WO2013046936A1 - Device for using engine waste heat - Google Patents

Device for using engine waste heat Download PDF

Info

Publication number
WO2013046936A1
WO2013046936A1 PCT/JP2012/070043 JP2012070043W WO2013046936A1 WO 2013046936 A1 WO2013046936 A1 WO 2013046936A1 JP 2012070043 W JP2012070043 W JP 2012070043W WO 2013046936 A1 WO2013046936 A1 WO 2013046936A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
expander
engine
ejector
waste heat
Prior art date
Application number
PCT/JP2012/070043
Other languages
French (fr)
Japanese (ja)
Inventor
永井 宏幸
貴幸 石川
真一朗 溝口
今井 智規
Original Assignee
日産自動車株式会社
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, サンデン株式会社 filed Critical 日産自動車株式会社
Publication of WO2013046936A1 publication Critical patent/WO2013046936A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/14Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled including at least one combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2260/00Recuperating heat from exhaust gases of combustion engines and heat from cooling circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a waste heat utilization device for an engine, and more particularly to an integrated one with a Rankine cycle and a refrigeration cycle.
  • JP2004-322933A does not disclose that the refrigerant serving as the drive source of the ejector is supplied using engine waste heat. Therefore, there is no description about distributing the refrigerant supplied by the refrigerant pump driven by the expander torque to the expander and the ejector under such a premise configuration.
  • Efficiency is improved by changing the ratio of the refrigerant supplied to the expander driving the refrigerant pump and the refrigerant supplied to the ejector according to the environment (conditions) in which the waste heat utilization device is placed. For example, under conditions where the capacity of the condenser is high (the amount of heat release is large), high expander torque can be obtained even with a relatively small amount of refrigerant, so by relatively increasing the amount of refrigerant supplied to the ejector, the output of the refrigeration cycle (cooling Ability) can be improved.
  • the present invention can arbitrarily adjust the driving force (the amount of refrigerant) of the refrigerant pump and the driving force (the amount of refrigerant) of the ejector when circulating the refrigerant that is also the driving source of the ejector using engine waste heat. It is an object of the present invention to provide a waste heat utilization apparatus with further improved efficiency by configuring the
  • the present invention comprises a heat exchanger for recovering engine waste heat into a refrigerant, an expander for generating power using the refrigerant at the outlet of the heat exchanger, a condenser for condensing the refrigerant leaving the expander, and the expander
  • the present invention is directed to a waste heat utilization device of an engine provided with a Rankine cycle that includes a refrigerant pump that is driven by the power regenerated by the engine and that supplies the refrigerant from the condenser to the heat exchanger.
  • the refrigeration cycle including the evaporator sharing the condenser and guiding and evaporating the refrigerant from the condenser, and using the refrigerant at the heat exchanger outlet as a driving gas
  • a flow rate distribution ratio control mechanism that can be controlled is provided.
  • FIG. 1 is a schematic block diagram showing the whole system of the Rankine cycle which is the premise of the present invention.
  • FIG. 2A is a schematic cross-sectional view of an expander pump in which the pump and the expander are integrated.
  • FIG. 2B is a schematic cross-sectional view of a refrigerant pump.
  • FIG. 2C is a schematic cross-sectional view of the expander.
  • FIG. 3 is a schematic view showing the function of the refrigerant system valve.
  • FIG. 4 is a schematic block diagram of a hybrid vehicle.
  • FIG. 5 is a schematic perspective view of an engine.
  • FIG. 6 is a schematic view of the arrangement of the exhaust pipe as viewed from below the vehicle.
  • FIG. 7A is a characteristic diagram of a Rankine cycle operating region.
  • FIG. 7A is a characteristic diagram of a Rankine cycle operating region.
  • FIG. 7B is a characteristic diagram of a Rankine cycle operating region.
  • FIG. 8 is a timing chart showing how the hybrid vehicle 1 is accelerated while assisting the rotation of the engine output shaft by the expander torque.
  • FIG. 9 is a timing chart showing a state of restart from the shutdown of the Rankine cycle.
  • FIG. 10 is a schematic configuration diagram of an integrated cycle of the first embodiment of the present invention to which an ejector is added.
  • FIG. 11 is a schematic cross-sectional view of the ejector.
  • FIG. 12 is a schematic view showing Rankine cycle islanding operation.
  • FIG. 13 is a schematic view showing the operation of the torque-assisted ejector air conditioner.
  • FIG. 14 is a schematic view showing the operation of a torque assist-less ejector air conditioner.
  • FIG. 15 is a schematic view showing the operation of the compressor air conditioner.
  • FIG. 16A is a flowchart for describing control of the integration cycle of the first embodiment.
  • FIG. 16B is a flowchart for describing control of the integration cycle of the first embodiment.
  • FIG. 17 is a characteristic diagram of the radiator fan target rotational speed.
  • FIG. 18 is a characteristic diagram of the target ejector supply flow rate.
  • FIG. 19 is a characteristic diagram of the target ejector side opening degree.
  • FIG. 20 is a characteristic diagram of the target pump rotational speed.
  • FIG. 21 is a characteristic diagram of the target compressor drive amount.
  • FIG. 22A is a flowchart for describing control of the integration cycle of the second embodiment.
  • FIG. 22A is a flowchart for describing control of the integration cycle of the second embodiment.
  • FIG. 22B is a flowchart for describing control of the integration cycle of the second embodiment.
  • FIG. 23 is a characteristic diagram of the basic expander side opening degree of the second embodiment.
  • FIG. 24 is a schematic configuration diagram of a hybrid vehicle.
  • FIG. 25 is a layout view of the radiator and the condenser of the third embodiment.
  • FIG. 26 is a schematic configuration diagram of an integration cycle of the fourth embodiment.
  • FIG. 27 is a diagram showing an example of a circuit configuration that can be applied to the fifth embodiment.
  • FIG. 28 is a diagram showing another example of the circuit configuration that can be applied to the fifth embodiment.
  • FIG. 29 is a timing chart when control according to the fifth embodiment is performed.
  • FIG. 1 shows a schematic configuration diagram showing the whole system of Rankine cycle on which the present invention is premised.
  • the Rankine cycle 31 of FIG. 1 is configured to share the refrigerant and the condenser 38 with the refrigeration cycle 51.
  • the cycle in which the Rankine cycle 31 and the refrigeration cycle 51 are integrated is referred to as an integrated cycle 30.
  • FIG. 4 is a schematic configuration diagram of the hybrid vehicle 1 on which the integrated cycle 30 is mounted.
  • the integrated cycle 30 is a circuit (passage) through which the refrigerants of the Rankine cycle 31 and the refrigeration cycle 51 circulate, and a pump, an expander, a condenser and other components provided in the middle thereof, as well as a circuit of cooling water and exhaust. It refers to the whole system including (passage) etc.
  • hybrid vehicle 1 engine 2, motor generator 81, and automatic transmission 82 are connected in series, and the output of automatic transmission 82 is transmitted to driving wheel 85 via propeller shaft 83 and differential gear 84.
  • a first drive shaft clutch 86 is provided between the engine 2 and the motor generator 81.
  • one of the friction engagement elements of the automatic transmission 82 is configured as a second drive shaft clutch 87.
  • the first drive shaft clutch 86 and the second drive shaft clutch 87 are connected to the engine controller 71, and connection / disconnection (connection state) thereof is controlled in accordance with the driving condition of the hybrid vehicle.
  • connection / disconnection connection state
  • the hybrid vehicle 1 As shown in FIG. 7B, when the vehicle speed is in the EV travel range where the efficiency of the engine 2 is low, the engine 2 is stopped, the first drive shaft clutch 86 is disconnected, and the second drive shaft clutch 87 is It connects and makes the hybrid vehicle 1 travel with only the driving force of the motor generator 81.
  • the engine 2 is driven to drive the Rankine cycle 31 (described later).
  • the engine 2 includes an exhaust passage 3, and the exhaust passage 3 includes an exhaust manifold 4 and an exhaust pipe 5 connected to a collecting portion of the exhaust manifold 4.
  • the exhaust pipe 5 branches off from the bypass exhaust pipe 6 in the middle, and the exhaust pipe 5 of the section bypassed by the bypass exhaust pipe 6 is a waste heat recovery for performing heat exchange between the exhaust gas and the cooling water Vessel 22 is provided.
  • the waste heat recovery unit 22 and the bypass exhaust pipe 6 are disposed between the underfloor catalyst 88 and the downstream sub-muffler 89 as a waste heat recovery unit 23 in which these are integrated as shown in FIG. 6.
  • the cooling water at about 80 to 90 ° C. that has left the engine 2 flows separately into the cooling water passage 13 passing through the radiator 11 and the bypass cooling water passage 14 bypassing the radiator 11. Thereafter, the two flows rejoin at the thermostat valve 15 which determines the distribution of the flow rate of the cooling water flowing through both passages 13 and 14, and further return to the engine 2 through the cooling water pump 16.
  • the coolant pump 16 is driven by the engine 2 and its rotational speed is in phase with the engine rotational speed.
  • the thermostat valve 15 enlarges the valve opening on the coolant passage 13 side to relatively increase the amount of coolant passing through the radiator 11, and when the coolant temperature is low, the coolant passage The valve opening degree on the side 13 is reduced to relatively reduce the amount of cooling water passing through the radiator 11.
  • the radiator 11 is completely bypassed, and the entire amount of coolant flows on the bypass coolant passage 14 side.
  • the valve opening on the bypass coolant passage 14 side is never fully closed.
  • the thermostat valve 15 is configured so as not to stop completely.
  • the bypass cooling water passage 14 bypassing the radiator 11 is branched from the cooling water passage 13 and directly connected to the heat exchanger 36 described later, and branched from the cooling water passage 13 to recover waste heat. And a second bypass coolant passage 25 connected to the heat exchanger 36 after passing through the vessel 22.
  • the bypass cooling water passage 14 is provided with a heat exchanger 36 which exchanges heat with the refrigerant of the Rankine cycle 31.
  • the heat exchanger 36 is an integrated heater and superheater. That is, in the heat exchanger 36, the refrigerant passage 36c through which the refrigerant of the Rankine cycle 31 flows is a cooling water passage so that the two cooling water passages 36a and 36b can exchange heat substantially between the refrigerant and the cooling water. It is provided adjacent to 36a and 36b. Furthermore, when looking through the heat exchanger 36, the passages 36a, 36b, and 36c are configured such that the refrigerant and the coolant in the Rankine cycle 31 flow in opposite directions.
  • one cooling water passage 36 a located on the upstream (left in FIG. 1) side of the refrigerant of the Rankine cycle 31 is interposed in the first bypass cooling water passage 24.
  • the heat exchanger left side portion including the coolant passage 36a and the coolant passage portion adjacent to the coolant passage 36a flows through the coolant passage 36c by directly introducing the coolant from the engine 2 into the coolant passage 36a. It is a heater for heating the refrigerant of the Rankine cycle 31.
  • the cooling water that has passed through the waste heat recovery unit 22 via the second bypass cooling water passage 25 is introduced to the other cooling water passage 36 b located on the downstream (right in FIG. 1) side with respect to the refrigerant of the Rankine cycle 31.
  • the heat exchanger right portion (downstream side with respect to the refrigerant of the Rankine cycle 31) including the cooling water passage 36b and the refrigerant passage portion adjacent to the cooling water passage 36b Is introduced into the cooling water passage 36b to superheat the refrigerant flowing in the refrigerant passage 36c.
  • the cooling water passage 22 a of the waste heat recovery unit 22 is provided adjacent to the exhaust pipe 5. By introducing the cooling water at the outlet of the engine 2 into the cooling water passage 22a of the waste heat recovery unit 22, the cooling water can be heated to, for example, about 110 to 115 ° C. by high-temperature exhaust gas.
  • the cooling water passage 22a is configured such that the exhaust gas and the cooling water flow in opposite directions when the entire waste heat recovery unit 22 is viewed.
  • a control valve 26 is interposed in the second bypass cooling water passage 25 provided with the waste heat recovery unit 22.
  • the coolant temperature sensor at the outlet of the engine 2 so that the engine coolant temperature that indicates the temperature of the coolant inside the engine 2 does not exceed, for example, the allowable temperature (for example, 100 ° C.) for preventing engine efficiency deterioration and knocking.
  • the allowable temperature for example, 100 ° C.
  • the opening degree of the control valve 26 is decreased.
  • the engine water temperature approaches the allowable temperature, the amount of cooling water passing through the waste heat recovery unit 22 is reduced, so that the engine water temperature can be reliably prevented from exceeding the allowable temperature.
  • a bypass exhaust pipe 6 bypassing the waste heat recovery unit 22 and a thermostat valve 7 for controlling an exhaust passage amount of the exhaust recovery device 22 and an exhaust passage amount of the bypass exhaust pipe 6 are branched. It is provided in the department.
  • valve opening degree of the thermostat valve 7 is the temperature of the cooling water leaving the waste heat recovery unit 22 so that the temperature of the cooling water leaving the waste heat recovery unit 22 does not exceed a predetermined temperature (eg boiling temperature 120 ° C.) Adjusted based on
  • the heat exchanger 36, the thermostat valve 7, and the waste heat recovery unit 22 are integrated as a waste heat recovery unit 23, and are disposed midway in the exhaust pipe below the floor approximately at the center in the vehicle width direction.
  • the thermostat valve 7 may be a relatively simple temperature sensitive valve using a bimetal or the like, or may be a control valve controlled by a controller to which a temperature sensor output is input. Since the adjustment of the heat exchange amount from the exhaust gas to the cooling water by the thermostat valve 7 involves a relatively large delay, it is difficult to prevent the engine water temperature from exceeding the allowable temperature if the thermostat valve 7 is adjusted alone.
  • the control valve 26 of the second bypass cooling water passage 25 is controlled based on the engine water temperature (outlet temperature), the heat recovery amount can be rapidly reduced and the engine water temperature surely exceeds the allowable temperature. It can prevent. Further, if the engine water temperature has a margin up to the allowable temperature, heat exchange is performed until the temperature of the cooling water leaving the waste heat recovery unit 22 reaches a high temperature (for example, 110 to 115 ° C.) which exceeds the allowable temperature of the engine water temperature. To increase the amount of waste heat recovery.
  • the coolant that has left the coolant passage 36 b is joined to the first bypass coolant passage 24 via the second bypass coolant passage 25.
  • the cooling water passage 13 side of the thermostat valve 15 If the temperature of the cooling water from the bypass cooling water passage 14 toward the thermostat valve 15 is sufficiently lowered by heat exchange with the refrigerant of the Rankine cycle 31 in the heat exchanger 36, for example, the cooling water passage 13 side of the thermostat valve 15 The valve opening degree of is decreased, and the amount of cooling water passing through the radiator 11 is relatively reduced. Conversely, when the temperature of the coolant flowing from the bypass coolant passage 14 toward the thermostat valve 15 is increased due to the Rankine cycle 31 not being operated, the valve opening on the coolant passage 13 side of the thermostat valve 15 is increased. The amount of cooling water passing through the radiator 11 is relatively increased. Based on the operation of the thermostat valve 15 as described above, the coolant temperature of the engine 2 is appropriately maintained, and heat is appropriately supplied (recovered) to the Rankine cycle 31.
  • the Rankine cycle 31 is not a simple Rankine cycle, but is configured as part of an integrated cycle 30 integrated with the refrigeration cycle 51.
  • the basic Rankine cycle 31 will be described first, and then the refrigeration cycle 51 will be mentioned.
  • the Rankine cycle 31 is a system that recovers the waste heat of the engine 2 as a refrigerant through the cooling water of the engine 2 and regenerates the recovered waste heat as power.
  • the Rankine cycle 31 includes a refrigerant pump 32, a heat exchanger 36 as a superheater, an expander 37, and a condenser (condenser) 38, and each component is connected by refrigerant passages 41 to 44 through which a refrigerant (R 134a etc.) circulates. It is done.
  • the shaft of the refrigerant pump 32 is connected to the output shaft of the expander 37 on the same shaft, and the output (power) generated by the expander 37 drives the refrigerant pump 32 and the generated power is output from the engine 2 Supply to the crankshaft) (see FIG. 2A). That is, the shaft of the refrigerant pump 32 and the output shaft of the expander 37 are disposed parallel to the output shaft of the engine 2, and a belt 34 is disposed between the pump pulley 33 provided at the tip of the shaft of the refrigerant pump 32 and the crank pulley 2 a. (See Figure 1).
  • a gear pump is used as the refrigerant pump 32 of the present embodiment, and a scroll expander is used as the expander 37 (see FIGS. 2B and 2C).
  • an electromagnetic clutch (hereinafter referred to as “expansion machine clutch”) 35 is provided between the pump pulley 33 and the refrigerant pump 32, and the refrigerant pump 32 and the expansion machine 37 can be connected to and disconnected from the engine 2. (See Figure 2A). Therefore, the expander 37 is connected by connecting the expander clutch 35 when the output generated by the expander 37 exceeds the friction of the driving force of the refrigerant pump 32 and the rotating body (when the predicted expander torque is positive).
  • the rotation of the engine output shaft can be assisted by the output generated by Fuel consumption can be improved by assisting the rotation of the engine output shaft using the energy obtained by waste heat recovery as described above.
  • energy for driving the refrigerant pump 32 for circulating the refrigerant can also be provided by the recovered waste heat.
  • the refrigerant from the refrigerant pump 32 is supplied to the heat exchanger 36 via the refrigerant passage 41.
  • the heat exchanger 36 exchanges heat between the coolant of the engine 2 and the refrigerant to vaporize and superheat the refrigerant.
  • the refrigerant from the heat exchanger 36 is supplied to the expander 37 via the refrigerant passage 42.
  • the expander 37 is a steam turbine that converts heat into rotational energy by expanding a vaporized and superheated refrigerant.
  • the power recovered by the expander 37 drives the refrigerant pump 32, is transmitted to the engine 2 via the belt transmission mechanism, and assists the rotation of the engine 2.
  • the refrigerant from the expander 37 is supplied to the condenser 38 via the refrigerant passage 43.
  • the condenser 38 is a heat exchanger which performs heat exchange between the outside air and the refrigerant, cools the refrigerant, and liquefies the refrigerant. For this reason, the condenser 38 is disposed in parallel with the radiator 11 and is cooled by the radiator fan 12.
  • the refrigerant liquefied by the condenser 38 is returned to the refrigerant pump 32 through the refrigerant passage 44.
  • the refrigerant returned to the refrigerant pump 32 is again sent to the heat exchanger 36 by the refrigerant pump 32, and circulates through the components of the Rankine cycle 31.
  • the refrigeration cycle 51 is integrated with the Rankine cycle 31 in order to share the refrigerant circulating through the Rankine cycle 31, and the configuration itself of the refrigeration cycle 51 is simplified. That is, the refrigeration cycle 51 includes a compressor (compressor) 52, a condenser 38, and an evaporator (evaporator) 55.
  • compressor compressor
  • condenser condenser
  • evaporator evaporator
  • the compressor 52 is a fluid machine that compresses the refrigerant of the refrigeration cycle 51 to a high temperature and a high pressure, and is driven by the engine 2. That is, as shown also in FIG. 4, the compressor pulley 53 is fixed to the drive shaft of the compressor 52, and the belt 34 is wound around the compressor pulley 53 and the crank pulley 2a. The driving force of the engine 2 is transmitted to the compressor pulley 53 via the belt 34, and the compressor 52 is driven. Further, an electromagnetic clutch (hereinafter referred to as a "compressor clutch”) 54 is provided between the compressor pulley 53 and the compressor 52 so that the compressor 52 and the compressor pulley 53 can be connected and disconnected.
  • a compressor clutch electromagnetic clutch
  • the refrigerant from the compressor 52 joins the refrigerant passage 43 via the refrigerant passage 56 and is then supplied to the condenser 38.
  • the condenser 38 is a heat exchanger that condenses and liquefies the refrigerant by heat exchange with the outside air.
  • the liquid refrigerant from the condenser 38 is supplied to the evaporator (evaporator) 55 via a refrigerant passage 57 branched from the refrigerant passage 44.
  • the evaporator 55 is disposed in the case of the air conditioner unit, similarly to the heater core (not shown).
  • the evaporator 55 is a heat exchanger that evaporates the liquid refrigerant from the condenser 38 and cools the conditioned air from the blower fan by the latent heat of evaporation at that time.
  • the refrigerant evaporated by the evaporator 55 is returned to the compressor 52 via the refrigerant passage 58.
  • the mixing ratio of the conditioned air cooled by the evaporator 55 and the conditioned air heated by the heater core is changed according to the degree of opening of the air mix door, and is adjusted to the temperature set by the occupant.
  • various valves are appropriately provided in the middle of the circuit in order to control the refrigerant flowing in the cycle.
  • a pump upstream valve 61 is provided in the refrigerant passage 44 connecting the refrigeration cycle branch point 45 and the refrigerant pump 32, and the heat exchanger 36 and the expander 37 are communicated.
  • An expander upstream valve 62 is provided in the refrigerant passage 42 which is disposed.
  • a check valve 63 is provided in the refrigerant passage 41 connecting the refrigerant pump 32 and the heat exchanger 36 in order to prevent the backflow of the refrigerant from the heat exchanger 36 to the refrigerant pump 32.
  • the refrigerant passage 43 connecting the expander 37 and the refrigeration cycle junction 46 is also provided with a check valve 64 for preventing the backflow of the refrigerant from the refrigeration cycle junction 46 to the expander 37.
  • an expander bypass passage 65 is provided which bypasses the expander 37 from the upstream of the expander upstream valve 62 and joins the upstream of the check valve 64, and a bypass valve 66 is provided in the expander bypass passage 65.
  • a pressure regulating valve 68 is provided in the passage 67 that bypasses the bypass valve 66.
  • An air conditioner circuit valve 69 is provided in the refrigerant passage 57 connecting the refrigeration cycle branch point 45 and the evaporator 55 also on the refrigeration cycle 51 side.
  • the four valves 61, 62, 66, 69 are all electromagnetic on-off valves.
  • the signal of the expander upstream pressure detected by the pressure sensor 72, the signal of the refrigerant pressure Pd at the outlet of the condenser 38 detected by the pressure sensor 73, the rotational speed signal of the expander 37, etc. are input to the engine controller 71 .
  • the engine controller 71 controls the compressor 52 of the refrigeration cycle 51 and the radiator fan 12 based on the respective input signals in accordance with predetermined operation conditions, and the four electromagnetic on-off valves 61, 62, 66. , 69 open and close control.
  • the expander torque (regenerative power) is predicted based on the expander upstream pressure detected by the pressure sensor 72 and the expander rotational speed, and when the predicted expander torque is positive (the engine output shaft is assisted (When possible) and engage the expander clutch 35, and release the expander clutch 35 when the predicted expander torque is zero or negative.
  • the expander torque can be predicted with high accuracy, based on the sensor detection pressure and the expander rotational speed, and the expander torque generation state Accordingly, the expansion clutch 35 can be properly engaged and disengaged (see JP 2010-190185 A for details).
  • the four on-off valves 61, 62, 66, 69 and the two check valves 63, 64 are refrigerant system valves. The functions of these refrigerant valves are shown again in FIG.
  • the pump upstream valve 61 closes the refrigerant (including the lubricating component) to the Rankine cycle 31 by closing under a predetermined condition that the refrigerant tends to be biased to the circuit of the Rankine cycle 31 compared to the circuit of the refrigeration cycle 51.
  • the circuit of the Rankine cycle 31 is closed in cooperation with the check valve 64 downstream of the expander 37.
  • the expander upstream valve 62 shuts off the refrigerant passage 42 when the refrigerant pressure from the heat exchanger 36 is relatively low, so that the refrigerant from the heat exchanger 36 can be held to a high pressure. It is.
  • the bypass valve 66 is opened so that the refrigerant pump 32 can be operated after bypassing the expander 37 when the amount of refrigerant present on the Rankine cycle 31 side is not sufficient, for example, when the Rankine cycle 31 is started. To reduce the start-up time of the Rankine cycle 31.
  • the refrigerant temperature at the outlet of the condenser 38 or at the inlet of the refrigerant pump 32 changes from the boiling point considering the pressure at that portion to a predetermined temperature difference (subcool temperature SC). If the above-mentioned state of reduction is realized, the Rankine cycle 31 is ready to be supplied with a sufficient amount of liquid refrigerant.
  • the check valve 63 upstream of the heat exchanger 36 is for maintaining the refrigerant supplied to the expander 37 at high pressure in cooperation with the bypass valve 66, the pressure control valve 68 and the expander upstream valve 62. Under conditions where the regenerative efficiency of the Rankine cycle 31 is low, the operation of the Rankine cycle 31 is stopped, and the circuit is closed over the sections before and after the heat exchanger 36 to raise the refrigerant pressure during stoppage. The Rankine cycle 31 can be restarted promptly by using it.
  • the pressure control valve 68 has a role of a relief valve that opens when the pressure of the refrigerant supplied to the expander 37 becomes too high and releases the too high refrigerant.
  • the check valve 64 downstream of the expander 37 is for preventing the bias of the refrigerant to the Rankine cycle 31 in cooperation with the above-described pump upstream valve 61. If the engine 2 is not warmed up immediately after the start of the operation of the hybrid vehicle 1, the Rankine cycle 31 may become lower temperature than the refrigeration cycle 51, and the refrigerant may be biased to the Rankine cycle 31 side. Although the probability of deviation to the Rankine cycle 31 side is not so high, for example, because the cooling capacity is most required in the situation where it is desirable to quickly cool the vehicle interior immediately after the start of vehicle operation in summer, slight uneven distribution of refrigerant is eliminated. There is a demand to secure the refrigerant of the refrigeration cycle 51. Therefore, in order to prevent uneven distribution of the refrigerant on the Rankine cycle 31 side, a check valve 64 is provided.
  • the compressor 52 does not have a structure that allows the refrigerant to freely pass when the driving is stopped, and can prevent the bias of the refrigerant to the refrigeration cycle 51 in cooperation with the air conditioner circuit valve 69. This will be described.
  • the refrigerant may move from the relatively high temperature Rankine cycle 31 side in steady operation to the refrigeration cycle 51 side, and the refrigerant circulating in the Rankine cycle 31 may run short.
  • the temperature of the evaporator 55 immediately after the cooling is stopped, the temperature of the evaporator 55 is low, and the refrigerant tends to be accumulated in the evaporator 55 having a relatively large volume and a low temperature.
  • the movement of the refrigerant from the condenser 38 to the evaporator 55 is shut off by stopping the driving of the compressor 52, and the air conditioner circuit valve 69 is closed to prevent the refrigerant from being unevenly distributed to the refrigeration cycle 51.
  • FIG. 5 is a schematic perspective view of the engine 2 showing a package of the entire engine 2. What is characteristic in FIG. 5 is that the heat exchanger 36 is disposed vertically above the exhaust manifold 4. By disposing the heat exchanger 36 in the space vertically above the exhaust manifold 4, the mountability of the Rankine cycle 31 on the engine 2 is improved. Further, the engine 2 is provided with a tension pulley 8.
  • FIG. 7A and 7B are operation region diagrams of the Rankine cycle 31.
  • FIG. FIG. 7A shows the operating region of the Rankine cycle 31 when the horizontal axis is the outside air temperature, and the vertical axis is the engine water temperature (cooling water temperature).
  • FIG. 7B shows the operating region of the Rankine cycle 31 when the horizontal axis is the engine rotational speed and the vertical axis is the engine torque (engine load).
  • the Rankine cycle 31 is operated when predetermined conditions are satisfied, and the Rankine cycle 31 is operated when both of these conditions are satisfied.
  • FIG. 7A the operation of the Rankine cycle 31 is stopped in the low water temperature region where warm-up of the engine 2 is prioritized and the high outside air temperature region where the load of the compressor 52 increases. During warm-up where the exhaust gas temperature is low and the recovery efficiency is poor, the coolant temperature is raised promptly by not operating the Rankine cycle 31 rather. At high outside air temperatures where high cooling capacity is required, the Rankine cycle 31 is stopped to provide the refrigeration cycle 51 with sufficient refrigerant and cooling capacity of the condenser 38.
  • FIG. 8 is a timing chart showing, as a model, how the hybrid vehicle 1 accelerates while the rotation of the engine output shaft is assisted by the expander torque. Note that on the right side of FIG. 8, a state in which the operating state of the expander 37 changes at this time is shown on the expander torque map. Of the range divided by the contour line of the expander torque map, the expander rotational speed is low and the expander upstream pressure is high (upper left) is the largest expander torque and the expander rotational speed is high, the expander upstream pressure As the lower the value (the lower right), the expander torque tends to decrease. In particular, the range of the hatched portion represents a region where the expander torque is negative on the premise that the refrigerant pump is driven and the load is applied to the engine.
  • the constant speed traveling is continued until the timing t1 at which the driver depresses the accelerator pedal, and the expander 37 generates positive torque, and rotation assist of the engine output shaft by the expander torque is performed.
  • the rotational speed of the expander 37 that is, the rotational speed of the refrigerant pump 32
  • the increase in exhaust temperature or coolant temperature is delayed with respect to the increase in engine rotational speed.
  • the ratio of recoverable heat amount to the amount of refrigerant increased due to the increase of the rotational speed of the refrigerant pump 32 decreases.
  • the expander upstream valve 62 is switched from the open state to the closed state to deteriorate the regeneration efficiency ( The phenomenon in which the expander 37 is dragged to the engine 2 in reverse with the excessive reduction of expander torque is avoided.
  • the expander clutch 35 After switching the expander upstream valve 62 from the open state to the closed state, the expander clutch 35 is switched from connection (engagement) to disconnection (release) at timing t3.
  • the refrigerant pressure in the upstream of the expander is sufficiently lowered by disconnecting the expander clutch 35 by delaying the disconnection timing of the expander clutch 35 somewhat later than the timing at which the expander upstream valve 62 is switched from the open state to the closed state. It is possible to prevent the expander 37 from being over-rotated. Further, by supplying a larger amount of refrigerant into the heat exchanger 36 by the refrigerant pump 32 and effectively heating the refrigerant even while the Rankine cycle 31 is stopped, the operation resumption of the Rankine cycle 31 can be smoothly performed. There is.
  • the expander upstream pressure rises again due to the increase of the heat release amount of the engine 2, and at timing of t4, the expander upstream valve 62 is switched from the closed state to the open state to supply the refrigerant to the expander 37 Is resumed.
  • the expander clutch 35 is connected again at the timing of t4. Reconnection of the expander clutch 35 restarts the rotation assist of the engine output shaft by the expander torque.
  • FIG. 9 shows a state in which the Rankine cycle 31 is restarted in a mode different from that of FIG. 8 (control of timing t4) from the operation stop of the Rankine cycle with the expander upstream valve 62 closed and the expander clutch 35 disconnected. Is a timing chart showing the model.
  • the heat release amount of the engine 2 increases, and the increase in the heat release amount raises the temperature of the coolant flowing into the heat exchanger 36, and the temperature of the refrigerant in the heat exchanger 36 Will rise. Since the expander upstream valve 62 is closed, the refrigerant pressure upstream of the expander upstream valve 62, that is, the expander upstream pressure, is increased by the increase of the refrigerant temperature by the heat exchanger 36 (t11 to t12).
  • the change in the operating state switches the Rankine cycle non-operating range to the Rankine cycle operating range.
  • the expander upstream valve 62 is not present and the shift to the Rankine cycle operation region is made, the expander clutch 35 is immediately switched from the disconnected state to the connected state, and the expander 37 is connected to the engine output shaft.
  • a torque shock occurs when 37 is a load on the engine 2.
  • the expander 37 can be operated (driven) at a timing of t12 when the differential pressure between the expander upstream pressure and the expander downstream pressure increases and reaches a predetermined pressure or more, and the expansion valve upstream valve 62 is closed Switch to open state.
  • the expansion valve upstream valve 62 By switching the expansion valve upstream valve 62 to the open state, the refrigerant having a predetermined pressure is supplied to the expander 37, and the expander rotational speed rapidly increases from zero.
  • the expander clutch 35 is switched from the disconnected state to the connected state at time t13 when the expander rotational speed reaches the engine rotational speed due to the increase in the expander rotational speed. If the expander clutch 35 is connected before the expander 37 sufficiently increases the rotational speed, the expander 37 becomes an engine load and a torque shock may occur. On the other hand, the expansion machine clutch 35 becomes an engine load by connecting the expansion machine clutch 35 at a timing of t13 when the rotational speed difference from the engine output shaft disappears, and the expansion machine clutch 35 is engaged. Can also prevent torque shock associated with
  • FIG. 10 shows a configuration in which an ejector 92 is added to the configuration shown in FIG. 1 and the same parts as in FIG. 1 are given the same reference numerals.
  • a refrigerant passage 91 for bypassing the compressor 52 is provided. That is, a refrigerant passage 91 which branches from the refrigerant passage 58 connecting the outlet of the evaporator 55 and the compressor 52 and joins the refrigeration cycle junction 46 is provided. An ejector 92 is interposed in the refrigerant passage 91. In the refrigerant passage 91 between the branch point of the refrigerant passage 91 and the ejector 92, a check valve 99 is interposed for blocking the flow of the refrigerant from the ejector 92 to the branch point of the refrigerant passage 91.
  • the above-described ejector 92 is a device capable of creating a near vacuum state from fluid without mechanical movement such as a pump.
  • the ejector 92 as shown in FIG. 11, includes a chamber 93 surrounded by the periphery, a suction port 94 opened to the chamber 93, a nozzle 95 facing the chamber 93, and a diffuser 96.
  • the nozzle 95 and the diffuser 96 face each other at an appropriate distance.
  • the refrigerant passage is connected as follows to the ejector 92 configured as described above. That is, in FIG. 10, the refrigerant passage 97 is branched from the refrigerant passage 42 close to the outlet of the heat exchanger 36, and the branched refrigerant passage 97 is connected to the nozzle inlet 95a.
  • the branch portion of the branch refrigerant passage 97 is provided with an electromagnetic flow control valve 98 capable of adjusting the distribution ratio of the flow rate of the refrigerant flowing to the expander 37 and the flow rate of the refrigerant flowing to the ejector 92.
  • an electromagnetic flow control valve 98 capable of adjusting the distribution ratio of the flow rate of the refrigerant flowing to the expander 37 and the flow rate of the refrigerant flowing to the ejector 92.
  • the ejector-side opening degree when the ejector-side opening degree is zero, all the refrigerant exiting from the outlet of the heat exchanger 36 does not flow through the branch refrigerant passage 97, and when the ejector-side opening degree is maximized, it exits from the outlet of the heat exchanger 36 All of the refrigerant flows in the branched refrigerant passage 97.
  • the expander side opening degree when the expander side opening degree is zero, all the refrigerant at the heat exchanger outlet does not flow through the refrigerant passage 42, and when the expander side opening degree is maximized, the refrigerant leaving the outlet of the heat exchanger 36 All flow through the refrigerant passage 42.
  • the expander side opening degree when the ejector side opening degree is zero, the expander side opening degree is maximum, and when the ejector side opening degree is gradually increased from zero, the expander side opening degree gradually decreases from the maximum. Then, when the ejector side opening degree is maximized, the expander side opening degree becomes zero.
  • the relationship between the two openings in the flow control valve 98 of the present embodiment is a relationship in which the remaining openings are uniquely determined by determining one of the openings. Therefore, the flow control valve 98 may be controlled by either the ejector side opening degree or the expander side opening degree. Here, the ejector side opening degree is controlled.
  • the refrigerant circuit is configured such that the ejector 92 is in parallel with the expander 37, the refrigerant can be arbitrarily diverted to the ejector side and the expander side, and the driving of the refrigerant pump 32 and the compressor 52 Driving can be performed as desired.
