WO2013044624A1 - 一种自适应光纤收发方向的方法及装置 - Google Patents

一种自适应光纤收发方向的方法及装置 Download PDF

Info

Publication number
WO2013044624A1
WO2013044624A1 PCT/CN2012/074232 CN2012074232W WO2013044624A1 WO 2013044624 A1 WO2013044624 A1 WO 2013044624A1 CN 2012074232 W CN2012074232 W CN 2012074232W WO 2013044624 A1 WO2013044624 A1 WO 2013044624A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
port
state
detector
monitoring
Prior art date
Application number
PCT/CN2012/074232
Other languages
English (en)
French (fr)
Inventor
蔡鸿鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013044624A1 publication Critical patent/WO2013044624A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • the present invention relates to the field of optical network communication technologies, and in particular, to a method and apparatus for adaptive fiber transmission and reception.
  • the transceiver interface of the optical module device and the board is fixed.
  • the fiber connected to the peer port must be connected to the receiving port of the local device.
  • the optical fiber is connected to the local sending port.
  • RX light receiving port
  • TX light transmitting port
  • TX/RX label indication
  • the technical problem to be solved by the present invention is to provide a method and a device for adaptively transmitting and receiving optical fibers, which enable an apparatus that needs to receive a light-emitting signal, such as an optical module or a single board, to automatically recognize the direction of transmission and reception of the inserted optical fiber.
  • an embodiment of the present invention provides an apparatus for adaptively transmitting and receiving a fiber, the device comprising a beam splitting unit, a detector, a controller, and an optical path selecting unit;
  • the light splitting unit is configured to: after receiving an optical signal sent by the remote device from the optical port of the device, send the optical signal to the detector and the optical path selecting unit; and after receiving the optical signal from the optical path selecting unit, send To the remote device;
  • the detector is configured to monitor the incoming light in the beam splitting unit, and monitor the splitting Whether the optical port connected to the unit receives the optical signal;
  • the controller is configured to control a state of the optical path selection unit according to a monitoring result of the detector
  • the optical path selection unit is configured to control a path corresponding to the optical receiving port and the optical transmitting port of the device.
  • the beam splitting unit includes a first beam splitter and a second beam splitter, one end of the first beam splitter is connected to the optical port of the device, and the other end is respectively connected to the detector and the optical path
  • the selection unit is connected; one end of the second beam splitter is connected to the optical port of the device, and the other end is connected to the detector and the optical path selection unit, respectively.
  • the detector is configured to monitor optical power values of the optical port 1 and the optical port 2 from the first optical splitter and the second optical splitter, respectively, and determine whether the monitored optical power value is greater than a critical value. And monitoring whether the optical port 1 and the optical port 2 receive an optical signal.
  • the controller is configured to control the state of the optical path selection unit according to the monitoring result of the detector according to the following method:
  • the state of the optical path selecting unit is set to the intersecting state.
  • the controller is further configured to: when the optical port 1 and the optical port 2 do not receive the optical fiber signal according to the monitoring result of the detector, maintain the current state of the optical path selecting unit; When both the optical port 1 and the optical port 2 receive the optical fiber signal, the current state of the optical path selecting unit is maintained, and an abnormality is determined.
  • the optical path selecting unit comprises: a mechanical optical switch, a multi-dimensional optical cross-connect system.
  • the embodiment of the invention further provides a method for adaptively transmitting and receiving directions of optical fibers, the method comprising:
  • the path corresponding to the light receiving port and the optical transmitting port of the device of the device is controlled by controlling the state of the optical path selecting unit.
  • the beam splitting unit includes a first beam splitter and a second beam splitter, one end of the first beam splitter is connected to the optical port of the device, and the other end is respectively connected to the detector and the optical path Selecting a unit to be connected; one end of the second beam splitter is connected to the optical port of the device, and the other end is respectively connected to the detector and the optical path selecting unit;
