WO2013042500A1 - Power conversion system - Google Patents

Power conversion system Download PDF

Info

Publication number
WO2013042500A1
WO2013042500A1 PCT/JP2012/070975 JP2012070975W WO2013042500A1 WO 2013042500 A1 WO2013042500 A1 WO 2013042500A1 JP 2012070975 W JP2012070975 W JP 2012070975W WO 2013042500 A1 WO2013042500 A1 WO 2013042500A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
organic hydride
power conversion
conversion system
supplied
Prior art date
Application number
PCT/JP2012/070975
Other languages
French (fr)
Japanese (ja)
Inventor
島田 敦史
石川 敬郎
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2013042500A1 publication Critical patent/WO2013042500A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/10Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
    • F02M25/12Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone the apparatus having means for generating such gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a power conversion system that generates power using exhaust heat of a heat engine.
  • Examples of energy storage means that can store natural energy and relax the supply and demand balance of electric power include those using organic hydrides.
  • the organic hydride When heated in the presence of a predetermined catalyst, the organic hydride generates hydrogen and a dehydrogenated product composed of, for example, an aromatic hydrocarbon by a dehydrogenation reaction. Further, when this dehydrogenated product and hydrogen are reacted in the presence of a predetermined catalyst, an organic hydride is generated. Therefore, when this reaction is applied, for example, water is electrolyzed using electricity obtained from natural energy such as sunlight and geothermal heat, and hydrogen obtained by this electrolysis is stored in high density as an organic hydride. be able to.
  • a hydrogen supply system that supplies hydrogen extracted from an organic hydride is known (see, for example, Patent Document 1).
  • This hydrogen supply system is configured to generate hydrogen from organic hydride using the high-temperature exhaust gas of the combustion turbine power generator as a heat source.
  • an object of the present invention is to provide a power conversion system having excellent energy conversion efficiency using an organic hydride.
  • the power conversion system of the present invention that solves the above problems includes a hydrogen generator that generates hydrogen and a dehydrogenated product of organic hydride by heating the supplied organic hydride in the presence of a predetermined catalyst, and the hydrogen generator.
  • Separation device for separating hydrogen obtained from organic hydride dehydrogenated product and sending hydrogen, power conversion device for obtaining power by burning hydrogen sent from the separation device, and discharge from the power conversion device Power is generated by the heat exchanger that exchanges heat between the exhaust gas to be supplied and the organic hydride before being supplied to the hydrogen generator, and the organic hydride that is superheated by heat exchange in the heat exchanger And an expander for delivering the organic hydride to the hydrogen generator.
  • the organic hydride is heated by exhaust heat from the power conversion device, and the organic hydride that has become superheated steam is supplied to the expander to obtain power.
  • the organic hydride that has passed through the expander is supplied to a hydrogen generator to generate hydrogen, which is used as fuel when the power converter generates power.
  • FIG. 1 is a configuration explanatory diagram of a power conversion system according to a first embodiment of the present invention.
  • FIG. (A) is sectional drawing of the hydrogen generator of a power conversion system
  • (b) is sectional drawing of the reaction cell incorporated in a hydrogen generator
  • (c) is sectional drawing of the reaction sheet incorporated in a reaction cell. is there.
  • the power conversion system S includes a hydrogen generator 1, a separation device 2, a power converter 4 having a first expander 3, a heat exchanger 5, 2 expander 6.
  • the first expander 3 corresponds to “an expander that generates power by hydrogen combustion gas from a hydrogen combustion device” in the claims.
  • the second expander 6 corresponds to “an expander that generates power using an organic hydride and sends the organic hydride to a hydrogen generator” in the claims.
  • the power conversion system S generates power using the power obtained using the organic hydride.
  • the power conversion system S generates power by using the superheated steam of the organic hydride and generates power by burning the hydrogen obtained from the organic hydride. It has a configuration.
  • the first expander 3 is configured by a gas turbine that supplies hydrogen combustion gas
  • the second expander 6 is configured by a steam turbine that supplies superheated steam of organic hydride.
  • the organic hydride is a hydride of an aromatic hydrocarbon, and stores hydrogen so that it can be desorbed by adding hydrogen to the carbon-carbon double bond of the aromatic hydrocarbon.
  • the organic hydride include monocyclic hydrogenated aromatics such as cyclohexane, methylcyclohexane and dimethylcyclohexane, bicyclic hydrogenated aromatics such as tetralin, decalin and methyldecalin, and tetradecahydroanthracene. And cyclic hydrogenated aromatics.
  • the organic hydride When heated in the presence of a predetermined catalyst, the organic hydride is decomposed into hydrogen and the aromatic hydrocarbon which is a dehydrogenated product of the organic hydride.
  • the dehydrogenated product of organic hydride include benzene, toluene, xylene, mesitylene, naphthalene, methylnaphthalene, and anthracene.
  • methylcyclohexane is a dehydrogenated product of hydrogen (H 2 ) and organic hydride.
  • toluene [C 6 H 5 (CH 3 )].
  • the reaction represented by the formula (1) is an endothermic reaction, and it is desirable to carry out the reaction under heating since 205 kJ of heat is absorbed when 3 mol of hydrogen is produced from 1 mol of methylcyclohexane.
  • the heating temperature is set to about 300 to 400 ° C. on the premise that methylcyclohexane is used as the organic hydride, but this heating temperature depends on the type of the organic hydride used. It can be set as appropriate.
  • the hydrogen generator 1 uses organic hydride supplied from a first tank 7 described later, which stores organic hydride via a separation device 2, a heat exchanger 5 and a second expander 6 described later, as a dehydrogenated product. It decomposes into hydrogen.
  • symbol P1 is a booster pump that boosts the organic hydride in the first tank 7 and supplies it to the second expander 6 side
  • symbol V1 is a valve. It is provided in the middle of piping connecting between the separator 2.
  • These booster pump P1 and valve V1 are for adjusting the flow rate, flow velocity, pressure, etc. of the organic hydride delivered from the first tank 7 toward the separation device 2.
  • 2A to be referred to next is a sectional view of the hydrogen generator
  • FIG. 2B is a sectional view of a reaction cell built in the hydrogen generator
  • FIG. 2C is built in the reaction cell. It is sectional drawing of a reaction sheet.
  • the hydrogen generator 1 includes a plurality of reaction cells 31 whose outer shape is columnar, and a cylindrical first casing 32 that houses these reaction cells 31. Yes. And in each reaction cell 31, the organic hydride (for example, methylcyclohexane) stored in the 1st tank 7 shown in FIG. 1 has the separation apparatus 2, the heat exchanger 5, and the 2nd expander 6 which are mentioned later. Sent through. A high-temperature hydrogen combustion gas from the hydrogen combustion device 8 described later flows through the gap formed between the reaction cells 31.
  • the first casing 32 and the second casing 34 to be described later are made of metal (for example, SUS) so as to have high thermal conductivity.
  • the shape of the 1st casing 32 and the 2nd casing 34 is not limited to a cylindrical shape, For example, a square cylinder shape and a polygonal cylinder shape may be sufficient.
  • the reaction cell 31 includes a plurality of stacked reaction sheets 33 and a second casing 34 that accommodates the plurality of reaction sheets 33.
  • each reaction sheet 33 includes a base metal foil 35, a porous layer 36 formed on each surface of the metal foil 35, and a catalyst 37 supported on the porous layer 36.
  • each reaction sheet 33 has a three-layer structure in which the porous layer 36 supported by the catalyst 37, the metal foil 35, and the porous layer 36 supported by the catalyst 37 are stacked in this order. Note that a gap is formed between the reaction sheets 33 adjacent to each other in the thickness direction so that the organic hydride, the generated hydrogen, and the dehydrogenated product (for example, toluene) can flow therethrough.
  • reaction sheet 33 is in the form of a sheet, its heat capacity is small, heat is quickly conducted through the reaction sheet 33, and the temperature of the catalyst 37 is quickly raised to a temperature at which the catalyst function is exhibited well. Thereby, the efficiency of the decomposition reaction which decomposes
  • each reaction sheet 33 is formed with a plurality of through holes 33a. As a result, the heat of the hydrogen combustion gas is conducted well in the thickness direction, and the organic hydride, the generated hydrogen, and the dehydrogenated product are also flowed well in the thickness direction.
  • the metal foil 35 is made of, for example, an aluminum foil and has a thickness of about 50 to 200 ⁇ m. However, the metal foil 35 may not be provided, or instead of the metal foil 35, a porous layer serving as a base may be provided, and the entire reaction sheet 33 may have a porous structure.
  • the porous layer 36 is a layer for supporting the catalyst 37 and has a plurality of pores through which the organic hydride, the generated hydrogen, and the dehydrogenated product can flow.
  • a porous layer 36 can be formed of, for example, an oxide mainly composed of alumina, titania, silica, zirconia or the like.
  • the catalyst 37 decomposes the organic hydride to generate hydrogen and dehydrogenated product. It is a catalyst.
  • Such a catalyst 37 is composed of at least one selected from, for example, platinum, nickel, palladium, rhodium, iridium, ruthenium, molybdenum, rhenium, tungsten, vanadium, osmium, chromium, cobalt, iron and the like.
  • the hydrogen combustion gas flowing through the hydrogen generator 1 passes through a predetermined pipe (not shown) connected to the hydrogen generator 1 and is discharged to the outside of the hydrogen generator 1. It has become.
  • the temperature of the hydrogen generator 1 can be adjusted by the temperature of the hydrogen combustion gas sent from the heat exchanger 5 toward the hydrogen generator 1 and the flow rate of the hydrogen combustion gas.
  • the temperature of the hydrogen generator 1 in this embodiment is assumed to be set to about 300 to 400 ° C. on the assumption that methylcyclohexane is used as the organic hydride. It is not limited to these, and can be appropriately set within the range of the decomposition temperature according to the type of organic hydride to be used.
  • a dehydrogenated product for example, toluene
  • the high-temperature organic hydride for example, methylcyclohexane
  • a hydrogen mixture By cooling to a temperature below the boiling point of the hydride (bp: less than 111.degree. C. in the case of toluene), the dehydrogenated product as a liquid and the hydrogen as a gas are separated from each other. Then, the separation device 2 sends the separated hydrogen to the power conversion device 4 described later.
  • the separation device 2 in the present embodiment exchanges heat between the organic hydride supplied from the first tank 7 and the mixture of the dehydrogenated product and hydrogen delivered from the hydrogen generating device 1, so that the gas as a gas
  • the dehydrogenated product is cooled and condensed.
  • a cooling pipe through which an organic hydride supplied from the first tank 7 flows is disposed in a chamber into which a mixture of dehydrogenated product and hydrogen flows.
  • the organic hydride supplied from the first tank 7 is preheated by a mixture of dehydrogenated product and hydrogen before being supplied to the heat exchanger 5 described later.
  • a hydrogen combustion device 8 that combusts hydrogen sent from the separation device, an axial flow type compressor 9 that sends compressed air to the hydrogen combustion device 8, and a hydrogen combustion device 8
  • An expansion turbine that generates power using high-temperature and high-pressure hydrogen combustion gas, and includes a first expander 3 that is coaxially connected to the compressor 9.
  • the output shaft of the first expander 3 is connected to the input shaft of the first generator 10. That is, the first generator 10 generates power using the power generated by the power conversion device 4.
  • the first expander 3 sends high-temperature hydrogen combustion gas to a heat exchanger 5 described later.
  • the heat exchanger 5 is configured to exchange heat between the high-temperature hydrogen combustion gas exhausted from the first expander 3 and the organic hydride preheated by the separation device 2. Accordingly, the organic hydride delivered from the separation device 2 becomes superheated steam exceeding 300 ° C. and is supplied to the next second expander 6.
  • the second expander 6 is composed of an expansion turbine, and generates power by organic hydride that has become high-temperature and high-pressure superheated steam supplied from the heat exchanger 5.
  • the output shaft of the second expander 6 is connected to the input shaft of the second generator 11. That is, the second generator 11 is configured to generate power with the power generated by the second expander 6 by the organic hydride that has become superheated steam.
  • the second expander 6 is configured to send a high temperature organic hydride gas to the hydrogen generator 1 described above. Incidentally, the temperature of the organic hydride gas is maintained at about 300 to 400 ° C.
  • Such a power conversion system S according to the first embodiment includes the second tank 12 that stores the dehydrogenated product of the organic hydride separated by the separation device 2.
  • the power conversion system S according to the present embodiment it is assumed that all of the organic hydride gas supplied to the hydrogen generator 1 is decomposed into its dehydrogenated product and hydrogen (decomposition rate 100). %), When the decomposition rate of the organic hydride is less than 100%, the undecomposed organic hydride is recovered in the second tank 12 as a liquid.
  • the power conversion system S according to the first embodiment includes a compressor that compresses hydrogen and sends it to the hydrogen combustion device 8 in the middle of a pipe connecting the separation device 2 and the hydrogen combustion device 8. Can be arranged.
  • the hydrogen generator 1 efficiently uses the heat (exhaust heat) of the exhaust gas from the power conversion device 4 from the organic hydride. Hydrogen can be generated. Moreover, power generation can be performed by converting the exhaust heat described above into expansion work (power) by the second expander 6. Electric power can be generated by converting the heat generated by burning the generated hydrogen into expansion work (power) in the first expander 3. Thereby, the power conversion system S is excellent in energy conversion efficiency.
  • the second expander 6 and the second generator 11 may be connected on the same axis or via a transmission. According to such a configuration, the second generator 11 at the start can operate as a motor.
  • a power conversion system S according to a second embodiment of the present invention will be described with reference to FIG.
  • the power conversion system S according to the present embodiment is replaced with the second expander 6 (see FIG. 1) used in the power conversion system S (see FIG. 1) according to the first embodiment.
  • the second embodiment is the same as the first embodiment except that the expander type hydrogen generator 20 is used and the hydrogen generator 1 (see FIG. 1) provided on the downstream side of the second expander 6 (see FIG. 1) is omitted. It is configured. That is, in the second embodiment, the expander-type hydrogen generator 20 also serves as the hydrogen generator 1 and the second expander 6 in the first embodiment.
  • the expander-type hydrogen generator 20 will be mainly described, and the same components as those in the first embodiment will be denoted by the same reference numerals and detailed description thereof will be omitted.
  • the expander-type hydrogen generator 20 shown in FIG. 3 is composed of an expansion turbine and has the above-described catalyst so as to face a flow path through which organic hydride gas that has become superheated steam flows.
  • the catalyst As an arrangement position of the catalyst, the vicinity of the outlet for sending the organic hydride gas toward the separation device 2 is desirable.
  • the catalyst is filled in a predetermined casing (not shown), and this casing is disposed on the flow path of the organic hydride gas.
  • the catalyst can be directly supported on the turbine blade of the above-described expansion turbine.
  • the expander-type hydrogen generator 20 including such an expansion turbine when hydrogen and a dehydrogenated product are generated from the organic hydride by the catalytic action on the surface of the turbine blade that rotates at high speed, the density difference between them is generated. Makes it easier to separate them (by centrifugal force). As a result, the reaction temperature (decomposition temperature) of the organic hydride can be lowered by reducing the partial pressure of the dehydrogenated product in the reaction system.
  • the lower limit of the reaction temperature of the organic hydride in the expander type hydrogen generator 20 in which the catalyst is not supported on the turbine blade is about 250 ° C.
  • the expander type hydrogen in which the catalyst is supported on the turbine blade can be lowered to about 150 ° C.
  • the expander type hydrogen generator 20 can be provided with a hydrogen separation membrane (not shown) for separating hydrogen from a mixture containing undecomposed organic hydride, generated hydrogen, and dehydrogenated product.
  • the position of the hydrogen separation membrane is provided so as to connect a predetermined gas outlet of the expansion turbine constituting the expander-type hydrogen generator 20 and a path for supplying hydrogen from the separator 2 to the hydrogen combustion apparatus 8.
  • the vicinity of the gas outlet, which is the base end of the bypass path Bp, is desirable.
  • the hydrogen separation membrane include a palladium alloy membrane.
  • the expander-type hydrogen generator 20 generates power by the organic hydride that has become high-temperature and high-pressure superheated steam supplied from the heat exchanger 5. It is configured as follows.
  • the output shaft of the expander-type hydrogen generator 20 in this embodiment is connected to the input shaft of the second generator 11.
  • the second generator 11 is configured to generate power with the power generated by the expander-type hydrogen generator 20 using the organic hydride gas that has become superheated steam.
  • the expander-type hydrogen generator 20 when high-temperature organic hydride gas passes through the casing (not shown), the organic hydride gas comes into contact with the catalyst, thereby dehydrogenating hydrogen and organic hydride.
  • the separation device 2 serves as a condenser (condenser) that condenses the dehydrogenated product that has exited the expander-type hydrogen generator 20, and greatly improves the output of the expander-type hydrogen generator 20.
  • the same effects as the power conversion system S according to the first embodiment (see FIG. 1) can be obtained, and the hydrogen in the first embodiment can be obtained. Since the generator 1 can be omitted, it is possible to reduce the size of the system. Further, since the expander type hydrogen generator 20 is configured to generate hydrogen by decomposing an organic hydride in an expansion turbine that generates power, according to the power conversion system S provided with this, separately, The energy conversion efficiency is further improved by improving the thermal efficiency (by preventing the heat loss from being reduced) as compared with the case where the hydrogen generator 1 is provided.
  • the power conversion system S according to this embodiment is a power conversion device 4 (see FIG. 1) used in the power conversion system S (see FIG. 1) according to the first embodiment. 1, except that an engine 13 (internal combustion engine) is used instead of the hydrogen combustion device 8, the compressor 9, and the first expander 3 shown in FIG. 1.
  • the engine 13 an internal combustion engine as a power conversion device
  • the second expander 6 in the first embodiment is simply “expander 6” in the present embodiment because the first expander 3 (see FIG. 1) is omitted as described above. (Refer to FIG. 4) (the same applies to the next fourth embodiment (see FIG. 5)).
  • the engine 13 shown in FIG. 4 generates power by burning fuel (such as petroleum or natural gas) stored in the third tank 14 and the hydrogen obtained by decomposing organic hydride.
  • the engine 13 corresponds to an “internal combustion engine” in the claims.
  • the engine 13 may be either a reciprocating type or a rotary type.
  • the engine 13 may be either a spark ignition method or a compression ignition method.
  • Air is supplied to the engine 13 to a predetermined intake system, and exhaust gas from the exhaust system of the engine 13 is supplied to the heat exchanger 5.
  • Examples of the fuel supplied from the third tank 14 to the engine 13 via the pump P2 and the valve V2 include hydrocarbon fuels such as light oil, kerosene, heavy oil, natural gas, LPG, and gasoline.
  • Hydrogen is delivered from the separation device 2. Since this hydrogen is rich in flammability (flammability), when the engine 13 is of the spark ignition type, the hydrogen supplied from the separation device 2 can be directly introduced into the combustion chamber of the engine 13. The hydrogen is mixed with the fuel introduced into the combustion chamber and burned by spark ignition. When the engine 13 is of the compression ignition type, hydrogen is premixed with air and then introduced into the combustion chamber, and fuel from the third tank 14 is injected into the combustion chamber at the time of compression ignition. That is, when the injected fuel is self-ignited by compression, hydrogen in the combustion chamber is ignited (compressed self-ignition diffusion combustion).
  • the ignition timing is advanced in the spark ignition type engine, and the hydrocarbon fuel (first fuel in the compression ignition type engine).
  • the thermal efficiency of the engine 13 can be increased by advancing the injection timing of the fuel from the three tanks 14.
  • the first generator 10 in FIG. 4 has an input shaft connected to the output shaft of the engine 13, and generates power using the power generated by the engine 13.
  • the same effects as the power conversion system S (see FIG. 1) according to the first embodiment are exhibited, and power is generated by the power of the engine 13. As a result, the system can be reduced in size and efficiency.
  • the power conversion system S according to the present embodiment includes a power conversion system S according to the third embodiment (FIG. 4) except that it includes an organic hydride preheating device 15 that uses engine exhaust heat. Reference) is configured.
  • the preheating apparatus 15 is mainly demonstrated, the same code
  • the preheating device 15 shown in FIG. 5 includes a second heat exchanger 19 provided on the upstream side of the radiator 17 on the engine cooling water circulation path 18 having the radiator 17.
  • the term “second” in the second heat exchanger 19 is due to the fact that the heat exchanger 5 shown in FIG. 4 is the first heat exchanger 5 in this embodiment.
  • a valve V ⁇ b> 3 is provided in parallel with the second heat exchanger 19.
  • the second heat exchanger 19 constituting the preheating device 15 in the present embodiment includes high-temperature engine cooling water sent from the engine 13 to the radiator 17 and organic hydride sent from the first tank 7 toward the separation device 2.
  • Heat exchange In other words, the preheating device 15 collects the exhaust heat of the engine 13 through the engine cooling water, and the organic hydride that is later superheated by the first heat exchanger 5 by the recovered exhaust heat. It is configured to preheat.
  • the organic hydride is preheated also in the separation device 2.
  • the valve V3 is a flow rate adjustment valve, and can adjust the flow rate of the engine coolant that bypasses the second heat exchanger 19 according to the opening thereof. Therefore, according to the valve V3, by adjusting the opening degree, it is possible to efficiently perform the preheating of the organic hydride by the preheating device 15 while maintaining the predetermined heat dissipation efficiency of the engine cooling water by the radiator 17. .
  • the power conversion system S In the conventional engine, about 30% of the heat quantity of the input fuel is discarded into the atmosphere by the exhaust gas and the engine cooling water, respectively.
  • the first from the exhaust gas of the engine 13 The organic hydride supplied to the expander 6 is superheated by heat recovered by the heat exchanger 5 and the first heat exchanger is recovered by heat recovered by the second heat exchanger 19 from the high-temperature engine cooling water.
  • the organic hydride supplied to 5 can be preheated.
  • the energy conversion efficiency is further improved by further improving the thermal efficiency.
  • the temperature of the heat medium (exhaust gas or engine cooling water) that heats the organic hydride before the organic hydride in the first tank 7 is sent to the expander 6.
  • the second heat exchanger 19, the separation device 2, and the first heat exchanger 5 are arranged so that the order becomes low.
  • the power conversion system S which concerns on this embodiment can make a heat exchange rate higher between these heat media.
  • the power conversion system S according to the present embodiment will be described in comparison with the power conversion system S according to the third embodiment (see FIG. 4), instead of the engine 13 (see FIG. 4).
  • a heat engine 130 is provided.
  • the heat engine 130 in the present embodiment is not limited to the internal combustion engine as long as it generates heat of reaction between the supplied hydrogen and air and generates the power of the first generator 10. It is meant to include external combustion engines such as.
  • the booster pump P ⁇ b> 1 and the valve V ⁇ b> 1 are arranged between the first tank 7 and the separation device 2.
  • FIG. As shown, the valve V4, the fourth tank 27, the density meter 25, and the booster pump P1 are arranged in this order.
  • the dehydrogenated product and undecomposed organic hydride separated from hydrogen by the separation device 2 are stored in the second tank 12, but in this embodiment, As shown in FIG. 6, the separation device 2 is connected to the fourth tank 27 and the second tank 12 via a valve V3 which is a three-way switching valve. That is, when the valve V3 is switched in the A direction, the separation device 2 and the fourth tank 27 communicate with each other, and when the valve V3 is switched in the B direction, the separation device 2 and the second tank 12 communicate with each other. ing.
  • the density meter 25 relatively measures the concentration of the organic hydride in the liquid filled in the fourth tank 27 according to the density of the liquid.
  • another densitometer can be used instead of the densitometer 25.
  • a known densitometer can be preferably used as long as it can measure the concentration of organic hydride.
  • a device that measures the concentration of organic hydride by changing the dielectric constant is used.
  • reference numeral 26 denotes a liquid level meter that detects the liquid level (level) in the fourth tank 27.
  • the power conversion system S controls driving and stopping of the booster pump P1, switching of the flow path (A direction or B direction) of the valve V3, opening and closing of the valve V4, etc. in a predetermined procedure. Does not have a controller.
  • FIG. 7 is a time chart for explaining the timing of driving or stopping the booster pump P1, switching of the valve V3, and opening / closing of the valve V4.
  • FIG. 8 is a flowchart showing a procedure in which the controller performs switching of the valve V3 and control of opening and closing of the valve V4.
  • the operation of the heat engine 130 is started and the booster pump P1 is driven.
  • the power conversion system S when the power conversion system S is activated, the organic hydride until the tank capacity is reached is stored in the first tank 7 and the fourth tank 27. That is, the first tank 7 and the fourth tank 27 at the time of activation are so-called full. Further, the switching direction of the valve V3 at the start (initial state) is set to the A direction, and the valve V4 is in a closed state.
  • the heat engine 130 that has started operation burns air and the fuel supplied from the third tank 14 to generate power, generates power in the first generator 10, and generates the generated heat. It flows through the heat exchanger 5 and the hydrogen generator 1 through a predetermined heat medium. Thereby, the heat exchanger 5 and the hydrogen generator 1 are warmed up to a predetermined temperature.
  • the driven booster pump P1 sends the organic hydride (liquid) in the fourth tank 27 to the expander 6 via the separation device 2 and the heat exchanger 5. That is, the organic hydride (liquid) pumped by the booster pump P1 is preheated by the separation device 2 and then becomes superheated steam (organic hydride gas) by the heat exchanger 5 as in the first embodiment. Then, power is generated by the expander 6. The expander 6 generates power with the second generator 11 using the generated power.
  • the organic hydride sent from the expander 6 to the hydrogen generator 1 is decomposed into hydrogen and a dehydrogenated product, and a mixture of these hydrogen, dehydrogenated product, and undecomposed organic hydride is sent to the separation device 2. It is. Then, the hydrogen separated by the separation device 2 is supplied to the heat engine 130 and burned together with the fuel.
  • the switching direction of the valve V3 when the switching direction of the valve V3 is set to the A direction, the undecomposed organic hydride and dehydrogenated product separated by the separation device 2 are returned to the fourth tank 27 and again the fourth tank. 27 is supplied toward the expander 6 side. Further, when the switching direction of the valve V3 is set to the B direction, the organic hydride and the dehydrogenated product from the separation device 2 are stored in the second tank 12.
  • Such switching operation of the valve V3 is controlled by the controller (not shown) together with the opening / closing operation of the valve V4.
  • switching timing of the valve V3 and opening / closing timing of the valve V4 will be described with reference to FIG.
  • time t1 is when the power conversion system S according to the present embodiment is started
  • time t3 is when the valve V3 is switched from the A direction to the B direction
  • time t4 is the valve V3. Is switched from the B direction to the A direction and the valve V4 is opened.
  • Time t5 is when the valve V3 is switched from the A direction to the B direction again.
  • Time t2 is the time when the decomposition product of the organic hydride decomposed by the hydrogen generator 1 first reaches the fourth tank 27 after the power conversion system S is activated.
  • the liquid level (Lx) in the fourth tank 27 is a graph showing the transition of the liquid level (Lx) in the fourth tank 27 detected by the liquid level meter 26 shown in FIG. Is a tank capacity of the fourth tank 27, and Lt is a predetermined threshold value that defines a guideline of the lower limit of the liquid level in the fourth tank 27.
  • the threshold value Lt can be set within a range of 5% to 50% of the tank capacity, but is not limited to this.
  • the organic hydride concentration (Cx) in the liquid in the fourth tank 27 is calculated based on the liquid density detected by the density meter 25 shown in FIG. It is a graph which shows transition of density
  • Cm is equal to the concentration of the organic hydride stored in the first tank 7, and Ct is a predetermined threshold value that defines the lower limit of the concentration of the organic hydride in the fourth tank 27.
  • This threshold value (Ct) may be defined by the concentration of the organic hydride at which the hydrogen obtained by the decomposition of the organic hydride in the hydrogen generator 1 is almost lost or the amount of hydrogen to be supplied to the heat engine 130 is insufficient. Out.
  • the threshold value (Ct) can be set, for example, within the range of more than 0 mass% and 10 mass% or less, but is not limited thereto.
  • the booster pump P1 is in a stopped state, and the switching direction of the valve V3 is the A direction, that is, the separation shown in FIG. It is set in a direction from the device 2 toward the fourth tank 27 side, and is set so that the valve V4 is closed.
  • organic hydride with concentration Cm is full (liquid level Lm). That is, the liquid level (Lx) is Lm until time t1.
  • the concentration (Cx) of the organic hydride in the liquid in the fourth tank 27 becomes equal to or less than the threshold value (Ct) (time t3)
  • the concentration (Cx) in the fourth tank 27 is reduced to hydrogen by the hydrogen generator 1.
  • the valve V3 is switched from the A direction to the B direction. That is, the organic hydride and dehydrogenated product from the separation device 2 are sent to the second tank 12 (see FIG. 6).
  • the liquid level (Lx) in the fourth tank 27 is the organic hydride to the expander 6 (see FIG. 6) side. And gradually decreases with the supply of the dehydrogenated product.
  • the valve V3 is switched from the B direction to the A direction. That is, the valve V3 is switched so that the organic hydride and dehydrogenated product from the separation device 2 are sent into the fourth tank 27 (see FIG. 6). At the same time, the valve V4 is opened. There is no change in the concentration (Cx) of the organic hydride in the fourth tank 27 from time t3 to time t4.
  • the valve V4 is opened, so that organic hydride is supplied from the first tank 7 toward the fourth tank 27, and the liquid level (Lx) of the fourth tank 27 rises. At the same time, the concentration (Cx) of the organic hydride in the fourth tank 27 also increases. Thereafter, when the liquid level (Lx) of the fourth tank 27 becomes Lm (the fourth tank 27 is full) (time 5), the valve V4 is closed.
  • the liquid level (Lx) in the fourth tank 27 is lowered gradually due to the consumption of organic hydride due to the supply of hydrogen to the heat engine 130, and the separation from the separation device 2
  • the concentration (Cx) of the organic hydride in the fourth tank 27 is lowered again by the dehydrogenated product that is returned.
  • the concentration (Cx) of the organic hydride in the fourth tank 27 is equal to or lower than the predetermined concentration (threshold value (Ct))
  • the organic hydride (dehydrogenated product) is circulated so as to circulate between the expanders 6 and when the concentration (Cx) becomes a predetermined concentration (threshold (Ct)) or less, the circulating organic hydride (dehydrogenation) Is collected in the second tank 12 and the fourth tank 27 is supplemented with a shortage of organic hydride from the first tank 7.
  • the booster pump P1 (see FIG. 6) is driven at that time. .
  • This timing corresponds to time t1 in FIG.
  • the initial state of the valve V3 (see FIG. 6) is set to the direction A (see FIG. 6), and the initial state of the valve V3 (see FIG. 6) is closed. Set to state.
  • the controller (not shown) of the power conversion system S calculates the concentration (Cx) based on the detection signal of the density meter 25 (see FIG. 6), and whether the concentration (Cx) is equal to or less than the threshold value (Ct). Is determined (step S101). When it is determined that the density (Cx) exceeds the threshold value (Ct) (No in step S101), step S101 is repeated. When it is determined that the concentration (Cx) is equal to or less than the threshold value (Ct) (Yes in step S101), the valve V3 is switched in the B direction (step S102). This timing corresponds to time t3 in FIG.
  • step S103 the controller (not shown) of the power conversion system S determines whether or not the liquid level (Lx) is equal to or lower than the threshold value (Lt) based on the detection signal of the liquid level gauge 26 (see FIG. 6) (step) S103).
  • step S103 is repeated.
  • the valve V3 is switched to the A direction (step S104), and the valve V4 is opened (step S104).
  • step S105 This timing corresponds to time t4 in FIG.
  • Step S106 the controller (not shown) of the power conversion system S determines whether or not the liquid level (Lx) has reached the tank capacity (Lm) based on the detection signal of the liquid level gauge 26 (see FIG. 6).
  • Step S106 determines whether or not the liquid level (Lx) has reached the tank capacity (Lm) based on the detection signal of the liquid level gauge 26 (see FIG. 6).
  • Step S106 determines whether or not the liquid level (Lx) has reached the tank capacity (Lm) based on the detection signal of the liquid level gauge 26 (see FIG. 6).
  • the power conversion system S is generated by the power generated by the superheated steam of the organic hydride and the decomposition of the organic hydride while continuously monitoring the concentration (Cx) of the organic hydride by such a controller (not shown). It is configured to obtain power from a heat engine using hydrogen as a fuel.
  • the organic hydride (dehydrogenated product) is circulated so as to circulate between the fourth tank 27 and the expander 6, and the hydrogen generator 1 performs organicity in the middle thereof. Hydrogen is generated from hydride. As a result, the power conversion system S can generate hydrogen from the organic hydride with high efficiency.
  • the amount of the gas medium (organic hydride and dehydrogenated product) supplied to the expander 6 is set without depending on the amount of hydrogen generated by the hydrogen generator 1. can do. That is, in the power conversion system S (see FIG. 4) according to the third embodiment, when the amount of organic hydride supplied to the expander 6 is determined, the maximum amount of hydrogen generated by the hydrogen generator 1 is stoichiometric. Will be decided.
  • the gas medium circulated between the fourth tank 27 and the expander 6 can be a mixture of organic hydride and dehydrogenated product. Conditions are set so that the amount of hydrogen generated in the hydrogen generator 1 (see FIG.
  • the amount of the gas medium (organic hydride and dehydrogenated product) supplied to the expander 6 in this embodiment is the same as the gas medium (organic hydride) supplied to the expander 6 in the third embodiment.
  • the amount of the gas medium (organic hydride and dehydrogenated product) supplied to the expander 6 in this embodiment is the same as the gas medium (organic hydride) supplied to the expander 6 in the third embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

