WO2013042755A1 - Organic semiconductor element - Google Patents

Organic semiconductor element Download PDF

Info

Publication number
WO2013042755A1
WO2013042755A1 PCT/JP2012/074125 JP2012074125W WO2013042755A1 WO 2013042755 A1 WO2013042755 A1 WO 2013042755A1 JP 2012074125 W JP2012074125 W JP 2012074125W WO 2013042755 A1 WO2013042755 A1 WO 2013042755A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
layer
gate
gate layer
semiconductor device
Prior art date
Application number
PCT/JP2012/074125
Other languages
French (fr)
Japanese (ja)
Inventor
和久 須永
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013042755A1 publication Critical patent/WO2013042755A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions

Definitions

  • the present invention relates to an organic semiconductor element, and more particularly to a structure of an organic semiconductor element formed using a printing technique.
  • FIGS. 9 and 10 show the structure of a basic organic transistor as a background art
  • FIG. 8 shows the structure of a general silicon FET for comparison. As shown in FIG.
  • the silicon substrate 30 also serves as a semiconductor layer in which source / drain regions 40 and 41 and a channel region are formed.
  • the organic semiconductor layer 130 is a separate layer from the substrate 100. Further, in order to avoid deterioration of the characteristics of the organic semiconductor due to the thermal process, the organic semiconductor layer 130 is configured to be the uppermost part. Accordingly, as shown in FIG. 10, the cross-sectional structure of a general organic transistor is as follows: substrate 100, gate layer 110, insulating layer 120, source / drain (hereinafter referred to as S / D) electrode 140, and organic semiconductor layer 130 from the bottom. accumulate.
  • the order of the S / D electrode 140 and the organic semiconductor layer 130 may be switched.
  • This structure is hereinafter referred to as a bottom gate type.
  • the gate layer 10 and the S / D layers 40 and 41 do not overlap in layout, but in the bottom gate type organic transistor shown in FIG. / D layers 140 and 141 are configured to overlap. Therefore, basically, as shown in FIG. 9, the channel region 150 of the bottom-gate organic transistor is a region between S / D in the organic semiconductor layer 130.
  • an organic material that is considered promising as a semiconductor often has a mobility several orders of magnitude smaller than that of silicon, and even an organic semiconductor called P3HT having a relatively high mobility is 0.
  • the organic semiconductor element disclosed in Patent Document 1 has a problem. That is, since the number of layers to be stacked increases in this structure, it is difficult to miniaturize the printing process technology in which the misalignment of each layer is large. In addition, contact holes for short-circuiting the upper and lower gate layers are necessary, but it is difficult to put it into practical use in a printing process technique that basically does not have an interlayer contact creation process.
  • the present invention has been proposed to solve such problems, and an object thereof is to provide a device structure that increases the drive current of an organic semiconductor device that can be produced by a printing process.
  • the organic semiconductor device of the present invention is a bottom gate type organic semiconductor element having an organic semiconductor layer in which a gate layer is provided on a substrate and a source / drain region and a channel region are formed via an insulating layer provided thereon.
  • the insulating film is formed on a side surface and an upper surface of the gate layer, and a channel region is formed at least on the side surface of the gate layer.
  • the organic semiconductor device of the present invention is a bottom gate type organic semiconductor having an organic semiconductor layer in which a gate layer is provided on a substrate and a source / drain region and a channel region are formed via an insulating layer provided thereon.
  • the organic semiconductor device of the present invention is a bottom gate type organic semiconductor having a gate layer on a substrate and an organic semiconductor layer in which a source / drain region and a channel region are formed via an insulating layer provided thereon.
  • An element, wherein a plurality of first gate layers and a plurality of second gate layers to which signals different from the first gate layer are applied are formed in the organic semiconductor layer, and the source / drain regions are It is characterized by being alternately formed in parallel in the extending direction.