  • the refrigerant passage 91 on the evaporator 55 side is connected to the suction port 94, and the refrigerant passage 91 on the merging portion 46 side with the refrigerant passage 43 is connected to the ejector outlet 96a.
  • the operation of the ejector 92 will be described.
  • a high pressure gas refrigerant is injected as a drive gas from the nozzle 95 toward the chamber 93, the gas refrigerant forms a low pressure supersonic flow and travels to the inlet of the diffuser 96.
  • a negative static pressure is generated in the chamber 93 by the flow of the gas refrigerant, and the interior of the chamber 93 is in a state close to vacuum. Due to the static pressure and the viscosity of the gas refrigerant, the gas refrigerant from the evaporator 55 is drawn as a suction gas into the gas refrigerant flow jumping into the inlet of the diffuser 96.
  • the gas refrigerant supplied to the nozzle 95 and the gas refrigerant sucked from the suction port 94 are mixed in the front half of the diffuser 96, and are discharged toward the diffuser outlet 96a while reducing the pressure and pressurizing in the rear half.
  • the ejector 92 is driven by guiding a part of the refrigerant flowing through the refrigerant passage of the Rankine cycle 31 to the ejector 92 as a driving gas. Then, the refrigeration cycle 51 can be operated. With such a configuration, it is not necessary to supply energy from the outside to drive the pump in order to obtain the high pressure refrigerant for driving the ejector as in the conventional device.
  • "operating the refrigeration cycle 51" means that the refrigerant is circulated in the refrigerant passage of the refrigeration cycle 51 (as a result, the cooling of the air conditioner is effective).
  • the operation of the ejector air conditioner means that the refrigeration cycle 51 is operated by driving the ejector 92 without using the compressor 52.
  • the operation of the compressor air conditioner means that the refrigeration cycle 51 is operated by driving the compressor 52 without using the ejector 92.
  • Rankine cycle sole operation is performed when there is no air conditioning request (cooling request). As shown in FIG. 12, the ejector side opening degree of the flow control valve 98 is made zero (see the broken line), and the ejector 92 is not driven and the driving of the ejector 92 is stopped without supplying the gas refrigerant to the ejector 92.
  • the refrigerant is evaporated and superheated by the waste heat of the engine 2 by the heat exchanger 36, and all the gas refrigerant exiting from the outlet of the heat exchanger 36 is supplied to the expander 37 via the refrigerant passage 42 (see thick solid line)
  • the expander 37 is rotationally driven by the pressure energy of the gas refrigerant.
  • the refrigerant pump 32 is driven by the torque (output) generated by the expander 37 to circulate the refrigerant, and the Rankine cycle 31 is operated.
  • "operating the Rankine cycle 31” means circulating the refrigerant in the refrigerant passage of the Rankine cycle 31 (as a result, energy is recovered from the waste heat).
  • the expander clutch 35 is connected and the Rankine cycle 31 is operated to assist the rotation of the engine output shaft to improve the fuel efficiency.
  • a torque assist can be performed when there is an air conditioner request such as during high-speed cruising mainly due to air conditioner request and there is sufficient torque generated by the expander 37. Operate the ejector air conditioner. As shown in FIG. 13, the ejector-side opening degree of the flow control valve 98 is controlled, and the gas refrigerant exiting from the outlet of the heat exchanger 36 is divided and supplied to the expander 37 and the ejector 92 to rotate the expander 37. While driving, the ejector 92 is driven.
  • the refrigerant pump 32 is driven by the torque (output) of the expander 37 to circulate the refrigerant, and the Rankine cycle 31 is operated.
  • a part of the refrigerant circulating in the refrigerant passage of the Rankine cycle 31 is guided to the ejector 92 to drive the ejector 92, and the refrigerant is also circulated in the refrigerant passage of the refrigeration cycle 51.
  • the refrigeration cycle 51 is operated without driving the compressor 52 to perform air conditioning of the vehicle interior.
  • the driving of the compressor 52 is a load on the engine 2 and the fuel efficiency is deteriorated accordingly.
  • the refrigeration cycle 51 is operated by driving the ejector 92 during the operation of the Rankine cycle 31, It can control the deterioration.
  • ⁇ 3> Operation of the ejector air conditioner without torque assist
  • the ejector air conditioner without torque assist Do the driving.
  • the difference from the operation of the torque-assisted ejector air conditioner described above in ⁇ 2> is only that torque assist is not performed. That is, as shown in FIG. 14, the expander clutch 35 is disconnected, the ejector side opening degree of the flow control valve 98 is controlled, and the expander torque is used only to drive the refrigerant pump 32 without torque assist.
  • the Rankine cycle 31 is operated by using it.
  • the ejector 92 is driven by the gas refrigerant obtained by the operation of the Rankine cycle 31 to operate the refrigeration cycle 51. Even after a transition to idle stop for a while or at a low vehicle speed, the refrigeration cycle 51 can be operated only with engine waste heat without using the power (compressor 52).
  • FIGS. 16A and 16B The flows of FIG. 16A and FIG. 16B are executed at a constant cycle (for example, every 10 ms).
  • step S1 it is determined whether there is an air conditioner request (compressor drive request). If there is no air conditioning request, the process proceeds to step S2 to stop the drive of the ejector 92, and the flow control valve 98 is controlled so that the ejector side target opening becomes zero.
  • step S3 it is determined whether the engine 2 is in the idle stop state or the low load state.
  • the idle stop state In the hybrid vehicle 1, for example, when under the EV traveling condition, it is determined that the idle stop state is established. In this case, particularly, the idle stop state in the hybrid vehicle is used as a condition, but the entire control for stopping the engine such as a fuel cut or a coast stop (engine stop state) can be used as a condition. Further, when the SOC (charging state) of the battery is insufficient and the engine 2 is operated for charging, it is determined that the engine 2 is in a low load state.
  • SOC charging state
  • step S4 the expander clutch 35 is disconnected.
  • the expander upstream valve 62 is fully closed, and the bypass valve 66 is fully open, and the expander 37 is bypassed to allow all the refrigerant to flow.
  • both the expander upstream valve 62 and the bypass valve 66 are fully closed so as to confine the refrigerant in the heat exchanger 36 (maintain the pressure) in preparation for the next restart of operation. It can also be done.
  • Step S5 is a part for performing the Rankine cycle solo operation shown in FIG. That is, the expander clutch 35 is connected, the expander upstream valve 62 is fully opened, the bypass valve 66 is fully closed, and all the gas refrigerant exiting from the outlet of the heat exchanger 36 is allowed to flow to the expander 37.
  • the expander 37 is rotationally driven and the torque (output) regenerated by the expander 37 exceeds the drive torque of the refrigerant pump 32, the torque that exceeds this is transmitted to the engine output shaft through the belt transmission mechanism. The power is transmitted to assist the rotation of the engine output shaft.
  • the process proceeds to step S6, and the rotational speed of the radiator fan 12 is controlled in accordance with the table shown in FIG. As shown in FIG. 17, the radiator fan target rotational speed is zero when the vehicle speed is equal to or higher than a second predetermined value VSP2. This is because it is not necessary to drive the radiator fan 12 because a sufficient traveling wind can be obtained for the condenser 38 in the vehicle speed region above the second predetermined value VSP2.
  • the radiator fan target rotational speed increases as the vehicle speed decreases below the second predetermined value VSP2, and becomes a constant value (positive value) when the vehicle speed is equal to or lower than the first predetermined value VSP1 (VSP1 ⁇ VSP2).
  • the rotational speed of the radiator fan 12 is set in consideration of the heat radiation of both the refrigeration cycle 51 and the Rankine cycle 31.
  • an amount of current to be supplied to a motor (not shown) for driving the radiator fan 12 is set, and the set current is supplied to the motor to rotate the radiator fan 12 .
  • step S7 as in step S3, it is determined whether the engine 2 is in the idle stop state (engine stop state) or in the low load state. When the engine 2 is not in the idle stop state or the low load state, it is determined that the operation of the Rankine cycle 31 can be performed, and the process proceeds to step S8.
  • step S8 the target ejector is searched by searching the map shown in FIG. 18 from the air conditioner set temperature and the heat release amount calculated based on the capacity of the condenser 38, for example, the vehicle speed, the radiator fan rotational speed, the outside air temperature and the like. Calculate the supply flow rate. As shown in FIG. 18, the target ejector supply flow rate decreases as the heat release amount increases under the condition that the air conditioner set temperature is constant, and increases as the air conditioner set temperature decreases when the heat release amount is constant.
  • step S9 the target ejector side opening degree of the flow control valve 98 is calculated by searching the map shown in FIG. 19 from the target ejector supply flow rate calculated in step S8. As shown in FIG. 19, the target ejector side opening degree of the flow control valve 98 is larger as the target ejector supply flow rate is larger.
  • step S10 the flow control valve 98 is controlled so that the calculated target ejector side opening degree is obtained.
  • step S11 it is determined whether or not the torque assist of the engine 2 is possible, that is, whether or not a sufficient amount of expander torque can be obtained even if the refrigerant pump 32 is driven. Whether or not the expander torque sufficient for torque assist can be obtained can be determined based on the amount of waste heat recovery, the amount of heat radiation, and the air conditioner requirement. If the engine load is relatively low and the amount of waste heat recovery is small, the vehicle speed is low (running wind is small) or the outside temperature is high, etc., the amount of torque assist can be used when the amount of heat release is small Will be less. In addition, even when the deviation between the air conditioner set temperature and the actual vehicle interior temperature is large and the air conditioner demand is large, the amount of torque assist can be reduced. If torque assist is possible, the process proceeds to step S12, and if it is impossible, the process proceeds to step S13.
  • step S12 to perform torque assist by driving the Rankine cycle 31, the expander clutch 35 is connected, the expander upstream valve 62 is fully opened, and the bypass valve 66 is fully closed. The gas refrigerant coming out of the outlet of is flowed to the expander 37.
  • Step S12 is a portion for operating the torque-assisted ejector air conditioner shown in FIG.
  • step S13 since the torque assist is not performed, the expander clutch 35 is disconnected, and the refrigerant pump 32 is driven by the expander torque by the operation of the Rankine cycle 31, so the expander upstream valve 62 is fully opened and bypassed. With the valve 66 fully closed, the gas refrigerant exiting from the outlet of the heat exchanger 36 is allowed to flow to the expander 37.
  • Step S13 is a portion for operating the ejector air conditioner without torque assist shown in FIG.
  • an expander torque sufficient to obtain the output of the refrigerant pump 32 corresponding to the flow rate of the refrigerant necessary for driving the ejector 92 can be obtained by rotating the radiator fan 12 (step S6 and FIG. 17). reference).
  • the regenerative energy from the waste heat recovery contributes to the expander torque, so that the energy for driving the compressor 52 of the refrigeration cycle 51 (by the power or electric power of the engine 2)
  • the energy for rotating the radiator fan 12 is smaller. Therefore, even when the radiator fan 12 is rotated, the operation of the ejector air conditioner is superior in total efficiency to the operation of the compressor air conditioner.
  • step S7 of FIG. 16A the process proceeds to step S15 of FIG. 16B.
  • the ejector air conditioner can not be operated, but immediately after the idle stop state or low load state, the ejector air conditioner is operated by residual heat. Can be done. Therefore, the operation of the ejector air conditioner is continued for a while, and when the operation of the ejector air conditioner becomes impossible, the operation is switched to the operation of the compressor air conditioner (compressor independent drive).
  • Steps S16 to S21 are parts for operating the ejector air conditioner without torque assist shown in FIG.
  • the target ejector supply flow rate is calculated as in step S8. That is, the target ejector supply flow rate is obtained by searching the map shown in FIG. 18 from the air conditioner set temperature and the heat release amount calculated based on the capacity of the condenser 38, for example, the vehicle speed, the radiator fan rotational speed, the outside air temperature and the like.
  • a target pump rotational speed is calculated by searching a table shown in FIG. 20 from the target ejector supply flow rate calculated in step S16.
  • the target pump rotational speed is a target rotational speed of the refrigerant pump 32 required to obtain a target ejector supply flow rate.
  • the target pump rotational speed is proportional to the target ejector supply flow rate, as shown in FIG.
  • the target pump rotational speed is calculated because the pump rotational speed of the refrigerant pump 32 decreases in the operation of the ejector air conditioner using residual heat, so the degree of decrease of the actual pump rotational speed by comparing with the actual pump rotational speed To reduce the ejector-side opening degree of the flow control valve 98 (increase the expander-side opening degree) according to the degree of decrease.
  • step S18 the actual rotational speed of the refrigerant pump 32 and the target pump rotational speed are compared.
  • the actual rotational speed of the refrigerant pump 32 is detected by a pump rotational speed sensor 75 (see FIG. 10).
  • the process proceeds to step S19, and the target ejector side opening degree of the flow control valve 98 is corrected to the increase side so that the refrigerant flow rate flowing to the ejector 92 increases (decreases the expander side).
  • step S20 the flow control valve 98 is controlled to obtain the corrected target ejector side opening degree.
  • step S21 since the torque assist is not performed and the Rankine cycle 31 is operated, the expander clutch 35 is disconnected, the expander upstream valve 62 is fully opened, and the bypass valve 66 is fully closed. The gas refrigerant coming out of the outlet of is flowed to the expander 37. In this case, even if the expander torque drives the refrigerant pump 32, even if it generates a surplus, the torque assist is not performed, and the refrigerant used for assist is reduced and diverted to the ejector 92 side. Increase the refrigerant. This makes it possible to improve the effectiveness of the air conditioner (cooling) and prolong the duration.
  • step S18 When the actual rotation speed of the refrigerant pump 32 is less than the target pump rotation speed in step S18, the refrigerant flow rate flowing to the expander 37 is increased to increase the expander rotation speed, and the refrigerant pump 32 moves integrally with the expander 37. Needs to be raised to the target pump rotational speed. In this case, the process proceeds to step S22, and the target ejector side opening degree of the flow control valve 98 is corrected to the decrease side so that the expander side flow rate increases.
  • step S23 auxiliary control by the compressor 52 is performed based on the table shown in FIG.
  • the compressor 52 when the compressor 52 is driven by the drive of the engine 2, the compressor 52 can not be driven in the idle stop state in which the engine 2 is stopped. Therefore, as shown in FIG. 24, the compressor 52 is driven by the motor 101 so that the compressor assist can be performed when the process proceeds to step S23 in the idle stop state (without restarting the engine 2). It may be
  • the reason for performing the auxiliary control by the compressor 52 will be described.
  • the driving condition for operating the ejector air conditioner without torque assist here is when it is in an idle stop state (engine stop state) or a low load state where it is difficult to obtain sufficient cooling capacity. If the actual rotational speed of the refrigerant pump 32 does not reach the target rotational speed, the expansion device opening degree of the flow control valve 98 may be increased, so that the flow rate on the ejector side may be insufficient. In such a case, the compressor 52 is driven within the range in which the total efficiency does not deteriorate, and the operation of the ejector air conditioner is continued.
  • the target compressor drive amount that is, the target motor current amount has a positive value in a region where the target ejector side opening degree is equal to or less than the second predetermined value E2.
  • the target compressor drive amount that is, the target motor current amount has a positive value in a region where the target ejector side opening degree is equal to or less than the second predetermined value E2.
  • the refrigerant supply to the ejector 92 is insufficient, the ejector 92 does not operate sufficiently, and the cooling capacity falls. Therefore, when the refrigerant supply to the ejector 92 is insufficient, a current is supplied to the motor 101 (see FIG. 24) to drive the compressor 52 to increase the cooling capacity.
  • the degree to which the cooling capacity decreases in the region where the target ejector side opening degree is equal to or less than the second predetermined value E2 can be known in advance, so the characteristics of the target compressor drive amount shown in FIG.
  • the target compressor driving amount shown in FIG. 21 is the amount of current to be supplied to the compressor clutch 54.
  • the compressor 52 is not driven with the target compressor drive amount being zero. This is because in the region, sufficient cooling capacity can be obtained by driving only the ejector 92 (that is, operation of the ejector air conditioner without torque assist).
  • step S24 the evaporator temperature is compared with the target temperature.
  • the temperature of the evaporator 55 is detected by a temperature sensor 76 (see FIG. 10).
  • a temperature sensor 76 see FIG. 10
  • the evaporator temperature is equal to or lower than the target temperature, it is determined that sufficient cooling capacity is obtained by adding the operation of the compressor air conditioner to the operation of the torque assist non-ejector air conditioner or to the operation of the torque assist non ejector air conditioner. That is, it is determined that it is not necessary to shift to the operation of the compressor air conditioner, and the process proceeds to steps S20 and S21, and the control of steps S20 and S21 is performed.
  • step S24 when the evaporator temperature is higher than the target temperature in step S24, it is determined that it is necessary to shift to the operation of the compressor air conditioner. In this case, the process proceeds to steps S25 to S27.
  • Steps S25 to S27 are portions for performing the compressor air conditioner operation shown in FIG.
  • the compressor single drive flag is set to 1 and a current is supplied to the motor 101 to drive the compressor 52 or the compressor clutch 54 is connected to drive the compressor 52 by the engine 2.
  • step S26 in order to stop the drive of the ejector 92, the flow control valve 98 is controlled so that the target ejector side opening becomes zero.
  • step S27 the expander clutch 35 is disconnected in order to stop the operation of the Rankine cycle 31, and the expander upstream valve 62 is fully closed, and the bypass valve 66 is fully open to bypass the expander 37 for refrigerant Stream all of them.
  • the heat exchanger 36 recovers the waste heat of the engine 2 as a refrigerant, the expander 37 generating power using the refrigerant at the outlet of the heat exchanger, and condensing the refrigerant leaving the expander 37
  • a Rankine cycle 31 including a refrigerant pump 32 including a condenser 38, a refrigerant pump 32 which is driven by power regenerated by the expander 37 and supplies the refrigerant from the condenser 38 to the heat exchanger 36.
  • a refrigeration cycle 51 including an evaporator 55 sharing the condenser 38 and guiding and evaporating the refrigerant from the condenser 38, and using the refrigerant at the outlet of the heat exchanger 36 as a driving gas, drawing the refrigerant at the outlet of the evaporator 55 And an ejector 92 for returning to the condenser 38.
  • the Rankine cycle 31 is operated by driving the refrigerant pump 32 using the power regenerated by the expander 37, and the ejector 92 is a part of the refrigerant circulating in the refrigerant passage of the Rankine cycle 31.
  • the refrigeration cycle 51 can be operated only by the heat energy of the waste heat of the engine 2.
  • Efficiency is improved by changing the ratio of the refrigerant supplied to the expander 37 that drives the refrigerant pump 32 and the refrigerant supplied to the ejector 92 according to the environment (conditions) in which the waste heat utilization device is placed. For example, in the condition where the capacity of the condenser 38 is high (the amount of heat release is large), a high expander torque can be obtained even with a relatively small amount of refrigerant. Under such conditions, the refrigerant supplied to the ejector 92 is relatively increased. Thus, the output (cooling capacity) of the refrigeration cycle 51 can be improved.
  • the flow control valve 98 can further control the distribution ratio between the flow rate of the refrigerant supplied to the ejector 92 from the outlet of the heat exchanger 36 and the flow rate of the refrigerant supplied to the expander 37 from the outlet of the heat exchanger 36. Since the (flow rate distribution ratio control mechanism) is provided, by controlling the flow rate control valve 98, the refrigerant superheated by the engine waste heat can be arbitrarily distributed to the expander 37 and the ejector 92.
  • the driving force (the amount of refrigerant) of the refrigerant pump 32 and the driving force (the amount of refrigerant) of the ejector 92 are arbitrarily adjusted.
  • the possible configuration can provide a waste heat utilization device with further improved efficiency.
  • the target ejector supply flow rate (the refrigerant flow rate to the ejector 92 side) is calculated based on the air conditioner set temperature and the condenser capacity (heat release amount of the condenser 38) (step 8 of FIG. 16A, Even if the set temperature of the air conditioner and the condenser capacity (heat release amount of the condenser 38) are different, the target ejector supply flow rate can be given without excess or deficiency.
  • the power transmission mechanism (2a, 33 to 35) is provided to transmit the increased power to the engine 2.
  • the expander clutch 35 (clutch) is disconnected and regeneration is performed by the expander 37
  • the Rankine cycle 31 is operated so as not to transmit the motive power to the engine 2, and a part of the refrigerant circulating in the refrigerant passage of the Rankine cycle 31 is supplied to the ejector 92 to drive the ejector 92 and the refrigerant pump 32.
  • the flow rate control valve 98 (flow rate distribution ratio control mechanism) is controlled so that the actual rotation speed of the target rotation speed coincides with the target rotation speed. For example, when the actual rotation speed is lower than the target rotation speed, the target ejector side opening degree is corrected to decrease (the distribution ratio of the refrigerant flow rate to the expander 37 is increased) and the actual rotation speed is higher than the target rotation speed. Because the target ejector side opening degree is increased and corrected (the distribution ratio of the refrigerant flow rate to the ejector 92 is increased) (see steps S18, S19, and S22 in FIG. 16B), the air conditioning capacity during idle stop is extended to a constant capacity. It can be maintained.
  • the refrigeration cycle 51 is provided with the compressor 52 provided in parallel with the ejector 92, and the driving of the ejector 92 is stopped when the temperature of the evaporator 55 becomes higher than the target temperature.
  • the compressor 52 is driven (see steps S24 and S25 in FIG. 16B).
  • FIGS. 22A and 22B are control performed by the engine controller 71 according to the second embodiment, and replace the flowcharts of FIGS. 16A and 16B of the first embodiment.
  • the same steps as those in the flowcharts of FIGS. 16A and 16B are denoted by the same step numbers.
  • step S31 the process proceeds to step S31 and thereafter.
  • Steps S31 to S35 and S21, and steps S31, S36, S24, S35, and S21 are portions for performing the torque assistless ejector air conditioner operation shown in FIG.
  • steps S31 to S36 are portions for gradually increasing the target expander side opening degree of the flow control valve 98 from the initial value.
  • the ejector-side opening of the flow control valve 98 is controlled.
  • the expander side opening degree was calculated based on refrigerant
  • the expander torque is affected by the temperature of the refrigerant exiting from the outlet of the heat exchanger 36, and when the refrigerant exiting from the outlet of the heat exchanger 36 becomes cold, the expander torque decreases. Therefore, as shown in FIG. 23, the basic expander side opening degree is set to increase as the temperature of the refrigerant exiting from the outlet of the heat exchanger 36 decreases, so that the expander torque does not run short.
  • step S32 Since the basic expander side opening degree is calculated in step S32, the basic expander side opening calculated flag is set to 1 in step S33, and the target expander expansion rate of the flow control valve 98 is set to the initial value in step S34. Put in the machine side opening.
  • step S35 the flow control valve 98 is controlled to have the target expander side opening (initial value).
  • step S21 since the torque assist is not performed and the Rankine cycle 31 is operated, the expander clutch 35 is disconnected, the expander upstream valve 62 is fully opened, and the bypass valve 66 is fully closed. The refrigerant flowing out of the outlet of is flowed to the expander 37. In this case, even if the expander torque drives the refrigerant pump 32 and there is still a surplus, torque assist is not performed, and the amount of refrigerant used for torque assist is reduced and directed to the ejector 92 side. Increase the amount of refrigerant. This makes it possible to improve the effectiveness of the air conditioner (cooling) and prolong the duration.
  • step S36 the target expander side opening degree is updated by the following equation.
  • Target expander side opening degree target expander side opening degree + ⁇ ZOU (1)
  • ⁇ ZOU expansion side opening degree per control cycle (positive value)
  • the “target expander side opening degree” on the right side of the equation (1) represents a value calculated last time
  • the “target expander side opening degree” on the left side of the equation (1) represents a value calculated this time. Since the basic expander side opening degree is set as the initial value to the target expander side opening degree at the previous time, a value obtained by adding the increment ⁇ ZOU to the basic expander side opening degree is calculated as the target expander side opening degree. At the next time, a value obtained by adding the increment ⁇ ZOU ⁇ 2 to the basic expander side opening degree is calculated as the target expander side opening degree. Thus, the target expander side opening degree is gradually increased from the initial value.
  • the reason for gradually increasing the target expander side opening degree from the initial value is as follows. That is, it is at the time of an idle stop state (engine stop state) or a low load state to progress to step S31 or later of FIG. 22B.
  • the process proceeds from step S31 in FIG. 22B at the timing when the operation state of the engine 2 is shifted to the idle stop to stop the engine 2, the engine with the passage of time from the start of the idle stop at which the engine 2 stops. Since the residual heat of 2 is gradually dissipated, the temperature of the refrigerant exiting from the outlet of the heat exchanger 36 decreases.
  • the expander torque decreases as the refrigerant temperature decreases.
  • the pump rotational speed decreases, and the flow rate of the refrigerant circulating through the Rankine cycle 31 decreases.
  • the flow rate of the refrigerant supplied to the ejector 92 decreases, the flow rate of the refrigerant circulating through the refrigeration cycle 51 decreases, and the cooling capacity decreases.
  • the ejector side opening degree gradually decreases conversely, the driving of the ejector 92 becomes insufficient, and eventually the ejector 92 can not operate the refrigeration cycle 51.
  • the evaporator temperature can not be maintained, and the evaporator temperature starts to rise.
  • the evaporator temperature is compared with a predetermined value in step S24.
  • the evaporator temperature is equal to or lower than the predetermined value, it is determined that the sufficient cooling capacity is obtained by the drive of the ejector 92 by the refrigerant supply at the current ejector side opening degree. That is, it is determined that it is not necessary to shift to the operation of the refrigeration cycle 51 driven by the compressor 52, and the process proceeds to steps S35 and S21, and the processes of steps S35 and S21 are performed.
  • the target expander side opening degree gradually increases by repeating the process of step S36 as long as the evaporator temperature is equal to or less than the predetermined value. If the target expander side opening degree of the flow control valve 98 is gradually increased, the ejector side opening degree of the flow control valve 98 gradually decreases. If the ejector side opening degree of the flow control valve 98 becomes smaller gradually, the operation of the ejector 92 becomes worse, and the movement of the refrigerant circulating through the refrigeration cycle 51 becomes dull. As a result, the evaporator temperature eventually rises and reaches a predetermined value. In this case, the process proceeds from step S24 to steps S25 to S27.
  • Steps S25 to S27 are parts for operating the compressor air conditioner.
  • the compressor single drive flag is set to 1 and a current is supplied to the motor 101 to drive the compressor 52 or the compressor clutch 54 is connected to drive the compressor 52 by the engine 2.
  • step S26 the expander clutch 35 is disconnected in order to stop the operation of the Rankine cycle 31, and the expander upstream valve 62 is fully closed, and the bypass valve 66 is fully open to bypass the expander 37 for refrigerant Stream all of them.
  • the engine controller 71 for performing idle stop to stop the engine 2 when a predetermined condition is satisfied during operation of the vehicle 1 is provided.
  • the Rankine cycle 31 is operated with the expander clutch 35 (clutch) disconnected. While a part of the refrigerant circulating in the refrigerant passage of the Rankine cycle 31 is supplied to the ejector 92 to drive the ejector 92, the basic expander side opening degree (expansion (expansion) as the temperature of the refrigerant exiting from the outlet of the heat exchanger 36 decreases.
  • the flow control valve 98 (flow distribution ratio control mechanism) is controlled so that the distribution ratio of the refrigerant flow to the device 37 becomes large (see step S32 in FIG. 22B).
  • the amount of waste heat recovery is large, high expander torque can be obtained even with a relatively small amount of refrigerant.
  • the amount of refrigerant supplied to the ejector 92 is relatively large, so that the output of the refrigeration cycle 51 (cooling Ability) can be improved.
  • the opening degree on the ejector 92 side is increased to obtain a high cooling capacity.
  • the expansion unit 37 side is enlarged to secure the expansion unit torque necessary for the operation of the ejector air conditioner, thus making the ejector air conditioner longer Driving can be continued. Further, even if the pump rotational speed can not be detected, the control of the air conditioning capacity during idle stop can be performed by the temperature of the refrigerant exiting from the outlet of the heat exchanger 36, and the rotational speed sensor can be omitted to reduce the cost.
  • the target expander side opening degree (the distribution ratio of the flow rate of the refrigerant to the expander 37) is increased with the passage of time from the start of the idle stop (FIG. 22B (See steps S31, S32, S34, steps S31 and S36), and as the remaining heat of the engine 2 disappears with the passage of time from the start of the idle stop, the refrigerant coming out of the outlet of the heat exchanger 36 Can be supplied.
  • FIG. 25 is a layout diagram of the radiator 11 and the condenser 38 of the third embodiment. In the relationship with FIG. 10, it corresponds to what took out and showed only the radiator 11 and the condenser 38 from the structure of FIG. Therefore, the remaining configuration is the same as the configuration shown in FIG.
  • the condenser 38 is disposed in parallel with the radiator 11, and both are collectively cooled by the radiator fan 12.
  • the radiator 11 and the condenser 38 are cooled by independent fans 12 and 105. That is, the radiator 11 is configured to be cooled by only the radiator fan 12, and the condenser 38 is configured to be cooled by the cooling fan 105 dedicated to the condenser 38.
  • the cooling fan 105 is driven.
  • the cooling fan 105 for blowing air only to the condenser 38 is provided, and when there is an air conditioning request (cooling request) during idle stop, this cooling fan 105 is driven.
  • This makes it possible to cool only the refrigerant without cooling the cooling water, requiring only a small amount of energy, and the residual heat of the engine 2 keeps the air conditioning capacity during idle stop, while the cooling air is supplied only to the condenser 38 It can be extended more than the case without the cooling fan 105 for sending.
  • FIG. 26 is a schematic configuration diagram of an integration cycle of the fourth embodiment.
  • the branch refrigerant passage 97 forming the ejector circuit has a role of a passage that bypasses the expander 37, thereby reducing the expander bypass passage 65 provided in the first embodiment. did.
  • the flow rate control valve 98 increases the refrigerant flow ratio on the ejector 92 side.
  • the refrigerant flow ratio (opening degree) on the ejector 92 side of the flow control valve 98 is increased, and the expansion device 37 is bypassed to shorten the activation time.
  • all refrigerants are made to flow to the expander 37 side.
  • the branch refrigerant passage 97 (ejector circuit) also serves as a passage for bypassing the expander 37
  • the expander bypass passage 65 provided in the first embodiment is used. It can be reduced and the system can be simplified.
  • the schematic block diagram of the integration cycle of the fifth embodiment is the same as the schematic block diagram of the fourth embodiment shown in FIG.
  • the opening degree of the flow control valve 98 is controlled so as to arbitrarily distribute the flow rate on the expander 37 side and the refrigerant flow rate on the ejector 92 side. In this case, Problems may arise.
  • the flow rate of refrigerant on the ejector 92 side is relatively large, the flow rate of refrigerant bypassing the expander 37 (passing through the ejector 92) is increased, and the pressure difference across the expander 37 (between upstream and downstream) The pressure difference between the front and back may be reduced, and the ejector performance may be degraded. Therefore, if the flow path on the side of the ejector 92 is narrowed in order to reduce the flow rate of the refrigerant on the side of the ejector 92, a pressure loss occurs this time to cause an energy loss, and the pressure difference before and after the ejector 92 also decreases. It may cause a drop in ejector performance. As described above, when the ejector 92 is operated under the condition that the efficiency of the ejector 92 is low, energy may be wasted due to the refrigerant pressure difference (the pressure difference between the expander 37 or the ejector 92).
  • the refrigerant flow rate on the ejector 92 side is zero. By doing this, energy loss is prevented.
  • the refrigerant flow rate on the ejector 92 side becomes zero, the pressure difference before and after the expander 37 increases, so the high-pressure side pressure (the outlet pressure of the heat exchanger 36) has a first predetermined value (pressure A in FIG. 29 described later).
  • the first predetermined direct pressure (pressure A in FIG. 29 described later) is an upper limit pressure for preventing the expander 37 from over-rotation.
  • the second predetermined value (pressure B in FIG. 29 described later) can be set to the lower limit pressure that prevents the expander 37 from obtaining sufficient power regeneration (A> B).
  • the high-pressure side pressure may be measured by providing a pressure sensor (not shown) at the outlet of the heat exchanger 36 (before branching).
  • FIGS. 27 and 28 show an example in which the flow path on the ejector 92 side is made zero and the passage on the expander 37 side can be narrowed.
  • the on-off valve 106 is provided in the upstream portion of the ejector 92 of the branch refrigerant passage 97, and the opening 37 on the expander 37 side of the flow control valve 98 is adjusted when the on-off valve 106 is closed. It is possible to squeeze the passage of In FIG. 28, similarly to FIG.
  • the flow control valve 107 in the upstream portion of the expansion device 37 of the refrigerant passage 42 instead of the flow control valve 98.
  • the opening degree of the flow control valve 107 when the on-off valve 106 is closed the passage on the expander 37 side can be narrowed.
  • the flow distribution ratio can be controlled by the cooperation of the on-off valve 106 and the flow control valve 107.
  • FIG. 29 shows the control states of the on-off valve 106 and the flow control valve 107, the high pressure (the outlet pressure of the heat exchanger 36), and the expander 37 (refrigerant pump) when the high pressure is controlled according to the fifth embodiment.
  • 32 is a timing chart showing transition of the rotational speed.
  • the on-off valve 106 is closed and the flow control valve 107 Reduce the degree of opening.
  • the temperature of the outlet air of the air conditioner evaporator 55 is detected within the range where the expander 37 does not cause excessive rotation, and the temperature falls within a predetermined target temperature range.
  • the operation / non-operation of the ejector 92 may be controlled.
  • the passage on the expander 37 side is intermittently shut off (stopping the refrigerant supply), for example, every predetermined period to adjust the average refrigerant flow rate per unit time, and without narrowing the path on the expander 37 side.
  • the rotational speed of the expander 37 can also be adjusted. In this way, the energy loss due to the refrigerant pressure loss generated by the throttling (FIGS. 27 and 28) is eliminated, the refrigerant flow rate on the ejector 92 side is increased by that amount, and the performance of the ejector 92 can be improved.
  • the refrigerant flow rate on the ejector 92 side is made zero, so generation of energy loss is prevented, and the pressure difference before and after the ejector 92 is always large. As a result, performance / efficiency improvement can be realized when the ejector 92 operates.
  • the present invention is not limited to this.
  • the present invention can be applied to a vehicle equipped with only the engine 2.
  • the engine 2 may be either a gasoline engine or a diesel engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