This power conversion system (S) is equipped with: a hydrogen generation device (1) that heats a supplied organic hydride in the presence of a prescribed catalyst and generates hydrogen and a dehydrogenation product of the organic hydride; a separation device (2) that separates the hydrogen and the dehydrogenation product of the organic hydride obtained with the hydrogen generation device (1), and discharges the hydrogen; a power conversion device (4) that obtains power by burning the hydrogen discharged from the separation device (2); a heat exchanger (5) that exchanges heat between the exhaust gas exhausted from the power conversion device (4) and the organic hydride prior to being supplied to the hydrogen generation device (1); and an expander (6) that generates power by means of the organic hydride, which has been converted to superheated steam with the heat exchanger (5), and that transmits this organic hydride to the hydrogen generation device (1).

Description

動力変換システムPower conversion system
 本発明は、熱機関の排熱を利用して動力を生成する動力変換システムに関する。 The present invention relates to a power conversion system that generates power using exhaust heat of a heat engine.
 自然エネルギーを備蓄し、電力の需給バランスを緩和することができるエネルギー貯蔵手段として、有機ハイドライドを利用するものが挙げられる。
 有機ハイドライドは、所定の触媒の存在下で加熱すると脱水素反応により水素と例えば芳香族炭化水素等からなる脱水素化物とを生成する。また、この脱水素化物と水素とを所定の触媒の存在下で反応させると、有機ハイドライドが生成される。したがって、この反応を応用すると、例えば、太陽光、地熱等の自然エネルギーから得た電気を利用して水を電気分解すると共に、この電気分解で得られた水素を有機ハイドライドとして高密度に貯蔵することができる。
 従来、有機ハイドライドから取り出した水素を供給する水素供給システムが知られている(例えば、特許文献1参照)。この水素供給システムは、燃焼タービン発電装置の高温排ガスを熱源として有機ハイドライドから水素を生成するように構成されている。
Examples of energy storage means that can store natural energy and relax the supply and demand balance of electric power include those using organic hydrides.
When heated in the presence of a predetermined catalyst, the organic hydride generates hydrogen and a dehydrogenated product composed of, for example, an aromatic hydrocarbon by a dehydrogenation reaction. Further, when this dehydrogenated product and hydrogen are reacted in the presence of a predetermined catalyst, an organic hydride is generated. Therefore, when this reaction is applied, for example, water is electrolyzed using electricity obtained from natural energy such as sunlight and geothermal heat, and hydrogen obtained by this electrolysis is stored in high density as an organic hydride. be able to.
Conventionally, a hydrogen supply system that supplies hydrogen extracted from an organic hydride is known (see, for example, Patent Document 1). This hydrogen supply system is configured to generate hydrogen from organic hydride using the high-temperature exhaust gas of the combustion turbine power generator as a heat source.
特開2004-197705号公報JP 2004-197705 A
 しかしながら、従来の水素供給システム(例えば、特許文献1参照)は、燃焼タービンの高温排ガス熱を有機ハイドライドからの水素の生成に使いきることは難しい。つまり、従来の水素供給システムは、余剰の排ガス熱が捨てられてエネルギー変換効率が低い課題がある。 However, it is difficult for the conventional hydrogen supply system (for example, see Patent Document 1) to use the high-temperature exhaust gas heat of the combustion turbine for generating hydrogen from the organic hydride. In other words, the conventional hydrogen supply system has a problem in that excess heat of exhaust gas is discarded and energy conversion efficiency is low.
 そこで、本発明の課題は、有機ハイドライドを使用してエネルギー変換効率に優れた動力変換システムを提供することにある。 Therefore, an object of the present invention is to provide a power conversion system having excellent energy conversion efficiency using an organic hydride.
 前記課題を解決する本発明の動力変換システムは、供給される有機ハイドライドを所定の触媒の存在下に加熱して水素及び有機ハイドライドの脱水素化物を生成する水素発生装置と、前記水素発生装置で得られる水素と有機ハイドライドの脱水素化物とを分離すると共に水素を送出する分離装置と、前記分離装置から送出される水素を燃焼させることで動力を得る動力変換装置と、前記動力変換装置から排出される排ガスと、前記水素発生装置に供給する前の有機ハイドライドとの間で熱交換を行う熱交換器と、前記熱交換器での熱交換で過熱蒸気となった有機ハイドライドにより動力を発生すると共にこの有機ハイドライドを前記水素発生装置に送出する膨張機と、を備えることを特徴とする。
 この動力変換システムによれば、動力変換装置からの排熱で有機ハイドライドを加熱し、過熱蒸気となった有機ハイドライドを膨張機に供給して動力を得る。そして、膨張機を通過した有機ハイドライドは水素発生装置に供給され、水素を生成し、この水素は動力変換装置が動力を発生する際の燃料として使用される。
The power conversion system of the present invention that solves the above problems includes a hydrogen generator that generates hydrogen and a dehydrogenated product of organic hydride by heating the supplied organic hydride in the presence of a predetermined catalyst, and the hydrogen generator. Separation device for separating hydrogen obtained from organic hydride dehydrogenated product and sending hydrogen, power conversion device for obtaining power by burning hydrogen sent from the separation device, and discharge from the power conversion device Power is generated by the heat exchanger that exchanges heat between the exhaust gas to be supplied and the organic hydride before being supplied to the hydrogen generator, and the organic hydride that is superheated by heat exchange in the heat exchanger And an expander for delivering the organic hydride to the hydrogen generator.
According to this power conversion system, the organic hydride is heated by exhaust heat from the power conversion device, and the organic hydride that has become superheated steam is supplied to the expander to obtain power. The organic hydride that has passed through the expander is supplied to a hydrogen generator to generate hydrogen, which is used as fuel when the power converter generates power.
 本発明によれば、有機ハイドライドを使用してエネルギー変換効率に優れた動力変換システムを提供することができる。 According to the present invention, it is possible to provide a power conversion system excellent in energy conversion efficiency using an organic hydride.
本発明の第1実施形態に係る動力変換システムの構成説明図である。1 is a configuration explanatory diagram of a power conversion system according to a first embodiment of the present invention. FIG. (a)は動力変換システムの水素発生装置の断面図であり、(b)は水素発生装置に内蔵する反応セルの断面図であり、(c)は反応セルに内蔵する反応シートの断面図である。(A) is sectional drawing of the hydrogen generator of a power conversion system, (b) is sectional drawing of the reaction cell incorporated in a hydrogen generator, (c) is sectional drawing of the reaction sheet incorporated in a reaction cell. is there. 本発明の第2実施形態に係る動力変換システムの構成説明図である。It is composition explanatory drawing of the power conversion system which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る動力変換システムの構成説明図である。It is composition explanatory drawing of the power conversion system which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る動力変換システムの構成説明図である。It is composition explanatory drawing of the power conversion system which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る動力変換システムの構成説明図である。It is composition explanatory drawing of the power conversion system which concerns on 5th Embodiment of this invention. 本発明の第5実施形態に係る動力変換システムにおいて、昇圧ポンプP1の駆動又は停止、バルブV3の切り替え、及びバルブV4の開閉のタイミングを説明するタイムチャートである。In the power conversion system concerning a 5th embodiment of the present invention, it is a time chart explaining the timing of the drive or stop of boost pump P1, switching of valve V3, and opening and closing of valve V4. 本発明の第5実施形態に係る動力変換システムのコントローラが、バルブV3の切り替え、及びバルブV4の開閉の制御を行う手順を示すフローチャートである。It is a flowchart which shows the procedure in which the controller of the power conversion system which concerns on 5th Embodiment of this invention performs switching of valve | bulb V3, and control of opening and closing of valve | bulb V4.
 以下に、本発明の第1実施形態から第4実施形態について適宜図面を参照しながら詳細に説明する。
(第1実施形態)
 図1に示すように、本実施形態に係る動力変換システムSは、水素発生装置1と、分離装置2と、第1膨張機3等を有する動力変換装置4と、熱交換器5と、第2膨張機6と、を備えている。なお、第1膨張機3は、特許請求の範囲にいう「水素燃焼装置からの水素燃焼ガスにより動力を発生させる膨張機」に相当する。また、第2膨張機6は、特許請求の範囲にいう「有機ハイドライドにより動力を発生すると共にこの有機ハイドライドを水素発生装置に送出する膨張機」に相当する。
 この動力変換システムSは、有機ハイドライドを利用して得られる動力によって発電するものであり、有機ハイドライドの過熱蒸気により動力を発生すると共に、この有機ハイドライドから得られる水素を燃焼させて動力を発生させる構成となっている。
 なお、第1膨張機3は、水素燃焼ガスを供給するガスタービンで構成され、第2膨張機6は、有機ハイドライドの過熱蒸気を供給する蒸気タービンで構成される。
Hereinafter, the first to fourth embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
(First embodiment)
As shown in FIG. 1, the power conversion system S according to the present embodiment includes a hydrogen generator 1, a separation device 2, a power converter 4 having a first expander 3, a heat exchanger 5, 2 expander 6. The first expander 3 corresponds to “an expander that generates power by hydrogen combustion gas from a hydrogen combustion device” in the claims. The second expander 6 corresponds to “an expander that generates power using an organic hydride and sends the organic hydride to a hydrogen generator” in the claims.
The power conversion system S generates power using the power obtained using the organic hydride. The power conversion system S generates power by using the superheated steam of the organic hydride and generates power by burning the hydrogen obtained from the organic hydride. It has a configuration.
The first expander 3 is configured by a gas turbine that supplies hydrogen combustion gas, and the second expander 6 is configured by a steam turbine that supplies superheated steam of organic hydride.
 有機ハイドライドは、芳香族炭化水素の水素化物であり、芳香族炭化水素の炭素-炭素間二重結合に水素が付加することより水素を脱離可能に貯蔵している。
 この有機ハイドライドとしては、例えば、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン等の単環式水素化芳香族類、テトラリン、デカリン、メチルデカリン等の2環式水素化芳香族類、テトラデカヒドロアントラセン等の3環式水素化芳香族類等が挙げられる。そして、所定の触媒の存在下で加熱すると有機ハイドライドは、水素と有機ハイドライドの脱水素化物である前記芳香族炭化水素とに分解される。ちなみに、有機ハイドライドの脱水素化物としては、例えば、ベンゼン、トルエン、キシレン、メシチレン、ナフタレン、メチルナフタレン、アントラセン等が挙げられる。
The organic hydride is a hydride of an aromatic hydrocarbon, and stores hydrogen so that it can be desorbed by adding hydrogen to the carbon-carbon double bond of the aromatic hydrocarbon.
Examples of the organic hydride include monocyclic hydrogenated aromatics such as cyclohexane, methylcyclohexane and dimethylcyclohexane, bicyclic hydrogenated aromatics such as tetralin, decalin and methyldecalin, and tetradecahydroanthracene. And cyclic hydrogenated aromatics. When heated in the presence of a predetermined catalyst, the organic hydride is decomposed into hydrogen and the aromatic hydrocarbon which is a dehydrogenated product of the organic hydride. Incidentally, examples of the dehydrogenated product of organic hydride include benzene, toluene, xylene, mesitylene, naphthalene, methylnaphthalene, and anthracene.
 有機ハイドライドについて前記メチルシクロヘキサン[C11(CH)]を例にさらに詳しく説明すると、メチルシクロヘキサンは、次式(1)に示すように、水素(H)と有機ハイドライドの脱水素化物としてのトルエン[C(CH)]とに分解される。
 C11(CH)→C(CH)+3H-205kJ・・・(1)
 ちなみに、式(1)で示される反応は、吸熱反応であり、1モルのメチルシクロヘキサンから3モルの水素が生成する際に205kJの熱が吸収されるため加熱下に前記反応を行うことが望ましい。なお、本実施形態では、有機ハイドライドとしてメチルシクロヘキサンを使用することを前提に、この加熱温度を300~400℃程度に設定しているが、この加熱温度は、使用される前記有機ハイドライドの種類に応じて適宜に設定することができる。
The organic hydride will be described in more detail by taking the above-mentioned methylcyclohexane [C 6 H 11 (CH 3 )] as an example. As shown in the following formula (1), methylcyclohexane is a dehydrogenated product of hydrogen (H 2 ) and organic hydride. As toluene [C 6 H 5 (CH 3 )].
C 6 H 11 (CH 3 ) → C 6 H 5 (CH 3 ) + 3H 2 −205 kJ (1)
Incidentally, the reaction represented by the formula (1) is an endothermic reaction, and it is desirable to carry out the reaction under heating since 205 kJ of heat is absorbed when 3 mol of hydrogen is produced from 1 mol of methylcyclohexane. . In this embodiment, the heating temperature is set to about 300 to 400 ° C. on the premise that methylcyclohexane is used as the organic hydride, but this heating temperature depends on the type of the organic hydride used. It can be set as appropriate.
 水素発生装置1は、有機ハイドライドが貯蔵される後記の第1タンク7から後記する分離装置2、熱交換器5、及び第2膨張機6を介して供給される有機ハイドライドをその脱水素化物と水素とに分解するものである。なお、図1中、符号P1は第1タンク7の有機ハイドライドを昇圧して第2膨張機6側に向けて供給する昇圧ポンプであり、符号V1はバルブであり、これらは第1タンク7と分離装置2との間を繋ぐ配管途中に設けられている。これらの昇圧ポンプP1及びバルブV1は、第1タンク7から分離装置2に向けて送出する有機ハイドライドの流量、流速、圧力等を調節するためのものである。
 次に参照する図2(a)は水素発生装置の断面図であり、図2(b)は水素発生装置に内蔵する反応セルの断面図であり、図2(c)は反応セルに内蔵する反応シートの断面図である。
The hydrogen generator 1 uses organic hydride supplied from a first tank 7 described later, which stores organic hydride via a separation device 2, a heat exchanger 5 and a second expander 6 described later, as a dehydrogenated product. It decomposes into hydrogen. In FIG. 1, symbol P1 is a booster pump that boosts the organic hydride in the first tank 7 and supplies it to the second expander 6 side, and symbol V1 is a valve. It is provided in the middle of piping connecting between the separator 2. These booster pump P1 and valve V1 are for adjusting the flow rate, flow velocity, pressure, etc. of the organic hydride delivered from the first tank 7 toward the separation device 2.
2A to be referred to next is a sectional view of the hydrogen generator, FIG. 2B is a sectional view of a reaction cell built in the hydrogen generator, and FIG. 2C is built in the reaction cell. It is sectional drawing of a reaction sheet.
 水素発生装置1は、図2(a)に示すように、外形が円柱状を呈する複数本の反応セル31と、これらの反応セル31を収容した円筒状の第1ケーシング32と、を備えている。そして、各反応セル31内には、図1に示す第1タンク7に貯留される有機ハイドライド(例えば、メチルシクロヘキサン)が、後記する分離装置2、熱交換器5、及び第2膨張機6を介して送り込まれる。
 反応セル31同士の間に形成される間隙には、後記する水素燃焼装置8からの高温の水素燃焼ガスが通流するようになっている。
 第1ケーシング32及び後記する第2ケーシング34は、熱伝導率が高くなるように金属製(例えば、SUS)で形成されている。なお、第1ケーシング32、第2ケーシング34の形状は、円筒状に限定されず、その他に例えば、四角形筒状、多角形筒状でもよい。
As shown in FIG. 2A, the hydrogen generator 1 includes a plurality of reaction cells 31 whose outer shape is columnar, and a cylindrical first casing 32 that houses these reaction cells 31. Yes. And in each reaction cell 31, the organic hydride (for example, methylcyclohexane) stored in the 1st tank 7 shown in FIG. 1 has the separation apparatus 2, the heat exchanger 5, and the 2nd expander 6 which are mentioned later. Sent through.
A high-temperature hydrogen combustion gas from the hydrogen combustion device 8 described later flows through the gap formed between the reaction cells 31.
The first casing 32 and the second casing 34 to be described later are made of metal (for example, SUS) so as to have high thermal conductivity. In addition, the shape of the 1st casing 32 and the 2nd casing 34 is not limited to a cylindrical shape, For example, a square cylinder shape and a polygonal cylinder shape may be sufficient.