  • FIG. 1 It is a top view which shows the Example utilized as a back gate for demonstrating 3rd embodiment of this invention. It is sectional drawing of FIG. It is a top view which shows a general silicon FET structure. It is sectional drawing which shows a general silicon FET structure. It is a top view which shows a general silicon FET structure. It is a top view which shows a general organic transistor structure. It is sectional drawing in the dotted-line part of FIG.
  • a gate layer 110 formed by printing or applying nano silver ink or the like on a substrate 100 is divided into a plurality of portions in the direction of the S / D formation region in the organic semiconductor layer 130 (2 in FIG. 1). (Shows the split configuration). That is, a plurality of gate layers that are electrically connected outside the organic semiconductor layer 130 are formed in parallel in the organic semiconductor layer 130 in the direction in which the S / D region extends.
  • polyimide formed by coating, printing, or an insulating material having a high dielectric constant is formed on the gate layer 110.
  • the insulating films 120 and 121 are formed on the side surfaces and the upper surface of the gate layers 110 and 111, respectively.
  • the thickness B of the insulating layer formed on the side surface of the gate layer is thinner than the thickness A of the insulating layer on the upper surface of the gate layer. Therefore, on the plane, the S / D region and the divided gate layer 110 vertically intersect in the organic semiconductor region 130.
  • the channel of the transistor is generated on the gate layer 110 via the insulating film 120 as shown in FIG.
  • the structure of the present invention not only the channel region is formed in the region on the gate layer 110 (111) via the insulating film 120 (121) shown in FIG.
  • a channel region is also formed on the side wall of the gate layer 110 (111) through the insulating film 120 (121).
  • the channel width can be increased as compared with the prior art.
  • Another effect is that the electric field between the gate and the organic semiconductor is improved from the upper part of the gate layer 110 and the amount of current is improved by forming the side wall portion of the insulating layer 120 (121) thin.
  • a silicon FET has a structure called a finger type. That is, in order to reduce the S / D capacitance, a transistor configuration in which the gate layer 10 is divided in the S / D direction is common.
  • the present invention can also be applied to the finger type.
  • a finger type can be formed by dividing the S / D electrodes 140 and 141 into a plurality in the channel length direction.
  • each of the S / D electrodes 140 and 141 is divided into two.
  • the gate layer 110 is further divided in the S / D direction as in the first embodiment. In this embodiment, it is divided into four.
  • a structure in which the division of the gate layer in the S / D direction and the division of the S / D layer in the channel direction is combined in the region of the organic semiconductor layer 130. A more effective current amount can be obtained.
  • FIG. 5 shows a case where it is used as a mixer circuit of a wireless receiving unit.
  • FIG. 5 this is an example in which a transistor constituting a mixer circuit is applied to the present invention.
  • An RF reception signal is input to the drain terminal 200 and a local signal is input to the back gate 230.
  • the mixer operation can be performed using the local signal, and the baseband signal can be extracted from the terminal 220.
  • FIG. 6 shows a plan view of a structure in which a local signal is applied to the back gate.
  • the gate layer 110 divided into two and the back gate layer divided into two are arranged alternately in the S / D direction.
  • each of the S / D electrodes 140 and 141 is divided into two.
  • an insulating layer 121 is formed on the top and side surfaces of the back gate layer 11 as shown in FIG. Accordingly, the back gate layer 11 is formed so that the side surface thereof faces the side surface of the gate layer 110 constituting the channel region. Since a different voltage can be input to the back gate layer 111 with respect to a voltage input to the gate layer 110, an electric field across the side wall channel portion 151 from the gate layer can be controlled by a voltage applied to the back gate layer 111. It becomes.
  • the drive current can be increased without increasing the mask cost and the ink cost.
  • the two gate electrodes can be short-circuited without using the contact hole formation process, it is possible to form a device in a printing process in which contact hole formation is difficult.