  • the state of the optical path selecting unit is controlled in the following manner:
  • the state of the optical path selecting unit is set to the intersecting state.
  • the embodiments of the present invention provide a method and a device for adaptively transmitting and receiving optical fibers.
  • the device that needs to receive the illuminating signal such as an optical module or a single board, can automatically identify whether the inserted optical fiber is TX or RX, and then switch the optical path of the device.
  • the local RX corresponds to the opposite end TX, and the local end TX corresponds to the opposite end RX.
  • the method and the device can enable the device to automatically recognize that the inserted optical fiber is transmitted and received, and is automatically adapted, which greatly facilitates the operation of the user and has great practical value.
  • FIG. 1 is a schematic structural view of an apparatus for adapting an optical fiber transmission and reception direction according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for adaptive optical fiber transceiver direction according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an apparatus for adaptive optical fiber transceiver direction according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an apparatus for adapting an optical fiber transmission and reception direction according to still another embodiment of the present invention.
  • the present embodiment provides an apparatus for adaptively transmitting and receiving optical fibers.
  • the apparatus mainly includes: an optical path selecting unit, a detector, a beam splitting unit, and a controller.
  • the light splitting unit further includes a first splitter and a second splitter respectively connected to the two ports of the optical path selection unit; the two ports of the optical path selection unit are respectively connected to the optical receiving port and the optical transmitting port of the device.
  • the light splitting unit is configured to: after receiving the optical signal sent by the remote device from the optical port of the device, send the optical signal to the detector and the optical path selecting unit; and, after receiving the optical signal from the optical path selecting unit, send the optical signal to the optical device Remote device.
  • the optical path selection unit is configured to control a path corresponding to the optical receiving port and the optical transmitting port of the device that needs to receive the illuminating signal;
  • the detector is mainly arranged to detect the incoming light from the optical splitter to determine whether the inserted optical fiber is light or no light;
  • the controller is mainly configured to control the state of the optical path selection unit, for example, a through state or a cross state.
  • the device that needs to receive the illuminating signal may be an optical module such as an MSA or an XFP, or may be a single-board device with a transceiver interface.
  • the optical path selecting unit can be implemented by various optical switches, including a conventional mechanical optical switch, and a multi-dimensional optical cross-connect system, as long as the optical path connection control can be realized.
  • Detector It is determined whether the inserted fiber is light or no light depending on the optical power.
  • the controller can be controlled by MCU software or by logic gates.
  • the embodiment further provides a method for adaptively transmitting and receiving directions of an optical fiber, including:
  • the path corresponding to the light receiving port and the optical transmitting port of the device of the device is controlled by controlling the state of the optical path selecting unit.
  • the optical path selection unit maintains the current state when the device is not inserted into the fiber.
  • the controller controls the state of the optical path selection unit according to the monitoring result of the optical port 1 and the optical port 2 of the detector, and switches the optical switch state when the switching condition is met. And recording the state switch;
  • the third step is to check the status of the current optical port. 1) If the local TX monitors that there is light, the local RX has no light, then it will make a random delay, return to the second step to continue processing; 2) If it is other conditions, for example, TX, RX have no light, or TX, RX have light, or TX has no light, RX has light, the processing is completed.
  • the controller combines the monitoring results of the detector to determine the state of the optical switch, and controls the optical switch state according to the settings in Table 1 below:
  • the method for adaptively transmitting and receiving directions of the optical fiber in this embodiment mainly includes the following steps:
  • Step 1 Initialize, obtain the current optical power value of the detector, and set the current optical switch state.
  • Step 2 Randomly delay one time, and obtain the current optical power value monitoring result of optical port 1 and optical port 2 through the detector.
