次元の測定)
実施例1~4の[被めっき層除去工程]にて得られた銅箔、および、比較例1~4で使用した銅箔に対して、Dual-Beam FIB装置(FEI製、Dual Beam Nova200 Nanolab、加速電圧30kV)を用いてサンプル加工し、断面出しを行った。次に、その断面を集束イオンビーム装置(セイコーインスツルメンツ社製、SMI9200)にて観察して、画像データとして得た。その後、画像処理によって、銅箔のプリプレグと密着させる側の粗化表面部(線分)を抽出し、この断面写真を基に、5か所の測定領域(1μm×1μm)にて輪郭線のフラクタル次元をそれぞれ算出し、それらを算術平均して表1に記載のフラクタル次元(平均フラクタル次元)を求めた。なお、ボックスカウント法における、ボックスサイズ(正方形のボックスの一辺の大きさ)は1nm~10nmであった。 (Measurement of fractal dimension)
Dual-Beam FIB apparatus (manufactured by FEI, Dual Beam Nova200 Nanolab) for the copper foils obtained in [Plating layer removal step] of Examples 1 to 4 and the copper foils used in Comparative Examples 1 to 4 The sample was processed using an acceleration voltage of 30 kV, and a cross-section was obtained. Next, the cross section was observed with a focused ion beam apparatus (SMI 9200, manufactured by Seiko Instruments Inc.) and obtained as image data. Thereafter, the roughened surface portion (line segment) on the side to be brought into close contact with the prepreg of the copper foil is extracted by image processing, and the contour line is drawn in five measurement regions (1 μm × 1 μm) based on this cross-sectional photograph. The fractal dimensions were calculated and arithmetically averaged to obtain the fractal dimensions (average fractal dimensions) shown in Table 1. In the box count method, the box size (the size of one side of the square box) was 1 nm to 10 nm.
実施例1~4の[被めっき層除去工程]にて得られた銅箔、および、比較例1~4で使用した銅箔に対して、Dual-Beam FIB装置(FEI製、Dual Beam Nova200 Nanolab、加速電圧30kV)を用いてサンプル加工し、断面出しを行った。次に、その断面を集束イオンビーム装置(セイコーインスツルメンツ社製、SMI9200)にて観察して、画像データとして得た。その後、画像処理によって、銅箔のプリプレグと密着させる側の粗化表面部(線分)を抽出し、この断面写真を基に、5か所の測定領域(1μm×1μm)にて輪郭線のフラクタル次元をそれぞれ算出し、それらを算術平均して表1に記載のフラクタル次元(平均フラクタル次元)を求めた。なお、ボックスカウント法における、ボックスサイズ(正方形のボックスの一辺の大きさ)は1nm~10nmであった。 (Measurement of fractal dimension)
Dual-Beam FIB apparatus (manufactured by FEI, Dual Beam Nova200 Nanolab) for the copper foils obtained in [Plating layer removal step] of Examples 1 to 4 and the copper foils used in Comparative Examples 1 to 4 The sample was processed using an acceleration voltage of 30 kV, and a cross-section was obtained. Next, the cross section was observed with a focused ion beam apparatus (SMI 9200, manufactured by Seiko Instruments Inc.) and obtained as image data. Thereafter, the roughened surface portion (line segment) on the side to be brought into close contact with the prepreg of the copper foil is extracted by image processing, and the contour line is drawn in five measurement regions (1 μm × 1 μm) based on this cross-sectional photograph. The fractal dimensions were calculated and arithmetically averaged to obtain the fractal dimensions (average fractal dimensions) shown in Table 1. In the box count method, the box size (the size of one side of the square box) was 1 nm to 10 nm.
(パターン配線形成(L/S=25μm/25μm))
実施例1~4、および、比較例1~4で得られた両面銅張り板の銅箔上に、DFR(日立化成、RY3310)をラミネートした。次に、ドライレジストフィルムがラミネートされた基板に、JPCA-ET01に定める櫛型配線(JPCA-BU01-2007準拠)が形成できるガラスマスクを密着させ、レジストを中心波長405nmの露光機にて70mJの光エネルギーを照射した。露光後の基板に、1%Na2CO3水溶液を0.2MPaのスプレー圧で噴きつけ、現像を行なった。その後、基板の水洗・乾燥を行い、銅箔上に、サブトラクティブ法用のレジストパターンを形成した。
レジストパターンを形成した基板を、FeCl3/HCl水溶液(エッチング液)に温度40℃で浸漬することによりエッチングを行い、レジストパターンの非形成領域に存在する銅箔を除去した。その後、3%NaOH水溶液を0.2MPaのスプレー圧で基板上に噴き付けることで、レジストパターンを膨潤剥離し、10%硫酸水溶液で中和処理を行い、水洗することで櫛型配線(パターン状銅箔)を得た。得られた配線は、L/S=25μm/25μmであった。
その後、線幅のバラツキを見積もるために、任意の箇所50点の配線幅(ボトム値)を測定して、標準偏差を算出した。結果を表1にまとめて示す。
なお、比較例2~4に関しては、銅箔のプリプレグに対する密着性が低いため、上記エッチング時に銅箔が剥離してしまい、配線を形成することができなかった。 (Pattern wiring formation (L / S = 25μm / 25μm))
DFR (Hitachi Chemical Co., Ltd., RY3310) was laminated on the copper foils of the double-sided copper-clad plates obtained in Examples 1 to 4 and Comparative Examples 1 to 4. Next, a glass mask capable of forming a comb-type wiring (compliant with JPCA-BU01-2007) defined in JPCA-ET01 is closely attached to the substrate on which the dry resist film is laminated, and the resist is 70 mJ with an exposure machine having a central wavelength of 405 nm. Irradiated with light energy. Development was performed by spraying a 1% Na 2 CO 3 aqueous solution onto the exposed substrate at a spray pressure of 0.2 MPa. Thereafter, the substrate was washed with water and dried to form a subtractive resist pattern on the copper foil.
Etching was performed by immersing the substrate on which the resist pattern was formed in an FeCl 3 / HCl aqueous solution (etching solution) at a temperature of 40 ° C. to remove the copper foil present in the region where the resist pattern was not formed. Thereafter, the resist pattern is swollen and peeled off by spraying a 3% NaOH aqueous solution onto the substrate at a spray pressure of 0.2 MPa, neutralized with a 10% sulfuric acid aqueous solution, and washed with water to form a comb-like wiring (pattern shape). Copper foil) was obtained. The obtained wiring was L / S = 25 μm / 25 μm.
Thereafter, in order to estimate the variation in the line width, the wiring width (bottom value) at 50 arbitrary points was measured, and the standard deviation was calculated. The results are summarized in Table 1.
In Comparative Examples 2 to 4, since the adhesion of the copper foil to the prepreg was low, the copper foil was peeled off during the etching, and wiring could not be formed.
実施例1~4、および、比較例1~4で得られた両面銅張り板の銅箔上に、DFR(日立化成、RY3310)をラミネートした。次に、ドライレジストフィルムがラミネートされた基板に、JPCA-ET01に定める櫛型配線(JPCA-BU01-2007準拠)が形成できるガラスマスクを密着させ、レジストを中心波長405nmの露光機にて70mJの光エネルギーを照射した。露光後の基板に、1%Na2CO3水溶液を0.2MPaのスプレー圧で噴きつけ、現像を行なった。その後、基板の水洗・乾燥を行い、銅箔上に、サブトラクティブ法用のレジストパターンを形成した。
レジストパターンを形成した基板を、FeCl3/HCl水溶液(エッチング液)に温度40℃で浸漬することによりエッチングを行い、レジストパターンの非形成領域に存在する銅箔を除去した。その後、3%NaOH水溶液を0.2MPaのスプレー圧で基板上に噴き付けることで、レジストパターンを膨潤剥離し、10%硫酸水溶液で中和処理を行い、水洗することで櫛型配線(パターン状銅箔)を得た。得られた配線は、L/S=25μm/25μmであった。
その後、線幅のバラツキを見積もるために、任意の箇所50点の配線幅(ボトム値)を測定して、標準偏差を算出した。結果を表1にまとめて示す。
なお、比較例2~4に関しては、銅箔のプリプレグに対する密着性が低いため、上記エッチング時に銅箔が剥離してしまい、配線を形成することができなかった。 (Pattern wiring formation (L / S = 25μm / 25μm))
DFR (Hitachi Chemical Co., Ltd., RY3310) was laminated on the copper foils of the double-sided copper-clad plates obtained in Examples 1 to 4 and Comparative Examples 1 to 4. Next, a glass mask capable of forming a comb-type wiring (compliant with JPCA-BU01-2007) defined in JPCA-ET01 is closely attached to the substrate on which the dry resist film is laminated, and the resist is 70 mJ with an exposure machine having a central wavelength of 405 nm. Irradiated with light energy. Development was performed by spraying a 1% Na 2 CO 3 aqueous solution onto the exposed substrate at a spray pressure of 0.2 MPa. Thereafter, the substrate was washed with water and dried to form a subtractive resist pattern on the copper foil.
Etching was performed by immersing the substrate on which the resist pattern was formed in an FeCl 3 / HCl aqueous solution (etching solution) at a temperature of 40 ° C. to remove the copper foil present in the region where the resist pattern was not formed. Thereafter, the resist pattern is swollen and peeled off by spraying a 3% NaOH aqueous solution onto the substrate at a spray pressure of 0.2 MPa, neutralized with a 10% sulfuric acid aqueous solution, and washed with water to form a comb-like wiring (pattern shape). Copper foil) was obtained. The obtained wiring was L / S = 25 μm / 25 μm.
Thereafter, in order to estimate the variation in the line width, the wiring width (bottom value) at 50 arbitrary points was measured, and the standard deviation was calculated. The results are summarized in Table 1.
In Comparative Examples 2 to 4, since the adhesion of the copper foil to the prepreg was low, the copper foil was peeled off during the etching, and wiring could not be formed.
表1に示すように、本実施形態の銅箔(実施例1~4)においては、表面粗さRzが非常に小さいにも関わらず、優れた剥離強度を示すことが確認された。また、配線幅のバラツキも小さく、高精細な配線パターンを形成できることも確認された。
一方、比較例1に示すように、従来公知の銅箔においては、表面粗さRzが大きいため、剥離強度には優れているが、配線幅のバラツキが大きく、高精細な配線パターンを得ることができなかった。
また、比較例2~4に示すように、フラクタル次元が所定の範囲外の場合、銅箔の剥離強度が劣っており、配線を形成することができなかった。 As shown in Table 1, it was confirmed that the copper foils of the present embodiment (Examples 1 to 4) exhibited excellent peel strength even though the surface roughness Rz was very small. It was also confirmed that the wiring width variation was small and a high-definition wiring pattern could be formed.
On the other hand, as shown in Comparative Example 1, a conventionally known copper foil has a high surface roughness Rz and thus has excellent peel strength, but has a wide wiring width variation and a high-definition wiring pattern. I could not.
Further, as shown in Comparative Examples 2 to 4, when the fractal dimension was outside the predetermined range, the peel strength of the copper foil was inferior and wiring could not be formed.
一方、比較例1に示すように、従来公知の銅箔においては、表面粗さRzが大きいため、剥離強度には優れているが、配線幅のバラツキが大きく、高精細な配線パターンを得ることができなかった。
また、比較例2~4に示すように、フラクタル次元が所定の範囲外の場合、銅箔の剥離強度が劣っており、配線を形成することができなかった。 As shown in Table 1, it was confirmed that the copper foils of the present embodiment (Examples 1 to 4) exhibited excellent peel strength even though the surface roughness Rz was very small. It was also confirmed that the wiring width variation was small and a high-definition wiring pattern could be formed.
On the other hand, as shown in Comparative Example 1, a conventionally known copper foil has a high surface roughness Rz and thus has excellent peel strength, but has a wide wiring width variation and a high-definition wiring pattern. I could not.
Further, as shown in Comparative Examples 2 to 4, when the fractal dimension was outside the predetermined range, the peel strength of the copper foil was inferior and wiring could not be formed.
10 銅箔
12 支持体
14 被めっき層
16 積層体
18 被めっき層付き銅箔
DESCRIPTION OFSYMBOLS 10 Copper foil 12 Support body 14 Layer to be plated 16 Laminated body 18 Copper foil with a layer to be plated
12 支持体
14 被めっき層
16 積層体
18 被めっき層付き銅箔
DESCRIPTION OF
Claims (4)
- 基材に貼り付けるために用いられる貼り付け用銅箔であって、
前記基材に貼り付ける側の表面の表面粗さ(Rz)が0.500μm以下であり、
正方形のボックスの一辺の大きさを1nm~10nmに設定したボックスカウント法を適用して算出した、前記銅箔の断面における前記基材に貼り付ける側の表面の輪郭線のフラクタル次元が1.020~1.400である、貼り付け用銅箔。 A copper foil for pasting used for pasting to a substrate,
The surface roughness (Rz) of the surface to be attached to the substrate is 0.500 μm or less,
The fractal dimension of the contour line of the surface on the side to be attached to the substrate in the cross section of the copper foil, calculated by applying the box count method in which the size of one side of the square box is set to 1 nm to 10 nm, is 1.020. A copper foil for pasting which is ˜1.400. - 基材と、前記基材上に貼り付けられた請求項1に記載の貼り付け用銅箔とを有する積層体。 The laminated body which has a base material and the copper foil for affixing of Claim 1 affixed on the said base material.
- 請求項2に記載の積層体を含有するプリント配線基板。 A printed wiring board containing the laminate according to claim 2.
- 請求項1に記載の貼り付け用銅箔の製造方法であって、
支持体上に、めっき触媒またはその前駆体と相互作用を形成する官能基および重合性基を有するポリマーを含む層を形成し、その後前記ポリマーを含む層に対してエネルギーを付与して、支持体上に被めっき層を形成する工程と、
前記被めっき層にめっき触媒またはその前駆体を付与する工程と、
前記めっき触媒またはその前駆体が付与された被めっき層に対して銅めっき処理を行い、前記被めっき層上に銅箔を形成し、前記支持体と前記被めっき層と前記銅箔とをこの順で有する積層体を得る工程と、
前記積層体から前記支持体および前記被めっき層を除去して前記銅箔を得る工程とを有する、貼り付け用銅箔の製造方法。
It is a manufacturing method of the copper foil for pasting of Claim 1,
On the support, a layer containing a polymer having a functional group and a polymerizable group that interacts with the plating catalyst or its precursor is formed, and then energy is applied to the layer containing the polymer, and the support Forming a layer to be plated on;
Adding a plating catalyst or a precursor thereof to the layer to be plated;
A copper plating process is performed on the layer to be plated to which the plating catalyst or its precursor is applied, a copper foil is formed on the layer to be plated, and the support, the layer to be plated, and the copper foil are combined with each other. Obtaining a laminate having in order;
The manufacturing method of the copper foil for adhesion | attachment which has the process of removing the said support body and the said to-be-plated layer from the said laminated body, and obtaining the said copper foil.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280047424.2A CN104025722B (en) | 2011-09-30 | 2012-08-28 | Attach by Copper Foil, laminate, printed wiring board and the manufacture method of attaching Copper Foil |
KR1020147004202A KR101569040B1 (en) | 2011-09-30 | 2012-08-28 | Copper foil for lamination |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-216780 | 2011-09-30 | ||
JP2011216780A JP5651564B2 (en) | 2011-09-30 | 2011-09-30 | Copper foil for pasting |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013047056A1 true WO2013047056A1 (en) | 2013-04-04 |
Family
ID=47995105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/071684 WO2013047056A1 (en) | 2011-09-30 | 2012-08-28 | Copper foil for lamination |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5651564B2 (en) |
KR (1) | KR101569040B1 (en) |
CN (1) | CN104025722B (en) |
TW (1) | TW201313952A (en) |
WO (1) | WO2013047056A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105244356A (en) * | 2014-07-03 | 2016-01-13 | 全视技术有限公司 | Fractal-edge thin film and method of manufacture |
CN105483764A (en) * | 2015-12-04 | 2016-04-13 | 广东嘉元科技股份有限公司 | Electrolytic copper foil additive |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014010707A1 (en) * | 2012-07-13 | 2014-01-16 | 古河電気工業株式会社 | Current collector foil, electrode structure, lithium secondary cell, or electric double-layer capacitor |
JP6310191B2 (en) * | 2013-07-02 | 2018-04-11 | Jx金属株式会社 | Copper foil with carrier and method for producing the same, method for producing copper-clad laminate and method for producing printed wiring board |
JP6310192B2 (en) * | 2013-07-02 | 2018-04-11 | Jx金属株式会社 | Copper foil with carrier and method for producing the same, method for producing copper-clad laminate and method for producing printed wiring board |
JP6310193B2 (en) * | 2013-07-02 | 2018-04-11 | Jx金属株式会社 | Copper foil with carrier, method for producing the same, method for producing copper-clad laminate, and method for producing printed wiring board |
JP6305001B2 (en) * | 2013-10-15 | 2018-04-04 | Jx金属株式会社 | Copper foil, copper-clad laminate and flexible printed wiring board |
KR102406753B1 (en) | 2014-07-07 | 2022-06-08 | 미쯔비시 케미컬 주식회사 | Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material |
JP6782561B2 (en) * | 2015-07-16 | 2020-11-11 | Jx金属株式会社 | Copper foil with carrier, laminate, manufacturing method of laminate, manufacturing method of printed wiring board and manufacturing method of electronic equipment |
TWI607866B (en) * | 2016-12-30 | 2017-12-11 | 財團法人工業技術研究院 | Copper foil composite |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05167264A (en) * | 1991-12-17 | 1993-07-02 | Japan Radio Co Ltd | High density mounting circuit board |
JP2003239082A (en) * | 2002-02-18 | 2003-08-27 | Hitachi Cable Ltd | Copper foil for resin bonding, and its manufacturing method |
JP2006286724A (en) * | 2005-03-31 | 2006-10-19 | Kyocer Slc Technologies Corp | Wiring board and its manufacturing method |
WO2009001665A1 (en) * | 2007-06-27 | 2008-12-31 | Fujifilm Corporation | Metal layer laminate with metal surface roughened layer and process for producing the same |
WO2009084540A1 (en) * | 2007-12-27 | 2009-07-09 | Fujifilm Corporation | Metal-clad substrate, and method for production thereof |
WO2010073903A1 (en) * | 2008-12-26 | 2010-07-01 | 富士フイルム株式会社 | Surface metal film material, process for producing surface metal film material, process for producing metal pattern material, and metal pattern material |
JP2010185128A (en) * | 2008-04-23 | 2010-08-26 | Fujifilm Corp | Photosensitive resin composition for plating, laminate, method of producing surface metal film material using the same, surface metal film material, method of producing metal pattern material, metal pattern material, and wiring board |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050158574A1 (en) * | 2003-11-11 | 2005-07-21 | Furukawa Circuit Foil Co., Ltd. | Ultra-thin copper foil with carrier and printed wiring board using ultra-thin copper foil with carrier |
-
2011
- 2011-09-30 JP JP2011216780A patent/JP5651564B2/en active Active
-
2012
- 2012-08-28 CN CN201280047424.2A patent/CN104025722B/en active Active
- 2012-08-28 KR KR1020147004202A patent/KR101569040B1/en active IP Right Grant
- 2012-08-28 WO PCT/JP2012/071684 patent/WO2013047056A1/en active Application Filing
- 2012-08-31 TW TW101131708A patent/TW201313952A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05167264A (en) * | 1991-12-17 | 1993-07-02 | Japan Radio Co Ltd | High density mounting circuit board |
JP2003239082A (en) * | 2002-02-18 | 2003-08-27 | Hitachi Cable Ltd | Copper foil for resin bonding, and its manufacturing method |
JP2006286724A (en) * | 2005-03-31 | 2006-10-19 | Kyocer Slc Technologies Corp | Wiring board and its manufacturing method |
WO2009001665A1 (en) * | 2007-06-27 | 2008-12-31 | Fujifilm Corporation | Metal layer laminate with metal surface roughened layer and process for producing the same |
WO2009084540A1 (en) * | 2007-12-27 | 2009-07-09 | Fujifilm Corporation | Metal-clad substrate, and method for production thereof |
JP2010185128A (en) * | 2008-04-23 | 2010-08-26 | Fujifilm Corp | Photosensitive resin composition for plating, laminate, method of producing surface metal film material using the same, surface metal film material, method of producing metal pattern material, metal pattern material, and wiring board |
WO2010073903A1 (en) * | 2008-12-26 | 2010-07-01 | 富士フイルム株式会社 | Surface metal film material, process for producing surface metal film material, process for producing metal pattern material, and metal pattern material |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105244356A (en) * | 2014-07-03 | 2016-01-13 | 全视技术有限公司 | Fractal-edge thin film and method of manufacture |
US10236320B2 (en) | 2014-07-03 | 2019-03-19 | Omnivision Technologies, Inc. | Fractal-edge thin film and method of manufacture |
TWI655760B (en) * | 2014-07-03 | 2019-04-01 | 豪威科技股份有限公司 | A manufacturing method of multi-layered structure |
CN105483764A (en) * | 2015-12-04 | 2016-04-13 | 广东嘉元科技股份有限公司 | Electrolytic copper foil additive |
CN105483764B (en) * | 2015-12-04 | 2019-02-22 | 广东嘉元科技股份有限公司 | A kind of electrolytic copper foil additive |
Also Published As
Publication number | Publication date |
---|---|
JP5651564B2 (en) | 2015-01-14 |
JP2013077702A (en) | 2013-04-25 |
CN104025722B (en) | 2016-11-23 |
CN104025722A (en) | 2014-09-03 |
KR101569040B1 (en) | 2015-11-13 |
KR20140071333A (en) | 2014-06-11 |
TW201313952A (en) | 2013-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5651564B2 (en) | Copper foil for pasting | |
JP5734670B2 (en) | Composition for forming layer to be plated and method for producing laminate having metal film | |
TWI699459B (en) | Surface-treated copper foil and laminated board using the same, copper foil with carrier, printed wiring board, electronic equipment, and manufacturing method of printed wiring board | |
JP5258489B2 (en) | Metal film forming method | |
JP5079396B2 (en) | Conductive substance adsorbing resin film, method for producing conductive substance adsorbing resin film, resin film with metal layer using the same, and method for producing resin film with metal layer | |
KR101625421B1 (en) | Surface metal film material, process for producing surface metal film material, process for producing metal pattern material, and metal pattern material | |
US20110226511A1 (en) | Inkjet ink, surface metal film material and its manufacturing method, and patterned metal material and its manufacturing method | |
WO2012111375A1 (en) | Method for producing multilayer substrate and desmearing method | |
KR101528786B1 (en) | Process for producing layered object with holes, layered object with holes, process for producing multilayered substrate, and composition for forming primer layer | |
JP5579160B2 (en) | Method for producing a laminate having a metal film | |
WO2012133032A1 (en) | Production method for laminate having patterned metal films, and plating layer-forming composition | |
WO2012133684A1 (en) | Production method for laminate having patterned metal films, and plating layer-forming composition | |
JP2012031447A (en) | Composition for forming layer to be plated, material for surface metal film and method for producing the same, and material for metal pattern and method for producing the same | |
WO2011118797A1 (en) | Composition for forming plating layer, surface metal film material and method for producing same, and metal pattern material and method for producing same | |
JP2012180561A (en) | Laminated body having metal film and method for producing the same, and laminated body having patterned metal film and method for producing the same | |
WO2012133297A1 (en) | Laminate having metal film, manufacturing method therefor, laminate having patterned metal film, and manufacturing method therefor | |
JP2013074193A (en) | Laminate having metal layer and production method therefor | |
JP2012207258A (en) | Composition for forming layered to be plated, and method for producing laminate having metal film | |
JP2012246535A (en) | Lamination stack having metal film and method for manufacturing the same, and lamination stack having patterned metal film and method for manufacturing the same | |
JP2011111602A (en) | Insulating resin, insulating resin layer-forming composition, laminate, method for manufacturing surface metal film material, method for manufacturing metal pattern material, method for manufacturing wiring board, electronic part, and semiconductor device | |
JP2013041928A (en) | Method for manufacturing laminate with hole, method for manufacturing multilayer substrate, and hole forming method | |
JP2012104754A (en) | Method for manufacturing patterned metal material and patterned metal material | |
JP2011190484A (en) | Composition for forming the layer to be plated, surface metal film material, method for producing the same, metal pattern material and method for producing the same | |
JP2013102050A (en) | Laminate with holes, and method of manufacturing the same, multilayer substrate, and method of manufacturing the same, composition for formation of underlying layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12837294 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147004202 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12837294 Country of ref document: EP Kind code of ref document: A1 |