Abstract

An organic semiconductor device of the present invention is a bottom-gate organic semiconductor element wherein a gate layer is formed on a substrate and an organic semiconductor layer, in which a source/drain region and a channel region are formed, is arranged on an insulating layer that is formed on the gate layer. The insulating film is formed on the lateral surface and the upper surface of the gate layer, and a channel region is formed on at least the lateral surface of the gate layer.

Description

有機半導体素子Organic semiconductor device
本発明は、有機半導体素子に関し、特に印刷技術を用いて形成する有機半導体素子の構造に関する。 The present invention relates to an organic semiconductor element, and more particularly to a structure of an organic semiconductor element formed using a printing technique.
 近年、無線を利用したセンサシステムが急速に広まっており、高精度のセンサ情報を得るための膨大な数のセンサノードの点在が必要とされている。そのため、センサ端末には低コストで手軽な製造が求められており、この要求を満たす有機半導体を利用したセンサ端末が求められている。さらに、蒸着プロセスや真空プロセスを利用するシリコン半導体デバイスや化合物半導体デバイスの製造には装置の導入やその初期投資を必要とし、低コスト化が難しい。これに対して、近年、コストの低い印刷プロセスを用いた有機半導体素子の製法が広く研究開発されている。
 ここで、背景技術として基本となる有機トランジスタの構造を図9、図10に示し、更に、比較に用いるため、一般的なシリコンFETの構造を図8に示す。
 図8に示すように、一般的なシリコンFETでは、シリコン基板30がソース/ドレイン領域40,41やチャネル領域が形成される半導体層を兼ねる構造となっている。
 一方、本有機トランジスタでは図10に示すように、有機半導体層130は基板100と別層となる。また、熱プロセスによる有機半導体の特性劣化を避けるために、有機半導体層130が最上部となる構成をとる。
 従って、一般的な有機トランジスタの断面構造は、図10に示すように、下から基板100、ゲート層110、絶縁層120、ソースドレイン(以下、S/D)電極140、有機半導体層130の順に堆積する。ただし、S/D電極140と有機半導体層130の順は入れ替わっていてもよい。
 本構造を以下ボトムゲート型と記す。また、図8に示す一般的なシリコンFETでは、ゲート層10とS/D層40と41がレイアウト上重ならない構造であるが、図10に示すボトムゲート型有機トランジスタでは、ゲート層110とS/D層140、141が重なる構成をとる。従って、基本的には図9に示すように、ボトムゲート型有機トランジスタのチャネル領域150は有機半導体層130内のS/D間の領域となる。
 このような一般的な有機半導体素子において、半導体として有望視されている有機材料は、シリコンと比べてその移動度が数桁小さいものが多く、比較的移動度の高いP3HTと呼ばれる有機半導体でも0.01cm/v・s程度である(シリコンは100程度)。従って、シリコン半導体デバイスと同程度のチャネルのアスペクト比(チャネル幅/チャネル長)では1/1000程度の駆動電流しか得られず、センサノード回路に必要な動作電流が不足するという問題を有している。
 このような問題を解決するために、例えば特許文献1(特開2006−091089)の図6、図7には、エッチングプロセス技術等を利用して基板に平行に半導体層およびゲート酸化膜を介して二つ目のゲート層を積層するトランジスタの構造が提案されている
 しかしながら、この特許文献1に開示された有機半導体素子には問題がある。すなわち、この構造は、積層する層数が増加するため、各層の合わせずれが大きい印刷プロセス技術では微細化が難しい。また、上下のゲート層を短絡するためのコンタクトホールが必要であるが、基本的に層間コンタクトの作成プロセスがない印刷プロセス技術での実用化は難しい。
 本発明は、このような問題を解決するために提案されたものであり、印刷プロセスで作成可能な有機半導体デバイスの駆動電流を増加させるデバイス構造を提供することを目的とする。
In recent years, wireless sensor systems are rapidly spreading, and a huge number of sensor nodes are required to obtain highly accurate sensor information. Therefore, low-cost and easy manufacture is required for the sensor terminal, and a sensor terminal using an organic semiconductor that satisfies this requirement is required. Furthermore, the manufacture of silicon semiconductor devices and compound semiconductor devices using vapor deposition processes and vacuum processes requires the introduction of equipment and initial investment, and it is difficult to reduce costs. On the other hand, in recent years, a method for producing an organic semiconductor element using a low-cost printing process has been widely researched and developed.
Here, FIGS. 9 and 10 show the structure of a basic organic transistor as a background art, and FIG. 8 shows the structure of a general silicon FET for comparison.
As shown in FIG. 8, in a general silicon FET, the silicon substrate 30 also serves as a semiconductor layer in which source / drain regions 40 and 41 and a channel region are formed.
On the other hand, in this organic transistor, as shown in FIG. 10, the organic semiconductor layer 130 is a separate layer from the substrate 100. Further, in order to avoid deterioration of the characteristics of the organic semiconductor due to the thermal process, the organic semiconductor layer 130 is configured to be the uppermost part.
Accordingly, as shown in FIG. 10, the cross-sectional structure of a general organic transistor is as follows: substrate 100, gate layer 110, insulating layer 120, source / drain (hereinafter referred to as S / D) electrode 140, and organic semiconductor layer 130 from the bottom. accumulate. However, the order of the S / D electrode 140 and the organic semiconductor layer 130 may be switched.
This structure is hereinafter referred to as a bottom gate type. Further, in the general silicon FET shown in FIG. 8, the gate layer 10 and the S / D layers 40 and 41 do not overlap in layout, but in the bottom gate type organic transistor shown in FIG. / D layers 140 and 141 are configured to overlap. Therefore, basically, as shown in FIG. 9, the channel region 150 of the bottom-gate organic transistor is a region between S / D in the organic semiconductor layer 130.
