WO2013044618A1 - 微带线 - Google Patents

微带线 Download PDF

Info

Publication number
WO2013044618A1
WO2013044618A1 PCT/CN2012/073678 CN2012073678W WO2013044618A1 WO 2013044618 A1 WO2013044618 A1 WO 2013044618A1 CN 2012073678 W CN2012073678 W CN 2012073678W WO 2013044618 A1 WO2013044618 A1 WO 2013044618A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
dielectric substrate
metal strip
filled
microstrip line
Prior art date
Application number
PCT/CN2012/073678
Other languages
English (en)
French (fr)
Inventor
刘若鹏
季春霖
岳玉涛
李星昆
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Publication of WO2013044618A1 publication Critical patent/WO2013044618A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines

Definitions

  • the present invention relates to the field of microwave communications, and more particularly to a microstrip line.
  • Microstrip Line is a hybrid microwave integrated circuit (Hybrid Microwave) Integrated Circuits, HMIC) and Monolithic Microwave Integrated Circuits (Monolithic Mictowave Integrated One of the most widely used planar transmission lines in Circuits, MMIC. Structurally, the microstrip line is placed on a ground plate by a very thin metal strip at a much smaller distance than the wavelength, and the metal strip is separated from the ground plane by a dielectric substrate.
  • microstrip line is compact and lightweight, and can be used to make complex microwave circuits in a small volume by stereolithography, photolithography, etching, etc., and is easy to integrate with other microwave devices to realize microwave components and systems. Integration.
  • microstrip transmission lines can be used instead of waveguides to form microwave circuits and form various complex planar circuits on the same substrate, including Bridge circuit, matching load, attenuator antenna, etc.
  • the use of microstrip line transmission also has the disadvantages of large loss of microstrip line, crosstalk caused by easy leakage of electromagnetic energy, low Q value, difficulty in fine adjustment, and small power capacity.
  • the guided electromagnetic wave on the microstrip line continuously radiates energy along the axial direction of the microstrip line to generate leakage waves, wherein the electromagnetic wave leakage has two forms: spatial wave form 1 and surface wave form 2 ,As shown in Figure 1. It is known that there is a leakage main mode in the high frequency band of the microstrip line. This leakage main mode leaks electromagnetic wave energy outward in the form of surface waves. In the low frequency band, each higher order mode of the microstrip line is in the form of spatial wave. External leakage of electromagnetic wave energy.
  • a method for suppressing leakage of a microstrip main mode is mainly to apply a thin dielectric layer having a sufficiently large dielectric constant on the microstrip line; however, for the suppression of high order mode leakage of the microstrip line, there is no What is a simple and effective method. This is mainly due to the difference in the physical mechanism of the leakage of the main mode of the microstrip line and the leakage of the high-order mode. The spatial wave leakage of the higher-order mode of the microstrip line is hardly suppressed.
  • the object of the present invention is to overcome the defects of the spatial wave leakage of the high-order mode of the microstrip line in the prior art, and to provide a microstrip line capable of effectively suppressing the leakage of the spatial wave and solving the electromagnetic wave crosstalk between the microstrip lines. The problem.
  • a microstrip line comprising a metal strip, a dielectric substrate and a ground plate, the dielectric substrate being composed of FR-4 filled with glass microspheres, wherein the metal strip is located at one of the dielectric substrates On the side, the grounding plate is located on the other side of the dielectric substrate, and both are in close contact with the dielectric substrate.
  • the glass microbeads are hollow glass microbeads.
  • the hollow glass microspheres have a diameter of 10 to 180 micrometers.
  • all of the hollow glass microspheres in the dielectric substrate have the same volume, and all of the hollow glass microspheres are filled with a dielectric material having the same refractive index, and the refractive index of the dielectric material filled in the hollow glass microbeads
  • the refractive index of the glass microbeads in the dielectric substrate is smaller than the refractive index of the FR-4: the number of glass microbeads directly under the metal strip is the largest, and two away from the metal strip The number of glass beads on the side is gradually reduced.
  • all of the hollow glass microspheres in the dielectric substrate have the same volume, and all of the hollow glass microspheres are filled with a dielectric material having the same refractive index, and the refractive index of the dielectric material filled in the hollow glass microbeads
  • the refractive index of the glass microbeads in the dielectric substrate is greater than the refractive index of the FR-4: the number of glass microbeads directly under the metal strip is the least, and two away from the metal strip The number of glass beads on the side is gradually increasing.
  • the unit volume of the FR-4 in the dielectric substrate is filled with the same number of hollow glass microspheres, and all of the hollow glass microspheres are filled with a dielectric material having the same refractive index and filled in the hollow glass microsphere.
  • the refractive index of the dielectric material in the bead is smaller than the refractive index of the FR-4, and the volume distribution pattern of the glass microbead in the dielectric substrate is: the volume of the glass microbead directly under the metal strip is the largest, And the volume of the glass beads decreases gradually away from the sides of the metal strip.
  • the dielectric material is air.
  • the unit volume of the FR-4 in the dielectric substrate is filled with the same number of hollow glass microspheres, and all of the hollow glass microspheres are filled with a dielectric material having the same refractive index and filled in the hollow glass microsphere.
  • the refractive index of the dielectric material in the bead is greater than the refractive index of the FR-4, and the volume distribution of the glass microbeads in the dielectric substrate is such that the volume of the glass microbeads directly under the metal strip is the smallest. And the volume of the glass beads gradually increases away from the sides of the metal strip.
  • the microstrip line further includes a metamaterial film, the metamaterial film and the metal strip are located on one side of the dielectric substrate, and are in close contact with the dielectric substrate, wherein the metamaterial film Covering the metal strip.
  • the metamaterial film is formed by stacking a plurality of metamaterial sheets, and the plurality of metamaterial sheets have the same refractive index distribution.
  • each of the metamaterial sheets is composed of a plurality of metamaterial units.
  • the metamaterial unit comprises an artificial microstructure and a unit substrate to which the artificial microstructure is attached.
  • the refractive index distribution in each of the metamaterial sheets is uniform, and the refractive index ranges from 0 to 1.
  • the refractive index in each of the metamaterial sheets is 0.7.
  • the invention has the following beneficial effects:
  • FR-4 filled with glass beads is used as a dielectric substrate, and the refractive index distribution inside the dielectric substrate can be adjusted, thereby effectively suppressing spatial wave leakage of the microstrip line.
  • the glass microbeads used in the present invention are about one tenth of the density of conventional filled particles. After filling, the basis weight of the product can be greatly reduced, and the production resin can be replaced and saved, and the cost of the product can be reduced.
  • the hollow glass microbeads used in the present invention can be filled with different materials, so that the dielectric substrate has the advantages of heat insulation, sound insulation, insulation, and low water absorption.
  • a microstrip line of the present invention is provided by disposing a layer of a metamaterial film on a dielectric substrate and a dielectric substrate made of a mixture of hollow glass microspheres and FR-4, and the metamaterial film covers the metal strip to effectively suppress Leakage waves in the form of microstrip line space waves reduce electromagnetic wave crosstalk of adjacent microstrip lines.
  • FIG. 1 is a schematic view showing two forms of leakage waves of a microstrip line in the prior art
  • FIG. 2 is a schematic structural view of a microstrip line according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural view of a dielectric substrate according to the present invention.
  • FIG. 4 is a schematic structural view of a dielectric substrate according to the present invention.
  • FIG. 5 is a schematic structural view of a dielectric substrate according to the present invention.
  • FIG. 6 is a schematic structural view of a dielectric substrate according to the present invention.
  • FIG. 7 is a schematic structural view of a metamaterial-based microstrip line according to a second embodiment of the present invention.
  • FIG. 8 is a schematic structural view of the metamaterial film according to a second embodiment of the present invention.
  • Figure 9 is a schematic view showing the structure of the metamaterial unit of the second embodiment of the present invention.
  • the present invention constructs a microstrip line including a metal strip 10, a dielectric substrate 30, and a grounding plate 20, wherein the metal strip 10 and the grounding plate 20 are respectively distributed on the dielectric substrate.
  • the two sides of the 30, and the metal strip 10 is in close contact with the dielectric substrate 30 by means of a printed circuit board.
  • the grounding plate 20 is in close contact with the lower side of the dielectric substrate 30.
  • the FR filled with the glass microbeads is used. -4 acts as the dielectric substrate 30, thereby reducing electromagnetic wave crosstalk between adjacent microstrip lines.
  • the above-mentioned reduction of electromagnetic wave crosstalk between adjacent microstrip lines mainly changes the refractive index distribution inside the dielectric substrate 30 by FR-4 filled with glass microspheres, and it is known that electromagnetic waves are usually deflected toward a large refractive index. Therefore, the refractive index distribution law in the dielectric substrate 30 is such that the refractive index of the dielectric substrate immediately below the metal strip 10 is the largest, and the refractive index gradually decreases toward both sides.
  • the glass microbeads may or may not be hollow glass microspheres, and hollow glass microspheres are used in the preferred embodiment of the invention.
  • the hollow glass microspheres typically have a diameter of from 10 to 180 microns.
  • all of the hollow glass microspheres in the dielectric substrate 30 have the same volume, all of the hollow glass microspheres are filled with a dielectric material having the same refractive index and filled in the hollow glass microspheres.
  • the refractive index of the dielectric material is smaller than the refractive index of the FR-4, and the number distribution of the glass microbeads in the dielectric substrate 30 is such that the number of glass microbeads directly under the metal strip 10 is the largest, and The number of glass beads toward the sides of the metal strip 10 is gradually reduced.
  • all of the hollow glass microspheres in the dielectric substrate 30 have the same volume, all of the hollow glass microspheres are filled with a dielectric material having the same refractive index and filled in the hollow glass microspheres.
  • the refractive index of the dielectric material is greater than the refractive index of the FR-4, and the number distribution of the glass microbeads in the dielectric substrate 30 is such that the number of glass microbeads directly under the metal strip 10 is the least, and The number of glass beads toward the sides of the metal strip 10 is gradually increased.
  • the unit volume of FR-4 in the dielectric substrate 30 is filled with the same number of hollow glass microspheres, all of the hollow glass microspheres are filled with a dielectric material having the same refractive index, and The refractive index of the dielectric material filled in the hollow glass microbeads is smaller than the refractive index of the FR-4, and the volume distribution law of the glass microspheres in the dielectric substrate 30 is: directly below the metal strip 10
  • the glass microbeads have the largest volume, and the volume of the glass beads decreases gradually away from the sides of the metal strip 10.
  • the dielectric material is air.
  • the unit volume of FR-4 in the dielectric substrate 30 is filled with the same number of hollow glass microspheres, all of the hollow glass microspheres are filled with a dielectric material having the same refractive index, and The refractive index of the dielectric material filled in the hollow glass microbeads is greater than the refractive index of the FR-4, and the volume distribution pattern of the glass microbeads in the dielectric substrate 30 is: directly below the metal strip 10 The volume of the glass beads is minimal, and the volume of the glass beads increases gradually away from the sides of the metal strip 10.
  • the present invention is based on a structural diagram of a microstrip line of a metamaterial, the microstrip line including a metal strip 100, a grounding plate 200, and a dielectric substrate 300, wherein the metal strip 100 and the grounding plate 200 are respectively located in the On both sides of the dielectric substrate 300, the metal strip 100 is generally placed on the dielectric substrate 300 by means of circuit printing.
  • a surface is also coated on the surface of the dielectric substrate on the same side as the metal strip 100.
  • the metamaterial film 400, and the metamaterial film 400 completely covers the metal strip 100.
  • the metal strip 100 and the ground plate 200 are all made of the same metal, and copper is generally used.
  • the metamaterial film 400 is used as the cover metal strip 100, thereby reducing electromagnetic wave crosstalk between adjacent microstrip lines.
  • the metamaterial film 400 is comprised of a plurality of metamaterial sheets 401, each of which is comprised of a plurality of metamaterial units 500, including an artificial microstructure 502 and an artificial microstructure. 502 attached unit substrate 501.
  • the plurality of metamaterial sheets 401 are a plurality of metamaterial sheets having the same refractive index profile.
  • the refractive index distribution in each of the metamaterial sheets 401 is uniform, but the refractive index ranges between 0 and 1, because this refractive index range is the refractive index range of the medium in which the invisibility cloak is made, with such an ultra
  • the material film covers the metal strip 100, which can effectively suppress the leakage of the spatial wave form of the microstrip line and reduce the electromagnetic wave crosstalk of the adjacent microstrip line.
  • the refractive index in each of the metamaterial sheets 401 has a value of 0.7.
  • the topological structure, geometric size and unit cell of the artificial microstructure 502 can be theoretically and practically proved.
  • the design of the distribution on the 501, the unit substrate 501 is made of a dielectric insulating material, and may be a ceramic material, a polymer material, a ferroelectric material, a ferrite material, a ferromagnetic material, etc., and the polymer material may be, for example, an epoxy resin. Or Teflon.
  • the artificial microstructure 502 is a metal wire which is attached to the unit substrate 501 in a certain geometric shape and is responsive to electromagnetic waves.
  • the metal wire may be a copper wire or a silver wire having a cylindrical or flat shape, and is generally made of copper because The copper wire is relatively cheap, and of course, the cross section of the metal wire may be other shapes, and the metal wire is attached to the unit substrate 501 by etching, plating, drilling, photolithography, electron engraving or ion etching, etc., each of the super
  • the material sheet layer 401 is composed of a plurality of metamaterial units 500, each of which has an artificial microstructure 502, and each of the metamaterial units 500 responds to electromagnetic waves passing therethrough, thereby affecting the transmission of electromagnetic waves therein.
  • each metamaterial unit 500 depends on the electromagnetic wave that needs to be responsive, typically one tenth of the wavelength of the electromagnetic wave that is required to respond, otherwise the arrangement of metamaterial units 500 containing the artificial microstructure 502 in space cannot be in space. It is considered continuous.
  • the equivalent dielectric constant and equivalent of each place on the metamaterial can be adjusted.
  • the magnetic permeability in turn changes the equivalent refractive index throughout the metamaterial.
  • the pattern of the artificial microstructure 502 used in this embodiment is a snowflake-shaped derivative pattern. As can be seen from FIG. 8 and FIG. 9, the size of the snow-like artificial microstructure 502 can be determined according to a specific application.
  • the dielectric substrate 300 of the present embodiment can adopt the same structure as the dielectric substrate of the first embodiment, and details are not described herein again.

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明涉及微带线领域,该微带线包括金属带、介质基板以及接地板,其中,介质基板为填充有玻璃微珠的FR-4组成,金属带位于介质基板的一侧,接地板位于介质基板的另一侧,且均与介质基板紧贴。本发明采用填充有玻璃微珠的FR-4作为介质基板,能够调节介质基板内部的折射率分布,从而有效的抑制了微带线的空间波泄露,也解决了相邻微带线之间电磁波串扰的问题。

Description

微带线
【技术领域】
本发明涉及微波通信领域,更具体的说,涉及一种微带线。
【背景技术】
微带线(Microstrip Line)是目前混合微波集成电路(Hybrid Microwave Integrated Circuits,HMIC)和单片微波集成电路(Monolithic Mictowave Integrated Circuits,MMIC)中使用最多的一种平面型传输线。从结构上看,微带线是由很薄的金属带以远小于波长的间隔置于一接地板上,金属带与接地板之间用介质基板隔开。
微带线的突出优点是结构小巧、重量轻,可以用刻板、光刻、腐蚀等工艺在不大的体积内制成复杂的微波电路,并且容易与其他的微波器件集成,实现微波部件和系统的集成化。
随着微波元器件和系统的日益小型化,在一些对体积和重量要求苛刻的场合,可以采用微带传输线取代波导来构成微波电路并在同一块基板上组成各种不同的复杂平面电路,包括桥型电路、匹配负载、衰减器天线等。但是采用微带线传输同样存在缺点,即微带线损耗较大、易泄漏电磁能量造成串扰、Q值低、难以实现微调、功率容量小等。
在使用微带线传输过程中,微带线上的导行电磁波沿微带线轴向不断向空间辐射能量而产生漏波,其中电磁波泄露有两种形式:空间波形式1和表面波形式2,如图1所示。目前已经知道微带线在高频段存在一个泄漏主模,这个泄漏主模以表面波的形式向外泄漏电磁波能量;而在低频段,微带线的各个高次模则以空间波的形式向外泄漏电磁波能量。不管是表面波泄漏还是空间波泄漏,在集成电路中,这些漏波都是有害的,它不仅带来传输功率的下降,而且其泄漏的能量还会给周围其他电路带来电磁干扰问题,从而使得系统总体性能下降,因此需要抑制它。
现有技术中,对于抑制微带线主模泄漏的方法主要采用在微带线上敷一层介电常数足够大的薄的介质层;然而,对于微带线高次模泄漏的抑制,则没有什么简单有效的方法。这主要是由于微带线主模泄漏与高次模泄漏的物理机制不同而造成的,微带线高次模的空间波泄漏几乎很难被完抑制掉。
【发明内容】
本发明的目的在于克服现有技术中微带线高次模的空间波泄露的缺陷,提供一种微带线,该微带线能够有效的抑制空间波泄露,解决微带线之间电磁波串扰的问题。
为了达到上述目的,本发明采用的如下技术方案:
一种微带线,所述微带线包括金属带、介质基板以及接地板,所述介质基板由填充有玻璃微珠的FR-4组成,其中,所述金属带位于所述介质基板的一侧,所述接地板位于所述介质基板的另一侧,且均与所述介质基板紧贴。
进一步地,所述玻璃微珠为空心玻璃微珠。
进一步地,所述空心玻璃微珠的直径为10~180微米。
进一步地,所述介质基板内的所有空心玻璃微珠的体积相同,所述所有空心玻璃微珠内填充有具有相同折射率的介质材料,且填充在空心玻璃微珠内的介质材料的折射率小于所述FR-4的折射率,则所述介质基板内的玻璃微珠的数量分布规律为:与所述金属带正下方处的玻璃微珠的数量最多,且往远离所述金属带两侧的地方玻璃微珠的数量逐渐减少。
进一步地,所述介质基板内的所有空心玻璃微珠的体积相同,所述所有空心玻璃微珠内填充有具有相同折射率的介质材料,且填充在空心玻璃微珠内的介质材料的折射率大于所述FR-4的折射率,则所述介质基板内的玻璃微珠的数量分布规律为:与所述金属带正下方处的玻璃微珠的数量最少,且往远离所述金属带两侧的地方玻璃微珠的数量逐渐增多。
进一步地,所述介质基板内为单位体积的FR-4内填充有相同数量的空心玻璃微珠,所述所有空心玻璃微珠内填充有具有相同折射率的介质材料,且填充在空心玻璃微珠内的介质材料的折射率小于所述FR-4的折射率,则所述介质基板内的玻璃微珠的体积分布规律为:与所述金属带正下方处的玻璃微珠的体积最大,且往远离所述金属带两侧的地方玻璃微珠的体积逐渐减少。
进一步地,所述介质材料为空气。
进一步地,所述介质基板内为单位体积的FR-4内填充有相同数量的空心玻璃微珠,所述所有空心玻璃微珠内填充有具有相同折射率的介质材料,且填充在空心玻璃微珠内的介质材料的折射率大于所述FR-4的折射率,则所述介质基板内的玻璃微珠的体积分布规律为:与所述金属带正下方处的玻璃微珠的体积最小,且往远离所述金属带两侧的地方玻璃微珠的体积逐渐增加。
进一步地,所述微带线还包括超材料薄膜,所述超材料薄膜和所述金属带位于所述介质基板的一侧,且均紧贴于所述介质基板,其中,所述超材料薄膜覆盖所述金属带。
进一步地,所述超材料薄膜由多个超材料片层堆叠而成,且多个超材料片层具有相同折射率分布。
进一步地,所述每一超材料片层均由多个超材料单元组成。
进一步地,所述超材料单元包括人造微结构和供人造微结构附着的单元基材。
进一步地,所述每一超材料片层内的折射率分布是均匀的,且其折射率的取值范围为:0~1。
进一步地,所述每一超材料片层内的折射率为0.7。
本发明相对于现有技术,具有以下有益效果:
1、本发明采用填充有玻璃微珠的FR-4作为介质基板,能够调节介质基板内部的折射率分布,有效的抑制了微带线的空间波泄露。
2、本发明采用的玻璃微珠约是传统填充微粒密度的十几分之一,填充后可以大大减轻产品的基重,替代以及节省更多的生产用树脂,降低产品的成本。
3、本发明采用的空心玻璃微珠可以通过在其内填充不同的材料,使得介质基板具有隔热、隔音、绝缘、吸水率低等优点。
进一步,本发明一种微带线通过在介质基板上设置一层超材料薄膜以及采用空心玻璃微珠和FR-4混合制成的介质基板,且所述超材料薄膜覆盖金属带,有效的抑制了微带线空间波形式的漏波,减小了相邻微带线的电磁波串扰。
【附图说明】
图1是现有技术中微带线的两种泄露波形式的示意图;
图2是本发明第一实施例的一种微带线的结构示意图;
图3是本发明所述介质基板的结构示意图;
图4是本发明所述介质基板的结构示意图;
图5是本发明所述介质基板的结构示意图;
图6是本发明所述介质基板的结构示意图;
图7是本发明第二实施例的基于超材料的微带线的结构示意图;
图8是本发明第二实施例的所述超材料薄膜的结构示意图;
图9是本发明第二实施例的所述超材料单元结构示意图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细说明。
实施例1
如图2所示,本发明构造一种微带线,该微带线包括金属带10、介质基板30以及接地板20,其中,所述金属带10和接地板20分别分布于所述介质基板30的两侧,且金属带10通过印刷电路板的方式紧贴于所述介质基板30上。
本发明较佳的实施例中,所述接地板20紧贴于所述介质基板30的下侧,为了抑制金属带10电磁波传输过程中产生的空间波形式泄露,采用填充有玻璃微珠的FR-4作为介质基板30,进而减少相邻微带线之间的电磁波串扰。
上述减少相邻微带线之间的电磁波串扰主要是靠填充有玻璃微珠的FR-4改变介质基板30内部的折射率分布情况,我们知道电磁波通常是朝着折射率大的方向进行偏折,因此,在所述介质基板30内的折射率分布规律为,靠近金属带10正下面的介质基板的折射率最大,且朝着两侧方向折射率逐渐减小。
所述玻璃微珠可以为空心玻璃微珠,也可以不为空心玻璃微珠,本发明较佳实施例中采用空心玻璃微珠。
所述空心玻璃微珠的直径一般为10~180微米。
为了使得介质基板30实现上述折射率变化规律,我们可以通过调节空心微粒微珠的大小,密度,以及在空心玻璃微珠内填充不同折射率的介质材料,下面从以上三个方面来具体详述。
如图3所示,若所述介质基板30内的所有空心玻璃微珠的体积相同,所述所有空心玻璃微珠内填充有具有相同折射率的介质材料,且填充在空心玻璃微珠内的介质材料的折射率小于所述FR-4的折射率,则所述介质基板30内的玻璃微珠的数量分布规律为:与所述金属带10正下方处的玻璃微珠的数量最多,且往远离所述金属带10两侧的地方玻璃微珠的数量逐渐减少。
如图4所示,若所述介质基板30内的所有空心玻璃微珠的体积相同,所述所有空心玻璃微珠内填充有具有相同折射率的介质材料,且填充在空心玻璃微珠内的介质材料的折射率大于所述FR-4的折射率,则所述介质基板30内的玻璃微珠的数量分布规律为:与所述金属带10正下方处的玻璃微珠的数量最少,且往远离所述金属带10两侧的地方玻璃微珠的数量逐渐增多。
如图5所示,若所述介质基板30内为单位体积的FR-4内填充有相同数量的空心玻璃微珠,所述所有空心玻璃微珠内填充有具有相同折射率的介质材料,且填充在空心玻璃微珠内的介质材料的折射率小于所述FR-4的折射率,则所述介质基板30内的玻璃微珠的体积分布规律为:与所述金属带10正下方处的玻璃微珠的体积最大,且往远离所述金属带10两侧的地方玻璃微珠的体积逐渐减少。本发明较佳实施例中,所述介质材料为空气。
如图6所示,若所述介质基板30内为单位体积的FR-4内填充有相同数量的空心玻璃微珠,所述所有空心玻璃微珠内填充有具有相同折射率的介质材料,且填充在空心玻璃微珠内的介质材料的折射率大于所述FR-4的折射率,则所述介质基板30内的玻璃微珠的体积分布规律为:与所述金属带10正下方处的玻璃微珠的体积最小,且往远离所述金属带10两侧的地方玻璃微珠的体积逐渐增加。
实施例2
如图7所示,本发明基于超材料的微带线的结构示意图,所述微带线包括金属带100、接地板200以及介质基板300,其中,金属带100和接地板200分别位于所述介质基板300的两侧,金属带100一般通过电路印刷的方式置于介质基板300上,在本发明较佳实施例中,还在与所述金属带100同一侧的介质基板表面涂覆一层超材料薄膜400,且超材料薄膜400完全覆盖所述金属带100。
本发明中,所述金属带100和所述接地板200都采用相同的金属,且一般采用铜。
为了抑制金属带100电磁波传输过程中产生的空间波形式泄露,采用超材料薄膜400作为覆盖金属带100,进而减少相邻微带线之间的电磁波串扰。
所述超材料薄膜400由多个超材料片层401组成,其中每一超材料片层401均由多个超材料单元500组成,所述超材料单元500包括人造微结构502和供人造微结构502附着的单元基材501。
所述多个超材料片层401是具有相同折射率分布的多个超材料片层。
所述每一超材料片层401内的折射率分布是均匀的,但是折射率取值范围在0和1之间,因为这个折射率范围是制造隐身衣的介质折射率范围,用这样的超材料薄膜覆盖金属带100,能够有效的抑制微带线的空间波形式泄露,减少相邻微带线的电磁波串扰。本发明较佳的实施例中,每一超材料片层401内的折射率的取值为0.7。
为使超材料薄膜400的每一超材料片层401实现图7所示折射率的变化,经过理论和实际证明,可对所述人造微结构502的拓扑结构、几何尺寸以及其在单元基材501上分布的设计,单元基材501采用介电绝缘材料制成,可以为陶瓷材料、高分子材料、铁电材料、铁氧材料、铁磁材料等,高分子材料例如可以是、环氧树脂或聚四氟乙烯。人造微结构502为以一定的几何形状附着在单元基材501上能够对电磁波有响应的金属线,金属线可以是剖面为圆柱状或者扁平状的铜线、银线等,一般采用铜,因为铜丝相对比较便宜,当然金属线的剖面也可以为其他形状,金属线通过蚀刻、电镀、钻刻、光刻、电子刻或离子刻等工艺附着在单元基材501上,所述每一超材料片层401由多个超材料单元500组成,每一超材料单元500都具有一个人造微结构502,每一个超材料单元500都会对通过其中的电磁波产生响应,从而影响电磁波在其中的传输,每个超材料单元500的尺寸取决于需要响应的电磁波,通常为所需响应的电磁波波长的十分之一,否则空间中包含人造微结构502的超材料单元500所组成的排列在空间中不能被视为连续。
在单元基材501的选定的情况下,通过调整人造微结构502的形状、尺寸及其在单元基材501上的空间分布,可以调整超材料上各处的等效介电常数及等效磁导率进而改变超材料各处的等效折射率。当人造微结构502采用相同的几何形状时,某处人造微结构的尺寸越大,则该处的等效介电常数越大,折射率也越大。
本实施例采用的人造微结构502的图案为雪花状的衍生图案,由图8和图9可知,雪花状人造微结构502的尺寸可以根据具体的应用来定。
进一步,本实施例的介质基板300可以采用与实施例1的介质基板相同的结构,此处不再赘述。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未违背本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (19)

  1. 一种微带线,所述微带线包括金属带、介质基板以及接地板,其特征在于,所述介质基板由填充有玻璃微珠的FR-4组成,其中,所述金属带位于所述介质基板的一侧,所述接地板位于所述介质基板的另一侧,且均与所述介质基板紧贴。
  2. 根据权利要求1所述的一种微带线,其特征在于,所述玻璃微珠为空心玻璃微珠。
  3. 根据权利要求2所述的一种微带线,其特征在于,所述空心玻璃微珠的直径为10~180微米。
  4. 根据权利要求1所述的一种微带线,其特征在于,所述介质基板内的所有空心玻璃微珠的体积相同,所述所有空心玻璃微珠内填充有具有相同折射率的介质材料,且填充在空心玻璃微珠内的介质材料的折射率小于所述FR-4的折射率,则所述介质基板内的玻璃微珠的数量分布规律为:与所述金属带正下方处的玻璃微珠的数量最多,且往远离所述金属带两侧的地方玻璃微珠的数量逐渐减少。
  5. 根据权利要求4所述的一种微带线,其特征在于,所述介质材料为空气。
  6. 根据权利要求1所述的一种微带线,其特征在于,所述介质基板内的所有空心玻璃微珠的体积相同,所述所有空心玻璃微珠内填充有具有相同折射率的介质材料,且填充在空心玻璃微珠内的介质材料的折射率大于所述FR-4的折射率,则所述介质基板内的玻璃微珠的数量分布规律为:与所述金属带正下方处的玻璃微珠的数量最少,且往远离所述金属带两侧的地方玻璃微珠的数量逐渐增多。
  7. 根据权利要求1所述的一种微带线,其特征在于,所述介质基板内为单位体积的FR-4内填充有相同数量的空心玻璃微珠,所述所有空心玻璃微珠内填充有具有相同折射率的介质材料,且填充在空心玻璃微珠内的介质材料的折射率小于所述FR-4的折射率,则所述介质基板内的玻璃微珠的体积分布规律为:与所述金属带正下方处的玻璃微珠的体积最大,且往远离所述金属带两侧的地方玻璃微珠的体积逐渐减少。
  8. 根据权利要求7所述的一种微带线,其特征在于,所述介质材料为空气。
  9. 根据权利要求1所述的一种微带线,其特征在于,所述介质基板内为单位体积的FR-4内填充有相同数量的空心玻璃微珠,所述所有空心玻璃微珠内填充有具有相同折射率的介质材料,且填充在空心玻璃微珠内的介质材料的折射率大于所述FR-4的折射率,则所述介质基板内的玻璃微珠的体积分布规律为:与所述金属带正下方处的玻璃微珠的体积最小,且往远离所述金属带两侧的地方玻璃微珠的体积逐渐增加。
  10. 根据权利要求1所述的一种微带线,其特征在于,所述微带线还包括超材料薄膜,所述超材料薄膜和所述金属带位于所述介质基板的一侧,且均紧贴于所述介质基板,其中,所述超材料薄膜覆盖所述金属带。
  11. 根据权利要求10所述的基于超材料的微带线,其特征在于,所述超材料薄膜由多个超材料片层堆叠而成,且多个超材料片层具有相同折射率分布。
  12. 根据权利要求11所述的基于超材料的微带线,其特征在于,所述每一超材料片层均由多个超材料单元组成。
  13. 根据权利要求12所述的基于超材料的微带线,其特征在于,所述超材料单元包括人造微结构和供人造微结构附着的单元基材。
  14. 根据权利要求11所述的基于超材料的微带线,其特征在于,所述每一超材料片层内的折射率分布是均匀的,且其折射率的取值范围为:0~1。
  15. 根据权利要求14所述的基于超材料的微带线,其特征在于,所述每一超材料片层内的折射率为0.7。
  16. 根据权利要求10所述的一种微带线,其特征在于,所述介质基板内的所有空心玻璃微珠的体积相同,所述所有空心玻璃微珠内填充有具有相同折射率的介质材料,且填充在空心玻璃微珠内的介质材料的折射率小于所述FR-4的折射率,则所述介质基板内的玻璃微珠的数量分布规律为:与所述金属带正下方处的玻璃微珠的数量最多,且往远离所述金属带两侧的地方玻璃微珠的数量逐渐减少。
  17. 根据权利要求10所述的一种微带线,其特征在于,所述介质基板内的所有空心玻璃微珠的体积相同,所述所有空心玻璃微珠内填充有具有相同折射率的介质材料,且填充在空心玻璃微珠内的介质材料的折射率大于所述FR-4的折射率,则所述介质基板内的玻璃微珠的数量分布规律为:与所述金属带正下方处的玻璃微珠的数量最少,且往远离所述金属带两侧的地方玻璃微珠的数量逐渐增多。
  18. 根据权利要求10所述的一种微带线,其特征在于,所述介质基板内为单位体积的FR-4内填充有相同数量的空心玻璃微珠,所述所有空心玻璃微珠内填充有具有相同折射率的介质材料,且填充在空心玻璃微珠内的介质材料的折射率小于所述FR-4的折射率,则所述介质基板内的玻璃微珠的体积分布规律为:与所述金属带正下方处的玻璃微珠的体积最大,且往远离所述金属带两侧的地方玻璃微珠的体积逐渐减少。
  19. 根据权利要求10所述的一种微带线,其特征在于,所述介质基板内为单位体积的FR-4内填充有相同数量的空心玻璃微珠,所述所有空心玻璃微珠内填充有具有相同折射率的介质材料,且填充在空心玻璃微珠内的介质材料的折射率大于所述FR-4的折射率,则所述介质基板内的玻璃微珠的体积分布规律为:与所述金属带正下方处的玻璃微珠的体积最小,且往远离所述金属带两侧的地方玻璃微珠的体积逐渐增加。
PCT/CN2012/073678 2011-09-29 2012-04-09 微带线 WO2013044618A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110293257 CN103035992A (zh) 2011-09-29 2011-09-29 微带线
CN201110293257.7 2011-09-29

Publications (1)

Publication Number Publication Date
WO2013044618A1 true WO2013044618A1 (zh) 2013-04-04

Family

ID=47994212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073678 WO2013044618A1 (zh) 2011-09-29 2012-04-09 微带线

Country Status (2)

Country Link
CN (1) CN103035992A (zh)
WO (1) WO2013044618A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2522344A (en) * 2014-01-21 2015-07-22 Welding Inst System and method for transmitting data or power across a structural component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108518580A (zh) * 2018-03-22 2018-09-11 深圳市中科恒润科技发展有限公司 一种纳米级别的轻质基层板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0440918A2 (en) * 1990-01-26 1991-08-14 International Business Machines Corporation Flame retardant, low dielectric constant microsphere filled laminate
CN1458913A (zh) * 2001-02-08 2003-11-26 住友电气工业株式会社 多孔性陶瓷及其制造方法,以及微波传输带基片
CN101009205A (zh) * 2005-09-30 2007-08-01 株式会社神户制钢所 具有平滑表面的多孔基板及其制造方法
CN102204008A (zh) * 2008-08-22 2011-09-28 杜克大学 用于表面和波导的超材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0440918A2 (en) * 1990-01-26 1991-08-14 International Business Machines Corporation Flame retardant, low dielectric constant microsphere filled laminate
CN1458913A (zh) * 2001-02-08 2003-11-26 住友电气工业株式会社 多孔性陶瓷及其制造方法,以及微波传输带基片
CN101009205A (zh) * 2005-09-30 2007-08-01 株式会社神户制钢所 具有平滑表面的多孔基板及其制造方法
CN102204008A (zh) * 2008-08-22 2011-09-28 杜克大学 用于表面和波导的超材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU, JI: "Applications of metamaterials in electronic components", ELECTRONIC COMPONENTS & MATERIALS, vol. 27, no. 9, September 2008 (2008-09-01), pages 1 - 4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2522344A (en) * 2014-01-21 2015-07-22 Welding Inst System and method for transmitting data or power across a structural component
GB2522344B (en) * 2014-01-21 2016-04-06 Welding Inst System and method for transmitting data or power across a structural component
US10090715B2 (en) 2014-01-21 2018-10-02 The Welding Institute System and method for transmitting data or power across a structural component

Also Published As

Publication number Publication date
CN103035992A (zh) 2013-04-10

Similar Documents

Publication Publication Date Title
Lim et al. Ultrawideband electromagnetic absorber using sandwiched broadband metasurfaces
WO2012142831A1 (zh) 宽频带吸波超材料
Mosallaei et al. A one-layer ultra-thin meta-surface absorber
US8872725B1 (en) Electronically-tunable flexible low profile microwave antenna
Yang et al. Applications of electromagnetic band-gap (EBG) structures in microwave antenna designs
US20110273353A1 (en) Hybrid metamaterial antenna structures
WO2019237765A1 (zh) 超材料结构单元、超材料及电子装置
EP2512036B1 (en) Wireless terminal and implementation method for reducing peak value of specific absorption rate (sar)
KR20030007399A (ko) 전파 흡수체
CN216901662U (zh) 一种基于透明金属材料的入射波增透玻璃
WO2013044618A1 (zh) 微带线
CN103929933A (zh) 抑制电磁波干扰结构及具有该结构的软性印刷电路板
US8558120B2 (en) Multilayer board for suppressing unwanted electromagnetic waves and noise
CN113688550A (zh) 一种基于透明金属材料的入射波增透玻璃及增透方法
TW202121744A (zh) 邊緣效應減輕之相控陣列天線
WO2022153388A1 (ja) 電磁波吸収体
CN112928483B (zh) 一种基于缝隙梯形结构的宽带超材料吸波体
El Yassini et al. Design of circular patch antenna with a high gain by using a novel artificial planar dual‐layer metamaterial superstrate
Zheng et al. A new method for designing low RCS patch antenna using frequency selective surface
WO2013029371A1 (zh) 一种基于超材料的微带线
CN110233353B (zh) 一种超材料单元及基于超材料的双层辐射天线装置
WO2013029372A1 (zh) 微带线
JPH11195890A (ja) 特定範囲の周波数の電磁波を反射する新規な導電性双極性素子パターン及びこれを有する周波数選択性電磁波シールド材
Errifi et al. Improving microstrip patch antenna directivity using EBG superstrate
Berka et al. Triangular split ring resonators for X-band applications and operations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834696

Country of ref document: EP

Kind code of ref document: A1