WO2013046516A1 - Orthopedic disease risk evaluation system, and information processing device - Google Patents

Orthopedic disease risk evaluation system, and information processing device Download PDF

Info

Publication number
WO2013046516A1
WO2013046516A1 PCT/JP2012/004683 JP2012004683W WO2013046516A1 WO 2013046516 A1 WO2013046516 A1 WO 2013046516A1 JP 2012004683 W JP2012004683 W JP 2012004683W WO 2013046516 A1 WO2013046516 A1 WO 2013046516A1
Authority
WO
WIPO (PCT)
Prior art keywords
foot
subject
area
risk
ratio
Prior art date
Application number
PCT/JP2012/004683
Other languages
French (fr)
Japanese (ja)
Inventor
光 ▲高▼橋
大輔 宮野
敬亮 吉野
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2013046516A1 publication Critical patent/WO2013046516A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1036Measuring load distribution, e.g. podologic studies

Definitions

  • the present invention relates to an orthopedic disease risk evaluation system that evaluates the risk of an orthopedic disease of a subject and an information processing apparatus that constitutes the system.
  • risk factors that cause orthopedic diseases include flat feet, hallux valgus, and O-legs. This is because when these risk factors progress, the mechanical relationship related to the joint portion is broken, and an extra force is applied to the joint portion.
  • flat feet which are arch collapses, are considered to be the main causes of hallux valgus and O-legs, so it is necessary to detect the progress of flat feet early and to accurately assess the risk of causing orthopedic diseases. Yes.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a system for evaluating a risk of causing a shaping disease by measuring a foot state.
  • an information processing apparatus comprises the following arrangement. That is, An acquisition means for acquiring a measurement result obtained by measuring a foot pressure distribution of an upright subject by a foot pressure distribution detection sensor in which a plurality of pressure sensors are two-dimensionally arranged; Based on the measurement result, the area of the sole part of at least one foot of the subject in contact with the foot pressure distribution detection sensor is calculated, and the foot of the at least one foot of the subject is calculated.
  • a first ratio that calculates the area ratio representing the ratio of the area of the sole portion and the circumscribed rectangle of the sole portion as the evaluation value of the first index A calculation means; Based on the measurement result, the center of gravity position of the at least one foot of the subject is calculated, and the inner boundary position of the at least one foot of the subject is extracted.
  • a second calculating means for calculating a centroid distance representing a distance to the centroid position as an evaluation value of the second index;
  • a dividing means for dividing the space formed by the area ratio and the center-of-gravity distance into a plurality of regions having different risks of causing a shaping disease;
  • determining means for determining a risk of causing the subject's shaping disease based on each region divided by the dividing means.
  • FIG. 1 is a diagram illustrating an example of an external configuration of a shaping disease risk evaluation system 100 according to the present embodiment.
  • reference numeral 110 denotes a sensor unit, which is configured by two-dimensionally arranging a plurality of pressure sensors. When both feet of an upright subject are placed, the foot pressure of both feet of the subject is placed. A foot pressure distribution detection sensor unit 111 capable of detecting the distribution is disposed.
  • foot pressure distribution data (measurement results) measured by the foot pressure distribution detection sensor unit 111 via the cable 130. Moreover, the acquired foot pressure distribution data is analyzed, and an evaluation value is calculated based on an index indicating a risk factor that causes a shaping disease.
  • the calculated evaluation value is analyzed, a risk area used for determining the risk of causing the shaping disease is obtained, and a risk determination process is performed using the risk area.
  • FIG. 2 is a diagram illustrating a functional configuration of the information processing apparatus 120 that constitutes the orthopedic disease risk evaluation system 100.
  • the information processing apparatus 120 includes a control unit 200, a display unit 210, an input unit 220, and a storage unit 230.
  • the control unit 200 analyzes the foot pressure distribution data measured by the foot pressure distribution detection sensor unit 111 based on an index indicating the progression of a risk factor that causes a shaping disease, thereby calculating an evaluation value. 201 and a gravity center position analysis unit 202.
  • a risk determination unit 203 that performs a risk determination process using the evaluation value calculated by the ground contact area analysis unit 201 and the evaluation value calculated by the gravity center position analysis unit 202 is provided.
  • the evaluation value calculated in advance in the ground contact region analysis unit 201 and the evaluation value calculated in the gravity center position analysis unit 202 are analyzed as teacher data.
  • the evaluation value analysis unit 204 is provided.
  • control unit 200 may be realized using dedicated hardware, or may be realized by a CPU (computer) executing a program for realizing these functions. Good.
  • the display unit 210 displays the foot pressure distribution data measured by the foot pressure distribution detection sensor unit 111, displays the determination result in the risk determination unit 203 of the control unit 200, and the analysis content in the evaluation value analysis unit 204. .
  • the input unit 220 inputs necessary data and inputs instructions when each unit of the control unit 200 executes processing.
  • the storage unit 230 stores various data transmitted from the sensor unit 110, and stores information related to the risk area calculated by the evaluation value analysis unit 204.
  • the function of each unit included in the control unit 200 is realized by a CPU (computer) executing a program, the program is stored in the storage unit 230 so as to be readable.
  • FIG. 3 is a diagram illustrating an example of foot pressure distribution data measured by the foot pressure distribution detection sensor unit 111.
  • 3a is a diagram displaying foot pressure distribution data of a healthy person and barycentric position data calculated based on the foot pressure distribution data
  • 3b is foot pressure distribution data of the flat foot person and the foot pressure distribution. It is the figure which displayed the gravity center position data calculated based on data.
  • the star on the right indicates the center of gravity of the right foot
  • the star on the left indicates the center of gravity of the left foot.
  • the cross in the center indicates the position of the center of gravity of both feet.
  • the contact area of the sole is greatly different between a healthy person and a flat foot person.
  • a healthy person only the part of the toe side and the part of the heel side are grounded and the center part is not grounded in the whole sole, whereas in the case of a flat footed person In the entire sole, not only a part on the toe side and a part on the heel side but also the outer side of the central part is grounded. Therefore, it can be said that it is effective to pay attention to the ground contact area (ground contact area) of the sole in order to represent the progress of the flat foot, which is a risk factor causing the orthopedic disease.
  • FIG. 4 is a diagram schematically showing the difference between the left and right center of gravity positions of the healthy person and the flat foot person shown in FIG.
  • the position of the center of gravity of the left foot and the position of the center of gravity of the right foot are shifted outward in the case of a flat footer. For this reason, it can be said that it is effective to pay attention to the shift of the center of gravity of each foot in the outward direction in order to represent the progress of the flat foot, which is a risk factor causing the orthopedic disease.
  • step S501 a pixel having a pressure value equal to or higher than a predetermined threshold value among the pressure values of each pixel included in the foot pressure distribution data (a pixel corresponding to the ground region; refer to the sole portion 601 of 6a in FIG. 6) is extracted. To do.
  • step S502 a circumscribed rectangle (see 602 in FIG. 6a) is calculated based on the pixel position information extracted in step S501.
  • step S503 the area B of the circumscribed rectangle 602 is calculated, and in step S504, the area A of the sole portion 601 is calculated.
  • the ground contact area effective for representing the progress of the flat foot which is a risk factor causing the orthopedic disease, it depends on the characteristics (foot size, shape, etc.) for each subject.
  • the ground contact area is normalized by dividing it by the circumscribed rectangular area, and this is used as one of the indices indicating the progression of the risk factor causing the orthopedic disease.
  • step S5b of FIG. 5 is a flowchart showing the flow of the gravity center position analysis process executed by the gravity center position analysis unit 202.
  • step S511 the pressure value of each pixel included in the foot pressure distribution data Among them, a pixel having a pressure value equal to or greater than a predetermined threshold (a pixel corresponding to the grounding region; see the sole portion 611 of 6b in FIG. 6) is extracted.
  • step S512 the barycentric position (see 612 in 6b of FIG. 6) is calculated based on the position information and pressure value of the pixel extracted in step S511.
  • step S513 the inner boundary position 613 and the outer boundary position 614 of the sole portion 611 are extracted based on the pixel position information extracted in step S511, and the foot width Xmax is calculated.
  • step S51 a distance (centroid distance) X from the inner boundary position 613 of the sole portion 611 extracted in step S513 to the centroid position 612 calculated in step S512 is calculated.
  • the position of the center of gravity that is effective for representing the progress of the flat foot which is a risk factor causing the shaping disease
  • it depends on the characteristics (foot size, shape, etc.) for each subject.
  • it is normalized by dividing the distance of the center of gravity by the foot width, and this is used as one of the indices indicating the progression of risk factors that cause the shaping disease.
  • the plotted evaluation value approaches a straight line. Therefore, the validity of the index can be judged by performing linear regression analysis on the plotted evaluation values and comparing the determination coefficients.
  • a regression line indicated by 701 was obtained, and the coefficient of determination was calculated as 0.3619.
  • the same linear regression analysis was performed by taking the area of the sole part on the horizontal axis and the center of gravity distance on the vertical axis, and the coefficient of determination was calculated to be 0.1346. It was done.
  • using the area ratio and the center of gravity distance as an index indicating the progression of risk factors that cause orthopedic diseases is a more appropriate index than using at least the area of the sole and the center of gravity distance. it can.
  • FIG. 8 shows the area ratio on the horizontal axis and the distance ratio on the vertical axis as an index indicating the progression of risk factors that cause the shaping disease. The example of the result of having plotted the evaluation value of the several subject in case is shown.
  • a regression line indicated by 801 was obtained, and the coefficient of determination was calculated as 0.3847. That is, when the horizontal axis is the area of the sole part and the vertical axis is the center of gravity distance (0.1346), the horizontal axis is the area ratio, and the vertical axis is the center of gravity distance The coefficient of determination higher than any of the coefficient of determination (0.3619) could be obtained.
  • using the area ratio and the distance ratio as an index indicating the progression of the risk factor causing the orthopedic disease uses at least the area of the sole portion and the center of gravity distance, and uses the area ratio and the center of gravity distance. It can be said that it is a more appropriate index than the case.
  • the area ratio and the center-of-gravity distance, and the area ratio and the distance ratio will be used below as indices indicating the progression of risk factors that cause the shaping disease.
  • FIG. 9 is a diagram illustrating a flow of evaluation value analysis processing (processing for determining a risk determination boundary surface) executed by the evaluation value analysis unit 204.
  • step S901 the evaluation values of the group diagnosed as the healthy subject group and the flat foot are read out, respectively, and in step S902, the intergroup variance value of each group, Calculate the variance value.
  • a longitudinal risk determination boundary surface is determined by determining a position where the intergroup variance value / intragroup variance value is maximized.
  • step S904 the evaluation values of the group with poor joint alignment, such as the group of healthy subjects and the O-leg, are read out respectively, and in step S905, between the groups of each group The variance value and the within-group variance value are calculated.
  • a lateral risk determination boundary surface is determined by determining a position where the intergroup variance value / intragroup variance value is maximized.
  • the area is divided into four (1011 to 1014, 1111 to 1114) by the vertical direction risk determination boundary surfaces (1001, 1101) and the horizontal direction risk determination boundary surfaces (1002, 1102).
  • the ratio between the variance value in the region of the evaluation value included in each region and the variance value between the regions is maximized).
  • Information regarding the determined risk area is stored in the storage unit 230.
  • FIG. 12 is a diagram showing the flow of the risk determination process in the risk determination unit 203
  • 12a in FIG. 12 is a risk when the area ratio and the center-of-gravity distance are used as an index indicating the progression of the risk factor causing the shaping disease.
  • 12b of FIG. 12 is a figure which shows the flow of the risk determination process at the time of using an area ratio and a distance ratio as a parameter
  • step S1201 the foot pressure distribution data measured by the foot pressure distribution detection sensor unit 111 is calculated by analyzing the ground pressure region analysis unit 201 and the gravity center position analysis unit 202. The area ratio and the center-of-gravity distance are read out and plotted in the evaluation value space shown in FIG.
  • step S1202 the area plotted in step S1201 is identified, and in step S1203, the risk is determined according to the identified area. Specifically, when the plotted area is identified as the risk area 1011, it is determined that the subject has a low risk of causing the shaping disease. On the other hand, when the plotted region is identified as the risk region 1012 or 1013, it is determined that the risk that the subject causes the shaping disease is moderate. Further, when the plotted area is identified as the risk area 1014, it is determined that the subject has a high risk of causing the shaping disease.
  • step S1211 the foot pressure distribution data measured by the foot pressure distribution detection sensor unit 111 is calculated by analyzing the ground pressure region analysis unit 201 and the gravity center position analysis unit 202. The obtained area ratio and distance ratio are read out and plotted in the evaluation value space shown in FIG.
  • step S1212 the area plotted in step S1211 is identified, and in step S1213, the risk is determined according to the identified area. Specifically, when the plotted region is identified as the risk region 1111, it is determined that the subject has a low risk of causing the shaping disease. On the other hand, when the plotted area is identified as the risk area 1112 or 1113, it is determined that the risk that the subject causes the shaping disease is moderate. Further, when the plotted region is identified as the risk region 1114, it is determined that the subject has a high risk of causing the shaping disease.
  • the area ratio and the center-of-gravity distance (or distance) based on the foot pressure distribution data as an index indicating the progression of the risk factor causing the orthopedic disease. Ratio). Furthermore, the evaluation value space formed by the area ratio and the center-of-gravity distance (or distance ratio) is configured to be divided into a plurality of regions having different risks based on the variance of the evaluation values for a plurality of subjects. . This made it possible to evaluate the risk of causing orthopedic diseases.
  • the distance from the inner boundary position of the sole portion to the center of gravity position is used to determine the distance ratio as an index indicating the progression of the risk factor causing the orthopedic disease (i.e., Lateral distance ratio)
  • the present invention is not limited to this.
  • the distance from the heel side boundary position to the center of gravity position of the sole portion may be used (that is, the distance ratio in the vertical direction may be used).
  • a vector sum of the distance ratio in the horizontal direction and the distance ratio in the vertical direction may be used.
  • the evaluation value is calculated for one foot among the foot pressure distribution data measured by the foot pressure distribution detection sensor unit 111, and the risk determination process is performed.
  • the evaluation value may be calculated for both feet and risk determination processing may be performed, or the evaluation value calculated for each foot is weighted and summed. Then, risk determination processing may be performed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