In such a general organic semiconductor element, an organic material that is considered promising as a semiconductor often has a mobility several orders of magnitude smaller than that of silicon, and even an organic semiconductor called P3HT having a relatively high mobility is 0. It is about 0.01 cm 2 / v · s (silicon is about 100). Therefore, with a channel aspect ratio (channel width / channel length) comparable to that of a silicon semiconductor device, only a drive current of about 1/1000 can be obtained, and there is a problem that the operating current required for the sensor node circuit is insufficient. Yes.
In order to solve such a problem, for example, in FIGS. 6 and 7 of Patent Document 1 (Japanese Patent Application Laid-Open No. 2006-091089), an etching process technique or the like is used to connect a semiconductor layer and a gate oxide film in parallel to the substrate. However, the structure of a transistor in which a second gate layer is stacked has been proposed. However, the organic semiconductor element disclosed in Patent Document 1 has a problem. That is, since the number of layers to be stacked increases in this structure, it is difficult to miniaturize the printing process technology in which the misalignment of each layer is large. In addition, contact holes for short-circuiting the upper and lower gate layers are necessary, but it is difficult to put it into practical use in a printing process technique that basically does not have an interlayer contact creation process.
The present invention has been proposed to solve such problems, and an object thereof is to provide a device structure that increases the drive current of an organic semiconductor device that can be produced by a printing process.
 本発明の有機半導体デバイスは、基板上にゲート層が設けられ、その上に設けられた絶縁層を介してソース/ドレイン領域とチャネル領域が形成される有機半導体層を有するボトムゲート型有機半導体素子であって、前記ゲート層の側面及び上面に前記絶縁膜が形成され、少なくとも前記ゲート層の側面にチャネル領域が形成されていることを特徴とする。
 更に本発明の有機半導体デバイスは、基板上にゲート層が設けられ、その上に設けられた絶縁層を介してソース/ドレイン領域とチャネル領域が形成される有機半導体層を有するボトムゲート型有機半導体素子であって、複数の前記ゲート層が、前記有機半導体層内で、前記ソース/ドレイン領域が延びる方向に並列に形成されることを特徴とする。
 更に、本発明の有機半導体デバイスは基板上にゲート層が設けられ、その上に設けられた絶縁層を介してソース/ドレイン領域とチャネル領域が形成される有機半導体層を有するボトムゲート型有機半導体素子であって、複数の第1のゲート層と、前記第1のゲート層とは異なる信号が印加される複数の第2のゲート層が、前記有機半導体層内で、前記ソース/ドレイン領域が延びる方向に並列に交互に形成されることを特徴とする。
The organic semiconductor device of the present invention is a bottom gate type organic semiconductor element having an organic semiconductor layer in which a gate layer is provided on a substrate and a source / drain region and a channel region are formed via an insulating layer provided thereon. The insulating film is formed on a side surface and an upper surface of the gate layer, and a channel region is formed at least on the side surface of the gate layer.
Furthermore, the organic semiconductor device of the present invention is a bottom gate type organic semiconductor having an organic semiconductor layer in which a gate layer is provided on a substrate and a source / drain region and a channel region are formed via an insulating layer provided thereon. An element, wherein a plurality of the gate layers are formed in parallel in a direction in which the source / drain regions extend in the organic semiconductor layer.
Furthermore, the organic semiconductor device of the present invention is a bottom gate type organic semiconductor having a gate layer on a substrate and an organic semiconductor layer in which a source / drain region and a channel region are formed via an insulating layer provided thereon. An element, wherein a plurality of first gate layers and a plurality of second gate layers to which signals different from the first gate layer are applied are formed in the organic semiconductor layer, and the source / drain regions are It is characterized by being alternately formed in parallel in the extending direction.