  • Step 3 Determine whether the monitoring result of the optical port 1 and the optical port 2 monitored by the detector has changed. If there is any change, proceed to step 4. If there is no change, return to step 2.
  • Step 4 According to Table 1, judge the state that the optical switch should be in.
  • Step 5 Compare the state determined in step 4 with the current optical switch state. If yes, return to step 2. Otherwise, go to step 6.
  • Step 6 Set the state of the optical switch to the state determined in step 4, and update the current state of the optical switch to the state, and return to step 2 for loop processing.
  • FIG. 3 shows an apparatus for adaptive fiber transmission and reception direction according to an embodiment of the present invention.
  • an optical fiber connecting the remote RX is connected to the optical port 1
  • an optical fiber connecting the remote TX is connected to the optical port 2.
  • the device cannot monitor which interface is connected to TX and which is RX. However, this has no effect on the application, since no signal processing is required without the laser being turned on.
  • the peer TX turns on the laser, the detector will detect that the optical power value of the optical port 2 is higher than the critical value, and the optical power value of the optical port 1 does not change. Calculate that the optical switch should be in the crossed state and set the optical switch.
  • the remote TX is connected to the local RX, and the remote RX is connected to the local TX. Automatically adapt to TX/RX.
  • FIG. 4 is a diagram of an apparatus for adaptively transmitting and receiving optical fibers according to another embodiment of the present invention, wherein an optical fiber connected to a far end TX is connected to an optical port 1 , and an optical fiber connected to a remote RX is connected to the optical port 2.
  • the TX laser When the TX laser is not turned on, the device cannot monitor which interface is connected to TX and which is RX. However, this has no effect on the application, because no signal processing is required when the laser is not turned on.
  • the detector will detect that the optical power value of the optical port 1 is higher than the critical value, and the optical port 2 monitoring result has no change. Calculate that the optical switch should be in the through state and set the optical switch.
  • the remote TX is connected to the local RX, and the remote RX is connected to the local TX to implement adaptive TX/RX adaptation.
  • Figure 3 and Figure 4 correspond to the case where the user inserts the TX/RX fiber into different interfaces. In each case, it can be adaptively adapted.
  • FIG. 5 is a schematic diagram of an apparatus for adapting an optical fiber transmission and reception direction according to another embodiment of the present invention.
  • This embodiment corresponds to a more complicated application scenario, that is, both ends of the device apply the adaptation according to the technical solution provided by the embodiment of the present invention.
  • the two ends need to be switched according to the calculation in Table 1.
  • the two ends cannot be switched, or both ends can be switched. You must switch different times to connect properly.
  • This problem can be solved by setting different random delay times. According to the flow of Fig. 2, after the random delay is judged, after the two ends are randomly delayed, the device with the shorter delay time has started the switching, and the device with the longer delay time does not need to be switched.
  • modules or steps of the embodiments of the present invention can be implemented by a general computing device, which can be concentrated on a single computing device or distributed in multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device And, in some cases, the steps shown or described may be performed in an order different than that herein, or they may be separately fabricated into individual integrated circuit modules, or a plurality of The integrated circuit module is implemented. Thus, embodiments of the invention are not limited to any specific combination of hardware and software.
  • the method and device for the adaptive optical fiber transmission and reception direction provided by the above technical solution can enable the device that needs to receive the illumination signal, such as an optical module or a single board, to automatically identify whether the inserted optical fiber is TX or RX, and then switch the optical path of the device, and automatically
  • the terminal RX corresponds to the opposite end TX
  • the local end TX corresponds to the opposite end RX.
  • the method and the device can enable the device to automatically recognize that the inserted optical fiber is transmitted and received, and is automatically adapted, which greatly facilitates the operation of the user and has great practical value.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

一种自适应光纤收发方向的方法及装置,其方法包括:利用分光单元从设备的光端口接收远端设备发送的光信号;对分光单元中的入光进行监测,监测分光单元相连接的光端口是否接收到光信号;根据监测结果,通过控制光路选择单元的状态,控制设备的设备的光接收端口和光发送端口对应的通路。采用所述方法及装置,能够使光模块或者单板等需要收发光信号的设备识别插入的光纤的收发方向,进而自动对本设备光路进行切换。

Description

一种自适应光纤收发方向的方法及装置
技术领域
本发明涉及光网络通讯技术领域, 尤其涉及一种自适应光纤收发方向的 方法及装置。
背景技术
目前的 OTN ( Optical Transport Network, 光传送网络 )设备中, 光模块 器件及单板等设备的收发接口固定, 必须将连接着对端发送口的光纤接入本 端设备接收口, 对端接收口光纤接入本端发送口。
现有技术中, 一般是釆用在固定的光接收和光发送端口处分别印上 RX (光接收端口)和 TX(光发送端口),同时在光纤接口处贴上标签指示 TX/RX, 用户依据这个标识来插入相应光纤。 当设备众多时, 需要——分辨光纤的 TX/RX接口, 费时费力。 当远端设备较远, 而光纤上 TX/RX标识丟失时, 将难以分辨 TX/RX端, 无论接入哪个接口, 都需要判断是否接对。 一旦接入 错误还需要拔出交换接口再次插入。 因此, 这种固定 TX/RX的方式非常不方 便使用。 发明内容
本发明解决的技术问题是提供一种自适应光纤收发方向的方法及装置, 能够使光模块或单板等需要收发光信号的设备自动识别插入的光纤的收发方 向。
为解决上述技术问题, 本发明实施方式提供了一种自适应光纤收发方向 的装置, 所述装置包括分光单元、 探测器, 控制器和光路选择单元;
所述分光单元设置为, 从设备的光端口接收远端设备发送的光信号后, 发送到所述探测器和所述光路选择单元; 以及, 从所述光路选择单元接收到 光信号后, 发送到所述远端设备;
所述探测器设置为, 对所述分光单元中的入光进行监测, 监测所述分光 单元相连接的光端口是否接收到光信号;
所述控制器设置为, 根据所述探测器的监测结果, 控制所述光路选择单 元的状态;
所述光路选择单元设置为, 控制所述设备的光接收端口和光发送端口对 应的通路。
可选地, 所述分光单元包括第一分光器和第二分光器, 所述第一分光器 的一端与所述设备的光端口一相连接, 另一端分别与所述探测器和所述光路 选择单元相连接; 所述第二分光器的一端与所述设备的光端口二相连接, 另 一端分别与所述探测器和所述光路选择单元相连接。
可选地, 所述探测器设置为, 分别从所述第一分光器和第二分光器监测 所述光端口一和光端口二的光功率值, 并通过判断监测的光功率值是否大于 临界值, 监测所述光端口一和所述光端口二是否接收到光信号。
可选地, 所述控制器设置为, 根据所述探测器的监测结果, 按照以下方 式控制所述光路选择单元的状态:
当所述光端口一接收到光信号, 所述光端口二没有接收到光信号时, 将 所述光路选择单元的状态设置为直通状态;
当所述光端口一没有接收到光信号, 所述光端口二接收到光信号时, 将 所述光路选择单元的状态设置为交叉状态。
可选地, 所述控制器还设置为, 根据所述探测器的监测结果, 当所述光 端口一和光端口二均没有接收到光纤信号时, 保持所述光路选择单元当前的 状态; 当所述光端口一和光端口二均接收到光纤信号时, 保持所述光路选择 单元当前的状态, 并确定出现异常。
可选地, 所述光路选择单元, 包括: 机械式光开关、 多维光交叉连接系 统。
本发明实施方式还提供了一种自适应光纤收发方向的方法, 所述方法包 括:
利用分光单元从设备的光端口接收远端设备发送的光信号;
对所述分光单元中的入光进行监测, 监测所述分光单元相连接的光端口 是否接收到光信号;
根据监测结果, 通过控制光路选择单元的状态, 控制所述设备的所述设 备的光接收端口和光发送端口对应的通路。
可选地, 通过对所述入光的光功率值进行监测, 监测所述分光单元相连 接的光端口是否接收到光信号。
可选地, 所述分光单元包括第一分光器和第二分光器, 所述第一分光器 的一端与所述设备的光端口一相连接, 另一端分别与所述探测器和所述光路 选择单元相连接; 所述第二分光器的一端与所述设备的光端口二相连接, 另 一端分别与所述探测器和所述光路选择单元相连接;
分别从所述第一分光器和第二分光器监测所述光端口一和光端口二的光 功率值, 并通过判断监测的光功率值是否大于临界值, 监测所述光端口一和 所述光端口二是否接收到光信号。
可选地, 根据所述探测器的监测结果, 按照以下方式控制所述光路选择 单元的状态:
当所述光端口一接收到光信号, 所述光端口二没有接收到光信号时, 将 所述光路选择单元的状态设置为直通状态;
当所述光端口一没有接收到光信号, 所述光端口二接收到光信号时, 将 所述光路选择单元的状态设置为交叉状态。
本发明实施方式提供了一种自适应光纤收发方向的方法和装置, 能够使 光模块或者单板等需要收发光信号的设备自动识别插入的光纤是 TX还是 RX, 进而对本设备光路进行切换, 自动将本端 RX对应对端 TX, 本端 TX对 应对端 RX。
釆用所述方法及装置, 与现有技术相比, 能够让设备自动识别插入光纤 是发送和接收, 并且自动适配, 极大的方便了用户的操作, 具有极大的实用 价值。 附图概述
此处所说明的附图用来提供对本发明实施方式的进一步理解, 构成本申 请的一部分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对 本发明的不当限定。 在附图中:
图 1 为依据本发明实施方式的自适应光纤收发方向的装置的结构示意 图;
图 2为依据本发明实施例的自适应光纤收发方向方法的流程示意图; 图 3为依据本发明实施例的自适应光纤收发方向的装置的示意图; 图 4为依据本发明另一实施例的自适应光纤收发方向的装置的示意图; 图 5为依据本发明又一实施例的自适应光纤收发方向的装置的示意图。
本发明的较佳实施方式
本实施方式提供一种自适应光纤收发方向的装置, 如图 1所示, 该装置 主要包括: 光路选择单元、 探测器、 分光单元和控制器。 其中, 分光单元还 包括第一分光器和第二分光器, 分别与光路选择单元的两个端口相连; 光路 选择单元的两个端口分别与设备的光接收端口和光发送端口相连。 分光单元设置为, 从设备的光端口接收远端设备发送的光信号后, 发送 到所述探测器和所述光路选择单元; 以及, 从所述光路选择单元接收到光信 号后, 发送到所述远端设备。
光路选择单元设置为, 控制需要收发光信号的设备的光接收端口和光发 送端口对应的通路;
探测器主要设置为, 从分光器中对入光进行检测, 确定插入的光纤是有 光还是无光;
控制器主要设置为, 控制光路选择单元的状态, 例如是直通状态还是交 叉状态。
其中, 所述的需要收发光信号的设备可以是 MSA, XFP等光模块, 也可 以是安装有收发接口的单板设备。
具体地, 光路选择单元可以由各种光开关来实现, 包括传统的机械式光 开关, 和多维光交叉连接系统, 只要能实现光路的连接控制即可。 探测器可 依据光功率来确定插入的光纤是有光还是无光。 控制器可釆用 MCU软件控 制, 也可以使用逻辑门电路实现。
基于上述装置, 本实施方式还提供一种自适应光纤收发方向的方法, 包 括:
利用分光单元从设备的光端口接收远端设备发送的光信号;
对所述分光单元中的入光进行监测, 监测所述分光单元相连接的光端口 是否接收到光信号;
根据监测结果, 通过控制光路选择单元的状态, 控制所述设备的所述设 备的光接收端口和光发送端口对应的通路。
可选地, 本实施方式的方法具体处理步骤如下:
第一步, 当设备未插入光纤时, 光通路选择单元保持当前状态。
第二步, 当插入光纤到设备接口 (即光端口) 时, 控制器依据探测器对 光端口 1和光端口 2的监测结果控制光路选择单元状态, 在满足切换条件时 进行光开关状态的切换, 并记录该状态切换;
第三步, 检查当前光端口状态, 1 )如果本端 TX监测到有入光, 本端 RX无入光, 则做随机延迟, 返回第二步继续处理; 2 )如果是其他情况, 例 如, TX、 RX都无入光, 或 TX、 RX都有入光, 或 TX无入光, RX有入光的 情况, 处理完毕。
以使用光开关实现光路选择单元为例, 控制器结合探测器的监测结果, 对光开关状态进行判断, 并根据下表 1的设置控制光开关状态:
表 1 光开关状态表
Figure imgf000007_0001
>临界值 >临界值 不正常, 保
持状态 结合表 1 , 当探测器探测到光功率大于临界值时, 认为插入的光纤连接 着对端的发送口。 控制器根据探测器的监测结果, 在满足切换条件时进行光 开关状态的切换。
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
如图 2所示, 本实施例的自适应光纤收发方向的方法, 主要包括以下步 骤:
步骤 1 , 初始化, 获取探测器当前光功率值, 设置当前光开关状态。 步骤 2, 随机延迟一个时间, 通过探测器获取光端口 1和光端口 2当前 光功率值监测结果。
步骤 3 , 判断探测器监测的光端口 1和光端口 2的监测结果是否有改变, 如有任意一个变化则进入步骤 4, 如果无变化则返回步骤 2。
步骤 4, 依据表 1判断光开关应该处于的状态。
步骤 5 , 将步骤 4 中判断出的状态与当前光开关状态进行对比, 如果一 致则返回步骤 2, 否则进入步骤 6。
步骤 6, 设置光开关状态为步骤 4 中判断出的状态, 并将光开关当前状 态更新为该状态后, 返回步骤 2循环处理。
图 3示出了本发明一个实施例的自适应光纤收发方向的装置, 如图 3所 示, 连接远端 RX的光纤被连接入光端口 1 , 连接远端 TX的光纤被连接入光 端口 2。 当 TX激光器未开启时, 本装置无法监测哪个接口是接入 TX, 哪个 是 RX。但是这对于应用无影响, 因为在未开启激光器状态下, 不需要进行信 号处理。 当对端 TX开启激光器时, 探测器将检测到光端口 2光功率值高于 临界值, 光端口 1光功率值无变化。 计算出光开关应该处于交叉状态, 对光 开关设置。 此时远端 TX被接入本端 RX, 远端 RX被接入本端 TX, 实现了 自动适应 TX/RX。
图 4为本发明另一实施例的自适应光纤收发方向的装置, 其中, 连接远 端 TX的光纤被连接入光端口 1 , 连接远端 RX的光纤被连接入光端口 2。 当 TX激光器未开启时, 本装置无法监测哪个接口是接入 TX, 哪个是 RX。 但 是这对于应用无影响, 因为在未开启激光器状态下, 不需要进行信号处理。 当对端 TX开启激光器时, 探测器将检测到光端口 1光功率值高于临界值, 光端口 2监测结果无变化。 计算出光开关应该处于直通状态, 对光开关设置。 此时远端 TX被接入本端 RX,远端 RX被接入本端 TX,实现了自适应 TX/RX 适配。
图 3和图 4分别对应用户把 TX/RX光纤插入不同的接口的情形,在各种 情况下, 都能自适应适配。
图 5为本发明又一个实施例的自适应光纤收发方向的装置, 该实施例对 应一种较为复杂的应用场景, 即两端设备都应用了依据本发明实施方式所提 供的技术方案的自适应收发方向的装置的情形。 如图 5所示, 当两边 TX互 相连接, RX也互相连接, 且激光器都开启的情况下, 两端依据表 1的计算, 则需要进行切换, 但实际上不能两端都切换, 或者两端必须切换不一样的次 数才能正确连接。 这一问题, 可以通过设置不同的随机延迟时间得到解决。 依据图 2的流程, 釆用随机延迟之后再判断的方式, 当两端随机延迟之后, 延迟时间较短的装置已经启动了切换, 延迟时间较长的装置将不需要进行切 换。
以上仅为本发明的优选实施案例而已, 并不用于限制本发明, 本发明实 施方式还可有其他多种实施例, 在不背离本发明精神及其实质的情况下, 熟 些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
显然, 本领域的技术人员应该明白, 上述的本发明实施例的各模块或各 步骤可以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或 者分布在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执 行的程序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执 行, 并且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤 制作成单个集成电路模块来实现。 这样, 本发明实施例不限制于任何特定的 硬件和软件结合。
工业实用性
上述技术方案所提供的自适应光纤收发方向的方法和装置, 能够使光模 块或者单板等需要收发光信号的设备自动识别插入的光纤是 TX还是 RX,进 而对本设备光路进行切换, 自动将本端 RX对应对端 TX, 本端 TX对应对端 RX。 釆用所述方法及装置, 与现有技术相比, 能够让设备自动识别插入光纤 是发送和接收, 并且自动适配, 极大的方便了用户的操作, 具有极大的实用 价值。

Claims

权 利 要 求 书
1、 一种自适应光纤收发方向的装置, 包括分光单元、 探测器, 控制器和 光路选择单元;
所述分光单元设置为, 从本端设备的光端口接收远端设备发送的光信号 后, 发送到所述探测器和所述光路选择单元; 以及, 从所述光路选择单元接 收到光信号后, 发送到所述远端设备;
所述探测器设置为, 对所述分光单元中的入光进行监测, 监测所述分光 单元相连接的光端口是否接收到光信号;
所述控制器设置为, 根据所述探测器的监测结果, 控制所述光路选择单 元的状态;
所述光路选择单元设置为, 控制所述设备的光接收端口和光发送端口对 应的通路。
2、 如权利要求 1所述的装置, 其中,
所述分光单元包括第一分光器和第二分光器, 所述第一分光器的一端与 所述本端设备的光端口一相连接, 另一端分别与所述探测器和所述光路选择 单元相连接; 所述第二分光器的一端与所述本端设备的光端口二相连接, 另 一端分别与所述探测器和所述光路选择单元相连接。
3、 如权利要求 2所述的装置, 其中,
所述探测器设置为, 分别从所述第一分光器和第二分光器监测所述光端 口一和光端口二的光功率值, 并通过判断监测的光功率值是否大于临界值, 监测所述光端口一和所述光端口二是否接收到光信号。
4、 如权利要求 3所述的装置, 其中,
所述控制器是设置为, 根据所述探测器的监测结果, 按照以下方式控制 所述光路选择单元的状态:
当所述光端口一接收到光信号, 所述光端口二没有接收到光信号时, 将 所述光路选择单元的状态设置为直通状态;
当所述光端口一没有接收到光信号, 所述光端口二接收到光信号时, 将 所述光路选择单元的状态设置为交叉状态。
5、 如权利要求 4所述的装置, 其中,
所述控制器设置为, 根据所述探测器的监测结果, 当所述光端口一和光 端口二均没有接收到光纤信号时, 保持所述光路选择单元当前的状态; 当所 述光端口一和所述光端口二均接收到光纤信号时, 保持所述光路选择单元当 前的状态, 并确定出现异常。
6、 如权利要求 1、 4或 5所述的装置, 其中,
所述光路选择单元包括: 机械式光开关、 多维光交叉连接系统。
7、 如权利要求 1-5中任一项所述的装置, 其中,
所述探测器还设置为, 在对所述分光单元中的入光进行监测之前, 随机 延迟一个时间再进行所述监测。
8、 一种自适应光纤收发方向的方法, 包括:
利用分光单元从本端设备的光端口接收远端设备发送的光信号; 对所述分光单元中的入光进行监测, 监测所述分光单元相连接的光端口 是否接收到光信号;
根据监测结果, 通过控制光路选择单元的状态, 控制所述设备的所述本 设备的光接收端口和光发送端口对应的通路。
9、 如权利要求 8所述的方法, 其中,
所述对所述分光单元中的入光进行监测, 监测所述分光单元相连接的光 端口是否接收到光信号的步骤包括:
通过对所述入光的光功率值进行监测, 监测所述分光单元相连接的光端 口是否接收到光信号。
10、 如权利要求 8或 9所述的方法, 其中,
所述分光单元包括第一分光器和第二分光器, 所述第一分光器的一端与 所述本设备的光端口一相连接, 另一端分别与所述探测器和所述光路选择单 元相连接; 所述第二分光器的一端与所述本端设备的光端口二相连接, 另一 端分别与所述探测器和所述光路选择单元相连接; 分别从所述第一分光器和所述第二分光器监测所述光端口一和所述光端 口二的光功率值, 并通过判断监测的光功率值是否大于临界值, 监测所述光 端口一和所述光端口二是否接收到光信号。
11、 如权利要求 10所述的方法, 其中,
所述根据监测结果, 通过控制光路选择单元的状态, 控制所述设备的所 述本设备的光接收端口和光发送端口对应的通路的步骤包括: 根据所述探测 器的监测结果, 按照以下方式控制所述光路选择单元的状态:
当所述光端口一接收到光信号, 所述光端口二没有接收到光信号时, 将 所述光路选择单元的状态设置为直通状态;
当所述光端口一没有接收到光信号, 所述光端口二接收到光信号时, 将 所述光路选择单元的状态设置为交叉状态。
12、 如权利要求 8或 9所述的方法, 其还包括: 在对所述分光单元中的 入光进行监测之前, 随机延迟一个时间再进行所述监测。
PCT/CN2012/074232 2011-09-26 2012-04-18 一种自适应光纤收发方向的方法及装置 WO2013044624A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110288077.X 2011-09-26
CN201110288077.XA CN102340355B (zh) 2011-09-26 2011-09-26 一种自适应光纤收发方向的方法及装置

Publications (1)

Publication Number Publication Date
WO2013044624A1 true WO2013044624A1 (zh) 2013-04-04

Family

ID=45515886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074232 WO2013044624A1 (zh) 2011-09-26 2012-04-18 一种自适应光纤收发方向的方法及装置

Country Status (2)

Country Link
CN (1) CN102340355B (zh)
WO (1) WO2013044624A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340355B (zh) * 2011-09-26 2019-03-12 中兴通讯股份有限公司 一种自适应光纤收发方向的方法及装置
WO2013173964A1 (zh) * 2012-05-21 2013-11-28 华为海洋网络有限公司 中继器及环回模式切换方法
CN103532621B (zh) * 2013-10-25 2017-04-26 华为技术有限公司 PCIe设备在位检测方法和PCIe设备
US20170115514A1 (en) * 2015-10-23 2017-04-27 Huawei Technologies Co., Ltd. Control apparatus and methods in photonics applications
CN107547136A (zh) * 2016-06-23 2018-01-05 中兴通讯股份有限公司 一种光收发一体光模块
WO2021044902A1 (ja) * 2019-09-02 2021-03-11 Kddi株式会社 通信装置及び通信システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2641926Y (zh) * 2003-07-09 2004-09-15 武汉光迅科技有限责任公司 动态光线路同步切换保护装置
CN101212256A (zh) * 2006-12-26 2008-07-02 英保达股份有限公司 光纤网络光束传输信道切换装置
CN101800599A (zh) * 2010-02-10 2010-08-11 瑞斯康达科技发展股份有限公司 一种光纤线路保护设备及系统
CN101997604A (zh) * 2009-08-28 2011-03-30 姜南雪 一种单站设备失效应急保护装置
CN102340355A (zh) * 2011-09-26 2012-02-01 中兴通讯股份有限公司南京分公司 一种自适应光纤收发方向的方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11508427A (ja) * 1995-06-26 1999-07-21 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) 自己回復網
US6690847B2 (en) * 2000-09-19 2004-02-10 Newport Opticom, Inc. Optical switching element having movable optically transmissive microstructure
CN1301601C (zh) * 2003-04-15 2007-02-21 中兴通讯股份有限公司 全光网络复用段共享保护的装置
CN101453267B (zh) * 2007-12-05 2013-06-26 华为技术有限公司 一种光接入网数据传输方法、系统及设备
CN101610116B (zh) * 2009-07-17 2012-09-05 深圳市巨联光电技术有限公司 光口自适应以太网光纤收发器及其自适应方法
CN102075259B (zh) * 2010-12-20 2014-08-20 武汉微创光电股份有限公司 双千兆以太网自适应光纤收发器及其光纤传输方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2641926Y (zh) * 2003-07-09 2004-09-15 武汉光迅科技有限责任公司 动态光线路同步切换保护装置
CN101212256A (zh) * 2006-12-26 2008-07-02 英保达股份有限公司 光纤网络光束传输信道切换装置
CN101997604A (zh) * 2009-08-28 2011-03-30 姜南雪 一种单站设备失效应急保护装置
CN101800599A (zh) * 2010-02-10 2010-08-11 瑞斯康达科技发展股份有限公司 一种光纤线路保护设备及系统
CN102340355A (zh) * 2011-09-26 2012-02-01 中兴通讯股份有限公司南京分公司 一种自适应光纤收发方向的方法及装置

Also Published As

Publication number Publication date
CN102340355B (zh) 2019-03-12
CN102340355A (zh) 2012-02-01

Similar Documents

Publication Publication Date Title
WO2013044624A1 (zh) 一种自适应光纤收发方向的方法及装置
US10396891B2 (en) Client protection switch in optical pluggable transceivers activated through fast electrical data squelch
US20150244535A1 (en) Power over ethernet supervision
KR20150113022A (ko) 이중 통신 포트를 갖는 보안 카메라
EP2415214A1 (en) Energy efficient ethernet network nodes and methods for use in ethernet network nodes
US10554296B2 (en) Optical network system
WO2014114094A1 (zh) 光口速率自适应的方法和光网络设备
WO2011137797A1 (zh) 以太网中的数据传输方法和系统
CN107222256B (zh) 一种基于fpga的srio光纤链路在线重链接的实现方法
JP5216604B2 (ja) 無線装置
US7995598B2 (en) Small form factor pluggable (SFP) status indicator
US8982906B1 (en) Dual-media network interface that automatically disables inactive media
US10154322B2 (en) Fast recovery of fibre channel (FC) link using delayed NOS message after FC link failure
US20100211831A1 (en) Fault notification method and communication apparatus
US8213792B2 (en) Automatic ONT self disabling system, method, and computer readable medium
WO2013154558A1 (en) Reconfiguration of an optical connection infrastructure
JP2016012827A (ja) 光送受信装置
WO2018035681A1 (zh) 建立端口连接的方法及端口芯片
US10110304B2 (en) Communication device and inspection method
JP5677396B2 (ja) 通信装置および通信方法
WO2015131670A1 (zh) 基于交换网实现机架堆叠的设备、方法和系统
CN202455354U (zh) 一种光纤收发方向识别装置
KR101151919B1 (ko) 바이패스 기능을 가진 네트워크 장치와 바이패스 모듈
EP3297220A1 (en) Signal transmission method, controller and signal transmission system
JP2002051105A (ja) 通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837534

Country of ref document: EP

Kind code of ref document: A1