WO2013042442A1 - Gas dissolving device - Google Patents

Gas dissolving device Download PDF

Info

Publication number
WO2013042442A1
WO2013042442A1 PCT/JP2012/067804 JP2012067804W WO2013042442A1 WO 2013042442 A1 WO2013042442 A1 WO 2013042442A1 JP 2012067804 W JP2012067804 W JP 2012067804W WO 2013042442 A1 WO2013042442 A1 WO 2013042442A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
tank
partition wall
liquid
liquid separation
Prior art date
Application number
PCT/JP2012/067804
Other languages
French (fr)
Japanese (ja)
Inventor
前田 康成
伊藤 良泰
恭子 堤
仁史 北村
尚紀 柴田
朋弘 穐田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280039328.3A priority Critical patent/CN103747856B/en
Priority to KR1020147000788A priority patent/KR101590029B1/en
Publication of WO2013042442A1 publication Critical patent/WO2013042442A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • B01F25/423Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components
    • B01F25/4231Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components using baffles

Definitions

  • the present invention relates to a gas dissolving apparatus for dissolving a gas such as air in a solvent such as water.
  • the present applicant has proposed a gas dissolving device that can be reduced in size, can suppress generation of turbulent flow in a gas-liquid separation tank, and can suppress outflow of large bubbles (Patent Document 1).
  • the gas dissolving apparatus described in Patent Document 1 has a gas-liquid mixing tank and a large bubble outflow prevention from the upstream side to the downstream side with respect to the flow of the liquid by the two partition walls of the first partition wall and the second partition wall.
  • the dissolution tank is divided in the order of the tank and the gas-liquid separation tank.
  • the fluid flowing into the dissolving tank is mixed with the gas in the gas-liquid mixing tank to generate a liquid in which the gas is dissolved, and this liquid sequentially flows through the large bubble outflow prevention tank and the gas-liquid separation tank.
  • the gas dissolving apparatus described in Patent Document 1 is provided with a gas circulation path that connects the upper end portion and the lower end portion of the dissolving tank through the outside of the dissolving tank so as to communicate with each other.
  • the gas stored in the dissolution tank is once taken out from the dissolution tank and then returned to the dissolution tank for circulation, and the gas stored in the dissolution tank is reused for liquid generation. To increase the dissolution efficiency.
  • connection of the gas circulation path requires water tightness so that the liquid generated in the dissolution tank does not leak. For this reason, it is necessary to attach a member that ensures watertightness such as packing, and the problem that the number of parts of the gas dissolving apparatus increases is found.
  • the present invention has been made in view of the circumstances as described above, and an object of the present invention is to provide a gas dissolving apparatus capable of reducing the number of parts while ensuring water tightness.
  • a gas dissolving apparatus of the present invention includes a dissolution tank, a first partition wall and a second partition wall provided in the dissolution tank, and an outflow portion provided in the dissolution tank.
  • the gas-liquid mixing tank, the intermediate tank, and the gas are formed in such a manner that the inside of the dissolution tank is partitioned by the first partition wall and the second partition wall, and arranged in order from the upstream side to the downstream side with respect to the flow of the liquid in which the gas is dissolved.
  • the liquid is generated, and this liquid sequentially flows through the intermediate tank and the gas-liquid separation tank, and flows out from the outflow part to the outside of the dissolution tank.
  • the dissolution tank is divided into two, Top part and bottom In the upper part, a first partition wall that partitions the gas-liquid mixing tank and the intermediate tank is formed integrally with the upper part, and the first partition wall is formed downward from the upper surface of the upper part.
  • the second partition wall that divides the intermediate tank and the gas-liquid separation tank is formed integrally with the lower part, and the second partition wall extends upward from the bottom surface of the lower part, and the gas circulation piping is
  • the upper part is sandwiched between the upper surface of the upper part and the upper part of the second partition wall, and the upper part of the upper part and the upper part of the second partition wall are watertight by sandwiching the gas circulation pipe. Yes.
  • the second partition wall and the outflow portion are provided so that the liquid flows in the horizontal direction in the gas-liquid separation tank.
  • the second partition wall and the outflow portion are provided so that the liquid flows in the horizontal direction along the outer surface of the intermediate tank.
  • the gas-liquid separation tank is preferably provided with vertical ribs extending downward from the upper surface of the gas-liquid separation tank.
  • the upper part of the second partition wall is notched to form a notch, and the outflow part is provided at the bottom of the gas-liquid separation tank located at a position away from the notch. It is preferable.
  • the number of parts can be reduced while ensuring water tightness.
  • FIG. 3 is a partially cutaway perspective view of a dissolution tank in the gas dissolving apparatus shown in FIG. 2.
  • It is a disassembled perspective view of the dissolution tank in the gas dissolving apparatus shown in FIG. It is a disassembled perspective view of the dissolution tank in the gas dissolving apparatus shown in FIG.
  • FIG. 1 is a front view showing an embodiment of the gas dissolving apparatus of the present invention.
  • FIG. 2 is a vertical cross-sectional view of the gas dissolving apparatus shown in FIG.
  • FIGS. 3A, 3B, and 3C are respectively a cross-sectional view taken along lines AA, BB, and CC of the dissolving tank in the gas dissolving apparatus shown in FIG.
  • FIG. 4 is a partially cutaway perspective view of the dissolution tank in the gas dissolving apparatus shown in FIG.
  • the pump 3 is fixed on the gantry 2, and the dissolving tank 4 is vertically mounted on the pump 3.
  • the pump 3 supplies a solvent such as water to the dissolution tank 4 under pressure, and includes a solvent suction part 5 on the front surface.
  • the suction part 5 can be connected to a suction pipe (not shown).
  • the pump 3 is provided with the discharge part 6 which protrudes upwards in an upper end part.
  • the dissolution tank 4 includes an inflow portion 7 at the bottom, and the inflow portion 7 is connected to the discharge portion 6 of the pump 3. Therefore, the solvent fed by the pump 3 flows into the dissolution tank 4 from the bottom of the dissolution tank 4.
  • the dissolution tank 4 includes an outflow portion 8 at the bottom located at a position different from the inflow portion 7.
  • the outflow part 8 is a part from which the liquid generated in the dissolution tank 4 flows out of the dissolution tank 4, and is disposed on the front side of the dissolution tank 4.
  • the outflow part 8 can be connected to an outflow pipe (not shown) for supplying the liquid to the supply destination.
  • a gas suction pipe 9 extending in the vertical direction is connected to the suction portion 5 of the pump 3.
  • a gas suction pipe 11 having a gas suction port 10 formed at the tip thereof is connected to the gas suction pipe 9. Due to the negative pressure generated by the operation of the pump 3, a gas such as air to be dissolved in the dissolution tank 4 is sucked from the gas suction port 10 of the gas suction unit 11 and is sucked into the suction unit 5 of the pump 3 through the gas suction pipe 9. It is sent.
  • the gas sent to the suction part 5 is mixed as bubbles in a solvent such as water, and a gas-liquid mixed fluid is generated. This gas-liquid mixed fluid is supplied into the dissolution tank 4 through the discharge part 6 and the inflow part 7 as a fluid.
  • two partition walls that is, a first partition wall 12 and a second partition wall 13 are provided inside the dissolution tank 4, and the interior of the dissolution tank 4 is the first partition wall 12.
  • the gas-liquid mixing tank 14, the intermediate tank 15, and the gas-liquid separation tank 16 are partitioned by the second partition wall 13.
  • the gas-liquid mixing tank 14 is located on the most upstream side with respect to the flow of the liquid in which the gas is dissolved generated in the dissolution tank 4.
  • the intermediate tank 15 is disposed adjacent to the outside of the gas-liquid mixing tank 14.
  • the gas-liquid separation tank 16 is located on the most downstream side with respect to the liquid flow, and is adjacent to the outside of the intermediate tank 15.
  • the first partition wall 12 and the second partition wall 13 have a substantially cylindrical shape as shown in FIGS. 3 (a), 3 (b), and 3 (c).
  • the first partition wall 12 partitions the gas-liquid mixing tank 14 and the intermediate tank 15 and extends downward from the upper surface of the dissolution tank 4 as shown in FIG. A lower end of the first partition wall 12 does not reach the bottom surface of the dissolution tank 4, and a gap is formed between the bottom surface of the dissolution tank 4.
  • the gas-liquid mixing tank 14 and the intermediate tank 15 communicate with each other with this gap as a liquid flow path.
  • the second partition wall 13 divides the intermediate tank 15 and the gas-liquid separation tank 16 and extends upward from the bottom surface of the dissolution tank 4.
  • the 2nd partition wall 13 is provided so that the intermediate tank 15 may surround the circumference
  • a part of the second partition wall 13 is notched in a substantially arc shape in cross section, and a notch portion 17 is formed. Yes.
  • the intermediate tank 15 and the gas-liquid separation tank 16 communicate with each other through the notch 17.
  • the notch 17 is disposed on the opposite side of the outflow part 8, and the outflow part 8 is located away from the notch 17.
  • the outflow part 8 is provided at the bottom of the gas-liquid separation tank 16 and communicates with the gas-liquid separation tank 16.
  • the gas mixed through the gas suction pipe 9 shown in FIG. 1 and the gas previously stored in the gas-liquid mixing tank 14 are vigorously mixed with a solvent such as water, and the gas-liquid mixed fluid is stirred.
  • the gas is dissolved in the solvent under pressure, and a liquid in which the gas is dissolved is generated.
  • the generated liquid flows out to the intermediate tank 15 through a gap between the lower end of the first partition wall 12 and the bottom surface of the dissolution tank 4.
  • the liquid flowing out into the intermediate tank 15 overflows from the notch 17 of the second partition wall 13 and flows out into the gas-liquid separation tank 16.
  • the gas-liquid separation tank 16 separates gas that cannot be dissolved in the liquid from the liquid as bubbles. Since the liquid flow is lifted to the vicinity of the liquid surface, which is the gas-liquid interface, the bubbles move upward by buoyancy. On the other hand, the liquid that has flowed out into the gas-liquid separation tank 16 flows in a direction that does not prevent such bubbles from rising. That is, as shown in FIGS.
  • the liquid flows in the gas-liquid separation tank 16 in the horizontal direction.
  • the horizontal flow of the liquid is along the outer surface of the intermediate tank 15, and the liquid flowing in the horizontal direction in the gas-liquid separation tank 16 flows out of the dissolution tank 4 from the outflow portion 8. Since the outflow part 8 is provided in the bottom part of the gas-liquid separation tank 16, the outflow of the big bubble which exists in the liquid level vicinity is suppressed.
  • the second partition wall 13 and the outflow portion 8 are provided in the gas-liquid separation tank 16 so that the liquid flows in the horizontal direction along the outer surface of the intermediate tank 15. 4 can be further reduced in size, and particularly the size in the vertical direction can be reduced. This is effective for shortening the vertical size of the dissolution tank 4.
  • the outflow part 8 is provided in the position away from the notch part 17 of the intermediate tank 15, the distance for gas-liquid separation can be taken long and the rising time of a bubble can be lengthened. Since the liquid flows in the gas-liquid separation tank 16 in the horizontal direction, the undissolved gas can be separated from the liquid while flowing, and the gas-liquid separation can be performed efficiently. For this reason, it is possible to suppress the undissolved gas from flowing out of the dissolution tank 4 from the outflow portion 8.
  • the intermediate tank 15 is disposed by the second partition wall 13 so as to surround the gas-liquid mixing tank 14 from the outside, thereby suppressing noise that is likely to occur during liquid generation. be able to. Furthermore, since the first partition wall 12 and the second partition wall 13 have a cylindrical shape, the flow of the liquid is homogenized, which is effective for further downsizing of the dissolution tank 4.
  • the gas-liquid separation tank 16 is provided with vertical ribs 18 extending downward from the upper surface of the gas-liquid separation tank 16.
  • the vertical ribs 18 are formed in small pieces, and three are provided at intervals in the direction in which the liquid flows.
  • FIG. 5 is a schematic diagram showing bubble movement suppression by vertical ribs.
  • the bubbles 19 moving upward in the liquid in the gas-liquid separation tank 16 are restricted by the vertical ribs 18 from moving in the horizontal direction in which the liquid flows.
  • the bubbles 19 can only rise in the longitudinal direction of the longitudinal ribs 18, and the plurality of bubbles 19 that rise in this way gradually merge.
  • the vertical ribs 18 also promote the coalescence of the bubbles 19. For this reason, undissolved gas is efficiently separated from the liquid, and large bubbles can be prevented from flowing out from the gas-liquid separation tank 16 to the outflow portion 8.
  • the combined bubbles 19 break when reaching the liquid level, and the undissolved gas accumulates in the upper part of the gas-liquid separation tank 16.
  • the upper portion of the gas-liquid separation tank 16 of the dissolution tank 4 is as shown in FIGS.
  • a gas release valve 20 is provided.
  • the gas release valve 20 has a float (not shown) that floats and sinks following the height of the liquid level in the gas-liquid separation tank 16 and is movable in the vertical direction. As the float moves up and down as the liquid level changes, the gas release valve 20 releases and stops the gas stored in the gas-liquid separation tank 16.
  • a gas circulation pipe 21 is provided as shown in FIGS. 2, 3 (a), (b), and (c) in order to reuse the gas accumulated in the upper part of the gas-liquid separation tank 16. There is also.
  • FIG. 6 is a partially cutaway perspective view showing the periphery of the gas circulation pipe in the dissolution tank.
  • the gas circulation pipe 21 is provided inside the intermediate tank 15 in the vertical direction, and the lower end is connected to the inflow portion 7 of the dissolution tank 4.
  • the upper end portion of the gas circulation pipe 21 is curved in a substantially arc shape along the second partition wall 13 and is disposed horizontally.
  • the gas circulation pipe 21 is formed of an elastic body such as rubber.
  • the upper end portion of the gas circulation pipe 21 is disposed between the upper surface of the dissolution tank 4 and the upper portion of the second partition wall 13 and also functions as a packing.
  • the dissolution tank 4 is provided with the gas circulation pipe 21 that supplies the gas accumulated in the upper part of the gas-liquid separation tank 16 to the gas-liquid mixed fluid flowing into the dissolution tank 4. It can be reused, and gas dissolution efficiency is improved.
  • the gas circulation pipe 21 is not limited to the inside of the intermediate tank 15 but can be provided inside the gas-liquid separation tank 16. Even if it is provided inside the gas-liquid separation tank 16, the gas circulation pipe 21 functions in the same manner as when it is provided inside the intermediate tank 15. Further, as shown in FIG. 1, a downwardly inclined surface portion 22 is formed in the upper part of the dissolution tank 4. The gas accumulated in the upper portion of the gas-liquid separation tank 16 is collected near the center of the dissolution tank 4 by the inclined surface portion 22, the gas is smoothly sucked from the upper end of the gas circulation pipe 21, and the gas flows into the inflow portion 7. Can be supplied efficiently.
  • the dissolution tank 4 as described above is divided into two parts at the center in the vertical direction, and is formed of an upper part 23 on the upper side and a lower part 24 on the lower side. .
  • FIG. 7 is an exploded perspective view of the dissolution tank in the gas dissolving apparatus shown in FIG.
  • FIG. 8 is an exploded perspective view of the dissolution tank in the gas dissolving apparatus shown in FIG. 7 and 8, the dissolution tank is illustrated from different directions.
  • the first partition wall 12 is integrally formed, and the first partition wall 12 extends downward from the upper surface of the upper part 23.
  • the second partition wall 13 is integrally formed, and the second partition wall 13 extends upward from the bottom surface of the lower part 24.
  • the lower part 24 is integrally provided with the inflow portion 7 and the outflow portion 8 at the bottom.
  • flange parts 25 and 26 are provided to protrude outward.
  • the dissolution tank 4 is assembled by overlapping the flange parts 25 and 26 and fastening the upper part 23 and the lower part 24 with appropriate fasteners such as bolts and nuts at predetermined portions of the overlapping flange parts 25 and 26, become one.
  • the first partition wall 12 is inserted inside the second partition wall 13, and the gas-liquid mixing tank 14, the intermediate tank 15, and the gas-liquid separation tank 16 are formed. Further, the upper end portion of the gas circulation pipe 21 formed of the elastic body shown in FIG. 3C is located between the upper surface of the upper part 23 and the upper portion of the second partition wall 13 as shown in FIG. It is caught. By sandwiching the gas circulation pipe 21, the gas circulation pipe 21 functions as a packing, and the space between the upper surface of the upper part 23 and the upper part of the second partition wall 13 becomes watertight. For this reason, it can suppress that a liquid flows out into the gas-liquid separation tank 16 from the intermediate tank 15 in parts other than the notch part 17 of the 2nd partition wall 13. FIG.
  • Such watertightness between the upper surface of the upper part 23 and the upper part of the second partition wall 13 is realized by the gas circulation pipe 21 that supplies the gas accumulated in the upper part of the gas-liquid separation tank 16 to the dissolution tank 4. Therefore, the dissolution tank 4 has a reduced number of parts.
  • the present invention is not limited to the above embodiment. Various aspects are possible about details, such as a structure and structure of a pump and a mount frame, and a structure and structure of a gas discharge valve.
  • the gas dissolving apparatus of the present invention ensures water tightness and has a reduced number of parts.

Abstract

In the present invention, a gas-liquid mixing tank, intermediate tank, and gas-liquid separation tank are formed divided by a first partition wall and a second partition wall inside a dissolving tank. The gas-liquid mixing tank, intermediate tank, and gas-liquid separation tank are disposed in that order from the upstream side to the downstream side with regard to the flow of a liquid in which a gas is dissolved. The dissolving tank is divided in two, and an upper component is formed on the upper side and a lower component on the lower side. In the upper component, a first partition wall is formed integrally with the upper component, and the first partition wall extends from the upper surface of the upper component downward. In the lower component, a second partition wall is formed integrally with the lower component, and the second partition wall extends upward from the bottom surface of the lower component. A gas circulation pipe is sandwiched between the upper surface of the upper component and the upper part of the second partition wall, and an area between the upper surface of the upper component and the upper part of the second partition wall is made airtight by sandwiching this gas circulation pipe therein.

Description

気体溶解装置Gas dissolving device
 本発明は、水などの溶媒に空気などの気体を溶解させる気体溶解装置に関する。 The present invention relates to a gas dissolving apparatus for dissolving a gas such as air in a solvent such as water.
 本出願人は、小型化可能であり、気液分離槽での乱流の発生を抑え、大きな気泡の流出を抑制することのできる気体溶解装置を提案している(特許文献1)。 The present applicant has proposed a gas dissolving device that can be reduced in size, can suppress generation of turbulent flow in a gas-liquid separation tank, and can suppress outflow of large bubbles (Patent Document 1).
 特許文献1に記載した気体溶解装置は、第1仕切り壁および第2仕切り壁の2つの仕切り壁によって内部が、液体の流れに関しその上流側から下流側にかけて、気液混合槽、大泡流出防止槽、気液分離槽の順に区画された溶解タンクを備えている。この気体溶解装置では、溶解タンク内に流入する流体が気液混合槽において気体と混合され、気体が溶解した液体が生成され、この液体は、大泡流出防止槽、気液分離槽を順次流れる。 The gas dissolving apparatus described in Patent Document 1 has a gas-liquid mixing tank and a large bubble outflow prevention from the upstream side to the downstream side with respect to the flow of the liquid by the two partition walls of the first partition wall and the second partition wall. The dissolution tank is divided in the order of the tank and the gas-liquid separation tank. In this gas dissolving apparatus, the fluid flowing into the dissolving tank is mixed with the gas in the gas-liquid mixing tank to generate a liquid in which the gas is dissolved, and this liquid sequentially flows through the large bubble outflow prevention tank and the gas-liquid separation tank. .
 気液分離槽では、液体に溶解し切れずに残存する気体が気泡として分離される。分離された気泡は、気液分離槽の上部に気体となって次第に溜まっていく。そこで、特許文献1に記載した気体溶解装置では、溶解タンクの外側を通って溶解タンクの上端部と下端部を接続し、連通させる気体循環経路が設けられている。気体循環経路は、溶解タンク内に貯留する気体を溶解タンクから一旦取り出した後、溶解タンク内に戻して循環させるものであり、溶解タンク内に貯留する気体を液体の生成に再利用し、気体の溶解効率を高める。 In the gas-liquid separation tank, the remaining gas that does not completely dissolve in the liquid is separated as bubbles. The separated bubbles gradually accumulate as gas in the upper part of the gas-liquid separation tank. Therefore, the gas dissolving apparatus described in Patent Document 1 is provided with a gas circulation path that connects the upper end portion and the lower end portion of the dissolving tank through the outside of the dissolving tank so as to communicate with each other. In the gas circulation path, the gas stored in the dissolution tank is once taken out from the dissolution tank and then returned to the dissolution tank for circulation, and the gas stored in the dissolution tank is reused for liquid generation. To increase the dissolution efficiency.
特開2010-227782号公報JP 2010-227782 A
 一方、気体循環経路の接続には、溶解タンク内で生成される液体が漏出しないように水密性が要求される。このため、パッキンなどの水密性を確保する部材の取り付けが必要であり、気体溶解装置の部品点数が多くなるという問題が見出される。 On the other hand, the connection of the gas circulation path requires water tightness so that the liquid generated in the dissolution tank does not leak. For this reason, it is necessary to attach a member that ensures watertightness such as packing, and the problem that the number of parts of the gas dissolving apparatus increases is found.
 本発明は、以上のとおりの事情に鑑みてなされたものであり、水密性を確保しつつ、部品点数の減少を図ることのできる気体溶解装置を提供することを課題としている。 The present invention has been made in view of the circumstances as described above, and an object of the present invention is to provide a gas dissolving apparatus capable of reducing the number of parts while ensuring water tightness.
 上記の課題を解決するために、本発明の気体溶解装置は、溶解タンクと、この溶解タンクの内部に設けられた第1仕切り壁および第2仕切り壁と、溶解タンクに設けられた流出部と、第1仕切り壁および第2仕切り壁によって溶解タンクの内部が区画されて形成され、気体が溶解した液体の流れに関しその上流側から下流側にかけて順に配置された気液混合槽、中間槽および気液分離槽と、気液分離槽の上部に溜まる気体を溶解タンク内に流入する流体に供給する、弾性体から形成された気体循環配管とを備え、流体が、気液混合槽において気体と混合されて液体が生成され、この液体は、中間槽、気液分離槽を順次流れ、流出部から溶解タンクの外部に流出する気体溶解装置であって、溶解タンクは、2つに分割され、上側の上部品と下側の下部品とから形成され、上部品では、気液混合槽と中間槽を区画する第1仕切り壁が、上部品と一体に形成され、かつ第1仕切り壁は、上部品の上面から下方に延び、下部品では、中間槽と気液分離槽を区画する第2仕切り壁が、下部品と一体に形成され、かつ第2仕切り壁は、下部品の底面から上方に延び、気体循環配管が、上部品の上面と第2仕切り壁の上部との間に挟み込まれ、上部品の上面と第2仕切り壁の上部との間が、気体循環配管の挟み込みによって水密となっていることを特徴としている。 In order to solve the above-described problems, a gas dissolving apparatus of the present invention includes a dissolution tank, a first partition wall and a second partition wall provided in the dissolution tank, and an outflow portion provided in the dissolution tank. The gas-liquid mixing tank, the intermediate tank, and the gas are formed in such a manner that the inside of the dissolution tank is partitioned by the first partition wall and the second partition wall, and arranged in order from the upstream side to the downstream side with respect to the flow of the liquid in which the gas is dissolved. A liquid separation tank and a gas circulation pipe formed of an elastic body for supplying a gas accumulated in the upper part of the gas-liquid separation tank to a fluid flowing into the dissolution tank, and the fluid is mixed with the gas in the gas-liquid mixing tank The liquid is generated, and this liquid sequentially flows through the intermediate tank and the gas-liquid separation tank, and flows out from the outflow part to the outside of the dissolution tank. The dissolution tank is divided into two, Top part and bottom In the upper part, a first partition wall that partitions the gas-liquid mixing tank and the intermediate tank is formed integrally with the upper part, and the first partition wall is formed downward from the upper surface of the upper part. In the lower part, the second partition wall that divides the intermediate tank and the gas-liquid separation tank is formed integrally with the lower part, and the second partition wall extends upward from the bottom surface of the lower part, and the gas circulation piping is The upper part is sandwiched between the upper surface of the upper part and the upper part of the second partition wall, and the upper part of the upper part and the upper part of the second partition wall are watertight by sandwiching the gas circulation pipe. Yes.
 この気体溶解装置においては、第2仕切り壁および流出部は、気液分離槽を液体が水平方向に流れるように設けられていることが好ましい。 In this gas dissolving apparatus, it is preferable that the second partition wall and the outflow portion are provided so that the liquid flows in the horizontal direction in the gas-liquid separation tank.
 この気体溶解装置においては、第2仕切り壁および流出部は、液体が中間槽の外面に沿って水平方向に流れるように設けられていることが好ましい。 In this gas dissolving apparatus, it is preferable that the second partition wall and the outflow portion are provided so that the liquid flows in the horizontal direction along the outer surface of the intermediate tank.
 この気体溶解装置においては、気液分離槽では、気液分離槽の上面より下方に延びる縦リブが設けられていることが好ましい。 In this gas dissolving apparatus, the gas-liquid separation tank is preferably provided with vertical ribs extending downward from the upper surface of the gas-liquid separation tank.
 この気体溶解装置においては、第2仕切り壁では、その上部が一部切り欠かれて切欠部が形成され、流出部は、切欠部から離れた位置に位置する気液分離槽の底部に設けられていることが好ましい。 In this gas dissolving apparatus, the upper part of the second partition wall is notched to form a notch, and the outflow part is provided at the bottom of the gas-liquid separation tank located at a position away from the notch. It is preferable.
 本発明の気体溶解装置によれば、水密性を確保しつつ、部品点数の減少を図ることができる。 According to the gas dissolving apparatus of the present invention, the number of parts can be reduced while ensuring water tightness.
本発明の気体溶解装置の一実施形態を示した正面図である。It is the front view which showed one Embodiment of the gas dissolving apparatus of this invention. 図1に示した気体溶解装置の縦断面図である。It is a longitudinal cross-sectional view of the gas dissolving apparatus shown in FIG. (a)(b)(c)は、それぞれ、図2に示した気体溶解装置における溶解タンクのA-A断面図、B-B断面図、C-C断面図である。(A), (b), and (c) are an AA sectional view, a BB sectional view, and a CC sectional view, respectively, of the dissolution tank in the gas dissolving apparatus shown in FIG. 図2に示した気体溶解装置における溶解タンクの一部切欠斜視図である。FIG. 3 is a partially cutaway perspective view of a dissolution tank in the gas dissolving apparatus shown in FIG. 2. 縦リブによる気泡の移動抑制について示した模式図である。It is the schematic diagram shown about the bubble movement suppression by a vertical rib. 溶解タンクにおける気体循環配管の周辺を示した一部切欠斜視図である。It is the partially cutaway perspective view which showed the circumference | surroundings of the gas circulation piping in a dissolution tank. 図1に示した気体溶解装置における溶解タンクの分解斜視図である。It is a disassembled perspective view of the dissolution tank in the gas dissolving apparatus shown in FIG. 図1に示した気体溶解装置における溶解タンクの分解斜視図である。It is a disassembled perspective view of the dissolution tank in the gas dissolving apparatus shown in FIG.
 図1は、本発明の気体溶解装置の一実施形態を示した正面図である。図2は、図1に示した気体溶解装置の縦断面図である。図3(a)(b)(c)は、それぞれ、図2に示した気体溶解装置における溶解タンクのA-A断面図、B-B断面図、C-C断面図である。図4は、図2に示した気体溶解装置における溶解タンクの一部切欠斜視図である。 FIG. 1 is a front view showing an embodiment of the gas dissolving apparatus of the present invention. FIG. 2 is a vertical cross-sectional view of the gas dissolving apparatus shown in FIG. FIGS. 3A, 3B, and 3C are respectively a cross-sectional view taken along lines AA, BB, and CC of the dissolving tank in the gas dissolving apparatus shown in FIG. FIG. 4 is a partially cutaway perspective view of the dissolution tank in the gas dissolving apparatus shown in FIG.
 図1および図2に示したように、気体溶解装置1では、架台2の上にポンプ3が固定され、ポンプ3の上に溶解タンク4が縦置きに取り付けられている。ポンプ3は、水などの溶媒を加圧下に溶解タンク4に送給するものであり、正面に溶媒の吸込部5を備えている。吸込部5は、吸込配管(図示なし)の接続が可能とされている。また、ポンプ3は、上端部に上方に突出する吐出部6を備えている。 As shown in FIGS. 1 and 2, in the gas dissolving apparatus 1, the pump 3 is fixed on the gantry 2, and the dissolving tank 4 is vertically mounted on the pump 3. The pump 3 supplies a solvent such as water to the dissolution tank 4 under pressure, and includes a solvent suction part 5 on the front surface. The suction part 5 can be connected to a suction pipe (not shown). Moreover, the pump 3 is provided with the discharge part 6 which protrudes upwards in an upper end part.
 溶解タンク4は、図1に示したように、底部に流入部7を備え、流入部7は、ポンプ3の吐出部6に接続されている。したがって、ポンプ3により送給される溶媒は、溶解タンク4の底部から溶解タンク4内に流入する。また、溶解タンク4は、流入部7と異なる位置に位置する底部に流出部8を備えている。流出部8は、溶解タンク4内で生成される液体が溶解タンク4から流出する部位であり、溶解タンク4の正面側に配置されている。流出部8は、液体を供給先へ供給する流出配管(図示なし)の接続が可能とされている。 As shown in FIG. 1, the dissolution tank 4 includes an inflow portion 7 at the bottom, and the inflow portion 7 is connected to the discharge portion 6 of the pump 3. Therefore, the solvent fed by the pump 3 flows into the dissolution tank 4 from the bottom of the dissolution tank 4. The dissolution tank 4 includes an outflow portion 8 at the bottom located at a position different from the inflow portion 7. The outflow part 8 is a part from which the liquid generated in the dissolution tank 4 flows out of the dissolution tank 4, and is disposed on the front side of the dissolution tank 4. The outflow part 8 can be connected to an outflow pipe (not shown) for supplying the liquid to the supply destination.
 また、気体溶解装置1では、縦方向に延びる気体吸引配管9がポンプ3の吸込部5に接続されている。気体吸引配管9は、先端に、気体吸引口10が形成された気体吸込部11が接続されている。ポンプ3の作動により生じる負圧によって、溶解タンク4での溶解対象である空気などの気体が、気体吸込部11の気体吸引口10から吸引され、気体吸引配管9を通じてポンプ3の吸込部5に送り込まれる。吸込部5に送り込まれた気体は、水などの溶媒中に気泡として混合され、気液混合流体が生成される。この気液混合流体が、流体として吐出部6および流入部7を通じて溶解タンク4内に供給される。 In the gas dissolving device 1, a gas suction pipe 9 extending in the vertical direction is connected to the suction portion 5 of the pump 3. A gas suction pipe 11 having a gas suction port 10 formed at the tip thereof is connected to the gas suction pipe 9. Due to the negative pressure generated by the operation of the pump 3, a gas such as air to be dissolved in the dissolution tank 4 is sucked from the gas suction port 10 of the gas suction unit 11 and is sucked into the suction unit 5 of the pump 3 through the gas suction pipe 9. It is sent. The gas sent to the suction part 5 is mixed as bubbles in a solvent such as water, and a gas-liquid mixed fluid is generated. This gas-liquid mixed fluid is supplied into the dissolution tank 4 through the discharge part 6 and the inflow part 7 as a fluid.
 図2に示したように、溶解タンク4の内部には、2つの仕切り壁、すなわち、第1仕切り壁12および第2仕切り壁13が設けられ、溶解タンク4の内部は、第1仕切り壁12および第2仕切り壁13によって、気液混合槽14、中間槽15および気液分離槽16に区画されている。気液混合槽14は、溶解タンク4内で生成される、気体が溶解した液体の流れに関し最も上流側に位置している。中間槽15は、気液混合槽14の外側に隣接して配置されている。気液分離槽16は、液体の流れに関し最も下流側に位置し、中間槽15の外側に隣接している。 As shown in FIG. 2, two partition walls, that is, a first partition wall 12 and a second partition wall 13 are provided inside the dissolution tank 4, and the interior of the dissolution tank 4 is the first partition wall 12. The gas-liquid mixing tank 14, the intermediate tank 15, and the gas-liquid separation tank 16 are partitioned by the second partition wall 13. The gas-liquid mixing tank 14 is located on the most upstream side with respect to the flow of the liquid in which the gas is dissolved generated in the dissolution tank 4. The intermediate tank 15 is disposed adjacent to the outside of the gas-liquid mixing tank 14. The gas-liquid separation tank 16 is located on the most downstream side with respect to the liquid flow, and is adjacent to the outside of the intermediate tank 15.
 第1仕切り壁12および第2仕切り壁13は、図3(a)(b)(c)に示したように、ともに略円筒状の形状を有している。第1仕切り壁12は、気液混合槽14と中間槽15を区画するものであり、図2に示したように、溶解タンク4の上面から下方に延びている。第1仕切り壁12の下端は、溶解タンク4の底面までは達してなく、溶解タンク4の底面との間に隙間が形成されている。この隙間を液体の流路として気液混合槽14と中間槽15は互いに連通している。 The first partition wall 12 and the second partition wall 13 have a substantially cylindrical shape as shown in FIGS. 3 (a), 3 (b), and 3 (c). The first partition wall 12 partitions the gas-liquid mixing tank 14 and the intermediate tank 15 and extends downward from the upper surface of the dissolution tank 4 as shown in FIG. A lower end of the first partition wall 12 does not reach the bottom surface of the dissolution tank 4, and a gap is formed between the bottom surface of the dissolution tank 4. The gas-liquid mixing tank 14 and the intermediate tank 15 communicate with each other with this gap as a liquid flow path.
 第2仕切り壁13は、中間槽15と気液分離槽16を区画するものであり、溶解タンク4の底面から上方に延びている。第2仕切り壁13は、気液混合槽14の周囲をその外側から中間槽15が包囲するように設けられている。また、第2仕切り壁13の上部では、図3(a)(c)および図4にも示したように、その一部が、断面略円弧状に切り欠かれ、切欠部17が形成されている。切欠部17を介して中間槽15と気液分離槽16は連通している。切欠部17は、流出部8と反対側に配置されており、流出部8は、切欠部17から離れたところに位置している。また、流出部8は、気液分離槽16の底部に設けられ、気液分離槽16に連通している。 The second partition wall 13 divides the intermediate tank 15 and the gas-liquid separation tank 16 and extends upward from the bottom surface of the dissolution tank 4. The 2nd partition wall 13 is provided so that the intermediate tank 15 may surround the circumference | surroundings of the gas-liquid mixing tank 14 from the outer side. In addition, as shown in FIGS. 3A and 3C and FIG. 4, a part of the second partition wall 13 is notched in a substantially arc shape in cross section, and a notch portion 17 is formed. Yes. The intermediate tank 15 and the gas-liquid separation tank 16 communicate with each other through the notch 17. The notch 17 is disposed on the opposite side of the outflow part 8, and the outflow part 8 is located away from the notch 17. The outflow part 8 is provided at the bottom of the gas-liquid separation tank 16 and communicates with the gas-liquid separation tank 16.
 このような溶解タンク4では、図2に示したように、ポンプ3の作動によって気液混合流体が溶解タンク4に供給されると、気液混合流体は、図1に示した流入部7を通じて気液混合槽14に、溶解タンク4の底部から上方に向かって噴出する。気液混合流体は、溶解タンク4の上面や第1仕切り壁12に衝突し、跳ね返り、次第に気液混合槽14の底部に溜まっていく。また、溶解タンク4の上面や第1仕切り壁12に衝突し、跳ね返る気液混合流体は、溶解タンク4の底部から上方に向かって噴出する気液混合流体と衝突し、しかも、気液混合槽14に貯留する気液混合流体の液面に衝突し、気液混合流体を撹拌する。このとき、図1に示した気体吸引配管9を通じて混合された気体および気液混合槽14にあらかじめ貯留していた気体が、水などの溶媒と激しく混合され、また、気液混合流体は撹拌され、気体が溶媒中に加圧下で溶解し、気体が溶解した液体が生成される。これは、撹拌による剪断によって気液混合流体に気泡として混合される気体が細分化され、溶媒と接触する表面積が大きくなり、また、液面付近における気体の溶解濃度が撹拌による均一化によって低減され、気体の溶媒への溶解速度が上昇することによる。 In such a dissolution tank 4, as shown in FIG. 2, when the gas-liquid mixed fluid is supplied to the dissolution tank 4 by the operation of the pump 3, the gas-liquid mixed fluid passes through the inflow portion 7 shown in FIG. The gas-liquid mixing tank 14 is jetted upward from the bottom of the dissolution tank 4. The gas-liquid mixed fluid collides with the upper surface of the dissolution tank 4 and the first partition wall 12, rebounds, and gradually accumulates at the bottom of the gas-liquid mixing tank 14. Further, the gas-liquid mixed fluid that collides with the upper surface of the dissolution tank 4 and the first partition wall 12 and rebounds collides with the gas-liquid mixed fluid ejected upward from the bottom of the dissolution tank 4, and the gas-liquid mixing tank 14 collides with the liquid level of the gas-liquid mixed fluid stored in 14, and the gas-liquid mixed fluid is stirred. At this time, the gas mixed through the gas suction pipe 9 shown in FIG. 1 and the gas previously stored in the gas-liquid mixing tank 14 are vigorously mixed with a solvent such as water, and the gas-liquid mixed fluid is stirred. The gas is dissolved in the solvent under pressure, and a liquid in which the gas is dissolved is generated. This is because the gas mixed as bubbles in the gas-liquid mixed fluid is subdivided by shearing by stirring, the surface area in contact with the solvent is increased, and the dissolved concentration of the gas near the liquid surface is reduced by homogenization by stirring. This is because the dissolution rate of the gas in the solvent increases.
 生成した液体は、第1仕切り壁12の下端と溶解タンク4の底面との間の隙間を通って中間槽15に流出する。中間槽15に流出した液体は、図3(a)(c)および図4に示したように、第2仕切り壁13の切欠部17から越流して気液分離槽16に流出する。気液分離槽16は、液体に溶解し切れない気体を気泡として液体から分離する。液体の流れが気液界面である液面付近にまで持ち上げられるので、気泡は、浮力によって上方へ移動する。一方、気液分離槽16に流出した液体は、そのような気泡の上昇を妨げない方向に流れる。すなわち、図3(b)および図4に示したように、液体は、気液分離槽16を水平方向に流れる。この液体の水平方向の流れは、中間槽15の外面に沿ったものとなり、気液分離槽16を水平方向に流れる液体は、流出部8から溶解タンク4の外部に流出する。流出部8は、気液分離槽16の底部に設けられているので、液面付近に存在する大きな気泡の流出が抑制される。 The generated liquid flows out to the intermediate tank 15 through a gap between the lower end of the first partition wall 12 and the bottom surface of the dissolution tank 4. As shown in FIGS. 3A and 3C and FIG. 4, the liquid flowing out into the intermediate tank 15 overflows from the notch 17 of the second partition wall 13 and flows out into the gas-liquid separation tank 16. The gas-liquid separation tank 16 separates gas that cannot be dissolved in the liquid from the liquid as bubbles. Since the liquid flow is lifted to the vicinity of the liquid surface, which is the gas-liquid interface, the bubbles move upward by buoyancy. On the other hand, the liquid that has flowed out into the gas-liquid separation tank 16 flows in a direction that does not prevent such bubbles from rising. That is, as shown in FIGS. 3B and 4, the liquid flows in the gas-liquid separation tank 16 in the horizontal direction. The horizontal flow of the liquid is along the outer surface of the intermediate tank 15, and the liquid flowing in the horizontal direction in the gas-liquid separation tank 16 flows out of the dissolution tank 4 from the outflow portion 8. Since the outflow part 8 is provided in the bottom part of the gas-liquid separation tank 16, the outflow of the big bubble which exists in the liquid level vicinity is suppressed.
 このように、溶解タンク4では、第2仕切り壁13および流出部8が、気液分離槽16を液体が中間槽15の外面に沿って水平方向に流れるように設けられているので、溶解タンク4のより一層の小型化が可能であり、特に縦方向のサイズを小さくすることができる。溶解タンク4の縦方向のサイズの短縮化に有効となる。しかも、流出部8が中間槽15の切欠部17から離れた位置に設けられているので、気液分離のための距離を長くとることができ、気泡の上昇時間を長くすることができる。液体が気液分離槽16を水平方向に流れることで、流れている間に未溶解の気体を液体から分離することができ、気液分離を効率よく行うことができる。このため、未溶解の気体が流出部8から溶解タンク4の外部に流出するのを抑制することができる。 Thus, in the dissolution tank 4, the second partition wall 13 and the outflow portion 8 are provided in the gas-liquid separation tank 16 so that the liquid flows in the horizontal direction along the outer surface of the intermediate tank 15. 4 can be further reduced in size, and particularly the size in the vertical direction can be reduced. This is effective for shortening the vertical size of the dissolution tank 4. And since the outflow part 8 is provided in the position away from the notch part 17 of the intermediate tank 15, the distance for gas-liquid separation can be taken long and the rising time of a bubble can be lengthened. Since the liquid flows in the gas-liquid separation tank 16 in the horizontal direction, the undissolved gas can be separated from the liquid while flowing, and the gas-liquid separation can be performed efficiently. For this reason, it is possible to suppress the undissolved gas from flowing out of the dissolution tank 4 from the outflow portion 8.
 また、溶解タンク4では、第2仕切り壁13によって、中間槽15が、気液混合槽14の周囲をその外側から包囲するように配置されているので、液体生成時に発生しやすい騒音を抑制することができる。さらに、第1仕切り壁12および第2仕切り壁13は円筒状の形状を有しているので、液体の流れが均質化され、溶解タンク4のより一層の小型化に有効ともなる。 Moreover, in the dissolution tank 4, the intermediate tank 15 is disposed by the second partition wall 13 so as to surround the gas-liquid mixing tank 14 from the outside, thereby suppressing noise that is likely to occur during liquid generation. be able to. Furthermore, since the first partition wall 12 and the second partition wall 13 have a cylindrical shape, the flow of the liquid is homogenized, which is effective for further downsizing of the dissolution tank 4.
 また、図3(a)(c)および図4に示したように、気液分離槽16では、気液分離槽16の上面より下方に延びる縦リブ18が設けられている。縦リブ18は、小片状に形成され、液体が流れる方向に間隔をあけて3つ設けられている。 Further, as shown in FIGS. 3A and 3C and FIG. 4, the gas-liquid separation tank 16 is provided with vertical ribs 18 extending downward from the upper surface of the gas-liquid separation tank 16. The vertical ribs 18 are formed in small pieces, and three are provided at intervals in the direction in which the liquid flows.
 図5は、縦リブによる気泡の移動抑制について示した模式図である。 FIG. 5 is a schematic diagram showing bubble movement suppression by vertical ribs.
 気液分離槽16において液体内を上方に移動する気泡19は、縦リブ18によって、液体が流れる水平方向への移動が規制される。気泡19は、縦リブ18の長さ方向に上昇することができるのみであり、このように上昇する複数の気泡19は次第に合体する。縦リブ18は、気泡19の合体を促進させるものでもある。このため、未溶解の気体が液体から効率よく分離され、大きな気泡が気液分離槽16から流出部8へと流出するのを抑制することができる。合体した気泡19は、液面に達すると割れ、未溶解の気体は、気液分離槽16の上部に溜まる。このように気液分離槽16の上部に溜まる未溶解の気体を溶解タンク4から排出するために、溶解タンク4の気液分離槽16の上部には、図2および図4に示したように、気体放出弁20が設けられている。 The bubbles 19 moving upward in the liquid in the gas-liquid separation tank 16 are restricted by the vertical ribs 18 from moving in the horizontal direction in which the liquid flows. The bubbles 19 can only rise in the longitudinal direction of the longitudinal ribs 18, and the plurality of bubbles 19 that rise in this way gradually merge. The vertical ribs 18 also promote the coalescence of the bubbles 19. For this reason, undissolved gas is efficiently separated from the liquid, and large bubbles can be prevented from flowing out from the gas-liquid separation tank 16 to the outflow portion 8. The combined bubbles 19 break when reaching the liquid level, and the undissolved gas accumulates in the upper part of the gas-liquid separation tank 16. In order to discharge the undissolved gas accumulated in the upper portion of the gas-liquid separation tank 16 from the dissolution tank 4, the upper portion of the gas-liquid separation tank 16 of the dissolution tank 4 is as shown in FIGS. A gas release valve 20 is provided.
 気体放出弁20は、気液分離槽16における液体の液面の高さに追随して浮沈し、上下方向に移動可能なフロート(図示なし)を有している。液体の液面の高さの変化にともないフロートが上下動することによって、気体放出弁20は、気液分離槽16に貯留する気体の放出と停止を行う。 The gas release valve 20 has a float (not shown) that floats and sinks following the height of the liquid level in the gas-liquid separation tank 16 and is movable in the vertical direction. As the float moves up and down as the liquid level changes, the gas release valve 20 releases and stops the gas stored in the gas-liquid separation tank 16.
 また、溶解タンク4では、気液分離槽16の上部に溜まる気体を再利用するために、図2および図3(a)(b)(c)に示したように、気体循環配管21が設けられてもいる。 Further, in the dissolution tank 4, a gas circulation pipe 21 is provided as shown in FIGS. 2, 3 (a), (b), and (c) in order to reuse the gas accumulated in the upper part of the gas-liquid separation tank 16. There is also.
 図6は、溶解タンクにおける気体循環配管の周辺を示した一部切欠斜視図である。 FIG. 6 is a partially cutaway perspective view showing the periphery of the gas circulation pipe in the dissolution tank.
 図6に示したように、気体循環配管21は、中間槽15の内部に上下方向に設けられ、下端は、溶解タンク4の流入部7に接続されている。気体循環配管21の上端部は、図3(c)に示したように、第2仕切り壁13に沿って略円弧状に湾曲し、水平に配置されている。気体循環配管21は、ゴムなどの弾性体から形成されている。図2に示したように、気体循環配管21の上端部は、溶解タンク4の上面と第2仕切り壁13の上部との間に配置され、パッキンとしても機能する。 As shown in FIG. 6, the gas circulation pipe 21 is provided inside the intermediate tank 15 in the vertical direction, and the lower end is connected to the inflow portion 7 of the dissolution tank 4. As shown in FIG. 3C, the upper end portion of the gas circulation pipe 21 is curved in a substantially arc shape along the second partition wall 13 and is disposed horizontally. The gas circulation pipe 21 is formed of an elastic body such as rubber. As shown in FIG. 2, the upper end portion of the gas circulation pipe 21 is disposed between the upper surface of the dissolution tank 4 and the upper portion of the second partition wall 13 and also functions as a packing.
 気体が溶解した液体の生成時には、気体循環配管21の上端付近と下端付近の間に圧力差が生じる。気体循環配管21の上端付近の圧力は下端付近の圧力よりも高い。また、図6に示した流入部7では、気液混合流体の流速が速いため、減圧されている。したがって、気液分離槽16の上部に溜まる未溶解の気体は、気体循環配管21の上端から吸引され、下端から流入部7に供給される。流入部7に送り込まれた気体は、再度気液混合流体に混合され、気液混合槽14において溶媒中に溶解する。このように、溶解タンク4では、気液分離槽16の上部に溜まる気体を溶解タンク4内に流入する気液混合流体に供給する気体循環配管21が設けられているので、未溶解の気体の再利用が可能であり、気体の溶解効率が向上する。 When generating a liquid in which gas is dissolved, a pressure difference is generated between the vicinity of the upper end and the lower end of the gas circulation pipe 21. The pressure near the upper end of the gas circulation pipe 21 is higher than the pressure near the lower end. Moreover, in the inflow part 7 shown in FIG. 6, since the flow velocity of a gas-liquid mixed fluid is quick, it is pressure-reduced. Therefore, the undissolved gas accumulated in the upper part of the gas-liquid separation tank 16 is sucked from the upper end of the gas circulation pipe 21 and supplied to the inflow portion 7 from the lower end. The gas sent to the inflow portion 7 is mixed with the gas-liquid mixed fluid again and dissolved in the solvent in the gas-liquid mixing tank 14. As described above, the dissolution tank 4 is provided with the gas circulation pipe 21 that supplies the gas accumulated in the upper part of the gas-liquid separation tank 16 to the gas-liquid mixed fluid flowing into the dissolution tank 4. It can be reused, and gas dissolution efficiency is improved.
 なお、気体循環配管21は、中間槽15の内部に限らず、気液分離槽16の内部に設けることも可能である。気液分離槽16の内部に設けても、気体循環配管21は、中間槽15の内部に設ける場合と同様に機能する。また、溶解タンク4の上部には、図1に示したように、下り勾配の傾斜面部22が形成されている。傾斜面部22によって、気液分離槽16の上部に溜まる気体は、溶解タンク4の中央部寄りに集められ、気体循環配管21の上端からの気体の吸引はスムーズに行われ、気体を流入部7に効率よく供給することができる。 Note that the gas circulation pipe 21 is not limited to the inside of the intermediate tank 15 but can be provided inside the gas-liquid separation tank 16. Even if it is provided inside the gas-liquid separation tank 16, the gas circulation pipe 21 functions in the same manner as when it is provided inside the intermediate tank 15. Further, as shown in FIG. 1, a downwardly inclined surface portion 22 is formed in the upper part of the dissolution tank 4. The gas accumulated in the upper portion of the gas-liquid separation tank 16 is collected near the center of the dissolution tank 4 by the inclined surface portion 22, the gas is smoothly sucked from the upper end of the gas circulation pipe 21, and the gas flows into the inflow portion 7. Can be supplied efficiently.
 上記のとおりの溶解タンク4は、図1および図2に示したように、縦方向の中央部において2つに分割され、上側の上部品23と下側の下部品24とから形成されている。 As shown in FIGS. 1 and 2, the dissolution tank 4 as described above is divided into two parts at the center in the vertical direction, and is formed of an upper part 23 on the upper side and a lower part 24 on the lower side. .
 図7は、図1に示した気体溶解装置における溶解タンクの分解斜視図である。図8は、図1に示した気体溶解装置における溶解タンクの分解斜視図である。図7、図8では、溶解タンクを異なる方向から図示している。 FIG. 7 is an exploded perspective view of the dissolution tank in the gas dissolving apparatus shown in FIG. FIG. 8 is an exploded perspective view of the dissolution tank in the gas dissolving apparatus shown in FIG. 7 and 8, the dissolution tank is illustrated from different directions.
 図7および図8に示したように、上部品23では、第1仕切り壁12が一体に形成され、第1仕切り壁12は、上部品23の上面から下方に延びている。下部品24では、第2仕切り壁13が一体に形成され、第2仕切り壁13は、下部品24の底面から上方に延びている。下部品24には、底部に流入部7および流出部8が一体に設けられている。上部品23の下端縁部および下部品24の上端縁部には、外側方に突出して延びるフランジ部25、26が設けられている。溶解タンク4は、フランジ部25、26を重ね合わせ、重なり合うフランジ部25、26の所定の部位においてボルト、ナットなどの適宜な固着具により上部品23と下部品24を締結することによって組み立てられ、一体となる。この組み立て時に、第1仕切り壁12が第2仕切り壁13の内側に挿入され、気液混合槽14、中間槽15および気液分離槽16が形成される。また、図3(c)に示した弾性体から形成された気体循環配管21の上端部が、図2に示したように、上部品23の上面と第2仕切り壁13の上部との間に挟み込まれる。この気体循環配管21の挟み込みによって、気体循環配管21がパッキンとして機能し、上部品23の上面と第2仕切り壁13の上部との間が水密となる。このため、液体が、第2仕切り壁13の切欠部17以外の部分において中間槽15から気液分離槽16へ流出するのを抑制することができる。このような上部品23の上面と第2仕切り壁13の上部との間の水密性が、気液分離槽16の上部に溜まる気体を溶解タンク4に供給する気体循環配管21により実現されているので、溶解タンク4は、部品点数が減少したものとなっている。 7 and 8, in the upper part 23, the first partition wall 12 is integrally formed, and the first partition wall 12 extends downward from the upper surface of the upper part 23. In the lower part 24, the second partition wall 13 is integrally formed, and the second partition wall 13 extends upward from the bottom surface of the lower part 24. The lower part 24 is integrally provided with the inflow portion 7 and the outflow portion 8 at the bottom. At the lower end edge of the upper part 23 and the upper end edge of the lower part 24, flange parts 25 and 26 are provided to protrude outward. The dissolution tank 4 is assembled by overlapping the flange parts 25 and 26 and fastening the upper part 23 and the lower part 24 with appropriate fasteners such as bolts and nuts at predetermined portions of the overlapping flange parts 25 and 26, Become one. At the time of this assembly, the first partition wall 12 is inserted inside the second partition wall 13, and the gas-liquid mixing tank 14, the intermediate tank 15, and the gas-liquid separation tank 16 are formed. Further, the upper end portion of the gas circulation pipe 21 formed of the elastic body shown in FIG. 3C is located between the upper surface of the upper part 23 and the upper portion of the second partition wall 13 as shown in FIG. It is caught. By sandwiching the gas circulation pipe 21, the gas circulation pipe 21 functions as a packing, and the space between the upper surface of the upper part 23 and the upper part of the second partition wall 13 becomes watertight. For this reason, it can suppress that a liquid flows out into the gas-liquid separation tank 16 from the intermediate tank 15 in parts other than the notch part 17 of the 2nd partition wall 13. FIG. Such watertightness between the upper surface of the upper part 23 and the upper part of the second partition wall 13 is realized by the gas circulation pipe 21 that supplies the gas accumulated in the upper part of the gas-liquid separation tank 16 to the dissolution tank 4. Therefore, the dissolution tank 4 has a reduced number of parts.
 本発明は、以上の実施形態によって限定されるものではない。ポンプおよび架台の構成や構造、気体放出弁の構成や構造などの細部については様々な態様が可能である。 The present invention is not limited to the above embodiment. Various aspects are possible about details, such as a structure and structure of a pump and a mount frame, and a structure and structure of a gas discharge valve.
 1 気体溶解装置
 4 溶解タンク
 8 流出部
12 第1仕切り壁
13 第2仕切り壁
14 気液混合槽
15 中間槽
16 気液分離槽
17 切欠部
18 縦リブ
21 気体循環配管
23 上部品
24 下部品
DESCRIPTION OF SYMBOLS 1 Gas dissolution apparatus 4 Dissolution tank 8 Outflow part 12 1st partition wall 13 2nd partition wall 14 Gas-liquid mixing tank 15 Intermediate tank 16 Gas-liquid separation tank 17 Notch part 18 Vertical rib 21 Gas circulation piping 23 Upper part 24 Lower part
 本発明の気体溶解装置は、水密性を確保し、しかも、部品点数が減少したものである。 The gas dissolving apparatus of the present invention ensures water tightness and has a reduced number of parts.

Claims (5)

  1.  溶解タンクと、
     この溶解タンクの内部に設けられた第1仕切り壁および第2仕切り壁と、
     前記溶解タンクに設けられた流出部と、
     前記第1仕切り壁および前記第2仕切り壁によって前記溶解タンクの内部が区画されて形成され、気体が溶解した液体の流れに関しその上流側から下流側にかけて順に配置された気液混合槽、中間槽および気液分離槽と、
     前記気液分離槽の上部に溜まる気体を前記溶解タンク内に流入する流体に供給する、弾性体から形成された気体循環配管とを備え、
     前記流体が、前記気液混合槽において気体と混合されて前記液体が生成され、この液体は、前記中間槽、前記気液分離槽を順次流れ、前記流出部から前記溶解タンクの外部に流出する気体溶解装置であって、
     前記溶解タンクは、2つに分割され、上側の上部品と下側の下部品とから形成され、
     前記上部品では、前記気液混合槽と前記中間槽を区画する前記第1仕切り壁が、前記上部品と一体に形成され、かつ前記第1仕切り壁は、前記上部品の上面から下方に延び、
     前記下部品では、前記中間槽と前記気液分離槽を区画する前記第2仕切り壁が、前記下部品と一体に形成され、かつ前記第2仕切り壁は、前記下部品の底面から上方に延び、
     前記気体循環配管が、前記上部品の上面と前記第2仕切り壁の上部との間に挟み込まれ、前記上部品の上面と前記第2仕切り壁の上部との間が、前記気体循環配管の挟み込みによって水密となっている
    ことを特徴とする気体溶解装置。
    A dissolution tank;
    A first partition wall and a second partition wall provided inside the dissolution tank;
    An outflow section provided in the dissolution tank;
    A gas-liquid mixing tank and an intermediate tank, which are formed by dividing the inside of the dissolution tank by the first partition wall and the second partition wall, and are arranged in order from the upstream side to the downstream side with respect to the flow of the liquid in which the gas is dissolved. And a gas-liquid separation tank,
    A gas circulation pipe formed of an elastic body for supplying a gas accumulated in an upper portion of the gas-liquid separation tank to a fluid flowing into the dissolution tank;
    The fluid is mixed with gas in the gas-liquid mixing tank to generate the liquid, and the liquid sequentially flows through the intermediate tank and the gas-liquid separation tank and flows out of the dissolution tank from the outflow portion. A gas dissolving device comprising:
    The dissolution tank is divided into two and formed from an upper part on the upper side and a lower part on the lower side,
    In the upper part, the first partition wall that partitions the gas-liquid mixing tank and the intermediate tank is formed integrally with the upper part, and the first partition wall extends downward from the upper surface of the upper part. ,
    In the lower part, the second partition wall that partitions the intermediate tank and the gas-liquid separation tank is formed integrally with the lower part, and the second partition wall extends upward from the bottom surface of the lower part. ,
    The gas circulation pipe is sandwiched between the upper surface of the upper part and the upper part of the second partition wall, and the gas circulation pipe is sandwiched between the upper surface of the upper part and the upper part of the second partition wall. A gas dissolution apparatus characterized by being watertight.
  2.  前記第2仕切り壁および前記流出部は、前記気液分離槽を前記液体が水平方向に流れるように設けられていることを特徴とする請求項1に記載の気体溶解装置。 The gas dissolving apparatus according to claim 1, wherein the second partition wall and the outflow portion are provided so that the liquid flows in the gas-liquid separation tank in a horizontal direction.
  3.  前記第2仕切り壁および前記流出部は、前記液体が前記中間槽の外面に沿って水平方向に流れるように設けられていることを特徴とする請求項2に記載の気体溶解装置。 The gas dissolving apparatus according to claim 2, wherein the second partition wall and the outflow portion are provided so that the liquid flows in a horizontal direction along an outer surface of the intermediate tank.
  4.  前記気液分離槽では、前記気液分離槽の上面より下方に延びる縦リブが設けられていることを特徴とする請求項1から3のいずれか一項に記載の気体溶解装置。 The gas dissolving apparatus according to any one of claims 1 to 3, wherein the gas-liquid separation tank is provided with vertical ribs extending downward from an upper surface of the gas-liquid separation tank.
  5.  前記第2仕切り壁では、その上部が一部切り欠かれて切欠部が形成され、前記流出部は、前記切欠部から離れた位置に位置する前記気液分離槽の底部に設けられていることを特徴とする請求項1から4のいずれか一項に記載の気体溶解装置。
     
    The upper part of the second partition wall is partially cut away to form a notch, and the outflow part is provided at the bottom of the gas-liquid separation tank located at a position away from the notch. The gas dissolving apparatus according to any one of claims 1 to 4, wherein
PCT/JP2012/067804 2011-09-20 2012-07-12 Gas dissolving device WO2013042442A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280039328.3A CN103747856B (en) 2011-09-20 2012-07-12 Gas dissolving device
KR1020147000788A KR101590029B1 (en) 2011-09-20 2012-07-12 Gas dissolving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-205156 2011-09-20
JP2011205156A JP5681910B2 (en) 2011-09-20 2011-09-20 Gas dissolving device

Publications (1)

Publication Number Publication Date
WO2013042442A1 true WO2013042442A1 (en) 2013-03-28

Family

ID=47914223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067804 WO2013042442A1 (en) 2011-09-20 2012-07-12 Gas dissolving device

Country Status (4)

Country Link
JP (1) JP5681910B2 (en)
KR (1) KR101590029B1 (en)
CN (1) CN103747856B (en)
WO (1) WO2013042442A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038610A1 (en) * 2020-08-19 2022-02-24 Aquestia Ltd. A phase-separator and an assembly and method comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004313905A (en) * 2003-04-15 2004-11-11 Matsushita Electric Works Ltd Structure of gas-liquid dissolving tank
JP2007075749A (en) * 2005-09-15 2007-03-29 Matsue Doken Kk Gas-liquid dissolving apparatus
JP2010155192A (en) * 2008-12-26 2010-07-15 Daikin Ind Ltd Gas-liquid separator and gas dissolving vessel equipped therewith
JP2010227783A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Gas dissolving apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100457244C (en) * 2004-02-03 2009-02-04 松江土建株式会社 Gas-liquid dissolution apparatus
WO2008023704A1 (en) * 2006-08-21 2008-02-28 Eiji Matsumura Gas/liquid mixing device
JP5017305B2 (en) 2009-03-26 2012-09-05 パナソニック株式会社 Gas dissolving device
JP5017304B2 (en) * 2009-03-26 2012-09-05 パナソニック株式会社 Gas dissolving device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004313905A (en) * 2003-04-15 2004-11-11 Matsushita Electric Works Ltd Structure of gas-liquid dissolving tank
JP2007075749A (en) * 2005-09-15 2007-03-29 Matsue Doken Kk Gas-liquid dissolving apparatus
JP2010155192A (en) * 2008-12-26 2010-07-15 Daikin Ind Ltd Gas-liquid separator and gas dissolving vessel equipped therewith
JP2010227783A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Gas dissolving apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038610A1 (en) * 2020-08-19 2022-02-24 Aquestia Ltd. A phase-separator and an assembly and method comprising the same

Also Published As

Publication number Publication date
CN103747856A (en) 2014-04-23
JP2013066814A (en) 2013-04-18
CN103747856B (en) 2015-06-17
KR101590029B1 (en) 2016-01-29
JP5681910B2 (en) 2015-03-11
KR20140020358A (en) 2014-02-18

Similar Documents

Publication Publication Date Title
JP5017305B2 (en) Gas dissolving device
JP5975385B2 (en) Gas dissolving device
JP5681910B2 (en) Gas dissolving device
JP6065174B2 (en) Gas dissolving device
JP5903602B2 (en) Gas dissolving device
JP5887555B2 (en) Gas dissolution tank
JP5914802B2 (en) Gas dissolving device
JP5870262B2 (en) Gas dissolution tank
JP5884029B2 (en) Gas dissolving device
JP5017304B2 (en) Gas dissolving device
JP2010029754A (en) Gas dissolving apparatus
JP5967567B2 (en) Gas dissolving device
JP2013158756A (en) Gas dissolving device
JP5816849B2 (en) Gas dissolving device
JP5903604B2 (en) Gas dissolving device
JP2007296236A (en) Bathtub with microbubble generator
JP2011173033A (en) Dissolution tank

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833903

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147000788

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833903

Country of ref document: EP

Kind code of ref document: A1