本発明の第一の実施形態を説明するための有機トランジスタの平面図である。It is a top view of the organic transistor for demonstrating 1st embodiment of this invention. 本発明の第一の実施形態を説明するための有機トランジスタ構造のゲート分離部近傍を拡大した平面図である。It is the top view to which the gate isolation | separation part vicinity of the organic transistor structure for demonstrating 1st embodiment of this invention was expanded. 本発明の第一の実施形態を説明するための有機トランジスタ構造のゲート分離部近傍を拡大したS/D方向の断面図である。It is sectional drawing of the S / D direction which expanded the gate isolation | separation part vicinity of the organic transistor structure for describing 1st embodiment of this invention. 本発明の第一の実施形態を説明するための有機トランジスタ構造のチャネル方向の断面図である。It is sectional drawing of the channel direction of the organic transistor structure for demonstrating 1st embodiment of this invention. 本発明の第二の実施形態を説明するための4ゲート分離構成の有機トランジスタ構造の平面図である。It is a top view of the organic transistor structure of 4 gate isolation | separation structure for demonstrating 2nd embodiment of this invention. 本発明の第三の実施形態を説明するための無線通信のミキサ部への応用例を示す図である。It is a figure which shows the example of application to the mixer part of the radio | wireless communication for demonstrating 3rd embodiment of this invention. 本発明の第三の実施形態を説明するためのバックゲートとして利用する実施例を示す平面図であるIt is a top view which shows the Example utilized as a back gate for demonstrating 3rd embodiment of this invention. 図6の断面図である。It is sectional drawing of FIG. 一般的なシリコンFET構造を示す平面図である。It is a top view which shows a general silicon FET structure. 一般的なシリコンFET構造を示す断面図である。It is sectional drawing which shows a general silicon FET structure. 一般的なシリコンFET構造を示す平面図である。It is a top view which shows a general silicon FET structure. 一般的な有機トランジスタ構造を示す平面図である。It is a top view which shows a general organic transistor structure. 図9の点線部における断面図である。It is sectional drawing in the dotted-line part of FIG.
 (第一の実施の形態)
 図1乃至図3を用いて本発明の第一の形態としての有機半導体素子を説明する。
 図1に示すように、ナノ銀インク等を基板100上に印刷または塗布して形成したゲート層110を、有機半導体層130内で、S/D形成領域方向に複数に分割(図1では2分割構成を示す)する。すなわち、有機半導体層130外で電気的に接続された複数のゲート電極となるゲート層が、有機半導体層130内で、S/D領域が延びる方向に並列に形成される。
 図2に示すように、ゲート層110上に、塗布、印刷等で形成されたポリイミドや誘電率が高い絶縁材料が形成される。従って、ゲート層110、111の側面及び上面に絶縁膜120、121が形成される。本実施の形態の場合、ゲート層の上面の絶縁層の厚さAよりもゲート層の側面に形成された絶縁層の厚さBのほうが薄く形成されている。
 従って、平面上では、有機半導体領域130内で、S/D領域と分割されたゲート層110が垂直に交差する構造となる。
 来の有機トランジスタ構造では図9に示すようにトランジスタのチャネルはゲート層110上に絶縁膜120を介して生成される。これに対し、本発明の構成では図2に示される絶縁膜120(121)を介してゲート層110(111)上の領域にチャネル領域が形成されるだけでなく、図2の断面図に示すように絶縁膜120(121)を介し、ゲート層110(111)側壁にもチャネル領域が形成される。これによりチャネル幅を従来に対して増やすことができる。
 また、別の効果としては、絶縁層120(121)の側壁部分の厚さを薄く形成することで、ゲート層110の上部よりゲート・有機半導体間の電界が向上し、電流量を向上させることが期待できる。
 (第二の実施の形態)
 一般的に図8(c)に示すように、シリコンFETではフィンガー型と呼ばれる構造がある。すなわち、S/D容量を低減するために、ゲート層10をS/D方向に分割したトランジスタ構成が一般的である。本発明においても、フィンガー型に適用が可能である。
 ボトムゲート型有機トランジスタでは、図4に示すように、S/D電極140、141をチャネル長方向に複数に分割することでフィンガー型を構成することができる。本実施例の場合ではS/D電極140,141をそれぞれ2分割にしている。
 これに加え、本実施の形態では、第一の実施の形態と同様に、ゲート層110をS/D方向にさらに分割している。本実施の形態では4分割としている。
 つまり、最大限の駆動電流を得るためには、有機半導体層130の領域内でゲート層のS/D方向への分割とS/D層のチャネル方向への分割を組み合わせた構造をとることにより、より効果的な電流量を得ることができる。
 なおゲート層及びS/D電極の分割する数は2以上であればよい。
 (第三の実施の形態)
 第三の実施の形態を図5、図6、図7を用いて説明する。本実施の形態は、無線受信部のミキサ回路として利用した場合を示したものである。
 図5に示すように、ミキサ回路を構成するトランジスタを本発明に適用した例である。
 RF受信信号をドレイン端子200に入力し、ローカル信号をバックゲート230へ入力する。このときゲート端子210に入力されたクロックによりスイッチがオンしている間は、ローカル信号によるミキサ動作をすることができ、端子220からベースバンド信号を抽出することができる。
 図6にバックゲートにローカル信号が印加される構造の平面図を示す。2つに分割した
 ゲート層110と、2つに分割したバックゲート層がS/D方向に交互に並ぶ構成となっている。本実施例の場合ではS/D電極140、141をそれぞれ2分割にしている。
 チャネル部の断面構造は図7のようにバックゲート層11の上面、側面に絶縁層121が形成されている。従って、バックゲート層11の側面がチャネル領域を構成しているゲート層110の側面に対向する形で形成される。
 ゲート層110に入力される電圧に対してバックゲート層111に異なる電圧を入力ことができるため、ゲート層から側壁チャネル部151を横切る電界をバックゲート層111に印可する電圧で制御することが可能となる。
 その結果、従来は3端子制御(ゲート・ドレイン・ソース)しかできなかったボトムゲート型トランジスタに対して、チャネルの一部である側壁部に対して4端子で制御することが可能となる。
 この出願は、2011年9月22日に出願された日本出願特願2011−206947を基礎とする優先権を主張し、その開示の全てをここに取り込む。
(First embodiment)
The organic semiconductor element as the first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, a gate layer 110 formed by printing or applying nano silver ink or the like on a substrate 100 is divided into a plurality of portions in the direction of the S / D formation region in the organic semiconductor layer 130 (2 in FIG. 1). (Shows the split configuration). That is, a plurality of gate layers that are electrically connected outside the organic semiconductor layer 130 are formed in parallel in the organic semiconductor layer 130 in the direction in which the S / D region extends.
As shown in FIG. 2, polyimide formed by coating, printing, or an insulating material having a high dielectric constant is formed on the gate layer 110. Accordingly, the insulating films 120 and 121 are formed on the side surfaces and the upper surface of the gate layers 110 and 111, respectively. In the case of this embodiment, the thickness B of the insulating layer formed on the side surface of the gate layer is thinner than the thickness A of the insulating layer on the upper surface of the gate layer.
Therefore, on the plane, the S / D region and the divided gate layer 110 vertically intersect in the organic semiconductor region 130.