This device for using engine waste heat, which is provided with a Rankine cycle containing a coolant pump that is driven by motive force regenerated by an expander, is provided with: a refrigeration cycle that shares a condenser, and that includes an evaporator that guides and evaporates the coolant from the condenser; an ejector that uses the coolant at the exit of a heat exchanger as driver gas to draw in the coolant from the exit of the evaporator and return the coolant to the condenser; and a flow rate distribution ratio control mechanism that can control the distribution ratio of the coolant flow rate supplied from the exit of the heat exchanger to the ejector and the coolant flow rate supplied from the exit of the heat exchanger to the expander.

Description

エンジンの廃熱利用装置Waste heat utilization device of engine
 この発明は、エンジンの廃熱利用装置、特にランキンサイクルと冷凍サイクルを統合したものに関する。 BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a waste heat utilization device for an engine, and more particularly to an integrated one with a Rankine cycle and a refrigeration cycle.
 エジェクタの駆動によって、ランキンサイクルの運転及び冷凍サイクルの運転を行わせる技術が知られている(JP2004-322933A参照)。 There is known a technique for performing a Rankine cycle operation and a refrigeration cycle operation by driving an ejector (see JP2004-322933A).
 しかしながら、JP2004-322933Aには、エジェクタの駆動源となる冷媒を、エンジン廃熱を利用して供給することについての開示がない。従って、そのような前提構成の下、膨張機トルクで駆動された冷媒ポンプによって供給される冷媒を、膨張機とエジェクタとに分配することについても記載がない。 However, JP2004-322933A does not disclose that the refrigerant serving as the drive source of the ejector is supplied using engine waste heat. Therefore, there is no description about distributing the refrigerant supplied by the refrigerant pump driven by the expander torque to the expander and the ejector under such a premise configuration.
 冷媒ポンプを駆動する膨張機へ供給する冷媒と、エジェクタへ供給する冷媒とは、廃熱利用装置が置かれた環境(条件)によってその割合を変えた方が効率が改善する。例えば凝縮器の能力が高い(放熱量が大きい)条件では、比較的少ない冷媒でも高い膨張機トルクが得られるので、エジェクタに供給する冷媒を相対的に多くすることで、冷凍サイクルの出力(冷房能力)を向上させられる。 Efficiency is improved by changing the ratio of the refrigerant supplied to the expander driving the refrigerant pump and the refrigerant supplied to the ejector according to the environment (conditions) in which the waste heat utilization device is placed. For example, under conditions where the capacity of the condenser is high (the amount of heat release is large), high expander torque can be obtained even with a relatively small amount of refrigerant, so by relatively increasing the amount of refrigerant supplied to the ejector, the output of the refrigeration cycle (cooling Ability) can be improved.
 本発明は、エジェクタの駆動源ともなる冷媒を、エンジン廃熱を利用して循環供給する場合に、冷媒ポンプの駆動力(冷媒量)とエジェクタの駆動力(冷媒量)とを任意に調節可能に構成することで、より効率が改善された廃熱利用装置を提供することを目的とする。 The present invention can arbitrarily adjust the driving force (the amount of refrigerant) of the refrigerant pump and the driving force (the amount of refrigerant) of the ejector when circulating the refrigerant that is also the driving source of the ejector using engine waste heat. It is an object of the present invention to provide a waste heat utilization apparatus with further improved efficiency by configuring the
 本発明は、エンジンの廃熱を冷媒に回収する熱交換器、この熱交換器出口の冷媒を用いて動力を発生させる膨張機、この膨張機を出た冷媒を凝縮させる凝縮器、前記膨張機により回生された動力によって駆動されると共に、この凝縮器からの冷媒を前記熱交換器に供給する冷媒ポンプを含むランキンサイクルを備えるエンジンの廃熱利用装置を対象としている。そして、本発明のエンジンの廃熱利用装置では、前記凝縮器を共有し、この凝縮器からの冷媒を導いて蒸発させるエバポレータを含む冷凍サイクルと、前記熱交換器出口の冷媒を駆動ガスとして用い、このエバポレータ出口の冷媒を引き込んで前記凝縮器に戻すエジェクタと、前記熱交換器出口からこのエジェクタに供給する冷媒流量と前記熱交換器出口から前記膨張機に供給する冷媒流量との分配比を制御し得る流量分配比制御機構とを設けている。 The present invention comprises a heat exchanger for recovering engine waste heat into a refrigerant, an expander for generating power using the refrigerant at the outlet of the heat exchanger, a condenser for condensing the refrigerant leaving the expander, and the expander The present invention is directed to a waste heat utilization device of an engine provided with a Rankine cycle that includes a refrigerant pump that is driven by the power regenerated by the engine and that supplies the refrigerant from the condenser to the heat exchanger. And, in the waste heat utilization device of the engine of the present invention, the refrigeration cycle including the evaporator sharing the condenser and guiding and evaporating the refrigerant from the condenser, and using the refrigerant at the heat exchanger outlet as a driving gas A distribution ratio of an ejector for drawing in the refrigerant at the outlet of the evaporator and returning it to the condenser, and a flow rate of the refrigerant supplied from the heat exchanger outlet to the ejector and a refrigerant flow supplied to the expander from the heat exchanger outlet; A flow rate distribution ratio control mechanism that can be controlled is provided.
 本発明の実施形態、本発明の利点については、添付された図面とともに以下に詳細に説明される。 Embodiments of the present invention, advantages of the present invention, are described in detail below in conjunction with the attached drawings.
図1は、本発明の前提となるランキンサイクルのシステム全体を表した概略構成図である。FIG. 1 is a schematic block diagram showing the whole system of the Rankine cycle which is the premise of the present invention. 図2Aは、ポンプ及び膨張機を一体化した膨張機ポンプの概略断面図である。FIG. 2A is a schematic cross-sectional view of an expander pump in which the pump and the expander are integrated. 図2Bは、冷媒ポンプの概略断面図である。FIG. 2B is a schematic cross-sectional view of a refrigerant pump. 図2Cは、膨張機の概略断面図である。FIG. 2C is a schematic cross-sectional view of the expander. 図3は、冷媒系バルブの機能を示す概略図である。FIG. 3 is a schematic view showing the function of the refrigerant system valve. 図4は、ハイブリッド車両の概略構成図である。FIG. 4 is a schematic block diagram of a hybrid vehicle. 図5は、エンジンの概略斜視図である。FIG. 5 is a schematic perspective view of an engine. 図6は、排気管の配置を車両の下方から見た概略図である。FIG. 6 is a schematic view of the arrangement of the exhaust pipe as viewed from below the vehicle. 図7Aは、ランキンサイクル運転域の特性図である。FIG. 7A is a characteristic diagram of a Rankine cycle operating region. 図7Bは、ランキンサイクル運転域の特性図である。FIG. 7B is a characteristic diagram of a Rankine cycle operating region. 図8は、膨張機トルクによりエンジン出力軸の回転をアシストしている途中でハイブリッド車両1の加速が行われたときの様子を示したタイミングチャートである。FIG. 8 is a timing chart showing how the hybrid vehicle 1 is accelerated while assisting the rotation of the engine output shaft by the expander torque. 図9は、ランキンサイクルの運転停止からの再起動の様子を示したタイミングチャートである。FIG. 9 is a timing chart showing a state of restart from the shutdown of the Rankine cycle. 図10は、エジェクタを追加した本発明の第1実施形態の統合サイクルの概略構成図である。FIG. 10 is a schematic configuration diagram of an integrated cycle of the first embodiment of the present invention to which an ejector is added. 図11は、エジェクタの概略断面図である。FIG. 11 is a schematic cross-sectional view of the ejector. 図12は、ランキンサイクル単独運転を示す概略図である。FIG. 12 is a schematic view showing Rankine cycle islanding operation. 図13は、トルクアシスト付きエジェクタエアコンの運転を示す概略図である。FIG. 13 is a schematic view showing the operation of the torque-assisted ejector air conditioner. 図14は、トルクアシストなしエジェクタエアコンの運転を示す概略図である。FIG. 14 is a schematic view showing the operation of a torque assist-less ejector air conditioner. 図15は、コンプレッサエアコンの運転を示す概略図である。FIG. 15 is a schematic view showing the operation of the compressor air conditioner. 図16Aは、第1実施形態の統合サイクルの制御を説明するためのフローチャートである。FIG. 16A is a flowchart for describing control of the integration cycle of the first embodiment. 図16Bは、第1実施形態の統合サイクルの制御を説明するためのフローチャートである。FIG. 16B is a flowchart for describing control of the integration cycle of the first embodiment. 図17は、ラジエータファン目標回転速度の特性図である。FIG. 17 is a characteristic diagram of the radiator fan target rotational speed. 図18は、目標エジェクタ供給流量の特性図である。FIG. 18 is a characteristic diagram of the target ejector supply flow rate. 図19は、目標エジェクタ側開度の特性図である。FIG. 19 is a characteristic diagram of the target ejector side opening degree. 図20は、目標ポンプ回転速度の特性図である。FIG. 20 is a characteristic diagram of the target pump rotational speed. 図21は、目標コンプレッサ駆動量の特性図である。FIG. 21 is a characteristic diagram of the target compressor drive amount. 図22Aは、第2実施形態の統合サイクルの制御を説明するためのフローチャートである。FIG. 22A is a flowchart for describing control of the integration cycle of the second embodiment. 図22Bは、第2実施形態の統合サイクルの制御を説明するためのフローチャートである。FIG. 22B is a flowchart for describing control of the integration cycle of the second embodiment. 図23は、第2実施形態の基本膨張機側開度の特性図である。FIG. 23 is a characteristic diagram of the basic expander side opening degree of the second embodiment. 図24は、ハイブリッド車両の概略構成図である。FIG. 24 is a schematic configuration diagram of a hybrid vehicle. 図25は、第3実施形態のラジエータ及び凝縮器の配置図である。FIG. 25 is a layout view of the radiator and the condenser of the third embodiment. 図26は、第4実施形態の統合サイクルの概略構成図である。FIG. 26 is a schematic configuration diagram of an integration cycle of the fourth embodiment. 図27は、第5実施形態に適用することができる回路構成の一例を示す図である。FIG. 27 is a diagram showing an example of a circuit configuration that can be applied to the fifth embodiment. 図28は、第5実施形態に適用することができる回路構成の別の例を示す図である。FIG. 28 is a diagram showing another example of the circuit configuration that can be applied to the fifth embodiment. 図29は、第5実施形態による制御が行われた場合のタイミングチャートである。FIG. 29 is a timing chart when control according to the fifth embodiment is performed.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings.
 (第1実施形態)
 図1は、本発明の前提となるランキンサイクルのシステム全体を表した概略構成図を示している。図1のランキンサイクル31は、冷媒および凝縮器38を冷凍サイクル51と共有する構成になっている。ここでは、ランキンサイクル31と冷凍サイクル51を統合したサイクルのことを、統合サイクル30と表現する。
First Embodiment
FIG. 1 shows a schematic configuration diagram showing the whole system of Rankine cycle on which the present invention is premised. The Rankine cycle 31 of FIG. 1 is configured to share the refrigerant and the condenser 38 with the refrigeration cycle 51. Here, the cycle in which the Rankine cycle 31 and the refrigeration cycle 51 are integrated is referred to as an integrated cycle 30.
 図4は、統合サイクル30が搭載されるハイブリッド車両1の概略構成図である。尚、統合サイクル30は、ランキンサイクル31と冷凍サイクル51の冷媒が循環する回路(通路)及びその途中に設けられたポンプ、膨張機、凝縮器等の構成要素に加え、冷却水や排気の回路(通路)等を含めたシステム全体を指すものとする。 FIG. 4 is a schematic configuration diagram of the hybrid vehicle 1 on which the integrated cycle 30 is mounted. The integrated cycle 30 is a circuit (passage) through which the refrigerants of the Rankine cycle 31 and the refrigeration cycle 51 circulate, and a pump, an expander, a condenser and other components provided in the middle thereof, as well as a circuit of cooling water and exhaust. It refers to the whole system including (passage) etc.
 ハイブリッド車両1では、エンジン2、モータジェネレータ81、自動変速機82が直列に連結され、自動変速機82の出力は、プロペラシャフト83、ディファレンシャルギヤ84を介して駆動輪85に伝達される。エンジン2とモータジェネレータ81の間には、第1駆動軸クラッチ86を設けている。また、自動変速機82の摩擦締結要素の一つが第2駆動軸クラッチ87として構成されている。 In hybrid vehicle 1, engine 2, motor generator 81, and automatic transmission 82 are connected in series, and the output of automatic transmission 82 is transmitted to driving wheel 85 via propeller shaft 83 and differential gear 84. A first drive shaft clutch 86 is provided between the engine 2 and the motor generator 81. Also, one of the friction engagement elements of the automatic transmission 82 is configured as a second drive shaft clutch 87.
 第1駆動軸クラッチ86と第2駆動軸クラッチ87は、エンジンコントローラ71に接続されており、ハイブリッド車両の運転条件に応じて、その断接(接続状態)が制御される。ハイブリッド車両1では、図7Bに示すように、車速がエンジン2の効率が悪いEV走行領域にあるときには、エンジン2を停止し、第1駆動軸クラッチ86を遮断し、第2駆動軸クラッチ87を接続して、モータジェネレータ81による駆動力のみでハイブリッド車両1の走行を行わせる。一方、車速がEV走行領域を外れてランキンサイクル運転域に移行したときには、エンジン2を運転してランキンサイクル31(後述する)を運転する。 The first drive shaft clutch 86 and the second drive shaft clutch 87 are connected to the engine controller 71, and connection / disconnection (connection state) thereof is controlled in accordance with the driving condition of the hybrid vehicle. In the hybrid vehicle 1, as shown in FIG. 7B, when the vehicle speed is in the EV travel range where the efficiency of the engine 2 is low, the engine 2 is stopped, the first drive shaft clutch 86 is disconnected, and the second drive shaft clutch 87 is It connects and makes the hybrid vehicle 1 travel with only the driving force of the motor generator 81. On the other hand, when the vehicle speed deviates from the EV travel region and shifts to the Rankine cycle operation region, the engine 2 is driven to drive the Rankine cycle 31 (described later).
 エンジン2は、排気通路3を備え、排気通路3は、排気マニホールド4と、排気マニホールド4の集合部に接続される排気管5とから構成される。排気管5は、途中でバイパス排気管6と分岐しており、バイパス排気管6にバイパスされる区間の排気管5には、排気と冷却水との間で熱交換を行なうための廃熱回収器22を備える。廃熱回収器22とバイパス排気管6は、図6に示すように、これらを一体化した廃熱回収ユニット23として、床下触媒88とその下流のサブマフラー89との間に配置される。 The engine 2 includes an exhaust passage 3, and the exhaust passage 3 includes an exhaust manifold 4 and an exhaust pipe 5 connected to a collecting portion of the exhaust manifold 4. The exhaust pipe 5 branches off from the bypass exhaust pipe 6 in the middle, and the exhaust pipe 5 of the section bypassed by the bypass exhaust pipe 6 is a waste heat recovery for performing heat exchange between the exhaust gas and the cooling water Vessel 22 is provided. The waste heat recovery unit 22 and the bypass exhaust pipe 6 are disposed between the underfloor catalyst 88 and the downstream sub-muffler 89 as a waste heat recovery unit 23 in which these are integrated as shown in FIG. 6.
 図1に基づき、まず、エンジン冷却水回路について説明する。エンジン2を出た80~90℃程度の冷却水は、ラジエータ11を通る冷却水通路13と、ラジエータ11をバイパスするバイパス冷却水通路14とに別れて流れる。その後、2つの流れは、両通路13、14を流れる冷却水流量の配分を決めるサーモスタットバルブ15で再び合流し、さらに冷却水ポンプ16を経てエンジン2に戻る。冷却水ポンプ16は、エンジン2によって駆動され、その回転速度はエンジン回転速度と同調している。 First, an engine coolant circuit will be described based on FIG. The cooling water at about 80 to 90 ° C. that has left the engine 2 flows separately into the cooling water passage 13 passing through the radiator 11 and the bypass cooling water passage 14 bypassing the radiator 11. Thereafter, the two flows rejoin at the thermostat valve 15 which determines the distribution of the flow rate of the cooling water flowing through both passages 13 and 14, and further return to the engine 2 through the cooling water pump 16. The coolant pump 16 is driven by the engine 2 and its rotational speed is in phase with the engine rotational speed.
 サーモスタットバルブ15は、冷却水温度が高い場合に、冷却水通路13側のバルブ開度を大きくしてラジエータ11を通過する冷却水量を相対的に増やし、冷却水温度が低い場合に、冷却水通路13側のバルブ開度を小さくしてラジエータ11を通過する冷却水量を相対的に減らす。エンジン2の暖機前など特に冷却水温度が低い場合には、完全にラジエータ11をバイパスさせて、冷却水の全量がバイパス冷却水通路14側を流れる。一方、バイパス冷却水通路14側のバルブ開度は全閉になることはない。ラジエータ11を流れる冷却水流量が多くなったときに、バイパス冷却水通路14を流れる冷却水の流量は、冷却水の全量がバイパス冷却水通路14側を流れる場合と比べて低下するが、流れが完全に停止することがないようにサーモスタットバルブ15が構成されている。ラジエータ11をバイパスするバイパス冷却水通路14は、冷却水通路13から分岐して後述の熱交換器36に直接接続する第1バイパス冷却水通路24と、冷却水通路13から分岐して廃熱回収器22を経た後に熱交換器36に接続する第2バイパス冷却水通路25とからなる。 When the coolant temperature is high, the thermostat valve 15 enlarges the valve opening on the coolant passage 13 side to relatively increase the amount of coolant passing through the radiator 11, and when the coolant temperature is low, the coolant passage The valve opening degree on the side 13 is reduced to relatively reduce the amount of cooling water passing through the radiator 11. In particular, when the coolant temperature is low before the engine 2 is warmed up, the radiator 11 is completely bypassed, and the entire amount of coolant flows on the bypass coolant passage 14 side. On the other hand, the valve opening on the bypass coolant passage 14 side is never fully closed. When the flow rate of the cooling water flowing through the radiator 11 increases, the flow rate of the cooling water flowing through the bypass cooling water passage 14 decreases as compared with the case where the entire amount of cooling water flows through the bypass cooling water passage 14 side. The thermostat valve 15 is configured so as not to stop completely. The bypass cooling water passage 14 bypassing the radiator 11 is branched from the cooling water passage 13 and directly connected to the heat exchanger 36 described later, and branched from the cooling water passage 13 to recover waste heat. And a second bypass coolant passage 25 connected to the heat exchanger 36 after passing through the vessel 22.
 バイパス冷却水通路14には、ランキンサイクル31の冷媒と熱交換を行なう熱交換器36が設けられている。この熱交換器36は、加熱器と過熱器とを統合したものである。すなわち、熱交換器36には、2つの冷却水通路36a、36bがほぼ一列に、また、冷媒と冷却水が熱交換可能なように、ランキンサイクル31の冷媒が流れる冷媒通路36cは冷却水通路36a、36bと隣接して設けられている。さらに、熱交換器36の全体を俯瞰して見たときに、ランキンサイクル31の冷媒と冷却水が互いに流れ方向が逆向きとなるように、各通路36a、36b、36cが構成されている。 The bypass cooling water passage 14 is provided with a heat exchanger 36 which exchanges heat with the refrigerant of the Rankine cycle 31. The heat exchanger 36 is an integrated heater and superheater. That is, in the heat exchanger 36, the refrigerant passage 36c through which the refrigerant of the Rankine cycle 31 flows is a cooling water passage so that the two cooling water passages 36a and 36b can exchange heat substantially between the refrigerant and the cooling water. It is provided adjacent to 36a and 36b. Furthermore, when looking through the heat exchanger 36, the passages 36a, 36b, and 36c are configured such that the refrigerant and the coolant in the Rankine cycle 31 flow in opposite directions.
 詳細には、ランキンサイクル31の冷媒にとって上流(図1の左)側に位置する一方の冷却水通路36aは、第1バイパス冷却水通路24に介装されている。この冷却水通路36a及びこの冷却水通路36aに隣接する冷媒通路部分からなる熱交換器左側部分は、エンジン2から出た冷却水を冷却水通路36aに直接導入することで、冷媒通路36cを流れるランキンサイクル31の冷媒を加熱するための加熱器である。 In detail, one cooling water passage 36 a located on the upstream (left in FIG. 1) side of the refrigerant of the Rankine cycle 31 is interposed in the first bypass cooling water passage 24. The heat exchanger left side portion including the coolant passage 36a and the coolant passage portion adjacent to the coolant passage 36a flows through the coolant passage 36c by directly introducing the coolant from the engine 2 into the coolant passage 36a. It is a heater for heating the refrigerant of the Rankine cycle 31.
 ランキンサイクル31の冷媒にとって下流(図1の右)側に位置する他方の冷却水通路36bには、第2バイパス冷却水通路25を介して廃熱回収器22を経た冷却水が導入される。冷却水通路36b及びこの冷却水通路36bに隣接する冷媒通路部分からなる熱交換器右側部分(ランキンサイクル31の冷媒にとって下流側)は、エンジン2の出口の冷却水を排気によってさらに加熱した冷却水を冷却水通路36bに導入することで、冷媒通路36cを流れる冷媒を過熱する過熱器である。 The cooling water that has passed through the waste heat recovery unit 22 via the second bypass cooling water passage 25 is introduced to the other cooling water passage 36 b located on the downstream (right in FIG. 1) side with respect to the refrigerant of the Rankine cycle 31. The heat exchanger right portion (downstream side with respect to the refrigerant of the Rankine cycle 31) including the cooling water passage 36b and the refrigerant passage portion adjacent to the cooling water passage 36b Is introduced into the cooling water passage 36b to superheat the refrigerant flowing in the refrigerant passage 36c.
 廃熱回収器22の冷却水通路22aは、排気管5に隣接して設けている。廃熱回収器22の冷却水通路22aにエンジン2の出口の冷却水を導入することで、冷却水を高温の排気によって例えば110~115℃程度まで加熱することができる。廃熱回収器22の全体を俯瞰して見たときに、排気と冷却水とが互いに流れる向きが逆向きとなるように冷却水通路22aが構成されている。 The cooling water passage 22 a of the waste heat recovery unit 22 is provided adjacent to the exhaust pipe 5. By introducing the cooling water at the outlet of the engine 2 into the cooling water passage 22a of the waste heat recovery unit 22, the cooling water can be heated to, for example, about 110 to 115 ° C. by high-temperature exhaust gas. The cooling water passage 22a is configured such that the exhaust gas and the cooling water flow in opposite directions when the entire waste heat recovery unit 22 is viewed.
 廃熱回収器22を設けた第2バイパス冷却水通路25には、制御弁26が介装されている。エンジン2の内部にある冷却水の温度を指すエンジン水温が、例えばエンジンの効率悪化やノックを発生させないための許容温度(例えば100℃)を超えないように、エンジン2の出口の冷却水温度センサ74の検出温度が所定値以上になると、この制御弁26の開度を減少させるようにしている。エンジン水温が許容温度に近づくと、廃熱回収器22を通過する冷却水量を減少させるので、エンジン水温が許容温度を超えてしまうことを確実に防ぐことができる。 A control valve 26 is interposed in the second bypass cooling water passage 25 provided with the waste heat recovery unit 22. The coolant temperature sensor at the outlet of the engine 2 so that the engine coolant temperature that indicates the temperature of the coolant inside the engine 2 does not exceed, for example, the allowable temperature (for example, 100 ° C.) for preventing engine efficiency deterioration and knocking. When the detected temperature 74 exceeds a predetermined value, the opening degree of the control valve 26 is decreased. When the engine water temperature approaches the allowable temperature, the amount of cooling water passing through the waste heat recovery unit 22 is reduced, so that the engine water temperature can be reliably prevented from exceeding the allowable temperature.
 一方、第2バイパス冷却水通路25の流量が減少したことによって、廃熱回収器22により上昇する冷却水温度が上がりすぎて冷却水が蒸発(沸騰)してしまったのでは、熱交換器36での効率が落ちるだけでなく、冷却水通路内の冷却水の流れが悪くなって温度が過剰に上昇してしまう恐れがある。これを避けるため、廃熱回収器22をバイパスするバイパス排気管6と、排気回収器22の排気通過量とバイパス排気管6の排気通過量とをコントロールするサーモスタットバルブ7をバイパス排気管6の分岐部に設けている。すなわち、サーモスタットバルブ7のバルブ開度は、廃熱回収器22を出た冷却水温度が所定の温度(例えば沸騰温度120℃)を超えないように、廃熱回収器22を出た冷却水温度に基づいて調節される。 On the other hand, if the flow rate of the second bypass cooling water passage 25 decreases, the temperature of the cooling water rising by the waste heat recovery unit 22 rises too much and the cooling water is evaporated (boiled), the heat exchanger 36 In addition, the flow of the cooling water in the cooling water passage may be deteriorated and the temperature may be excessively increased. In order to avoid this, a bypass exhaust pipe 6 bypassing the waste heat recovery unit 22 and a thermostat valve 7 for controlling an exhaust passage amount of the exhaust recovery device 22 and an exhaust passage amount of the bypass exhaust pipe 6 are branched. It is provided in the department. That is, the valve opening degree of the thermostat valve 7 is the temperature of the cooling water leaving the waste heat recovery unit 22 so that the temperature of the cooling water leaving the waste heat recovery unit 22 does not exceed a predetermined temperature (eg boiling temperature 120 ° C.) Adjusted based on
 熱交換器36とサーモスタットバルブ7と廃熱回収器22とは、廃熱回収ユニット23として一体化されていて、車幅方向略中央の床下において排気管途中に配設されている。サーモスタットバルブ7は、バイメタル等を用いた比較的簡易な感温弁でも良いし、温度センサ出力が入力されるコントローラによって制御される制御弁であっても良い。サーモスタットバルブ7による排気から冷却水への熱交換量の調節は比較的大きな遅れを伴うため、サーモスタットバルブ7を単独で調節したのではエンジン水温が許容温度を超えないようにするのが難しい。しかしながら、第2バイパス冷却水通路25の制御弁26をエンジン水温(出口温度)に基づき制御するようにしてあるので、熱回収量を速やかに低減し、エンジン水温が許容温度を超えるのを確実に防ぐことができる。また、エンジン水温が許容温度までに余裕がある状態であれば、廃熱回収器22を出る冷却水温度がエンジン水温の許容温度を越えるほどの高温(例えば110~115℃)になるまで熱交換を行って、廃熱回収量を増加させることができる。冷却水通路36bを出た冷却水は、第2バイパス冷却水通路25を介して第1バイパス冷却水通路24に合流されている。 The heat exchanger 36, the thermostat valve 7, and the waste heat recovery unit 22 are integrated as a waste heat recovery unit 23, and are disposed midway in the exhaust pipe below the floor approximately at the center in the vehicle width direction. The thermostat valve 7 may be a relatively simple temperature sensitive valve using a bimetal or the like, or may be a control valve controlled by a controller to which a temperature sensor output is input. Since the adjustment of the heat exchange amount from the exhaust gas to the cooling water by the thermostat valve 7 involves a relatively large delay, it is difficult to prevent the engine water temperature from exceeding the allowable temperature if the thermostat valve 7 is adjusted alone. However, since the control valve 26 of the second bypass cooling water passage 25 is controlled based on the engine water temperature (outlet temperature), the heat recovery amount can be rapidly reduced and the engine water temperature surely exceeds the allowable temperature. It can prevent. Further, if the engine water temperature has a margin up to the allowable temperature, heat exchange is performed until the temperature of the cooling water leaving the waste heat recovery unit 22 reaches a high temperature (for example, 110 to 115 ° C.) which exceeds the allowable temperature of the engine water temperature. To increase the amount of waste heat recovery. The coolant that has left the coolant passage 36 b is joined to the first bypass coolant passage 24 via the second bypass coolant passage 25.
 バイパス冷却水通路14からサーモスタットバルブ15に向かう冷却水の温度が、例えば熱交換器36でランキンサイクル31の冷媒と熱交換することによって十分低下していれば、サーモスタットバルブ15の冷却水通路13側のバルブ開度が小さくされて、ラジエータ11を通過する冷却水量は相対的に減らされる。逆にバイパス冷却水通路14からサーモスタットバルブ15に向かう冷却水の温度が、ランキンサイクル31が運転されていないことなどによって高くなると、サーモスタットバルブ15の冷却水通路13側のバルブ開度が大きくされて、ラジエータ11を通過する冷却水量は相対的に増やされる。このようなサーモスタットバルブ15の動作に基づいて、エンジン2の冷却水温度が適当に保たれ、熱がランキンサイクル31へ適当に供給(回収)されるように構成されている。 If the temperature of the cooling water from the bypass cooling water passage 14 toward the thermostat valve 15 is sufficiently lowered by heat exchange with the refrigerant of the Rankine cycle 31 in the heat exchanger 36, for example, the cooling water passage 13 side of the thermostat valve 15 The valve opening degree of is decreased, and the amount of cooling water passing through the radiator 11 is relatively reduced. Conversely, when the temperature of the coolant flowing from the bypass coolant passage 14 toward the thermostat valve 15 is increased due to the Rankine cycle 31 not being operated, the valve opening on the coolant passage 13 side of the thermostat valve 15 is increased. The amount of cooling water passing through the radiator 11 is relatively increased. Based on the operation of the thermostat valve 15 as described above, the coolant temperature of the engine 2 is appropriately maintained, and heat is appropriately supplied (recovered) to the Rankine cycle 31.
 次に、ランキンサイクル31について述べる。ここでは、ランキンサイクル31は、単純なランキンサイクルでなく、冷凍サイクル51と統合した統合サイクル30の一部として構成されている。以下では、基本となるランキンサイクル31を先に説明し、その後に冷凍サイクル51に言及する。 Next, the Rankine cycle 31 will be described. Here, the Rankine cycle 31 is not a simple Rankine cycle, but is configured as part of an integrated cycle 30 integrated with the refrigeration cycle 51. In the following, the basic Rankine cycle 31 will be described first, and then the refrigeration cycle 51 will be mentioned.
 ランキンサイクル31は、エンジン2の冷却水を介してエンジン2の廃熱を冷媒に回収し、回収した廃熱を動力として回生するシステムである。ランキンサイクル31は、冷媒ポンプ32、過熱器としての熱交換器36、膨張機37及び凝縮器(コンデンサ)38を備え、各構成要素は冷媒(R134a等)が循環する冷媒通路41~44により接続されている。 The Rankine cycle 31 is a system that recovers the waste heat of the engine 2 as a refrigerant through the cooling water of the engine 2 and regenerates the recovered waste heat as power. The Rankine cycle 31 includes a refrigerant pump 32, a heat exchanger 36 as a superheater, an expander 37, and a condenser (condenser) 38, and each component is connected by refrigerant passages 41 to 44 through which a refrigerant (R 134a etc.) circulates. It is done.
 冷媒ポンプ32の軸は同一の軸上で膨張機37の出力軸と連結配置され、膨張機37の発生する出力(動力)によって冷媒ポンプ32を駆動すると共に、発生動力をエンジン2の出力軸(クランク軸)に供給する構成である(図2A参照)。すなわち、冷媒ポンプ32の軸及び膨張機37の出力軸は、エンジン2の出力軸と平行に配置され、冷媒ポンプ32の軸の先端に設けたポンププーリ33と、クランクプーリ2aとの間にベルト34を掛け回している(図1参照)。なお、本実施形態の冷媒ポンプ32としては、ギヤ式のポンプを、膨張機37としては、スクロール式の膨張機を採用している(図2B、図2C参照)。 The shaft of the refrigerant pump 32 is connected to the output shaft of the expander 37 on the same shaft, and the output (power) generated by the expander 37 drives the refrigerant pump 32 and the generated power is output from the engine 2 Supply to the crankshaft) (see FIG. 2A). That is, the shaft of the refrigerant pump 32 and the output shaft of the expander 37 are disposed parallel to the output shaft of the engine 2, and a belt 34 is disposed between the pump pulley 33 provided at the tip of the shaft of the refrigerant pump 32 and the crank pulley 2 a. (See Figure 1). A gear pump is used as the refrigerant pump 32 of the present embodiment, and a scroll expander is used as the expander 37 (see FIGS. 2B and 2C).
 また、ポンププーリ33と冷媒ポンプ32との間に電磁式のクラッチ(このクラッチを以下「膨張機クラッチ」という。)35を設けて、冷媒ポンプ32及び膨張機37とを、エンジン2と断接可能にしている(図2A参照)。このため、膨張機37の発生する出力が冷媒ポンプ32の駆動力及び回転体が有するフリクションを上回る場合(予測膨張機トルクが正の場合)に膨張機クラッチ35を接続することで、膨張機37の発生する出力によってエンジン出力軸の回転をアシスト(補助)することができる。このように廃熱回収によって得たエネルギを用いてエンジン出力軸の回転をアシストすることで、燃費を向上できる。また、冷媒を循環させる冷媒ポンプ32を駆動するためのエネルギも、回収した廃熱で賄うことができる。 In addition, an electromagnetic clutch (hereinafter referred to as "expansion machine clutch") 35 is provided between the pump pulley 33 and the refrigerant pump 32, and the refrigerant pump 32 and the expansion machine 37 can be connected to and disconnected from the engine 2. (See Figure 2A). Therefore, the expander 37 is connected by connecting the expander clutch 35 when the output generated by the expander 37 exceeds the friction of the driving force of the refrigerant pump 32 and the rotating body (when the predicted expander torque is positive). The rotation of the engine output shaft can be assisted by the output generated by Fuel consumption can be improved by assisting the rotation of the engine output shaft using the energy obtained by waste heat recovery as described above. In addition, energy for driving the refrigerant pump 32 for circulating the refrigerant can also be provided by the recovered waste heat.
 冷媒ポンプ32からの冷媒は、冷媒通路41を介して熱交換器36に供給される。熱交換器36は、エンジン2の冷却水と冷媒との間で熱交換を行わせ、冷媒を気化し過熱する。 The refrigerant from the refrigerant pump 32 is supplied to the heat exchanger 36 via the refrigerant passage 41. The heat exchanger 36 exchanges heat between the coolant of the engine 2 and the refrigerant to vaporize and superheat the refrigerant.
 熱交換器36からの冷媒は、冷媒通路42を介して膨張機37に供給される。膨張機37は、気化し過熱された冷媒を膨張させることにより、熱を回転エネルギに変換する蒸気タービンである。膨張機37で回収された動力は冷媒ポンプ32を駆動し、ベルト伝動機構を介してエンジン2に伝達され、エンジン2の回転をアシストする。 The refrigerant from the heat exchanger 36 is supplied to the expander 37 via the refrigerant passage 42. The expander 37 is a steam turbine that converts heat into rotational energy by expanding a vaporized and superheated refrigerant. The power recovered by the expander 37 drives the refrigerant pump 32, is transmitted to the engine 2 via the belt transmission mechanism, and assists the rotation of the engine 2.
 膨張機37からの冷媒は、冷媒通路43を介して凝縮器38に供給される。凝縮器38は、外気と冷媒との間で熱交換を行わせ、冷媒を冷却し液化する熱交換器である。このため、凝縮器38をラジエータ11と並列に配置し、ラジエータファン12によって冷却するようにしている。 The refrigerant from the expander 37 is supplied to the condenser 38 via the refrigerant passage 43. The condenser 38 is a heat exchanger which performs heat exchange between the outside air and the refrigerant, cools the refrigerant, and liquefies the refrigerant. For this reason, the condenser 38 is disposed in parallel with the radiator 11 and is cooled by the radiator fan 12.
 凝縮器38により液化された冷媒は、冷媒通路44を介して冷媒ポンプ32に戻される。冷媒ポンプ32に戻された冷媒は、冷媒ポンプ32により再び熱交換器36に送られ、ランキンサイクル31の各構成要素を循環する。 The refrigerant liquefied by the condenser 38 is returned to the refrigerant pump 32 through the refrigerant passage 44. The refrigerant returned to the refrigerant pump 32 is again sent to the heat exchanger 36 by the refrigerant pump 32, and circulates through the components of the Rankine cycle 31.
 次に、冷凍サイクル51について述べる。冷凍サイクル51は、ランキンサイクル31を循環する冷媒を共用するため、ランキンサイクル31と統合され、冷凍サイクル51の構成そのものは簡素になっている。すなわち、冷凍サイクル51は、コンプレッサ(圧縮機)52、凝縮器38、エバポレータ(蒸発器)55を備える。 Next, the refrigeration cycle 51 will be described. The refrigeration cycle 51 is integrated with the Rankine cycle 31 in order to share the refrigerant circulating through the Rankine cycle 31, and the configuration itself of the refrigeration cycle 51 is simplified. That is, the refrigeration cycle 51 includes a compressor (compressor) 52, a condenser 38, and an evaporator (evaporator) 55.
 コンプレッサ52は、冷凍サイクル51の冷媒を高温高圧に圧縮する流体機械で、エンジン2によって駆動される。すなわち、図4にも示すように、コンプレッサ52の駆動軸にはコンプレッサプーリ53が固定され、このコンプレッサプーリ53とクランクプーリ2aとにベルト34を掛け回している。エンジン2の駆動力がこのベルト34を介してコンプレッサプーリ53に伝達され、コンプレッサ52が駆動される。また、コンプレッサプーリ53とコンプレッサ52との間に電磁式のクラッチ(このクラッチを以下「コンプレッサクラッチ」という。)54を設けて、コンプレッサ52とコンプレッサプーリ53とを断接可能にしている。 The compressor 52 is a fluid machine that compresses the refrigerant of the refrigeration cycle 51 to a high temperature and a high pressure, and is driven by the engine 2. That is, as shown also in FIG. 4, the compressor pulley 53 is fixed to the drive shaft of the compressor 52, and the belt 34 is wound around the compressor pulley 53 and the crank pulley 2a. The driving force of the engine 2 is transmitted to the compressor pulley 53 via the belt 34, and the compressor 52 is driven. Further, an electromagnetic clutch (hereinafter referred to as a "compressor clutch") 54 is provided between the compressor pulley 53 and the compressor 52 so that the compressor 52 and the compressor pulley 53 can be connected and disconnected.
 図1に戻って説明を続ける。コンプレッサ52からの冷媒は、冷媒通路56を介して冷媒通路43に合流した後、凝縮器38に供給される。凝縮器38は、外気との熱交換によって冷媒を凝縮し液化する熱交換器である。凝縮器38からの液状の冷媒は、冷媒通路44から分岐する冷媒通路57を介してエバポレータ(蒸発器)55に供給される。エバポレータ55は、図示しないヒータコアと同様に、エアコンユニットのケース内に配設されている。エバポレータ55は、凝縮器38からの液状冷媒を蒸発させ、そのときの蒸発潜熱によってブロアファンからの空調空気を冷却する熱交換器である。 Returning to FIG. 1, the description will be continued. The refrigerant from the compressor 52 joins the refrigerant passage 43 via the refrigerant passage 56 and is then supplied to the condenser 38. The condenser 38 is a heat exchanger that condenses and liquefies the refrigerant by heat exchange with the outside air. The liquid refrigerant from the condenser 38 is supplied to the evaporator (evaporator) 55 via a refrigerant passage 57 branched from the refrigerant passage 44. The evaporator 55 is disposed in the case of the air conditioner unit, similarly to the heater core (not shown). The evaporator 55 is a heat exchanger that evaporates the liquid refrigerant from the condenser 38 and cools the conditioned air from the blower fan by the latent heat of evaporation at that time.
 エバポレータ55によって蒸発した冷媒は、冷媒通路58を介してコンプレッサ52に戻される。なお、エバポレータ55によって冷却された空調空気とヒータコアによって加熱された空調空気は、エアミックスドアの開度に応じて混合比率が変更され、乗員の設定する温度に調節される。 The refrigerant evaporated by the evaporator 55 is returned to the compressor 52 via the refrigerant passage 58. The mixing ratio of the conditioned air cooled by the evaporator 55 and the conditioned air heated by the heater core is changed according to the degree of opening of the air mix door, and is adjusted to the temperature set by the occupant.
 ランキンサイクル31と冷凍サイクル51とからなる統合サイクル30には、サイクル内を流れる冷媒を制御するため、回路途中に各種の弁が適宜設けられている。例えば、ランキンサイクル31を循環する冷媒を制御するため、冷凍サイクル分岐点45と冷媒ポンプ32とを連絡する冷媒通路44にポンプ上流弁61が設けられ、熱交換器36と膨張機37とを連絡する冷媒通路42に膨張機上流弁62が設けられている。また、冷媒ポンプ32と熱交換器36とを連絡する冷媒通路41には、熱交換器36から冷媒ポンプ32への冷媒の逆流を防止するために逆止弁63が設けられている。膨張機37と冷凍サイクル合流点46とを連絡する冷媒通路43にも、冷凍サイクル合流点46から膨張機37への冷媒の逆流を防止するために逆止弁64が設けられている。また、膨張機上流弁62の上流から膨張機37をバイパスして逆止弁64の上流に合流する膨張機バイパス通路65を設け、この膨張機バイパス通路65にバイパス弁66を設けている。さらに、バイパス弁66をバイパスする通路67に、圧力調整弁68を設けている。冷凍サイクル51側についても、冷凍サイクル分岐点45とエバポレータ55とを接続する冷媒通路57に、エアコン回路弁69を設けている。 In the integrated cycle 30 composed of the Rankine cycle 31 and the refrigeration cycle 51, various valves are appropriately provided in the middle of the circuit in order to control the refrigerant flowing in the cycle. For example, in order to control the refrigerant circulating through the Rankine cycle 31, a pump upstream valve 61 is provided in the refrigerant passage 44 connecting the refrigeration cycle branch point 45 and the refrigerant pump 32, and the heat exchanger 36 and the expander 37 are communicated. An expander upstream valve 62 is provided in the refrigerant passage 42 which is disposed. Further, a check valve 63 is provided in the refrigerant passage 41 connecting the refrigerant pump 32 and the heat exchanger 36 in order to prevent the backflow of the refrigerant from the heat exchanger 36 to the refrigerant pump 32. The refrigerant passage 43 connecting the expander 37 and the refrigeration cycle junction 46 is also provided with a check valve 64 for preventing the backflow of the refrigerant from the refrigeration cycle junction 46 to the expander 37. Further, an expander bypass passage 65 is provided which bypasses the expander 37 from the upstream of the expander upstream valve 62 and joins the upstream of the check valve 64, and a bypass valve 66 is provided in the expander bypass passage 65. Furthermore, a pressure regulating valve 68 is provided in the passage 67 that bypasses the bypass valve 66. An air conditioner circuit valve 69 is provided in the refrigerant passage 57 connecting the refrigeration cycle branch point 45 and the evaporator 55 also on the refrigeration cycle 51 side.
 上記4つの弁61、62、66、69は、いずれも電磁式の開閉弁である。圧力センサ72により検出される膨張機上流圧力の信号、圧力センサ73により検出される凝縮器38の出口の冷媒圧力Pdの信号、膨張機37の回転速度信号等がエンジンコントローラ71に入力されている。エンジンコントローラ71では、所定の運転条件に応じ、これらの各入力信号に基づいて、冷凍サイクル51のコンプレッサ52や、ラジエータファン12の制御を行なうとともに、上記4つの電磁式開閉弁61、62、66、69の開閉を制御する。 The four valves 61, 62, 66, 69 are all electromagnetic on-off valves. The signal of the expander upstream pressure detected by the pressure sensor 72, the signal of the refrigerant pressure Pd at the outlet of the condenser 38 detected by the pressure sensor 73, the rotational speed signal of the expander 37, etc. are input to the engine controller 71 . The engine controller 71 controls the compressor 52 of the refrigeration cycle 51 and the radiator fan 12 based on the respective input signals in accordance with predetermined operation conditions, and the four electromagnetic on-off valves 61, 62, 66. , 69 open and close control.
 例えば、圧力センサ72により検出される膨張機上流側圧力及び膨張機回転速度に基づいて膨張機トルク(回生動力)を予測し、この予測膨張機トルクが正のとき(エンジン出力軸の回転をアシストすることができるとき)に膨張機クラッチ35を締結し、予測膨張機トルクがゼロないし負のときに膨張機クラッチ35を解放する。センサ検出圧力と膨張機回転速度とに基づくことで、排気温度から膨張機トルク(回生動力)を予測する場合とくらべ、高い精度で膨張機トルクを予測することができ、膨張機トルクの発生状況に応じて膨張機クラッチ35の締結・解放を適切に行うことができる(詳細はJP2010-190185A参照)。 For example, the expander torque (regenerative power) is predicted based on the expander upstream pressure detected by the pressure sensor 72 and the expander rotational speed, and when the predicted expander torque is positive (the engine output shaft is assisted (When possible) and engage the expander clutch 35, and release the expander clutch 35 when the predicted expander torque is zero or negative. Compared with the case where the expander torque (regenerative power) is predicted from the exhaust temperature, the expander torque can be predicted with high accuracy, based on the sensor detection pressure and the expander rotational speed, and the expander torque generation state Accordingly, the expansion clutch 35 can be properly engaged and disengaged (see JP 2010-190185 A for details).
 上記4つの開閉弁61、62、66、69及び2つの逆止弁63、64は、冷媒系バルブである。これらの冷媒系バルブの機能を改めて図3に示す。 The four on-off valves 61, 62, 66, 69 and the two check valves 63, 64 are refrigerant system valves. The functions of these refrigerant valves are shown again in FIG.
 図3において、ポンプ上流弁61は、冷凍サイクル51の回路に比べて、ランキンサイクル31の回路に冷媒が偏り易くなる所定の条件で閉じることで、ランキンサイクル31への冷媒(潤滑成分を含む)の偏りを防止するためのもので、後述するように、膨張機37下流の逆止弁64と協働してランキンサイクル31の回路を閉塞させる。膨張機上流弁62は、熱交換器36からの冷媒圧力が相対的に低い場合に冷媒通路42を遮断し、熱交換器36からの冷媒が高圧になるまで保持することができるようにするものである。これによって、膨張機トルクが十分得られない場合でも冷媒の加熱を促し、例えばランキンサイクル31が再起動する(回生が実際に行なえるようになる)までの時間を短縮させることができる。バイパス弁66は、ランキンサイクル31の始動時等に、ランキンサイクル31側に存在する冷媒量が十分でないときなどに、膨張機37をバイパスさせた上で冷媒ポンプ32の作動が行えるように開弁し、ランキンサイクル31の起動時間を短縮するためのものである。膨張機37をバイパスさせた上で冷媒ポンプ32を作動させることで、凝縮器38の出口あるいは冷媒ポンプ32の入口の冷媒温度が、その部位の圧力を考慮した沸点から所定温度差(サブクール温度SC)以上に低下した状態が実現されれば、ランキンサイクル31には十分な液体冷媒が供給できる状態が整ったことになる。 In FIG. 3, the pump upstream valve 61 closes the refrigerant (including the lubricating component) to the Rankine cycle 31 by closing under a predetermined condition that the refrigerant tends to be biased to the circuit of the Rankine cycle 31 compared to the circuit of the refrigeration cycle 51. In order to prevent the deviation of the pressure, as described later, the circuit of the Rankine cycle 31 is closed in cooperation with the check valve 64 downstream of the expander 37. The expander upstream valve 62 shuts off the refrigerant passage 42 when the refrigerant pressure from the heat exchanger 36 is relatively low, so that the refrigerant from the heat exchanger 36 can be held to a high pressure. It is. By this, even if the expander torque can not be obtained sufficiently, it is possible to accelerate the heating of the refrigerant and to shorten, for example, the time until the Rankine cycle 31 is restarted (the regeneration can be actually performed). The bypass valve 66 is opened so that the refrigerant pump 32 can be operated after bypassing the expander 37 when the amount of refrigerant present on the Rankine cycle 31 side is not sufficient, for example, when the Rankine cycle 31 is started. To reduce the start-up time of the Rankine cycle 31. By operating the refrigerant pump 32 after bypassing the expander 37, the refrigerant temperature at the outlet of the condenser 38 or at the inlet of the refrigerant pump 32 changes from the boiling point considering the pressure at that portion to a predetermined temperature difference (subcool temperature SC If the above-mentioned state of reduction is realized, the Rankine cycle 31 is ready to be supplied with a sufficient amount of liquid refrigerant.
 熱交換器36上流の逆止弁63は、バイパス弁66、圧力調整弁68、膨張機上流弁62と協働して膨張機37に供給される冷媒を高圧に保持するためのものである。ランキンサイクル31の回生効率が低い条件ではランキンサイクル31の運転を停止し、熱交換器36の前後区間に亘って回路を閉塞することで、停止中の冷媒圧力を上昇させておき、高圧冷媒を利用してランキンサイクル31が速やかに再起動できるようにする。圧力調整弁68は、膨張機37に供給される冷媒の圧力が高くなり過ぎた場合に開いて、高くなり過ぎた冷媒を逃すリリーフ弁の役割を有している。 The check valve 63 upstream of the heat exchanger 36 is for maintaining the refrigerant supplied to the expander 37 at high pressure in cooperation with the bypass valve 66, the pressure control valve 68 and the expander upstream valve 62. Under conditions where the regenerative efficiency of the Rankine cycle 31 is low, the operation of the Rankine cycle 31 is stopped, and the circuit is closed over the sections before and after the heat exchanger 36 to raise the refrigerant pressure during stoppage. The Rankine cycle 31 can be restarted promptly by using it. The pressure control valve 68 has a role of a relief valve that opens when the pressure of the refrigerant supplied to the expander 37 becomes too high and releases the too high refrigerant.
 膨張機37下流の逆止弁64は、上述のポンプ上流弁61と協働してランキンサイクル31への冷媒の偏りを防止するためのものである。ハイブリッド車両1の運転開始直後、エンジン2が暖まっていないとランキンサイクル31が冷凍サイクル51より低温となり、冷媒がランキンサイクル31側に偏ることがある。ランキンサイクル31側に偏る確率はそれほど高くないものの、例えば夏場の車両運転開始直後には、車内を早く冷やしたい状況にあって冷房能力が最も要求されることから、冷媒の僅かな偏在も解消して冷凍サイクル51の冷媒を確保したいという要求がある。そこで、ランキンサイクル31側への冷媒の偏在を防止するため逆止弁64を設けた。 The check valve 64 downstream of the expander 37 is for preventing the bias of the refrigerant to the Rankine cycle 31 in cooperation with the above-described pump upstream valve 61. If the engine 2 is not warmed up immediately after the start of the operation of the hybrid vehicle 1, the Rankine cycle 31 may become lower temperature than the refrigeration cycle 51, and the refrigerant may be biased to the Rankine cycle 31 side. Although the probability of deviation to the Rankine cycle 31 side is not so high, for example, because the cooling capacity is most required in the situation where it is desirable to quickly cool the vehicle interior immediately after the start of vehicle operation in summer, slight uneven distribution of refrigerant is eliminated. There is a demand to secure the refrigerant of the refrigeration cycle 51. Therefore, in order to prevent uneven distribution of the refrigerant on the Rankine cycle 31 side, a check valve 64 is provided.
 コンプレッサ52は 、駆動停止時に冷媒が自由通過できる構造ではなく、エアコン回路弁69と協働して冷凍サイクル51への冷媒の偏りを防止することができる。これについて説明する。冷凍サイクル51の運転が停止したとき、定常運転中の比較的高い温度のランキンサイクル31側から冷凍サイクル51側へと冷媒が移動して、ランキンサイクル31を循環する冷媒が不足することがある。冷凍サイクル51の中で、冷房停止直後はエバポレータ55の温度が低くなっていて、比較的容積が大きく温度が低くなっているエバポレータ55に冷媒が溜まり易い。この場合に、コンプレッサ52の駆動停止によって、凝縮器38からエバポレータ55への冷媒の動きを遮断するとともに、エアコン回路弁69を閉じることで、冷凍サイクル51への冷媒の偏りを防止する。 The compressor 52 does not have a structure that allows the refrigerant to freely pass when the driving is stopped, and can prevent the bias of the refrigerant to the refrigeration cycle 51 in cooperation with the air conditioner circuit valve 69. This will be described. When the operation of the refrigeration cycle 51 is stopped, the refrigerant may move from the relatively high temperature Rankine cycle 31 side in steady operation to the refrigeration cycle 51 side, and the refrigerant circulating in the Rankine cycle 31 may run short. In the refrigeration cycle 51, immediately after the cooling is stopped, the temperature of the evaporator 55 is low, and the refrigerant tends to be accumulated in the evaporator 55 having a relatively large volume and a low temperature. In this case, the movement of the refrigerant from the condenser 38 to the evaporator 55 is shut off by stopping the driving of the compressor 52, and the air conditioner circuit valve 69 is closed to prevent the refrigerant from being unevenly distributed to the refrigeration cycle 51.
 図5は、エンジン2全体のパッケージを示すエンジン2の概略斜視図である。図5において特徴的なのは、熱交換器36が排気マニホールド4の鉛直上方に配置されていることである。排気マニホールド4の鉛直上方のスペースに熱交換器36を配置することによって、ランキンサイクル31のエンジン2への搭載性を向上させている。また、エンジン2には、テンションプーリ8が設けられている。 FIG. 5 is a schematic perspective view of the engine 2 showing a package of the entire engine 2. What is characteristic in FIG. 5 is that the heat exchanger 36 is disposed vertically above the exhaust manifold 4. By disposing the heat exchanger 36 in the space vertically above the exhaust manifold 4, the mountability of the Rankine cycle 31 on the engine 2 is improved. Further, the engine 2 is provided with a tension pulley 8.
 次に、ランキンサイクル31の基本的な運転方法を、図7A及び図7Bを参照して説明する。 Next, a basic operation method of the Rankine cycle 31 will be described with reference to FIGS. 7A and 7B.
 図7A及び図7Bは、ランキンサイクル31の運転領域図である。図7Aは、横軸を外気温、縦軸をエンジン水温(冷却水温度)としたときのランキンサイクル31の運転域を示している。図7Bは、横軸をエンジン回転速度、縦軸をエンジントルク(エンジン負荷)としたときのランキンサイクル31の運転域を示している。 7A and 7B are operation region diagrams of the Rankine cycle 31. FIG. FIG. 7A shows the operating region of the Rankine cycle 31 when the horizontal axis is the outside air temperature, and the vertical axis is the engine water temperature (cooling water temperature). FIG. 7B shows the operating region of the Rankine cycle 31 when the horizontal axis is the engine rotational speed and the vertical axis is the engine torque (engine load).
 図7A及び図7Bのいずれにおいても、所定の条件を満たしたときにランキンサイクル31を運転するもので、これら両方の条件が満たされた場合に、ランキンサイクル31を運転する。図7Aにおいては、エンジン2の暖機を優先する低水温側の領域と、コンプレッサ52の負荷が増大する高外気温側の領域でランキンサイクル31の運転を停止している。排気温度が低く回収効率が悪い暖機時は、むしろランキンサイクル31を運転しないことで冷却水温度を速やかに上昇させる。高い冷房能力が要求される高外気温時はランキンサイクル31を止めて、冷凍サイクル51に十分な冷媒と凝縮器38の冷却能力を提供する。 7A and 7B, the Rankine cycle 31 is operated when predetermined conditions are satisfied, and the Rankine cycle 31 is operated when both of these conditions are satisfied. In FIG. 7A, the operation of the Rankine cycle 31 is stopped in the low water temperature region where warm-up of the engine 2 is prioritized and the high outside air temperature region where the load of the compressor 52 increases. During warm-up where the exhaust gas temperature is low and the recovery efficiency is poor, the coolant temperature is raised promptly by not operating the Rankine cycle 31 rather. At high outside air temperatures where high cooling capacity is required, the Rankine cycle 31 is stopped to provide the refrigeration cycle 51 with sufficient refrigerant and cooling capacity of the condenser 38.
 図7Bにおいては、ハイブリッド車両を対象としているので、EV走行領域と、膨張機37のフリクションが増大する高回転速度側の領域でランキンサイクル31の運転を停止している。膨張機37は、全ての回転速度でフリクションが少ない高効率な構造とすることが難しいことから、図7Bの場合では、運転頻度の高いエンジン回転速度域でフリクションが小さく高効率となるように、膨張機37が構成(膨張機37各部のディメンジョン等が設定)されている。 In FIG. 7B, since the hybrid vehicle is targeted, the operation of the Rankine cycle 31 is stopped in the EV travel region and the region on the high rotational speed side where the friction of the expander 37 increases. Since it is difficult to make the expander 37 a highly efficient structure with little friction at all rotational speeds, in the case of FIG. 7B, the friction is small and highly efficient in the engine rotational speed region where the operation frequency is high, The expander 37 is configured (dimensions and the like of each part of the expander 37 are set).
 図8は、膨張機トルクによりエンジン出力軸の回転をアシストしている途中で、ハイブリッド車両1の加速が行われたときの様子をモデルで示したタイミングチャートである。なお、図8の右側には、このときに膨張機37の運転状態が推移する様子を膨張機トルクマップ上に表している。膨張機トルクマップの等高線で区切られた範囲のうち、膨張機回転速度が低く、膨張機上流圧力が高い部分(左上)は膨張機トルクが最も大きく、膨張機回転速度が高く、膨張機上流圧力が低くなるほど(右下に進むほど)、膨張機トルクが小さくなる傾向になっている。特に斜線部の範囲は、冷媒ポンプを駆動する前提では膨張機トルクがマイナスになって、エンジンに対しては負荷となってしまう領域を表している。 FIG. 8 is a timing chart showing, as a model, how the hybrid vehicle 1 accelerates while the rotation of the engine output shaft is assisted by the expander torque. Note that on the right side of FIG. 8, a state in which the operating state of the expander 37 changes at this time is shown on the expander torque map. Of the range divided by the contour line of the expander torque map, the expander rotational speed is low and the expander upstream pressure is high (upper left) is the largest expander torque and the expander rotational speed is high, the expander upstream pressure As the lower the value (the lower right), the expander torque tends to decrease. In particular, the range of the hatched portion represents a region where the expander torque is negative on the premise that the refrigerant pump is driven and the load is applied to the engine.
 運転者がアクセルペダルを踏込むタイミングt1までは、定速走行が継続されて膨張機37が正のトルクを発生させており、膨張機トルクによるエンジン出力軸の回転アシストが行われている。 The constant speed traveling is continued until the timing t1 at which the driver depresses the accelerator pedal, and the expander 37 generates positive torque, and rotation assist of the engine output shaft by the expander torque is performed.
 タイミングt1以降、膨張機37の回転速度、すなわち冷媒ポンプ32の回転速度がエンジン回転速度に比例して上昇するが、排気温度或いは冷却水温度の上昇は、エンジン回転速度の上昇に対して遅れを有する。そのため、冷媒ポンプ32の回転速度の上昇によって増大した冷媒量に対して、回収可能な熱量の割合が低下する。 After timing t1, the rotational speed of the expander 37, that is, the rotational speed of the refrigerant pump 32, increases in proportion to the engine rotational speed, but the increase in exhaust temperature or coolant temperature is delayed with respect to the increase in engine rotational speed. Have. Therefore, the ratio of recoverable heat amount to the amount of refrigerant increased due to the increase of the rotational speed of the refrigerant pump 32 decreases.
 従って、膨張機回転速度が上昇するにつれ、膨張機上流の冷媒圧力が低下し、膨張機トルクは低下する。 Therefore, as the expander rotational speed increases, the refrigerant pressure upstream of the expander decreases and the expander torque decreases.
 この膨張機トルクの低下により、膨張機トルクが十分得られなくなると(例えばゼロ付近になるt2のタイミングで)、膨張機上流弁62を開状態から閉状態へと切換えて、回生効率の悪化(膨張機トルクの過度の低下に伴って膨張機37が逆にエンジン2に引き摺られる現象)を回避する。 When the expander torque can not be obtained sufficiently (for example, at the timing of t2 when it becomes near zero) due to the reduction of the expander torque, the expander upstream valve 62 is switched from the open state to the closed state to deteriorate the regeneration efficiency ( The phenomenon in which the expander 37 is dragged to the engine 2 in reverse with the excessive reduction of expander torque is avoided.
 膨張機上流弁62を開状態から閉状態へと切換えた後、t3のタイミングで膨張機クラッチ35が接続(締結)から切断(解放)へと切換えられる。この膨張機クラッチ35の切断時期を、膨張機上流弁62を開状態から閉状態へと切換えた時期より幾分遅らせることによって、膨張機上流の冷媒圧力を十分低下させ、膨張機クラッチ35を切り離した際の膨張機37が、過回転になるのを防止できる。また、冷媒ポンプ32によって多めの冷媒を熱交換器36内に供給し、ランキンサイクル31が停止中も冷媒を効果的に加熱することで、ランキンサイクル31の運転再開がスムースに行なえるようにしている。 After switching the expander upstream valve 62 from the open state to the closed state, the expander clutch 35 is switched from connection (engagement) to disconnection (release) at timing t3. The refrigerant pressure in the upstream of the expander is sufficiently lowered by disconnecting the expander clutch 35 by delaying the disconnection timing of the expander clutch 35 somewhat later than the timing at which the expander upstream valve 62 is switched from the open state to the closed state. It is possible to prevent the expander 37 from being over-rotated. Further, by supplying a larger amount of refrigerant into the heat exchanger 36 by the refrigerant pump 32 and effectively heating the refrigerant even while the Rankine cycle 31 is stopped, the operation resumption of the Rankine cycle 31 can be smoothly performed. There is.
 タイミングt3以降、エンジン2の放熱量の上昇により膨張機上流圧力が再び上昇し、t4のタイミングで、膨張機上流弁62が閉状態から開状態へと切換えられ、膨張機37への冷媒の供給が再開される。また、t4のタイミングで膨張機クラッチ35が再び接続される。この膨張機クラッチ35の再接続により、膨張機トルクによるエンジン出力軸の回転アシストが再開される。 After timing t3, the expander upstream pressure rises again due to the increase of the heat release amount of the engine 2, and at timing of t4, the expander upstream valve 62 is switched from the closed state to the open state to supply the refrigerant to the expander 37 Is resumed. In addition, the expander clutch 35 is connected again at the timing of t4. Reconnection of the expander clutch 35 restarts the rotation assist of the engine output shaft by the expander torque.
 図9は、膨張機上流弁62が閉じられ膨張機クラッチ35を切断した状態の、ランキンサイクルの運転停止から、図8(タイミングt4の制御)と異なる態様でランキンサイクル31の再起動を行なう様子をモデルで示したタイミングチャートである。 FIG. 9 shows a state in which the Rankine cycle 31 is restarted in a mode different from that of FIG. 8 (control of timing t4) from the operation stop of the Rankine cycle with the expander upstream valve 62 closed and the expander clutch 35 disconnected. Is a timing chart showing the model.
 t11のタイミングで運転者がアクセルペダルを踏込むと、アクセル開度が増大する。t11のタイミングでは、ランキンサイクル31の運転は停止されている。このため、膨張機トルクはゼロを維持している。 When the driver depresses the accelerator pedal at the timing of t11, the accelerator opening degree increases. At the timing of t11, the operation of the Rankine cycle 31 is stopped. For this reason, the expander torque is maintained at zero.
 タイミングt11からのエンジン回転速度の上昇に伴ってエンジン2の放熱量が増大し、この放熱量の増大によって熱交換器36に流入する冷却水温度が高くなり、熱交換器36内の冷媒の温度が上昇する。膨張機上流弁62は閉じているので、熱交換器36による冷媒温度の上昇によって、膨張機上流弁62の上流の冷媒圧力、つまり膨張機上流圧力が上昇していく(t11~t12)。 As the engine rotational speed increases from timing t11, the heat release amount of the engine 2 increases, and the increase in the heat release amount raises the temperature of the coolant flowing into the heat exchanger 36, and the temperature of the refrigerant in the heat exchanger 36 Will rise. Since the expander upstream valve 62 is closed, the refrigerant pressure upstream of the expander upstream valve 62, that is, the expander upstream pressure, is increased by the increase of the refrigerant temperature by the heat exchanger 36 (t11 to t12).
 この運転状態の変化によって、ランキンサイクル非運転域からランキンサイクル運転域へと切換わる。膨張機上流弁62がなく、ランキンサイクル運転域に移行したときに、即座に膨張機クラッチ35を切断状態から接続状態へと切換えて、膨張機37をエンジン出力軸と連結したのでは、膨張機37がエンジン2の負荷となる上にトルクショックが生じてしまう。 The change in the operating state switches the Rankine cycle non-operating range to the Rankine cycle operating range. When the expander upstream valve 62 is not present and the shift to the Rankine cycle operation region is made, the expander clutch 35 is immediately switched from the disconnected state to the connected state, and the expander 37 is connected to the engine output shaft. A torque shock occurs when 37 is a load on the engine 2.
 一方、図9では、ランキンサイクル運転域へと切換わったとき、即座に膨張機上流弁62を閉状態から開状態へと切換えることはしない。すなわち、ランキンサイクル運転域に移行した後も、膨張機上流弁62の閉状態を続ける。 On the other hand, in FIG. 9, when switching to the Rankine cycle operating region, the expander upstream valve 62 is not switched from the closed state to the open state immediately. That is, even after the shift to the Rankine cycle operation region, the closed state of the expander upstream valve 62 is continued.
 やがて、膨張機上流圧力と膨張機下流圧力との差圧が大きくなって所定圧以上となるt12のタイミングで膨張機37を運転(駆動)できると判断し、膨張弁上流弁62を閉状態から開状態に切換える。この膨張弁上流弁62の開状態への切換によって、膨張機37に所定圧の冷媒が供給され、膨張機回転速度がゼロから速やかに上昇する。 It is determined that the expander 37 can be operated (driven) at a timing of t12 when the differential pressure between the expander upstream pressure and the expander downstream pressure increases and reaches a predetermined pressure or more, and the expansion valve upstream valve 62 is closed Switch to open state. By switching the expansion valve upstream valve 62 to the open state, the refrigerant having a predetermined pressure is supplied to the expander 37, and the expander rotational speed rapidly increases from zero.
 この膨張機回転速度の上昇によって膨張機回転速度がエンジン回転速度に到達するt13のタイミングで、膨張機クラッチ35を切断状態より接続状態へと切換える。膨張機37が十分に回転速度を増す前に膨張機クラッチ35を接続したのでは、膨張機37がエンジン負荷となるし、トルクショックも生じ得る。これに対して、エンジン出力軸との回転速度差がなくなるt13のタイミングで膨張機クラッチ35を遅れて接続することで、膨張機37がエンジン負荷となることも、膨張機クラッチ35を締結することに伴うトルクショックも防止できる。 The expander clutch 35 is switched from the disconnected state to the connected state at time t13 when the expander rotational speed reaches the engine rotational speed due to the increase in the expander rotational speed. If the expander clutch 35 is connected before the expander 37 sufficiently increases the rotational speed, the expander 37 becomes an engine load and a torque shock may occur. On the other hand, the expansion machine clutch 35 becomes an engine load by connecting the expansion machine clutch 35 at a timing of t13 when the rotational speed difference from the engine output shaft disappears, and the expansion machine clutch 35 is engaged. Can also prevent torque shock associated with
 従来技術では、エンジンの廃熱が十分得られるときには、外部からエネルギを与えてポンプを駆動して冷媒を熱交換器に供給し、廃熱による過熱でエジェクタを駆動して冷凍サイクルを運転する一方、廃熱が不十分であるときにはポンプを停止し、コンプレッサをエンジンで駆動して冷凍サイクルを運転する。しかしながら、従来装置では、エジェクタ駆動用の高圧冷媒を得るため外部からエネルギを与えてポンプを駆動する必要があり、ポンプの駆動が燃費を悪化させる。 In the prior art, when the waste heat of the engine is sufficiently obtained, the energy is externally supplied to drive the pump to supply the refrigerant to the heat exchanger, and the ejector overheats by the waste heat to drive the refrigeration cycle. When the waste heat is insufficient, the pump is stopped and the compressor is driven by the engine to operate the refrigeration cycle. However, in the conventional apparatus, in order to obtain a high pressure refrigerant for driving the ejector, it is necessary to supply energy from the outside to drive the pump, and driving the pump deteriorates fuel consumption.
 そこで第1実施形態では、エジェクタを追加しても、エジェクタ駆動用の高圧冷媒を得るためポンプを外部からエネルギを与えて駆動しなくても済むように構成する。このことについて、図10を参照して説明する。図10は、図1に示す構成に対してエジェクタ92を追加して設けた構成で、図1と同一部分には同一番号を付している。 Therefore, in the first embodiment, even if an ejector is added, in order to obtain a high pressure refrigerant for driving the ejector, the pump does not have to be driven by supplying energy from the outside. This will be described with reference to FIG. 10 shows a configuration in which an ejector 92 is added to the configuration shown in FIG. 1 and the same parts as in FIG. 1 are given the same reference numerals.
 図10に示すように、コンプレッサ52をバイパスする冷媒通路91を設ける。すなわち、エバポレータ55の出口とコンプレッサ52を連絡する冷媒通路58から分岐して冷凍サイクル合流点46に合流する冷媒通路91を設ける。この冷媒通路91には、エジェクタ92を介装する。冷媒通路91の分岐点とエジェクタ92との間の冷媒通路91には、エジェクタ92から冷媒通路91の分岐点への冷媒の流れを阻止する逆止弁99を介装する。 As shown in FIG. 10, a refrigerant passage 91 for bypassing the compressor 52 is provided. That is, a refrigerant passage 91 which branches from the refrigerant passage 58 connecting the outlet of the evaporator 55 and the compressor 52 and joins the refrigeration cycle junction 46 is provided. An ejector 92 is interposed in the refrigerant passage 91. In the refrigerant passage 91 between the branch point of the refrigerant passage 91 and the ejector 92, a check valve 99 is interposed for blocking the flow of the refrigerant from the ejector 92 to the branch point of the refrigerant passage 91.
 上記のエジェクタ92は、ポンプなどの機械的運動によらずに流体から真空に近い状態を作ることができる装置である。エジェクタ92は、図11に示すように、周囲を囲われた室93、この室93に開口する吸込ポート94、室93に臨むノズル95及びディフューザ96を備える。室93内において、ノズル95とディフューザ96は適当な距離をおいて向き合っている。 The above-described ejector 92 is a device capable of creating a near vacuum state from fluid without mechanical movement such as a pump. The ejector 92, as shown in FIG. 11, includes a chamber 93 surrounded by the periphery, a suction port 94 opened to the chamber 93, a nozzle 95 facing the chamber 93, and a diffuser 96. In the chamber 93, the nozzle 95 and the diffuser 96 face each other at an appropriate distance.
 このように構成されるエジェクタ92に対して、冷媒通路を次のように接続する。すなわち、図10において、熱交換器36の出口に近い冷媒通路42から冷媒通路97を分岐し、この分岐冷媒通路97をノズル入口95aに接続する。 The refrigerant passage is connected as follows to the ejector 92 configured as described above. That is, in FIG. 10, the refrigerant passage 97 is branched from the refrigerant passage 42 close to the outlet of the heat exchanger 36, and the branched refrigerant passage 97 is connected to the nozzle inlet 95a.
 分岐冷媒通路97の分岐部には、膨張機37に流れる冷媒流量とエジェクタ92に流れる冷媒流量の分配比を調整可能な電磁式の流量制御弁98を設ける。ここで、流量制御弁98の制御量として、「エジェクタ側開度」、「膨張機側開度」を導入する。例えば、エジェクタ側開度をゼロとしたとき、熱交換器36の出口から出る冷媒の全ては分岐冷媒通路97を流れず、エジェクタ側開度を最大としたとき、熱交換器36の出口から出る冷媒の全てが分岐冷媒通路97を流れる。一方、膨張機側開度をゼロとしたとき、熱交換器出口の冷媒の全ては冷媒通路42を流れず、膨張機側開度を最大としたとき、熱交換器36の出口から出る冷媒の全てが冷媒通路42を流れる。つまり、エジェクタ側開度をゼロとしたとき膨張機側開度は最大となり、エジェクタ側開度をゼロから徐々に大きくしていくと、膨張機側開度は最大から徐々に小さくなっていく。そして、エジェクタ側開度を最大にしたとき、膨張機側開度はゼロとなる。 The branch portion of the branch refrigerant passage 97 is provided with an electromagnetic flow control valve 98 capable of adjusting the distribution ratio of the flow rate of the refrigerant flowing to the expander 37 and the flow rate of the refrigerant flowing to the ejector 92. Here, as the control amount of the flow control valve 98, the "ejector side opening degree" and the "expansion unit side opening degree" are introduced. For example, when the ejector-side opening degree is zero, all the refrigerant exiting from the outlet of the heat exchanger 36 does not flow through the branch refrigerant passage 97, and when the ejector-side opening degree is maximized, it exits from the outlet of the heat exchanger 36 All of the refrigerant flows in the branched refrigerant passage 97. On the other hand, when the expander side opening degree is zero, all the refrigerant at the heat exchanger outlet does not flow through the refrigerant passage 42, and when the expander side opening degree is maximized, the refrigerant leaving the outlet of the heat exchanger 36 All flow through the refrigerant passage 42. That is, when the ejector side opening degree is zero, the expander side opening degree is maximum, and when the ejector side opening degree is gradually increased from zero, the expander side opening degree gradually decreases from the maximum. Then, when the ejector side opening degree is maximized, the expander side opening degree becomes zero.
 このように、本実施形態の流量制御弁98における両開度の関係は、いずれか一方の開度を定めれば、残りの開度はそれによって一義的に定まる関係である。従って、エジェクタ側開度、膨張機側開度のいずれかによって流量制御弁98を制御すればよい。ここでは、エジェクタ側開度を制御することとする。このように、エジェクタ92が膨張機37と並列となるように冷媒回路を構成したので、エジェクタ側と膨張機側とに冷媒を任意に振り向けることができ、冷媒ポンプ32の駆動とコンプレッサ52の駆動とを所望通りに行なえる。 As described above, the relationship between the two openings in the flow control valve 98 of the present embodiment is a relationship in which the remaining openings are uniquely determined by determining one of the openings. Therefore, the flow control valve 98 may be controlled by either the ejector side opening degree or the expander side opening degree. Here, the ejector side opening degree is controlled. Thus, since the refrigerant circuit is configured such that the ejector 92 is in parallel with the expander 37, the refrigerant can be arbitrarily diverted to the ejector side and the expander side, and the driving of the refrigerant pump 32 and the compressor 52 Driving can be performed as desired.
 吸込ポート94にエバポレータ55側の冷媒通路91を、エジェクタ出口96aに冷媒通路43との合流部46側の冷媒通路91を接続する。 The refrigerant passage 91 on the evaporator 55 side is connected to the suction port 94, and the refrigerant passage 91 on the merging portion 46 side with the refrigerant passage 43 is connected to the ejector outlet 96a.
 ここで、エジェクタ92の作動を説明する。ノズル95から室93に向けて高圧のガス冷媒を駆動ガスとして噴射させると、ガス冷媒は、低圧超音速流となってディフューザ96の入口に進む。このガス冷媒の流れによって負の静圧が室93に生じ、室93内は真空に近い状態となる。この静圧とガス冷媒の粘性とによって、ディフューザ96の入口に飛び込むガス冷媒流れに、エバポレータ55からのガス冷媒が吸込ガスとして引き込まれる。ノズル95に供給されたガス冷媒と吸込ポート94から吸い込まれたガス冷媒とはディフューザ96の前半部で混合し、後半部では速度を減じて昇圧しつつディフューザ出口96aに向かい排出される。 Here, the operation of the ejector 92 will be described. When a high pressure gas refrigerant is injected as a drive gas from the nozzle 95 toward the chamber 93, the gas refrigerant forms a low pressure supersonic flow and travels to the inlet of the diffuser 96. A negative static pressure is generated in the chamber 93 by the flow of the gas refrigerant, and the interior of the chamber 93 is in a state close to vacuum. Due to the static pressure and the viscosity of the gas refrigerant, the gas refrigerant from the evaporator 55 is drawn as a suction gas into the gas refrigerant flow jumping into the inlet of the diffuser 96. The gas refrigerant supplied to the nozzle 95 and the gas refrigerant sucked from the suction port 94 are mixed in the front half of the diffuser 96, and are discharged toward the diffuser outlet 96a while reducing the pressure and pressurizing in the rear half.
 複合サイクル30に対してエジェクタ92を追加した構成では、ランキンサイクル31の運転中であれば、ランキンサイクル31の冷媒通路を流れる冷媒の一部を駆動ガスとしてエジェクタ92に導くことでエジェクタ92を駆動して、冷凍サイクル51を運転することができる。こうした構成であれば、従来装置のように、エジェクタ駆動用の高圧冷媒を得るため、外部からエネルギを与えてポンプを駆動する必要はない。ここで、「冷凍サイクル51を運転する」とは、冷凍サイクル51の冷媒通路に冷媒を循環させる(その結果エアコンの冷房が効く)ことをいう。 In the configuration in which the ejector 92 is added to the combined cycle 30, during the operation of the Rankine cycle 31, the ejector 92 is driven by guiding a part of the refrigerant flowing through the refrigerant passage of the Rankine cycle 31 to the ejector 92 as a driving gas. Then, the refrigeration cycle 51 can be operated. With such a configuration, it is not necessary to supply energy from the outside to drive the pump in order to obtain the high pressure refrigerant for driving the ejector as in the conventional device. Here, "operating the refrigeration cycle 51" means that the refrigerant is circulated in the refrigerant passage of the refrigeration cycle 51 (as a result, the cooling of the air conditioner is effective).
 このように、エジェクタ92を追加したことで、本実施形態では、〈1〉ランキンサイクル単独運転、〈2〉トルクアシスト付きエジェクタエアコンの運転、〈3〉トルクアシストなしエジェクタエアコンの運転、〈4〉コンプレッサエアコンの運転、という4つの運転を使い分け得ることとなった。ここで、「エジェクタエアコンの運転」とは、コンプレッサ52を使わずにエジェクタ92を駆動して冷凍サイクル51を運転することをいう。また、「コンプレッサエアコンの運転」とは、エジェクタ92を使わずにコンプレッサ52を駆動して冷凍サイクル51を運転することをいう。以下、上記の各運転について説明する。 Thus, by adding the ejector 92, in the present embodiment, <1> Rankine cycle alone operation, <2> operation of the ejector air conditioner with torque assist, <3> operation of the ejector air conditioner without torque assist, <4> It became possible to use properly the four operations of compressor air conditioner operation. Here, "the operation of the ejector air conditioner" means that the refrigeration cycle 51 is operated by driving the ejector 92 without using the compressor 52. Further, “the operation of the compressor air conditioner” means that the refrigeration cycle 51 is operated by driving the compressor 52 without using the ejector 92. Hereinafter, each of the above operations will be described.
 〈1〉ランキンサイクル単独運転
 エアコン要求(冷房要求)がないときにランキンサイクル単独運転を行う。図12に示すように、流量制御弁98のエジェクタ側開度をゼロにして(破線参照)、エジェクタ92にはガス冷媒を供給せず、エジェクタ92の駆動を停止する。
<1> Rankine cycle sole operation The Rankine cycle sole operation is performed when there is no air conditioning request (cooling request). As shown in FIG. 12, the ejector side opening degree of the flow control valve 98 is made zero (see the broken line), and the ejector 92 is not driven and the driving of the ejector 92 is stopped without supplying the gas refrigerant to the ejector 92.
 熱交換器36によりエンジン2の廃熱で冷媒を蒸発させて過熱し、熱交換器36の出口から出るガス冷媒の全てを冷媒通路42を介して膨張機37に供給し(太実線参照)、ガス冷媒の圧力エネルギで膨張機37を回転駆動する。その膨張機37の発生するトルク(出力)で冷媒ポンプ32を駆動して冷媒を循環させ、ランキンサイクル31を運転する。ここで、「ランキンサイクル31を運転する」とは、ランキンサイクル31の冷媒通路に冷媒を循環させる(その結果、廃熱からエネルギが回収される)ことをいう。膨張機37の発生するトルクが冷媒ポンプ32の駆動力を上回るときには膨張機クラッチ35を接続し、ランキンサイクル31を運転してエンジン出力軸の回転をアシストさせて燃費を向上させる。 The refrigerant is evaporated and superheated by the waste heat of the engine 2 by the heat exchanger 36, and all the gas refrigerant exiting from the outlet of the heat exchanger 36 is supplied to the expander 37 via the refrigerant passage 42 (see thick solid line) The expander 37 is rotationally driven by the pressure energy of the gas refrigerant. The refrigerant pump 32 is driven by the torque (output) generated by the expander 37 to circulate the refrigerant, and the Rankine cycle 31 is operated. Here, "operating the Rankine cycle 31" means circulating the refrigerant in the refrigerant passage of the Rankine cycle 31 (as a result, energy is recovered from the waste heat). When the torque generated by the expander 37 exceeds the driving force of the refrigerant pump 32, the expander clutch 35 is connected and the Rankine cycle 31 is operated to assist the rotation of the engine output shaft to improve the fuel efficiency.
 〈2〉トルクアシスト付きエジェクタエアコンの運転
 主にエアコン要求がある高速巡航中など、エアコン要求があり、かつ膨張機37による発生トルクが十分あるためにトルクアシストを行わせ得るときに、トルクアシスト付きエジェクタエアコンの運転を行う。図13に示すように、流量制御弁98のエジェクタ側開度を制御して、熱交換器36の出口から出るガス冷媒を膨張機37とエジェクタ92とに分割供給して、膨張機37を回転駆動すると共にエジェクタ92を駆動する。
<2> Operation of Ejector Air Conditioner with Torque Assist A torque assist can be performed when there is an air conditioner request such as during high-speed cruising mainly due to air conditioner request and there is sufficient torque generated by the expander 37. Operate the ejector air conditioner. As shown in FIG. 13, the ejector-side opening degree of the flow control valve 98 is controlled, and the gas refrigerant exiting from the outlet of the heat exchanger 36 is divided and supplied to the expander 37 and the ejector 92 to rotate the expander 37. While driving, the ejector 92 is driven.
 膨張機37のトルク(出力)で冷媒ポンプ32を駆動して冷媒を循環させ、ランキンサイクル31を運転する。ランキンサイクル31の冷媒通路を循環する冷媒の一部をエジェクタ92に導いてエジェクタ92を駆動し、冷凍サイクル51の冷媒通路にも冷媒を循環させる。コンプレッサ52を駆動することなく冷凍サイクル51を運転し、車室内の空調を行うのである。コンプレッサ52の駆動はエンジン2の負荷となり、その分燃費が悪くなるが、ランキンサイクル31の運転中にエジェクタ92を駆動して冷凍サイクル51を運転するのであれば、コンプレッサ52の駆動に伴う燃費の悪化を抑制できる。 The refrigerant pump 32 is driven by the torque (output) of the expander 37 to circulate the refrigerant, and the Rankine cycle 31 is operated. A part of the refrigerant circulating in the refrigerant passage of the Rankine cycle 31 is guided to the ejector 92 to drive the ejector 92, and the refrigerant is also circulated in the refrigerant passage of the refrigeration cycle 51. The refrigeration cycle 51 is operated without driving the compressor 52 to perform air conditioning of the vehicle interior. The driving of the compressor 52 is a load on the engine 2 and the fuel efficiency is deteriorated accordingly. However, if the refrigeration cycle 51 is operated by driving the ejector 92 during the operation of the Rankine cycle 31, It can control the deterioration.
 冷媒ポンプ32を駆動しても膨張機トルクが余るときには、膨張機クラッチ35を接続し、冷媒ポンプ32を駆動しても余った膨張機トルクで、エンジン出力軸の回転をアシストさせて燃費を向上させる。 Even if the refrigerant pump 32 is driven, the expander clutch 35 is connected when the expander torque remains, and the rotation of the engine output shaft is assisted by the expander torque remaining even if the refrigerant pump 32 is driven to improve the fuel efficiency. Let
 〈3〉トルクアシストなしエジェクタエアコンの運転
 アイドルストップ中や低負荷時など、エアコン要求があり、かつ膨張機37による発生トルクが十分でなくトルクアシストを行わせ得ないときに、トルクアシストなしエジェクタエアコンの運転を行う。上記〈2〉のトルクアシスト付きエジェクタエアコンの運転との違いは、トルクアシストを行わない点だけである。すなわち、図14に示すように、膨張機クラッチ35を切断し、流量制御弁98のエジェクタ側開度を制御して、トルクアシストせずに、膨張機トルクを冷媒ポンプ32を駆動するためにのみ用いることでランキンサイクル31を運転する。このランキンサイクル31の運転によって得られるガス冷媒でエジェクタ92を駆動して、冷凍サイクル51を運転する。アイドルストップに移行してからしばらくの間や低車速時などにおいても、動力(コンプレッサ52)は用いずに、エンジン廃熱でのみ冷凍サイクル51を作動させることが可能となる。
<3> Operation of the ejector air conditioner without torque assist When there is an air conditioner requirement, such as during idle stop or low load, and the torque generated by the expander 37 is not sufficient and torque assist can not be performed, the ejector air conditioner without torque assist Do the driving. The difference from the operation of the torque-assisted ejector air conditioner described above in <2> is only that torque assist is not performed. That is, as shown in FIG. 14, the expander clutch 35 is disconnected, the ejector side opening degree of the flow control valve 98 is controlled, and the expander torque is used only to drive the refrigerant pump 32 without torque assist. The Rankine cycle 31 is operated by using it. The ejector 92 is driven by the gas refrigerant obtained by the operation of the Rankine cycle 31 to operate the refrigeration cycle 51. Even after a transition to idle stop for a while or at a low vehicle speed, the refrigeration cycle 51 can be operated only with engine waste heat without using the power (compressor 52).
 〈4〉コンプレッサエアコンの運転
 アイドルストップ中や低負荷時などに上記〈3〉のトルクアシストなしエジェクタエアコンの運転を行えなくなった後に、コンプレッサエアコンの運転を行う。図15に示すように、流量制御弁98のエジェクタ側開度をゼロにして、ポンプ上流弁61(図10参照)を閉じることで、膨張機37及びエジェクタ92への冷媒の供給を停止し、ランキンサイクル31の運転及びエジェクタ92の駆動を停止する。アイドルストップ中であれば、モータに電流を流してモータによりコンプレッサ52を駆動し、低負荷時であればコンプレッサクラッチ54を接続し、エンジン2によりコンプレッサ52を駆動することで冷凍サイクル51を運転し、車室内の空調を行わせる。
<4> Operation of Compressor Air Conditioner After the operation of the ejector air conditioner without torque assist described above <3> can not be performed during idle stop or low load, the compressor air conditioner is operated. As shown in FIG. 15, the ejector side opening degree of the flow control valve 98 is made zero, and the pump upstream valve 61 (see FIG. 10) is closed to stop the supply of the refrigerant to the expander 37 and the ejector 92. The operation of the Rankine cycle 31 and the driving of the ejector 92 are stopped. If idle stop is in progress, current is supplied to the motor to drive the compressor 52 by the motor, and when the load is low, the compressor clutch 54 is connected and the engine 52 drives the compressor 52 to operate the refrigeration cycle 51 , Air conditioning the vehicle interior.
 次に、エンジンコントローラ71で行われるこの制御を、図16A、図16Bのフローチャートを参照して具体的に説明する。図16A、図16Bのフローは、一定の周期で(例えば10ms毎に)実行する。 Next, this control performed by the engine controller 71 will be specifically described with reference to the flowcharts of FIGS. 16A and 16B. The flows of FIG. 16A and FIG. 16B are executed at a constant cycle (for example, every 10 ms).
 図16Aにおいて、ステップS1では、エアコン要求(コンプレッサ駆動要求)があるか否かを判定する。エアコン要求がないときには、エジェクタ92の駆動を停止するためステップS2に進み、流量制御弁98をエジェクタ側目標開度がゼロとなるように制御する。 In FIG. 16A, in step S1, it is determined whether there is an air conditioner request (compressor drive request). If there is no air conditioning request, the process proceeds to step S2 to stop the drive of the ejector 92, and the flow control valve 98 is controlled so that the ejector side target opening becomes zero.
 ステップS3では、エンジン2がアイドルストップ状態や低負荷状態にあるか否かを判定する。ハイブリッド車両1では、例えばEV走行条件であるときに、アイドルストップ状態であると判断する。ここでは、特にハイブリッド車両におけるアイドルストップ状態であることを条件にしたが、燃料カットやコーストストップ等のエンジンを停止する制御全般(エンジン停止状態)を条件にすることができる。また、バッテリのSOC(充電状態)が不足していて、充電のためエンジン2を運転しているようなときに、エンジン2が低負荷状態にあると判断する。 In step S3, it is determined whether the engine 2 is in the idle stop state or the low load state. In the hybrid vehicle 1, for example, when under the EV traveling condition, it is determined that the idle stop state is established. In this case, particularly, the idle stop state in the hybrid vehicle is used as a condition, but the entire control for stopping the engine such as a fuel cut or a coast stop (engine stop state) can be used as a condition. Further, when the SOC (charging state) of the battery is insufficient and the engine 2 is operated for charging, it is determined that the engine 2 is in a low load state.
 エンジン2がアイドルストップ状態や低負荷状態にあるときには、ランキンサイクル31を運転できないと判断する。このときにはステップS4に進み、膨張機クラッチ35を切断する。膨張機37の駆動を停止するため、膨張機上流弁62を全閉状態とすると共に、バイパス弁66を全開状態として、膨張機37をバイパスして冷媒の全てを流す。フローには示されていないが、次回の運転再開に備えて冷媒を熱交換器36に閉じ込める(圧力を維持する)ように、膨張機上流弁62とバイパス弁66の両者を全閉状態とすることもできる。 When the engine 2 is in the idle stop state or the low load state, it is determined that the Rankine cycle 31 can not be operated. At this time, the process proceeds to step S4, and the expander clutch 35 is disconnected. In order to stop the drive of the expander 37, the expander upstream valve 62 is fully closed, and the bypass valve 66 is fully open, and the expander 37 is bypassed to allow all the refrigerant to flow. Although not shown in the flow, both the expander upstream valve 62 and the bypass valve 66 are fully closed so as to confine the refrigerant in the heat exchanger 36 (maintain the pressure) in preparation for the next restart of operation. It can also be done.
 一方、ステップS3でエンジン2がアイドルストップ状態や低負荷状態でないときには、ランキンサイクル31を運転し得ると判断して、ステップS5に進む。ステップS5は、図12に示したランキンサイクル単独運転を行わせる部分である。すなわち、膨張機クラッチ35を接続し、膨張機上流弁62を全開状態とすると共に、バイパス弁66を全閉状態として、熱交換器36の出口から出るガス冷媒の全てを膨張機37に流す。これによって、膨張機37を回転駆動し、膨張機37により回生されたトルク(出力)が冷媒ポンプ32の駆動トルクを上回ったとき、この上回ったトルク分がベルト伝動機構を介してエンジン出力軸に伝達され、エンジン出力軸の回転がアシストされる。 On the other hand, when the engine 2 is not in the idle stop state or the low load state in step S3, it is determined that the Rankine cycle 31 can be operated, and the process proceeds to step S5. Step S5 is a part for performing the Rankine cycle solo operation shown in FIG. That is, the expander clutch 35 is connected, the expander upstream valve 62 is fully opened, the bypass valve 66 is fully closed, and all the gas refrigerant exiting from the outlet of the heat exchanger 36 is allowed to flow to the expander 37. As a result, when the expander 37 is rotationally driven and the torque (output) regenerated by the expander 37 exceeds the drive torque of the refrigerant pump 32, the torque that exceeds this is transmitted to the engine output shaft through the belt transmission mechanism. The power is transmitted to assist the rotation of the engine output shaft.
 ステップS1でエアコン要求があったときには、ステップS6に進み、ラジエータファン12の回転速度を、図17に示すテーブルに従って制御する。ラジエータファン目標回転速度は、図17に示すように、車速が第2所定値VSP2以上でゼロである。これは、第2所定値VSP2以上の車速域では、凝縮器38に対して十分な走行風が得られるので、ラジエータファン12を駆動する必要がないためである。また、ラジエータファン目標回転速度は、車速が第2所定値VSP2より低下するほど高くなり、車速が第1所定値VSP1(VSP1<VSP2)以下で一定値(正の値)となる。これは、第2所定値VSP2未満の車速域では、凝縮器38に対して十分な走行風が得られなくなるので、ラジエータファン12からの送風によって凝縮器38を冷却する必要があるためである。ラジエータファン12の回転速度は、冷凍サイクル51とランキンサイクル31の両者の放熱を考慮して設定される。 When the air conditioner request is made in step S1, the process proceeds to step S6, and the rotational speed of the radiator fan 12 is controlled in accordance with the table shown in FIG. As shown in FIG. 17, the radiator fan target rotational speed is zero when the vehicle speed is equal to or higher than a second predetermined value VSP2. This is because it is not necessary to drive the radiator fan 12 because a sufficient traveling wind can be obtained for the condenser 38 in the vehicle speed region above the second predetermined value VSP2. The radiator fan target rotational speed increases as the vehicle speed decreases below the second predetermined value VSP2, and becomes a constant value (positive value) when the vehicle speed is equal to or lower than the first predetermined value VSP1 (VSP1 <VSP2). This is because sufficient traveling wind can not be obtained for the condenser 38 in the vehicle speed range less than the second predetermined value VSP2, so that the condenser 38 needs to be cooled by the air from the radiator fan 12. The rotational speed of the radiator fan 12 is set in consideration of the heat radiation of both the refrigeration cycle 51 and the Rankine cycle 31.
 図示しないフローでは、このラジエータファン目標回転速度に応じて、ラジエータファン12を駆動するモータ(図示しない)に流す電流量を設定し、この設定した電流をモータに流してラジエータファン12を回転駆動する。 In the flow not shown, according to the radiator fan target rotational speed, an amount of current to be supplied to a motor (not shown) for driving the radiator fan 12 is set, and the set current is supplied to the motor to rotate the radiator fan 12 .
 ステップS7では、ステップS3と同じく、エンジン2がアイドルストップ状態(エンジン停止状態)や低負荷状態にあるか否かを判定する。エンジン2がアイドルストップ状態や低負荷状態にないときには、ランキンサイクル31の運転を行い得ると判断して、ステップS8に進む。 In step S7, as in step S3, it is determined whether the engine 2 is in the idle stop state (engine stop state) or in the low load state. When the engine 2 is not in the idle stop state or the low load state, it is determined that the operation of the Rankine cycle 31 can be performed, and the process proceeds to step S8.
 ステップS8では、エアコン設定温度と、凝縮器38の能力、例えば、車速、ラジエータファン回転速度、外気温度等に基づいて算出した放熱量とから、図18に示すマップを検索することにより、目標エジェクタ供給流量を算出する。図18に示すように、目標エジェクタ供給流量は、エアコン設定温度が一定の条件で放熱量が大きいほど小さくなり、放熱量が一定の条件では、エアコン設定温度が低くなるほど大きくなる。 In step S8, the target ejector is searched by searching the map shown in FIG. 18 from the air conditioner set temperature and the heat release amount calculated based on the capacity of the condenser 38, for example, the vehicle speed, the radiator fan rotational speed, the outside air temperature and the like. Calculate the supply flow rate. As shown in FIG. 18, the target ejector supply flow rate decreases as the heat release amount increases under the condition that the air conditioner set temperature is constant, and increases as the air conditioner set temperature decreases when the heat release amount is constant.
 ステップS9では、ステップS8で算出した目標エジェクタ供給流量から、図19に示すマップを検索することにより、流量制御弁98の目標エジェクタ側開度を算出する。図19に示すように、流量制御弁98の目標エジェクタ側開度は、目標エジェクタ供給流量が多いほど大きくなる。 In step S9, the target ejector side opening degree of the flow control valve 98 is calculated by searching the map shown in FIG. 19 from the target ejector supply flow rate calculated in step S8. As shown in FIG. 19, the target ejector side opening degree of the flow control valve 98 is larger as the target ejector supply flow rate is larger.
 ステップS10では、算出した目標エジェクタ側開度となるように、流量制御弁98を制御する。 In step S10, the flow control valve 98 is controlled so that the calculated target ejector side opening degree is obtained.
 ステップS11では、エンジン2のトルクアシストが可能かどうか、すなわち冷媒ポンプ32を駆動しても余るほどの膨張機トルクが得られるかどうかを判断する。トルクアシストが可能なほどの膨張機トルクが得られるかどうかは、廃熱回収量、放熱量、エアコン要求に基づき判断できる。相対的にエンジン負荷が低い側にあり、廃熱回収量が少ない場合や、車速が低い(走行風が少ない)とき或いは外気温が高いときなど、放熱量が少ない場合に、トルクアシストに回せる分は少なくなる。また、エアコン設定温度と実際の車室内温度の偏差が大きく、エアコン要求が大きい場合にも、トルクアシストに回せる分は少なくなる。トルクアシストが可能な場合、ステップS12に進み、不可能な場合、ステップS13に進む。 In step S11, it is determined whether or not the torque assist of the engine 2 is possible, that is, whether or not a sufficient amount of expander torque can be obtained even if the refrigerant pump 32 is driven. Whether or not the expander torque sufficient for torque assist can be obtained can be determined based on the amount of waste heat recovery, the amount of heat radiation, and the air conditioner requirement. If the engine load is relatively low and the amount of waste heat recovery is small, the vehicle speed is low (running wind is small) or the outside temperature is high, etc., the amount of torque assist can be used when the amount of heat release is small Will be less. In addition, even when the deviation between the air conditioner set temperature and the actual vehicle interior temperature is large and the air conditioner demand is large, the amount of torque assist can be reduced. If torque assist is possible, the process proceeds to step S12, and if it is impossible, the process proceeds to step S13.
 ステップS12では、ランキンサイクル31を運転してトルクアシストを行うため、膨張機クラッチ35を接続し、膨張機上流弁62を全開状態とすると共に、バイパス弁66を全閉状態として、熱交換器36の出口から出るガス冷媒を膨張機37に流す。ステップS12は、図13に示したトルクアシスト付きエジェクタエアコンの運転を行わせる部分である。 In step S12, to perform torque assist by driving the Rankine cycle 31, the expander clutch 35 is connected, the expander upstream valve 62 is fully opened, and the bypass valve 66 is fully closed. The gas refrigerant coming out of the outlet of is flowed to the expander 37. Step S12 is a portion for operating the torque-assisted ejector air conditioner shown in FIG.
 一方、ステップS13では、トルクアシストはしないので、膨張機クラッチ35を切断し、ランキンサイクル31の運転による膨張機トルクで冷媒ポンプ32を駆動するため、膨張機上流弁62を全開状態とすると共にバイパス弁66を全閉状態として、熱交換器36の出口から出るガス冷媒を膨張機37に流す。ステップS13は、図14に示すトルクアシストなしエジェクタエアコンの運転を行わせる部分である。 On the other hand, in step S13, since the torque assist is not performed, the expander clutch 35 is disconnected, and the refrigerant pump 32 is driven by the expander torque by the operation of the Rankine cycle 31, so the expander upstream valve 62 is fully opened and bypassed. With the valve 66 fully closed, the gas refrigerant exiting from the outlet of the heat exchanger 36 is allowed to flow to the expander 37. Step S13 is a portion for operating the ejector air conditioner without torque assist shown in FIG.
 ところで、エジェクタ92の駆動に必要な冷媒流量に見合った冷媒ポンプ32の出力が得られるだけの膨張機トルクは、車速が低い場合、ラジエータファン12を回転させることによって得られる(ステップS6及び図17参照)。ラジエータファン12を回転させるにはエネルギが必要であるが、廃熱回収による回生エネルギが膨張機トルクに寄与するので、冷凍サイクル51のコンプレッサ52を(エンジン2の動力や電力で)駆動するエネルギよりも、ラジエータファン12を回転させるエネルギの方が小さい。従って、ラジエータファン12を回転させる場合であっても、エジェクタエアコンの運転は、コンプレッサエアコンの運転よりトータルの効率が優れる。 By the way, when the vehicle speed is low, an expander torque sufficient to obtain the output of the refrigerant pump 32 corresponding to the flow rate of the refrigerant necessary for driving the ejector 92 can be obtained by rotating the radiator fan 12 (step S6 and FIG. 17). reference). Although energy is required to rotate the radiator fan 12, the regenerative energy from the waste heat recovery contributes to the expander torque, so that the energy for driving the compressor 52 of the refrigeration cycle 51 (by the power or electric power of the engine 2) Also, the energy for rotating the radiator fan 12 is smaller. Therefore, even when the radiator fan 12 is rotated, the operation of the ejector air conditioner is superior in total efficiency to the operation of the compressor air conditioner.
 図16AのステップS7でエンジン2がアイドルストップ状態や低負荷状態にあるときには、図16BのステップS15に進む。基本的にエンジン2がアイドルストップ状態(エンジン停止状態)や低負荷状態にあるときには、エジェクタエアコンの運転はできないが、アイドルストップ状態或いは低負荷状態になった直後には、余熱によってエジェクタエアコンの運転を行わせることができる。そこで、しばらくはエジェクタエアコンの運転を継続させて、エジェクタエアコンの運転ができなくなったところで、コンプレッサエアコンの運転(コンプレッサ単独駆動)に切換える。 When the engine 2 is in the idle stop state or the low load state in step S7 of FIG. 16A, the process proceeds to step S15 of FIG. 16B. Basically, when the engine 2 is in the idle stop state (engine stop state) or low load state, the ejector air conditioner can not be operated, but immediately after the idle stop state or low load state, the ejector air conditioner is operated by residual heat. Can be done. Therefore, the operation of the ejector air conditioner is continued for a while, and when the operation of the ejector air conditioner becomes impossible, the operation is switched to the operation of the compressor air conditioner (compressor independent drive).
 ステップS15では、コンプレッサ単独駆動に移行済みであるか否かを判定する。例えば、コンプレッサ単独駆動フラグ=1であるときにコンプレッサ単独駆動に移行済みであると判断し、コンプレッサ単独駆動フラグ=0であるときに、コンプレッサ単独駆動に移行済みでないと判断する。コンプレッサ単独駆動フラグ=0である、つまりコンプレッサ単独駆動に移行済みでないと判断すると、ステップS16に進む。 In step S15, it is determined whether or not the shift to compressor-only drive has been completed. For example, when the compressor single drive flag = 1, it is determined that the shift to the compressor single drive is completed, and when the compressor single drive flag = 0, it is determined that the shift to the compressor single drive is not completed. If it is determined that the compressor independent drive flag is 0, that is, it is determined that the compressor alone drive has not been shifted, the process proceeds to step S16.
 ステップS16~S21は、図14に示すトルクアシストなしエジェクタエアコンの運転を行わせる部分である。ステップS16では、ステップS8と同じく、目標エジェクタ供給流量を算出する。すなわち、エアコン設定温度と、凝縮器38の能力、例えば、車速、ラジエータファン回転速度、外気温度等に基づいて算出した放熱量とから、図18に示すマップを検索することにより、目標エジェクタ供給流量を算出する。 Steps S16 to S21 are parts for operating the ejector air conditioner without torque assist shown in FIG. In step S16, the target ejector supply flow rate is calculated as in step S8. That is, the target ejector supply flow rate is obtained by searching the map shown in FIG. 18 from the air conditioner set temperature and the heat release amount calculated based on the capacity of the condenser 38, for example, the vehicle speed, the radiator fan rotational speed, the outside air temperature and the like. Calculate
 ステップS17では、ステップS16で算出した目標エジェクタ供給流量から、図20に示すテーブルを検索することにより、目標ポンプ回転速度を算出する。目標ポンプ回転速度は、目標エジェクタ供給流量を得るために要求される冷媒ポンプ32の目標回転速度である。目標ポンプ回転速度は、図20に示すように、目標エジェクタ供給流量に比例する。目標ポンプ回転速度を算出するのは、余熱を利用したエジェクタエアコンの運転では冷媒ポンプ32のポンプ回転速度が低下するので、実際のポンプ回転速度と比較することにより、実際のポンプ回転速度の低下度合いを求め、低下度合いに応じて流量制御弁98のエジェクタ側開度を減らす(膨張機側開度を増やす)ためである。 In step S17, a target pump rotational speed is calculated by searching a table shown in FIG. 20 from the target ejector supply flow rate calculated in step S16. The target pump rotational speed is a target rotational speed of the refrigerant pump 32 required to obtain a target ejector supply flow rate. The target pump rotational speed is proportional to the target ejector supply flow rate, as shown in FIG. The target pump rotational speed is calculated because the pump rotational speed of the refrigerant pump 32 decreases in the operation of the ejector air conditioner using residual heat, so the degree of decrease of the actual pump rotational speed by comparing with the actual pump rotational speed To reduce the ejector-side opening degree of the flow control valve 98 (increase the expander-side opening degree) according to the degree of decrease.
 ステップS18では、冷媒ポンプ32の実回転速度と目標ポンプ回転速度を比較する。冷媒ポンプ32の実回転速度は、ポンプ回転速度センサ75(図10参照)により検出する。冷媒ポンプ32の実回転速度が目標ポンプ回転速度より高いときには、膨張機37に流れる冷媒流量を減らして、冷媒ポンプ32の実回転速度を目標ポンプ回転速度へと低下させる必要がある。そこで、この場合にはステップS19に進み、エジェクタ92に流れる冷媒流量が増える(膨張機側を減らす)ように、流量制御弁98の目標エジェクタ側開度を増大側に補正する。 In step S18, the actual rotational speed of the refrigerant pump 32 and the target pump rotational speed are compared. The actual rotational speed of the refrigerant pump 32 is detected by a pump rotational speed sensor 75 (see FIG. 10). When the actual rotational speed of the refrigerant pump 32 is higher than the target pump rotational speed, it is necessary to reduce the flow rate of the refrigerant flowing to the expander 37 to reduce the actual rotational speed of the refrigerant pump 32 to the target pump rotational speed. Therefore, in this case, the process proceeds to step S19, and the target ejector side opening degree of the flow control valve 98 is corrected to the increase side so that the refrigerant flow rate flowing to the ejector 92 increases (decreases the expander side).
 ステップS20では、流量制御弁98を補正後の目標エジェクタ側開度が得られるように制御する。ステップS21では、トルクアシストは行わずランキンサイクル31を運転するため、膨張機クラッチ35を切断し、膨張機上流弁62を全開状態とすると共に、バイパス弁66を全閉状態として、熱交換器36の出口から出るガス冷媒を膨張機37に流す。ここでは、膨張機トルクが冷媒ポンプ32を駆動してもまだ余りを生じる場合であっても、トルクアシストは行なわないようにして、アシストにとられる分の冷媒を減らしてエジェクタ92側に振り向ける冷媒を増やす。これにより、エアコン(冷房)の効きを良くしたり持続時間を長くしたりすることができる。 In step S20, the flow control valve 98 is controlled to obtain the corrected target ejector side opening degree. In step S21, since the torque assist is not performed and the Rankine cycle 31 is operated, the expander clutch 35 is disconnected, the expander upstream valve 62 is fully opened, and the bypass valve 66 is fully closed. The gas refrigerant coming out of the outlet of is flowed to the expander 37. In this case, even if the expander torque drives the refrigerant pump 32, even if it generates a surplus, the torque assist is not performed, and the refrigerant used for assist is reduced and diverted to the ejector 92 side. Increase the refrigerant. This makes it possible to improve the effectiveness of the air conditioner (cooling) and prolong the duration.
 ステップS18で冷媒ポンプ32の実回転速度が目標ポンプ回転速度以下のときには、膨張機37に流れる冷媒流量を増やして膨張機回転速度を高め、膨張機37と一体動する冷媒ポンプ32の実回転速度を目標ポンプ回転速度へと上昇させる必要がある。この場合にはステップS22に進み、膨張機側流量が増えるように流量制御弁98の目標エジェクタ側開度を減少側に補正する。 When the actual rotation speed of the refrigerant pump 32 is less than the target pump rotation speed in step S18, the refrigerant flow rate flowing to the expander 37 is increased to increase the expander rotation speed, and the refrigerant pump 32 moves integrally with the expander 37. Needs to be raised to the target pump rotational speed. In this case, the process proceeds to step S22, and the target ejector side opening degree of the flow control valve 98 is corrected to the decrease side so that the expander side flow rate increases.
 ステップS23では、図21に示すテーブルに基づいて、コンプレッサ52による補助制御を行う。ここで、コンプレッサ52がエンジン2の駆動によって駆動される場合、エンジン2を停止するアイドルストップ状態では、コンプレッサ52を駆動することができない。従って、アイドルストップ状態でステップS23に進んだときに(エンジン2を再始動させなくても)コンプレッサによる補助が行なえるように、図24に示すように、コンプレッサ52はモータ101により駆動されるものとしてもよい。 In step S23, auxiliary control by the compressor 52 is performed based on the table shown in FIG. Here, when the compressor 52 is driven by the drive of the engine 2, the compressor 52 can not be driven in the idle stop state in which the engine 2 is stopped. Therefore, as shown in FIG. 24, the compressor 52 is driven by the motor 101 so that the compressor assist can be performed when the process proceeds to step S23 in the idle stop state (without restarting the engine 2). It may be
 コンプレッサ52による補助制御を行わせる理由を説明する。ここでのトルクアシストなしエジェクタエアコンを運転する駆動条件は、十分な冷房能力の得にくいアイドルストップ状態(エンジン停止状態)や低負荷状態にあるときである。冷媒ポンプ32の実際の回転速度が目標回転速度に達しない場合、流量制御弁98の膨張機側開度を大きくする補正を行なうため、エジェクタ側の流量が不足する場合がある。このような場合には、トータルの効率が悪化しない範囲でコンプレッサ52を駆動して、エジェクタエアコンの運転を継続する。 The reason for performing the auxiliary control by the compressor 52 will be described. The driving condition for operating the ejector air conditioner without torque assist here is when it is in an idle stop state (engine stop state) or a low load state where it is difficult to obtain sufficient cooling capacity. If the actual rotational speed of the refrigerant pump 32 does not reach the target rotational speed, the expansion device opening degree of the flow control valve 98 may be increased, so that the flow rate on the ejector side may be insufficient. In such a case, the compressor 52 is driven within the range in which the total efficiency does not deteriorate, and the operation of the ejector air conditioner is continued.
 この結果、ステップS18、S22、S23と進む場合に、図14に示すトルクなしエジェクタエアコンの運転と、図15に示すコンプレッサエアコンの運転との両方が重複して行われることになる。 As a result, when proceeding to steps S18, S22 and S23, both the operation of the non-torque ejector air conditioner shown in FIG. 14 and the operation of the compressor air conditioner shown in FIG. 15 are performed in an overlapping manner.
 コンプレッサ52による補助制御を具体的に説明する。図21に示すように、目標エジェクタ側開度が第2所定値E2以下の領域で、目標コンプレッサ駆動量、つまり目標モータ電流量に正の値を与えている。これは、次の理由による。すなわち、目標エジェクタ側開度が第2所定値E2以下の領域では、エジェクタ92への冷媒供給が不足してエジェクタ92が十分に作動せず、冷房能力が落ちる。そこで、エジェクタ92への冷媒供給が不足するときには、モータ101(図24参照)に電流を流してコンプレッサ52を駆動することで、冷房能力を高める。 The auxiliary control by the compressor 52 will be specifically described. As shown in FIG. 21, the target compressor drive amount, that is, the target motor current amount has a positive value in a region where the target ejector side opening degree is equal to or less than the second predetermined value E2. This is due to the following reason. That is, in the region where the target ejector side opening degree is equal to or less than the second predetermined value E2, the refrigerant supply to the ejector 92 is insufficient, the ejector 92 does not operate sufficiently, and the cooling capacity falls. Therefore, when the refrigerant supply to the ejector 92 is insufficient, a current is supplied to the motor 101 (see FIG. 24) to drive the compressor 52 to increase the cooling capacity.
 目標エジェクタ側開度が第2所定値E2以下の領域で冷房能力がどの程度低下するかは予め知り得るので、図21に示す目標コンプレッサ駆動量の特性は、適合により定めればよい。なお、低負荷状態であるときにステップS23に進んできたときには、図21に示す目標コンプレッサ駆動量は、コンプレッサクラッチ54に与える電流量となる。 The degree to which the cooling capacity decreases in the region where the target ejector side opening degree is equal to or less than the second predetermined value E2 can be known in advance, so the characteristics of the target compressor drive amount shown in FIG. When the process proceeds to step S23 when the load is low, the target compressor driving amount shown in FIG. 21 is the amount of current to be supplied to the compressor clutch 54.
 一方、目標エジェクタ側開度が第2所定値E2を超える領域では、目標コンプレッサ駆動量をゼロとして、コンプレッサ52を駆動することはしない。これは、当該領域では、エジェクタ92のみの駆動(つまりトルクアシストなしエジェクタエアコンの運転)で十分な冷房能力が得られるためである。 On the other hand, in the region where the target ejector side opening exceeds the second predetermined value E2, the compressor 52 is not driven with the target compressor drive amount being zero. This is because in the region, sufficient cooling capacity can be obtained by driving only the ejector 92 (that is, operation of the ejector air conditioner without torque assist).
 ステップS24では、エバポレータ温度と目標温度を比較する。エバポレータ55の温度は、温度センサ76(図10参照)により検出する。エバポレータ温度が目標温度以下であるときには、トルクアシストなしエジェクタエアコンの運転で、あるいはトルクアシストなしエジェクタエアコンの運転にコンプレッサエアコンの運転を追加することで十分な冷房能力が得られていると判断する。つまり、コンプレッサエアコンの運転に移行することはまだ必要ないと判断し、ステップS20、S21に進み、ステップS20、S21の制御を実行する。 In step S24, the evaporator temperature is compared with the target temperature. The temperature of the evaporator 55 is detected by a temperature sensor 76 (see FIG. 10). When the evaporator temperature is equal to or lower than the target temperature, it is determined that sufficient cooling capacity is obtained by adding the operation of the compressor air conditioner to the operation of the torque assist non-ejector air conditioner or to the operation of the torque assist non ejector air conditioner. That is, it is determined that it is not necessary to shift to the operation of the compressor air conditioner, and the process proceeds to steps S20 and S21, and the control of steps S20 and S21 is performed.
 一方、ステップS24でエバポレータ温度が目標温度より高いときには、コンプレッサエアコンの運転に移行する必要があると判断する。この場合には、ステップS25~S27に進む。 On the other hand, when the evaporator temperature is higher than the target temperature in step S24, it is determined that it is necessary to shift to the operation of the compressor air conditioner. In this case, the process proceeds to steps S25 to S27.
 ステップS25~S27は、図15に示すコンプレッサエアコン運転を行わせる部分である。まずステップS25では、コンプレッサ単独駆動フラグ=1とし、モータ101に電流を流してコンプレッサ52を駆動するか、或いは、コンプレッサクラッチ54を接続して、エンジン2によりコンプレッサ52を駆動する。 Steps S25 to S27 are portions for performing the compressor air conditioner operation shown in FIG. First, at step S25, the compressor single drive flag is set to 1 and a current is supplied to the motor 101 to drive the compressor 52 or the compressor clutch 54 is connected to drive the compressor 52 by the engine 2.
 ステップS26では、エジェクタ92の駆動を停止するため、流量制御弁98を目標エジェクタ側開度がゼロとなるように制御する。ステップS27では、ランキンサイクル31の運転を中止するため膨張機クラッチ35を切断し、膨張機上流弁62を全閉状態とすると共に、バイパス弁66を全開状態として、膨張機37をバイパスして冷媒の全てを流す。 In step S26, in order to stop the drive of the ejector 92, the flow control valve 98 is controlled so that the target ejector side opening becomes zero. In step S27, the expander clutch 35 is disconnected in order to stop the operation of the Rankine cycle 31, and the expander upstream valve 62 is fully closed, and the bypass valve 66 is fully open to bypass the expander 37 for refrigerant Stream all of them.
 ステップS25でのコンプレッサ単独駆動フラグ=1により、次回からはステップS15からステップS25、S26、S27に進み、モータ101により、または、コンプレッサクラッチ54を接続してエンジン2により、コンプレッサ52を駆動してコンプレッサエアコンの運転を行わせる。 Proceeding from step S15 to steps S25, S26 and S27 from the next time with the compressor only drive flag = 1 in step S25, the compressor 101 is driven by the motor 101 or the compressor clutch 54 is connected and the compressor 52 is driven by the engine 2 Operate the compressor air conditioner.
 ここで、本実施形態の作用効果を説明する。 Here, the operation and effect of the present embodiment will be described.
 本実施形態によれば、エンジン2の廃熱を冷媒に回収する熱交換器36、この熱交換器出口の冷媒を用いて動力を発生させる膨張機37、この膨張機37を出た冷媒を凝縮させる凝縮器38、膨張機37により回生された動力によって駆動されると共に、凝縮器38からの冷媒を熱交換器36に供給する冷媒ポンプ32を含むランキンサイクル31を備えるエンジンの廃熱利用装置において、凝縮器38を共有し、この凝縮器38からの冷媒を導いて蒸発させるエバポレータ55を含む冷凍サイクル51と、熱交換器36出口の冷媒を駆動ガスとして用い、このエバポレータ55出口の冷媒を引き込んで凝縮器38に戻すエジェクタ92とを設けている。 According to the present embodiment, the heat exchanger 36 recovers the waste heat of the engine 2 as a refrigerant, the expander 37 generating power using the refrigerant at the outlet of the heat exchanger, and condensing the refrigerant leaving the expander 37 In the waste heat utilization device of an engine provided with a Rankine cycle 31 including a refrigerant pump 32 including a condenser 38, a refrigerant pump 32 which is driven by power regenerated by the expander 37 and supplies the refrigerant from the condenser 38 to the heat exchanger 36. A refrigeration cycle 51 including an evaporator 55 sharing the condenser 38 and guiding and evaporating the refrigerant from the condenser 38, and using the refrigerant at the outlet of the heat exchanger 36 as a driving gas, drawing the refrigerant at the outlet of the evaporator 55 And an ejector 92 for returning to the condenser 38.
 本実施形態によれば、膨張機37により回生された動力を使って冷媒ポンプ32を駆動することでランキンサイクル31を運転し、このランキンサイクル31の冷媒通路を循環する冷媒の一部でエジェクタ92を駆動して冷凍サイクル51を運転する(図16AのステップS1、S7~S13参照)。これにより、エンジン2の廃熱の熱エネルギのみで冷凍サイクル51を運転することができる。 According to the present embodiment, the Rankine cycle 31 is operated by driving the refrigerant pump 32 using the power regenerated by the expander 37, and the ejector 92 is a part of the refrigerant circulating in the refrigerant passage of the Rankine cycle 31. To drive the refrigeration cycle 51 (see steps S1 and S7 to S13 in FIG. 16A). Thereby, the refrigeration cycle 51 can be operated only by the heat energy of the waste heat of the engine 2.
 冷媒ポンプ32を駆動する膨張機37へ供給する冷媒とエジェクタ92へ供給する冷媒とは、廃熱利用装置が置かれた環境(条件)によってその割合を変えた方が効率が改善する。例えば、凝縮器38の能力が高い(放熱量が大きい)条件では、比較的少ない冷媒でも高い膨張機トルクが得られるので、このような条件では、エジェクタ92に供給する冷媒を相対的に多くすることで、冷凍サイクル51の出力(冷房能力)を向上させられる。本実施形態では、さらに、熱交換器36の出口からこのエジェクタ92に供給する冷媒流量と熱交換器36の出口から膨張機37に供給する冷媒流量との分配比を制御し得る流量制御弁98(流量分配比制御機構)を設けたので、この流量制御弁98を制御することで、エンジン廃熱で過熱した冷媒を膨張機37とエジェクタ92とに任意に分配できる。従って、エジェクタ92の駆動源ともなる冷媒を、エンジン廃熱を利用して循環供給する場合に、冷媒ポンプ32の駆動力(冷媒量)とエジェクタ92の駆動力(冷媒量)とを任意に調節可能に構成することで、より効率が改善された廃熱利用装置を提供することができる。 Efficiency is improved by changing the ratio of the refrigerant supplied to the expander 37 that drives the refrigerant pump 32 and the refrigerant supplied to the ejector 92 according to the environment (conditions) in which the waste heat utilization device is placed. For example, in the condition where the capacity of the condenser 38 is high (the amount of heat release is large), a high expander torque can be obtained even with a relatively small amount of refrigerant. Under such conditions, the refrigerant supplied to the ejector 92 is relatively increased. Thus, the output (cooling capacity) of the refrigeration cycle 51 can be improved. In this embodiment, the flow control valve 98 can further control the distribution ratio between the flow rate of the refrigerant supplied to the ejector 92 from the outlet of the heat exchanger 36 and the flow rate of the refrigerant supplied to the expander 37 from the outlet of the heat exchanger 36. Since the (flow rate distribution ratio control mechanism) is provided, by controlling the flow rate control valve 98, the refrigerant superheated by the engine waste heat can be arbitrarily distributed to the expander 37 and the ejector 92. Therefore, when circulating and supplying the refrigerant that is also the driving source of the ejector 92 using engine waste heat, the driving force (the amount of refrigerant) of the refrigerant pump 32 and the driving force (the amount of refrigerant) of the ejector 92 are arbitrarily adjusted. The possible configuration can provide a waste heat utilization device with further improved efficiency.
 本実施形態によれば、目標エジェクタ供給流量(エジェクタ92側への冷媒流量)をエアコン設定温度と凝縮器能力(凝縮器38の放熱量)とに基づいて算出するので(図16Aのステップ8、図18参照)、エアコン設定温度と凝縮器能力(凝縮器38の放熱量)とが相違しても目標エジェクタ供給流量を過不足なく与えることができる。 According to the present embodiment, the target ejector supply flow rate (the refrigerant flow rate to the ejector 92 side) is calculated based on the air conditioner set temperature and the condenser capacity (heat release amount of the condenser 38) (step 8 of FIG. 16A, Even if the set temperature of the air conditioner and the condenser capacity (heat release amount of the condenser 38) are different, the target ejector supply flow rate can be given without excess or deficiency.
 本実施形態によれば、膨張機37により回生された動力が冷媒ポンプ32の駆動力を上回ったとき、この上回った動力をエンジン2に伝達する動力伝達機構(2a、33~35)を備える。そして、アイドルストップ中(エンジン停止中)にエアコン要求(冷房要求)があるときには(低負荷状態でエアコン要求がある場合でも良い)、膨張機クラッチ35(クラッチ)を切断し、膨張機37により回生された動力をエンジン2に伝達しないようにしてランキンサイクル31を運転し、このランキンサイクル31の冷媒通路を循環する冷媒の一部をエジェクタ92に供給してエジェクタ92を駆動すると共に、冷媒ポンプ32の実回転速度が目標回転速度と一致するように流量制御弁98(流量分配比制御機構)を制御する。例えば、実回転速度が目標回転速度より低い場合に、目標エジェクタ側開度を減少補正し(膨張機37への冷媒流量の分配比を大きくし)、実回転速度が目標回転速度より高い場合に、目標エジェクタ側開度を増大補正する(エジェクタ92への冷媒流量の分配比を大きくする)ので(図16BのステップS18、S19、S22参照)、アイドルストップ中の空調能力を一定の能力に長く維持させることができる。 According to the present embodiment, when the power regenerated by the expander 37 exceeds the driving force of the refrigerant pump 32, the power transmission mechanism (2a, 33 to 35) is provided to transmit the increased power to the engine 2. Then, when there is an air conditioner request (cooling request) during idle stop (during engine stop) (may be when there is an air conditioner request in a low load state), the expander clutch 35 (clutch) is disconnected and regeneration is performed by the expander 37 The Rankine cycle 31 is operated so as not to transmit the motive power to the engine 2, and a part of the refrigerant circulating in the refrigerant passage of the Rankine cycle 31 is supplied to the ejector 92 to drive the ejector 92 and the refrigerant pump 32. The flow rate control valve 98 (flow rate distribution ratio control mechanism) is controlled so that the actual rotation speed of the target rotation speed coincides with the target rotation speed. For example, when the actual rotation speed is lower than the target rotation speed, the target ejector side opening degree is corrected to decrease (the distribution ratio of the refrigerant flow rate to the expander 37 is increased) and the actual rotation speed is higher than the target rotation speed. Because the target ejector side opening degree is increased and corrected (the distribution ratio of the refrigerant flow rate to the ejector 92 is increased) (see steps S18, S19, and S22 in FIG. 16B), the air conditioning capacity during idle stop is extended to a constant capacity. It can be maintained.
 本実施形態によれば、冷凍サイクル51に、エジェクタ92と並列に設けられたコンプレッサ52を備え、エバポレータ55の温度が目標温度よりも高くなったときにはエジェクタ92の駆動を停止して、モータ101によりコンプレッサ52を駆動する(図16BのステップS24、S25参照)。これにより、アイドルストップ中にエアコン要求(冷房要求)があるときに(低負荷状態でエアコン要求がある場合でも良い)、エジェクタ92による冷凍サイクル51の運転ではエバポレータ55の目標温度を維持できなくなった際にも、エバポレータ55の目標温度を維持させて冷房能力への影響が無いようにすることができる。 According to the present embodiment, the refrigeration cycle 51 is provided with the compressor 52 provided in parallel with the ejector 92, and the driving of the ejector 92 is stopped when the temperature of the evaporator 55 becomes higher than the target temperature. The compressor 52 is driven (see steps S24 and S25 in FIG. 16B). As a result, when there is an air conditioner request (cooling request) during idle stop (even if there is an air conditioner request in a low load state), the target temperature of the evaporator 55 can not be maintained in the operation of the refrigeration cycle 51 by the ejector 92 Also in this case, the target temperature of the evaporator 55 can be maintained so that the cooling capacity is not affected.
 (第2実施形態)
 図22A、図22Bのフローチャートは第2実施形態のエンジンコントローラ71で行われる制御であり、第1実施形態の図16A、図16Bのフローチャートと置き換わるものである。図16A、図16Bのフローチャートと同一部分には、同一のステップ番号を付している。
Second Embodiment
The flowcharts of FIGS. 22A and 22B are control performed by the engine controller 71 according to the second embodiment, and replace the flowcharts of FIGS. 16A and 16B of the first embodiment. The same steps as those in the flowcharts of FIGS. 16A and 16B are denoted by the same step numbers.
 第1実施形態の図16A、図16Bと相違する部分を主に説明する。図22BにおけるステップS15でコンプレッサ駆動に移行済みでないときには、ステップS31以降に進む。 The parts different from FIGS. 16A and 16B of the first embodiment will be mainly described. If it has not been shifted to the compressor drive in step S15 in FIG. 22B, the process proceeds to step S31 and thereafter.
 ステップS31~S35、S21、および、ステップS31、S36、S24、S35、S21は、図14に示すトルクアシストなしエジェクタエアコン運転を行わせる部分である。このうち、ステップS31~S36は、流量制御弁98の目標膨張機側開度を初期値から徐々に大きくする部分である。ここでは、流量制御弁98のエジェクタ側開度ではなく、流量制御弁98の膨張機側開度を制御する。 Steps S31 to S35 and S21, and steps S31, S36, S24, S35, and S21 are portions for performing the torque assistless ejector air conditioner operation shown in FIG. Among these, steps S31 to S36 are portions for gradually increasing the target expander side opening degree of the flow control valve 98 from the initial value. Here, not the ejector-side opening of the flow control valve 98 but the expander-side opening of the flow control valve 98 is controlled.
 まずステップS31では、流量制御弁98の基本膨張機側開度を算出済みか否かを判定する。例えば、基本膨張機側開度算出済みフラグ=1であるときは、流量制御弁98の基本膨張機側開度を算出済みであると判断し、基本膨張機側開度算出済みフラグ=0であるときは、流量制御弁98の基本膨張機側開度を算出済みでないと判断する。基本膨張機側開度算出済みフラグ=0である、つまり流量制御弁98の基本膨張機側開度を算出済みでないと判断すると、ステップS32に進む。ステップS32では、温度センサ(図示しない)により検出される熱交換器36の出口から出る冷媒の温度から、図23に示すテーブルを検索することにより、流量制御弁98の初期値である基本膨張機側開度を算出する。ここでは、冷媒温度に基づき膨張機側開度を算出したが、冷媒圧力に基づき算出することもできる。 First, in step S31, it is determined whether the basic expander side opening degree of the flow control valve 98 has been calculated. For example, when the basic expander side opening calculated flag = 1, it is determined that the basic expander side opening of the flow control valve 98 has been calculated, and the basic expander side opening calculated flag = 0 At this time, it is determined that the basic expander side opening degree of the flow control valve 98 has not been calculated. If it is determined that the basic expander side opening calculated flag = 0, that is, if the basic expander side opening of the flow control valve 98 has not been calculated, the process proceeds to step S32. In step S32, the basic expander, which is the initial value of the flow control valve 98, is searched by searching the table shown in FIG. 23 from the temperature of the refrigerant exiting from the outlet of the heat exchanger 36 detected by the temperature sensor (not shown). Calculate the side opening. Here, although the expander side opening degree was calculated based on refrigerant | coolant temperature, it can also be calculated based on a refrigerant | coolant pressure.
 膨張機トルクは熱交換器36の出口から出る冷媒の温度の影響を受け、熱交換器36の出口から出る冷媒が低温になると、膨張機トルクが低下する。そこで、膨張機トルクが不足しないよう、基本膨張機側開度は、図23に示すように、熱交換器36の出口から出る冷媒の温度が低くなるほど大きくなるようにしている。 The expander torque is affected by the temperature of the refrigerant exiting from the outlet of the heat exchanger 36, and when the refrigerant exiting from the outlet of the heat exchanger 36 becomes cold, the expander torque decreases. Therefore, as shown in FIG. 23, the basic expander side opening degree is set to increase as the temperature of the refrigerant exiting from the outlet of the heat exchanger 36 decreases, so that the expander torque does not run short.
 ステップS32で基本膨張機側開度を算出したので、ステップS33では基本膨張機側開度算出済みフラグ=1とし、ステップS34で基本膨張機側開度を初期値として流量制御弁98の目標膨張機側開度に入れる。 Since the basic expander side opening degree is calculated in step S32, the basic expander side opening calculated flag is set to 1 in step S33, and the target expander expansion rate of the flow control valve 98 is set to the initial value in step S34. Put in the machine side opening.
 ステップS35では、流量制御弁98をこの目標膨張機側開度(初期値)となるように制御する。ステップS21では、トルクアシストは行わずランキンサイクル31を運転するため、膨張機クラッチ35を切断し、膨張機上流弁62を全開状態とすると共に、バイパス弁66を全閉状態として、熱交換器36の出口から出る冷媒を膨張機37に流す。ここでは、膨張機トルクが冷媒ポンプ32を駆動してもまだ余りを生じる場合であっても、トルクアシストは行なわないようにして、トルクアシストにとられる分の冷媒を減らしてエジェクタ92側に振り向ける冷媒を増やす。これにより、エアコン(冷房)の効きを良くしたり持続時間を長くしたりすることができる。 In step S35, the flow control valve 98 is controlled to have the target expander side opening (initial value). In step S21, since the torque assist is not performed and the Rankine cycle 31 is operated, the expander clutch 35 is disconnected, the expander upstream valve 62 is fully opened, and the bypass valve 66 is fully closed. The refrigerant flowing out of the outlet of is flowed to the expander 37. In this case, even if the expander torque drives the refrigerant pump 32 and there is still a surplus, torque assist is not performed, and the amount of refrigerant used for torque assist is reduced and directed to the ejector 92 side. Increase the amount of refrigerant. This makes it possible to improve the effectiveness of the air conditioner (cooling) and prolong the duration.
 ステップS33で基本膨張機側開度算出済みフラグ=1としたことにより、次回からは、ステップS31からステップS36に進む。ステップS36では、目標膨張機側開度を次式により更新する。
  目標膨張機側開度=目標膨張機側開度+ΔZOU      …(1)
   ただし、ΔZOU:制御周期当たりの膨張機側開度の増分(正の値)
By setting the basic expander side opening calculated flag = 1 at step S33, the process proceeds from step S31 to step S36 from the next time. In step S36, the target expander side opening degree is updated by the following equation.
Target expander side opening degree = target expander side opening degree + ΔZOU (1)
However, ΔZOU: expansion side opening degree per control cycle (positive value)
 なお、(1)式右辺の「目標膨張機側開度」は前回に算出した値、(1)式左辺の「目標膨張機側開度」は今回に算出する値を表している。前回では、目標膨張機側開度に初期値として基本膨張機側開度を入れたので、今回では基本膨張機側開度に増分ΔZOUを加算した値を目標膨張機側開度として算出する。次回では、基本膨張機側開度に増分ΔZOU×2を加算した値を目標膨張機側開度として算出することとなる。このようにして目標膨張機側開度を初期値から徐々に大きくしていく。 The “target expander side opening degree” on the right side of the equation (1) represents a value calculated last time, and the “target expander side opening degree” on the left side of the equation (1) represents a value calculated this time. Since the basic expander side opening degree is set as the initial value to the target expander side opening degree at the previous time, a value obtained by adding the increment ΔZOU to the basic expander side opening degree is calculated as the target expander side opening degree. At the next time, a value obtained by adding the increment ΔZOU × 2 to the basic expander side opening degree is calculated as the target expander side opening degree. Thus, the target expander side opening degree is gradually increased from the initial value.
 ここで、目標膨張機側開度を初期値から徐々に大きくしていく理由は次のようなものである。すなわち、図22BのステップS31以降に進むのは、アイドルストップ状態(エンジン停止状態)や低負荷状態のときである。特に、エンジン2の運転状態からエンジン2を停止するアイドルストップに移行したタイミングで図22BのステップS31以降に進んできた場合を考えると、エンジン2が停止するアイドルストップの開始から時間の経過とともにエンジン2の余熱が徐々になくなっていくため、熱交換器36の出口から出る冷媒の温度が低下していく。このため、目標膨張機側開度を初期値のまま維持したのでは、この冷媒温度の低下を受けて膨張機トルクが低下していく。膨張機トルクが低下するとポンプ回転速度が低下し、ランキンサイクル31を循環する冷媒流量が低下する。すると、エジェクタ92に供給される冷媒流量が減っていき、冷凍サイクル51を循環する冷媒流量が低下し、冷房能力が落ちていく。こうした冷房能力の低下を防止するには、アイドルストップ開始後あるいは低負荷状態に移行した後も、アイドルストップ移行タイミングでの膨張機回転速度を維持する必要がある。このため、アイドルストップの開始から目標膨張機側開度を徐々に大きくすることで、アイドルストップ開始後もアイドルストップ移行タイミングでの膨張機トルクが維持されるようにしている。 Here, the reason for gradually increasing the target expander side opening degree from the initial value is as follows. That is, it is at the time of an idle stop state (engine stop state) or a low load state to progress to step S31 or later of FIG. 22B. In particular, considering the case where the process proceeds from step S31 in FIG. 22B at the timing when the operation state of the engine 2 is shifted to the idle stop to stop the engine 2, the engine with the passage of time from the start of the idle stop at which the engine 2 stops. Since the residual heat of 2 is gradually dissipated, the temperature of the refrigerant exiting from the outlet of the heat exchanger 36 decreases. For this reason, if the target expander side opening degree is maintained at the initial value, the expander torque decreases as the refrigerant temperature decreases. When the expander torque decreases, the pump rotational speed decreases, and the flow rate of the refrigerant circulating through the Rankine cycle 31 decreases. Then, the flow rate of the refrigerant supplied to the ejector 92 decreases, the flow rate of the refrigerant circulating through the refrigeration cycle 51 decreases, and the cooling capacity decreases. In order to prevent such a decrease in cooling capacity, it is necessary to maintain the expander rotational speed at the idle stop transition timing even after the start of the idle stop or after shifting to a low load state. Therefore, by gradually increasing the target expander side opening degree from the start of the idle stop, the expander torque at the idle stop transition timing is maintained even after the start of the idle stop.
 目標膨張機側開度を徐々に大きくすれば、この反対にエジェクタ側開度が徐々に小さくなり、エジェクタ92の駆動が不十分となり、やがてエジェクタ92は冷凍サイクル51を運転できなくなる。エジェクタ92が冷凍サイクル51を運転できなくなると、それまでのエバポレータ温度を維持できなくなり、エバポレータ温度が上昇を始める。このエバポレータの温度上昇をみるため、ステップS24でエバポレータ温度と所定値を比較する。エバポレータ温度が所定値以下であるときには、現在のエジェクタ側開度での冷媒供給によるエジェクタ92の駆動で十分な冷房能力が得られていると判断する。つまり、コンプレッサ52の駆動による冷凍サイクル51の運転に移行することは必要ないと判断し、ステップS35、S21に進み、ステップS35、S21の処理を実行する。 If the target expander side opening degree is gradually increased, the ejector side opening degree gradually decreases conversely, the driving of the ejector 92 becomes insufficient, and eventually the ejector 92 can not operate the refrigeration cycle 51. When the ejector 92 can not operate the refrigeration cycle 51, the evaporator temperature can not be maintained, and the evaporator temperature starts to rise. In order to observe the temperature rise of the evaporator, the evaporator temperature is compared with a predetermined value in step S24. When the evaporator temperature is equal to or lower than the predetermined value, it is determined that the sufficient cooling capacity is obtained by the drive of the ejector 92 by the refrigerant supply at the current ejector side opening degree. That is, it is determined that it is not necessary to shift to the operation of the refrigeration cycle 51 driven by the compressor 52, and the process proceeds to steps S35 and S21, and the processes of steps S35 and S21 are performed.
 エバポレータ温度が所定値以下である限り、ステップS36の処理を繰り返すことで、目標膨張機側開度が徐々に大きくなっていく。流量制御弁98の目標膨張機側開度を徐々に大きくすれば、流量制御弁98のエジェクタ側開度は徐々に小さくなっていく。流量制御弁98のエジェクタ側開度が徐々に小さくなれば、エジェクタ92の働きが悪くなって、冷凍サイクル51を循環する冷媒の動きが鈍くなる。これによって、やがてはエバポレータ温度が上昇して所定値に到達する。この場合には、ステップS24からステップS25~S27に進む。 The target expander side opening degree gradually increases by repeating the process of step S36 as long as the evaporator temperature is equal to or less than the predetermined value. If the target expander side opening degree of the flow control valve 98 is gradually increased, the ejector side opening degree of the flow control valve 98 gradually decreases. If the ejector side opening degree of the flow control valve 98 becomes smaller gradually, the operation of the ejector 92 becomes worse, and the movement of the refrigerant circulating through the refrigeration cycle 51 becomes dull. As a result, the evaporator temperature eventually rises and reaches a predetermined value. In this case, the process proceeds from step S24 to steps S25 to S27.
 ステップS25~S27は、コンプレッサエアコンの運転を行わせる部分である。まずステップS25では、コンプレッサ単独駆動フラグ=1とし、モータ101に電流を流してコンプレッサ52を駆動するか、或いは、コンプレッサクラッチ54を接続して、エンジン2によりコンプレッサ52を駆動する。 Steps S25 to S27 are parts for operating the compressor air conditioner. First, at step S25, the compressor single drive flag is set to 1 and a current is supplied to the motor 101 to drive the compressor 52 or the compressor clutch 54 is connected to drive the compressor 52 by the engine 2.
 ステップS26では、ランキンサイクル31の運転を中止するため膨張機クラッチ35を切断し、膨張機上流弁62を全閉状態とすると共に、バイパス弁66を全開状態として、膨張機37をバイパスして冷媒の全てを流す。 In step S26, the expander clutch 35 is disconnected in order to stop the operation of the Rankine cycle 31, and the expander upstream valve 62 is fully closed, and the bypass valve 66 is fully open to bypass the expander 37 for refrigerant Stream all of them.
 ステップS25でのコンプレッサ単独駆動フラグ=1により、次回からはステップS15からステップS25、S26、S27に進み、モータ101により、または、コンプレッサクラッチ54を接続してエンジン2により、コンプレッサ52を駆動してコンプレッサエアコンの運転を行わせる。 Proceeding from step S15 to steps S25, S26 and S27 from the next time with the compressor only drive flag = 1 in step S25, the compressor 101 is driven by the motor 101 or the compressor clutch 54 is connected and the compressor 52 is driven by the engine 2 Operate the compressor air conditioner.
 第2実施形態によれば、車両1の運転中に所定の条件が成立したときエンジン2を停止するアイドルストップを行うエンジンコントローラ71(アイドルストップ装置)を備え、アイドルストップ中にエアコン要求(冷房要求)があるときには(低負荷状態でエアコン要求がある場合でも良い)、膨張機クラッチ35(クラッチ)を切断した状態でランキンサイクル31を運転する。このランキンサイクル31の冷媒通路を循環する冷媒の一部をエジェクタ92に供給してエジェクタ92を駆動すると共に、熱交換器36の出口から出る冷媒の温度が低くなるほど基本膨張機側開度(膨張機37への冷媒流量の分配比)が大きくなるように、流量制御弁98(流量分配比制御機構)を制御する(図22BのステップS32参照)。廃熱回収量が大きい条件では、比較的少ない冷媒でも高い膨張機トルクが得られるので、このような条件ではエジェクタ92に供給する冷媒を相対的に多くすることで、冷凍サイクル51の出力(冷房能力)を向上させられる。本実施形態によれば、廃熱回収量が大きい(熱交換器36の出口の冷媒温度が高い)間は、エジェクタ92側の開度を大きくして、高い冷房能力が得られ、廃熱回収量が小さく(熱交換器36の出口の冷媒温度が低く)なると、膨張機37側の開度を大きくすることによって、エジェクタエアコンの運転に必要な膨張機トルクを確保し、より長くエジェクタエアコンの運転を継続することができる。また、ポンプ回転速度を検出できなくても、熱交換器36の出口から出る冷媒の温度によるアイドルストップ中の空調能力の制御が可能となり、回転速度センサを省略してコストを低減できる。 According to the second embodiment, the engine controller 71 (idle stop device) for performing idle stop to stop the engine 2 when a predetermined condition is satisfied during operation of the vehicle 1 is provided. When there is a demand (when there is a demand for an air conditioner in a low load state), the Rankine cycle 31 is operated with the expander clutch 35 (clutch) disconnected. While a part of the refrigerant circulating in the refrigerant passage of the Rankine cycle 31 is supplied to the ejector 92 to drive the ejector 92, the basic expander side opening degree (expansion (expansion) as the temperature of the refrigerant exiting from the outlet of the heat exchanger 36 decreases. The flow control valve 98 (flow distribution ratio control mechanism) is controlled so that the distribution ratio of the refrigerant flow to the device 37 becomes large (see step S32 in FIG. 22B). Under conditions where the amount of waste heat recovery is large, high expander torque can be obtained even with a relatively small amount of refrigerant. Under such conditions, the amount of refrigerant supplied to the ejector 92 is relatively large, so that the output of the refrigeration cycle 51 (cooling Ability) can be improved. According to the present embodiment, while the amount of waste heat recovery is large (the temperature of the refrigerant at the outlet of the heat exchanger 36 is high), the opening degree on the ejector 92 side is increased to obtain a high cooling capacity. When the amount is small (the refrigerant temperature at the outlet of the heat exchanger 36 is low), the expansion unit 37 side is enlarged to secure the expansion unit torque necessary for the operation of the ejector air conditioner, thus making the ejector air conditioner longer Driving can be continued. Further, even if the pump rotational speed can not be detected, the control of the air conditioning capacity during idle stop can be performed by the temperature of the refrigerant exiting from the outlet of the heat exchanger 36, and the rotational speed sensor can be omitted to reduce the cost.
 アイドルストップ(または低負荷状態)の開始からの時間の経過とともにエンジン2の余熱がなくなっていく。この傾向に合わせて、第2実施形態によれば、アイドルストップの開始からの時間の経過とともに目標膨張機側開度(膨張機37への冷媒流量の分配比)を大きくするので(図22BのステップS31、S32、S34、ステップS31、S36参照)、アイドルストップの開始からの時間の経過とともにエンジン2の余熱がなくなっていくのに合わせて熱交換器36の出口から出る冷媒を膨張機37に供給することができる。 With the passage of time from the start of the idle stop (or low load state), the remaining heat of the engine 2 disappears. According to this tendency, according to the second embodiment, the target expander side opening degree (the distribution ratio of the flow rate of the refrigerant to the expander 37) is increased with the passage of time from the start of the idle stop (FIG. 22B (See steps S31, S32, S34, steps S31 and S36), and as the remaining heat of the engine 2 disappears with the passage of time from the start of the idle stop, the refrigerant coming out of the outlet of the heat exchanger 36 Can be supplied.
 (第3実施形態)
 図25は、第3実施形態のラジエータ11及び凝縮器38の配置図である。図10との関係では、図10の構成から、ラジエータ11及び凝縮器38だけを取り出して示したものに相当する。従って、残りの構成は、図10に示す構成と同じである。
Third Embodiment
FIG. 25 is a layout diagram of the radiator 11 and the condenser 38 of the third embodiment. In the relationship with FIG. 10, it corresponds to what took out and showed only the radiator 11 and the condenser 38 from the structure of FIG. Therefore, the remaining configuration is the same as the configuration shown in FIG.
 第1、第2の実施形態では、凝縮器38をラジエータ11と並列に配置し、ラジエータファン12によって両者をまとめて冷却した。第3実施形態では、図25に示すように、ラジエータ11と凝縮器38を独立のファン12、105によって冷却する。すなわち、ラジエータ11はラジエータファン12のみによって、また、凝縮器38は凝縮器38専用の冷却ファン105によって冷却するように構成する。そして、アイドルストップ中にエアコン要求があるときにはこの冷却ファン105を駆動する。 In the first and second embodiments, the condenser 38 is disposed in parallel with the radiator 11, and both are collectively cooled by the radiator fan 12. In the third embodiment, as shown in FIG. 25, the radiator 11 and the condenser 38 are cooled by independent fans 12 and 105. That is, the radiator 11 is configured to be cooled by only the radiator fan 12, and the condenser 38 is configured to be cooled by the cooling fan 105 dedicated to the condenser 38. When the air conditioner is required during idle stop, the cooling fan 105 is driven.
 第3実施形態によれば、凝縮器38のみに送風する冷却ファン105を備え、アイドルストップ中にエアコン要求(冷房要求)がある場合には、この冷却ファン105を駆動する。これにより、冷却水は冷やさずに冷媒だけ冷やすことが可能となり、必要となるエネルギが少なくて済み、エンジン2の余熱によりアイドルストップ中の空調能力の維持時間を、凝縮器38のみに冷却風を送る冷却ファン105を備えない場合よりも延長することができる。 According to the third embodiment, the cooling fan 105 for blowing air only to the condenser 38 is provided, and when there is an air conditioning request (cooling request) during idle stop, this cooling fan 105 is driven. This makes it possible to cool only the refrigerant without cooling the cooling water, requiring only a small amount of energy, and the residual heat of the engine 2 keeps the air conditioning capacity during idle stop, while the cooling air is supplied only to the condenser 38 It can be extended more than the case without the cooling fan 105 for sending.
 (第4実施形態)
 図26は、第4実施形態の統合サイクルの概略構成図である。第4実施形態では、エジェクタ回路をなす分岐冷媒通路97に、膨張機37をバイパスする通路の役割を持たせることで、第1実施形態では設けられていた膨張機バイパス通路65を削減することとした。ここでは、膨張機37をバイパスさせたい場合、流量制御弁98によりエジェクタ92側の冷媒流量比を増加させる。例えば、ランキンサイクル31を起動する際は、流量制御弁98のエジェクタ92側の冷媒流量比(開度)を増加させ、膨張機37をバイパスすることによって起動時間の短縮を図る。また、ランキンサイクル31が作動しているときに、冷凍サイクル51を作動させる必要がない場合には、全ての冷媒を膨張機37側へ流すこととする。
Fourth Embodiment
FIG. 26 is a schematic configuration diagram of an integration cycle of the fourth embodiment. In the fourth embodiment, the branch refrigerant passage 97 forming the ejector circuit has a role of a passage that bypasses the expander 37, thereby reducing the expander bypass passage 65 provided in the first embodiment. did. Here, when it is desired to bypass the expander 37, the flow rate control valve 98 increases the refrigerant flow ratio on the ejector 92 side. For example, when the Rankine cycle 31 is activated, the refrigerant flow ratio (opening degree) on the ejector 92 side of the flow control valve 98 is increased, and the expansion device 37 is bypassed to shorten the activation time. Further, when it is not necessary to operate the refrigeration cycle 51 while the Rankine cycle 31 is operating, all refrigerants are made to flow to the expander 37 side.
 第4実施形態によれば、分岐冷媒通路97(エジェクタ回路)に、膨張機37をパイパスする通路の役割を兼ねさせることにしたので、第1実施形態で設けられていた膨張機バイパス通路65を削減することができ、システムを簡略化することができる。 According to the fourth embodiment, since the branch refrigerant passage 97 (ejector circuit) also serves as a passage for bypassing the expander 37, the expander bypass passage 65 provided in the first embodiment is used. It can be reduced and the system can be simplified.
 (第5実施形態)
 第5実施形態の統合サイクルの概略構成図は、図26に示す第4実施形態の概略構成図と同じである。これまでの実施形態では、膨張機37側の流量とエジェクタ92側の冷媒流量とを任意に振り分けるように、流量制御弁98の開度を制御することにしてきたが、この場合に次のような課題を生じることがある。
Fifth Embodiment
The schematic block diagram of the integration cycle of the fifth embodiment is the same as the schematic block diagram of the fourth embodiment shown in FIG. In the previous embodiments, the opening degree of the flow control valve 98 is controlled so as to arbitrarily distribute the flow rate on the expander 37 side and the refrigerant flow rate on the ejector 92 side. In this case, Problems may arise.
 例えば、エジェクタ92側の冷媒流量が比較的大きい場合、膨張機37をバイパスする(エジェクタ92を通過する)冷媒流量が大きくなって、膨張機37の前後(上下流間)圧力差すなわちエジェクタ92の前後圧力差が減少してしまい、エジェクタ性能が低下することがある。そこで、エジェクタ92側の冷媒流量を減少させるため、エジェクタ92側の流路を絞ると、今度は圧力損失が発生してエネルギーロスを生じ、エジェクタ92の前後の圧力差も小さくなるので、更なるエジェクタ性能の低下を引き起こし兼ねない。このように、エジェクタ92の効率の低い条件でエジェクタ92を動作させると、冷媒圧力差(膨張機37あるいはエジェクタ92の前後圧力差)によるエネルギの無駄遣いとなってしまう恐れがある。 For example, when the flow rate of refrigerant on the ejector 92 side is relatively large, the flow rate of refrigerant bypassing the expander 37 (passing through the ejector 92) is increased, and the pressure difference across the expander 37 (between upstream and downstream) The pressure difference between the front and back may be reduced, and the ejector performance may be degraded. Therefore, if the flow path on the side of the ejector 92 is narrowed in order to reduce the flow rate of the refrigerant on the side of the ejector 92, a pressure loss occurs this time to cause an energy loss, and the pressure difference before and after the ejector 92 also decreases. It may cause a drop in ejector performance. As described above, when the ejector 92 is operated under the condition that the efficiency of the ejector 92 is low, energy may be wasted due to the refrigerant pressure difference (the pressure difference between the expander 37 or the ejector 92).
 そこで、本実施形態では、例えばエアコンクーラ(冷凍サイクル51の駆動)の要求があってエジェクタ92を作動させる条件下において、エジェクタ92側の流量を低下させる場合に、エジェクタ92側の冷媒流量をゼロとすることで、エネルギーロスの発生を防止する。エジェクタ92側の冷媒流量がゼロになると、膨張機37前後の圧力差が増大するので、高圧側圧力(熱交換器36の出口圧力)が第1の所定値(後述の図29の圧力A)以上となったら、エジェクタ92側に冷媒を流す(このとき絞りは無くすか小さな絞りにしておく)。再び高圧側圧力が第1の所定値より小さな第2の所定値(後述の図29の圧力B)以下となったら、エジェクタ92側の冷媒流量をゼロとする。このような動作を繰り返すことで、エジェクタ92前後の圧力差は常に大きい状態となり、エジェクタ92作動時の性能/効率向上を実現することができる。 Therefore, in the present embodiment, for example, in the case where the flow rate on the ejector 92 side is reduced under the condition of operating the ejector 92 due to the request of the air conditioner cooler (drive of the refrigeration cycle 51), the refrigerant flow rate on the ejector 92 side is zero. By doing this, energy loss is prevented. When the refrigerant flow rate on the ejector 92 side becomes zero, the pressure difference before and after the expander 37 increases, so the high-pressure side pressure (the outlet pressure of the heat exchanger 36) has a first predetermined value (pressure A in FIG. 29 described later). If it becomes above, a refrigerant | coolant will be flowed to the ejector 92 side (At this time, a throttling is eliminated or it makes a small throttling). When the high-pressure side pressure again becomes equal to or less than a second predetermined value (pressure B in FIG. 29 described later) smaller than the first predetermined value, the refrigerant flow rate on the ejector 92 side is made zero. By repeating such an operation, the pressure difference before and after the ejector 92 always becomes large, and the performance / efficiency improvement at the time of operation of the ejector 92 can be realized.
 高圧側圧力(熱交換器36の出口圧力)の所定値については、第1の所定直(後述の図29の圧力A)を、膨張機37が過回転となるのを防止するための上限圧力とし、第2の所定値(後述の図29の圧力B)を、膨張機37によって十分な動力回生が得られなくなるのを防止する下限圧力に設定することができる(A>B)。高圧側圧力は、熱交換器36出口部分(分岐前)に圧力センサ(図示せず)を設けて計測すれば良い。 For the predetermined value of the high-pressure side pressure (the outlet pressure of the heat exchanger 36), the first predetermined direct pressure (pressure A in FIG. 29 described later) is an upper limit pressure for preventing the expander 37 from over-rotation. The second predetermined value (pressure B in FIG. 29 described later) can be set to the lower limit pressure that prevents the expander 37 from obtaining sufficient power regeneration (A> B). The high-pressure side pressure may be measured by providing a pressure sensor (not shown) at the outlet of the heat exchanger 36 (before branching).
 尚、エジェクタ92側の冷媒流量をゼロとしたときに膨張機37が頻繁に過回転になるのを防止するため、膨張機37側の通路を絞る手段を設けることができる。図27および図28は、エジェクタ92側の冷媒流量をゼロとした上で膨張機37側の通路を絞ることができるように構成した例である。図27では、分岐冷媒通路97のエジェクタ92上流部分に開閉弁106を設け、開閉弁106を閉じたときに流量制御弁98の膨張機37側の開度を調節することにより、膨張機37側の通路を絞ることができるようにしている。図28では、図27と同様に、分岐冷媒通路97のエジェクタ92上流部分に開閉弁106を設けた上で、流量制御弁98の代わりに冷媒通路42の膨張機37上流部分に流量制御弁107を設け、開閉弁106を閉じたときに流量制御弁107の開度を調節することにより、膨張機37側の通路を絞ることができるようにしている。この場合、流量分配比は、開閉弁106と流量制御弁107の協働によって制御することができる。 In addition, in order to prevent the expander 37 from being overrotated frequently when the refrigerant flow rate on the ejector 92 side is made zero, it is possible to provide a means for narrowing the passage on the expander 37 side. FIGS. 27 and 28 show an example in which the flow path on the ejector 92 side is made zero and the passage on the expander 37 side can be narrowed. In FIG. 27, the on-off valve 106 is provided in the upstream portion of the ejector 92 of the branch refrigerant passage 97, and the opening 37 on the expander 37 side of the flow control valve 98 is adjusted when the on-off valve 106 is closed. It is possible to squeeze the passage of In FIG. 28, similarly to FIG. 27, after providing the on-off valve 106 in the upstream portion of the ejector 92 of the branch refrigerant passage 97, the flow control valve 107 in the upstream portion of the expansion device 37 of the refrigerant passage 42 instead of the flow control valve 98. By adjusting the opening degree of the flow control valve 107 when the on-off valve 106 is closed, the passage on the expander 37 side can be narrowed. In this case, the flow distribution ratio can be controlled by the cooperation of the on-off valve 106 and the flow control valve 107.
 図29は、第5実施形態により高圧側圧力を制御した場合の、開閉弁106、流量制御弁107の制御状態と、高圧側圧力(熱交換器36の出口圧力)、膨張機37(冷媒ポンプ32)の回転速度の推移を示したタイミングチャートである。高圧側圧力が膨張機37が過回転となるのを防止するための上限圧力(第1の所定値である圧力A)となると、開閉弁106を開くと共に、流量制御弁107の開度を大きくする。また、高圧側圧力が膨張機37によって十分な動力回生が得られなくなるのを防止する下限圧力(第2の所定値である圧力B)になると、開閉弁106を閉じると共に、流量制御弁107の開度を小さくする。このような動作を繰り返すことで、エジェクタ92前後の圧力差は常に大きい状態となり、エジェクタ92作動時の性能/効率向上を実現することができる。 FIG. 29 shows the control states of the on-off valve 106 and the flow control valve 107, the high pressure (the outlet pressure of the heat exchanger 36), and the expander 37 (refrigerant pump) when the high pressure is controlled according to the fifth embodiment. 32 is a timing chart showing transition of the rotational speed. When the high-pressure side pressure reaches the upper limit pressure (pressure A which is a first predetermined value) for preventing the expander 37 from over-rotation, the on-off valve 106 is opened and the opening degree of the flow control valve 107 is increased. Do. Also, when the high pressure side pressure reaches the lower limit pressure (pressure B which is a second predetermined value) that prevents sufficient power regeneration from being obtained by the expander 37, the on-off valve 106 is closed and the flow control valve 107 Reduce the degree of opening. By repeating such an operation, the pressure difference before and after the ejector 92 always becomes large, and the performance / efficiency improvement at the time of operation of the ejector 92 can be realized.
 尚、膨張機37が過回転を生じない範囲内において、コンプレッサ52のクラッチサイクリングのように、エアコンエバボレータ55の出口空気温度を検知して、その温度が所定の目標温度範囲内に納まるように、エジェクタ92の作動/非作動を制御するようにしても良い。 As in the case of clutch cycling of the compressor 52, the temperature of the outlet air of the air conditioner evaporator 55 is detected within the range where the expander 37 does not cause excessive rotation, and the temperature falls within a predetermined target temperature range. The operation / non-operation of the ejector 92 may be controlled.
 あるいは、膨張機37側の通路を、例えば所定期間毎に断続的に遮断(冷媒供給を停止)することで、単位時間あたりの平均冷媒流量を調整し、膨張機37側の経路を絞ることなく膨張機37の回転速度を調整することもできる。このようにすれば、絞り(図27、28)によって発生する冷媒圧力損失によるエネルギーロスがなくなり、その分エジェクタ92側の冷媒流量が増加し、エジェクタ92の性能の向上を図ることができる。 Alternatively, the passage on the expander 37 side is intermittently shut off (stopping the refrigerant supply), for example, every predetermined period to adjust the average refrigerant flow rate per unit time, and without narrowing the path on the expander 37 side. The rotational speed of the expander 37 can also be adjusted. In this way, the energy loss due to the refrigerant pressure loss generated by the throttling (FIGS. 27 and 28) is eliminated, the refrigerant flow rate on the ejector 92 side is increased by that amount, and the performance of the ejector 92 can be improved.
 第5実施形態によれば、エジェクタ92側の流量を低下させる場合に、エジェクタ92側の冷媒流量をゼロとするので、エネルギーロスの発生を防止し、また、エジェクタ92前後の圧力差は常に大きい状態となり、エジェクタ92作動時の性能/効率向上を実現することができる。 According to the fifth embodiment, when the flow rate on the ejector 92 side is reduced, the refrigerant flow rate on the ejector 92 side is made zero, so generation of energy loss is prevented, and the pressure difference before and after the ejector 92 is always large. As a result, performance / efficiency improvement can be realized when the ejector 92 operates.
 上述した実施形態では、ハイブリッド車両の場合で説明したが、これに限られるものでない。エンジン2のみを搭載した車両にも本発明を適用することができる。エンジン2は、ガソリンエンジン、ディーゼルエンジンのいずれでもかまわない。 Although the above embodiment has been described in the case of a hybrid vehicle, the present invention is not limited to this. The present invention can be applied to a vehicle equipped with only the engine 2. The engine 2 may be either a gasoline engine or a diesel engine.
 本願は、2011年9月30日に日本国特許庁に出願された特願2011-216756に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 The present application claims priority based on Japanese Patent Application No. 2011-216756 filed on September 30, 2011, to the Japanese Patent Office, and the entire contents of this application are incorporated herein by reference.

Claims (13)

  1.  エンジンの廃熱を冷媒に回収する熱交換器、この熱交換器出口の冷媒を用いて動力を発生させる膨張機、この膨張機を出た冷媒を凝縮させる凝縮器、前記膨張機により回生された動力によって駆動されると共に、この凝縮器からの冷媒を前記熱交換器に供給する冷媒ポンプを含むランキンサイクルを備えるエンジンの廃熱利用装置において、
     前記凝縮器を共有し、この凝縮器からの冷媒を導いて蒸発させるエバポレータを含む冷凍サイクルと、
     前記熱交換器出口の冷媒を駆動ガスとして用い、エバポレータ出口の冷媒を引き込んで前記凝縮器に戻すエジェクタと、
     前記熱交換器出口からエジェクタに供給する冷媒流量と前記熱交換器出口から前記膨張機に供給する冷媒流量との分配比を制御し得る流量分配比制御機構と
     を設けたエンジンの廃熱利用装置。
    A heat exchanger which recovers the waste heat of the engine as a refrigerant, an expander which generates power by using the refrigerant at the outlet of the heat exchanger, a condenser which condenses the refrigerant which has exited the expander, which is regenerated by the expander In a waste heat utilization device of an engine provided with a Rankine cycle including a refrigerant pump driven by power and supplying a refrigerant from the condenser to the heat exchanger,
    A refrigeration cycle including an evaporator that shares the condenser and leads and evaporates the refrigerant from the condenser;
    An ejector that uses the refrigerant at the outlet of the heat exchanger as a drive gas and draws the refrigerant at the outlet of the evaporator back to the condenser;
    A waste heat utilization device of an engine provided with a flow distribution ratio control mechanism capable of controlling a distribution ratio between the flow rate of refrigerant supplied to the ejector from the heat exchanger outlet and the flow rate of refrigerant supplied to the expander from the heat exchanger outlet .
  2.  請求項1に記載のエンジンの廃熱利用装置において、
     前記エジェクタ側への冷媒流量をエアコン設定温度と前記凝縮器の能力とに基づいて算出するエンジンの廃熱利用装置。
    In the engine waste heat utilization device according to claim 1,
    The waste heat utilization device of the engine which calculates the refrigerant | coolant flow volume to the said ejector side based on the air-conditioner preset temperature and the capability of the said condenser.
  3.  請求項1または2に記載のエンジンの廃熱利用装置において、
     前記膨張機により回生された動力が前記冷媒ポンプの駆動力を上回ったとき、この上回った動力を前記エンジンに伝達する動力伝達機構をさらに備え、
     エンジン停止中に冷房要求があるときには、前記膨張機により回生された動力を前記エンジンに伝達しないようにして前記ランキンサイクルを運転し、このランキンサイクルの冷媒通路を循環する冷媒の一部を前記エジェクタに供給してエジェクタを駆動すると共に、前記冷媒ポンプの実回転速度が目標回転速度と一致するように前記流量分配比制御機構を制御するエンジンの廃熱利用装置。
    In the engine waste heat utilization device according to claim 1 or 2,
    It further comprises a power transmission mechanism for transmitting the motive power that has been regenerated by the expander to the engine when the motive power regenerated by the expander exceeds the driving force of the refrigerant pump,
    When there is a cooling demand while the engine is stopped, the Rankine cycle is operated so that the power regenerated by the expander is not transmitted to the engine, and a portion of the refrigerant circulating in the refrigerant passage of the Rankine cycle is the ejector And driving the ejector, and controlling the flow distribution ratio control mechanism such that the actual rotational speed of the refrigerant pump matches the target rotational speed.
  4.  請求項1または2に記載のエンジンの廃熱利用装置において、
     前記膨張機により回生された動力が前記冷媒ポンプの駆動力を上回ったとき、この上回った動力を前記エンジンに伝達する動力伝達機構をさらに備え、
     エンジンの低負荷状態で冷房要求があるときには、前記膨張機により回生された動力を前記エンジンに伝達しないようにして前記ランキンサイクルを運転し、このランキンサイクルの冷媒通路を循環する冷媒の一部を前記エジェクタに供給してエジェクタを駆動すると共に、前記冷媒ポンプの実回転速度が目標回転速度と一致するように前記流量分配比制御機構を制御するエンジンの廃熱利用装置。
    In the engine waste heat utilization device according to claim 1 or 2,
    It further comprises a power transmission mechanism for transmitting the motive power that has been regenerated by the expander to the engine when the motive power regenerated by the expander exceeds the driving force of the refrigerant pump,
    When there is a cooling demand in a low load state of the engine, the Rankine cycle is operated so that the power regenerated by the expander is not transmitted to the engine, and a part of the refrigerant circulating in the refrigerant passage of this Rankine cycle is An exhaust heat utilization device for an engine, which supplies the ejector to drive the ejector and controls the flow rate distribution ratio control mechanism so that the actual rotational speed of the refrigerant pump coincides with a target rotational speed.
  5.  請求項1または2に記載のエンジンの廃熱利用装置において、
     前記膨張機により回生された動力が前記冷媒ポンプの駆動力を上回ったとき、この上回った動力を前記エンジンに伝達する動力伝達機構をさらに備え、
     エンジン停止中に冷房要求があるときには、前記膨張機により回生された動力を前記エンジンに伝達しないようにして前記ランキンサイクルを運転し、このランキンサイクルの冷媒通路を循環する冷媒の一部を前記エジェクタに供給してエジェクタを駆動すると共に、前記熱交換器出口の冷媒温度または冷媒圧力が低くなるほど前記膨張機への冷媒流量の分配比が大きくなるように前記流量分配比制御機構を制御するエンジンの廃熱利用装置。
    In the engine waste heat utilization device according to claim 1 or 2,
    It further comprises a power transmission mechanism for transmitting the motive power that has been regenerated by the expander to the engine when the motive power regenerated by the expander exceeds the driving force of the refrigerant pump,
    When there is a cooling demand while the engine is stopped, the Rankine cycle is operated so that the power regenerated by the expander is not transmitted to the engine, and a portion of the refrigerant circulating in the refrigerant passage of the Rankine cycle is the ejector An engine for controlling the flow rate distribution ratio control mechanism so as to drive the ejector and drive the ejector and to increase the distribution ratio of the refrigerant flow rate to the expander as the refrigerant temperature or the refrigerant pressure at the heat exchanger outlet decreases. Waste heat utilization device.
  6.  請求項1または2に記載のエンジンの廃熱利用装置において、
     前記膨張機により回生された動力が前記冷媒ポンプの駆動力を上回ったとき、この上回った動力を前記エンジンに伝達する動力伝達機構をさらに備え、
     エンジンの低負荷状態で冷房要求があるときには、前記膨張機により回生された動力を前記エンジンに伝達しないようにして前記ランキンサイクルを運転し、このランキンサイクルの冷媒通路を循環する冷媒の一部を前記エジェクタに供給してエジェクタを駆動すると共に、前記熱交換器出口の冷媒温度または冷媒圧力が低くなるほど前記膨張機への冷媒流量の分配比が大きくなるように前記流量分配比制御機構を制御するエンジンの廃熱利用装置。
    In the engine waste heat utilization device according to claim 1 or 2,
    It further comprises a power transmission mechanism for transmitting the motive power that has been regenerated by the expander to the engine when the motive power regenerated by the expander exceeds the driving force of the refrigerant pump,
    When there is a cooling demand in a low load state of the engine, the Rankine cycle is operated so that the power regenerated by the expander is not transmitted to the engine, and a part of the refrigerant circulating in the refrigerant passage of this Rankine cycle is While supplying to the ejector to drive the ejector, the flow distribution ratio control mechanism is controlled such that the distribution ratio of the refrigerant flow to the expander increases as the refrigerant temperature or refrigerant pressure at the heat exchanger outlet decreases. Waste heat utilization equipment for engines.
  7.  請求項6に記載のエンジンの廃熱利用装置において、
     前記エンジン停止またはエンジンの低負荷状態の開始からの時間の経過とともに前記膨張機への冷媒流量の分配比を大きくするエンジンの廃熱利用装置。
    In the engine waste heat utilization device according to claim 6,
    An engine waste heat utilization device for increasing the distribution ratio of the refrigerant flow rate to the expander as time passes from the start of the engine stop or the low load state of the engine.
  8.  請求項3から7までのいずれか一つに記載のエンジンの廃熱利用装置において、
     前記凝縮器に送風する冷却ファンをさらに備え、
     前記エンジン停止またはエンジンの低負荷状態でこの冷却ファンを駆動するエンジンの廃熱利用装置。
    In the engine waste heat utilization device according to any one of claims 3 to 7,
    The cooling device further includes a cooling fan for blowing air to the condenser.
    The waste heat utilization device of the engine which drives this cooling fan in the engine stop or the low load state of the engine.
  9.  請求項8に記載のエンジンの廃熱利用装置において、
     前記冷却ファンは、エンジン冷却水用に設けられたラジエータファンとは別に設けられ、前記凝縮器のみに送風する冷却ファンであるエンジンの廃熱利用装置。
    In the engine waste heat utilization device according to claim 8,
    The cooling fan is provided separately from a radiator fan provided for engine cooling water, and is a cooling fan that blows air only to the condenser.
  10.  請求項3から8までのいずれか一つに記載のエンジンの廃熱利用装置において、
     前記冷凍サイクルに、前記エジェクタと並列に設けられたコンプレッサを備え、
     前記エバポレータの温度が目標温度よりも高くなったときには前記エジェクタの駆動を停止して前記コンプレッサを駆動するエンジンの廃熱利用装置。
    The waste heat utilization device for an engine according to any one of claims 3 to 8,
    The refrigeration cycle includes a compressor provided in parallel with the ejector,
    The waste heat utilization device of the engine which stops the drive of the said ejector and drives the said compressor, when the temperature of the said evaporator becomes higher than target temperature.
  11.  請求項1から10までのいずれか一つに記載のエンジンの廃熱利用装置において、
     前記エジェクタを作動させる条件のときに、前記熱交換器出口の冷媒圧力に相関する値が第1の所定値以上となると、前記熱交換器出口から冷媒を前記エジェクタに供給してエジェクタを作動させ、前記膨張機出口の冷媒圧力に相関する値が第1の所定値より小さな第2の所定値以下となると、前記エジェクタへの冷媒供給を停止すると共に前記熱交換器出口から冷媒を前記膨張機に供給することにより、前記エジェクタへの冷媒の供給と停止とを繰り返すエンジンの廃熱利用装置。
    The waste heat utilization device for an engine according to any one of claims 1 to 10,
    Under the condition for operating the ejector, when the value correlated with the refrigerant pressure at the heat exchanger outlet becomes equal to or more than a first predetermined value, the refrigerant is supplied from the heat exchanger outlet to the ejector to operate the ejector When the value correlated with the refrigerant pressure at the outlet of the expander becomes equal to or less than a second predetermined value smaller than the first predetermined value, the refrigerant supply to the ejector is stopped and the refrigerant is transferred from the heat exchanger outlet to the expander The waste heat utilization device of the engine which repeats supply and stop of the refrigerant to the said ejector by supplying to.
  12.  請求項11に記載のエンジンの廃熱利用装置において、
     前記エジェクタへの冷媒供給を停止する場合、前記膨張機の上流に設けられた制御弁の開度を調整することで、前記膨張機の回転速度を調整するエンジンの廃熱利用装置。
    In the engine waste heat utilization device according to claim 11,
    The engine waste heat utilization apparatus which adjusts the rotational speed of the said expander by adjusting the opening degree of the control valve provided upstream of the said expander, when stopping the refrigerant | coolant supply to the said ejector.
  13.  請求項1から12までのいずれか一つに記載のエンジンの廃熱利用装置において、
     前記流量分配比制御機構は、前記膨張機への冷媒供給を断続的に停止することで、所定時間あたりの前記熱交換器出口から前記膨張機への冷媒供給量を変更して、前記膨張機の回転速度を調整するエンジンの廃熱利用装置。
    The engine waste heat utilization device according to any one of claims 1 to 12,
    The flow rate distribution ratio control mechanism changes the refrigerant supply amount from the heat exchanger outlet to the expander per predetermined time by intermittently stopping the refrigerant supply to the expander, thereby changing the expander Waste heat utilization device of the engine to adjust the rotation speed of
PCT/JP2012/070043 2011-09-30 2012-08-07 Device for using engine waste heat WO2013046936A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011216756A JP2013076514A (en) 2011-09-30 2011-09-30 Device for using engine waste heat
JP2011-216756 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013046936A1 true WO2013046936A1 (en) 2013-04-04

Family

ID=47994988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070043 WO2013046936A1 (en) 2011-09-30 2012-08-07 Device for using engine waste heat

Country Status (2)

Country Link
JP (1) JP2013076514A (en)
WO (1) WO2013046936A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2505794A3 (en) * 2011-04-01 2015-03-25 MAHLE Behr GmbH & Co. KG Device and method for reducing the energy consumption of a compressor in a coolant circuit by using waste heat or solar heat

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014212019A1 (en) * 2014-06-23 2015-12-24 Magna powertrain gmbh & co kg Cooling and energy recovery system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146417A (en) * 1979-05-29 1981-11-13 Dai Ootomoteibu Ando Eng Co Combination of engine cooling system and heat pump driven by waste heat
JPS61211667A (en) * 1985-03-15 1986-09-19 株式会社クボタ Heat pump
JPS6325459A (en) * 1986-07-18 1988-02-02 カルソニックカンセイ株式会社 Steam injection type refrigerator
JP2005024192A (en) * 2003-07-03 2005-01-27 Toyota Industries Corp Exhaust heat recovering equipment
JP2006010301A (en) * 2004-05-25 2006-01-12 Jfe Engineering Kk Cold generating system, and cold generating method
JP2007285623A (en) * 2006-04-18 2007-11-01 Sanden Corp Refrigerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146417A (en) * 1979-05-29 1981-11-13 Dai Ootomoteibu Ando Eng Co Combination of engine cooling system and heat pump driven by waste heat
JPS61211667A (en) * 1985-03-15 1986-09-19 株式会社クボタ Heat pump
JPS6325459A (en) * 1986-07-18 1988-02-02 カルソニックカンセイ株式会社 Steam injection type refrigerator
JP2005024192A (en) * 2003-07-03 2005-01-27 Toyota Industries Corp Exhaust heat recovering equipment
JP2006010301A (en) * 2004-05-25 2006-01-12 Jfe Engineering Kk Cold generating system, and cold generating method
JP2007285623A (en) * 2006-04-18 2007-11-01 Sanden Corp Refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2505794A3 (en) * 2011-04-01 2015-03-25 MAHLE Behr GmbH & Co. KG Device and method for reducing the energy consumption of a compressor in a coolant circuit by using waste heat or solar heat

Also Published As

Publication number Publication date
JP2013076514A (en) 2013-04-25

Similar Documents

Publication Publication Date Title
JP5716837B2 (en) Engine waste heat utilization device
JP5740273B2 (en) Rankine cycle
JP5761358B2 (en) Rankine cycle
US9441503B2 (en) Waste heat utilization apparatus
WO2013046885A1 (en) Rankine cycle
US9291074B2 (en) Engine waste-heat utilization device
JP6344020B2 (en) vehicle
WO2013047139A1 (en) Rankine cycle system
JP5894756B2 (en) Rankine cycle system
JP2013076374A (en) Rankine cycle and heat exchanger used for the same
WO2013047148A1 (en) Engine system and method for controlling same
JP2015218636A (en) Device for using engine waste heat
WO2013046925A1 (en) Device for using engine waste heat
WO2013046936A1 (en) Device for using engine waste heat
WO2014103820A1 (en) Engine-waste-heat recovery device
JP2013076372A (en) Waste heat utilization device
WO2014103825A1 (en) Rankine cycle system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836244

Country of ref document: EP

Kind code of ref document: A1