 反応セル31は、図2(b)に示すように、積層された複数枚の反応シート33と、複数枚の反応シート33を収容した第2ケーシング34と、を備えている。
 各反応シート33は、図2(c)に示すように、ベースとなる金属箔35と、金属箔35の両面にそれぞれ形成された多孔質層36と、多孔質層36に担持された触媒37と、を備えている。つまり、各反応シート33は、触媒37が担持した多孔質層36、金属箔35、触媒37が担持した多孔質層36の順で積層した三層構造である。
 なお、厚さ方向において隣り合う反応シート33、33間には、有機ハイドライド、生成した水素及び脱水素化物(例えば、トルエン)が通流可能な隙間が形成されている。
As shown in FIG. 2B, the reaction cell 31 includes a plurality of stacked reaction sheets 33 and a second casing 34 that accommodates the plurality of reaction sheets 33.
As shown in FIG. 2 (c), each reaction sheet 33 includes a base metal foil 35, a porous layer 36 formed on each surface of the metal foil 35, and a catalyst 37 supported on the porous layer 36. And. That is, each reaction sheet 33 has a three-layer structure in which the porous layer 36 supported by the catalyst 37, the metal foil 35, and the porous layer 36 supported by the catalyst 37 are stacked in this order.
Note that a gap is formed between the reaction sheets 33 adjacent to each other in the thickness direction so that the organic hydride, the generated hydrogen, and the dehydrogenated product (for example, toluene) can flow therethrough.
 また、反応シート33はシート状であるから、その熱容量が小さく、熱が反応シート33を速やかに伝導し、触媒37がその触媒機能を良好に発揮する温度に速やかに昇温する。これにより、有機ハイドライドを水素と脱水素化物とに分解する分解反応の効率は、高くなっている。
 さらに、各反応シート33には、複数の貫通孔33aが形成されている。これにより、水素燃焼ガスの熱が厚さ方向に良好に伝導し、また、有機ハイドライド、生成した水素及び脱水素化物が、厚さ方向にも良好に通流するようになっている。
 金属箔35は、例えばアルミニウム箔で構成され、その厚さは50~200μm程度とされる。ただし、金属箔35を備えず、又は、金属箔35に代えて、ベースとなる多孔質層を備え、反応シート33全体を多孔質構造としてもよい。
Further, since the reaction sheet 33 is in the form of a sheet, its heat capacity is small, heat is quickly conducted through the reaction sheet 33, and the temperature of the catalyst 37 is quickly raised to a temperature at which the catalyst function is exhibited well. Thereby, the efficiency of the decomposition reaction which decomposes | disassembles an organic hydride into hydrogen and a dehydrogenation thing is high.
Further, each reaction sheet 33 is formed with a plurality of through holes 33a. As a result, the heat of the hydrogen combustion gas is conducted well in the thickness direction, and the organic hydride, the generated hydrogen, and the dehydrogenated product are also flowed well in the thickness direction.
The metal foil 35 is made of, for example, an aluminum foil and has a thickness of about 50 to 200 μm. However, the metal foil 35 may not be provided, or instead of the metal foil 35, a porous layer serving as a base may be provided, and the entire reaction sheet 33 may have a porous structure.
 多孔質層36は、触媒37を担持するための層であって、有機ハイドライド、生成した水素及び脱水素化物が通流可能な複数の細孔を有している。このような多孔質層36は、例えば、アルミナ、チタニア、シリカ、ジルコニア等を主体とする酸化物で形成することができる
 触媒37は、有機ハイドライドを分解し、水素及び脱水素化物を生成させるための触媒である。このような触媒37は、例えば、白金、ニッケル、パラジウム、ロジウム、イリジウム、ルテニウム、モリブデン、レニウム、タングステン、バナジウム、オスミウム、クロム、コバルト、鉄等から選択された少なくとも1種で構成される。
The porous layer 36 is a layer for supporting the catalyst 37 and has a plurality of pores through which the organic hydride, the generated hydrogen, and the dehydrogenated product can flow. Such a porous layer 36 can be formed of, for example, an oxide mainly composed of alumina, titania, silica, zirconia or the like. The catalyst 37 decomposes the organic hydride to generate hydrogen and dehydrogenated product. It is a catalyst. Such a catalyst 37 is composed of at least one selected from, for example, platinum, nickel, palladium, rhodium, iridium, ruthenium, molybdenum, rhenium, tungsten, vanadium, osmium, chromium, cobalt, iron and the like.
 ちなみに、水素発生装置1(図1参照)を通流した水素燃焼ガスは、水素発生装置1に接続された所定の配管(図示省略)を通って水素発生装置1の外部に排出されるようになっている。
 水素発生装置1の温度は、熱交換器5から水素発生装置1に向けて送り込まれる水素燃焼ガスの温度、及びその水素燃焼ガスの流量によって調節することができる。また、本実施形態での水素発生装置1の温度は、前記したように、有機ハイドライドとしてメチルシクロヘキサンを使用することを前提に、300~400℃程度に設定することを想定しているが、これに限定されるものではなく、使用する有機ハイドライドの種類に応じた分解温度の範囲内で適宜に設定することができる。
Incidentally, the hydrogen combustion gas flowing through the hydrogen generator 1 (see FIG. 1) passes through a predetermined pipe (not shown) connected to the hydrogen generator 1 and is discharged to the outside of the hydrogen generator 1. It has become.
The temperature of the hydrogen generator 1 can be adjusted by the temperature of the hydrogen combustion gas sent from the heat exchanger 5 toward the hydrogen generator 1 and the flow rate of the hydrogen combustion gas. In addition, as described above, the temperature of the hydrogen generator 1 in this embodiment is assumed to be set to about 300 to 400 ° C. on the assumption that methylcyclohexane is used as the organic hydride. It is not limited to these, and can be appropriately set within the range of the decomposition temperature according to the type of organic hydride to be used.
 再び図1に戻って、分離装置2としては、水素発生装置1から送出される高温の前記有機ハイドライド(例えば、メチルシクロヘキサン)の脱水素化物(例えば、トルエン)、及び水素の混合物を、脱水素化物の沸点未満(トルエンの場合にはbp.111℃未満)の温度に冷却することで、液体としての脱水素化物と、気体としての水素とを気液分離する構成となっている。そして、分離装置2は、分離した水素を後記する動力変換装置4に送出するようになっている。 Returning to FIG. 1 again, as the separation device 2, a dehydrogenated product (for example, toluene) of the high-temperature organic hydride (for example, methylcyclohexane) delivered from the hydrogen generator 1 and a hydrogen mixture are dehydrogenated. By cooling to a temperature below the boiling point of the hydride (bp: less than 111.degree. C. in the case of toluene), the dehydrogenated product as a liquid and the hydrogen as a gas are separated from each other. Then, the separation device 2 sends the separated hydrogen to the power conversion device 4 described later.
 本実施形態での分離装置2は、第1タンク7から供給される有機ハイドライドと、水素発生装置1から送出される脱水素化物及び水素の混合物との間で熱交換することで、気体としての脱水素化物を冷却して凝縮させる構成となっている。この具体的な構成としては、例えば、脱水素化物及び水素の混合物が流入するチャンバ内に、第1タンク7から供給される有機ハイドライドが通流する冷却管が配置されるものが挙げられる。
 なお、分離装置2では、第1タンク7から供給される有機ハイドライドが、後記する熱交換器5に供給される前に、脱水素化物及び水素の混合物によって、予熱されるようになっている。
The separation device 2 in the present embodiment exchanges heat between the organic hydride supplied from the first tank 7 and the mixture of the dehydrogenated product and hydrogen delivered from the hydrogen generating device 1, so that the gas as a gas The dehydrogenated product is cooled and condensed. As a specific configuration, for example, a cooling pipe through which an organic hydride supplied from the first tank 7 flows is disposed in a chamber into which a mixture of dehydrogenated product and hydrogen flows.
In the separation device 2, the organic hydride supplied from the first tank 7 is preheated by a mixture of dehydrogenated product and hydrogen before being supplied to the heat exchanger 5 described later.
 動力変換装置4としては、前記分離装置から送出される水素を燃焼させる水素燃焼装置8と、この水素燃焼装置8に圧縮した空気を送り込む軸流式の圧縮機9と、水素燃焼装置8からの高温高圧の水素燃焼ガスにより動力を発生させる膨張タービンであって、圧縮機9と同軸に連結される第1膨張機3と、を備えている。
 そして、第1膨張機3の出力軸は、第1発電機10の入力軸に連結されている。つまり、第1発電機10は、動力変換装置4が発生する動力によって発電するようになっている。
 この第1膨張機3は、高温の水素燃焼ガスを後記する熱交換器5に送出するようになっている。
As the power conversion device 4, a hydrogen combustion device 8 that combusts hydrogen sent from the separation device, an axial flow type compressor 9 that sends compressed air to the hydrogen combustion device 8, and a hydrogen combustion device 8 An expansion turbine that generates power using high-temperature and high-pressure hydrogen combustion gas, and includes a first expander 3 that is coaxially connected to the compressor 9.
The output shaft of the first expander 3 is connected to the input shaft of the first generator 10. That is, the first generator 10 generates power using the power generated by the power conversion device 4.
The first expander 3 sends high-temperature hydrogen combustion gas to a heat exchanger 5 described later.
 熱交換器5は、第1膨張機3から排気された高温の水素燃焼ガスと、分離装置2で予熱された有機ハイドライドとの間で熱交換を行うように構成されている。このことで分離装置2から送出された有機ハイドライドは、300℃を超える過熱蒸気となって、次の第2膨張機6に供給されるようになっている。 The heat exchanger 5 is configured to exchange heat between the high-temperature hydrogen combustion gas exhausted from the first expander 3 and the organic hydride preheated by the separation device 2. Accordingly, the organic hydride delivered from the separation device 2 becomes superheated steam exceeding 300 ° C. and is supplied to the next second expander 6.
 第2膨張機6は、膨張タービンで構成され、熱交換器5から供給される高温高圧の過熱蒸気となった有機ハイドライドにより動力を発生するようになっている。そして、第2膨張機6の出力軸は、第2発電機11の入力軸に連結されている。つまり、第2発電機11は、過熱蒸気となった有機ハイドライドにより第2膨張機6が発生する動力で発電するようになっている。
 そして、この第2膨張機6は、高温の有機ハイドライドガスを前記した水素発生装置1に送出するようになっている。ちなみに、この有機ハイドライドガスの温度は300~400℃程度を維持している。
The second expander 6 is composed of an expansion turbine, and generates power by organic hydride that has become high-temperature and high-pressure superheated steam supplied from the heat exchanger 5. The output shaft of the second expander 6 is connected to the input shaft of the second generator 11. That is, the second generator 11 is configured to generate power with the power generated by the second expander 6 by the organic hydride that has become superheated steam.
The second expander 6 is configured to send a high temperature organic hydride gas to the hydrogen generator 1 described above. Incidentally, the temperature of the organic hydride gas is maintained at about 300 to 400 ° C.
 このような第1実施形態に係る動力変換システムSは、分離装置2で分離された有機ハイドライドの脱水素化物を貯留する第2タンク12を備えている。
 なお、本実施形態に係る動力変換システムSにおいては、水素発生装置1に供給される有機ハイドライドガスの全てを、その脱水素化物と水素とに分解することを想定しているが(分解率100%)、有機ハイドライドの分解率が100%未満である場合には、未分解の有機ハイドライドは液体として、第2タンク12に回収されることとなる。
 また、図示しないが、第1実施形態に係る動力変換システムSは、分離装置2と、水素燃焼装置8とを繋ぐ配管の途中に、水素を圧縮して水素燃焼装置8に送出する圧縮機を配置することができる。
Such a power conversion system S according to the first embodiment includes the second tank 12 that stores the dehydrogenated product of the organic hydride separated by the separation device 2.
In the power conversion system S according to the present embodiment, it is assumed that all of the organic hydride gas supplied to the hydrogen generator 1 is decomposed into its dehydrogenated product and hydrogen (decomposition rate 100). %), When the decomposition rate of the organic hydride is less than 100%, the undecomposed organic hydride is recovered in the second tank 12 as a liquid.
Although not shown, the power conversion system S according to the first embodiment includes a compressor that compresses hydrogen and sends it to the hydrogen combustion device 8 in the middle of a pipe connecting the separation device 2 and the hydrogen combustion device 8. Can be arranged.
 以上のような第1実施形態に係る動力変換システムSによれば、動力変換装置4からの排ガスの熱(排熱)の大部分を利用して、水素発生装置1にて有機ハイドライドから効率よく水素を生成できる。また、前記した排熱を第2膨張機6にて膨張仕事(動力)に変換することで発電が可能となる。そして、生成した前記水素を燃焼させて発生した熱を第1膨張機3にて膨張仕事(動力)に変換することで発電が可能となる。これにより動力変換システムSは、エネルギー変換効率に優れたものとなる。
 なお、第2膨張機6及び第2発電機11は、同軸上、或いは変速機を介して繋がっていてもよい。このような構成によれば、始動時における第2発電機11はモータとして作動することができる。
According to the power conversion system S according to the first embodiment as described above, the hydrogen generator 1 efficiently uses the heat (exhaust heat) of the exhaust gas from the power conversion device 4 from the organic hydride. Hydrogen can be generated. Moreover, power generation can be performed by converting the exhaust heat described above into expansion work (power) by the second expander 6. Electric power can be generated by converting the heat generated by burning the generated hydrogen into expansion work (power) in the first expander 3. Thereby, the power conversion system S is excellent in energy conversion efficiency.
The second expander 6 and the second generator 11 may be connected on the same axis or via a transmission. According to such a configuration, the second generator 11 at the start can operate as a motor.
(第2実施形態)
 次に、本発明の第2実施形態に係る動力変換システムSについて、構成説明図である図3を参照しながら説明する。
 図3に示すように、本実施形態に係る動力変換システムSは、前記第1実施形態に係る動力変換システムS(図1参照)において使用した第2膨張機6(図1参照)に代えて、膨張機型水素発生装置20を使用すると共に、第2膨張機6(図1参照)の下流側に設けられる水素発生装置1(図1参照)を省略した以外は、第1実施形態と同様に構成されている。つまり、第2実施形態では、膨張機型水素発生装置20が第1実施形態での水素発生装置1と第2膨張機6とを兼ねている。以下では、主に膨張機型水素発生装置20について説明し、第1実施形態と同様の構成要素については同じ符号を付して詳細な説明を省略する。
(Second Embodiment)
Next, a power conversion system S according to a second embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 3, the power conversion system S according to the present embodiment is replaced with the second expander 6 (see FIG. 1) used in the power conversion system S (see FIG. 1) according to the first embodiment. The second embodiment is the same as the first embodiment except that the expander type hydrogen generator 20 is used and the hydrogen generator 1 (see FIG. 1) provided on the downstream side of the second expander 6 (see FIG. 1) is omitted. It is configured. That is, in the second embodiment, the expander-type hydrogen generator 20 also serves as the hydrogen generator 1 and the second expander 6 in the first embodiment. Hereinafter, the expander-type hydrogen generator 20 will be mainly described, and the same components as those in the first embodiment will be denoted by the same reference numerals and detailed description thereof will be omitted.
 図3に示す膨張機型水素発生装置20は、膨張タービンで構成されると共にその内部において過熱蒸気となった有機ハイドライドガスが通流する流路に臨むように前記した触媒を有している。触媒の配置位置としては、分離装置2に向けて有機ハイドライドガスを送出するための出口近傍が望ましい。ちなみに、触媒は、所定のケーシング(図示省略)内に充填されると共に、このケーシングが有機ハイドライドガスの流路上に配置される。 The expander-type hydrogen generator 20 shown in FIG. 3 is composed of an expansion turbine and has the above-described catalyst so as to face a flow path through which organic hydride gas that has become superheated steam flows. As an arrangement position of the catalyst, the vicinity of the outlet for sending the organic hydride gas toward the separation device 2 is desirable. Incidentally, the catalyst is filled in a predetermined casing (not shown), and this casing is disposed on the flow path of the organic hydride gas.
 また、触媒は、前記した膨張タービンのタービンブレードに直接担持させることもできる。このような膨張タービンからなる膨張機型水素発生装置20によれば、高速回転するタービンブレードの表面での触媒作用により、有機ハイドライドから水素と脱水素化物とが生成する際に、それらの密度差によって(遠心力によって)それらが分離し易くなる。その結果、反応系の脱水素化物の分圧が低下することで、有機ハイドライドの反応温度(分解温度)を下げることができる。具体的には、触媒をタービンブレードに担持させない膨張機型水素発生装置20での有機ハイドライドの反応温度の下限を仮に250℃程度とした場合に、触媒をタービンブレードに担持させた膨張機型水素発生装置20での有機ハイドライドの反応温度の下限は、150℃程度にまで下げることができる。 Also, the catalyst can be directly supported on the turbine blade of the above-described expansion turbine. According to the expander-type hydrogen generator 20 including such an expansion turbine, when hydrogen and a dehydrogenated product are generated from the organic hydride by the catalytic action on the surface of the turbine blade that rotates at high speed, the density difference between them is generated. Makes it easier to separate them (by centrifugal force). As a result, the reaction temperature (decomposition temperature) of the organic hydride can be lowered by reducing the partial pressure of the dehydrogenated product in the reaction system. Specifically, if the lower limit of the reaction temperature of the organic hydride in the expander type hydrogen generator 20 in which the catalyst is not supported on the turbine blade is about 250 ° C., the expander type hydrogen in which the catalyst is supported on the turbine blade. The lower limit of the reaction temperature of the organic hydride in the generator 20 can be lowered to about 150 ° C.
 また、膨張機型水素発生装置20には、未分解の有機ハイドライド、生成した水素、及び脱水素化物を含む混合物から、水素を分離する水素分離膜(図示省略)を設けることができる。
 水素分離膜の位置としては、膨張機型水素発生装置20を構成する前記膨張タービンの所定のガス出口と、分離装置2から水素燃焼装置8に水素を供給する経路とを接続するように設けられたバイパス経路Bpの基端となる、前記したガス出口付近が望ましい。水素分離膜としては、例えばパラジウム合金膜が挙げられる。
 このような水素分離膜を備えて膨張機型水素発生装置20(膨張タービン)から水素を途中で抜き出す構成(抽気構成)によれば、膨張機型水素発生装置20(膨張タービン)の前後のエンタルピー差を大きくすることができるので、膨張タービンの出力を高めることができる。その結果、動力変換システムSの効率がさらに向上することとなる。
Further, the expander type hydrogen generator 20 can be provided with a hydrogen separation membrane (not shown) for separating hydrogen from a mixture containing undecomposed organic hydride, generated hydrogen, and dehydrogenated product.
The position of the hydrogen separation membrane is provided so as to connect a predetermined gas outlet of the expansion turbine constituting the expander-type hydrogen generator 20 and a path for supplying hydrogen from the separator 2 to the hydrogen combustion apparatus 8. The vicinity of the gas outlet, which is the base end of the bypass path Bp, is desirable. Examples of the hydrogen separation membrane include a palladium alloy membrane.
According to the configuration (bleeding configuration) in which hydrogen is extracted halfway from the expander-type hydrogen generator 20 (expansion turbine) with such a hydrogen separation membrane, the enthalpies before and after the expander-type hydrogen generator 20 (expansion turbine) Since the difference can be increased, the output of the expansion turbine can be increased. As a result, the efficiency of the power conversion system S is further improved.
 このような膨張機型水素発生装置20を備える動力変換システムSにおいては、熱交換器5から供給される高温高圧の過熱蒸気となった有機ハイドライドにより膨張機型水素発生装置20が動力を発生するように構成されている。そして、本実施形態での膨張機型水素発生装置20の出力軸は、第2発電機11の入力軸に連結されている。つまり、第2発電機11は、過熱蒸気となった有機ハイドライドガスにより膨張機型水素発生装置20が発生する動力で発電するようになっている。
 そして、この膨張機型水素発生装置20内では、高温の有機ハイドライドガスが前記したケーシング(図示省略)内を通過する際に、有機ハイドライドガスは触媒に接触することで水素と有機ハイドライドの脱水素化物とに分解される。その後、水素と脱水素化物との混合物は、気体のまま膨張機型水素発生装置20の出口から分離装置2に向けて送出されることとなる。ちなみに、分離装置2は、膨張機型水素発生装置20を出た脱水素化物を凝縮させるコンデンサ(凝縮器)の役割を果たし、膨張機型水素発生装置20の出力を大幅に向上させる。
In the power conversion system S provided with such an expander-type hydrogen generator 20, the expander-type hydrogen generator 20 generates power by the organic hydride that has become high-temperature and high-pressure superheated steam supplied from the heat exchanger 5. It is configured as follows. The output shaft of the expander-type hydrogen generator 20 in this embodiment is connected to the input shaft of the second generator 11. In other words, the second generator 11 is configured to generate power with the power generated by the expander-type hydrogen generator 20 using the organic hydride gas that has become superheated steam.
In the expander-type hydrogen generator 20, when high-temperature organic hydride gas passes through the casing (not shown), the organic hydride gas comes into contact with the catalyst, thereby dehydrogenating hydrogen and organic hydride. It is decomposed into a compound. Thereafter, the mixture of hydrogen and the dehydrogenated product is sent out from the outlet of the expander-type hydrogen generator 20 toward the separator 2 in the form of a gas. Incidentally, the separation device 2 serves as a condenser (condenser) that condenses the dehydrogenated product that has exited the expander-type hydrogen generator 20, and greatly improves the output of the expander-type hydrogen generator 20.
 以上のような本実施形態に係る動力変換システムSによれば、前記第1実施形態に係る動力変換システムS(図1参照)と同様の作用効果を奏すると共に、前記第1実施形態での水素発生装置1を省略することができるので、システムの小型化を達成することができる。また、膨張機型水素発生装置20は、動力を発生させる膨張タービン内で有機ハイドライドを分解して水素を発生させるように構成されているので、これを備える動力変換システムSによれば、別途、水素発生装置1を設けるものよりも、熱効率が向上することで(熱損失の低下を防止することで)エネルギー変換効率がさらに優れたものとなる。 According to the power conversion system S according to the present embodiment as described above, the same effects as the power conversion system S according to the first embodiment (see FIG. 1) can be obtained, and the hydrogen in the first embodiment can be obtained. Since the generator 1 can be omitted, it is possible to reduce the size of the system. Further, since the expander type hydrogen generator 20 is configured to generate hydrogen by decomposing an organic hydride in an expansion turbine that generates power, according to the power conversion system S provided with this, separately, The energy conversion efficiency is further improved by improving the thermal efficiency (by preventing the heat loss from being reduced) as compared with the case where the hydrogen generator 1 is provided.
(第3実施形態)
 次に、本発明の第3実施形態に係る動力変換システムSについて、構成説明図である図4を参照しながら説明する。
 図4に示すように、本実施形態に係る動力変換システムSは、前記第1実施形態に係る動力変換システムS(図1参照)において使用した動力変換装置4(図1参照)、つまり、図1に示す水素燃焼装置8、圧縮機9、及び第1膨張機3に代えて、エンジン13(内燃機関)を使用した以外は、第1実施形態と同様に構成されている。以下では、主にエンジン13(動力変換装置としての内燃機関)について説明し、第1実施形態と同様の構成要素については同じ符号を付して詳細な説明を省略する。
 なお、前記第1実施形態での第2膨張機6(図1参照)は、前記したように第1膨張機3(図1参照)を省略したことで本実施形態では単に「膨張機6」(図4参照)と称する(次の第4実施形態においても同じ(図5参照))。
(Third embodiment)
Next, a power conversion system S according to a third embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 4, the power conversion system S according to this embodiment is a power conversion device 4 (see FIG. 1) used in the power conversion system S (see FIG. 1) according to the first embodiment. 1, except that an engine 13 (internal combustion engine) is used instead of the hydrogen combustion device 8, the compressor 9, and the first expander 3 shown in FIG. 1. Hereinafter, the engine 13 (an internal combustion engine as a power conversion device) will be mainly described, and the same components as those in the first embodiment are denoted by the same reference numerals and detailed description thereof will be omitted.
The second expander 6 (see FIG. 1) in the first embodiment is simply “expander 6” in the present embodiment because the first expander 3 (see FIG. 1) is omitted as described above. (Refer to FIG. 4) (the same applies to the next fourth embodiment (see FIG. 5)).
 図4に示すエンジン13は、第3タンク14に貯蔵される燃料(石油や天然ガス等)と、有機ハイドライドを分解して得られる前記水素とを燃焼させて動力を発生するものである。このエンジン13は特許請求の範囲にいう「内燃機関」に相当する。
 エンジン13は、レシプロ型及びロータリ型のいずれであってもよい。また、エンジン13は、火花点火方式及び圧縮着火方式のいずれであってもよい。
 このエンジン13には、所定の吸気系に空気が供給されると共に、このエンジン13の排気系からの排ガスが熱交換器5に供給される。
 第3タンク14からポンプP2及びバルブV2を介してエンジン13に供給される燃料としては、例えば、軽油、灯油、重油、天然ガス、LPG、ガソリン等の炭化水素系燃料が挙げられる。
The engine 13 shown in FIG. 4 generates power by burning fuel (such as petroleum or natural gas) stored in the third tank 14 and the hydrogen obtained by decomposing organic hydride. The engine 13 corresponds to an “internal combustion engine” in the claims.
The engine 13 may be either a reciprocating type or a rotary type. The engine 13 may be either a spark ignition method or a compression ignition method.
Air is supplied to the engine 13 to a predetermined intake system, and exhaust gas from the exhaust system of the engine 13 is supplied to the heat exchanger 5.
Examples of the fuel supplied from the third tank 14 to the engine 13 via the pump P2 and the valve V2 include hydrocarbon fuels such as light oil, kerosene, heavy oil, natural gas, LPG, and gasoline.
 水素は、分離装置2から送出されるものである。この水素は、燃焼性(引火性)に富むので、エンジン13が火花点火方式のものである場合には、分離装置2から供給される水素をそのままエンジン13の燃焼室内に導くことができる。そして、水素は、燃焼室内に導かれた前記燃料と混合されて火花点火によって燃焼する。
 また、エンジン13が圧縮着火方式のものである場合には、水素は空気と予混合された後に燃焼室内に導入され、第3タンク14からの燃料は、圧縮着火時に燃焼室内に噴射される。つまり、噴射された燃料が圧縮によって自己着火する際に、燃焼室内の水素が引火燃焼することとなる(圧縮自着火拡散燃焼)。
 ちなみに、水素は炭化水素系燃料(第3タンク14からの燃料)よりも燃焼速度が速いことから、火花点火方式のエンジンでは点火時期を早め、また圧縮着火方式のエンジンでは炭化水素系燃料(第3タンク14からの燃料)の噴射時期を早めることで、エンジン13の熱効率を高めることができる。
 なお、図4中の第1発電機10は、その入力軸にエンジン13の出力軸が連結されており、エンジン13の発生した動力により発電するようになっている。
Hydrogen is delivered from the separation device 2. Since this hydrogen is rich in flammability (flammability), when the engine 13 is of the spark ignition type, the hydrogen supplied from the separation device 2 can be directly introduced into the combustion chamber of the engine 13. The hydrogen is mixed with the fuel introduced into the combustion chamber and burned by spark ignition.
When the engine 13 is of the compression ignition type, hydrogen is premixed with air and then introduced into the combustion chamber, and fuel from the third tank 14 is injected into the combustion chamber at the time of compression ignition. That is, when the injected fuel is self-ignited by compression, hydrogen in the combustion chamber is ignited (compressed self-ignition diffusion combustion).
Incidentally, since hydrogen has a higher combustion speed than hydrocarbon fuel (fuel from the third tank 14), the ignition timing is advanced in the spark ignition type engine, and the hydrocarbon fuel (first fuel in the compression ignition type engine). The thermal efficiency of the engine 13 can be increased by advancing the injection timing of the fuel from the three tanks 14.
Note that the first generator 10 in FIG. 4 has an input shaft connected to the output shaft of the engine 13, and generates power using the power generated by the engine 13.
 以上のような本実施形態に係る動力変換システムSによれば、前記第1実施形態に係る動力変換システムS(図1参照)と同様の作用効果を奏すると共に、エンジン13の動力で発電を行うため、システムの小型化及び高効率化を達成することができる。 According to the power conversion system S according to the present embodiment as described above, the same effects as the power conversion system S (see FIG. 1) according to the first embodiment are exhibited, and power is generated by the power of the engine 13. As a result, the system can be reduced in size and efficiency.
(第4実施形態)
 次に、本発明の第4実施形態に係る動力変換システムSについて、構成説明図である図5を参照しながら説明する。
 図5に示すように、本実施形態に係る動力変換システムSは、エンジン排熱を利用した有機ハイドライドの予熱装置15を備えている以外は、第3実施形態に係る動力変換システムS(図4参照)と同様に構成されている。以下では、主に予熱装置15について説明し、第3実施形態と同様の構成要素については同じ符号を付して詳細な説明を省略する。
(Fourth embodiment)
Next, a power conversion system S according to a fourth embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 5, the power conversion system S according to the present embodiment includes a power conversion system S according to the third embodiment (FIG. 4) except that it includes an organic hydride preheating device 15 that uses engine exhaust heat. Reference) is configured. Below, the preheating apparatus 15 is mainly demonstrated, the same code | symbol is attached | subjected about the component similar to 3rd Embodiment, and detailed description is abbreviate | omitted.
 図5に示す予熱装置15は、ラジエータ17を有するエンジン冷却水の循環経路18上で、ラジエータ17の上流側に設けられた第2熱交換器19を備えている。この第2熱交換器19における「第2」の用語は、図4に示す熱交換器5を本実施形態では第1熱交換器5としたことによる。
 また、循環経路18のラジエータ17の上流側には、第2熱交換器19に対して並列となるようにバルブV3が設けられている。
The preheating device 15 shown in FIG. 5 includes a second heat exchanger 19 provided on the upstream side of the radiator 17 on the engine cooling water circulation path 18 having the radiator 17. The term “second” in the second heat exchanger 19 is due to the fact that the heat exchanger 5 shown in FIG. 4 is the first heat exchanger 5 in this embodiment.
Further, on the upstream side of the radiator 17 in the circulation path 18, a valve V <b> 3 is provided in parallel with the second heat exchanger 19.
 本実施形態での予熱装置15を構成する第2熱交換器19は、エンジン13からラジエータ17に送られる高温のエンジン冷却水と、第1タンク7から分離装置2に向けて送出される有機ハイドライドとの間で熱交換を行うものである。
 つまり、この予熱装置15は、エンジン冷却水を介してのエンジン13の排熱を回収すると共に、この回収した排熱によって、第1熱交換器5で後に過熱蒸気化することとなる有機ハイドライドを予熱するように構成されている。ちなみに、分離装置2においても有機ハイドライドが予熱されることは前記したとおりである。
 なお、バルブV3は、流量調整弁であり、その開度により第2熱交換器19をバイパスするエンジン冷却水の流量を調節可能とするものである。したがって、このバルブV3によれば、その開度を調節することにより、ラジエータ17によるエンジン冷却水の所定の放熱効率を維持しつつ、予熱装置15による有機ハイドライドの予熱を効率よく実行することができる。
The second heat exchanger 19 constituting the preheating device 15 in the present embodiment includes high-temperature engine cooling water sent from the engine 13 to the radiator 17 and organic hydride sent from the first tank 7 toward the separation device 2. Heat exchange.
In other words, the preheating device 15 collects the exhaust heat of the engine 13 through the engine cooling water, and the organic hydride that is later superheated by the first heat exchanger 5 by the recovered exhaust heat. It is configured to preheat. Incidentally, as described above, the organic hydride is preheated also in the separation device 2.
The valve V3 is a flow rate adjustment valve, and can adjust the flow rate of the engine coolant that bypasses the second heat exchanger 19 according to the opening thereof. Therefore, according to the valve V3, by adjusting the opening degree, it is possible to efficiently perform the preheating of the organic hydride by the preheating device 15 while maintaining the predetermined heat dissipation efficiency of the engine cooling water by the radiator 17. .
 以上のような本実施形態に係る動力変換システムSによれば、前記第3実施形態に係る動力変換システムS(図4参照)と同様の作用効果を奏すると共に、さらに次のような作用効果を奏することができる。 According to the power conversion system S according to the present embodiment as described above, the same operational effects as those of the power conversion system S according to the third embodiment (see FIG. 4) can be obtained. Can play.
 従来のエンジンでは、投入燃料の熱量の約30%がそれぞれ排ガスとエンジン冷却水によって大気中に廃棄されているところ、本実施形態に係る動力変換システムSによれば、エンジン13の排ガスから第1熱交換器5にて回収した熱によって、膨張機6に供給する有機ハイドライドを過熱蒸気化すると共に、高温のエンジン冷却水から第2熱交換器19にて回収した熱によって、第1熱交換器5に供給する有機ハイドライドを予熱することができる。このことによって、予熱装置15を有する本実施形態に係る動力変換システムSによれば、さらに熱効率が向上することでエネルギー変換効率がより一層優れたものとなる。 In the conventional engine, about 30% of the heat quantity of the input fuel is discarded into the atmosphere by the exhaust gas and the engine cooling water, respectively. According to the power conversion system S according to this embodiment, the first from the exhaust gas of the engine 13 The organic hydride supplied to the expander 6 is superheated by heat recovered by the heat exchanger 5 and the first heat exchanger is recovered by heat recovered by the second heat exchanger 19 from the high-temperature engine cooling water. The organic hydride supplied to 5 can be preheated. Thus, according to the power conversion system S according to the present embodiment having the preheating device 15, the energy conversion efficiency is further improved by further improving the thermal efficiency.
 また、本実施形態に係る動力変換システムSによれば、第1タンク7の有機ハイドライドが膨張機6に送られるまでの間に、有機ハイドライドを加熱する熱媒体(排ガス又はエンジン冷却水)の温度が低い順番となるように、第2熱交換器19、分離装置2及び第1熱交換器5が配置されている。これにより、本実施形態に係る動力変換システムSは、これらの熱媒体との間で、より熱交換率を高くすることができる。 Further, according to the power conversion system S according to the present embodiment, the temperature of the heat medium (exhaust gas or engine cooling water) that heats the organic hydride before the organic hydride in the first tank 7 is sent to the expander 6. The second heat exchanger 19, the separation device 2, and the first heat exchanger 5 are arranged so that the order becomes low. Thereby, the power conversion system S which concerns on this embodiment can make a heat exchange rate higher between these heat media.
(第5実施形態)
 次に、本発明の第5実施形態に係る動力変換システムSについて、構成説明図である図6を参照しながら説明する。なお、本実施形態において、前記第3実施形態(図4参照)と同様の構成要素については同じ符号を付して詳細な説明を省略する。
(Fifth embodiment)
Next, a power conversion system S according to a fifth embodiment of the present invention will be described with reference to FIG. In the present embodiment, the same components as those in the third embodiment (see FIG. 4) are denoted by the same reference numerals, and detailed description thereof is omitted.
 図6に示すように、本実施形態に係る動力変換システムSは、前記第3実施形態に係る動力変換システムS(図4参照)との比較で説明すると、エンジン13(図4参照)に代えて熱機関130を備えている。本実施形態での熱機関130は、供給される水素と空気との反応熱を発生すると共に、第1発電機10の動力を発生するものであれば、内燃機関に限定されずに、スターリングエンジン等の外燃機関を含むことを意味する。 As shown in FIG. 6, the power conversion system S according to the present embodiment will be described in comparison with the power conversion system S according to the third embodiment (see FIG. 4), instead of the engine 13 (see FIG. 4). And a heat engine 130 is provided. The heat engine 130 in the present embodiment is not limited to the internal combustion engine as long as it generates heat of reaction between the supplied hydrogen and air and generates the power of the first generator 10. It is meant to include external combustion engines such as.
 また、図4に示す動力変換システムSでは第1タンク7と分離装置2との間に、昇圧ポンプP1及びバルブV1が配置されているところ、本実施形態に係る動力変換システムSでは、図6に示すように、バルブV4、第4タンク27、密度計25、及び昇圧ポンプP1がこの順番に配置されている。 Further, in the power conversion system S shown in FIG. 4, the booster pump P <b> 1 and the valve V <b> 1 are arranged between the first tank 7 and the separation device 2. In the power conversion system S according to the present embodiment, FIG. As shown, the valve V4, the fourth tank 27, the density meter 25, and the booster pump P1 are arranged in this order.
 また、図4に示す動力変換システムSでは、分離装置2で水素と分離された脱水素化物及び未分解の有機ハイドライドが第2タンク12に貯留されるようになっているが、本実施形態では、図6に示すように、分離装置2が三方切り替えバルブであるバルブV3を介して第4タンク27及び第2タンク12と接続されている。つまり、バルブV3がA方向に切り替えられると、分離装置2と第4タンク27とが連通し、バルブV3がB方向に切り替えられると、分離装置2と第2タンク12とが連通するようになっている。
 なお、密度計25は、第4タンク27内に満たされる液中の有機ハイドライドの濃度をその液の密度によって相対的に測定するものである。
 ちなみに、本発明では、この密度計25に代えて他の濃度計を使用することもできる。他の濃度計としては、有機ハイドライドの濃度を測定することができれば公知の濃度計を好適に使用することができ、具体的には、例えば誘電率の変化によって有機ハイドライドの濃度を測定するものが挙げられる。
 なお、図6中、符号26は、第4タンク27内の液位(レベル)を検出する液位計である。
Further, in the power conversion system S shown in FIG. 4, the dehydrogenated product and undecomposed organic hydride separated from hydrogen by the separation device 2 are stored in the second tank 12, but in this embodiment, As shown in FIG. 6, the separation device 2 is connected to the fourth tank 27 and the second tank 12 via a valve V3 which is a three-way switching valve. That is, when the valve V3 is switched in the A direction, the separation device 2 and the fourth tank 27 communicate with each other, and when the valve V3 is switched in the B direction, the separation device 2 and the second tank 12 communicate with each other. ing.
The density meter 25 relatively measures the concentration of the organic hydride in the liquid filled in the fourth tank 27 according to the density of the liquid.
Incidentally, in the present invention, another densitometer can be used instead of the densitometer 25. As another densitometer, a known densitometer can be preferably used as long as it can measure the concentration of organic hydride. Specifically, for example, a device that measures the concentration of organic hydride by changing the dielectric constant is used. Can be mentioned.
In FIG. 6, reference numeral 26 denotes a liquid level meter that detects the liquid level (level) in the fourth tank 27.
 また、本実施形態に係る動力変換システムSは、昇圧ポンプP1の駆動及び停止、バルブV3の流路(A方向又はB方向)の切り替え、並びにバルブV4の開閉等を所定の手順で制御する図示しないコントローラを備えている。 Further, the power conversion system S according to the present embodiment controls driving and stopping of the booster pump P1, switching of the flow path (A direction or B direction) of the valve V3, opening and closing of the valve V4, etc. in a predetermined procedure. Does not have a controller.
 次に、本実施形態に係る動力変換システムSの動作について説明しながら、前記したコントローラが昇圧ポンプP1、バルブV3及びV4を制御する手順について説明する。図7は、昇圧ポンプP1の駆動又は停止、バルブV3の切り替え、及びバルブV4の開閉のタイミングを説明するタイムチャートである。図8は、コントローラがバルブV3の切り替え、及びバルブV4の開閉の制御を行う手順を示すフローチャートである。 Next, while describing the operation of the power conversion system S according to the present embodiment, a procedure in which the above-described controller controls the booster pump P1, the valves V3 and V4 will be described. FIG. 7 is a time chart for explaining the timing of driving or stopping the booster pump P1, switching of the valve V3, and opening / closing of the valve V4. FIG. 8 is a flowchart showing a procedure in which the controller performs switching of the valve V3 and control of opening and closing of the valve V4.
 図6に示す本実施形態に係る動力変換システムSでは、所定のスイッチ(図示省略)がオンになって起動すると、熱機関130の運転が開始されると共に、昇圧ポンプP1が駆動する。ちなみに、動力変換システムSの起動時には、第1タンク7内及び第4タンク27内には、それぞれのタンク容量に達するまでの有機ハイドライドが貯留されている。つまり、起動時の第1タンク7及び第4タンク27は、いわゆる満タンとなっている。また、起動時(初期状態)のバルブV3の切り替え方向は、A方向に設定され、バルブV4は閉状態となっている。 In the power conversion system S according to the present embodiment shown in FIG. 6, when a predetermined switch (not shown) is turned on and started, the operation of the heat engine 130 is started and the booster pump P1 is driven. Incidentally, when the power conversion system S is activated, the organic hydride until the tank capacity is reached is stored in the first tank 7 and the fourth tank 27. That is, the first tank 7 and the fourth tank 27 at the time of activation are so-called full. Further, the switching direction of the valve V3 at the start (initial state) is set to the A direction, and the valve V4 is in a closed state.
 そして、運転を開始した熱機関130は、空気と、第3タンク14から供給された燃料とを燃焼させて動力を発生し、第1発電機10にて発電を行うと共に、発生した熱を、所定の熱媒体を介して熱交換器5及び水素発生装置1に通流する。そのことで、熱交換器5及び水素発生装置1は所定の温度まで暖機される。 Then, the heat engine 130 that has started operation burns air and the fuel supplied from the third tank 14 to generate power, generates power in the first generator 10, and generates the generated heat. It flows through the heat exchanger 5 and the hydrogen generator 1 through a predetermined heat medium. Thereby, the heat exchanger 5 and the hydrogen generator 1 are warmed up to a predetermined temperature.
 一方、駆動した昇圧ポンプP1は、第4タンク27内の有機ハイドライド(液体)を分離装置2及び熱交換器5を介して膨張機6に送り込む。つまり、昇圧ポンプP1で圧送される有機ハイドライド(液体)は、前記した第1実施形態等と同様に、分離装置2で予熱された後に、熱交換器5で過熱蒸気(有機ハイドライドガス)となって膨張機6で動力を発生させる。そして、膨張機6は発生した動力によって第2発電機11にて発電を行う。 On the other hand, the driven booster pump P1 sends the organic hydride (liquid) in the fourth tank 27 to the expander 6 via the separation device 2 and the heat exchanger 5. That is, the organic hydride (liquid) pumped by the booster pump P1 is preheated by the separation device 2 and then becomes superheated steam (organic hydride gas) by the heat exchanger 5 as in the first embodiment. Then, power is generated by the expander 6. The expander 6 generates power with the second generator 11 using the generated power.
 また、膨張機6から水素発生装置1に送り込まれた有機ハイドライドは、水素及び脱水素化物に分解され、これらの水素及び脱水素化物、並びに未分解の有機ハイドライドの混合物は、分離装置2に送り込まれる。そして、分離装置2で分離された水素は、熱機関130に供給されて前記した燃料と共に燃焼することとなる。 The organic hydride sent from the expander 6 to the hydrogen generator 1 is decomposed into hydrogen and a dehydrogenated product, and a mixture of these hydrogen, dehydrogenated product, and undecomposed organic hydride is sent to the separation device 2. It is. Then, the hydrogen separated by the separation device 2 is supplied to the heat engine 130 and burned together with the fuel.
 また、分離装置2で分離された未分解の有機ハイドライド及び脱水素化物は、バルブV3の切り替え方向がA方向に設定されている場合には、第4タンク27に戻されると共に、再び第4タンク27から膨張機6側に向けて供給される。また、バルブV3の切り替え方向がB方向に設定されている場合には、分離装置2からの有機ハイドライド及び脱水素化物は、第2タンク12に貯留される。 In addition, when the switching direction of the valve V3 is set to the A direction, the undecomposed organic hydride and dehydrogenated product separated by the separation device 2 are returned to the fourth tank 27 and again the fourth tank. 27 is supplied toward the expander 6 side. Further, when the switching direction of the valve V3 is set to the B direction, the organic hydride and the dehydrogenated product from the separation device 2 are stored in the second tank 12.
 このようなバルブV3の切り替え動作は、前記したバルブV4の開閉動作と共に、前記したコントローラ(図示省略)によって制御される。
 次に、図7を参照しながら、バルブV3の切り替え及びバルブV4の開閉のタイミングについて説明する。
Such switching operation of the valve V3 is controlled by the controller (not shown) together with the opening / closing operation of the valve V4.
Next, switching timing of the valve V3 and opening / closing timing of the valve V4 will be described with reference to FIG.
 なお、図7中、時刻t1は、本実施形態に係る動力変換システムSの起動時であり、時刻t3は、バルブV3をA方向からB方向に切り替えた時であり、時刻t4は、バルブV3をB方向からA方向に切り替えると共に、バルブV4を開状態とした時であり、時刻t5は、バルブV3を再びA方向からB方向に切り替えた時である。
 なお、時刻t2は、動力変換システムSが起動してから水素発生装置1で分解された有機ハイドライドの分解物が最初に第4タンク27内に到達した時である。
In FIG. 7, time t1 is when the power conversion system S according to the present embodiment is started, time t3 is when the valve V3 is switched from the A direction to the B direction, and time t4 is the valve V3. Is switched from the B direction to the A direction and the valve V4 is opened. Time t5 is when the valve V3 is switched from the A direction to the B direction again.
Time t2 is the time when the decomposition product of the organic hydride decomposed by the hydrogen generator 1 first reaches the fourth tank 27 after the power conversion system S is activated.
 また、図7中、第4タンク27内の液位(Lx)は、図6に示す液位計26で検出した第4タンク27内の液位(Lx)の推移を示すグラフであり、Lmは、第4タンク27のタンク容量であり、Ltは、第4タンク27内の液位の下限の目安を規定する、予め定めた閾値である。ちなみに、閾値Ltは、タンク容量の5%~50%の範囲内で設定することができるが、これに限定されるものではない。
 また、図7中、第4タンク27内の液中の有機ハイドライドの濃度(Cx)は、図6に示す密度計25で検出した液密度に基づいて算出された第4タンク27内の有機ハイドライドの濃度(Cx)の推移を示すグラフである。Cmは、第1タンク7内に貯留された有機ハイドライドの濃度に等しく、Ctは、第4タンク27内の有機ハイドライドの濃度の下限の目安を規定する、予め定めた閾値である。この閾値(Ct)は、水素発生装置1における有機ハイドライドの分解で得られる水素が、殆どなくなるか、又は熱機関130に供給すべき水素量が不充分となる有機ハイドライドの濃度で規定することがでる。閾値(Ct)は、例えば、0質料%を超え、10質量%以下の範囲内で設定することができるが、これに限定されるものではない。
In FIG. 7, the liquid level (Lx) in the fourth tank 27 is a graph showing the transition of the liquid level (Lx) in the fourth tank 27 detected by the liquid level meter 26 shown in FIG. Is a tank capacity of the fourth tank 27, and Lt is a predetermined threshold value that defines a guideline of the lower limit of the liquid level in the fourth tank 27. Incidentally, the threshold value Lt can be set within a range of 5% to 50% of the tank capacity, but is not limited to this.
In FIG. 7, the organic hydride concentration (Cx) in the liquid in the fourth tank 27 is calculated based on the liquid density detected by the density meter 25 shown in FIG. It is a graph which shows transition of density | concentration (Cx). Cm is equal to the concentration of the organic hydride stored in the first tank 7, and Ct is a predetermined threshold value that defines the lower limit of the concentration of the organic hydride in the fourth tank 27. This threshold value (Ct) may be defined by the concentration of the organic hydride at which the hydrogen obtained by the decomposition of the organic hydride in the hydrogen generator 1 is almost lost or the amount of hydrogen to be supplied to the heat engine 130 is insufficient. Out. The threshold value (Ct) can be set, for example, within the range of more than 0 mass% and 10 mass% or less, but is not limited thereto.
 本実施形態に係る動力変換システムSは、図7に示すように、起動前にあっては、昇圧ポンプP1は停止状態であり、バルブV3は、切り替え方向がA方向、つまり図6に示す分離装置2から第4タンク27側に向かう方向に設定され、バルブV4が閉状態となるように設定されている。
 そして、本実施形態に係る動力変換システムSでの起動前の第4タンク27内には、濃度Cmの有機ハイドライドが満タン(液位Lm)となっている。つまり、時刻t1となるまでは、液位(Lx)はLmとなっている。
In the power conversion system S according to the present embodiment, as shown in FIG. 7, before the start-up, the booster pump P1 is in a stopped state, and the switching direction of the valve V3 is the A direction, that is, the separation shown in FIG. It is set in a direction from the device 2 toward the fourth tank 27 side, and is set so that the valve V4 is closed.
And in the 4th tank 27 before starting by power conversion system S concerning this embodiment, organic hydride with concentration Cm is full (liquid level Lm). That is, the liquid level (Lx) is Lm until time t1.
 まず、動力変換システムSが起動すると(時刻t1)、昇圧ポンプP1が駆動して第4タンク27内の有機ハイドライドは、膨張機6(図6参照)側に向かって供給される。この際、分離装置2、熱交換器5及び水素発生装置1が暖機中であることから、分離装置2から第4タンク27への有機ハイドライド及びその分解物の戻りは殆どなく、第4タンク27内の液位(Lx)は膨張機6(図6参照)側への有機ハイドライドの供給に伴って徐々に低下していく。 First, when the power conversion system S is activated (time t1), the booster pump P1 is driven and the organic hydride in the fourth tank 27 is supplied toward the expander 6 (see FIG. 6). At this time, since the separator 2, the heat exchanger 5, and the hydrogen generator 1 are warming up, there is almost no return of organic hydride and decomposition products from the separator 2 to the fourth tank 27, and the fourth tank. The liquid level (Lx) in 27 gradually decreases as the organic hydride is supplied to the expander 6 (see FIG. 6).
 その後、分離装置2、熱交換器5及び水素発生装置1の暖機が完了して、分離装置2から有機ハイドライド及びその分解物(脱水素化物)が戻り始めると(時刻t2)、第4タンク27内の有機ハイドライドの濃度(Cx)は、脱水素化物で薄められて徐々に低下していく。 Thereafter, when the warming-up of the separator 2, the heat exchanger 5, and the hydrogen generator 1 is completed, and the organic hydride and its decomposition product (dehydrogenated product) start to return from the separator 2 (time t2), the fourth tank The concentration (Cx) of the organic hydride in 27 is gradually reduced as it is diluted with the dehydrogenated product.
 時刻t2を経過すると、有機ハイドライド及び脱水素化物が分離装置2(図6参照)から第4タンク27に流入する一方で、分離装置2から熱機関130に向けて供給される水素当量分の有機ハイドライドが消費される。これにより、第4タンク27内の液位(Lx)は、徐々に低下していく。 When the time t2 has elapsed, the organic hydride and the dehydrogenated product flow into the fourth tank 27 from the separator 2 (see FIG. 6), while the organic equivalent of the hydrogen equivalent supplied from the separator 2 toward the heat engine 130 Hydride is consumed. As a result, the liquid level (Lx) in the fourth tank 27 gradually decreases.
 そして、第4タンク27内の液中の有機ハイドライドの濃度(Cx)が、閾値(Ct)以下となると(時刻t3)、第4タンク27内の濃度(Cx)が、水素発生装置1で水素が充分に得られない濃度になっているとみなされて、バルブV3がA方向からB方向に切り替えられる。つまり、分離装置2からの有機ハイドライド及び脱水素化物は、第2タンク12(図6参照)に送り込まれる。
 この際、分離装置2から第4タンク27への有機ハイドライド及び脱水素化物の戻りがなくなるので、第4タンク27内の液位(Lx)は膨張機6(図6参照)側への有機ハイドライド及び脱水素化物の供給に伴って徐々に低下していく。
Then, when the concentration (Cx) of the organic hydride in the liquid in the fourth tank 27 becomes equal to or less than the threshold value (Ct) (time t3), the concentration (Cx) in the fourth tank 27 is reduced to hydrogen by the hydrogen generator 1. As a result, the valve V3 is switched from the A direction to the B direction. That is, the organic hydride and dehydrogenated product from the separation device 2 are sent to the second tank 12 (see FIG. 6).
At this time, since the organic hydride and dehydrogenated product are not returned from the separation device 2 to the fourth tank 27, the liquid level (Lx) in the fourth tank 27 is the organic hydride to the expander 6 (see FIG. 6) side. And gradually decreases with the supply of the dehydrogenated product.
 そして、第4タンク27内の液位(Lx)が、閾値(Lt)以下となると(時刻t4)、バルブV3がB方向からA方向に切り替えられる。つまり、分離装置2からの有機ハイドライド及び脱水素化物が第4タンク27(図6参照)内に送り込まれるようにバルブV3が切り替えられる。また、それと同時に、バルブV4が開状態とされる。この時刻t3から時刻t4までの間は、第4タンク27内の有機ハイドライドの濃度(Cx)の変化はない。 Then, when the liquid level (Lx) in the fourth tank 27 becomes equal to or less than the threshold value (Lt) (time t4), the valve V3 is switched from the B direction to the A direction. That is, the valve V3 is switched so that the organic hydride and dehydrogenated product from the separation device 2 are sent into the fourth tank 27 (see FIG. 6). At the same time, the valve V4 is opened. There is no change in the concentration (Cx) of the organic hydride in the fourth tank 27 from time t3 to time t4.
 そして、時刻t4の経過後は、バルブV4が開状態となることで、第1タンク7から第4タンク27に向けて有機ハイドライドが供給され、第4タンク27の液位(Lx)が上昇すると共に、第4タンク27の有機ハイドライドの濃度(Cx)も上昇する。
 その後、第4タンク27の液位(Lx)が、Lm(第4タンク27が満タン)となった時(時刻5)に、バルブV4が閉状態となる。
 そして、時刻t5の経過後は、水素が熱機関130に供給されることによる有機ハイドライドの消費によって、第4タンク27内の液位(Lx)が徐所に低下すると共に、分離装置2からの戻る脱水素化物によって第4タンク27内の有機ハイドライドの濃度(Cx)が再び低下していく。
Then, after the elapse of time t4, the valve V4 is opened, so that organic hydride is supplied from the first tank 7 toward the fourth tank 27, and the liquid level (Lx) of the fourth tank 27 rises. At the same time, the concentration (Cx) of the organic hydride in the fourth tank 27 also increases.
Thereafter, when the liquid level (Lx) of the fourth tank 27 becomes Lm (the fourth tank 27 is full) (time 5), the valve V4 is closed.
After the elapse of time t5, the liquid level (Lx) in the fourth tank 27 is lowered gradually due to the consumption of organic hydride due to the supply of hydrogen to the heat engine 130, and the separation from the separation device 2 The concentration (Cx) of the organic hydride in the fourth tank 27 is lowered again by the dehydrogenated product that is returned.
 以上のように、本実施形態に係る動力変換システムSでは、第4タンク27の有機ハイドライドの濃度(Cx)が所定の濃度(閾値(Ct))以下となるまでは、第4タンク27と、膨張機6との間を循環するように有機ハイドライド(脱水素化物)を巡らせ、濃度(Cx)が所定の濃度(閾値(Ct))以下となったときには、循環している有機ハイドライド(脱水素化物)を第2タンク12に回収すると共に、第1タンク7から不足分の有機ハイドライドを第4タンク27に補うようになっている。 As described above, in the power conversion system S according to the present embodiment, until the concentration (Cx) of the organic hydride in the fourth tank 27 is equal to or lower than the predetermined concentration (threshold value (Ct)), The organic hydride (dehydrogenated product) is circulated so as to circulate between the expanders 6 and when the concentration (Cx) becomes a predetermined concentration (threshold (Ct)) or less, the circulating organic hydride (dehydrogenation) Is collected in the second tank 12 and the fourth tank 27 is supplemented with a shortage of organic hydride from the first tank 7.
 次に、図8のフローチャートを参照しながら、本実施形態に係る動力変換システムSのコントローラ(図示省略)が、バルブV3の切り替え、及びバルブV4の開閉の制御を行う手順について説明する。 Next, a procedure in which the controller (not shown) of the power conversion system S according to the present embodiment performs switching of the valve V3 and control of opening and closing of the valve V4 will be described with reference to a flowchart of FIG.
 本実施形態に係る動力変換システムS(図6参照)では、所定のスイッチがオンになって熱機関130(図6参照)が運転を開始すると当時に昇圧ポンプP1(図6参照)が駆動する。このタイミングは、図7の時刻t1に対応する。
 なお、バルブV3(図6参照)の初期状態は、図8に示すように、切り替え方向がA方向(図6参照)に設定されており、バルブV3(図6参照)の初期状態は、閉状態に設定されている。
In the power conversion system S (see FIG. 6) according to the present embodiment, when a predetermined switch is turned on and the heat engine 130 (see FIG. 6) starts operation, the booster pump P1 (see FIG. 6) is driven at that time. . This timing corresponds to time t1 in FIG.
As shown in FIG. 8, the initial state of the valve V3 (see FIG. 6) is set to the direction A (see FIG. 6), and the initial state of the valve V3 (see FIG. 6) is closed. Set to state.
 まず、動力変換システムSのコントローラ(図示省略)は、密度計25(図6参照)の検出信号に基づいて濃度(Cx)を算出すると共に、濃度(Cx)が閾値(Ct)以下か否かを判断する(ステップS101)。そして、濃度(Cx)が閾値(Ct)を超えていると判断した場合には(ステップS101のNo)、このステップS101を繰り返す。
 そして、濃度(Cx)が閾値(Ct)以下であると判断した場合には(ステップS101のYes)、バルブV3をB方向に切り替える(ステップS102)。
 なお、このタイミングは、図7の時刻t3に対応する。
First, the controller (not shown) of the power conversion system S calculates the concentration (Cx) based on the detection signal of the density meter 25 (see FIG. 6), and whether the concentration (Cx) is equal to or less than the threshold value (Ct). Is determined (step S101). When it is determined that the density (Cx) exceeds the threshold value (Ct) (No in step S101), step S101 is repeated.
When it is determined that the concentration (Cx) is equal to or less than the threshold value (Ct) (Yes in step S101), the valve V3 is switched in the B direction (step S102).
This timing corresponds to time t3 in FIG.
 次に、動力変換システムSのコントローラ(図示省略)は、液位計26(図6参照)の検出信号に基づいて、液位(Lx)が閾値(Lt)以下か否かを判断する(ステップS103)。そして、液位(Lx)が閾値(Lt)を超えていると判断した場合には(ステップS103のNo)、このステップS103を繰り返す。
 そして、液位(Lx)が閾値(Lt)以下であると判断した場合には(ステップS103のYes)、バルブV3をA方向に切り替えると共に(ステップS104)、バルブV4を開状態とする(ステップS105)。
 なお、このタイミングは、図7の時刻t4に対応する。
Next, the controller (not shown) of the power conversion system S determines whether or not the liquid level (Lx) is equal to or lower than the threshold value (Lt) based on the detection signal of the liquid level gauge 26 (see FIG. 6) (step) S103). When it is determined that the liquid level (Lx) exceeds the threshold value (Lt) (No in step S103), step S103 is repeated.
When it is determined that the liquid level (Lx) is equal to or lower than the threshold value (Lt) (Yes in step S103), the valve V3 is switched to the A direction (step S104), and the valve V4 is opened (step S104). S105).
This timing corresponds to time t4 in FIG.
 次に、動力変換システムSのコントローラ(図示省略)は、液位計26(図6参照)の検出信号に基づいて、液位(Lx)がタンク容量(Lm)に達したか否かを判断する(ステップS106)。そして、液位(Lx)がタンク容量(Lm)に達していないと判断した場合には(ステップS106のNo)、このステップS106を繰り返す。
 そして、液位(Lx)がタンク容量(Lm)に達したと判断した場合には(ステップS103のYes)、バルブV4を閉状態とする(ステップS107)。
 なお、このタイミングは、図7の時刻t5に対応する。
Next, the controller (not shown) of the power conversion system S determines whether or not the liquid level (Lx) has reached the tank capacity (Lm) based on the detection signal of the liquid level gauge 26 (see FIG. 6). (Step S106). When it is determined that the liquid level (Lx) has not reached the tank capacity (Lm) (No in step S106), step S106 is repeated.
When it is determined that the liquid level (Lx) has reached the tank capacity (Lm) (Yes in step S103), the valve V4 is closed (step S107).
This timing corresponds to time t5 in FIG.
 このようにして動力変換システムSは、このようなコントローラ(図示省略)によって有機ハイドライドの濃度(Cx)を監視し続けながら、有機ハイドライドの過熱蒸気により発生させた動力と、有機ハイドライドの分解で生成した水素を燃料とする熱機関による動力とを得る構成となっている。 In this way, the power conversion system S is generated by the power generated by the superheated steam of the organic hydride and the decomposition of the organic hydride while continuously monitoring the concentration (Cx) of the organic hydride by such a controller (not shown). It is configured to obtain power from a heat engine using hydrogen as a fuel.
 以上のような本実施形態に係る動力変換システムSによれば、前記第3実施形態に係る動力変換システムS(図4参照)と同様の作用効果を奏すると共に、さらに次のような作用効果を奏することができる。 According to the power conversion system S according to the present embodiment as described above, the same operational effects as those of the power conversion system S according to the third embodiment (see FIG. 4) can be obtained. Can play.
 本実施形態に係る動力変換システムSによれば、第4タンク27と、膨張機6との間を循環するように有機ハイドライド(脱水素化物)を巡らせ、その途中で水素発生装置1にて有機ハイドライドから水素を発生させるようになっている。その結果、動力変換システムSは、有機ハイドライドからの水素の生成を高効率で行うことができる。 According to the power conversion system S according to the present embodiment, the organic hydride (dehydrogenated product) is circulated so as to circulate between the fourth tank 27 and the expander 6, and the hydrogen generator 1 performs organicity in the middle thereof. Hydrogen is generated from hydride. As a result, the power conversion system S can generate hydrogen from the organic hydride with high efficiency.
 また、本実施形態に係る動力変換システムSによれば、水素発生装置1で生成する水素量に依存することなく、膨張機6に供給するガス媒体(有機ハイドライド及び脱水素化物)の量を設定することができる。つまり、前記第3実施形態に係る動力変換システムS(図4参照)では、膨張機6に供給する有機ハイドライドの量が決まると、水素発生装置1で生成する水素量の最大量は化学量論的に決まってしまう。これに対して、本実施形態に係る動力変換システムSによれば、第4タンク27と膨張機6との間で循環するガス媒体を有機ハイドライド及び脱水素化物の混合物とすることができるので、本実施形態での水素発生装置1(図6参照)で発生する水素量と、前記第3実施形態での水素発生装置1(図4参照)で発生する水素量とが同じとなるように条件設定した場合に、本実施形態での膨張機6に供給されるガス媒体(有機ハイドライド及び脱水素化物)の量は、前記第3実施形態での膨張機6に供給されるガス媒体(有機ハイドライド)の量よりも多くなる。その結果、本実施形態に係る動力変換システムSによれば、前記第3実施形態に係る動力変換システムSよりも、大きな動力を得ることができる。 Further, according to the power conversion system S according to the present embodiment, the amount of the gas medium (organic hydride and dehydrogenated product) supplied to the expander 6 is set without depending on the amount of hydrogen generated by the hydrogen generator 1. can do. That is, in the power conversion system S (see FIG. 4) according to the third embodiment, when the amount of organic hydride supplied to the expander 6 is determined, the maximum amount of hydrogen generated by the hydrogen generator 1 is stoichiometric. Will be decided. On the other hand, according to the power conversion system S according to the present embodiment, the gas medium circulated between the fourth tank 27 and the expander 6 can be a mixture of organic hydride and dehydrogenated product. Conditions are set so that the amount of hydrogen generated in the hydrogen generator 1 (see FIG. 6) in the present embodiment is the same as the amount of hydrogen generated in the hydrogen generator 1 (see FIG. 4) in the third embodiment. When set, the amount of the gas medium (organic hydride and dehydrogenated product) supplied to the expander 6 in this embodiment is the same as the gas medium (organic hydride) supplied to the expander 6 in the third embodiment. ) Will be more than the amount. As a result, according to the power conversion system S according to the present embodiment, greater power can be obtained than the power conversion system S according to the third embodiment.
 1   水素発生装置
 2   分離装置
 3   第1膨張機
 4   動力変換装置
 5   熱交換器
 6   第2膨張機
 7   第1タンク
 8   水素燃焼装置
 9   圧縮機
 10  第1発電機
 11  第2発電機
 12  第2タンク
 13  エンジン(内燃機関)
 20  膨張機型水素発生装置
 14  エンジン
 15  予熱装置
 17  ラジエータ
 18  循環経路
 19  第2熱交換器
 25  密度計
 26  液位計
 27  第4タンク
 130 熱機関
 S   動力変換システム
DESCRIPTION OF SYMBOLS 1 Hydrogen generator 2 Separating device 3 1st expander 4 Power converter 5 Heat exchanger 6 2nd expander 7 1st tank 8 Hydrogen combustion apparatus 9 Compressor 10 1st generator 11 2nd generator 12 2nd tank 13 Engine (Internal combustion engine)
DESCRIPTION OF SYMBOLS 20 Expander type hydrogen generator 14 Engine 15 Preheating apparatus 17 Radiator 18 Circulation path 19 2nd heat exchanger 25 Density meter 26 Liquid level meter 27 Fourth tank 130 Heat engine S Power conversion system

Claims (7)

  1.  供給される有機ハイドライドを所定の触媒の存在下に加熱して水素及び有機ハイドライドの脱水素化物を生成する水素発生装置と、
     前記水素発生装置で得られる水素と有機ハイドライドの脱水素化物とを分離すると共に水素を送出する分離装置と、
     前記分離装置から送出される水素を燃焼させることで動力を得る動力変換装置と、
     前記動力変換装置から排出される排ガスと、前記水素発生装置に供給する前の有機ハイドライドとの間で熱交換を行う熱交換器と、
     前記熱交換器での熱交換で過熱蒸気となった有機ハイドライドにより動力を発生すると共にこの有機ハイドライドを前記水素発生装置に送出する膨張機と、
    を備えることを特徴とする動力変換システム。
    A hydrogen generator for heating the supplied organic hydride in the presence of a predetermined catalyst to produce hydrogen and a dehydrogenated product of the organic hydride;
    A separation device that separates hydrogen obtained from the hydrogen generator and a dehydrogenated product of organic hydride and sends out hydrogen;
    A power conversion device that obtains power by burning hydrogen delivered from the separation device;
    A heat exchanger that performs heat exchange between the exhaust gas discharged from the power converter and the organic hydride before being supplied to the hydrogen generator;
    An expander that generates power with organic hydride that has become superheated steam by heat exchange in the heat exchanger and sends the organic hydride to the hydrogen generator;
    A power conversion system comprising:
  2.  請求項1に記載の動力変換システムにおいて、
     前記膨張機は、前記水素発生装置と一体となって膨張機型水素発装置を構成していることを特徴とする動力変換システム。
    The power conversion system according to claim 1,
    The power conversion system, wherein the expander forms an expander-type hydrogen generator integrally with the hydrogen generator.
  3.  請求項1に記載の動力変換システムにおいて、
     前記熱交換器に供給される前の有機ハイドライドが前記分離装置内を通流し、この分離装置内でこの有機ハイドライドは、水素及び有機ハイドライドの脱水素化物と熱交換を行った後に前記熱交換器に供給されることを特徴とする動力変換システム。
    The power conversion system according to claim 1,
    The organic hydride before being supplied to the heat exchanger flows through the separation device, and the organic hydride exchanges heat with hydrogen and a dehydrogenated product of the organic hydride in the separation device, and then the heat exchanger. Power conversion system characterized by being supplied to
  4.  請求項1に記載の動力変換システムにおいて、
     前記動力変換装置は、前記分離装置から送出される水素を燃焼させる水素燃焼装置と、
     この水素燃焼装置に供給する空気を圧縮する圧縮機と、
     前記水素燃焼装置からの水素燃焼ガスにより動力を発生させる膨張機と、
    を備えることを特徴とする動力変換システム。
    The power conversion system according to claim 1,
    The power conversion device comprises a hydrogen combustion device for combusting hydrogen delivered from the separation device;
    A compressor for compressing the air supplied to the hydrogen combustion device;
    An expander that generates power by hydrogen combustion gas from the hydrogen combustion device;
    A power conversion system comprising:
  5.  請求項1に記載の動力変換システムにおいて、
     前記水素燃焼装置は、前記動力変換装置から排出される排ガスで有機ハイドライドを加熱することを特徴とする動力変換システム。
    The power conversion system according to claim 1,
    The said hydrogen combustion apparatus heats an organic hydride with the waste gas discharged | emitted from the said power converter, The power converter system characterized by the above-mentioned.
  6.  供給される有機ハイドライドを所定の触媒の存在下に加熱して水素及び有機ハイドライドの脱水素化物を生成する水素発生装置と、
     前記水素発生装置で得られる水素と有機ハイドライドの脱水素化物とを分離すると共に水素を送出する分離装置と、
     前記分離装置から送出される水素を含む燃料を燃焼させることで動力を得る内燃機関と、
     前記内燃機関から排出される排ガスと、前記水素発生装置に供給する前の有機ハイドライドとの間で熱交換を行う第1熱交換器と、
     前記第1熱交換器に供給する前の有機ハイドライドと、前記内燃機関から送り出される冷却水との熱交換により前記第1熱交換器に供給する有機ハイドライドを予熱する第2熱交換器と、
     前記第1熱交換器での熱交換で過熱蒸気となった有機ハイドライドにより動力を発生すると共にこの有機ハイドライドを前記水素発生装置に送出する膨張機と、
    を備えることを特徴とする動力変換システム。
    A hydrogen generator for heating the supplied organic hydride in the presence of a predetermined catalyst to produce hydrogen and a dehydrogenated product of the organic hydride;
    A separation device that separates hydrogen obtained from the hydrogen generator and a dehydrogenated product of organic hydride and sends out hydrogen;
    An internal combustion engine that obtains power by burning fuel containing hydrogen delivered from the separator;
    A first heat exchanger that exchanges heat between the exhaust gas discharged from the internal combustion engine and the organic hydride before being supplied to the hydrogen generator;
    A second heat exchanger that preheats the organic hydride supplied to the first heat exchanger by heat exchange between the organic hydride before being supplied to the first heat exchanger and the cooling water sent from the internal combustion engine;
    An expander that generates power with organic hydride that has become superheated steam by heat exchange in the first heat exchanger and sends the organic hydride to the hydrogen generator;
    A power conversion system comprising:
  7.  請求項6に記載の動力変換システムにおいて、
     前記第2熱交換器から前記第1熱交換器に供給される有機ハイドライドは、前記第1熱交換器に供給される前に、前記分離装置内に通流して、この分離装置内の水素及び有機ハイドライドの脱水素化物との熱交換によりさらに予熱された後に、前記第1熱交換器に供給されることを特徴とする動力変換システム。
    The power conversion system according to claim 6, wherein
    The organic hydride supplied from the second heat exchanger to the first heat exchanger flows through the separation device before being supplied to the first heat exchanger, and hydrogen and hydrogen in the separation device are supplied. A power conversion system, wherein the power conversion system is further preheated by heat exchange with a dehydrogenated product of an organic hydride and then supplied to the first heat exchanger.
PCT/JP2012/070975 2011-09-22 2012-08-20 Power conversion system WO2013042500A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011207437A JP5602698B2 (en) 2011-09-22 2011-09-22 Power conversion system
JP2011-207437 2011-09-22

Publications (1)

Publication Number Publication Date
WO2013042500A1 true WO2013042500A1 (en) 2013-03-28

Family

ID=47914279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070975 WO2013042500A1 (en) 2011-09-22 2012-08-20 Power conversion system

Country Status (2)

Country Link
JP (1) JP5602698B2 (en)
WO (1) WO2013042500A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202017003690U1 (en) * 2017-07-13 2018-10-16 Thomas Lamla Hydrogen-steam-power plant
WO2019068387A1 (en) * 2017-10-05 2019-04-11 Hydrogenious Technologies Gmbh System and method for providing and further using hydrogen gas

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6244242B2 (en) 2014-03-26 2017-12-06 千代田化工建設株式会社 Hydrogen production system and hydrogen production method
JP6727067B2 (en) * 2016-08-08 2020-07-22 株式会社日立製作所 Hydrogen regeneration system and hydrogen regeneration operation method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507360A (en) * 1993-03-23 1996-08-06 ユナイテッド テクノロジーズ コーポレイション High efficiency cooling device driven by hydrogen
JP2004197705A (en) * 2002-12-20 2004-07-15 Chiyoda Corp High pressure hydrogen supply system
JP2004224632A (en) * 2003-01-22 2004-08-12 Masaru Ichikawa Direct reforming composite system for low-grade hydrocarbon
JP2005105906A (en) * 2003-09-30 2005-04-21 Hitachi Ltd Hydride turbine
JP2007326000A (en) * 2006-06-06 2007-12-20 Petroleum Energy Center Dehydrogenation catalyst and hydrogen supply device using the same
JP2010083687A (en) * 2008-09-30 2010-04-15 Hitachi Ltd Hydrogen storage system
JP2010163358A (en) * 2010-02-15 2010-07-29 Hitachi Ltd Hydrogen supply apparatus and method for supplying hydrogen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507360A (en) * 1993-03-23 1996-08-06 ユナイテッド テクノロジーズ コーポレイション High efficiency cooling device driven by hydrogen
JP2004197705A (en) * 2002-12-20 2004-07-15 Chiyoda Corp High pressure hydrogen supply system
JP2004224632A (en) * 2003-01-22 2004-08-12 Masaru Ichikawa Direct reforming composite system for low-grade hydrocarbon
JP2005105906A (en) * 2003-09-30 2005-04-21 Hitachi Ltd Hydride turbine
JP2007326000A (en) * 2006-06-06 2007-12-20 Petroleum Energy Center Dehydrogenation catalyst and hydrogen supply device using the same
JP2010083687A (en) * 2008-09-30 2010-04-15 Hitachi Ltd Hydrogen storage system
JP2010163358A (en) * 2010-02-15 2010-07-29 Hitachi Ltd Hydrogen supply apparatus and method for supplying hydrogen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202017003690U1 (en) * 2017-07-13 2018-10-16 Thomas Lamla Hydrogen-steam-power plant
WO2019068387A1 (en) * 2017-10-05 2019-04-11 Hydrogenious Technologies Gmbh System and method for providing and further using hydrogen gas

Also Published As

Publication number Publication date
JP2013067588A (en) 2013-04-18
JP5602698B2 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
JP6356728B2 (en) Solid oxide fuel cell high efficiency reforming recirculation system
KR101352198B1 (en) Fuel cell hybrid system
US9234482B2 (en) Ultra-high efficiency alcohol engines using optimized exhaust heat recovery
DK2905359T3 (en) Renewable energy storage system
JP5998043B2 (en) Engine combined system
JP2008180131A (en) Composite power generation facility
JP5602698B2 (en) Power conversion system
JP6298612B2 (en) Methane reforming engine system
JP5519357B2 (en) Solid oxide fuel cell system and cogeneration system equipped with the same
CN109962260A (en) A kind of methanol fuel-cell system
CN109935855A (en) A kind of operation method of reforming fuel cell system
KR102190939B1 (en) Ship
US20040101722A1 (en) Fuel cell system with heat exchanger for heating a reformer and vehicle containing same
WO2011152366A1 (en) Energy-generating system
KR101429652B1 (en) High temperature type fuel cell system with use of temperature improved
JP5982253B2 (en) Cogeneration system
JP5480862B2 (en) Power conversion system
JP2013204572A (en) Ethanol engine system
US20180292085A1 (en) Combustion gas supply system
JP3546234B2 (en) Solid oxide fuel cell / internal combustion type Stirling engine combined system
KR101739583B1 (en) Fuel cell-engine hybrid power generation system with parallel reformer structure
JP7253670B2 (en) fuel production equipment
JP2008523552A (en) System and associated method for generating electric power mounted on a powered vehicle equipped with a fuel cell
KR102106656B1 (en) Ship
US11506115B2 (en) Cogeneration system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833011

Country of ref document: EP

Kind code of ref document: A1