WO2013044543A1 - 一种锂离子电池组管理系统及方法 - Google Patents

一种锂离子电池组管理系统及方法 Download PDF

Info

Publication number
WO2013044543A1
WO2013044543A1 PCT/CN2011/081605 CN2011081605W WO2013044543A1 WO 2013044543 A1 WO2013044543 A1 WO 2013044543A1 CN 2011081605 W CN2011081605 W CN 2011081605W WO 2013044543 A1 WO2013044543 A1 WO 2013044543A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion battery
lithium ion
lithium
voltage
current
Prior art date
Application number
PCT/CN2011/081605
Other languages
English (en)
French (fr)
Inventor
王继业
栗宁
傅尧
郑百祥
彭娟
林勇刚
Original Assignee
北京国电通网络技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京国电通网络技术有限公司 filed Critical 北京国电通网络技术有限公司
Publication of WO2013044543A1 publication Critical patent/WO2013044543A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of lithium ion batteries, and more particularly to a lithium ion battery management system and method. Background technique
  • Lithium-ion batteries have high energy density, good safety, long life and no use due to their application.
  • the memory effect, environmental protection and other characteristics have reached a wide range of applications.
  • lithium ion batteries in order to obtain high power and large capacity, lithium ion batteries need to be formed into a lithium ion battery pack in series and parallel.
  • the performance between the single-cell lithium-ion batteries cannot be completely consistent, and the performance of the lithium-ion battery pack is determined by the performance of the single-cell lithium-ion battery, so that the lithium-ion battery pack is in use.
  • a single lithium-ion battery is insufficient, it is necessary to charge the lithium-ion battery pack, which may cause the other single-cell lithium-ion battery in the lithium-ion battery pack to be in an overcharged state, causing damage to the lithium-ion battery pack.
  • Lithium-ion batteries are less efficient to use and have a shorter life.
  • the embodiment of the present application provides a lithium ion battery management system and method, which monitors the working state of a lithium ion battery in real time, and balances the power of each single lithium ion battery to make the lithium ion
  • the power of each single-cell lithium-ion battery in the battery pack reaches an equilibrium state, which avoids the problem that the lithium-ion battery is in an overcharged or over-discharged state.
  • a lithium ion battery management system includes:
  • the collecting module is configured to collect voltages of respective single-cell lithium ion batteries in the lithium ion battery pack, Current and temperature data;
  • the microcontroller is configured to calculate a charge and discharge frequency of each of the single-cell lithium-ion batteries according to the voltage and current data collected by the acquisition module, and estimate the number according to the voltage, current, and temperature data and the number of charge and discharge times. Said the SOC of each individual lithium ion battery;
  • the equalization management module is configured to compare voltages and SOC values of the respective single-cell lithium-ion batteries in the lithium-ion battery group, and compare and obtain that the lithium-ion battery group has a voltage or SOC value that is not equal. In the case of a lithium ion battery, the amount of electricity of each of the individual lithium ion batteries in the lithium ion battery pack is equalized.
  • the collecting module includes:
  • a voltage collecting chip for collecting voltage data of each single lithium ion battery in the lithium ion battery pack
  • a current sensor for collecting current data of each of the individual lithium ion batteries in the lithium ion battery
  • a temperature sensor for collecting temperature data of each of the individual lithium ion batteries in the lithium ion battery.
  • the controller includes:
  • a preset module configured to preset a mapping relationship between the SOC of the lithium ion battery and the number of times of charge and discharge, temperature, voltage, and current of the lithium ion battery according to the charge and discharge characteristics of the lithium ion battery; Calculating the number of times of charging and discharging of the lithium ion battery according to the collected voltage and current values;
  • An estimation module configured to estimate, by using the mapping relationship, a SOC value corresponding to the current operating temperature, voltage, current value, and charge and discharge times of the lithium ion battery;
  • the computing module includes:
  • a recording unit configured to record a charge and discharge cycle of the lithium ion battery
  • a counting unit configured to count the charge and discharge cycle of the lithium ion battery, and use the total count as the number of charge and discharge cycles of the lithium ion battery.
  • the equalization management module includes:
  • the controller further includes:
  • a charge and discharge control unit configured to cut off a charging and discharging circuit of the single lithium ion battery when the voltage of the single lithium ion battery is not within a working voltage range allowed by the lithium ion battery;
  • thermal management unit for issuing an alarm when an upper limit temperature allowed for operation of the high temperature lithium ion battery of the single lithium ion battery or lower than a lower limit temperature allowed for operation of the lithium ion battery;
  • a fault locating unit configured to issue an alarm when a faulty lithium ion battery is present in the lithium ion battery pack, and position the faulty lithium ion battery according to the unique identifier of the faulty lithium ion battery.
  • the above system preferably, further includes:
  • the upper computer is configured to display voltage, current, temperature and SOC values of the individual lithium-lithium ion batteries, and display the positioning result of the alarm unit.
  • a lithium ion battery management method includes:
  • the above method preferably, further includes:
  • the voltage or current of the single-cell lithium ion battery is not within the allowable working voltage or operating current range of the preset lithium ion battery, cutting off the charging and discharging circuit in which the single-cell lithium-ion battery is located;
  • the temperature of the ion battery is high, and the upper limit temperature allowed for the operation of the lithium ion battery is lower than the lower limit temperature allowed for the operation of the lithium ion battery;
  • the acquisition module collects the voltage, current and temperature values of each single lithium ion battery in real time; the microcontroller calculates the charge and discharge cycle of each single lithium ion battery, and calculates The number of charge and discharge cycles of each single-cell lithium-ion battery is estimated by a preset mapping relationship according to the collected voltage, current, temperature data and the calculated number of charge and discharge times of each single-cell lithium-ion battery.
  • the equalization management module is used to have a voltage between a single lithium-ion battery in a lithium-ion battery pack or
  • the equalization management can equalize the battery all the time, that is, the battery can be balancedly managed regardless of whether the battery is charged, discharged or left still, so that the battery is always balanced. status.
  • the lithium ion battery management system provided by the present application also has the functions of charge and discharge protection, thermal management and fault location, and performs multiple protections on the lithium ion battery pack to avoid overvoltage, overcurrent and over temperature of the lithium ion battery. Make sure the battery is working in the best working area.
  • the faulty lithium-ion battery can also be positioned to facilitate maintenance personnel to locate the fault.
  • the lithium ion battery management system provided by the present application is further provided with a host computer for displaying the voltage, current, temperature and SOC value of each single lithium ion battery, so that the user can grasp the battery power information in real time and enable the user to timely Replenish power to lithium-ion batteries.
  • FIG. 1 is a schematic structural diagram of a lithium ion battery management system according to Embodiment 1 of the present application
  • FIG. 2 is a schematic structural diagram of a microcontroller according to Embodiment 1 of the present application;
  • FIG. 3 is a schematic structural diagram of a computing module according to Embodiment 1 of the present application.
  • FIG. 4 is a schematic structural diagram of an equalization management module according to Embodiment 1 of the present application.
  • FIG. 5 is another schematic structural diagram of a microcontroller according to Embodiment 1 of the present application.
  • FIG. 6 is a schematic structural diagram of a lithium ion battery management system according to Embodiment 2 of the present application
  • FIG. 7 is a schematic flowchart of a lithium ion battery management method according to Embodiment 3 of the present application. detailed description
  • FIG. 1 is a schematic structural diagram of a lithium ion battery management system provided in Embodiment 1 of the present application, including:
  • the collecting module 101 is configured to collect voltage, current and temperature values of the respective single-cell lithium-ion batteries in the lithium-ion battery pack 104. Specifically, the voltage data of each single-cell lithium-ion battery in the lithium-ion battery pack is collected by the voltage collecting chip; The current sensor and the temperature sensor collect current and temperature of each individual lithium ion battery in the lithium ion battery.
  • the microcontroller 102 calculates the number of charge and discharge cycles of each single-cell lithium-ion battery according to the voltage and current data of each single-cell lithium-ion battery collected by the acquisition module, and estimates the voltage, current and temperature data and the number of charge and discharge times according to the voltage, current and temperature data.
  • the SOC of each of the individual lithium ion batteries is the SOC of each of the individual lithium ion batteries.
  • FIG. 2 the schematic diagram of the controller 102 is as shown in FIG. 2, including:
  • the preset module 204 pre-sets the mapping relationship between the SOC of the single-cell lithium-ion battery and the parameters of the lithium-ion battery, that is, the number of charge and discharge, voltage, current, and temperature, according to the charge and discharge characteristics of the lithium ion battery, specifically, in order to accurately obtain The SOC of the lithium ion battery, the present application fully considers the newness of the lithium ion battery, that is, the number of times of charge and discharge and the influence of temperature on the SOC, and sets the SOC of the lithium ion battery and the lithium ion battery according to the charge and discharge characteristics of the lithium ion battery. The relationship between charge and discharge times, temperature, voltage and current.
  • N1 in Table 1 and N2 in Table 2 may also be respectively corresponding to N1.
  • the identification and the identification mark corresponding to N2, that is, the identification relationship of the SOC, temperature, voltage and current of the lithium ion battery corresponding to different charging and discharging times are searched for by the identification mark corresponding to the number of times of charge and discharge.
  • Table 2 shows the structure of the calculation module 205 as shown in Figure 3, including:
  • a charge-discharge cycle of a lithium-ion battery is a process in which the charge of a lithium-ion battery is from full charge to full, and then from full use to empty, rather than a specific charge, although the lithium-ion battery is charged multiple times.
  • a charge cycle is completed; the calculation of the discharge cycle is the same. For example, suppose that the full charge of a lithium-ion battery is 100%.
  • the recording unit 302 records each charge and discharge cycle of the lithium ion battery, and the counting unit 302 counts the charge and discharge cycle, and the sum of the charge and discharge cycles of the lithium ion battery is the charge and discharge times of the lithium ion battery. .
  • the estimation module 206 calculates the voltage, current, and temperature data collected by the module 101 and calculates The number of times of charge and discharge calculated by the module 205 is calculated by the look-up table method to estimate the SOC value of the lithium ion battery by the mapping relationship between the SOC of the budget module 204 and the voltage, current and temperature under different charge and discharge times.
  • the equalization management module 103 After receiving the voltage, current and SOC value of each of the single-cell lithium-ion batteries sent by the estimation module, the equalization management module 103 applies voltage, current and SOC to each of the single-cell lithium-ion batteries in the lithium-ion battery pack 104. The values are compared. When it is compared that the voltage, current or SOC value between the single lithium ion batteries in the lithium ion battery pack 104 is not equal, the equalization function is activated, and the lithium ions in the lithium ion battery group 104 are respectively The power of the ion battery is balanced.
  • the structure of the equalization management module 103 is as shown in FIG. 4, and includes: a comparing unit 401 and a control unit 402;
  • the comparison unit 401 After receiving the voltage and SOC value of each of the individual lithium ion batteries sent by the estimation module 206, the comparison unit 401 compares the voltage and the SOC value of each of the individual lithium ion batteries, respectively, and determines the lithium ions of the respective monomers. Whether the voltage or SOC value of the battery is equal, and the comparison result is sent to the control unit 402.
  • the control station When the voltage or SOC value between the individual lithium ion batteries in the lithium ion battery pack 104 is not equal, that is, as long as the voltage or SOC value of the single lithium ion battery is different from the voltage or SOC value of other lithium ion batteries, the control station The amount of electricity in a lithium-ion battery having a high voltage or SOC value is transferred to a lithium ion battery having a low voltage or SOC value, that is, energy is transferred from a high-power lithium-ion battery to a low-power lithium-ion battery.
  • FIG. 5 Another schematic structural diagram of the controller provided in the first embodiment of the present application is as shown in FIG. 5, and further includes:
  • a charge and discharge control unit 501 a thermal management unit 502, and a fault locating unit 503;
  • the charge and discharge control unit 501 is configured to compare the voltage values of the single lithium ion batteries collected by the collection module 101 with the upper limit voltage and the lower limit voltage allowed by the operation of the lithium ion battery, respectively, when the voltage of the single lithium ion battery is higher than the When the upper limit voltage is lower than the lower limit voltage, the charge and discharge circuit of the single lithium ion battery is cut off; the charge and discharge control unit 501 also collects the current value of the single lithium ion battery collected by the acquisition module 101 and the lithium ion respectively.
  • the cutoff The charge and discharge circuit in which the single lithium ion battery is located. Avoid the process or over-discharge of single-cell lithium-ion batteries.
  • the thermal management unit 502 is configured to compare the temperature values of the single-cell lithium-ion batteries collected by the collection module 101 with the upper limit temperature and the lower limit temperature allowed for the operation of the lithium-ion battery, respectively, when the temperature of the single-cell lithium-ion battery exceeds the normal working range. , Send out a warning.
  • the lithium ion battery management system provided by the present application has the functions of balance management, charge and discharge control, and thermal management, due to environmental factors and the like, a single lithium ion battery is inevitably present in the lithium ion battery. Faults such as pressure, over-current or over-temperature, or other faults, such as lithium-ion battery charging.
  • the fault locating unit 503 is configured to alarm and record the time when the fault occurs and the faulty battery when there is a fault or other fault such as overvoltage, overcurrent or overtemperature in the single lithium ion battery in the lithium ion battery pack 104, so as to facilitate the repair.
  • the person locates the fault and can replace it if there is irreparable damage.
  • the malfunctioning single-cell lithium-ion battery can be performed by the identification mark unique to each single-cell lithium-ion battery. Positioning, simultaneously display by LED lights, and record the time when the fault occurred.
  • FIG. 6 A schematic diagram of the structure of the lithium ion battery management system provided in the second embodiment of the present application is shown in FIG. 6: further includes a host computer 601;
  • the upper computer 601 is used to display the voltage, current, SOC value of each single-cell lithium ion battery and the positioning result of the alarm unit, so that the user can grasp the working state of the battery in real time, so that the user can charge the lithium ion battery in time, and facilitate the fault location of the maintenance personnel. .
  • the host computer 601 can also control the opening and closing of the microcontroller, thereby controlling the opening and closing of the equalization function.
  • a flowchart of a method for managing a lithium ion battery pack provided in Embodiment 3 of the present application is as shown in FIG. 7, and includes:
  • Step S101 collecting voltage, current, and temperature data of each of the single-cell lithium-ion batteries in the lithium-ion battery pack;
  • Step S102 Calculate the lithium ions of the respective monomers according to the collected voltage and current data. The number of times of charging and discharging of the battery, and estimating the SOC of each of the individual lithium ion batteries according to the voltage, current and temperature data and the number of times of charging and discharging;
  • Step S103 comparing voltages and SOC values of the respective single-cell lithium-ion batteries in the lithium-ion battery group, and comparing, when comparing, obtaining a single-cell lithium ion battery in which the voltage or SOC value is not equal in the lithium-ion battery group
  • the power of each of the single-cell lithium-ion batteries in the lithium-ion battery pack is equalized, and the amount of electricity in the lithium-ion battery having a high voltage or SOC value is transferred to a lithium ion battery having a low voltage or a low SOC value.
  • the method may further include:
  • the charging and discharging circuit in which the single-cell lithium-ion battery is located is cut off.
  • An alarm is issued when the temperature limit of the operation of the high-voltage lithium-ion battery of the single-cell lithium ion battery is lower than the upper limit temperature allowed for the operation of the lithium ion battery.
  • An alarm is issued when there is a faulty lithium ion battery in the lithium ion battery pack, and the faulty lithium ion battery is positioned according to the unique identifier of the faulty lithium ion battery, so that the maintenance personnel can locate the fault.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种锂离子电池组管理系统,包括:采集模块、微控制器和均衡管理模块;所述采集模块用于采集所述锂离子电池组中各个单体锂离子电池的电压、电流和温度数据;所述微控制器用于根据所述采集模块采集到的电压和电流数据计算所述各个单体锂离子电池的充放电次数,并根据所述电压、电流和温度数据及所述充放电次数估算所述各个单体锂离子电池的SOC;所述均衡管理模块用于对所述锂离子电池组中各个单体锂离子电池的电量进行均衡。应用本发明提供的锂离子电池组管理系统,避免了单体锂离子电池处于过充电、过放电状态的问题,提高了锂离子电池组的使用效率,延长了锂离子电池组的使用寿命。

Description

一种锂离子电池组管理系统及方法
本申请要求于 2011 年 9 月 30 日提交中国专利局、 申请号为 201110301308.6、 发明名称为 "一种锂离子电池组管理系统及方法" 的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本申请涉及锂离子电池领域,特别是涉及一种锂离子电池组管理系统及方 法。 背景技术
随着传统能源的日益枯竭, 环境污染的日益严重, 国家提出了节能减排、 发展低碳经济的政策,锂离子电池由于其在应用过程中具有能量密度高、安全 性好、 寿命长、 无记忆效应、 环保等特性而的到了广泛的应用。 在锂离子电池 的使用过程中, 为了获得大功率、 大容量, 需要将锂离子电池以串并联方式组 成锂离子电池组。
由于锂离子电池制造水平的限制,单体锂离子电池之间的性能还不能达到 完全的一致, 而锂离子电池组的性能由单体锂离子电池的性能决定,使得锂离 子电池组在使用过程中, 只要某个单体锂离子电池的电量不足, 就要对锂离子 电池组充电,这样容易导致锂离子电池组中其它单体锂离子电池处于过充电状 态, 造成锂离子电池组的损坏, 锂离子电池的使用效率低, 使用寿命缩短。
发明内容
为解决上述技术问题,本申请实施例提供一种锂离子电池组管理系统及方 法,通过实时监控锂离子电池的工作状态, 并对各个单体锂离子电池的电量进 行均衡,使所述锂离子电池组中各个单体锂离子电池的电量达到平衡状态, 避 免了锂离子电池处于过充电、 过放电状态的问题。
技术方案如下:
一种锂离子电池组管理系统, 包括:
采集模块、 微控制器和均衡管理模块;
其中:
所述采集模块用于采集所述锂离子电池组中各个单体锂离子电池的电压、 电流和温度数据;
所述微控制器用于根据所述采集模块采集到的电压和电流数据计算所述 各个单体锂离子电池的充放电次数, 并根据所述电压、 电流和温度数据及所述 充放电次数估算所述各个单体锂离子电池的 SOC;
所述均衡管理模块用于对所述锂离子电池组中各个单体锂离子电池的电 压及 SOC值进行比较, 当比较得出所述锂离子电池组中存在电压或 SOC值不 相等的单体锂离子电池时,对所述锂离子电池组中各个单体锂离子电池的电量 进行均衡。
上述系统, 优选的, 所述采集模块包括:
电压采集芯片,用于采集所述锂离子电池组中各个单体锂离子电池的电压 数据;
电流传感器,用于采集所述锂离子电池组中各个单体锂离子电池的电流数 据;
温度传感器,用于采集所述锂离子电池组中各个单体锂离子电池的温度数 据。
上述系统, 优选的, 所述敫控制器包括:
预设模块, 用于依据所述锂离子电池的充放电特性,预设所述锂离子电池 的 SOC与所述锂离子电池的充放电次数、 温度、 电压和电流的映射关系; 计算模块,用于依据所述采集的电压和电流值计算所述锂离子电池的充放 电次数;
估算模块, 用于通过所述映射关系估算所述锂离子电池在当前运行温度、 电压、 电流值及充放电次数的状态下所对应的 SOC值;
上述系统, 优选的, 所述计算模块包括:
记录单元, 用于记录所述锂离子电池的充放电循环周期;
计数单元, 用于对所述锂离子电池的充放电循环周期进行计数,将计数总 和作为锂离子电池的充放电次数。
上述系统, 优选的, 所述均衡管理模块包括:
比较单元,用于对所述锂离子电池组中各个单体锂离子电池的电压和 SOC 值进行比较; 控制单元,用于在所述比较单元比较得出所述锂离子电池组中存在单体锂 离子电池的电压或 SOC值不相等时,控制电压或 SOC值高的锂离子电池中的 电量转移到电压或 SOC值低的锂离子电池中。 上述系统, 优选的, 所述敫控制器还包括:
充放电控制单元,用于在所述单体锂离子电池的电压不在锂离子电池允许 的工作电压范围内时, 切断所述单体锂离子电池所在的充电放电回路;
热管理单元,用于在所述单体锂离子电池的温度高压锂离子电池工作允许 的上限温度或低于锂离子电池工作允许的下限温度时, 发出警报;
故障定位单元,用于在所述锂离子电池组中存在故障锂离子电池时发出警 报,并根据所述出现故障的锂离子电池的唯一标识对所述故障锂离子电池进行 定位。
上述系统, 优选的, 还包括:
上位机, 用于显示所述各个单体锂锂离子电池的电压、 电流、温度和 SOC 值, 并显示所述报警单元的定位结果。
一种锂离子电池组管理方法, 包括:
采集所述锂离子电池组中各个单体锂离子电池的电压、 电流和温度数据; 根据所述采集到的电压和电流数据计算所述各个单体锂离子电池的充放 电次数, 并根据所述电压、 电流和温度数据及所述充放电次数估算所述各个单 体锂离子电池的 SOC;
对所述锂离子电池组中各个单体锂离子电池的电压及 SOC值进行比较, 当比较得出所述锂离子电池组中存在电压或 SOC值不相等的单体锂离子电池 时, 对所述锂离子电池组中各个单体锂离子电池的电量进行均衡。 上述方法, 优选的, 还包括:
当所述单体锂离子电池的电压或电流不在预设的锂离子电池允许的工作 电压或工作电流范围内时, 切断所述单体锂离子电池所在的充电放电回路; 当所述单体锂离子电池的温度高压锂离子电池工作允许的上限温度或低 于锂离子电池工作允许的下限温度时, 发出警报;
当所述锂离子电池组中存在故障锂离子电池时发出报警,并根据所述出现 故障的锂离子电池的唯一标识对所述故障锂离子电池进行定位。 应用本申请实施例提供的锂离子电池组管理系统,采集模块实时采集各个 单体锂离子电池的电压、 电流和温度值; 微控制器通过记录各个单体锂离子电 池的充放电循环周期,计算各个单体锂离子电池的充放电次数,通过预设的映 射关系根据采集的到的电压、 电流、温度数据以及计算得到的各个单体锂离子 电池的充放电次数, 估算各个单体锂离子电池的 SOC, 由于 SOC与电压、 电 流、温度和充放电次数的映射关系是根据锂离子电池的充放电特性设置的, 所 述用该 SOC算法估算得到的 SOC的精度高,为后续的均衡管理提供了可靠的 依据; 均衡管理模块用于在锂离子电池组中存在单体锂离子电池间的电压或
SOC 不相等时, 对单体锂离子电池间的电量进行均衡, 避免了单体锂离子电 池处于过充电, 过放电状态的问题, 提高了锂离子电池的利用率, 延长了锂离 子电池组的使用寿命。 由于均衡的方式是能量转移, 所以该均衡管理可以全天 候的对电池进行均衡, 即无论电池时在充电、放电还是静置的时候, 均能实现 电池的均衡管理, 使电池时时刻刻保持在均衡的状态。 同时, 本申请提供的锂 离子电池组管理系统还具有充放电保护、热管理和故障定位功能,对锂离子电 池组进行多重保护, 避免锂离子电池出现过压、 过流、 过温的状态, 确保电池 工作在最佳工作区内。 当锂离子电池组中出现故障电池时,还可以对出现故障 的锂离子电池进行定位, 方便维修人员进行故障定位。 此外, 本申请提供的锂 离子电池管理系统, 还设置有上位机, 对各个单体锂离子电池的电压、 电流、 温度和 SOC值进行显示, 方便用户实时掌握电池的电量信息, 能使用户及时 为锂离子电池补充电能。 附图说明
图 1为本申请实施例一提供的一种锂离子电池组管理系统的结构示意图; 图 2为本申请实施例一提供的微控制器的结构示意图;
图 3为本申请实施例一提供的计算模块的结构示意图;
图 4为本申请实施例一提供的均衡管理模块的结构示意图;
图 5为本申请实施例一提供的微控制器的另一结构示意图;
图 6为本申请实施例二提供的锂离子电池组管理系统的结构示意图; 图 7为本申请实施例三提供的锂离子电池组管理方法的流程示意图。 具体实施方式
为了使本技术领域的人员更好地理解本申请方案。下面将结合本申请实施 例中的附图, 对本申请实施例中的技术方案进行清楚、 完整地描述, 显然, 所 描述的实施例仅仅是本申请一部分实施例, 而不是全部的实施例。基于本申请 中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有 其他实施例, 都应当属于本申请保护的范围。
实施例一
本申请实施例一提供的一种锂离子电池组管理系统的结构示意图如图 1 所示, 包括:
采集模块 101 , 微控制器 102和均衡管理模块 103;
采集模块 101用于采集锂离子电池组 104中各个单体锂离子电池的电压、 电流和温度值, 具体的,通过电压采集芯片采集锂离子电池组中各个单体锂离 子电池的电压数据;通过电流传感器和温度传感器对锂离子电池组中各个单体 锂离子电池的电流和温度进行采集。
微控制器 102根据采集模块采集的各个单体锂离子电池的电压、 电流数 据, 计算各个单体锂离子电池的充放电次数, 并根据所述电压、 电流和温度数 据及所述充放电次数估算所述各个单体锂离子电池的 SOC。
具体的, 控制器 102的结构示意图如图 2所示, 包括:
预设模块 204, 计算模块 205和估算模块 206;
预设模块 204根据锂离子电池的充放电特性,预先设置好单体锂离子电池 的 SOC与锂离子电池的参数即充放电次数、 电压、 电流和温度的映射关系, 具体的, 为了能准确获得所述锂离子电池的 SOC, 本申请充分考虑锂离子电 池的新旧程度即充放电次数和温度对 SOC的影响, 根据所述锂离子电池的充 放电特性设置锂离子电池的 SOC与锂离子电池的充放电次数、 温度、 电压和 电流的映射关系。
例如, 当充放电次数为 N1 , 所述锂离子电池的 SOC、 温度、 电压和电流 的映射关系示意图如表 1所示; 当充放电次数为 N2,所述锂离子电池的 SOC、 温度、 电压和电流的映射关系的示意图如表 2所示。
此外, 所述表 1中的 N1和表 2中的 N2还可以分别是 N1所对应的识别 标识和 N2所对应的识别标识, 即通过充放电次数对应的识别标识来查找不同 充放电次数下对应的所述锂离子电池的 SOC、 温度、 电压和电流的映射关系 表。
Figure imgf000008_0001
表 1
Figure imgf000009_0001
表 2 计算模块 205的结构示意图如图 3所示, 包括:
记录单元 301和计数单元 302;
首先明确一下锂离子电池的充放电次数的定义,锂离子电池的充放电次数 是以锂离子电池的充放电循环周期数来描述的。具体的,锂离子电池的一个充 放电循环周期是一个锂离子电池的电量由空充到满,再由满用到空的过程, 而 不是具体的充一次电, 虽然锂离子电池多次充电,但其充电总量为锂离子电池 的满电量时才算完成一个充电周期; 放电周期的计算同理。 例如, 假设锂离子 电池的满电量为 100%, 第一次使用了 30 %电量后, 充满电, 第二次又使用了 70 %的电量后, 又充满电, 一共充了两次电, 但这只能算是一个充放电循环周 期, 因为, 这两次总的充电量为 30%+70%=100% , 总的放电量也为 30%+70%=100% , 这个刚好是一个充放电循环周期, 之后是下一个周期。 记 录单元 302对锂离子电池的每一个充放电循环周期都进行记录, 计数单元 302 对充放电循环周期进行计数,所述锂离子电池的充放电周期的总和就是所述锂 离子电池的充放电次数。
估算模块 206通过采集模块 101采集的电压、电流和温度数据以及计算算 模块 205计算得到的充放电次数, 通过预算模块 204预设的 SOC在不同的充 放电次数下与电压、 电流和温度的映射关系, 通过查表法估算锂离子电池的 SOC值。
均衡管理模块 103 在接收到所述估算模块发送来的各个单体锂离子电池 的电压、 电流和 SOC值后, 对所述锂离子电池组 104中各个单体锂离子电池 的电压、 电流及 SOC值进行比较, 当比较得出所述锂离子电池组 104中存在 单体锂离子电池间电压、 电流或 SOC值不相等时, 启动均衡功能, 对所述锂 离子电池组 104中各个单体锂离子电池的电量进行均衡。
具体的, 所述均衡管理模块 103的结构示意图如图 4所示, 包括: 比较单元 401和控制单元 402;
比较单元 401接收到所述估算模块 206发送来的各个单体锂离子电池的电 压和 SOC值后, 对各个单体锂离子电池的电压和 SOC值分别进行比较, 判断 所述各个单体锂离子电池的电压或 SOC值是否相等, 并将比较结果发送给控 制单元 402。 锂离子电池组 104中存在单体锂离子电池间的电压或 SOC值不相等时, 即只 要出现单体锂离子电池的电压或 SOC值与其它锂离子电池的电压或 SOC值不 同时,控制所述电压或 SOC值高的锂离子电池中的电量转移到电压或 SOC值 低的锂离子电池中,即能量从电量高的锂离子电池转移到电量低的锂离子电池 中。
为了防止锂离子电池组中出现过压、过流或过温的现象, 本申请实施例一 提供的 控制器的另一结构示意图如图 5所示, 还包括:
充放电控制单元 501、 热管理单元 502和故障定位单元 503;
充放电控制单元 501用于将采集模块 101采集到的单体锂离子电池的电压 值分别与锂离子电池工作允许的上限电压和下限电压进行比较,当单体锂离子 电池的电压高于所述上限电压或低于所述下限电压时,切断所述单体锂离子电 池所在的充放电回路;充放电控制单元 501还将采集模块 101采集到的单体锂 离子电池的电流值分别与锂离子电池工作允许的上限电流和下限电流进行比 较, 当单体锂离子电池的电流高于所述上限电流或低于所述下限电流时,切断 所述单体锂离子电池所在的充放电回路。避免单体锂离子电池出现过程或过放 的现象。
热管理单元 502用于将采集模块 101采集到的单体锂离子电池的温度值分 别与锂离子电池工作允许的上限温度和下限温度进行比较,当单体锂离子电池 的温度超出正常工作范围时, 发出警报。
虽然本申请提供的锂离子电池组管理系统具有均衡管理、充放电控制和热 管理等功能,但是由于环境等各方面因素的影响,锂离子电池组中不可避免会 有单体锂离子电池出现过压、过流或过温等故障或出现其它故障,如锂离子电 池充不上电等。
故障定位单元 503用于在锂离子电池组 104 中有单体锂离子电池出现过 压、过流或过温等故障或其它故障时,报警并进行记录故障发生的时间和故障 电池, 以便于维修人员进行故障定位, 如果出现不可挽回的损坏时, 可以方便 替换。
具体的, 当单体锂离子电池出现过压、 过流或过温等故障或其它故障时, 可通过每个单体锂离子电池所独有的识别标识对发生故障的单体锂离子电池 进行定位, 同时通过 LED灯进行显示, 并记录故障发生的时间。
实施例二
本申请实施例二提供的锂离子电池组管理系统的结构示意图如图 6所示: 还包括上位机 601;
上位机 601用于显示各个单体锂离子电池的电压、 电流、 SOC值以及报 警单元的定位结果, 方便用户实时掌握电池的工作状态,使用户及时为锂离子 电池充电, 方便维修人员进行故障定位。上位机 601还可以控制微控制器的开 启和关闭, 进而控制均衡功能的开启和关闭。
实施例三
本申请实施例三提供的一种锂离子电池组管理方法的流程图如图 7所示, 包括:
步骤 S101 : 采集所述锂离子电池组中各个单体锂离子电池的电压、 电流 和温度数据;
步骤 S102: 根据所述采集到的电压和电流数据计算所述各个单体锂离子 电池的充放电次数, 并根据所述电压、 电流和温度数据及所述充放电次数估算 所述各个单体锂离子电池的 SOC;
步骤 S 103: 对所述锂离子电池组中各个单体锂离子电池的电压及 SOC值 进行比较, 当比较得出所述锂离子电池组中存在电压或 SOC值不相等的单体 锂离子电池时, 对所述锂离子电池组中各个单体锂离子电池的电量进行均衡, 使电压或 SOC值高的锂离子电池中的电量转移到电压或 SOC值低的锂离子电 池中去。
为了能更好的避免锂离子电池组处于过压、过流或过温状态,在步骤 S103 之后还可以包括:
当所述单体锂离子电池的电压或电流不在预设的锂离子电池允许的工作 电压或工作电流范围内时, 切断所述单体锂离子电池所在的充电放电回路。
当所述单体锂离子电池的温度高压锂离子电池工作允许的上限温度或低 于锂离子电池工作允许的下限温度时, 发出警报。
当所述锂离子电池组中存在故障锂离子电池时发出报警,并根据所述出现 故障的锂离子电池的唯一标识对所述故障锂离子电池进行定位,方便维修人员 进行故障定位。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相 似的部分互相参见即可, 每个实施例重点说明的都是与其他实施例的不同之 处。 以上所述仅是本申请的具体实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本申请原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本申请的保护范围。
+

Claims

权 利 要 求
1、 一种锂离子电池组管理系统, 其特征在于, 包括:
采集模块、 微控制器和均衡管理模块;
其中:
所述采集模块用于采集所述锂离子电池组中各个单体锂离子电池的电压、 电流和温度数据;
所述微控制器用于根据所述采集模块采集到的电压和电流数据计算所述 各个单体锂离子电池的充放电次数, 并根据所述电压、 电流和温度数据及所述 充放电次数估算所述各个单体锂离子电池的 SOC;
所述均衡管理模块用于对所述锂离子电池组中各个单体锂离子电池的电 压及 SOC值进行比较, 当比较得出所述锂离子电池组中存在电压或 SOC值不 相等的单体锂离子电池时,对所述锂离子电池组中各个单体锂离子电池的电量 进行均衡。
2、 根据权利要求 1所述的系统, 其特征在于, 所述采集模块包括: 电压采集芯片,用于采集所述锂离子电池组中各个单体锂离子电池的电压 数据;
电流传感器,用于采集所述锂离子电池组中各个单体锂离子电池的电流数 据;
温度传感器,用于采集所述锂离子电池组中各个单体锂离子电池的温度数 据。
3、 根据权利要求 1所述的系统, 其特征在于, 所述微控制器包括: 预设模块, 用于依据所述锂离子电池的充放电特性,预设所述锂离子电池 的 SOC与所述锂离子电池的充放电次数、 温度、 电压和电流的映射关系; 计算模块,用于依据所述采集的电压和电流值计算所述锂离子电池的充放 电次数;
估算模块, 用于通过所述映射关系估算所述锂离子电池在当前运行温度、 电压、 电流值及充放电次数的状态下所对应的 SOC值。
4、 根据权利要求 3所述的系统, 其特征在于, 所述计算模块包括: 记录单元, 用于记录所述锂离子电池的充放电循环周期;
计数单元, 用于对所述锂离子电池的充放电循环周期进行计数,将计数总 和作为锂离子电池的充放电次数。
5、 根据权利要求 1所述的系统, 其特征在于, 所述均衡管理模块包括: 比较单元,用于对所述锂离子电池组中各个单体锂离子电池的电压和 SOC 值进行比较;
控制单元,用于在所述比较单元比较得出所述锂离子电池组中存在单体锂 离子电池的电压或 SOC值不相等时,控制电压或 SOC值高的锂离子电池中的 电量转移到电压或 SOC值低的锂离子电池中。
6、 根据权利要求 1所述的系统, 其特征在于, 所述微控制器还包括: 充放电控制单元,用于在所述单体锂离子电池的电压或电流不在锂离子电 池允许的工作电压或工作电流范围内时,切断所述单体锂离子电池所在的充电 放电回路;
热管理单元,用于在所述单体锂离子电池的温度高于锂离子电池工作允许 的上限温度或低于锂离子电池工作允许的下限温度时, 发出警报;
故障定位单元,用于在所述锂离子电池组中存在故障锂离子电池时发出警 报,并根据所述出现故障的锂离子电池的唯一标识对所述故障锂离子电池进行 定位。
7、 根据权利要求 1所述的系统, 其特征在于, 还包括:
上位机, 用于显示所述各个单体锂锂离子电池的电压、 电流、温度和 SOC 值。
8、 一种锂离子电池组管理方法, 其特征在于, 包括:
采集所述锂离子电池组中各个单体锂离子电池的电压、 电流和温度数据; 根据所述采集到的电压和电流数据计算所述各个单体锂离子电池的充放 电次数, 并根据所述电压、 电流和温度数据及所述充放电次数估算所述各个单 体锂离子电池的 SOC;
对所述锂离子电池组中各个单体锂离子电池的电压及 SOC值进行比较, 当比较得出所述锂离子电池组中存在电压或 SOC值不相等的单体锂离子电池 时, 对所述锂离子电池组中各个单体锂离子电池的电量进行均衡。
9、 根据权利要求 9所述的方法, 其特征在于, 还包括:
当所述单体锂离子电池的电压或电流不在预设的锂离子电池允许的工作 电压或工作电流范围内时, 切断所述单体锂离子电池所在的充电放电回路; 当所述单体锂离子电池的温度高于锂离子电池工作允许的上限温度或低 于锂离子电池工作允许的下限温度时, 发出警报;
当所述锂离子电池组中存在故障锂离子电池时发出警报,并根据所述出现 故障的锂离子电池的唯一标识对所述故障锂离子电池进行定位。
PCT/CN2011/081605 2011-09-30 2011-11-01 一种锂离子电池组管理系统及方法 WO2013044543A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110301308.6 2011-09-30
CN2011103013086A CN102355022A (zh) 2011-09-30 2011-09-30 一种锂离子电池组管理系统及方法

Publications (1)

Publication Number Publication Date
WO2013044543A1 true WO2013044543A1 (zh) 2013-04-04

Family

ID=45578545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081605 WO2013044543A1 (zh) 2011-09-30 2011-11-01 一种锂离子电池组管理系统及方法

Country Status (2)

Country Link
CN (1) CN102355022A (zh)
WO (1) WO2013044543A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106696735A (zh) * 2016-12-19 2017-05-24 重庆汉岳科技发展有限公司 基于车载锂电池组的智能监控系统
CN109244565A (zh) * 2017-07-10 2019-01-18 湖南凯铭电子科技有限公司 锂离子电池智能检测维护装置
CN109301363A (zh) * 2018-08-30 2019-02-01 上汽通用汽车有限公司 电池包管理系统、方法及存储介质
CN109614662A (zh) * 2018-11-20 2019-04-12 中国电力科学研究院有限公司 一种确定锂电池组在热仿真实验中的散热方式的方法和系统
CN109617174A (zh) * 2018-12-26 2019-04-12 苏州易美新思新能源科技有限公司 一种电池能量管理的控制电路实现方法
CN112564231A (zh) * 2020-12-10 2021-03-26 上海空间电源研究所 一种箭上用锂电池充放电一体化装置
CN114094656A (zh) * 2021-10-29 2022-02-25 青岛能蜂电气有限公司 一种用于分布式储能设备的充放电保护方法
CN115219900A (zh) * 2022-06-24 2022-10-21 湘潭大学 一种锂离子电池系统的状态监测方法及装置
CN115219914A (zh) * 2022-04-12 2022-10-21 湘潭大学 考虑温差因素的锂电池充放电模拟测试装置及测试方法
CN115425712A (zh) * 2022-09-19 2022-12-02 江苏鑫贝通科技有限公司 一种均衡控制的锂电池管理系统

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515993A (zh) * 2012-06-15 2014-01-15 凹凸电子(武汉)有限公司 均衡充电检测器、方法及电池管理系统
CN102751757A (zh) * 2012-06-29 2012-10-24 国家电网公司 一种锂离子电池组电量均衡方法及系统
CN102721933A (zh) * 2012-06-29 2012-10-10 国家电网公司 一种锂离子电池的soc估算方法和系统
US9172259B2 (en) * 2012-11-29 2015-10-27 Samsung Sdi Co., Ltd. Apparatus for managing battery, and energy storage system
CN103035964B (zh) * 2012-12-28 2016-06-15 湖南立方新能源科技有限责任公司 一种锂离子电池使用安全评估方法及安全报警装置
CN105304953A (zh) * 2015-09-22 2016-02-03 苏州工业园区职业技术学院 一种智能混合电池管理系统
CN105633487B (zh) * 2016-01-13 2018-04-06 河南理工大学 一种锂离子电池智能管理系统
CN107591572A (zh) * 2016-07-06 2018-01-16 深圳市沃特玛电池有限公司 电池管理系统采集模块自动编号系统及方法
CN106300530B (zh) * 2016-08-31 2018-10-19 杭州高特电子设备股份有限公司 多类蓄电池混合使用方法
CN106671817B (zh) * 2017-01-17 2019-08-23 华霆(合肥)动力技术有限公司 一种检测电路及电池管理系统
CN107171394B (zh) * 2017-06-22 2023-10-27 天津交通职业学院 一种新能源汽车电池监控评估系统及均衡评估方法
CN110336363B (zh) * 2018-03-28 2022-10-14 宏碁股份有限公司 具过温度保护并记录过温信息的充电器
CN109085511B (zh) * 2018-09-13 2021-05-18 宁波中鹏锂能源科技有限公司 一种锂电池电池包管理系统
CN109216803A (zh) * 2018-09-20 2019-01-15 东北大学 一种UMDs电池管理系统
CN110176795A (zh) * 2019-05-30 2019-08-27 Oppo广东移动通信有限公司 充电方法及装置、充电系统、电子设备、存储介质
CN110829581A (zh) * 2019-11-14 2020-02-21 四川大学华西医院 一种icu室ups电源监测方法及装置
CN112531861A (zh) * 2020-11-26 2021-03-19 武汉理工大学 一种电动自行车动力锂电池能量管理系统
CN113067042B (zh) * 2021-03-15 2022-05-17 珠海旺远信息技术有限公司 一种储能装置及故障预测诊断方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1625014A (zh) * 2003-12-04 2005-06-08 比亚迪股份有限公司 电动汽车动力电源管理系统
CN101192755A (zh) * 2006-11-27 2008-06-04 比亚迪股份有限公司 一种动力电池组电压均衡管理装置及其管理方法
CN101312293A (zh) * 2007-05-22 2008-11-26 深圳市金一泰实业有限公司 一种动力锂电池智能管理系统
CN101834457A (zh) * 2010-04-30 2010-09-15 重庆长安汽车股份有限公司 一种锂电池管理系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1190865C (zh) * 2001-06-14 2005-02-23 英保达股份有限公司 具有计算充电次数的可携式电子装置充电电池
CN1181593C (zh) * 2002-04-04 2004-12-22 北京航空航天大学 基于电池动态电量差异补偿的自动均衡充放电装置
JP5656415B2 (ja) * 2009-03-26 2015-01-21 プライムアースEvエナジー株式会社 二次電池の状態判定装置及び制御装置
US8427105B2 (en) * 2009-12-02 2013-04-23 Gregory L. Plett System and method for equalizing a battery pack during a battery pack charging process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1625014A (zh) * 2003-12-04 2005-06-08 比亚迪股份有限公司 电动汽车动力电源管理系统
CN101192755A (zh) * 2006-11-27 2008-06-04 比亚迪股份有限公司 一种动力电池组电压均衡管理装置及其管理方法
CN101312293A (zh) * 2007-05-22 2008-11-26 深圳市金一泰实业有限公司 一种动力锂电池智能管理系统
CN101834457A (zh) * 2010-04-30 2010-09-15 重庆长安汽车股份有限公司 一种锂电池管理系统

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106696735A (zh) * 2016-12-19 2017-05-24 重庆汉岳科技发展有限公司 基于车载锂电池组的智能监控系统
CN109244565A (zh) * 2017-07-10 2019-01-18 湖南凯铭电子科技有限公司 锂离子电池智能检测维护装置
CN109301363A (zh) * 2018-08-30 2019-02-01 上汽通用汽车有限公司 电池包管理系统、方法及存储介质
CN109614662A (zh) * 2018-11-20 2019-04-12 中国电力科学研究院有限公司 一种确定锂电池组在热仿真实验中的散热方式的方法和系统
CN109614662B (zh) * 2018-11-20 2023-06-09 中国电力科学研究院有限公司 一种确定锂电池组在热仿真实验中的散热方式的方法和系统
CN109617174A (zh) * 2018-12-26 2019-04-12 苏州易美新思新能源科技有限公司 一种电池能量管理的控制电路实现方法
CN112564231A (zh) * 2020-12-10 2021-03-26 上海空间电源研究所 一种箭上用锂电池充放电一体化装置
CN114094656A (zh) * 2021-10-29 2022-02-25 青岛能蜂电气有限公司 一种用于分布式储能设备的充放电保护方法
CN115219914A (zh) * 2022-04-12 2022-10-21 湘潭大学 考虑温差因素的锂电池充放电模拟测试装置及测试方法
CN115219900A (zh) * 2022-06-24 2022-10-21 湘潭大学 一种锂离子电池系统的状态监测方法及装置
CN115219900B (zh) * 2022-06-24 2024-06-04 阿理新能源科技(昆山)有限公司 一种锂离子电池系统的状态监测方法及装置
CN115425712A (zh) * 2022-09-19 2022-12-02 江苏鑫贝通科技有限公司 一种均衡控制的锂电池管理系统

Also Published As

Publication number Publication date
CN102355022A (zh) 2012-02-15

Similar Documents

Publication Publication Date Title
WO2013044543A1 (zh) 一种锂离子电池组管理系统及方法
JP6329755B2 (ja) バッテリ管理装置及びエネルギー保存システム
CN103208828B (zh) 一种串联电池组管理系统
CN101882699B (zh) 动力电池组充放电均衡控制方法
US10048322B2 (en) Method of measuring battery pack current and correcting offsets of a current sensor
US11292360B2 (en) Battery equalization method and system, vehicle, storage medium, and electronic device
US8207740B2 (en) Method for use with a vehicle battery pack having a number of individual battery cells
KR101553451B1 (ko) 에너지 저장 시스템에서 전력 분배 방법 및 장치
CN202696179U (zh) 一种电池管理系统
US10073145B2 (en) Method and system for estimating state of charge of battery
US20150200551A1 (en) Rechargeable battery pack and method of charge/discharge equalizing
CN104852435A (zh) 一种电动汽车用串联锂电池管理系统及其管理方法
JP2015052590A (ja) バッテリーパック、バッテリーパックを備える装置、及びバッテリーパックの管理方法
WO2011157116A1 (zh) 锂电模块并联使用方法及系统
US10256502B2 (en) Lithium-ion battery module
CN103904721A (zh) 电池电压均等化装置及方法
CN104198947A (zh) 一种锂离子电池剩余容量的估算系统及方法
CN103986205B (zh) 可动态适配的十六串锂电池组多模式均衡控制方法
US20230402868A1 (en) Method for charging traction battery and battery management system
CN114024349A (zh) 一种串并联组合式电池簇的均衡保护控制方法
Petri et al. Balancing and SOC Estimation in a Battery Management System for Electric Vehicle
US20230398902A1 (en) Method for charging traction battery and battery management system
CN103545853A (zh) 锂电池组智能管理系统
CN108767940B (zh) 一种串联充电电池并联充电主动均衡装置及主动均衡方法
CN203387282U (zh) 一种箱级电池管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873443

Country of ref document: EP

Kind code of ref document: A1