In the conventional organic transistor structure, the channel of the transistor is generated on the gate layer 110 via the insulating film 120 as shown in FIG. On the other hand, in the structure of the present invention, not only the channel region is formed in the region on the gate layer 110 (111) via the insulating film 120 (121) shown in FIG. Thus, a channel region is also formed on the side wall of the gate layer 110 (111) through the insulating film 120 (121). As a result, the channel width can be increased as compared with the prior art.
Another effect is that the electric field between the gate and the organic semiconductor is improved from the upper part of the gate layer 110 and the amount of current is improved by forming the side wall portion of the insulating layer 120 (121) thin. Can be expected.
(Second embodiment)
Generally, as shown in FIG. 8C, a silicon FET has a structure called a finger type. That is, in order to reduce the S / D capacitance, a transistor configuration in which the gate layer 10 is divided in the S / D direction is common. The present invention can also be applied to the finger type.
In the bottom gate type organic transistor, as shown in FIG. 4, a finger type can be formed by dividing the S / D electrodes 140 and 141 into a plurality in the channel length direction. In this embodiment, each of the S / D electrodes 140 and 141 is divided into two.
In addition to this, in this embodiment, the gate layer 110 is further divided in the S / D direction as in the first embodiment. In this embodiment, it is divided into four.
In other words, in order to obtain the maximum driving current, a structure in which the division of the gate layer in the S / D direction and the division of the S / D layer in the channel direction is combined in the region of the organic semiconductor layer 130. A more effective current amount can be obtained.
The number of gate layers and S / D electrodes to be divided may be two or more.
(Third embodiment)
A third embodiment will be described with reference to FIGS. 5, 6, and 7. FIG. This embodiment shows a case where it is used as a mixer circuit of a wireless receiving unit.
As shown in FIG. 5, this is an example in which a transistor constituting a mixer circuit is applied to the present invention.
An RF reception signal is input to the drain terminal 200 and a local signal is input to the back gate 230. At this time, while the switch is turned on by the clock input to the gate terminal 210, the mixer operation can be performed using the local signal, and the baseband signal can be extracted from the terminal 220.
FIG. 6 shows a plan view of a structure in which a local signal is applied to the back gate. The gate layer 110 divided into two and the back gate layer divided into two are arranged alternately in the S / D direction. In this embodiment, each of the S / D electrodes 140 and 141 is divided into two.
In the cross-sectional structure of the channel portion, an insulating layer 121 is formed on the top and side surfaces of the back gate layer 11 as shown in FIG. Accordingly, the back gate layer 11 is formed so that the side surface thereof faces the side surface of the gate layer 110 constituting the channel region.
Since a different voltage can be input to the back gate layer 111 with respect to a voltage input to the gate layer 110, an electric field across the side wall channel portion 151 from the gate layer can be controlled by a voltage applied to the back gate layer 111. It becomes.
As a result, it is possible to control the side wall portion, which is a part of the channel, with four terminals with respect to the bottom gate type transistor that has been conventionally only capable of three-terminal control (gate / drain / source).
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2011-206947 for which it applied on September 22, 2011, and takes in those the indications of all here.
 本発明によれば、多層を利用せずにダブルゲート構造を形成することができるので、マスクコストやインクコストを増加せずに駆動電流を増やすことができる。また、コンタクトホール形成プロセスを利用せずに二つのゲート電極間をショートできるので、コンタクトホール形成が難しい印刷プロセスでのデバイス形成が可能である。 According to the present invention, since a double gate structure can be formed without using multiple layers, the drive current can be increased without increasing the mask cost and the ink cost. In addition, since the two gate electrodes can be short-circuited without using the contact hole formation process, it is possible to form a device in a printing process in which contact hole formation is difficult.
110、111 ゲート層
120、121 絶縁層
130 有機半導体層
140、141 S/D電極
110, 111 Gate layer 120, 121 Insulating layer 130 Organic semiconductor layer 140, 141 S / D electrode

Claims (9)

  1.  基板上にゲート層が設けられ、その上に設けられた絶縁層を介してソース/ドレイン領域とチャネル領域が形成される有機半導体層を有するボトムゲート型有機半導体素子であって、前記ゲート層の側面及び上面に前記絶縁膜が形成され、少なくとも前記ゲート層の側面にチャネル領域が形成されていることを特徴とするボトムゲート型有機半導体素子。 A bottom gate type organic semiconductor device having an organic semiconductor layer in which a gate layer is provided on a substrate and a source / drain region and a channel region are formed through an insulating layer provided thereon, A bottom gate type organic semiconductor device, wherein the insulating film is formed on a side surface and an upper surface, and a channel region is formed at least on a side surface of the gate layer.
  2.  前記ゲート層の上面に形成される前記絶縁膜の厚さよりも、側面に形成される前記絶縁膜の厚さのほうが薄いことを特徴とする請求項1記載のボトムゲート型有機半導体素子。 2. The bottom gate type organic semiconductor device according to claim 1, wherein the insulating film formed on the side surface is thinner than the insulating film formed on the upper surface of the gate layer.
  3.  基板上にゲート層が設けられ、その上に設けられた絶縁層を介してソース/ドレイン領域とチャネル領域が形成される有機半導体層を有するボトムゲート型有機半導体素子であって、複数の前記ゲート層が、前記有機半導体層内で、前記ソース/ドレイン領域が延びる方向に並列に形成されることを特徴とするボトムゲート型有機半導体素子。 A bottom gate type organic semiconductor device having an organic semiconductor layer in which a gate layer is provided on a substrate and a source / drain region and a channel region are formed through an insulating layer provided thereon, and a plurality of the gates A layer is formed in parallel in the direction in which the source / drain regions extend in the organic semiconductor layer.
  4.  前記ゲート層の側面及び上面に前記絶縁膜が形成され、少なくとも前記ゲート層の側面にチャネル領域が形成されていることを特徴とする請求項3記載のボトムゲート型有機半導体素子。 The bottom gate type organic semiconductor device according to claim 3, wherein the insulating film is formed on a side surface and an upper surface of the gate layer, and a channel region is formed at least on the side surface of the gate layer.
  5.  前記有機半導体層内で、複数の前記ソース/ドレイン領域が前記チャネル領域方向で並列に形成されていることを特徴とする請求項3または請求項4に記載のボトムゲート型有機半導体素子。 5. The bottom gate type organic semiconductor device according to claim 3, wherein a plurality of the source / drain regions are formed in parallel in the channel region direction in the organic semiconductor layer.
  6.  前記ゲート層の上面に形成される前記絶縁膜の厚さよりも、側面に形成される前記絶縁膜の厚さのほうが薄いことを特徴とする請求項4記載のボトムゲート型有機半導体素子。 5. The bottom gate type organic semiconductor device according to claim 4, wherein the thickness of the insulating film formed on the side surface is smaller than the thickness of the insulating film formed on the upper surface of the gate layer.
  7.  基板上にゲート層が設けられ、その上に設けられた絶縁層を介してソース/ドレイン領域とチャネル領域が形成される有機半導体層を有するボトムゲート型有機半導体素子であって、複数の第1のゲート層と、前記第1のゲート層とは異なる信号が印加される複数の第2のゲート層が、前記有機半導体層内で、前記ソース/ドレイン領域が延びる方向に並列に交互に形成されることを特徴とするボトムゲート型有機半導体素子。 A bottom gate type organic semiconductor device having an organic semiconductor layer in which a gate layer is provided on a substrate and a source / drain region and a channel region are formed through an insulating layer provided on the substrate. And a plurality of second gate layers to which signals different from the first gate layer are applied are alternately formed in parallel in the organic semiconductor layer in a direction in which the source / drain regions extend. A bottom-gate organic semiconductor element characterized by the above.
  8.  前記第1のゲート層の側面及び上面に前記絶縁膜が形成され、少なくとも前記ゲート層の側面にチャネル領域が形成されていることを特徴とする請求項7記載のボトムゲート型有機半導体素子。 The bottom gate type organic semiconductor device according to claim 7, wherein the insulating film is formed on a side surface and an upper surface of the first gate layer, and a channel region is formed at least on the side surface of the gate layer.
  9.  前記第1のゲート層の上面に形成される前記絶縁膜の厚さよりも、側面に形成される前記絶縁膜の厚さのほうが薄いことを特徴とする請求項8記載のボトムゲート型有機半導体素子。 9. The bottom gate type organic semiconductor device according to claim 8, wherein a thickness of the insulating film formed on the side surface is thinner than a thickness of the insulating film formed on the upper surface of the first gate layer. .
PCT/JP2012/074125 2011-09-22 2012-09-13 Organic semiconductor element WO2013042755A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-206947 2011-09-22
JP2011206947 2011-09-22

Publications (1)

Publication Number Publication Date
WO2013042755A1 true WO2013042755A1 (en) 2013-03-28

Family

ID=47914515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074125 WO2013042755A1 (en) 2011-09-22 2012-09-13 Organic semiconductor element

Country Status (1)

Country Link
WO (1) WO2013042755A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279616A (en) * 1995-04-07 1996-10-22 Nec Corp Field-effect transistor
JP2007515776A (en) * 2003-05-20 2007-06-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Structure for semiconductor configuration and manufacturing method thereof
JP2008028404A (en) * 2002-08-30 2008-02-07 Sharp Corp Thin-film transistor and liquid-crystal display device
JP2008112962A (en) * 2006-09-26 2008-05-15 Seiko Epson Corp Thin film transistor, electrooptical device, and electronic equipment
JP2008270544A (en) * 2007-04-20 2008-11-06 Ricoh Co Ltd Organic transistor and manufacturing method therefor
JP2010050348A (en) * 2008-08-22 2010-03-04 Ricoh Co Ltd Thin-film transistor, active matrix circuit, and display
JP2010245114A (en) * 2009-04-01 2010-10-28 Sanyo Electric Co Ltd Method of manufacturing organic transistor, and organic transistor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279616A (en) * 1995-04-07 1996-10-22 Nec Corp Field-effect transistor
JP2008028404A (en) * 2002-08-30 2008-02-07 Sharp Corp Thin-film transistor and liquid-crystal display device
JP2007515776A (en) * 2003-05-20 2007-06-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Structure for semiconductor configuration and manufacturing method thereof
JP2008112962A (en) * 2006-09-26 2008-05-15 Seiko Epson Corp Thin film transistor, electrooptical device, and electronic equipment
JP2008270544A (en) * 2007-04-20 2008-11-06 Ricoh Co Ltd Organic transistor and manufacturing method therefor
JP2010050348A (en) * 2008-08-22 2010-03-04 Ricoh Co Ltd Thin-film transistor, active matrix circuit, and display
JP2010245114A (en) * 2009-04-01 2010-10-28 Sanyo Electric Co Ltd Method of manufacturing organic transistor, and organic transistor

Similar Documents

Publication Publication Date Title
KR101694877B1 (en) Graphene device and method of manufacturing the same
US10014219B2 (en) Semiconductor device
KR101718961B1 (en) Semiconductor device comprising Graphene and method of manufacturing the same
JP6295802B2 (en) FIELD EFFECT TRANSISTOR FOR HIGH FREQUENCY DEVICE, ITS MANUFACTURING METHOD, AND HIGH FREQUENCY DEVICE
US9536878B2 (en) Semiconductor devices and fabricating methods thereof
US8932919B2 (en) Vertical stacking of graphene in a field-effect transistor
KR20170045104A (en) Gate-all-around field effect transistors with horizontal nanosheet conductive channel structures for mol/inter-channel spacing and related cell architectures
KR20120065048A (en) Transistor and electronic device including the same
TWI459567B (en) Active device, driving circuit structure, and display panel
CN102569398A (en) Graphene electronic device including a plurality of graphene channel layers
US8617943B2 (en) Method for making a semiconductor device on a flexible substrate
CN111656529A (en) Semiconductor device with a plurality of semiconductor chips
WO2013042755A1 (en) Organic semiconductor element
US9455251B1 (en) Decoupling capacitor using finFET topology
US20120228726A1 (en) Mems and method of manufacturing the same
JP6005204B1 (en) Thin film transistor manufacturing method and thin film transistor
US11830952B2 (en) Two-dimensional material-based wiring conductive layer contact structures, electronic devices including the same, and methods of manufacturing the electronic devices
KR20130098739A (en) Thin film transistor inverter device and method for manufacturing thereof
WO2016158180A1 (en) Method for producing thin film transistor, and thin film transistor
KR100496432B1 (en) Self-assembled monolayer field-effect transistors and methods of manufacturing the same
US20060216895A1 (en) Power semiconductor device having buried gate bus and process for fabricating the same
US11843001B2 (en) Devices including stacked nanosheet transistors
JP2018088553A (en) Field effect transistor and wireless communication device
EP4089723A1 (en) Devices including stacked nanosheet transistors
KR20170096867A (en) Multi-layer electron apparatus and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP