WO2013047003A1 - Near-field optical device, recording device and sample substrate - Google Patents

Near-field optical device, recording device and sample substrate Download PDF

Info

Publication number
WO2013047003A1
WO2013047003A1 PCT/JP2012/070998 JP2012070998W WO2013047003A1 WO 2013047003 A1 WO2013047003 A1 WO 2013047003A1 JP 2012070998 W JP2012070998 W JP 2012070998W WO 2013047003 A1 WO2013047003 A1 WO 2013047003A1
Authority
WO
WIPO (PCT)
Prior art keywords
field light
output end
recording
layer
metal
Prior art date
Application number
PCT/JP2012/070998
Other languages
French (fr)
Japanese (ja)
Inventor
孝幸 糟谷
杉浦 聡
勝美 吉沢
Original Assignee
パイオニア株式会社
パイオニア・マイクロ・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, パイオニア・マイクロ・テクノロジー株式会社 filed Critical パイオニア株式会社
Priority to JP2013536072A priority Critical patent/JP5736051B2/en
Publication of WO2013047003A1 publication Critical patent/WO2013047003A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q80/00Applications, other than SPM, of scanning-probe techniques
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal

Definitions

  • the present invention is, for example, a near-field optical device that uses a minute spot of near-field light such as HAMR (Heat Assisted Magnetic Recording), SNOM (Scanning Near Field Optical Microscope),
  • the present invention relates to a technical field of a recording apparatus including the near-field light device and a sample substrate including a plurality of the near-field light devices.
  • Non-Patent Document 1 Nanoscale quantum dots that utilize quantum mechanical effects and control the single electron to the limit are attracting attention.
  • Patent Document 3 a manufacturing method that appropriately controls the size of quantum dots
  • Patent Document 4 a near-field concentrator that uses stacked quantum dots
  • Patent Document 4 an approach has been proposed in which near-field light is generated by a surface-emitting laser and high-density recording is possible with an optical head using the near-field light.
  • the present invention has been made in view of, for example, the above problems.
  • a near-field light device and a recording apparatus capable of recording information on a magnetic recording medium with appropriate recording marks by heat-assisted magnetic recording. It is an issue to propose.
  • the second object is to propose a near-field light device and a sample substrate applicable to information recording on a magnetic recording medium or the like.
  • the near-field light device of the present invention includes a quantum dot that generates near-field light based on light irradiated from the outside, and at least a part of the energy of the generated near-field light.
  • An output end capable of outputting to the outside, and the output end has a length along one direction, the length along one direction as viewed in plan from above the output end. It is formed to be longer than that.
  • the recording apparatus of the present invention includes the near-field light device of the present invention (including various aspects thereof) and control means for controlling the near-field light device.
  • the sample substrate of the present invention is a sample substrate in which a plurality of substrates are arranged, and each of the plurality of substrates includes (i) one or a plurality of quantum dots, and (ii) A quantum dot stack having an output end stacked on the one or more quantum dots; and a light source for irradiating the quantum dot stack with light.
  • FIG. 6 is a process cross-sectional view illustrating a process that follows the process of FIG. 5.
  • FIG. 7 is a process cross-sectional view illustrating a process that follows the process in FIG. 6.
  • FIG. 8 is a process cross-sectional view illustrating a process that follows the process in FIG. 7.
  • FIG. 9 is a process cross-sectional view illustrating a process that follows the process in FIG. 8.
  • FIG. 10 is a process cross-sectional view illustrating a process following the process in FIG. 9.
  • FIG. 11 is a process cross-sectional view illustrating a process that follows the process of FIG. 10.
  • FIG. 12 is a process cross-sectional view illustrating a process following the process in FIG. 11.
  • FIG. 13 is a process cross-sectional view illustrating a process continued from the process in FIG. 12. It is a figure which shows the structure of the recording device which concerns on embodiment. It is a figure explaining operation
  • FIG. 20 is a cross-sectional view taken along the line AA ′ of FIG. It is process sectional drawing which shows 1 process of the manufacturing method of the design subchip which concerns on embodiment.
  • FIG. 22 is a process cross-sectional view illustrating a process continued from the process in FIG. 21.
  • FIG. 23 is a process cross-sectional view illustrating a process continued from the process in FIG. 22.
  • FIG. 24 is a process cross-sectional view illustrating a process continued from the process in FIG. 23.
  • FIG. 20 is a cross-sectional view showing a modification of the cross section taken along the line AA ′ of FIG. It is a top view which shows an example of the evaluation subchip which concerns on embodiment. It is a top view which shows another example of the evaluation subchip which concerns on embodiment. It is a top view which shows another example of the design subchip which concerns on embodiment.
  • FIG. 29 is a sectional view taken along line BB ′ of FIG. 28. It is a top view which shows another example of the design subchip which concerns on embodiment.
  • FIG. 31 is a cross-sectional view taken along the line CC ′ of FIG.
  • FIG. 33 is a sectional view taken along line DD ′ of FIG. 32. It is a top view which shows another example of the design subchip which concerns on embodiment.
  • FIG. 35 is a sectional view taken along line EE ′ of FIG. 34. It is a top view which shows another example of the design subchip which concerns on embodiment.
  • FIG. 37 is a sectional view taken along line FF ′ of FIG. 36. It is a top view which shows another example of the design subchip which concerns on embodiment.
  • FIG. 1 is a diagram showing a structure of a near-field light device according to the present embodiment.
  • a near-field optical device 100 includes a GaAs (gallium arsenide) substrate 111, an InAs layer 112 having an InAs (indium arsenide) quantum dot 113 stacked on the GaAs substrate 111, and the InAs layer 112.
  • a metal end 118 is provided as an example of the “output end” according to the present invention.
  • the recording mark formed on the recording medium is affected by the near-field light region, that is, the shape of the metal end 118 of the near-field light device 100.
  • FIG. 2 is a diagram showing an example of recording marks formed on the recording medium.
  • the metal end 118 of the near-field light device 100 is formed to be elliptical when viewed in plan from above the metal end 118 (see FIG. 3).
  • FIG. 3 is a plan view showing the shape of the metal end of the near-field light device according to the present embodiment.
  • FIG. 3 is an example of “one direction” according to the present invention.
  • the radial direction of the disk (recording medium) in FIG. 3 is an example of “another direction” according to the present invention.
  • the recording direction is also the “track direction” in which recording marks are arranged.
  • the shape of the metal end 118 is not limited to the elliptical shape shown in FIG. 3, and various shapes such as those shown in FIGS. 4A to 4F can be employed.
  • the metal end 118 is configured as an assembly of a plurality of metal members. In this case, the distance between the metal members is set to a distance at which one near field is formed as a whole of the plurality of metal members.
  • FIG. 4 is a plan view showing a modification of the shape of the metal end of the near-field light device according to the present embodiment.
  • the vertical direction of the paper surface corresponds to the radial direction of the disc, and the horizontal direction of the paper surface corresponds to the recording direction (track direction).
  • Near-field optical device manufacturing method Next, a manufacturing method of the near-field light device 100 according to the present embodiment will be described with reference to FIGS.
  • a stopper layer 31 containing, for example, GaAs or the like is formed on a substrate 30 such as an n-GaAs substrate.
  • a substrate 30 such as an n-GaAs substrate.
  • the GaAs substrate 11, the quantum dot layer 12, and the quantum dot layer 13 are stacked in this order on the stopper layer 31.
  • wax 61 is applied to the upper surface of the quantum dot layer 13, so that the quantum dot layer 13 is fixed to the silicon substrate 62.
  • the substrate 30 is removed by grinding, chemical etching, or the like (see FIG. 8).
  • a metal layer 15 including, for example, gold (Au) or copper (Cu) is formed on the quantum dot layer 13.
  • the metal end 14 is not composed of one kind of metal but may be a multilayer structure composed of different metals. For example, for example, a two-layer structure in which a gold (Au) layer is formed on a chromium (Cr) layer, or a two-layer structure in which (Au) and a layer are formed on a titanium (Ti) layer. There may be.
  • a predetermined mask (not shown) is formed on the metal layer 15, and the metal layer 15 is etched using the formed mask, so that the metal edge as shown in FIG. 14 is formed.
  • the metal edge 14 can also be formed by using a mold or mold having a pattern shape as shown in FIG. 4 and using nano-imprinting lithography (Nano-Imprinting Lithography).
  • a predetermined mask (not shown) is formed on the quantum dot layer 13 so as to cover the metal end 14, and the quantum dot layer 13, the quantum dot layer 12, and the GaAs substrate 11 are formed using the formed mask. Etching or the like is performed to form a near-field light device 100 as shown in FIG.
  • the near-field light device 100 shown in FIG. 1 is an example formed with two layers of quantum dots.
  • a single layer quantum dot structure a multilayer quantum dot structure composed of three or more layers of quantum dots, or metal nanoparticles (quantums)
  • a medium in which (which functions as dots) is dispersed By using a multilayer quantum dot structure, the efficiency of concentrating the energy of incident light on the metal edge 14 is increased. For example, it is possible to increase the efficiency of 5 layers and 8 layers rather than 3 layers.
  • the “GaAs substrate 11” and the “metal end 14” correspond to the “GaAs substrate 111” and the “metal end 118” in FIG. 1, respectively.
  • “Quantum dot layer 12” corresponds to “InAs layer 112” and “GaAs layer 114” in FIG. 1
  • “Quantum dot layer 13” corresponds to “InAs layer 115” and “GaAs layer 117” in FIG. To do.
  • the recording apparatus includes a near-field light device 100 illustrated in FIG. 1, a light source 60 that irradiates light to the near-field light device 100, and turning on or off the light source 60. And a control unit 70 that controls the near-field light device 100.
  • FIG. 14 is a diagram illustrating the configuration of the recording apparatus according to the present embodiment.
  • a semiconductor laser for example, a semiconductor laser, a VCSEL (Vertical Cavity Surface Emitting LASER: vertical cavity surface emitting laser), an LED (Light Emitting Diode), or the like can be applied.
  • a VCSEL Vertical Cavity Surface Emitting LASER: vertical cavity surface emitting laser
  • an LED Light Emitting Diode
  • the recording medium 50 is made of a material that can change its state due to near-field light or heat generated by near-field light energy and can form a recording mark.
  • the recording medium 50 is configured to include a metal such as gold (Au) so that the near-field light can be formed integrally with the metal end 18.
  • near-field light 21 is generated in the quantum dots 113 (lower quantum dots) by the light (incident light) emitted from the light sources 60, and the near-field
  • the near-field light 22 is generated in the quantum dots 116 (upper-layer quantum dots) by the light 21, and at least a part of the energy of the near-field light 22 moves to the metal end 118 and approaches the periphery of the metal end 118.
  • Field light 23 is generated.
  • the near-field light 23 does not cause an interaction on the recording medium 50 side.
  • the distance between the metal end 118 and the recording medium 50 is equal to or less than the predetermined distance, the near-field light region 51 which is a part of the recording medium 50 is replaced with the metal end 118 instead of the near-field light 23.
  • Near-field light 24 is generated so as to surround it (see FIG. 15).
  • the “near-field light region 51” according to the present embodiment is an example of the “heating region” according to the present invention.
  • the recording medium 50 when the recording medium 50 is made of a material whose state changes due to heat, a recording mark is formed in the near-field light region 51 due to heat generated by the energy of the near-field light 24.
  • the recording medium 50 when the recording medium 50 is a magnetic recording medium, the coercive force of the near-field light region 51 is reduced due to heat generated by the energy of the near-field light 24, so that a magnetic field generated by a magnetic recording head (not shown). Thus, magnetic recording can be performed.
  • the control unit 70 After the light source 60 is turned on for a predetermined time by the control unit 70 and the recording mark 52 is formed on the recording medium 50, the control unit 70 turns off the light source 60. Subsequently, the recording position is changed by moving or rotating the recording medium 50 or moving the near-field light device 100. In FIG. 16, the recording medium 50 is moved to the left on the paper surface, and the right side of the recording mark 52 is a new near-field light region 51.
  • the control unit 70 turns on the light source 60 again and forms a new recording mark by the near-field light 24 in the same manner as in the above recording method. As described above, the control unit 70 turns on or off the light source 60 based on the recording information to be recorded while maintaining the state where the distance between the metal end 118 and the recording medium 50 is equal to or less than the predetermined distance. For example, the recording information can be continuously recorded on the recording medium 50 rotating at a constant speed.
  • the length along the radial direction of the recording medium 50 is longer than the length along the recording direction. It is formed as follows. For this reason, the recording marks formed on the recording medium 50 are as shown in FIG. 2B, for example. As a result, the information recorded on the recording medium 50 can be read appropriately with relative ease during reproduction of the recording medium 50.
  • FIG. 17 is a schematic configuration diagram showing a schematic configuration of the sample substrate according to the present embodiment.
  • FIG. 18 is a schematic configuration diagram showing a schematic configuration of one chip among a plurality of chips arranged on the sample substrate according to the present embodiment.
  • the sample substrate 1 is a wafer substrate of 2 inches, for example.
  • the sample substrate 1 is finally formed into a plurality of rectangular areas (for example, 4 mm (millimeter) ⁇ 4 mm, 8 mm ⁇ 8 mm) (“1a in FIG. ”). Then, the arrangement of various members and various circuits is determined for each of the plurality of partitioned rectangular areas.
  • one rectangular area 1 a is further divided into a plurality of rectangular areas, and a design subchip (“proximity” according to the present invention) is provided for each of the divided rectangular areas. Equivalent to a field light device ”and an evaluation subchip. Note that the evaluation subchip is not necessarily required.
  • FIG. 19 is a plan view showing an example of the design subchip according to the present embodiment.
  • 20 is a cross-sectional view taken along line AA ′ of FIG.
  • the design subchip is formed with an alignment mark and a tilt correction reflecting mirror that are used when the design subchip is mounted on, for example, a recording head of a recording apparatus employing a heat-assisted magnetic recording method.
  • alignment marks are formed at each of the four corners of the design subchip, and a tilt correction reflecting mirror is formed at each side of the design subchip.
  • a heat source block is formed near the center of the design subchip, and four coil blocks are formed in a peripheral region located around the heat source block.
  • the heat source block includes, for example, two quantum dot layers stacked on a GaAs (gallium arsenide) substrate, and a metal end stacked on the quantum dot layer. It is configured.
  • GaAs gallium arsenide
  • the quantum dots included in the lower quantum dot layer of the two quantum dot layers based on the irradiated light is generated.
  • near-field light is generated in the quantum dots included in the upper quantum dot layer of the two quantum dot layers.
  • at least a part of the energy of the generated near-field light moves to the metal end, and near-field light is generated around the metal end.
  • an object for example, a recording medium
  • a predetermined distance for example, 20 nm (nanometer)
  • the metal edge of the heat source block and at least a part of the object are surrounded.
  • near-field light is generated, and at least a part of the target part is heated by the generated near-field light.
  • quantum dot layers 12 and 13 including, for example, InAs (indium arsenide) quantum dots are stacked in this order.
  • a metal layer containing, for example, gold (Au), copper (Cu), or the like is laminated on the quantum dot layer 13, and the laminated metal layer is etched using a predetermined mask. Is applied to form the metal end 14.
  • a GaAs layer may be formed on a glass substrate, or a GaAs layer may be formed on a silicon substrate. The thickness of each layer or substrate is set to an appropriate thickness depending on the purpose of use.
  • a predetermined mask (not shown) is formed on the quantum dot layer 13 so as to cover the metal edge 14, and the quantum dot layer 13 and the quantum dot layer 12 are etched using the formed mask. As a result, the heat source block 81 is formed as shown in FIG.
  • a base layer 75 is laminated on the GaAs substrate 11. Subsequently, a conductive member 76 having a predetermined shape is formed on the base layer 75. Subsequently, an insulating layer 77 is laminated on the base layer 75 so as to cover the formed conductive member 76 (see FIG. 23).
  • a conductive member 78 having a predetermined shape, a tilt correcting reflecting mirror 83, and an alignment mark (not shown) are formed on the insulating layer 77.
  • an insulating layer 79 is laminated on the insulating layer 77 so as to cover the formed conductive member 78 and the like (see FIG. 24).
  • the coil block 82 is constituted by the conductive members 76 and 78.
  • design subchips and evaluation subchips are formed on the sample substrate 1 in parallel with the manufacturing process of the design subchip.
  • FIG. 25 is a cross-sectional view showing a modification of the cross section taken along the line AA ′ of FIG.
  • the “metal end 14” and the “heat source block 81” according to the present embodiment are examples of the “output end” and the “quantum dot stack” according to the present invention, respectively.
  • FIG. 26 is a plan view showing an example of the evaluation subchip according to the present embodiment.
  • FIG. 27 is a plan view showing another example of the evaluation subchip according to the present embodiment.
  • FIG. 26 shows an example of an evaluation sub-chip capable of performing, for example, optical evaluation of the heat source block 81.
  • an evaluation subchip for example, due to a difference in the shape of the metal end 14 of the heat source block 81 and a region for evaluating the light emission characteristic distribution due to a difference in the mesa structure of the heat source block 81.
  • a region for evaluating the light emission characteristic distribution and a region for evaluating the statistical light emission characteristic due to the shape of the metal edge 14 are provided.
  • FIG. 27 shows an example of an evaluation subchip that can perform, for example, electrical and magnetic evaluation of the coil block 82.
  • an evaluation sub-chip for example, an area for evaluating electrical and magnetic characteristics due to a difference in the size of the coil block 82 and an electricity due to a difference in the design of the coil block 82 are included. And an area for evaluating the mechanical and magnetic characteristics.
  • a heat source block is formed near the center of the design sub chip, and two coil blocks are formed in a peripheral region located around the heat source block.
  • two magnetic waveguide members are further formed on the outer peripheral side of the coil block. As shown in FIG. 29, the magnetic waveguide member extends to the lower layer of the coil block along the horizontal direction of the paper.
  • a heat source block is formed near the center of the design subchip, and a coil block is formed on the lower layer side of the heat source block.
  • two magnetic waveguide members are further formed on the outer peripheral side of the coil block. As shown in FIG. 31, the magnetic waveguide member extends to the lower layer of the coil block along the horizontal direction of the paper.
  • a heat source block is formed near the center of the design sub chip, and two coil blocks are formed in a peripheral region located around the heat source block. Further, as shown in FIG. 33, the design subchip is formed with a magnetic waveguide member extending from the coil block along the horizontal direction of the paper surface.
  • a heat source block 180e composed of cross-shaped alignment marks 180a to 180d, a quantum dot layer, and a metal edge.
  • alignment marks 180a and 180c are arranged opposite to each other with the heat source block 180e interposed therebetween, and alignment marks 180b and 180d are arranged to face each other with the heat source block 180e interposed therebetween.
  • the heat source block 180e at a position where a dotted line ac connecting the cross intersection of the alignment mark 180a and the cross intersection of the alignment mark 180c intersects with a dotted line bd connecting the cross intersection of the alignment mark 180b and the cross intersection of the alignment mark 180d. (Dotted line ac and dotted line bd are not drawn on the actual sample chip).
  • the heat source block 180e has a size of about 100 nm, and the position cannot be specified by an image recognition system using an optical camera or the like.
  • the alignment marks 180a to 180d have such a size that an image can be recognized using an optical camera, and the positions of the alignment marks 180a to 180d can be recognized and known. By recognizing the alignment mark, the position of the heat source block 180e can be specified by calculation.
  • the upper surface of the mesa of the heat source block 180e and the heights of the alignment marks 180a to 180d are formed at the same height.
  • the design chip shown in FIGS. 36 and 37 is a design chip in which a coil is formed on the design chip shown in FIGS. 34 and 35 described above. Further, as shown in FIG. 38, the alignment mark formed on the design chip may be configured such that a plurality of alignment marks are aligned radially from the center of the design chip. By arranging a plurality of alignment marks in series, the specific accuracy of the position of the heat source block is increased.
  • FIG. 39 (a) is a form of a modification, and a metal layer (for example, a metal / alloy such as Au, Ag, Cu, Al, etc.) having the functions of a photoelectron reflecting film and a lower electrode (first electrode).
  • a metal layer for example, a metal / alloy such as Au, Ag, Cu, Al, etc.
  • a single layer or a multilayer structure and a light source (for example, VICEL, LED, etc.) or an electron source (for example, silicon, porous silicon (Si), cold cathode, etc.) as an energy source
  • a light source for example, VICEL, LED, etc.
  • an electron source for example, silicon, porous silicon (Si), cold cathode, etc.
  • an energy source on the metal layer gold (Au) film to collect electrons generated from the light or the electron source generated from the light source is on, the dielectric on top of the gold film (e.g., SiO 2, Vao 2, etc.) spacer of, on the spacer It comprises metal particles (metal nanoparticles) made of gold (Au) which is a metal end.
  • This gold film also serves as an upper electrode (second electrode).
  • the spacer has a role of adjusting the height.
  • Energy from light or electrons generated from the energy source is collected on the gold film and moves to the metal particles. Then, energy is released from the metal particles to the outside.
  • FIG. 39 (b) includes a metal layer having a function of a photoelectron reflecting film and a lower electrode, a light source or electron source, and an upper electrode.
  • a hole is formed in the center of the upper electrode, and metal particles made of gold (Au) are located in the center of the hole.
  • FIG. 39C shows a configuration in which a spacer is disposed between the energy source of FIG. 39B and the metal particles.
  • FIG. 39D shows a structure in which metal particles are supported by a support made of a semiconductor or a dielectric material.
  • FIG. 39 (e) shows metal rods, or a plurality of metal particles may be stacked as shown in FIG. 39 (f).
  • FIG. 39 (g) shows a configuration in which the metal rod shown in FIG. 39 (e) is surrounded by a dielectric.
  • FIG. 39 simply includes a metal layer having the functions of a photoelectron reflecting film and a lower electrode (first electrode), an energy source on the metal layer, and metal particles as metal ends on the energy source.
  • the configuration shown in (h) is also conceivable.
  • FIG. 40 is a plan view of the near-field light device shown in FIG. 39 (a).
  • the vertical direction of the paper surface corresponds to the radial direction of the disc, and the horizontal direction of the paper surface corresponds to the recording direction (track direction).
  • the output end is a metal particle, which is substantially circular in plan view.
  • various shapes can be adopted.
  • the metal ends may be configured as various shapes as shown in FIG. 4 or as a collection of a plurality of metal members.
  • the near-field device shown in FIG. 39 may be configured to be covered with a dielectric or a dielectric and a non-metallic ceramic. Covering with a strong material such as ceramic can protect the near-field light device from collisions.
  • FIG. 41 (a1) is a structure in which the metal particle spacer gold film of the near-field device of FIG. 39 (a) is mostly made of a dielectric, and the outside is covered with ceramics.
  • FIG. 41 (a2) is an example in which the near-field light device of FIG. 39 (a) is covered with a dielectric.
  • FIG. 41 (e1) is a configuration in which the near-field optical device in FIG. 39 (e) is covered with a dielectric and ceramics
  • FIG. 41 (e2) is a configuration in which the near-field optical device in FIG. 39 (e) is covered with a dielectric. It is a configuration.
  • FIG. 42 is a diagram for explaining an example of magnetic recording using the magnetic head according to the near-field light device explained in FIG. 42, the near-field light device shown in FIG. 39A is used.
  • the present invention is not limited to FIG. 39A, and the various near-field light devices described above can be applied.
  • the energy source is controlled so as to emit light or electrons according to the input signal.
  • the light / electron energy generated from the near energy source propagates to the metal particles, the energy is generated in the magnetic recording medium by the near-field light generated by the metal particles and a part of the magnetic recording medium facing the metal particles.
  • the coercive force of the region of the magnetic recording medium energized by the near-field light is reduced, and magnetic recording by the writing magnetic pole can be easily performed.
  • the recording signal recorded on the magnetic recording medium is read by the reading magnetic pole.
  • the recording density can be improved as the size of the metal particles is reduced.
  • the near-field light device is disposed on the arm (slider at the tip of the arm) in a state of being covered with ceramics, and the near-field light device is protected from impact even if the magnetic head collides with the magnetic recording medium. Also, a read magnetic pole, a write magnetic pole, and the like are integrated in the vicinity of the near-field light device.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit or idea of the invention that can be read from the claims and the entire specification, and the near-field light device with such a change
  • the recording apparatus is also included in the technical scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Optical Head (AREA)
  • Magnetic Heads (AREA)

Abstract

A near-field optical device (100) is provided with a quantum dots (113, 116) that generate near-field light on the basis of light emitted from outside, and an output end (118) that is capable of outputting at least some energy from the near-field light that is generated to the outside. The output end is formed in such a manner that the length in one direction, as viewed in a plane from above the output end, is longer than the length in another direction that intersects said one direction. The near-field optical device enables information to be appropriately recorded by heat-assisted magnetic recording.

Description

近接場光デバイス、記録装置及びサンプル基板Near-field light device, recording apparatus, and sample substrate
 本発明は、例えば、HAMR(熱アシスト磁気記録:Heat Assisted Magnetic Recording)、SNOM(走査型近接場光学顕微鏡:Scanning Near Field Optical Microscope)等の近接場光の微小スポットを利用する近接場光デバイス、該近接場光デバイスを備える記録装置、及び該近接場光デバイスを複数備えてなるサンプル基板の技術分野に関する。 The present invention is, for example, a near-field optical device that uses a minute spot of near-field light such as HAMR (Heat Assisted Magnetic Recording), SNOM (Scanning Near Field Optical Microscope), The present invention relates to a technical field of a recording apparatus including the near-field light device and a sample substrate including a plurality of the near-field light devices.
 近接場光を利用した、光の回折限界を超えたナノスケールの微小光スポットの利用例として、近接場光による加熱点と重なるように、強い磁場を印加することのできる金属散乱体を用いた熱アシスト記録用ヘッド(特許文献1参照)が提案されている。或いは、近接場光を磁気記録媒体の昇温するための光源として用いる熱アシスト磁気記録(特許文献2参照)が提案されている。 As an example of using a nano-scale light spot that exceeds the diffraction limit of light using near-field light, a metal scatterer that can apply a strong magnetic field so as to overlap the heating point by near-field light was used. A heat-assisted recording head (see Patent Document 1) has been proposed. Alternatively, heat-assisted magnetic recording (see Patent Document 2) using near-field light as a light source for raising the temperature of a magnetic recording medium has been proposed.
 また、近年の半導体微細加工技術の進歩により、量子力学的効果を利用し、単一電子を制御することにより電子の粒子性を極限まで利用するナノスケールの量子ドットが注目されている。たとえば、量子ドットのサイズを適切に制御する製造方法(特許文献3参照)、および、積層された量子ドットを利用した近接場集光器が提案されている(特許文献4参照)。さらに、面発光レーザにより近接場光を生成し、この近接場光を用いた光ヘッドにて高密度記録を可能にする取り組みも提案されている(非特許文献1)。 Also, due to recent advances in semiconductor microfabrication technology, nanoscale quantum dots that utilize quantum mechanical effects and control the single electron to the limit are attracting attention. For example, a manufacturing method that appropriately controls the size of quantum dots (see Patent Document 3) and a near-field concentrator that uses stacked quantum dots have been proposed (see Patent Document 4). Furthermore, an approach has been proposed in which near-field light is generated by a surface-emitting laser and high-density recording is possible with an optical head using the near-field light (Non-Patent Document 1).
特開2007-128573号公報JP 2007-128573 A 特開2003-045004号公報JP 2003-045004 A 特開2009-231601号公報JP 2009-231601 A 特開2006-080459号公報JP 2006-080459 A
 しかしながら、上述した特許文献1に記載された熱アシスト磁気記録では、例えばスポットサイズのコントロールや記録マークの形状最適化等に改良の余地が存在する。また、上述の先行技術文献では、磁気記録媒体等への情報記録に量子ドットデバイスを利用することについては、十分な検討が行われていなかった。 However, in the heat-assisted magnetic recording described in Patent Document 1 described above, there is room for improvement in, for example, control of the spot size and optimization of the shape of the recording mark. Further, in the above-described prior art documents, sufficient studies have not been made on using a quantum dot device for information recording on a magnetic recording medium or the like.
 本発明は、例えば上記問題点に鑑みてなされたものであり、第1に、熱アシスト磁気記録により情報を適切な記録マークで磁気記録媒体上に記録することができる近接場光デバイス及び記録装置を提案することを課題とする。第2に、磁気記録媒体等への情報記録に適用可能な近接場光デバイス及びサンプル基板を提案することを課題とする。 The present invention has been made in view of, for example, the above problems. First, a near-field light device and a recording apparatus capable of recording information on a magnetic recording medium with appropriate recording marks by heat-assisted magnetic recording. It is an issue to propose. The second object is to propose a near-field light device and a sample substrate applicable to information recording on a magnetic recording medium or the like.
 本発明の近接場光デバイスは、上記課題を解決するために、外部から照射される光に基づいて近接場光を発生する量子ドットと、前記発生された近接場光のエネルギーの少なくとも一部を外部へ出力可能な出力端と、を備え、前記出力端は、前記出力端の上方から平面的に見て、一の方向に沿う長さが、前記一の方向と交わる他の方向に沿う長さよりも長くなるように形成されている。 In order to solve the above problems, the near-field light device of the present invention includes a quantum dot that generates near-field light based on light irradiated from the outside, and at least a part of the energy of the generated near-field light. An output end capable of outputting to the outside, and the output end has a length along one direction, the length along one direction as viewed in plan from above the output end. It is formed to be longer than that.
 本発明の記録装置は、上記課題を解決するために、本発明の近接場光デバイス(但し、その各種態様を含む)と、前記近接場光デバイスを制御する制御手段と、を備える。 In order to solve the above-described problems, the recording apparatus of the present invention includes the near-field light device of the present invention (including various aspects thereof) and control means for controlling the near-field light device.
 本発明のサンプル基板は、上記課題を解決するために、複数の基板が配列されてなるサンプル基板であって、前記複数の基板各々は、(i)一又は複数の量子ドットと、(ii)前記一又は複数の量子ドットの上に積層された出力端と、を有する量子ドット積層体と、前記量子ドット積層体に対して光を照射する光源と、を備える。 In order to solve the above problems, the sample substrate of the present invention is a sample substrate in which a plurality of substrates are arranged, and each of the plurality of substrates includes (i) one or a plurality of quantum dots, and (ii) A quantum dot stack having an output end stacked on the one or more quantum dots; and a light source for irradiating the quantum dot stack with light.
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。 The operation and other advantages of the present invention will be clarified from the embodiments to be described below.
実施形態に係る近接場光デバイスの構造を示す図である。It is a figure which shows the structure of the near-field light device which concerns on embodiment. 記録媒体上に形成される記録マークの一例を示す図である。It is a figure which shows an example of the recording mark formed on a recording medium. 実施形態に係る近接場光デバイスの金属端の形状を示す平面図である。It is a top view which shows the shape of the metal end of the near-field light device which concerns on embodiment. 実施形態に係る近接場光デバイスの金属端の形状の変形例を示す平面図である。It is a top view which shows the modification of the shape of the metal end of the near-field light device which concerns on embodiment. 実施形態に係る近接場光デバイスの製造方法の一工程を示す工程断面図である。It is process sectional drawing which shows 1 process of the manufacturing method of the near-field optical device which concerns on embodiment. 図5の工程に続く工程を示す工程断面図である。FIG. 6 is a process cross-sectional view illustrating a process that follows the process of FIG. 5. 図6の工程に続く工程を示す工程断面図である。FIG. 7 is a process cross-sectional view illustrating a process that follows the process in FIG. 6. 図7の工程に続く工程を示す工程断面図である。FIG. 8 is a process cross-sectional view illustrating a process that follows the process in FIG. 7. 図8の工程に続く工程を示す工程断面図である。FIG. 9 is a process cross-sectional view illustrating a process that follows the process in FIG. 8. 図9の工程に続く工程を示す工程断面図である。FIG. 10 is a process cross-sectional view illustrating a process following the process in FIG. 9. 図10の工程に続く工程を示す工程断面図である。FIG. 11 is a process cross-sectional view illustrating a process that follows the process of FIG. 10. 図11の工程に続く工程を示す工程断面図である。FIG. 12 is a process cross-sectional view illustrating a process following the process in FIG. 11. 図12の工程に続く工程を示す工程断面図である。FIG. 13 is a process cross-sectional view illustrating a process continued from the process in FIG. 12. 実施形態に係る記録装置の構成を示す図である。It is a figure which shows the structure of the recording device which concerns on embodiment. 実施形態に係る記録装置の動作を説明する図である。It is a figure explaining operation | movement of the recording device which concerns on embodiment. 実施形態に係る記録装置の動作を説明する図である。It is a figure explaining operation | movement of the recording device which concerns on embodiment. 実施形態に係るサンプル基板の概略構成を示す概略構成図である。It is a schematic block diagram which shows schematic structure of the sample board | substrate which concerns on embodiment. 実施形態に係るサンプル基板上に配列された複数のチップのうち一のチップの概略構成を示す概略構成図である。It is a schematic block diagram which shows schematic structure of one chip | tip among the several chip | tips arranged on the sample substrate which concerns on embodiment. 実施形態に係るデザインサブチップの一例を示す平面図である。It is a top view which shows an example of the design subchip which concerns on embodiment. 図19のA-A´線断面図である。FIG. 20 is a cross-sectional view taken along the line AA ′ of FIG. 実施形態に係るデザインサブチップの製造方法の一工程を示す工程断面図である。It is process sectional drawing which shows 1 process of the manufacturing method of the design subchip which concerns on embodiment. 図21の工程に続く工程を示す工程断面図である。FIG. 22 is a process cross-sectional view illustrating a process continued from the process in FIG. 21. 図22の工程に続く工程を示す工程断面図である。FIG. 23 is a process cross-sectional view illustrating a process continued from the process in FIG. 22. 図23の工程に続く工程を示す工程断面図である。FIG. 24 is a process cross-sectional view illustrating a process continued from the process in FIG. 23. 図19のA-A´線断面の変形例を示す断面図である。FIG. 20 is a cross-sectional view showing a modification of the cross section taken along the line AA ′ of FIG. 実施形態に係る評価用サブチップの一例を示す平面図である。It is a top view which shows an example of the evaluation subchip which concerns on embodiment. 実施形態に係る評価用サブチップの他の一例を示す平面図である。It is a top view which shows another example of the evaluation subchip which concerns on embodiment. 実施形態に係るデザインサブチップの他の一例を示す平面図である。It is a top view which shows another example of the design subchip which concerns on embodiment. 図28のB-B´線断面図である。FIG. 29 is a sectional view taken along line BB ′ of FIG. 28. 実施形態に係るデザインサブチップの他の一例を示す平面図である。It is a top view which shows another example of the design subchip which concerns on embodiment. 図30のC-C´線断面図である。FIG. 31 is a cross-sectional view taken along the line CC ′ of FIG. 実施形態に係るデザインサブチップの他の一例を示す平面図である。It is a top view which shows another example of the design subchip which concerns on embodiment. 図32のD-D´線断面図である。FIG. 33 is a sectional view taken along line DD ′ of FIG. 32. 実施形態に係るデザインサブチップの他の一例を示す平面図である。It is a top view which shows another example of the design subchip which concerns on embodiment. 図34のE-E´線断面図である。FIG. 35 is a sectional view taken along line EE ′ of FIG. 34. 実施形態に係るデザインサブチップの他の一例を示す平面図である。It is a top view which shows another example of the design subchip which concerns on embodiment. 図36のF-F´線断面図である。FIG. 37 is a sectional view taken along line FF ′ of FIG. 36. 実施形態に係るデザインサブチップの他の一例を示す平面図である。It is a top view which shows another example of the design subchip which concerns on embodiment. 実施形態に係る近接場光デバイスの構造の変形例を示す図である。It is a figure which shows the modification of the structure of the near-field light device which concerns on embodiment. 図39に示した近接場光デバイスの金属端の形状を示す平面図である。It is a top view which shows the shape of the metal end of the near-field light device shown in FIG. 実施形態に係る近接場光デバイスの構造の変形例を示す図である。It is a figure which shows the modification of the structure of the near-field light device which concerns on embodiment. 図39に示した近接場光デバイスを用いた記録装置の構成を示す図である。It is a figure which shows the structure of the recording device using the near-field light device shown in FIG.
 以下、本発明の近接場光デバイス、記録装置及びサンプル基板に係る実施形態を、図面に基づいて説明する。尚、以下の図では、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材ごとに縮尺を異ならしめてある。 Hereinafter, embodiments of the near-field light device, the recording apparatus, and the sample substrate of the present invention will be described with reference to the drawings. In the following drawings, the scales are different for each layer and each member so that each layer and each member can be recognized on the drawing.
 <近接場光デバイス>
 本発明の近接場光デバイスの実施形態について、図1乃至図13を参照して説明する。
<Near-field optical device>
An embodiment of the near-field light device of the present invention will be described with reference to FIGS.
 (近接場光デバイスの構成)
 本実施形態に係る近接場光デバイスの構成について、図1を参照して説明する。図1は、本実施形態に係る近接場光デバイスの構造を示す図である。
(Configuration of near-field light device)
The configuration of the near-field light device according to the present embodiment will be described with reference to FIG. FIG. 1 is a diagram showing a structure of a near-field light device according to the present embodiment.
 図1において、近接場光デバイス100は、GaAs(ガリウム砒素)基板111と、該GaAs基板111上に積層され、InAs(インジウム砒素)量子ドット113を有するInAs層112と、該InAs層112上に積層されたGaAs層114と、該GaAs層114上に積層され、InAs量子ドット116を有するInAs層115と、該InAs層115上に積層されたGaAs層117と、該GaAs層117上に積層された、本発明に係る「出力端」の一例としての、金属端118と、を備えて構成されている。 In FIG. 1, a near-field optical device 100 includes a GaAs (gallium arsenide) substrate 111, an InAs layer 112 having an InAs (indium arsenide) quantum dot 113 stacked on the GaAs substrate 111, and the InAs layer 112. A laminated GaAs layer 114, an InAs layer 115 having InAs quantum dots 116 laminated on the GaAs layer 114, a GaAs layer 117 laminated on the InAs layer 115, and a laminated layer on the GaAs layer 117. In addition, a metal end 118 is provided as an example of the “output end” according to the present invention.
 近接場光デバイス100を用いて記録が実施される場合、記録媒体上に形成される記録マークは、近接場光の領域、即ち近接場光デバイス100の金属端118の形状の影響を受ける。 When recording is performed using the near-field light device 100, the recording mark formed on the recording medium is affected by the near-field light region, that is, the shape of the metal end 118 of the near-field light device 100.
 具体的には例えば、金属端118の上方から平面的に見て、該金属端118の形状が円形である場合、記録媒体上に形成される記録マークは、図2(a)に示すような、三日月状となる。他方で、金属端118の上方から平面的に見て、該金属端118の形状が矩形や楕円形である場合、記録媒体上に形成される記録マークは、図2(b)に示すような、矩形状(又は、矩形に近い形状)となる。図2は、記録媒体上に形成される記録マークの一例を示す図である。 Specifically, for example, when the shape of the metal end 118 is circular when viewed in plan from above the metal end 118, the recording mark formed on the recording medium is as shown in FIG. It becomes a crescent moon. On the other hand, when the shape of the metal end 118 is a rectangle or an ellipse when viewed in plan from above the metal end 118, the recording mark formed on the recording medium is as shown in FIG. , A rectangular shape (or a shape close to a rectangular shape). FIG. 2 is a diagram showing an example of recording marks formed on the recording medium.
 本願発明者の研究によれば、以下の事項が判明している。即ち、図2(a)に示したような三日月状の記録マークでは、該記録マークの読み取りに利用可能な面積が比較的小さくなりS/N比(Signal to Noise Ratio)が小さくなるので、記録媒体に記録された情報を適切に読み取ることが困難になる可能性がある。他方で、図2(b)に示したような矩形状の記録マークであれば、比較的容易にして、記録媒体に記録された情報を適切に読み取ることができる。 According to the inventor's research, the following matters have been found. That is, in the crescent-shaped recording mark as shown in FIG. 2A, the area available for reading the recording mark becomes relatively small and the S / N ratio (Signal to Noise Ratio) becomes small. It may be difficult to properly read information recorded on the medium. On the other hand, a rectangular recording mark as shown in FIG. 2B can read information recorded on the recording medium appropriately with relative ease.
 そこで、本実施形態では、近接場光デバイス100の金属端118が、該金属端118の上方から平面的に見て、楕円形になるように形成されている(図3参照)。図3は、本実施形態に係る近接場光デバイスの金属端の形状を示す平面図である。 Therefore, in the present embodiment, the metal end 118 of the near-field light device 100 is formed to be elliptical when viewed in plan from above the metal end 118 (see FIG. 3). FIG. 3 is a plan view showing the shape of the metal end of the near-field light device according to the present embodiment.
 図3におけるディスク(記録媒体)の半径方向(即ち、紙面の上下方向)は、本発明に係る「一の方向」の一例である。また、図3における「記録方向」(即ち、紙面の左右方向)は、本発明に係る「他の方向」の一例である。図3に示すように、記録方向は記録マークが並ぶ「トラック方向」でもある。 3 is an example of “one direction” according to the present invention. The radial direction of the disk (recording medium) in FIG. 3 is an example of “another direction” according to the present invention. As shown in FIG. 3, the recording direction is also the “track direction” in which recording marks are arranged.
 尚、金属端118の形状は、図3に示した楕円形に限らず、例えば図4(a)~(f)に示すような各種形状を採ることが可能である。特に、図4(b)~(f)では、複数の金属部材の集合として金属端118が構成されている。この場合、各金属部材間の距離は、複数の金属部材全体として一つの近接場が形成される距離に設定されている。 Note that the shape of the metal end 118 is not limited to the elliptical shape shown in FIG. 3, and various shapes such as those shown in FIGS. 4A to 4F can be employed. In particular, in FIGS. 4B to 4F, the metal end 118 is configured as an assembly of a plurality of metal members. In this case, the distance between the metal members is set to a distance at which one near field is formed as a whole of the plurality of metal members.
 図4は、本実施形態に係る近接場光デバイスの金属端の形状の変形例を示す平面図である。尚、図4において、紙面の上下方向がディスクの半径方向に対応しており、紙面の左右方向が記録方向(トラック方向)に対応している。 FIG. 4 is a plan view showing a modification of the shape of the metal end of the near-field light device according to the present embodiment. In FIG. 4, the vertical direction of the paper surface corresponds to the radial direction of the disc, and the horizontal direction of the paper surface corresponds to the recording direction (track direction).
 (近接場光デバイスの製造方法)
 次に、本実施形態に係る近接場光デバイス100の製造方法について、図5乃至図13を参照して説明する。
(Near-field optical device manufacturing method)
Next, a manufacturing method of the near-field light device 100 according to the present embodiment will be described with reference to FIGS.
 図5において、例えばn-GaAs基板等の基板30の上に、例えばGaAs等を含んでなるストッパ層31が形成される。次に、図6に示すように、該ストッパ層31の上に、GaAs基板11、量子ドット層12及び量子ドット層13が、この順番で積層される。 In FIG. 5, a stopper layer 31 containing, for example, GaAs or the like is formed on a substrate 30 such as an n-GaAs substrate. Next, as shown in FIG. 6, the GaAs substrate 11, the quantum dot layer 12, and the quantum dot layer 13 are stacked in this order on the stopper layer 31.
 次に、図7に示すように、量子ドット層13の上面に、例えばワックス61が塗布されることにより、該量子ドット層13がシリコン基板62に固定される。次に、例えば研削、ケミカルエッチング等により基板30が除去される(図8参照)。 Next, as shown in FIG. 7, for example, wax 61 is applied to the upper surface of the quantum dot layer 13, so that the quantum dot layer 13 is fixed to the silicon substrate 62. Next, the substrate 30 is removed by grinding, chemical etching, or the like (see FIG. 8).
 次に、図9に示すように、ストッパ層31の下面にガラス基板32が接着される。続いて、ワックス61及びシリコン基板62が除去される(図10参照)。次に、図11に示すように、量子ドット層13の上に、例えば金(Au)や銅(Cu)等を含んでなる金属層15が形成される。金属端14は1種類の金属で構成されるのではなく、異なる金属からなる多層構造であってもよい。一例を挙げると、例えば、クロム(Cr)層の上に金(Au)層が構成された2層構造、或いはチタニウム(Ti)層の上に(Au)と層が構成された2層構造であってもよい。 Next, as shown in FIG. 9, the glass substrate 32 is bonded to the lower surface of the stopper layer 31. Subsequently, the wax 61 and the silicon substrate 62 are removed (see FIG. 10). Next, as shown in FIG. 11, a metal layer 15 including, for example, gold (Au) or copper (Cu) is formed on the quantum dot layer 13. The metal end 14 is not composed of one kind of metal but may be a multilayer structure composed of different metals. For example, for example, a two-layer structure in which a gold (Au) layer is formed on a chromium (Cr) layer, or a two-layer structure in which (Au) and a layer are formed on a titanium (Ti) layer. There may be.
 次に、金属層15の上に所定のマスク(図示せず)が形成され、該形成されたマスクを用いて金属層15にエッチング等が施されることにより、図12に示すように金属端14が形成される。金属端14の形成は、図4に示すようなパターン形状を有する金型或いはモールド等を用いナノインプリントリソグラフィ(Nano-Imprinting Lithography)を用いて形成することも可能である。 Next, a predetermined mask (not shown) is formed on the metal layer 15, and the metal layer 15 is etched using the formed mask, so that the metal edge as shown in FIG. 14 is formed. The metal edge 14 can also be formed by using a mold or mold having a pattern shape as shown in FIG. 4 and using nano-imprinting lithography (Nano-Imprinting Lithography).
 次に、金属端14を覆うように量子ドット層13の上に所定のマスク(図示せず)が形成され、該形成されたマスクを用いて量子ドット層13、量子ドット層12及びGaAs基板11に対してエッチング等が施されることにより、図13に示すように近接場光デバイス100が形成される。 Next, a predetermined mask (not shown) is formed on the quantum dot layer 13 so as to cover the metal end 14, and the quantum dot layer 13, the quantum dot layer 12, and the GaAs substrate 11 are formed using the formed mask. Etching or the like is performed to form a near-field light device 100 as shown in FIG.
 図1に示す近接場光デバイス100は2層の量子ドットで形成した例を示したが、1層の量子ドット構造、3層以上の量子ドットからなる多層量子ドット構造、或いは金属ナノ粒子(量子ドットとして機能する)が分散した媒体で構成することも可能である。多層量子ドット構造にすることにより入射光のエネルギーを金属端14に集中させる効率が高くなる。たとえば、3層よりは5層、8層のほうが効率を高めることが可能である。 The near-field light device 100 shown in FIG. 1 is an example formed with two layers of quantum dots. However, a single layer quantum dot structure, a multilayer quantum dot structure composed of three or more layers of quantum dots, or metal nanoparticles (quantums) It is also possible to use a medium in which (which functions as dots) is dispersed. By using a multilayer quantum dot structure, the efficiency of concentrating the energy of incident light on the metal edge 14 is increased. For example, it is possible to increase the efficiency of 5 layers and 8 layers rather than 3 layers.
 尚、「GaAs基板11」及び「金属端14」は、夫々、図1における「GaAs基板111」及び「金属端118」に相当する。「量子ドット層12」は、図1における「InAs層112」及び「GaAs層114」に相当し、「量子ドット層13」は、図1における「InAs層115」及び「GaAs層117」に相当する。 The “GaAs substrate 11” and the “metal end 14” correspond to the “GaAs substrate 111” and the “metal end 118” in FIG. 1, respectively. “Quantum dot layer 12” corresponds to “InAs layer 112” and “GaAs layer 114” in FIG. 1, and “Quantum dot layer 13” corresponds to “InAs layer 115” and “GaAs layer 117” in FIG. To do.
 <記録装置>
 本発明の近接場光デバイスを備えてなる記録装置の実施形態について、図14乃至図16を参照して説明する。
<Recording device>
An embodiment of a recording apparatus comprising the near-field light device of the present invention will be described with reference to FIGS.
 図14において、本実施形態に係る記録装置は、図1に示した近接場光デバイス100と、該近接場光デバイス100に光を照射する光源60と、該光源60をON又はOFFすることにより近接場光デバイス100を制御する制御部70と、を備えて構成されている。図14は、本実施形態に係る記録装置の構成を示す図である。 14, the recording apparatus according to the present embodiment includes a near-field light device 100 illustrated in FIG. 1, a light source 60 that irradiates light to the near-field light device 100, and turning on or off the light source 60. And a control unit 70 that controls the near-field light device 100. FIG. 14 is a diagram illustrating the configuration of the recording apparatus according to the present embodiment.
 尚、光源60には、例えば、半導体レーザ、VCSEL(Vertical Cavity Surface Emitting LASER:垂直共振器面発行レーザ)、LED(Light Emitting Diode)等を適用することができるである。 For the light source 60, for example, a semiconductor laser, a VCSEL (Vertical Cavity Surface Emitting LASER: vertical cavity surface emitting laser), an LED (Light Emitting Diode), or the like can be applied.
 記録媒体50は、近接場光又は近接場光エネルギーにより発生する熱により状態が変化し、記録マークを形成可能な材料で構成されている。特に、記録媒体50は、金属端18と一体となって近接場光を形成可能なように、例えば金(Au)等の金属を含んで構成されている。 The recording medium 50 is made of a material that can change its state due to near-field light or heat generated by near-field light energy and can form a recording mark. In particular, the recording medium 50 is configured to include a metal such as gold (Au) so that the near-field light can be formed integrally with the metal end 18.
 制御部70により光源60がON状態にされると、該光源60から出射された光(入射光)により、量子ドット113(下層側の量子ドット)に近接場光21が発生し、該近接場光21により、量子ドット116(上層側の量子ドット)に近接場光22が発生し、該近接場光22のエネルギーの少なくとも一部が金属端118に移動し、該金属端118の周辺に近接場光23が発生する。 When the light source 60 is turned on by the control unit 70, near-field light 21 is generated in the quantum dots 113 (lower quantum dots) by the light (incident light) emitted from the light sources 60, and the near-field The near-field light 22 is generated in the quantum dots 116 (upper-layer quantum dots) by the light 21, and at least a part of the energy of the near-field light 22 moves to the metal end 118 and approaches the periphery of the metal end 118. Field light 23 is generated.
 金属端118と記録媒体50との間の距離が所定距離(例えば、20nm(ナノメートル))以上の場合は、記録媒体50側に近接場光23は相互作用を起こさない。他方で、金属端118と記録媒体50との間の距離が所定距離以下の場合は、近接場光23に代えて、金属端118と記録媒体50の一部である近接場光領域51とを取り囲むように近接場光24が発生する(図15参照)。尚、本実施形態に係る「近接場光領域51」は、本発明に係る「加熱領域」の一例である。 When the distance between the metal end 118 and the recording medium 50 is a predetermined distance (for example, 20 nm (nanometer)) or more, the near-field light 23 does not cause an interaction on the recording medium 50 side. On the other hand, when the distance between the metal end 118 and the recording medium 50 is equal to or less than the predetermined distance, the near-field light region 51 which is a part of the recording medium 50 is replaced with the metal end 118 instead of the near-field light 23. Near-field light 24 is generated so as to surround it (see FIG. 15). The “near-field light region 51” according to the present embodiment is an example of the “heating region” according to the present invention.
 ここで、記録媒体50が熱により状態が変化する材料により構成されている場合、近接場光24のエネルギーに起因する発熱により近接場光領域51に記録マークが形成される。或いは、記録媒体50が磁気記録媒体である場合、近接場光24のエネルギーに起因する発熱により近接場光領域51の保磁力が低下するので、磁気記録ヘッド(図示せず)により発生される磁界により磁気記録を行うことが可能となる。 Here, when the recording medium 50 is made of a material whose state changes due to heat, a recording mark is formed in the near-field light region 51 due to heat generated by the energy of the near-field light 24. Alternatively, when the recording medium 50 is a magnetic recording medium, the coercive force of the near-field light region 51 is reduced due to heat generated by the energy of the near-field light 24, so that a magnetic field generated by a magnetic recording head (not shown). Thus, magnetic recording can be performed.
 制御部70により光源60が所定時間だけON状態とされ、記録媒体50上に記録マーク52が形成された後、制御部70は光源60をOFF状態とする。続いて、記録媒体50が移動若しくは回転される、又は、近接場光デバイス100が移動されることにより、記録位置が変更される。図16では、記録媒体50が紙面上を左へ移動され、記録マーク52の右側が、新たな近接場光領域51とされている。 After the light source 60 is turned on for a predetermined time by the control unit 70 and the recording mark 52 is formed on the recording medium 50, the control unit 70 turns off the light source 60. Subsequently, the recording position is changed by moving or rotating the recording medium 50 or moving the near-field light device 100. In FIG. 16, the recording medium 50 is moved to the left on the paper surface, and the right side of the recording mark 52 is a new near-field light region 51.
 制御部70は、再度光源60をON状態として、上記の記録方法と同様に、近接場光24により新たな記録マークを形成する。このように、金属端118と記録媒体50との間の距離が所定距離以下である状態を維持しつつ、記録すべき記録情報に基づいて、制御部70が光源60をON又はOFFすることによって、例えば一定速度で回転している記録媒体50に記録情報を連続して記録することができる。 The control unit 70 turns on the light source 60 again and forms a new recording mark by the near-field light 24 in the same manner as in the above recording method. As described above, the control unit 70 turns on or off the light source 60 based on the recording information to be recorded while maintaining the state where the distance between the metal end 118 and the recording medium 50 is equal to or less than the predetermined distance. For example, the recording information can be continuously recorded on the recording medium 50 rotating at a constant speed.
 特に、本実施形態に係る近接場光デバイス100の金属端18の形状は、例えば図3に示したように、記録媒体50の半径方向に沿う長さが、記録方向に沿う長さよりも長くなるように形成されている。このため、記録媒体50上に形成される記録マークは、例えば図2(b)に示したようになる。この結果、記録媒体50の再生時に、比較的容易にして、該記録媒体50に記録された情報を適切に読み取ることができる。 In particular, in the shape of the metal end 18 of the near-field light device 100 according to the present embodiment, for example, as shown in FIG. 3, the length along the radial direction of the recording medium 50 is longer than the length along the recording direction. It is formed as follows. For this reason, the recording marks formed on the recording medium 50 are as shown in FIG. 2B, for example. As a result, the information recorded on the recording medium 50 can be read appropriately with relative ease during reproduction of the recording medium 50.
 <サンプル基板>
 (サンプル基板の構成)
 本実施形態に係るサンプル基板の構成について、図17及び図18を参照して説明する。図17は、本実施形態に係るサンプル基板の概略構成を示す概略構成図である。図18は、本実施形態に係るサンプル基板上に配列された複数のチップのうち一のチップの概略構成を示す概略構成図である。
<Sample substrate>
(Configuration of sample substrate)
The configuration of the sample substrate according to this embodiment will be described with reference to FIGS. 17 and 18. FIG. 17 is a schematic configuration diagram showing a schematic configuration of the sample substrate according to the present embodiment. FIG. 18 is a schematic configuration diagram showing a schematic configuration of one chip among a plurality of chips arranged on the sample substrate according to the present embodiment.
 図17において、サンプル基板1は、例えば2インチ等のウェハ基板である。サンプル基板1は、最終的には、例えばダイシング等によりチップ化(即ち、小片化)可能なように、例えば4mm(ミリメートル)×4mm、8mm×8mm等の複数の矩形領域(図17における“1a”参照)に区画される。そして、区画された複数の矩形領域毎に、各種部材や各種回路の配置が決定される。 In FIG. 17, the sample substrate 1 is a wafer substrate of 2 inches, for example. For example, the sample substrate 1 is finally formed into a plurality of rectangular areas (for example, 4 mm (millimeter) × 4 mm, 8 mm × 8 mm) (“1a in FIG. ”). Then, the arrangement of various members and various circuits is determined for each of the plurality of partitioned rectangular areas.
 本実施形態では、図18に示すように、一の矩形領域1aが更に複数の矩形領域に区画されており、該区画された複数の矩形領域毎に、デザインサブチップ(本発明に係る“近接場光デバイス”に相当)や評価用サブチップが形成される。尚、評価用サブチップは、必ずしも必要ではない。 In the present embodiment, as shown in FIG. 18, one rectangular area 1 a is further divided into a plurality of rectangular areas, and a design subchip (“proximity” according to the present invention) is provided for each of the divided rectangular areas. Equivalent to a field light device ”and an evaluation subchip. Note that the evaluation subchip is not necessarily required.
 (デザインサブチップ)
 次に、デザインサブチップについて、図19及び図20を参照して説明する。図19は、本実施形態に係るデザインサブチップの一例を示す平面図である。図20は、図19のA-A´線断面図である。
(Design subchip)
Next, the design subchip will be described with reference to FIGS. FIG. 19 is a plan view showing an example of the design subchip according to the present embodiment. 20 is a cross-sectional view taken along line AA ′ of FIG.
 図19において、デザインサブチップには、該デザインサブチップを、例えば熱アシスト磁気記録方法を採用する記録装置の記録ヘッド等に実装する際に利用されるアライメントマーク及びチルト補正反射鏡が形成されている。ここでは、デザインサブチップの四隅の各々にアライメントマークが形成され、該デザインサブチップの各辺にチルト補正反射鏡が形成されている。 In FIG. 19, the design subchip is formed with an alignment mark and a tilt correction reflecting mirror that are used when the design subchip is mounted on, for example, a recording head of a recording apparatus employing a heat-assisted magnetic recording method. Yes. Here, alignment marks are formed at each of the four corners of the design subchip, and a tilt correction reflecting mirror is formed at each side of the design subchip.
 デザインサブチップの中央付近には熱源ブロックが形成されており、該熱源ブロックの周辺に位置する周辺領域には、4つのコイルブロックが形成されている。 A heat source block is formed near the center of the design subchip, and four coil blocks are formed in a peripheral region located around the heat source block.
 熱源ブロックは、図20に示すように、例えばGaAs(ガリウム砒素)基板上に積層された、例えば2層の量子ドット層と、該量子ドット層の上に積層された金属端と、を備えて構成されている。 As shown in FIG. 20, the heat source block includes, for example, two quantum dot layers stacked on a GaAs (gallium arsenide) substrate, and a metal end stacked on the quantum dot layer. It is configured.
 熱源ブロックの、例えば下層側(即ち、GaAs基板の下方)から光が照射された場合、該照射された光に基づいて、2層の量子ドット層のうち下層の量子ドット層に含まれる量子ドットに近接場光が発生する。続いて、該発生した近接場光に基づいて、2層の量子ドット層のうち上層の量子ドット層に含まれる量子ドットに近接場光が発生する。そして、該発生した近接場光のエネルギーの少なくとも一部が金属端に移動し、該金属端の周囲に近接場光が発生する。 When light is irradiated from, for example, the lower layer side of the heat source block (ie, below the GaAs substrate), the quantum dots included in the lower quantum dot layer of the two quantum dot layers based on the irradiated light Near-field light is generated. Subsequently, based on the generated near-field light, near-field light is generated in the quantum dots included in the upper quantum dot layer of the two quantum dot layers. Then, at least a part of the energy of the generated near-field light moves to the metal end, and near-field light is generated around the metal end.
 熱源ブロックの金属端から所定距離(例えば、20nm(ナノメートル))以内の位置に、対象物(例えば、記録媒体等)が存在すると、熱源ブロックの金属端と対象物の少なくとも一部とを取り囲むように近接場光が発生し、該発生した近接場光によって、対象部の少なくとも一部が熱せられる。 When an object (for example, a recording medium) exists at a position within a predetermined distance (for example, 20 nm (nanometer)) from the metal edge of the heat source block, the metal edge of the heat source block and at least a part of the object are surrounded. Thus, near-field light is generated, and at least a part of the target part is heated by the generated near-field light.
 次に、図19に示したデザインサブチップの製造方法について、図21乃至図24を参照して説明する。 Next, a method of manufacturing the design subchip shown in FIG. 19 will be described with reference to FIGS.
 図21において、GaAs基板11の上に、例えばInAs(インジウム砒素)量子ドットを含んでなる量子ドット層12及び13が、この順番で積層される。続いて、量子ドット層13の上に、例えば金(Au)や銅(Cu)等を含んでなる金属層が積層され、該積層された金属層に対して、所定のマスクを用いてエッチング等が施されることにより、金属端14が形成される。基板11はGaAsの他に、例えば、ガラス基板上にGaAs層を形成してもよいし、シリコン基板上にGaAs層を形成する等してもよい。各層或いは基板の厚さは、利用する目的により適切な厚さに設定される。 In FIG. 21, on the GaAs substrate 11, quantum dot layers 12 and 13 including, for example, InAs (indium arsenide) quantum dots are stacked in this order. Subsequently, a metal layer containing, for example, gold (Au), copper (Cu), or the like is laminated on the quantum dot layer 13, and the laminated metal layer is etched using a predetermined mask. Is applied to form the metal end 14. In addition to GaAs, for example, a GaAs layer may be formed on a glass substrate, or a GaAs layer may be formed on a silicon substrate. The thickness of each layer or substrate is set to an appropriate thickness depending on the purpose of use.
 次に、金属端14を覆うように量子ドット層13の上に所定のマスク(図示せず)が形成され、該形成されたマスクを用いて量子ドット層13及び量子ドット層12に対してエッチング等が施されることにより、図22に示すように熱源ブロック81が形成される。 Next, a predetermined mask (not shown) is formed on the quantum dot layer 13 so as to cover the metal edge 14, and the quantum dot layer 13 and the quantum dot layer 12 are etched using the formed mask. As a result, the heat source block 81 is formed as shown in FIG.
 次に、GaAs基板11の上に、下地層75が積層される。続いて、該下地層75の上に、所定の形状を有する導電部材76が形成される。続いて、該形成された導電部材76を覆うように、下地層75の上に、絶縁層77が積層される(図23参照)。 Next, a base layer 75 is laminated on the GaAs substrate 11. Subsequently, a conductive member 76 having a predetermined shape is formed on the base layer 75. Subsequently, an insulating layer 77 is laminated on the base layer 75 so as to cover the formed conductive member 76 (see FIG. 23).
 次に、絶縁層77の上に、所定の形状を有する導電部材78、チルト補正反射鏡83、及びアライメントマーク(図示せず)が形成される。続いて、該形成された導電部材78等を覆うように、絶縁層77の上に、絶縁層79が積層される(図24参照)。尚、導電部材76及び78によりコイルブロック82が構成される。 Next, a conductive member 78 having a predetermined shape, a tilt correcting reflecting mirror 83, and an alignment mark (not shown) are formed on the insulating layer 77. Subsequently, an insulating layer 79 is laminated on the insulating layer 77 so as to cover the formed conductive member 78 and the like (see FIG. 24). Note that the coil block 82 is constituted by the conductive members 76 and 78.
 ここでは図示を省略したが、上記デザインサブチップの製造工程と並行して、他のデザインサブチップ及び評価用サブチップが、サンプル基板1上に形成される。 Although not shown here, other design subchips and evaluation subchips are formed on the sample substrate 1 in parallel with the manufacturing process of the design subchip.
 尚、図19に示したデザインサブチップは、例えば図25に示すように、GaAs基板11の下面に、熱源ブロック81に対して光を照射する光源としての、例えばVCSEL(Vertical Cavity Surface Emitting LASER:垂直共振器面発行レーザ)等が形成されていてもよい。図25は、図19のA-A´線断面の変形例を示す断面図である。 19, for example, as shown in FIG. 25, a VCSEL (Vertical Cavity Surface Emitting LASER: as a light source for irradiating the heat source block 81 with light on the lower surface of the GaAs substrate 11 is used. A vertical cavity surface emitting laser) or the like may be formed. FIG. 25 is a cross-sectional view showing a modification of the cross section taken along the line AA ′ of FIG.
 本実施形態に係る「金属端14」及び「熱源ブロック81」は、夫々、本発明に係る「出力端」及び「量子ドット積層体」の一例である。 The “metal end 14” and the “heat source block 81” according to the present embodiment are examples of the “output end” and the “quantum dot stack” according to the present invention, respectively.
 (評価用サブチップ)
 次に、評価用サブチップについて、図26及び図27を参照して説明する。図26は、本実施形態に係る評価用サブチップの一例を示す平面図である。図27は、本実施形態に係る評価用サブチップの他の一例を示す平面図である。
(Subchip for evaluation)
Next, the evaluation subchip will be described with reference to FIGS. FIG. 26 is a plan view showing an example of the evaluation subchip according to the present embodiment. FIG. 27 is a plan view showing another example of the evaluation subchip according to the present embodiment.
 図26は、熱源ブロック81の、例えば光学的な評価等を実施可能な評価用サブチップの一例である。図26に示すように、一つの評価用サブチップ内には、例えば、熱源ブロック81のメサ構造の違いによる発光特性分布を評価するための領域と、熱源ブロック81の金属端14の形状の違いによる発光特性分布を評価するための領域と、金属端14の形状に起因する統計的な発光特性を評価するための領域と、が設けられている。 FIG. 26 shows an example of an evaluation sub-chip capable of performing, for example, optical evaluation of the heat source block 81. As shown in FIG. 26, in one evaluation subchip, for example, due to a difference in the shape of the metal end 14 of the heat source block 81 and a region for evaluating the light emission characteristic distribution due to a difference in the mesa structure of the heat source block 81. A region for evaluating the light emission characteristic distribution and a region for evaluating the statistical light emission characteristic due to the shape of the metal edge 14 are provided.
 図27は、コイルブロック82の、例えば電気的・磁気的な評価等を実施可能な評価用サブチップの一例である。図27に示すように、一つの評価用サブチップ内には、例えば、コイルブロック82のサイズの違いによる電気的・磁気的な特性を評価するための領域と、コイルブロック82のデザインの違いによる電気的・磁気的な特性を評価するための領域と、が設けられている。 FIG. 27 shows an example of an evaluation subchip that can perform, for example, electrical and magnetic evaluation of the coil block 82. As shown in FIG. 27, in one evaluation sub-chip, for example, an area for evaluating electrical and magnetic characteristics due to a difference in the size of the coil block 82 and an electricity due to a difference in the design of the coil block 82 are included. And an area for evaluating the mechanical and magnetic characteristics.
 (デザインサブチップの他の例)
 デザインサブチップの他の例について、図28乃至図38を参照して説明する。
(Other examples of design subchips)
Another example of the design subchip will be described with reference to FIGS.
 図28及び図29に示すデザインサブチップでは、該デザインサブチップの中央付近に熱源ブロックが形成されており、該熱源ブロックの周辺に位置する周辺領域に2つのコイルブロックが形成されている。該デザインサブチップには、更に、コイルブロックの外周側に、2つの磁気導波部材が形成されている。該磁気導波部材は、図29に示すように、コイルブロックの下層まで、紙面の左右方向に沿って、延在している。 28 and 29, a heat source block is formed near the center of the design sub chip, and two coil blocks are formed in a peripheral region located around the heat source block. In the design subchip, two magnetic waveguide members are further formed on the outer peripheral side of the coil block. As shown in FIG. 29, the magnetic waveguide member extends to the lower layer of the coil block along the horizontal direction of the paper.
 図30及び図31に示すデザインサブチップでは、該デザインサブチップの中央付近に熱源ブロックが形成されており、該熱源ブロックの下層側にはコイルブロックが形成されている。該デザインサブチップには、更に、コイルブロックの外周側に、2つの磁気導波部材が形成されている。該磁気導波部材は、図31に示すように、コイルブロックの下層まで、紙面の左右方向に沿って、延在している。 In the design subchip shown in FIGS. 30 and 31, a heat source block is formed near the center of the design subchip, and a coil block is formed on the lower layer side of the heat source block. In the design subchip, two magnetic waveguide members are further formed on the outer peripheral side of the coil block. As shown in FIG. 31, the magnetic waveguide member extends to the lower layer of the coil block along the horizontal direction of the paper.
 図32及び図33に示すデザインサブチップでは、該デザインサブチップの中央付近に熱源ブロックが形成されており、該熱源ブロックの周辺に位置する周辺領域に2つのコイルブロックが形成されている。該デザインサブチップには、更に、図33に示すように、コイルブロックから、紙面の左右方向に沿って延びる磁気導波部材が形成されている。 32 and FIG. 33, a heat source block is formed near the center of the design sub chip, and two coil blocks are formed in a peripheral region located around the heat source block. Further, as shown in FIG. 33, the design subchip is formed with a magnetic waveguide member extending from the coil block along the horizontal direction of the paper surface.
 図34及び図35に示すデザインチップには、十字形状のアライメントマーク180a~180dと量子ドット層と金属端からなる熱源ブロック180eが配置されている。図34に示すように、アライメントマーク180aと180cが熱源ブロック180eを挟んで対向して配置され、アライメントマーク180bと180dが熱源ブロック180eを挟んで対向して配置されている。アライメントマーク180aの十字の交点とアライメントマーク180cの十字の交点とを結ぶ点線acと、アライメントマーク180bの十字の交点とアライメントマーク180dの十字の交点とを結ぶ点線bdとが交わる位置に熱源ブロック180eが配置されている(点線ac、点線bdは実際のサンプルチップ上には描画されていない)。 34 and 35 are arranged with a heat source block 180e composed of cross-shaped alignment marks 180a to 180d, a quantum dot layer, and a metal edge. As shown in FIG. 34, alignment marks 180a and 180c are arranged opposite to each other with the heat source block 180e interposed therebetween, and alignment marks 180b and 180d are arranged to face each other with the heat source block 180e interposed therebetween. The heat source block 180e at a position where a dotted line ac connecting the cross intersection of the alignment mark 180a and the cross intersection of the alignment mark 180c intersects with a dotted line bd connecting the cross intersection of the alignment mark 180b and the cross intersection of the alignment mark 180d. (Dotted line ac and dotted line bd are not drawn on the actual sample chip).
 熱源ブロック180eは100nmほどの大きさであり光学式のカメラなどを用いた画像認識システムでは位置を特定することができない。アライメントマーク180a~180dは光学式のカメラを用いて画像認識できる大きさであり、アライメントマーク180a~180dの位置を認識知ることが可能である。アライメントマークの認識により、計算で熱源ブロック180eの位置を特定することが可能になる。 The heat source block 180e has a size of about 100 nm, and the position cannot be specified by an image recognition system using an optical camera or the like. The alignment marks 180a to 180d have such a size that an image can be recognized using an optical camera, and the positions of the alignment marks 180a to 180d can be recognized and known. By recognizing the alignment mark, the position of the heat source block 180e can be specified by calculation.
 また、図35に示すように、熱源ブロック180eのメサの上面とアライメントマーク180a~dの高さは同一高さで形成されている。 Further, as shown in FIG. 35, the upper surface of the mesa of the heat source block 180e and the heights of the alignment marks 180a to 180d are formed at the same height.
 図36及び図37に示すデザインチップは、上述した、図34及び図35に示したデザインチップにコイルを形成したデザインチップである。また、デザインチップ上に形成されるアライメントマークは、図38に示すように、デザインチップの中心から放射状に、複数のアライメントマークが整列するように構成されてもよい。複数のアライメントマークを直列させて配置することにより、熱源ブロックの位置の特定の精度が増す。 The design chip shown in FIGS. 36 and 37 is a design chip in which a coil is formed on the design chip shown in FIGS. 34 and 35 described above. Further, as shown in FIG. 38, the alignment mark formed on the design chip may be configured such that a plurality of alignment marks are aligned radially from the center of the design chip. By arranging a plurality of alignment marks in series, the specific accuracy of the position of the heat source block is increased.
 <近接場光デバイスの変形例>
 図39(a)~(h)は図1で示した近接場光デバイス100の変形例である。
<Modified example of near-field light device>
39A to 39H are modifications of the near-field light device 100 shown in FIG.
 図39(a)は、変形例の1形態であり、光電子反射膜と下部電極(第1電極)との機能を兼ね備えた金属層(例えば、Au、Ag、Cu、Al等の金属/合金の単層或いは多層構造)であり、金属層の上にはエネルギー源としての光源(例えば、VICEL、LED等)或いは電子源(例えば、シリコン、ポーラスシリコン(Si)、コールドカソード等)、エネルギー源の上には光源から発生した光或いは電子源から発生した電子を集める金(Au)フィルム、金フィルムの上には誘電体(例えば、SiO、VaO等)からなるスペーサー、スペーサーの上には金属端である金(Au)からなる金属粒子(金属ナノパーティクル)を備えて構成されている。この金フィルムは上部電極(第2電極)を兼ねている。また、スペーサーは高さを調整等の役割を有する。 FIG. 39 (a) is a form of a modification, and a metal layer (for example, a metal / alloy such as Au, Ag, Cu, Al, etc.) having the functions of a photoelectron reflecting film and a lower electrode (first electrode). A single layer or a multilayer structure), and a light source (for example, VICEL, LED, etc.) or an electron source (for example, silicon, porous silicon (Si), cold cathode, etc.) as an energy source, an energy source on the metal layer gold (Au) film to collect electrons generated from the light or the electron source generated from the light source is on, the dielectric on top of the gold film (e.g., SiO 2, Vao 2, etc.) spacer of, on the spacer It comprises metal particles (metal nanoparticles) made of gold (Au) which is a metal end. This gold film also serves as an upper electrode (second electrode). The spacer has a role of adjusting the height.
 エネルギー源で発生した光または電子によるエネルギーは金フィルムに集められ、金属粒子へ移動する。そして、金属粒子から外部へエネルギーが放出される。 Energy from light or electrons generated from the energy source is collected on the gold film and moves to the metal particles. Then, energy is released from the metal particles to the outside.
 図39(b)は、光電子反射膜と下部電極との機能を兼ね備えた金属層、光源或いは電子源、上部電極で構成されている。上部電極の中央には穴が開いており、この穴の中央に金(Au)からなる金属粒子が位置する構成となっている。 FIG. 39 (b) includes a metal layer having a function of a photoelectron reflecting film and a lower electrode, a light source or electron source, and an upper electrode. A hole is formed in the center of the upper electrode, and metal particles made of gold (Au) are located in the center of the hole.
 図39(c)は、図39(b)のエネルギー源と金属粒子の間にスペーサーを配置した構成となっている。図39(d)は金属粒子が半導体或いは誘電体等からなる支持体で支えられた構造である。 FIG. 39C shows a configuration in which a spacer is disposed between the energy source of FIG. 39B and the metal particles. FIG. 39D shows a structure in which metal particles are supported by a support made of a semiconductor or a dielectric material.
 また、図39(e)のように金属粒子ではなく金属ロッドでもよく、図39(f)のように金属粒子を複数個積み上げロッドのようにしてもよい。図39(g)は図39(e)の金属ロッドの周囲を誘電体で包んだ構成である。また、単純に、光電子反射膜と下部電極(第1電極)との機能を兼ね備えた金属層、金属層に上にエネルギー源、エネルギー源の上に、金属端としての金属粒子を備えた図39(h)示す構成も考えられる。 Further, instead of metal particles as shown in FIG. 39 (e), metal rods may be used, or a plurality of metal particles may be stacked as shown in FIG. 39 (f). FIG. 39 (g) shows a configuration in which the metal rod shown in FIG. 39 (e) is surrounded by a dielectric. Further, FIG. 39 simply includes a metal layer having the functions of a photoelectron reflecting film and a lower electrode (first electrode), an energy source on the metal layer, and metal particles as metal ends on the energy source. The configuration shown in (h) is also conceivable.
 図40は、図39(a)に示した近接場光デバイスの平面図である。尚、図40において、紙面の上下方向がディスクの半径方向に対応しており、紙面の左右方向が記録方向(トラック方向)に対応している。図40(a)は出力端が金属粒子でありほぼ平面図としては円形である。また、図40(ai)、(aii)、(aiii)に示すように、各種形状を採ることが可能である。この他にも例えば、図4に示したような様々な形状あるいは複数の金属部材の集合として金属端を構成してもよい。 FIG. 40 is a plan view of the near-field light device shown in FIG. 39 (a). In FIG. 40, the vertical direction of the paper surface corresponds to the radial direction of the disc, and the horizontal direction of the paper surface corresponds to the recording direction (track direction). In FIG. 40A, the output end is a metal particle, which is substantially circular in plan view. In addition, as shown in FIGS. 40 (ai), (iii), and (iii), various shapes can be adopted. In addition to this, for example, the metal ends may be configured as various shapes as shown in FIG. 4 or as a collection of a plurality of metal members.
 図41は、図39に示した近接場デバイスを誘電体或いは誘電体と非金属であるセラミックとで覆うように構成してもよい。セラミックのような強固な材料で覆うことにより近接場光デバイスを衝突から保護することができる。図41(a1)は図39(a)の近接場デバイスの金属粒子スペーサー金フィルムを誘電体で多い、更にその外側をセラミックスで覆う構成である。図41(a2)は図39(a)の近接場光デバイスを誘電体で覆っている例である。同様に図41(e1)は図39(e)の近接場光デバイスを誘電体とセラミックスで覆った構成、図41(e2)は図39(e)の近接場光デバイスを誘電体で覆った構成である。 41, the near-field device shown in FIG. 39 may be configured to be covered with a dielectric or a dielectric and a non-metallic ceramic. Covering with a strong material such as ceramic can protect the near-field light device from collisions. FIG. 41 (a1) is a structure in which the metal particle spacer gold film of the near-field device of FIG. 39 (a) is mostly made of a dielectric, and the outside is covered with ceramics. FIG. 41 (a2) is an example in which the near-field light device of FIG. 39 (a) is covered with a dielectric. Similarly, FIG. 41 (e1) is a configuration in which the near-field optical device in FIG. 39 (e) is covered with a dielectric and ceramics, and FIG. 41 (e2) is a configuration in which the near-field optical device in FIG. 39 (e) is covered with a dielectric. It is a configuration.
 <記録装置の変形例>
 次に、図39で説明した近接場光デバイスを磁気ヘッドに用いた磁気記録について、図42を参照して説明する。図42は、図39で説明した近接場光デバイスに係る磁気ヘッドを用いた磁気記録の一例を説明する図である。尚、図42では、図39(a)に示した近接場光デバイスを用いているが、図39(a)に限らず、上述した各種近接場光デバイスを適用可能である。
<Modification of recording apparatus>
Next, magnetic recording using the near-field light device described in FIG. 39 as a magnetic head will be described with reference to FIG. FIG. 42 is a diagram for explaining an example of magnetic recording using the magnetic head according to the near-field light device explained in FIG. 42, the near-field light device shown in FIG. 39A is used. However, the present invention is not limited to FIG. 39A, and the various near-field light devices described above can be applied.
 動作時には、入力信号に応じて光あるは電子を出射するように、エネルギー源が制御される。近接エネルギー源から発生した光/電子のエネルギーが金属粒子に伝播すると、金属粒子と、該金属粒子と対向する磁気記録媒体の一部とが一体となり発生する近接場光により磁気記録媒体にエネルギーが与えられる。この結果、近接場光によりエネルギーを与えられた磁気記録媒体の領域の保磁力が下がり、書き込み磁極による磁気記録を容易に行うことが可能となる。他方、磁気記録媒体に記録された記録信号の読み出しは、読み取り磁極により行われる。尚、金属粒子のサイズを小さくするほど、記録密度を向上させることができる。 During operation, the energy source is controlled so as to emit light or electrons according to the input signal. When the light / electron energy generated from the near energy source propagates to the metal particles, the energy is generated in the magnetic recording medium by the near-field light generated by the metal particles and a part of the magnetic recording medium facing the metal particles. Given. As a result, the coercive force of the region of the magnetic recording medium energized by the near-field light is reduced, and magnetic recording by the writing magnetic pole can be easily performed. On the other hand, the recording signal recorded on the magnetic recording medium is read by the reading magnetic pole. The recording density can be improved as the size of the metal particles is reduced.
 尚、近接場光デバイスはセラミックスで覆われた状態でアーム上(アームの先端のスライダー)に配置され、磁気ヘッドが磁気記録媒体と衝突しても近接場光デバイスは衝撃から保護される。また、読み取り磁極、書き込み磁極等も近接場光デバイスの近傍に集積化されている。 Note that the near-field light device is disposed on the arm (slider at the tip of the arm) in a state of being covered with ceramics, and the near-field light device is protected from impact even if the magnetic head collides with the magnetic recording medium. Also, a read magnetic pole, a write magnetic pole, and the like are integrated in the vicinity of the near-field light device.
 本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う近接場光デバイス及び記録装置もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit or idea of the invention that can be read from the claims and the entire specification, and the near-field light device with such a change In addition, the recording apparatus is also included in the technical scope of the present invention.
 1…サンプル基板、11、111…GaAs基板、12、13…量子ドット層、14、118…金属端、50…記録媒体、60…光源、70…制御部、81…熱源ブロック、82…コイルブロック、83…チルト補正反射鏡、100…近接場光デバイス、112、115…InAs層、113、116…量子ドット、114、117…GaAs層 DESCRIPTION OF SYMBOLS 1 ... Sample substrate 11, 111 ... GaAs substrate, 12, 13 ... Quantum dot layer, 14, 118 ... Metal edge, 50 ... Recording medium, 60 ... Light source, 70 ... Control part, 81 ... Heat source block, 82 ... Coil block , 83: Tilt correction reflector, 100: Near-field light device, 112, 115 ... InAs layer, 113, 116 ... Quantum dot, 114, 117 ... GaAs layer

Claims (7)

  1.  外部から照射される光に基づいて近接場光を発生する量子ドットと、
     前記発生された近接場光のエネルギーの少なくとも一部を外部へ出力可能な出力端と、
     を備え、
     前記出力端は、前記出力端の上方から平面的に見て、一の方向に沿う長さが、前記一の方向と交わる他の方向に沿う長さよりも長くなるように形成されている
     ことを特徴とする近接場光デバイス。
    Quantum dots that generate near-field light based on light emitted from the outside;
    An output end capable of outputting at least part of the energy of the generated near-field light to the outside;
    With
    The output end is formed so that a length along one direction is longer than a length along another direction intersecting with the one direction as viewed in plan from above the output end. Features near-field optical device.
  2.  前記出力端は、複数の金属部材の集合として構成されていることを特徴とする請求項1に記載の近接場光デバイス。 The near-field light device according to claim 1, wherein the output end is configured as a set of a plurality of metal members.
  3.  前記出力端の形状は、前記出力端の上方から平面的に見て、矩形又は楕円形であることを特徴とする請求項1に記載の近接場光デバイス。 The near-field light device according to claim 1, wherein the shape of the output end is rectangular or elliptical when viewed in plan from above the output end.
  4.  請求項1乃至3のいずれか一項に記載の近接場光デバイスと、
     前記近接場光デバイスを制御する制御手段と、
     を備えることを特徴とする記録装置。
    The near-field light device according to any one of claims 1 to 3,
    Control means for controlling the near-field light device;
    A recording apparatus comprising:
  5.  外部から照射される光に基づいて近接場光を発生する量子ドットと、
     前記発生された近接場光のエネルギーの少なくとも一部を外部へ出力可能な出力端と、
     を備え、
     前記出力端は、記録すべき記録媒体の一部に、前記発生された近接場光のエネルギーの少なくとも一部を供給し、前記記録媒体上で平面的に見て、一の方向に沿う長さが、前記一の方向と交わる他の方向に沿う長さよりも長い加熱領域を形成するためのものである
     ことを特徴とする近接場光デバイス。
    Quantum dots that generate near-field light based on light emitted from the outside;
    An output end capable of outputting at least part of the energy of the generated near-field light to the outside;
    With
    The output end supplies at least a part of the energy of the generated near-field light to a part of the recording medium to be recorded, and has a length along one direction when viewed in plan on the recording medium. Is for forming a heating region that is longer than the length along the other direction intersecting with the one direction.
  6.  複数の基板が配列されてなるサンプル基板であって、
     前記複数の基板各々は、(i)一又は複数の量子ドットと、(ii)前記一又は複数の量子ドットの上に積層された出力端と、を有する量子ドット積層体と、前記量子ドット積層体に対して光を照射する光源と、を備える
     ことを特徴とするサンプル基板。
    A sample substrate in which a plurality of substrates are arranged,
    Each of the plurality of substrates includes: (i) one or more quantum dots; and (ii) an output end stacked on the one or more quantum dots; and the quantum dot stack A sample substrate comprising: a light source that emits light to the body.
  7.  前記複数の基板各々は、前記量子ドット積層体の周辺に位置する周辺領域に配設された少なくとも一つのコイルを更に備えることを特徴とする請求項6に記載のサンプル基板。 The sample substrate according to claim 6, wherein each of the plurality of substrates further includes at least one coil disposed in a peripheral region located around the quantum dot stack.
PCT/JP2012/070998 2011-09-26 2012-08-20 Near-field optical device, recording device and sample substrate WO2013047003A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013536072A JP5736051B2 (en) 2011-09-26 2012-08-20 Near-field light device, recording apparatus, and sample substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011209359 2011-09-26
JP2011209356 2011-09-26
JP2011-209356 2011-09-26
JP2011-209359 2011-09-26

Publications (1)

Publication Number Publication Date
WO2013047003A1 true WO2013047003A1 (en) 2013-04-04

Family

ID=47995054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070998 WO2013047003A1 (en) 2011-09-26 2012-08-20 Near-field optical device, recording device and sample substrate

Country Status (2)

Country Link
JP (1) JP5736051B2 (en)
WO (1) WO2013047003A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053600A (en) * 2012-08-09 2014-03-20 Pioneer Electronic Corp Optical device, magnetic head, manufacturing method, and near-field optical device
JP2015119001A (en) * 2013-12-17 2015-06-25 富士通株式会社 Optical semiconductor element and optical semiconductor element manufacturing method
TWI799296B (en) * 2022-02-24 2023-04-11 南亞科技股份有限公司 Method for manufacutring semiconductor structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080459A (en) * 2004-09-13 2006-03-23 Japan Science & Technology Agency Nano photonics device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005234526A (en) * 2004-01-22 2005-09-02 Ricoh Co Ltd Whole optical functional operation element
JP2009163834A (en) * 2008-01-08 2009-07-23 Sharp Corp Electromagnetic field generation element, recording head, and information recording and reproducing device
JP4753979B2 (en) * 2008-07-24 2011-08-24 独立行政法人科学技術振興機構 Optical pulse generator
JP2010146655A (en) * 2008-12-19 2010-07-01 Hitachi Global Storage Technologies Netherlands Bv Optical assist magnetic recording head and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080459A (en) * 2004-09-13 2006-03-23 Japan Science & Technology Agency Nano photonics device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Chokomitsudo Hikari Jiki Kiroku Gijutsu", KABUSHIKI KAISHA TRICEPS, 16 May 2000 (2000-05-16), pages 199 - 200 *
KINSETSUBA NANOPHOTONICS HANDBOOK, 5 September 1997 (1997-09-05), pages 154 - 159 *
OPTICAL MEMORY AND ITS SYSTEMS FOR NEXT GENERATION, 31 January 2009 (2009-01-31), pages 142 - 151 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053600A (en) * 2012-08-09 2014-03-20 Pioneer Electronic Corp Optical device, magnetic head, manufacturing method, and near-field optical device
JP2015119001A (en) * 2013-12-17 2015-06-25 富士通株式会社 Optical semiconductor element and optical semiconductor element manufacturing method
TWI799296B (en) * 2022-02-24 2023-04-11 南亞科技股份有限公司 Method for manufacutring semiconductor structure

Also Published As

Publication number Publication date
JP5736051B2 (en) 2015-06-17
JPWO2013047003A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
JP6362309B2 (en) Magnetic head and manufacturing method
JP4100133B2 (en) Recording head and information recording apparatus using the same
US8559127B2 (en) Integrated heat assisted magnetic recording head with extended cavity vertical cavity surface emitting laser diode
US8125857B2 (en) Heat-assisted magnetic recording head including plasmon generator
US8107326B1 (en) Slider with integrated thermally-assisted recording (TAR) head and integrated long laser diode
WO2012111184A1 (en) Recording device and recording method using near-field light device
US20100202256A1 (en) Near-field light generating device including surface plasmon generating element
JP5736051B2 (en) Near-field light device, recording apparatus, and sample substrate
US20220415354A1 (en) Heat-assisted magnetic recording head near-field transducer with a plasmonic disk
JP2009163834A (en) Electromagnetic field generation element, recording head, and information recording and reproducing device
JP4004978B2 (en) Information recording / reproducing head and information recording / reproducing apparatus
JP2009277285A (en) Head mechanism, optical assist type magnetic recording device, and optical recording device
US8988975B1 (en) Thermally assisted magnetic head, method of manufacturing the same, head gimbal assembly, and hard disk drive
US8054714B2 (en) Near field light assisted magnetic recording head and recording apparatus using the same
US8619518B1 (en) Thermally-assisted magnetic recording head having expanded near-field light generating layer and method of manufacture
US20140247849A1 (en) Method of producing near-field light device, and near-field light device
JP5754717B2 (en) Recording / playback device
US9378762B1 (en) Thermally-assisted magnetic recording head including a waveguide and two plasmon generators
US20160284370A1 (en) Thermally-assisted magnetic recording head having semiconductor surface emitting laser, and head gimbal assembly and disk drive unit with the same
JP2010146662A (en) Recording and playback device and recording and playback system
JP4975660B2 (en) Near-field light generating element, magnetic field generating element, light irradiation apparatus, and recording / reproducing apparatus
JP2013038227A (en) Near-field optical device
US11710506B1 (en) Heat-assisted magnetic recording head with a near-field transducer having a multilayer near-field emitter
US11710502B1 (en) Heat-assisted magnetic recording head with a multilayer plasmonic disk
US11545180B1 (en) Heat-assisted magnetic recording head with a near-field oscillator pair

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536072

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837307

Country of ref document: EP

Kind code of ref document: A1