Provided is a system for evaluating the risk of triggering an orthopedic disease. This information processing device is characterized by being provided with: a means for acquiring the measurement result measured by means of a foot pressure distribution detection sensor; a means (201) for calculating, as a first index evaluation value, the area ratio representing the ratio of the area of the sole of the foot of a subject relative to the area of the circumscribed rectangular shape of the sole of the foot of the subject on the basis of the measurement result; a means (202) for calculating, as a second index evaluation value, the weighted center distance representing the distance from the inner boundary position of the subject to the weighted center position on the basis of the measurement result; a means (204) for dividing a region formed by means of the area ratio and the weighted center distance into a plurality of regions of different risks triggering orthopedic diseases; and a means (203) for determining the risk that triggers the orthopedic disease of the subject on the basis of each divided region.

Description

整形疾患リスク評価システム及び情報処理装置Orthopedic disease risk evaluation system and information processing apparatus
 本発明は、被検者の整形疾患のリスクを評価する整形疾患リスク評価システム及び該システムを構成する情報処理装置に関するものである。 The present invention relates to an orthopedic disease risk evaluation system that evaluates the risk of an orthopedic disease of a subject and an information processing apparatus that constitutes the system.
 一般に、高齢になるに従い、膝関節痛や股関節痛、腰痛などの整形疾患を患う人が増える傾向にある。このような整形疾患は、慢性的な痛みを伴い、ひどくなると寝たきりの状態になることから、早期に処置を施すことが重要である。 In general, as people get older, the number of people suffering from orthopedic diseases such as knee pain, hip pain, and back pain tends to increase. Since such orthopedic diseases are accompanied by chronic pain and become seriously bedridden, it is important to treat them at an early stage.
 整形疾患を引き起こすリスク因子としては、例えば、扁平足、外反母趾、O脚等が挙げられる。これらのリスク因子が進行すると、関節部分に係る力学的関係が崩れ、関節部分に余分な力がかかるためである。その中でも、足のアーチ崩れである扁平足は、外反母趾やO脚を引き起こす主要因と考えられることから、扁平足の進行を早期に発見し、整形疾患を引き起こすリスクを的確に評価することが求められている。 Examples of risk factors that cause orthopedic diseases include flat feet, hallux valgus, and O-legs. This is because when these risk factors progress, the mechanical relationship related to the joint portion is broken, and an extra force is applied to the joint portion. Among them, flat feet, which are arch collapses, are considered to be the main causes of hallux valgus and O-legs, so it is necessary to detect the progress of flat feet early and to accurately assess the risk of causing orthopedic diseases. Yes.
 一方で、従来より、足部の状態を計測するためのシステムとして、足圧分布検出センサや重心動揺計等を用いたシステムが提案されており(例えば、下記特許文献1、2参照)、これらのシステムを用いることで、被検者の扁平足の程度や、重心位置の揺れ等を計測することができる。 On the other hand, conventionally, as a system for measuring the state of the foot, a system using a foot pressure distribution detection sensor, a center of gravity shake meter, or the like has been proposed (for example, see Patent Documents 1 and 2 below). By using this system, it is possible to measure the level of the subject's flat feet, the shaking of the center of gravity, and the like.
特開平08-145826号公報Japanese Patent Laid-Open No. 08-145826 特開平10-228540号公報Japanese Patent Laid-Open No. 10-228540
 しかしながら、上記従来システムはいずれも、整形疾患という観点から解析することを目的としたものではなく、したがって、整形疾患を引き起こすリスクを評価することもできない。一方で、このような評価を行うためには、足部の状態についての計測結果を、リスク因子の進行を示す的確に表す指標を用いて解析することが必要である。加えて、そのような指標は、被検者ごとの特性(足の大きさや形等)に依存しないものであることが望ましい。 However, none of the above conventional systems is intended to be analyzed from the viewpoint of orthopedic diseases, and therefore the risk of causing orthopedic diseases cannot be evaluated. On the other hand, in order to perform such an evaluation, it is necessary to analyze the measurement result of the foot state using an index that accurately represents the progress of the risk factor. In addition, it is desirable that such an index should not depend on characteristics (such as foot size and shape) for each subject.
 本発明は上記課題に鑑みてなされたものであり、足部の状態を計測することで、整形疾患を引き起こすリスクを評価するシステムを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a system for evaluating a risk of causing a shaping disease by measuring a foot state.
 上記の目的を達成するために、本発明に係る情報処理装置は以下のような構成を備える。即ち、
 複数の圧力センサが2次元に配列された足圧分布検出センサにより、直立した被検者の足圧分布が計測されることで得られた計測結果を取得する取得手段と、
 前記計測結果に基づいて、前記足圧分布検出センサに接地している前記被検者の少なくとも一方の足の足裏部分の面積を算出するとともに、該被検者の該少なくとも一方の足の足裏部分の外接長方形の面積を算出することで、該足裏部分の面積と該足裏部分の外接長方形の面積との比を表す面積比を第1の指標の評価値として算出する第1の算出手段と、
 前記計測結果に基づいて、前記被検者の前記少なくとも一方の足の重心位置を算出するとともに、該被検者の該少なくとも一方の足の内側境界位置を抽出することで、該内側境界位置から該重心位置までの距離を表す重心距離を第2の指標の評価値として算出する第2の算出手段と、
 前記面積比と前記重心距離とにより形成される空間を、整形疾患を引き起こすリスクの異なる複数の領域に分割する分割手段と、
 前記分割手段により分割された各領域に基づいて、被検者の整形疾患を引き起こすリスクを判定する判定手段とを備えることを特徴とする。
In order to achieve the above object, an information processing apparatus according to the present invention comprises the following arrangement. That is,
An acquisition means for acquiring a measurement result obtained by measuring a foot pressure distribution of an upright subject by a foot pressure distribution detection sensor in which a plurality of pressure sensors are two-dimensionally arranged;
Based on the measurement result, the area of the sole part of at least one foot of the subject in contact with the foot pressure distribution detection sensor is calculated, and the foot of the at least one foot of the subject is calculated. By calculating the area of the circumscribed rectangle of the back portion, a first ratio that calculates the area ratio representing the ratio of the area of the sole portion and the circumscribed rectangle of the sole portion as the evaluation value of the first index A calculation means;
Based on the measurement result, the center of gravity position of the at least one foot of the subject is calculated, and the inner boundary position of the at least one foot of the subject is extracted. A second calculating means for calculating a centroid distance representing a distance to the centroid position as an evaluation value of the second index;
A dividing means for dividing the space formed by the area ratio and the center-of-gravity distance into a plurality of regions having different risks of causing a shaping disease;
And determining means for determining a risk of causing the subject's shaping disease based on each region divided by the dividing means.
 本発明によれば、足部の状態を計測することで、整形疾患を引き起こすリスクを評価するシステムを提供することが可能となる。 According to the present invention, it is possible to provide a system for evaluating the risk of causing a shaping disease by measuring the state of the foot.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明の一実施形態にかかる整形疾患リスク評価システムの外観構成を示す図である。 整形疾患リスク評価システムを構成する情報処理装置の機能構成を示す図である。 足圧分布検出センサにおいて計測された足圧分布データの一例を示す図である。 整形疾患を引き起こすリスク因子の進行を示す指標を説明するための図である。 接地領域解析処理及び重心位置解析処理の流れを示すフローチャートである。 整形疾患を引き起こすリスク因子の進行を示す指標を算出する方法を説明するための図である。 整形疾患を引き起こすリスク因子の進行を示す指標に基づいて算出された、複数の被検者の評価値をプロットした図である。 整形疾患を引き起こすリスク因子の進行を示す指標に基づいて算出された、複数の被検者の評価値をプロットした図である。 リスク判定境界面決定のための処理の流れを示すフローチャートである。 リスク判定処理に用いられる各リスク領域を説明するための図である。 リスク判定処理に用いられる各リスク領域を説明するための図である。 リスク判定処理の流れを示すフローチャートである。
The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
It is a figure which shows the external appearance structure of the shaping disease risk evaluation system concerning one Embodiment of this invention. It is a figure which shows the function structure of the information processing apparatus which comprises a shaping disease risk evaluation system. It is a figure which shows an example of the foot pressure distribution data measured in the foot pressure distribution detection sensor. It is a figure for demonstrating the parameter | index which shows progress of the risk factor which causes an orthopedic disease. It is a flowchart which shows the flow of a grounding area | region analysis process and a gravity center position analysis process. It is a figure for demonstrating the method of calculating the parameter | index which shows the progression of the risk factor which causes an orthopedic disease. It is the figure which plotted the evaluation value of the several subject calculated based on the parameter | index which shows the progression of the risk factor which causes an orthopedic disease. It is the figure which plotted the evaluation value of the several subject calculated based on the parameter | index which shows the progression of the risk factor which causes an orthopedic disease. It is a flowchart which shows the flow of the process for risk determination boundary surface determination. It is a figure for demonstrating each risk area | region used for a risk determination process. It is a figure for demonstrating each risk area | region used for a risk determination process. It is a flowchart which shows the flow of a risk determination process.
 以下、必要に応じて添付図面を参照しながら本発明の各実施形態の詳細を説明する。なお、本発明は以下の実施形態に限定されるものではなく、適宜変更可能であるものとする。 Hereinafter, details of each embodiment of the present invention will be described with reference to the accompanying drawings as necessary. In addition, this invention is not limited to the following embodiment, It shall change suitably.
 [第1の実施形態]
 <1.整形疾患リスク評価システムの外観構成>
 図1は、本実施形態に係る整形疾患リスク評価システム100の外観構成の一例を示す図である。
[First Embodiment]
<1. Appearance structure of orthopedic disease risk assessment system>
FIG. 1 is a diagram illustrating an example of an external configuration of a shaping disease risk evaluation system 100 according to the present embodiment.
 図1において、110はセンサ部であり、複数の圧力センサが2次元に配列されて構成されており、直立した被検者の両足が載置された場合に、被検者の両足の足圧分布を検出することが可能な足圧分布検出センサ部111が配されている。 In FIG. 1, reference numeral 110 denotes a sensor unit, which is configured by two-dimensionally arranging a plurality of pressure sensors. When both feet of an upright subject are placed, the foot pressure of both feet of the subject is placed. A foot pressure distribution detection sensor unit 111 capable of detecting the distribution is disposed.
 120は情報処理装置であり、足圧分布検出センサ部111において計測された足圧分布データ(計測結果)をケーブル130を介して取得する。また、取得した足圧分布データを解析し、整形疾患を引き起こすリスク因子を示す指標に基づいて評価値を算出する。 120 is an information processing apparatus, and acquires foot pressure distribution data (measurement results) measured by the foot pressure distribution detection sensor unit 111 via the cable 130. Moreover, the acquired foot pressure distribution data is analyzed, and an evaluation value is calculated based on an index indicating a risk factor that causes a shaping disease.
 更に、算出した評価値を解析し、整形疾患を引き起こすリスクの判定に用いられるリスク領域を求めるとともに、当該リスク領域を用いてリスク判定処理を行う。 Further, the calculated evaluation value is analyzed, a risk area used for determining the risk of causing the shaping disease is obtained, and a risk determination process is performed using the risk area.
 <2.整形疾患リスク評価システムの情報処理装置の機能構成>
 図2は、整形疾患リスク評価システム100を構成する情報処理装置120の機能構成を示す図である。図2に示すように、情報処理装置120は制御部200と、表示部210と、入力部220と、記憶部230とを備える。
<2. Functional configuration of information processing device of orthopedic disease risk assessment system>
FIG. 2 is a diagram illustrating a functional configuration of the information processing apparatus 120 that constitutes the orthopedic disease risk evaluation system 100. As illustrated in FIG. 2, the information processing apparatus 120 includes a control unit 200, a display unit 210, an input unit 220, and a storage unit 230.
 制御部200は、足圧分布検出センサ部111において計測された足圧分布データを、整形疾患を引き起こすリスク因子の進行を示す指標に基づいて解析することで、評価値を算出する接地領域解析部201と重心位置解析部202とを備える。 The control unit 200 analyzes the foot pressure distribution data measured by the foot pressure distribution detection sensor unit 111 based on an index indicating the progression of a risk factor that causes a shaping disease, thereby calculating an evaluation value. 201 and a gravity center position analysis unit 202.
 また、接地領域解析部201において算出された評価値と重心位置解析部202において算出された評価値とを用いて、リスク判定処理を行うリスク判定部203を備える。 Also, a risk determination unit 203 that performs a risk determination process using the evaluation value calculated by the ground contact area analysis unit 201 and the evaluation value calculated by the gravity center position analysis unit 202 is provided.
 更に、リスク判定部203におけるリスク判定処理に用いられるリスク領域を求めるために、予め接地領域解析部201において算出された評価値と重心位置解析部202において算出された評価値とを教師データとして解析する、評価値解析部204を備える。 Further, in order to obtain a risk region used for the risk determination process in the risk determination unit 203, the evaluation value calculated in advance in the ground contact region analysis unit 201 and the evaluation value calculated in the gravity center position analysis unit 202 are analyzed as teacher data. The evaluation value analysis unit 204 is provided.
 なお、制御部200に含まれる各部の機能は、専用のハードウェアを用いて実現されてもよいし、これらの機能を実現するためのプログラムをCPU(コンピュータ)が実行することにより実現されてもよい。 Note that the functions of the respective units included in the control unit 200 may be realized using dedicated hardware, or may be realized by a CPU (computer) executing a program for realizing these functions. Good.
 表示部210は、足圧分布検出センサ部111において計測された足圧分布データを表示したり、制御部200のリスク判定部203における判定結果や評価値解析部204における解析内容を表示したりする。入力部220は、制御部200の各部が処理を実行するにあたり、必要なデータを入力したり、指示を入力したりする。 The display unit 210 displays the foot pressure distribution data measured by the foot pressure distribution detection sensor unit 111, displays the determination result in the risk determination unit 203 of the control unit 200, and the analysis content in the evaluation value analysis unit 204. . The input unit 220 inputs necessary data and inputs instructions when each unit of the control unit 200 executes processing.
 記憶部230は、センサ部110より送信された各種データを記憶したり、評価値解析部204において算出されたリスク領域に関する情報を記憶する。なお、制御部200に含まれる各部の機能を、CPU(コンピュータ)がプログラムを実行することによって実現する場合にあっては、当該プログラムは記憶部230に読み出し可能に記憶されるものとする。 The storage unit 230 stores various data transmitted from the sensor unit 110, and stores information related to the risk area calculated by the evaluation value analysis unit 204. In addition, when the function of each unit included in the control unit 200 is realized by a CPU (computer) executing a program, the program is stored in the storage unit 230 so as to be readable.
 <3.足圧分布データ>
 図3は、足圧分布検出センサ部111において計測された足圧分布データの一例を示す図である。
<3. Foot pressure distribution data>
FIG. 3 is a diagram illustrating an example of foot pressure distribution data measured by the foot pressure distribution detection sensor unit 111.
 図3において、3aは健常者の足圧分布データと該足圧分布データに基づいて算出される重心位置データとを表示した図であり、3bは扁平足者の足圧分布データと該足圧分布データに基づいて算出される重心位置データとを表示した図である。なお、重心位置データのうち、右側の星印は右足の重心位置を、左側の星印は左足の重心位置をそれぞれ示している。また、中央の十字印は、両足の重心位置を示している。 In FIG. 3, 3a is a diagram displaying foot pressure distribution data of a healthy person and barycentric position data calculated based on the foot pressure distribution data, and 3b is foot pressure distribution data of the flat foot person and the foot pressure distribution. It is the figure which displayed the gravity center position data calculated based on data. In the center-of-gravity position data, the star on the right indicates the center of gravity of the right foot, and the star on the left indicates the center of gravity of the left foot. The cross in the center indicates the position of the center of gravity of both feet.
 図3から明らかなように、健常者と扁平足者とでは、足裏の接地領域が大きく異なる。つまり、健常者の場合には、足裏全体のうち、つま先側の一部とかかと側の一部のみが接地しており、中央部は接地していないのに対して、扁平足者の場合には、足裏全体のうち、つま先側の一部とかかと側の一部のみならず、中央部外側も接地している。したがって、整形疾患を引き起こすリスク因子である扁平足の進行を表すためには、足裏の接地領域(接地面積)に着目することが有効であるといえる。 As is clear from FIG. 3, the contact area of the sole is greatly different between a healthy person and a flat foot person. In other words, in the case of a healthy person, only the part of the toe side and the part of the heel side are grounded and the center part is not grounded in the whole sole, whereas in the case of a flat footed person In the entire sole, not only a part on the toe side and a part on the heel side but also the outer side of the central part is grounded. Therefore, it can be said that it is effective to pay attention to the ground contact area (ground contact area) of the sole in order to represent the progress of the flat foot, which is a risk factor causing the orthopedic disease.
 更に、健常者と扁平足者とでは、左右それぞれの重心位置も異なる。図4は、図3に示す健常者と扁平足者の左右の重心位置の違いを模式的に示した図である。図4に示すように、扁平足者の方が、左足の重心位置も右足の重心位置も外側にずれている。このようなことから、整形疾患を引き起こすリスク因子である扁平足の進行を表すためには、各足の重心位置の外側方向へのずれに着目することも有効であるといえる。 Furthermore, the positions of the center of gravity of the right and left are also different for healthy and flat feet. FIG. 4 is a diagram schematically showing the difference between the left and right center of gravity positions of the healthy person and the flat foot person shown in FIG. As shown in FIG. 4, the position of the center of gravity of the left foot and the position of the center of gravity of the right foot are shifted outward in the case of a flat footer. For this reason, it can be said that it is effective to pay attention to the shift of the center of gravity of each foot in the outward direction in order to represent the progress of the flat foot, which is a risk factor causing the orthopedic disease.
 <4.接地領域解析部及び重心位置解析部における処理の説明>
 次に、図3に示す足圧分布データを用いて接地領域解析部201により実行される接地領域解析処理の流れ、及び、重心位置解析部202により実行される重心位置解析処理の流れを図5及び図6を用いて説明する。
<4. Explanation of processing in the contact area analysis unit and the gravity center position analysis unit>
Next, the flow of the contact area analysis process executed by the contact area analysis unit 201 using the foot pressure distribution data shown in FIG. 3 and the flow of the center of gravity position analysis process executed by the center of gravity position analysis unit 202 are shown in FIG. And it demonstrates using FIG.
 図5の5aは、接地領域解析部201により実行される接地領域解析処理の流れを示すフローチャートである。ステップS501では、足圧分布データに含まれる各画素の圧力値のうち、所定の閾値以上の圧力値を有する画素(接地領域に対応する画素。図6の6aの足裏部分601参照)を抽出する。 5a of FIG. 5 is a flowchart showing the flow of the ground contact area analysis process executed by the ground contact area analysis unit 201. In step S501, a pixel having a pressure value equal to or higher than a predetermined threshold value among the pressure values of each pixel included in the foot pressure distribution data (a pixel corresponding to the ground region; refer to the sole portion 601 of 6a in FIG. 6) is extracted. To do.
 ステップS502では、ステップS501において抽出した画素の位置情報に基づいて、外接長方形(図6の6aの602参照)を算出する。 In step S502, a circumscribed rectangle (see 602 in FIG. 6a) is calculated based on the pixel position information extracted in step S501.
 また、ステップS503では、外接長方形602の面積Bを算出し、ステップS504では、足裏部分601の面積Aを算出する。 In step S503, the area B of the circumscribed rectangle 602 is calculated, and in step S504, the area A of the sole portion 601 is calculated.
 ステップS505では、ステップS503及びS504において算出された外接長方形の面積Bと足裏部分の面積Aとの比(面積比=A/B×100)を算出することで、足裏部分の接地面積を正規化する。 In step S505, the ratio of the area B of the circumscribed rectangle calculated in steps S503 and S504 to the area A of the sole part (area ratio = A / B × 100) is calculated, so that the ground contact area of the sole part is calculated. Normalize.
 このように、本実施形態では、整形疾患を引き起こすリスク因子である扁平足の進行を表すのに有効な接地面積に着目したうえで、被検者ごとの特性(足の大きさや形等)に依存することがないよう、接地面積を外接長方形面積で割ることで正規化し、これを整形疾患を引き起こすリスク因子の進行を示す指標の1つとしている。 As described above, in this embodiment, after paying attention to the contact area effective for representing the progress of the flat foot, which is a risk factor causing the orthopedic disease, it depends on the characteristics (foot size, shape, etc.) for each subject. In order to prevent this, the ground contact area is normalized by dividing it by the circumscribed rectangular area, and this is used as one of the indices indicating the progression of the risk factor causing the orthopedic disease.
 図5の5bは、重心位置解析部202により実行される重心位置解析処理の流れを示すフローチャートであり、処理が開始されると、ステップS511では、足圧分布データに含まれる各画素の圧力値のうち、所定の閾値以上の圧力値を有する画素(接地領域に対応する画素。図6の6bの足裏部分611参照)を抽出する。 5b of FIG. 5 is a flowchart showing the flow of the gravity center position analysis process executed by the gravity center position analysis unit 202. When the process is started, in step S511, the pressure value of each pixel included in the foot pressure distribution data Among them, a pixel having a pressure value equal to or greater than a predetermined threshold (a pixel corresponding to the grounding region; see the sole portion 611 of 6b in FIG. 6) is extracted.
 ステップS512では、ステップS511において抽出した画素の位置情報と圧力値とに基づいて、重心位置(図6の6bの612参照)を算出する。 In step S512, the barycentric position (see 612 in 6b of FIG. 6) is calculated based on the position information and pressure value of the pixel extracted in step S511.
 ステップS513では、ステップS511において抽出した画素の位置情報に基づいて、足裏部分611の内側境界位置613と外側境界位置614とを抽出し、足幅Xmaxを算出する。 In step S513, the inner boundary position 613 and the outer boundary position 614 of the sole portion 611 are extracted based on the pixel position information extracted in step S511, and the foot width Xmax is calculated.
 ステップS514では、ステップS513において抽出した足裏部分611の内側境界位置613から、ステップS512において算出された重心位置612までの距離(重心距離)Xを算出する。 In step S514, a distance (centroid distance) X from the inner boundary position 613 of the sole portion 611 extracted in step S513 to the centroid position 612 calculated in step S512 is calculated.
 ステップS515では、ステップS513及びS514において算出された足幅Xmaxと重心距離Xとの比(距離比=(X/Xmax)×100)を算出することで、重心距離を正規化する。 In step S515, the center-of-gravity distance is normalized by calculating the ratio (distance ratio = (X / Xmax) × 100) between the foot width Xmax and the center-of-gravity distance X calculated in steps S513 and S514.
 このように、本実施形態では、整形疾患を引き起こすリスク因子である扁平足の進行を表すのに有効な重心位置に着目したうえで、被検者ごとの特性(足の大きさや形等)に依存することがないよう、重心距離を足幅で割ることで正規化し、これを整形疾患を引き起こすリスク因子の進行を示す指標の1つとしている。 As described above, in the present embodiment, after paying attention to the position of the center of gravity that is effective for representing the progress of the flat foot, which is a risk factor causing the shaping disease, it depends on the characteristics (foot size, shape, etc.) for each subject. In order to prevent this from happening, it is normalized by dividing the distance of the center of gravity by the foot width, and this is used as one of the indices indicating the progression of risk factors that cause the shaping disease.
 <5.評価値解析処理の説明>
 次に評価値解析部204において実行される評価値解析処理について説明する。はじめに、評価値解析処理に用いられる、整形疾患を引き起こすリスク因子の進行を示す指標の妥当性について検討する。
<5. Explanation of evaluation value analysis processing>
Next, the evaluation value analysis process executed in the evaluation value analysis unit 204 will be described. First, we examine the validity of the index used for evaluation value analysis to indicate the progression of risk factors that cause orthopedic diseases.
 (1)指標の妥当性
 (a)指標として、面積比と重心距離とを用いることの妥当性
 図7は、整形疾患を引き起こすリスク因子の進行を示す指標として、面積比を横軸にとり、縦軸に重心距離をとった場合の、複数の被検者の評価値をプロットした結果を示している。
(1) Validity of index (a) Validity of using area ratio and center-of-gravity distance as indices Figure 7 shows the ratio of area ratio on the horizontal axis as an index indicating the progression of risk factors that cause orthopedic diseases. The result of plotting the evaluation values of a plurality of subjects when the center of gravity distance is taken on the axis is shown.
 整形疾患を引き起こすリスク因子の進行を示す指標が適切である場合、プロットした評価値は直線に近づくことになる。このため、指標の妥当性は、プロットした評価値について線形回帰分析を行い、決定係数を比較することにより判断することができる。 When the index indicating the progression of the risk factor causing the shaping disease is appropriate, the plotted evaluation value approaches a straight line. Therefore, the validity of the index can be judged by performing linear regression analysis on the plotted evaluation values and comparing the determination coefficients.
 図7の例では、701に示す回帰直線が得られ、決定係数は0.3619と算出された。なお、参考までに、同じ被検者について、横軸に足裏部分の面積をとり、縦軸に重心距離をとって、同様の線形回帰分析を行ったところ、決定係数は0.1346と算出された。 In the example of FIG. 7, a regression line indicated by 701 was obtained, and the coefficient of determination was calculated as 0.3619. For reference, for the same subject, the same linear regression analysis was performed by taking the area of the sole part on the horizontal axis and the center of gravity distance on the vertical axis, and the coefficient of determination was calculated to be 0.1346. It was done.
 したがって、整形疾患を引き起こすリスク因子の進行を示す指標として、面積比と重心距離とを用いることは、少なくとも足裏部分の面積と重心距離とを用いた場合よりも妥当な指標であるということができる。 Therefore, using the area ratio and the center of gravity distance as an index indicating the progression of risk factors that cause orthopedic diseases is a more appropriate index than using at least the area of the sole and the center of gravity distance. it can.
 (b)指標として、面積比と距離比とを用いることの妥当性
 図8は、整形疾患を引き起こすリスク因子の進行を示す指標として、面積比を横軸にとり、縦軸に距離比をとった場合の、複数の被検者の評価値をプロットした結果の一例を示している。
(B) Validity of using the area ratio and the distance ratio as indicators FIG. 8 shows the area ratio on the horizontal axis and the distance ratio on the vertical axis as an index indicating the progression of risk factors that cause the shaping disease. The example of the result of having plotted the evaluation value of the several subject in case is shown.
 図8の例では、801に示す回帰直線が得られ、決定係数は0.3847と算出された。つまり、横軸に足裏部分の面積をとり、縦軸に重心距離をとった場合の決定係数(0.1346)、及び、横軸に面積比をとり、縦軸に重心距離をとった場合の決定係数(0.3619)のいずれよりも高い決定係数を得ることができた。 In the example of FIG. 8, a regression line indicated by 801 was obtained, and the coefficient of determination was calculated as 0.3847. That is, when the horizontal axis is the area of the sole part and the vertical axis is the center of gravity distance (0.1346), the horizontal axis is the area ratio, and the vertical axis is the center of gravity distance The coefficient of determination higher than any of the coefficient of determination (0.3619) could be obtained.
 したがって、整形疾患を引き起こすリスク因子の進行を示す指標として、面積比と距離比とを用いることは、少なくとも足裏部分の面積と重心距離とを用いる場合、及び、面積比と重心距離とを用いる場合よりも妥当な指標であるということができる。 Therefore, using the area ratio and the distance ratio as an index indicating the progression of the risk factor causing the orthopedic disease uses at least the area of the sole portion and the center of gravity distance, and uses the area ratio and the center of gravity distance. It can be said that it is a more appropriate index than the case.
 以上のことから、整形疾患を引き起こすリスク因子の進行を示す指標として、以下では、面積比と重心距離、及び、面積比と距離比、を用いることとする。 From the above, the area ratio and the center-of-gravity distance, and the area ratio and the distance ratio will be used below as indices indicating the progression of risk factors that cause the shaping disease.
 (2)評価値解析処理の流れ
 次に、妥当性が評価された上記2組の指標を用いて、評価値解析処理を行う場合の処理(具体的には、リスク判定境界面決定のための処理)の流れについて説明する。図9は、評価値解析部204により実行される評価値解析処理(リスク判定境界面決定のための処理)の流れを示す図である。
(2) Flow of evaluation value analysis process Next, a process in the case of performing an evaluation value analysis process using the above two sets of indices evaluated for validity (specifically, for determining a risk judgment boundary surface) The flow of processing will be described. FIG. 9 is a diagram illustrating a flow of evaluation value analysis processing (processing for determining a risk determination boundary surface) executed by the evaluation value analysis unit 204.
 縦方向リスク判定境界面(1001、1101)決定処理において、ステップS901では、健常者群と扁平足と診断された群の評価値をそれぞれ読み出し、ステップS902では、各群の群間分散値、群内分散値を算出する。 In the vertical direction risk determination boundary surface (1001, 1101) determination process, in step S901, the evaluation values of the group diagnosed as the healthy subject group and the flat foot are read out, respectively, and in step S902, the intergroup variance value of each group, Calculate the variance value.
 ステップS903では、群間分散値/群内分散値が最大になる位置を決定することにより、縦方向リスク判定境界面を決定する。 In step S903, a longitudinal risk determination boundary surface is determined by determining a position where the intergroup variance value / intragroup variance value is maximized.
 続いて、横方向リスク判定境界面(1002、1102)決定処理において、ステップS904では、健常者群とO脚など関節アライメントが悪い群の評価値をそれぞれ読み出し、ステップS905では、各群の群間分散値、群内分散値を算出する。 Subsequently, in the lateral risk determination boundary surface (1002, 1102) determination process, in step S904, the evaluation values of the group with poor joint alignment, such as the group of healthy subjects and the O-leg, are read out respectively, and in step S905, between the groups of each group The variance value and the within-group variance value are calculated.
 ステップS906では、群間分散値/群内分散値が最大になる位置を決定することにより、横方向リスク判定境界面を決定する。 In step S906, a lateral risk determination boundary surface is determined by determining a position where the intergroup variance value / intragroup variance value is maximized.
 上記処理の結果、縦方向リスク判定境界面(1001、1101)および横方向リスク判定境界面(1002、1102)により、領域が4分割(1011~1014、1111~1114)される(各境界面により分割されることで、各領域に含まれる評価値の領域内における分散値と、領域間における分散値との比は最大となっている)。なお、決定されたリスク領域に関する情報は、記憶部230に記憶される。 As a result of the above processing, the area is divided into four (1011 to 1014, 1111 to 1114) by the vertical direction risk determination boundary surfaces (1001, 1101) and the horizontal direction risk determination boundary surfaces (1002, 1102). As a result of the division, the ratio between the variance value in the region of the evaluation value included in each region and the variance value between the regions is maximized). Information regarding the determined risk area is stored in the storage unit 230.
 <6.リスク判定処理の流れ>
 次に、リスク判定部203におけるリスク判定処理の流れについて説明する。図12はリスク判定部203におけるリスク判定処理の流れを示す図であり、図12の12aは、整形疾患を引き起こすリスク因子の進行を示す指標として、面積比と重心距離とを用いた場合のリスク判定処理の流れを示す図であり、図12の12bは、整形疾患を引き起こすリスク因子の進行を示す指標として、面積比と距離比とを用いた場合のリスク判定処理の流れを示す図である。
<6. Flow of risk assessment process>
Next, the flow of risk determination processing in the risk determination unit 203 will be described. FIG. 12 is a diagram showing the flow of the risk determination process in the risk determination unit 203, and 12a in FIG. 12 is a risk when the area ratio and the center-of-gravity distance are used as an index indicating the progression of the risk factor causing the shaping disease. It is a figure which shows the flow of a determination process, and 12b of FIG. 12 is a figure which shows the flow of the risk determination process at the time of using an area ratio and a distance ratio as a parameter | index which shows progress of the risk factor which causes a shaping disease. .
 図12の12aに示すように、ステップS1201では、足圧分布検出センサ部111において計測された足圧分布データについて、接地領域解析部201と重心位置解析部202にて解析することで算出された、面積比と重心距離とを読み出し、図10に示す評価値空間にプロットする。 As indicated by 12a in FIG. 12, in step S1201, the foot pressure distribution data measured by the foot pressure distribution detection sensor unit 111 is calculated by analyzing the ground pressure region analysis unit 201 and the gravity center position analysis unit 202. The area ratio and the center-of-gravity distance are read out and plotted in the evaluation value space shown in FIG.
 ステップS1202では、ステップS1201においてプロットされた領域を識別し、ステップS1203では、識別した領域に従って、リスクを判定する。具体的には、プロットされた領域がリスク領域1011であると識別された場合には、当該被検者が整形疾患を引き起こすリスクは低いと判定する。一方、プロットされた領域がリスク領域1012または1013であると識別された場合には、当該被検者が整形疾患を引き起こすリスクは中程度であると判定する。更に、プロットされた領域が、リスク領域1014であると識別された場合には、当該被検者が整形疾患を引き起こすリスクは高いと判定する。 In step S1202, the area plotted in step S1201 is identified, and in step S1203, the risk is determined according to the identified area. Specifically, when the plotted area is identified as the risk area 1011, it is determined that the subject has a low risk of causing the shaping disease. On the other hand, when the plotted region is identified as the risk region 1012 or 1013, it is determined that the risk that the subject causes the shaping disease is moderate. Further, when the plotted area is identified as the risk area 1014, it is determined that the subject has a high risk of causing the shaping disease.
 また、図12の12bに示すように、ステップS1211では、足圧分布検出センサ部111において計測された足圧分布データについて、接地領域解析部201と重心位置解析部202にて解析することで算出された、面積比と距離比とを読み出し、図11に示す評価値空間にプロットする。 Further, as shown in 12b of FIG. 12, in step S1211, the foot pressure distribution data measured by the foot pressure distribution detection sensor unit 111 is calculated by analyzing the ground pressure region analysis unit 201 and the gravity center position analysis unit 202. The obtained area ratio and distance ratio are read out and plotted in the evaluation value space shown in FIG.
 ステップS1212では、ステップS1211においてプロットされた領域を識別し、ステップS1213では、識別した領域に従って、リスクを判定する。具体的には、プロットされた領域がリスク領域1111であると識別された場合には、当該被検者が整形疾患を引き起こすリスクは低いと判定する。一方、プロットされた領域がリスク領域1112または1113であると識別された場合には、当該被検者が整形疾患を引き起こすリスクは中程度であると判定する。更に、プロットされた領域が、リスク領域1114であると識別された場合には、当該被検者が整形疾患を引き起こすリスクは高いと判定する。 In step S1212, the area plotted in step S1211 is identified, and in step S1213, the risk is determined according to the identified area. Specifically, when the plotted region is identified as the risk region 1111, it is determined that the subject has a low risk of causing the shaping disease. On the other hand, when the plotted area is identified as the risk area 1112 or 1113, it is determined that the risk that the subject causes the shaping disease is moderate. Further, when the plotted region is identified as the risk region 1114, it is determined that the subject has a high risk of causing the shaping disease.
 以上の説明から明らかなように、本実施形態に係る整形疾患リスク評価システムでは、整形疾患を引き起こすリスク因子の進行を示す指標として、足圧分布データに基づいて、面積比と重心距離(または距離比)とを算出する構成とした。更に、面積比と重心距離(または距離比)とにより形成される評価値空間を、複数の被検者についての評価値の分散値に基づいて、リスクの異なる複数の領域に分割する構成とした。これにより、整形疾患を引き起こすリスクを評価することが可能となった。 As is clear from the above description, in the orthopedic disease risk evaluation system according to the present embodiment, the area ratio and the center-of-gravity distance (or distance) based on the foot pressure distribution data as an index indicating the progression of the risk factor causing the orthopedic disease. Ratio). Furthermore, the evaluation value space formed by the area ratio and the center-of-gravity distance (or distance ratio) is configured to be divided into a plurality of regions having different risks based on the variance of the evaluation values for a plurality of subjects. . This made it possible to evaluate the risk of causing orthopedic diseases.
 [第2の実施形態]
 上記第1の実施形態では、整形疾患を引き起こすリスク因子の進行を示す指標として、距離比を求めるにあたり、足裏部分の内側境界位置から重心位置までの距離とを用いることとしたが(すなわち、横方向の距離比)、本発明はこれに限定されない。例えば、足裏部分のかかと側境界位置から重心位置までの距離とを用いるように構成してもよい(すなわち、縦方向の距離比を用いるように構成してもよい)。あるいは、横方向の距離比と縦方向の距離比とのベクトル和を用いるようにしてもよい。
[Second Embodiment]
In the first embodiment, the distance from the inner boundary position of the sole portion to the center of gravity position is used to determine the distance ratio as an index indicating the progression of the risk factor causing the orthopedic disease (i.e., Lateral distance ratio), the present invention is not limited to this. For example, the distance from the heel side boundary position to the center of gravity position of the sole portion may be used (that is, the distance ratio in the vertical direction may be used). Alternatively, a vector sum of the distance ratio in the horizontal direction and the distance ratio in the vertical direction may be used.
 [第3の実施形態]
 上記第1の実施形態では、足圧分布検出センサ部111において計測された足圧分布データのうち、一方の足について評価値を算出し、リスク判定処理を行うこととしたが、本発明はこれに限定されず、例えば、両方の足について評価値を算出し、リスク判定処理を行うようにしてもよいし、それぞれの足について算出された評価値に重み付けをして和算した評価値を用いて、リスク判定処理を行うようにしてもよい。
[Third Embodiment]
In the first embodiment, the evaluation value is calculated for one foot among the foot pressure distribution data measured by the foot pressure distribution detection sensor unit 111, and the risk determination process is performed. For example, the evaluation value may be calculated for both feet and risk determination processing may be performed, or the evaluation value calculated for each foot is weighted and summed. Then, risk determination processing may be performed.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2011年9月27日提出の日本国特許出願特願2011-211571を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority on the basis of Japanese Patent Application No. 2011-211571 filed on Sep. 27, 2011, the entire contents of which are incorporated herein by reference.

Claims (5)

  1.  複数の圧力センサが2次元に配列された足圧分布検出センサにより、直立した被検者の足圧分布が計測されることで得られた計測結果を取得する取得手段と、
     前記計測結果に基づいて、前記足圧分布検出センサに接地している前記被検者の少なくとも一方の足の足裏部分の面積を算出するとともに、該被検者の該少なくとも一方の足の足裏部分の外接長方形の面積を算出することで、該足裏部分の面積と該足裏部分の外接長方形の面積との比を表す面積比を第1の指標の評価値として算出する第1の算出手段と、
     前記計測結果に基づいて、前記被検者の前記少なくとも一方の足の重心位置を算出するとともに、該被検者の該少なくとも一方の足の内側境界位置を抽出することで、該内側境界位置から該重心位置までの距離を表す重心距離を第2の指標の評価値として算出する第2の算出手段と、
     前記面積比と前記重心距離とにより形成される空間を、整形疾患を引き起こすリスクの異なる複数の領域に分割する分割手段と、
     前記分割手段により分割された各領域に基づいて、被検者の整形疾患を引き起こすリスクを判定する判定手段と
     を備えることを特徴とする情報処理装置。
    An acquisition means for acquiring a measurement result obtained by measuring a foot pressure distribution of an upright subject by a foot pressure distribution detection sensor in which a plurality of pressure sensors are two-dimensionally arranged;
    Based on the measurement result, the area of the sole part of at least one foot of the subject in contact with the foot pressure distribution detection sensor is calculated, and the foot of the at least one foot of the subject is calculated. By calculating the area of the circumscribed rectangle of the back portion, a first ratio that calculates the area ratio representing the ratio of the area of the sole portion and the circumscribed rectangle of the sole portion as the evaluation value of the first index A calculation means;
    Based on the measurement result, the center of gravity position of the at least one foot of the subject is calculated, and the inner boundary position of the at least one foot of the subject is extracted. A second calculating means for calculating a centroid distance representing a distance to the centroid position as an evaluation value of the second index;
    A dividing means for dividing the space formed by the area ratio and the center-of-gravity distance into a plurality of regions having different risks of causing a shaping disease;
    An information processing apparatus comprising: determination means for determining a risk of causing a subject's shaping disease based on each region divided by the dividing means.
  2.  複数の圧力センサが2次元に配列された足圧分布検出センサにより、直立した被検者の足圧分布が計測されることで得られた計測結果を取得する取得手段と、
     前記計測結果に基づいて、前記足圧分布検出センサに接地している前記被検者の少なくとも一方の足の足裏部分の面積を算出するとともに、該被検者の該少なくとも一方の足の足裏部分の外接長方形の面積を算出することで、該足裏部分の面積と該足裏部分の外接長方形の面積との比を表す面積比を第1の指標の評価値として算出する第1の算出手段と、
     前記計測結果に基づいて、前記被検者の前記少なくとも一方の足の重心位置を算出するとともに、該被検者の該少なくとも一方の足の内側境界位置を抽出することで、該内側境界位置から該重心位置までの距離を表す重心距離を算出し、更に、該被検者の重心距離と該被検者の該少なくとも一方の足の足幅との比を表す距離比を第2の指標の評価値として算出する第2の算出手段と、
     前記面積比と前記距離比とにより形成される空間を、整形疾患を引き起こすリスクの異なる複数の領域に分割する分割手段と、
     前記分割手段により分割された各領域に基づいて、被検者の整形疾患を引き起こすリスクを判定する判定手段と
     を備えることを特徴とする情報処理装置。
    An acquisition means for acquiring a measurement result obtained by measuring a foot pressure distribution of an upright subject by a foot pressure distribution detection sensor in which a plurality of pressure sensors are two-dimensionally arranged;
    Based on the measurement result, the area of the sole part of at least one foot of the subject in contact with the foot pressure distribution detection sensor is calculated, and the foot of the at least one foot of the subject is calculated. By calculating the area of the circumscribed rectangle of the back portion, a first ratio that calculates the area ratio representing the ratio of the area of the sole portion and the circumscribed rectangle of the sole portion as the evaluation value of the first index A calculation means;
    Based on the measurement result, the center of gravity position of the at least one foot of the subject is calculated, and the inner boundary position of the at least one foot of the subject is extracted. A center-of-gravity distance representing a distance to the center-of-gravity position is calculated, and a distance ratio representing a ratio between the center-of-gravity distance of the subject and the foot width of the at least one foot of the subject is calculated as a second index. A second calculating means for calculating as an evaluation value;
    A dividing unit that divides the space formed by the area ratio and the distance ratio into a plurality of regions having different risks of causing a shaping disease;
    An information processing apparatus comprising: determination means for determining a risk of causing a subject's shaping disease based on each region divided by the dividing means.
  3.  前記分割手段は、
     複数の被検者について前記足圧分布検出センサにより計測された計測結果を用いて、前記第1及び第2の指標について算出された評価値を、前記空間にプロットした場合において、分割された各領域内の分散値と、分割された各領域間の分散値とに基づいて、前記複数の領域に分割することを特徴とする請求項1または2に記載の情報処理装置。
    The dividing means includes
    Using the measurement results measured by the foot pressure distribution detection sensor for a plurality of subjects, the evaluation values calculated for the first and second indices are plotted in the space, and each divided The information processing apparatus according to claim 1, wherein the information processing apparatus is divided into the plurality of areas based on a variance value in the area and a variance value between the divided areas.
  4.  請求項1乃至3のいずれか1項に記載の情報処理装置と、
     複数の圧力センサが2次元に配列され、直立した被検者の足圧分布を検出するよう構成された足圧分布検出センサと
     を備えることを特徴とする整形疾患リスク評価システム。
    The information processing apparatus according to any one of claims 1 to 3,
    An orthopedic disease risk evaluation system comprising: a plurality of pressure sensors arranged two-dimensionally, and a foot pressure distribution detection sensor configured to detect a foot pressure distribution of an upright subject.
  5.  コンピュータを、請求項1乃至3のいずれか1項に記載の情報処理装置の各手段として機能させるためのプログラム。 A program for causing a computer to function as each unit of the information processing apparatus according to any one of claims 1 to 3.
PCT/JP2012/004683 2011-09-27 2012-07-24 Orthopedic disease risk evaluation system, and information processing device WO2013046516A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-211571 2011-09-27
JP2011211571A JP2014223097A (en) 2011-09-27 2011-09-27 Orthopaedic disease risk evaluation system and information processing device

Publications (1)

Publication Number Publication Date
WO2013046516A1 true WO2013046516A1 (en) 2013-04-04

Family

ID=47994612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004683 WO2013046516A1 (en) 2011-09-27 2012-07-24 Orthopedic disease risk evaluation system, and information processing device

Country Status (2)

Country Link
JP (1) JP2014223097A (en)
WO (1) WO2013046516A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195650A (en) * 2015-04-02 2016-11-24 住友理工株式会社 Balance ability measuring method, and balance ability measuring apparatus
JP2016209546A (en) * 2015-04-28 2016-12-15 住友理工株式会社 Balance ability measuring apparatus
US20240081682A1 (en) * 2022-09-14 2024-03-14 Hbt Co., Ltd. System for diagnosing a foot condition by scanning the foot and a method for diagnosing the foot condition using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061811A (en) * 2006-09-07 2008-03-21 Nitta Ind Corp Apparatus for judging stumble risk
WO2008036398A2 (en) * 2006-09-21 2008-03-27 Schering-Plough Healthcare Products, Inc. Foot measurement apparatus
JP2010088810A (en) * 2008-10-10 2010-04-22 Panasonic Electric Works Co Ltd Stimulus output device and posture improvement support device
JP2011505015A (en) * 2007-11-27 2011-02-17 24エイト エルエルシー System, method and computer program product for measuring pressure points

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061811A (en) * 2006-09-07 2008-03-21 Nitta Ind Corp Apparatus for judging stumble risk
WO2008036398A2 (en) * 2006-09-21 2008-03-27 Schering-Plough Healthcare Products, Inc. Foot measurement apparatus
JP2011505015A (en) * 2007-11-27 2011-02-17 24エイト エルエルシー System, method and computer program product for measuring pressure points
JP2010088810A (en) * 2008-10-10 2010-04-22 Panasonic Electric Works Co Ltd Stimulus output device and posture improvement support device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUKO KOHASHI ET AL.: "Ashi no Hone -Nenza no Mechanism to Omo na Ashi Gaisho o Saguru", GAZO SHINDAN, vol. 27, no. 1, 2007, pages 86 - 95 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195650A (en) * 2015-04-02 2016-11-24 住友理工株式会社 Balance ability measuring method, and balance ability measuring apparatus
JP2016209546A (en) * 2015-04-28 2016-12-15 住友理工株式会社 Balance ability measuring apparatus
US20240081682A1 (en) * 2022-09-14 2024-03-14 Hbt Co., Ltd. System for diagnosing a foot condition by scanning the foot and a method for diagnosing the foot condition using the same

Also Published As

Publication number Publication date
JP2014223097A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
Menz et al. Reliability of the GAITRite® walkway system for the quantification of temporo-spatial parameters of gait in young and older people
JP5421437B2 (en) Foot diagnostic device and shoe or insole fitting navigation system using the same
Lau et al. Clinical measurement of craniovertebral angle by electronic head posture instrument: a test of reliability and validity
Furrer et al. Validation of a smartphone-based measurement tool for the quantification of level walking
Kalron et al. Gait and jogging parameters in people with minimally impaired multiple sclerosis
JP4895655B2 (en) Swallowing function evaluation device
JP6127455B2 (en) Walking age evaluation method
Castro et al. Accuracy and repeatability of the gait analysis by the WalkinSense system
Ritt et al. High-technology based gait assessment in frail people: associations between spatio-temporal and three-dimensional gait characteristics with frailty status across four different frailty measures
Kim et al. Distance stereotest using a 3-dimensional monitor for adult subjects
JP2017202236A (en) Gait analysis method and gait analysis device
Baldewijns et al. Validation of the kinect for gait analysis using the GAITRite walkway
WO2013046516A1 (en) Orthopedic disease risk evaluation system, and information processing device
JP6299147B2 (en) How to display walking features
CN109820476A (en) A kind of balanced capacity appraisal procedure and the device and system using this method
Huntley et al. Validation of simplified centre of mass models during gait in individuals with chronic stroke
JP5937604B2 (en) Orthopedic disease risk evaluation system and information processing apparatus
Periyasamy et al. Foot pressure distribution variation in pre-obese and non-obese adult subject while standing
JP7153495B2 (en) Foot condition analysis method
Takasaki et al. Minimum repetitions for stable measures of visual dependency using the dot version of the computer-based Rod-Frame test
Kulkarni et al. Basic gait pattern and impact of fall risk factors on gait among older adults in India
Paulick et al. Stabilitysole: Embedded sensor insole for balance and gait monitoring
JP2020513203A (en) Locogram software: a tool for analyzing walking movements
Louey et al. A model to calculate the progression of the centre of pressure under the foot during gait analysis
JP2020151470A (en) Walking evaluation device, walking evaluation method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP