WO2013042188A1 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
WO2013042188A1
WO2013042188A1 PCT/JP2011/071345 JP2011071345W WO2013042188A1 WO 2013042188 A1 WO2013042188 A1 WO 2013042188A1 JP 2011071345 W JP2011071345 W JP 2011071345W WO 2013042188 A1 WO2013042188 A1 WO 2013042188A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
nox catalyst
amount
selective reduction
temperature
Prior art date
Application number
PCT/JP2011/071345
Other languages
English (en)
French (fr)
Inventor
柴田 大介
徹 木所
一哉 高岡
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/634,155 priority Critical patent/US9382830B2/en
Priority to JP2012541243A priority patent/JP5344096B2/ja
Priority to CN201180013053.1A priority patent/CN103797222B/zh
Priority to PCT/JP2011/071345 priority patent/WO2013042188A1/ja
Priority to EP11860707.6A priority patent/EP2759682A4/en
Publication of WO2013042188A1 publication Critical patent/WO2013042188A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0418Methods of control or diagnosing using integration or an accumulated value within an elapsed period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/0601Parameters used for exhaust control or diagnosing being estimated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1411Exhaust gas flow rate, e.g. mass flow rate or volumetric flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1622Catalyst reducing agent absorption capacity or consumption amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust purification device for an internal combustion engine.
  • an accumulation amount of an intermediate product generated in the course of the reaction from urea to ammonia in the exhaust passage Is known to prohibit the supply of urea water when the amount reaches the upper limit (see, for example, Patent Document 1).
  • the reducing agent can be supplied to the NOx catalyst until the accumulation amount of the intermediate product in the exhaust passage reaches the upper limit amount.
  • a filter for collecting particulate matter (hereinafter also simply referred to as “PM”) may be provided in the exhaust passage. Further, in order to determine the failure of the filter, a PM sensor that detects the amount of PM in the exhaust gas may be provided. If the intermediate product adheres to the electrode or cover of the PM sensor, it may be difficult to accurately detect the PM amount. As a result, the accuracy of the filter failure determination may be lowered.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to suppress a decrease in the accuracy of filter failure determination due to a decrease in detection accuracy of the PM sensor.
  • an exhaust gas purification apparatus for an internal combustion engine comprises: A filter provided in an exhaust passage of the internal combustion engine for collecting particulate matter in the exhaust; A selective reduction type NOx catalyst for reducing NOx by a reducing agent provided downstream from the filter and supplied; A supply device for supplying a reducing agent to the selective reduction type NOx catalyst from the upstream side of the selective reduction type NOx catalyst; A PM sensor for detecting the amount of particulate matter in the exhaust gas downstream of the selective reduction NOx catalyst; When the temperature of the selective reduction NOx catalyst is lower than the threshold, when the temperature of the exhaust is lower than the threshold, when the flow rate of the exhaust is higher than the threshold, or when the adsorption amount of the reducing agent on the selective reduction NOx catalyst is higher than the threshold In the case of corresponding to at least one, the weight reducing unit for reducing the supply amount of the reducing agent than in the case of not corresponding to any of the above, Is provided.
  • the reducing unit reduces the supply amount of the reducing agent in the state where the reducing agent passes through the selective reduction type NOx catalyst, compared to the case where the reducing agent does not pass through.
  • a state in which the reducing agent passes through the selective reduction type NOx catalyst can be brought about.
  • the reducing agent easily passes through the selective reduction type NOx catalyst before the reaction of the reducing agent in the selective reduction type NOx catalyst is completed. That is, there is a correlation between the exhaust gas flow rate and the amount of reducing agent passing through the selective reduction type NOx catalyst. Further, when the amount of reducing agent adsorbed on the selective reduction type NOx catalyst increases, it becomes difficult for the reducing agent to be adsorbed on the selective reduction type NOx catalyst, so that the reducing agent easily passes through the selective reduction type NOx catalyst. That is, there is a correlation between the amount of reducing agent adsorbed and the amount of reducing agent passing through the selective reduction type NOx catalyst.
  • the temperature of the selective reduction type NOx catalyst is lower than the threshold value
  • the exhaust gas temperature is lower than the threshold value
  • the exhaust gas flow rate is higher than the threshold value
  • the adsorption amount of the reducing agent in the selective reduction type NOx catalyst is higher than the threshold value
  • the supply amount of the reducing agent is reduced. If it does so, since it can suppress that a reducing agent adheres to PM sensor, it can control that the accuracy of filter failure judgment falls.
  • the threshold value for the temperature of the selective reduction type NOx catalyst mentioned here can be the upper limit value of the temperature at which the reducing agent passes through the selective reduction type NOx catalyst or the upper limit value of the temperature at which the reducing agent adheres to the PM sensor. . Further, the temperature of the selective reduction type NOx catalyst at which the amount of reducing agent adhering to the PM sensor falls within the allowable range may be used as the threshold value.
  • the threshold value for the exhaust gas temperature can be the upper limit value of the temperature at which the reducing agent passes through the selective reduction type NOx catalyst, or the upper limit value of the temperature at which the reducing agent adheres to the PM sensor. Moreover, it is good also considering the temperature of the exhaust_gas
  • the threshold value for the exhaust gas flow rate can be the lower limit value of the flow rate through which the reducing agent passes through the selective catalytic reduction NOx catalyst, or the lower limit value of the flow rate at which the reducing agent adheres to the PM sensor. Further, a flow rate at which the amount of reducing agent adhering to the PM sensor is within an allowable range may be set as a threshold value.
  • the flow rate of exhaust gas may be used instead of the flow rate of exhaust gas.
  • the threshold for the adsorption amount of the reducing agent can be the lower limit value of the adsorption amount through which the reducing agent passes through the selective reduction type NOx catalyst, or the lower limit value of the adsorption amount at which the reducing agent adheres to the PM sensor.
  • an adsorption amount that allows the amount of reducing agent attached to the PM sensor to be within an allowable range may be used as a threshold value.
  • the reducing agent adsorption rate in the selective reduction type NOx catalyst may be used instead of the reducing agent adsorption amount in the selective reduction type NOx catalyst. This adsorption rate is a value obtained by dividing the amount of reducing agent adsorbed by the amount of reducing agent that can be adsorbed to the maximum.
  • the reducing agent includes substances supplied from the supply device, substances finally generated from the substances supplied from the supply apparatus, and substances finally supplied from the substances supplied from the supply apparatus. Intermediate products are included. Any of these reacts with NOx in the selective reduction type NOx catalyst, and the NOx is reduced.
  • reducing the supply amount of the reducing agent may include not supplying the reducing agent.
  • the supply of the reducing agent may be prohibited. By not supplying a reducing agent, it can suppress more that a reducing agent adheres to PM sensor.
  • the amount of the reducing agent that passes through the selective catalytic reduction NOx catalyst is The lower the temperature of the selective reduction NOx catalyst or the exhaust temperature, The higher the exhaust flow, the more As the amount of adsorption of the reducing agent in the selective reduction type NOx catalyst increases,
  • the reducing unit determines the amount of the reducing agent that passes through the selective reduction type NOx catalyst, the temperature of the selective reduction type NOx catalyst or the temperature of the exhaust gas, the flow rate of the exhaust gas, and the adsorption amount of the reducing agent in the selective reduction type NOx catalyst. Based on at least one, the supply amount of the reducing agent can be determined so that the amount of the reducing agent passing through the selective reduction type NOx catalyst is less than the threshold value.
  • the temperature of the selective reduction type NOx catalyst there is a correlation between the temperature of the selective reduction type NOx catalyst and the amount of the reducing agent that passes through the selective reduction type NOx catalyst.
  • the lower the temperature of the selective reduction type NOx catalyst the more the selective reduction type NOx catalyst passes through.
  • the amount of reducing agent increases.
  • the exhaust gas temperature there is a correlation between the exhaust gas temperature and the amount of reducing agent that passes through the selective reduction type NOx catalyst.
  • the lower the exhaust gas temperature the larger the amount of reducing agent that passes through the selective reduction type NOx catalyst.
  • the flow rate of exhaust gas and the amount of reducing agent passing through the selective reduction type NOx catalyst there is a correlation between the flow rate of exhaust gas and the amount of reducing agent passing through the selective reduction type NOx catalyst, and the amount of reducing agent passing through the selective reduction type NOx catalyst increases as the flow rate of exhaust gas increases.
  • the amount of adsorption of the reducing agent in the selective reduction type NOx catalyst and the amount of the reducing agent that passes through the selective reduction type NOx catalyst, and the reducing agent that passes through the selective reduction type NOx catalyst as the adsorption amount increases. The amount of increases. Based on these relationships, the amount of reducing agent that passes through the selective catalytic reduction NOx catalyst can be determined.
  • the threshold of the amount of reducing agent that passes through the selective reduction type NOx catalyst is the amount of reducing agent that passes through the selective reduction type NOx catalyst, and the amount of reducing agent when the influence on the detection value of the PM sensor exceeds the allowable range and can do.
  • the threshold value may be the lower limit value of the amount of reducing agent that passes through the selective reduction type NOx catalyst and changes the detection value of the PM sensor. That is, when the amount of the reducing agent that passes through the selective reduction type NOx catalyst becomes equal to or greater than the threshold value, the accuracy of the filter failure determination is lowered due to the influence of the reducing agent attached to the PM sensor.
  • the reducing agent is supplied so that the amount of reducing agent passing through the selective reduction type NOx catalyst is less than the threshold, the reducing agent has little effect on the detection value of the PM sensor. It can suppress that accuracy falls.
  • the amount of the reducing agent that passes through the selective catalytic reduction NOx catalyst is The lower the temperature of the selective reduction NOx catalyst or the exhaust temperature, The higher the exhaust flow, the more As the amount of adsorption of the reducing agent in the selective reduction type NOx catalyst increases,
  • the reducing unit determines the amount of the reducing agent that passes through the selective reduction type NOx catalyst, the temperature of the selective reduction type NOx catalyst or the temperature of the exhaust gas, the flow rate of the exhaust gas, and the adsorption amount of the reducing agent in the selective reduction type NOx catalyst. It is calculated based on at least one, and the supply of the reducing agent can be prohibited when the amount of the reducing agent passing through the selective reduction type NOx catalyst is equal to or greater than a threshold value.
  • the amount of adsorption of the reducing agent in the selective reduction type NOx catalyst and the amount of the reducing agent that passes through the selective reduction type NOx catalyst, and the reducing agent that passes through the selective reduction type NOx catalyst as the adsorption amount increases. The amount of increases. Based on these relationships, the amount of reducing agent that passes through the selective catalytic reduction NOx catalyst can be determined.
  • the threshold of the amount of reducing agent that passes through the selective reduction type NOx catalyst is the amount of reducing agent that passes through the selective reduction type NOx catalyst, and the amount of reducing agent when the influence on the detection value of the PM sensor exceeds the allowable range and can do.
  • the threshold value may be the lower limit value of the amount of reducing agent that passes through the selective reduction type NOx catalyst and changes the detection value of the PM sensor. That is, when the amount of the reducing agent that passes through the selective reduction type NOx catalyst becomes equal to or greater than the threshold value, the accuracy of the filter failure determination is lowered due to the influence of the reducing agent attached to the PM sensor.
  • the amount of reducing agent that passes through the selective reduction type NOx catalyst is equal to or greater than the threshold value, if the supply of the reducing agent is prohibited, it can be suppressed that the accuracy of the filter failure determination is lowered.
  • a reducing agent that reduces NOx when a reducing agent passes through the selective reduction type NOx catalyst and the supply amount of the reducing agent is reduced by the weight reduction unit, the selective reduction type NOx It is possible to provide an increasing portion that is supplied in advance when the catalyst does not pass through the reducing agent.
  • the supply amount of the reducing agent is reduced by the reducing unit
  • the amount of NOx adsorbed on the selective reduction type NOx catalyst is reduced by the NOx flowing into the selective reduction type NOx catalyst. If this state continues for a long time and all the reducing agent adsorbed on the selective reduction type NOx catalyst is consumed, there is a possibility that the NOx cannot be purified.
  • the increasing unit adsorbs more reducing agent than usual to the selective reduction type NOx catalyst before the reducing agent supply amount is reduced by the reducing unit.
  • the normal here is a case where a reducing agent is supplied in accordance with the amount of NOx in the exhaust.
  • the supply amount of the reducing agent is determined so as to supplement the reducing agent consumed in the selective reduction type NOx catalyst.
  • the increasing unit supplies more reducing agent than the amount of reducing agent consumed in the selective reduction type NOx catalyst. At this time, the amount of the reducing agent that can be adsorbed to the selective reduction type NOx catalyst as much as possible is not exceeded.
  • the reducing agent that can be adsorbed to the selective reduction type NOx catalyst as much as possible is not exceeded.
  • by adsorbing a large amount of the reducing agent to the selective reduction type NOx catalyst in advance it is possible to suppress the shortage of the reducing agent when the supply amount of the reducing agent is reduced by the reducing unit. Thereby, it can suppress that the purification rate of NOx falls.
  • the increasing portion is based on a difference between a temperature of the selective reduction NOx catalyst at which a reducing agent does not pass through the selective reduction NOx catalyst and a current temperature of the selective reduction NOx catalyst.
  • the amount of reducing agent to be supplied can be determined.
  • the reducing agent when the exhaust gas flow rate is large or the temperature of the selective reduction type NOx catalyst is low, the reducing agent easily passes through the selective reduction type NOx catalyst.
  • the temperature of the exhaust gas rises, so that the temperature of the selective reduction type NOx catalyst gradually increases.
  • the reducing agent cannot pass through if the temperature of the selective reduction NOx catalyst increases. That is, even if the reducing agent passes through because the temperature of the selective reduction type NOx catalyst is low at this time, the reducing agent does not pass through if the temperature rises.
  • the reducing agent does not pass through the selective reduction type NOx catalyst, it is not necessary to reduce the supply amount of the reducing agent. Therefore, if the increasing part previously adsorbs the reducing agent to the selective reducing NOx catalyst so as to compensate for the reducing agent while it rises to a temperature at which the reducing agent does not pass through the selective reducing NOx catalyst, the reducing agent passes through. It can suppress that the purification rate of NOx falls while rising to the temperature which disappears.
  • the selective reduction type NOx catalyst when it is time to supply the reducing agent during a period from when the reducing agent passes through the selective reduction type NOx catalyst to when it does not pass through, the selective reduction type NOx catalyst.
  • the supply of the reducing agent is postponed until the reducing agent does not pass through the NOx catalyst, and the amount of the reducing agent supplied after the reducing agent does not pass through the selective reducing NOx catalyst is changed to the previous reducing agent.
  • a postponing part that is determined based on an integrated value of the NOx amount that has flowed into the selective reduction type NOx catalyst from the time of supply of the NOx catalyst can be provided.
  • the supply amount of the reducing agent is reduced by the reducing unit.
  • the reducing agent is supplied when the integrated value of the amount of NOx flowing into the selective reduction type NOx catalyst reaches a specified value or every specified period.
  • the amount of reducing agent is determined based on an integrated value of the amount of NOx flowing into the selective reduction type NOx catalyst within the specified period. As described above, when the integrated value of the NOx amount flowing into the selective reduction type NOx catalyst reaches a specified value, or when a specified period has elapsed since the previous supply of the reducing agent, it is time to supply the reducing agent. .
  • the reducing agent In the period when the supply amount of the reducing agent is decreased by the weight reducing unit, the reducing agent is not supplied at this time even if it is time to supply the reducing agent. Then, the reducing agent is supplied after the selective reducing NOx catalyst does not pass through the reducing agent.
  • the supply amount of the reducing agent is not calculated using the integrated value of the NOx amount when it is time to supply the reducing agent, but the integrated value of the NOx amount when the reducing agent is actually supplied. To decide. That is, the reducing agent corresponding to the amount of NOx flowing into the selective reduction type NOx catalyst while the supply of the reducing agent has been postponed is added and supplied. As a result, the amount of the reducing agent adsorbed on the selective reduction type NOx catalyst can be quickly increased, so that a reduction in the NOx purification rate can be suppressed.
  • the present invention it is possible to suppress a decrease in the accuracy of filter failure determination due to a decrease in detection accuracy of the PM sensor.
  • FIG. 3 is a flowchart illustrating a flow for prohibiting the supply of a reducing agent according to the first embodiment. It is the figure which showed the relationship between the flow volume of the exhaust gas which passes a NOx catalyst, and the 1st coefficient K1.
  • FIG. 6 is a flowchart illustrating a flow for prohibiting the supply of a reducing agent according to a second embodiment.
  • 10 is a flowchart illustrating a control flow of a supply amount of a reducing agent according to a third embodiment.
  • 10 is a flowchart illustrating a control flow of a supply amount of a reducing agent according to a fourth embodiment.
  • 10 is a flowchart illustrating a control flow of a supply amount of a reducing agent according to a fifth embodiment.
  • DerutaTSCR illustrates the NH 3 amount of increase URQ, the relationship.
  • 6 is a time chart showing a transition of an integrated value of a general supply flag and an amount of NOx flowing into the NOx catalyst.
  • 14 is a time chart showing a transition of an integrated value of a supply flag and an amount of NOx flowing into the NOx catalyst when supply control of a reducing agent according to Example 6 is performed.
  • 10 is a flowchart showing a control flow of a supply amount of a reducing agent according to a sixth embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to the present embodiment.
  • the internal combustion engine 1 shown in FIG. 1 is a diesel engine, but may be a gasoline engine.
  • An intake passage 2 and an exhaust passage 3 are connected to the internal combustion engine 1.
  • An air flow meter 11 that detects the amount of intake air flowing through the intake passage 2 is provided in the intake passage 2.
  • an oxidation catalyst 4 a filter 5, an injection valve 6, and a selective reduction type NOx catalyst 7 (hereinafter referred to as NOx catalyst 7) are provided in order from the upstream side in the exhaust flow direction.
  • the oxidation catalyst 4 may be any catalyst having oxidation ability, and may be, for example, a three-way catalyst.
  • the oxidation catalyst 4 may be carried on the filter 5.
  • the filter 5 collects PM in the exhaust.
  • the filter 5 may carry a catalyst. As PM is collected by the filter 5, PM gradually accumulates on the filter 5. Then, by executing a so-called filter regeneration process for forcibly increasing the temperature of the filter 5, the PM deposited on the filter 5 can be oxidized and removed.
  • the temperature of the filter 5 can be raised by supplying HC to the oxidation catalyst 4.
  • the temperature of the filter 5 may be raised by discharging hot gas from the internal combustion engine 1.
  • the injection valve 6 injects a reducing agent.
  • a reducing agent for example, an ammonia-derived one such as urea water is used.
  • the urea water injected from the injection valve 6 is hydrolyzed by the heat of the exhaust to become ammonia (NH 3 ), and part or all of it is adsorbed on the NOx catalyst 7.
  • NH 3 ammonia
  • the injection valve 6 corresponds to the supply device in the present invention.
  • the NOx catalyst 7 reduces NOx in the exhaust when a reducing agent is present. For example, if ammonia (NH 3 ) is previously adsorbed on the NOx catalyst 7, NOx can be reduced with ammonia when NOx passes through the NOx catalyst 7.
  • a reducing agent for example, if ammonia (NH 3 ) is previously adsorbed on the NOx catalyst 7, NOx can be reduced with ammonia when NOx passes through the NOx catalyst 7.
  • a first exhaust temperature sensor 12 for detecting the exhaust temperature is provided in the exhaust passage 3 upstream of the oxidation catalyst 4.
  • a second exhaust temperature sensor 13 for detecting the temperature of the exhaust gas is provided in the exhaust passage 3 downstream of the oxidation catalyst 4 and upstream of the filter 5.
  • the exhaust passage 3 downstream of the filter 5 and upstream of the injection valve 6 is provided with a third exhaust temperature sensor 14 for detecting the exhaust temperature and a first NOx sensor 15 for detecting the NOx concentration in the exhaust. Yes.
  • a second NOx sensor 16 for detecting the NOx concentration in the exhaust and a PM sensor 17 for detecting the PM amount in the exhaust are provided in the exhaust passage 3 downstream of the NOx catalyst 7. All of these sensors are not essential and can be provided as needed.
  • the internal combustion engine 1 configured as described above is provided with an ECU 10 that is an electronic control unit for controlling the internal combustion engine 1.
  • the ECU 10 controls the internal combustion engine 1 in accordance with the operating conditions of the internal combustion engine 1 and the driver's request.
  • the ECU 10 includes an accelerator opening sensor 18 capable of detecting an engine load by outputting an electric signal corresponding to the amount of depression of an accelerator pedal, and a crank position sensor 19 for detecting the engine speed via electric wiring.
  • the output signals of these sensors are input to the ECU 10.
  • the injection valve 6 is connected to the ECU 10 via electric wiring, and the injection valve 6 is controlled by the ECU 10.
  • the ECU 10 performs the regeneration process of the filter when the amount of PM accumulated on the filter 5 exceeds a predetermined amount.
  • the filter regeneration process may be performed when the travel distance of the vehicle on which the internal combustion engine 1 is mounted becomes equal to or greater than a predetermined distance. In addition, the filter regeneration process may be performed every specified period.
  • the ECU 10 determines a failure of the filter 5 based on the PM amount detected by the PM sensor 17.
  • the PM sensor 17 determines a failure of the filter 5 based on the PM amount detected by the PM sensor 17.
  • a failure such as breakage of the filter 5 occurs, the amount of PM passing through the filter 5 increases. If this increase in PM amount is detected by the PM sensor 17, the failure of the filter 5 can be determined.
  • the failure determination of the filter 5 is based on the integrated value of the PM amount calculated during the predetermined period calculated based on the detection value of the PM sensor 17 and the PM during the predetermined period when the filter 5 is assumed to be in the predetermined state. This is done by comparing the integrated value of the quantity.
  • FIG. 2 is a schematic configuration diagram of the PM sensor 17.
  • the PM sensor 17 is a sensor that outputs an electrical signal corresponding to the amount of PM deposited on itself.
  • the PM sensor 17 includes a pair of electrodes 171 and an insulator 172 provided between the pair of electrodes 171.
  • the electrical resistance between the pair of electrodes 171 changes. Since this change in electrical resistance has a correlation with the amount of PM in the exhaust, the amount of PM in the exhaust can be detected based on the change in the electrical resistance.
  • This amount of PM may be the mass of PM per unit time, or may be the mass of PM in a predetermined time.
  • the configuration of the PM sensor 17 is not limited to that shown in FIG. That is, any PM sensor may be used as long as it detects PM and changes the detection value due to the influence of the reducing agent.
  • FIG. 3 is a time chart showing the transition of the detection value of the PM sensor 17.
  • the period indicated by A immediately after the start of the internal combustion engine 1 is a period during which water condensed in the exhaust passage 3 may adhere to the PM sensor 17. If water adheres to the PM sensor 17, the detection value of the PM sensor 17 changes or the PM sensor 17 breaks down. Therefore, the PM amount is not detected by the PM sensor 17 during this period.
  • processing for removing PM adhering to the PM sensor 17 during the previous operation of the internal combustion engine 1 is performed. This process is performed by raising the temperature of the PM sensor 17 to a temperature at which PM is oxidized. Even during the period indicated by B, the PM amount is not detected by the PM sensor 17.
  • the period indicated by C after the period indicated by B is a period required to reach a temperature suitable for PM detection. That is, since the temperature of the PM sensor 17 becomes higher than the temperature suitable for PM detection in the period indicated by B, the process waits until the temperature decreases and becomes a temperature suitable for PM detection. Even during the period indicated by C, the PM amount is not detected by the PM sensor 17.
  • the detected value does not increase until a certain amount of PM is deposited on the PM sensor 17. That is, the detection value starts increasing after a certain amount of PM is deposited and a current flows between the pair of electrodes 171. Thereafter, the detected value increases in accordance with the amount of PM in the exhaust gas.
  • the PM sensor 17 is provided on the downstream side of the filter 5. Therefore, PM that has passed through the filter 5 adheres to the PM sensor 17 without being collected by the filter 5. Therefore, the PM accumulation amount in the PM sensor 17 is an amount corresponding to the integrated value of the PM amount that has passed through the filter 5.
  • FIG. 4 is a time chart showing the transition of the detection value of the PM sensor 17 when the filter 5 is normal and when it is malfunctioning.
  • PM accumulates early on the PM sensor 17, so that the time point E at which the detection value starts increasing is earlier than that of the normal filter 5. For this reason, for example, if the detected value when the predetermined time F has elapsed since the start of the internal combustion engine 1 is equal to or greater than the threshold value, it can be determined that the filter 5 has failed.
  • the predetermined time F is a time when the detection value of the PM sensor 17 does not increase if the filter 5 is normal, and the detection value of the PM sensor 17 increases if the filter 5 is faulty. is there.
  • This predetermined time F is obtained by experiments or the like.
  • the threshold value is obtained in advance by experiments or the like as the lower limit value of the detection value of the PM sensor 17 when the filter 5 is out of order.
  • the PM sensor 17 is provided downstream of the filter 5 and upstream of the NOx catalyst 7.
  • the distance from the filter 5 to the PM sensor 17 is shortened.
  • PM that has passed through the cracked portion of the filter 5 reaches the periphery of the PM sensor 17 without being dispersed in the exhaust gas.
  • PM hardly adheres to the PM sensor 17, so PM may not be detected, and the accuracy of failure determination may be reduced.
  • the PM sensor 17 is provided downstream of the NOx catalyst 7, the distance from the filter 5 to the PM sensor 17 is long. For this reason, PM that has passed through the filter 5 is dispersed in the exhaust around the PM sensor 17. Therefore, PM can be detected regardless of the position where the filter 5 is broken.
  • the PM sensor 17 is provided on the downstream side of the injection valve 6, the reducing agent injected from the injection valve 6 may adhere to the PM sensor 17.
  • the reducing agent adhering to the PM sensor 17 is, for example, urea and intermediate products (biuret, cyanuric acid) from urea to ammonia. If the reducing agent adheres to the PM sensor 17 in this way, the detection value of the PM sensor 17 may change.
  • FIG. 5 is a time chart showing the transition between when the detection value of the PM sensor 17 is normal and when it is abnormal.
  • the abnormal detection value can be a detection value when the reducing agent adheres to the PM sensor 17.
  • the normal detection value increases with time. That is, the detected value increases in accordance with the amount of PM attached to the PM sensor 17. On the other hand, an abnormal detection value may decrease as well as increase in the detection value.
  • the intermediate product adheres to the PM sensor 17 and accumulates a predetermined amount or more, the detection value of the PM sensor 17 increases in the same manner as when PM is deposited.
  • biuret which is an intermediate product
  • cyanuric acid which is an intermediate product
  • the intermediate product is vaporized at a low temperature as compared with PM.
  • the intermediate product adhering to the PM sensor 17 is vaporized when the temperature of the exhaust gas from the internal combustion engine 1 is high. As a result, the amount of intermediate product deposited decreases, and the detection value of the PM sensor 17 decreases. This is a phenomenon that does not occur when only PM is deposited on the PM sensor 17.
  • the temperature of the NOx catalyst 7 or the temperature of the exhaust is low. That is, when the temperature of the NOx catalyst 7 or the exhaust gas is low, a reaction such as thermal decomposition of the reducing agent takes a long time, so that it passes through the NOx catalyst 7 before the reaction of the reducing agent is completed.
  • the flow rate of exhaust gas passing through the NOx catalyst 7 is large.
  • the flow rate of the exhaust gas passing through the NOx catalyst 7 may be high. That is, if the flow rate of the exhaust gas is large, the time during which the reducing agent contacts the NOx catalyst 7 is shortened, so that it passes through the NOx catalyst 7 before the reaction of the reducing agent is completed.
  • the amount of NH 3 adsorbed on the NOx catalyst 7 is large. Note that the NH 3 adsorption rate may be high. NH 3 adsorption rate, to the maximum adsorbable amount of NH 3 to NOx catalyst 7, which is the ratio of the amount of NH 3 adsorbed in the NOx catalyst 7. That is, as the amount of NH 3 adsorbed on the NOx catalyst 7 increases, the hydrolysis becomes difficult to proceed, so that the NOx catalyst 7 passes before the reaction of the reducing agent is completed.
  • the above (1) and (2) are phenomena that occur when the reaction time is insufficient, and (3) is a phenomenon that occurs when the amount of NH 3 adsorbed is large. The following can be considered as measures against these (1), (2), and (3).
  • the flow rate or the exhaust of the exhaust gas passing through the NOx catalyst 7 flow rate, temperature or the exhaust temperature of the NOx catalyst 7, the adsorption amount of adsorption rate or NH 3 in NH 3 in the NOx catalyst 7 Based on at least one, the amount of reducing agent reaching the PM sensor 17 is calculated.
  • the amount of reducing agent that reaches the PM sensor 17 is equal to or greater than the threshold value, the supply of the reducing agent is prohibited. That is, the reducing agent is supplied only when the amount of reducing agent reaching the PM sensor 17 is less than the threshold value.
  • This threshold value can be obtained in advance by experiments or the like as a value when the influence on the detection value of the PM sensor 17 exceeds the allowable range.
  • the ECU 10 that prohibits the supply of the reducing agent corresponds to the weight reduction unit in the present invention.
  • FIG. 6 is a flowchart showing a flow for prohibiting the supply of the reducing agent according to the present embodiment. This routine is executed every predetermined time by the ECU 10.
  • step S101 it is determined whether or not a precondition for supplying the reducing agent is satisfied. In this step, it is determined whether or not the reducing agent can be supplied.
  • step S101 when various sensors are normal, it is determined that the precondition for supplying the reducing agent is satisfied. Whether or not various sensors are normal can be determined by a known technique. Further, for example, when the operation state of the internal combustion engine 1 is an operation state suitable for the supply of the reducing agent, it is determined that the precondition for supplying the reducing agent is satisfied. If an affirmative determination is made in step S101, the process proceeds to step S102, and if a negative determination is made, this routine is terminated.
  • the first coefficient K1 is calculated based on the flow rate of the exhaust gas passing through the NOx catalyst 7.
  • the first coefficient K1 is a value indicating the ratio of the amount of reducing agent that passes through the NOx catalyst 7 due to the large flow rate of exhaust gas with respect to the amount of reducing agent flowing into the NOx catalyst 7.
  • the first coefficient K1 may be calculated based on the flow rate of the exhaust gas that passes through the NOx catalyst 7, instead of the flow rate of the exhaust gas that passes through the NOx catalyst 7. Further, instead of the flow rate of the exhaust gas passing through the NOx catalyst 7, the flow rate of the exhaust gas flowing through the exhaust passage 3 or the flow velocity of the exhaust gas may be used.
  • the flow rate or flow velocity of the exhaust can be calculated based on the intake air amount detected by the air flow meter 11.
  • FIG. 7 is a diagram showing the relationship between the flow rate of the exhaust gas passing through the NOx catalyst 7 and the first coefficient K1. Note that the same relationship applies to the flow rate of exhaust instead of the flow rate of exhaust.
  • the reducing agent does not pass through the NOx catalyst 7 until the flow rate of the exhaust gas reaches, for example, 50 g / s, and the first coefficient K1 during this period is a constant value.
  • the first coefficient K1 increases as the exhaust flow rate increases. That is, the greater the exhaust gas flow rate, the easier the reducing agent passes through the NOx catalyst 7. For this reason, as the flow rate of the exhaust gas increases, the amount of reducing agent passing through the NOx catalyst 7 increases, so the first coefficient K1 increases. This relationship is obtained in advance by experiments or the like and stored in the ECU 10.
  • the second coefficient K2 is calculated based on the temperature of the NOx catalyst 7.
  • the second coefficient K2 is a value indicating the ratio of the amount of reducing agent passing through the NOx catalyst 7 due to the low temperature of the NOx catalyst 7 with respect to the amount of reducing agent flowing into the NOx catalyst 7.
  • the second coefficient K2 may be calculated based on the temperature of the exhaust instead of the temperature of the NOx catalyst 7.
  • the exhaust gas temperature may be the exhaust gas temperature downstream of the NOx catalyst 7 or the exhaust gas temperature passing through the NOx catalyst 7.
  • the temperature of the NOx catalyst 7 may be a temperature detected by the third exhaust temperature sensor 14.
  • a sensor for detecting the temperature of the NOx catalyst 7 may be provided to directly detect the temperature of the NOx catalyst 7.
  • FIG. 8 is a graph showing the relationship between the temperature of the NOx catalyst 7 and the second coefficient K2. It should be noted that the same relationship applies to the exhaust gas temperature instead of the NOx catalyst 7 temperature.
  • the temperature of the NOx catalyst 7 is, for example, 220 ° C. or higher, the reaction of the reducing agent is promoted because the temperature of the NOx catalyst 7 is sufficiently high. For this reason, it is assumed that the reducing agent does not pass through the NOx catalyst 7 at 220 ° C. or higher, and the second coefficient K2 during this period is a constant value.
  • the temperature of the NOx catalyst 7 is, for example, less than 220 ° C., the second coefficient K2 increases as the temperature of the NOx catalyst 7 decreases.
  • step S104 the third coefficient K3 is calculated based on the adsorption rate of NH 3 on the NOx catalyst 7.
  • This third coefficient K3 indicates the ratio of the amount of reducing agent passing through the NOx catalyst 7 due to the high adsorption rate of NH 3 in the NOx catalyst 7 with respect to the amount of reducing agent flowing into the NOx catalyst 7. Value.
  • Adsorption rate of NH 3 in the NOx catalyst 7, the NH 3 amount adsorbed on the NOx catalyst 7, which is a value NOx catalyst 7 is divided by maximum adsorbable amount of NH 3.
  • the amount of NH 3 adsorbed on the NOx catalyst 7 can be determined based on, for example, the supply amount of the reducing agent, the temperature of the NOx catalyst 7, the flow rate of the exhaust gas, and the like. Further, the amount of NH 3 that can be adsorbed to the maximum by the NOx catalyst 7 varies depending on, for example, the temperature of the NOx catalyst 7 and the degree of deterioration of the NOx catalyst 7. These relationships can be obtained in advance by experiments or the like. The adsorption rate of NH 3 in the NOx catalyst 7 can also be obtained by a known technique.
  • FIG. 9 is a diagram showing the relationship between the adsorption rate of NH 3 in the NOx catalyst 7 and the third coefficient K3. Incidentally, also in the same relation as the amount of adsorption of NH 3 in place of the adsorption rate of NH 3. It is assumed that the reducing agent does not pass through the NOx catalyst 7 until the adsorption rate of NH 3 on the NOx catalyst 7 becomes, for example, 0.8, and the third coefficient K3 during this period is a constant value. When the adsorption rate of NH 3 in the NOx catalyst 7 becomes 0.8 or more, for example, the third coefficient K3 increases as the adsorption rate increases. That is, the higher the adsorption rate, the easier the reducing agent passes through the NOx catalyst 7.
  • the higher the adsorption rate the greater the amount of reducing agent that passes through the NOx catalyst 7, and the third coefficient K3 increases.
  • This relationship is obtained in advance by experiments or the like and stored in the ECU 10. Further, the relationship between the adsorption amount of NH 3 in the NOx catalyst 7 and the third coefficient K3 may be obtained by experiments or the like and stored in the ECU 10.
  • a pass-through coefficient RM is calculated.
  • the pass-through coefficient RM is a value obtained by multiplying the first coefficient K1 by the second coefficient K2 and the third coefficient K3. That is, the pass-through coefficient RM is a value indicating the ratio of the amount of reducing agent passing through the NOx catalyst 7 to the amount of reducing agent flowing into the NOx catalyst 7.
  • the estimated generation amount QM is calculated by multiplying the supply amount QU of the reducing agent by the passage coefficient RM calculated in step S105.
  • the estimated generation amount QM is an estimated value of the amount of reducing agent that passes through the NOx catalyst 7.
  • a command value calculated by the ECU 10 can be used as the supply amount QU of the reducing agent.
  • the supply amount QU of the reducing agent is set to a value corresponding to the amount of NOx in the exhaust gas, for example.
  • the amount of NOx in the exhaust can be estimated based on the operating state of the internal combustion engine 1.
  • step S107 it is determined whether or not the estimated generation amount QM is equal to or greater than the threshold value QP.
  • This threshold value QP is the amount of reducing agent that passes through the NOx catalyst 7 and is the amount of reducing agent when the influence on the detection value of the PM sensor 17 exceeds the allowable range. That is, when the estimated generation amount QM is equal to or greater than the threshold value QP, the failure determination accuracy of the filter 5 is lowered due to the influence of the reducing agent attached to the PM sensor 17.
  • step S107 If an affirmative determination is made in step S107, the process proceeds to step S108, whereas if a negative determination is made, the process proceeds to step S109.
  • step S108 supply of the reducing agent is prohibited. That is, when the reducing agent is supplied, the detection value of the PM sensor 17 is changed by the reducing agent that passes through the NOx catalyst 7, and therefore the supply of the reducing agent is prohibited.
  • step S109 supply of the reducing agent is permitted. That is, since there is almost no reducing agent passing through the NOx catalyst 7, the detection value of the PM sensor is not changed by the reducing agent.
  • the pass-through coefficient RM is calculated using all of the first coefficient K1, the second coefficient K2, and the third coefficient K3. However, any one value may be used as the pass-through coefficient RM. Good. Alternatively, the passing coefficient RM may be obtained by multiplying any two values.
  • step S107 it is determined whether or not the amount of reducing agent passing through the NOx catalyst 7 is equal to or greater than a threshold value. Similarly, in step S107, for example, the flow rate or the exhaust flow rate of the exhaust gas passing through the NOx catalyst 7.
  • the temperature of the temperature or the exhaust of NOx catalyst 7 is below the threshold, the adsorption rate or NH of NH 3 in the NOx catalyst 7 It may be determined whether the adsorption amount 3 corresponds to at least one of the threshold values or more.
  • These threshold values are obtained in advance by experiments or the like as values when the influence on the detection value of the PM sensor 17 exceeds the allowable range.
  • the supply of the reducing agent can be prohibited when there is a possibility that the accuracy of the detection value of the PM sensor 17 is lowered by the reducing agent passing through the NOx catalyst 7.
  • the detection value of PM sensor 17 changes with a reducing agent, it can suppress that the precision of the failure determination of the filter 5 falls.
  • the supply of the reducing agent is prohibited when the estimated generation amount QM is equal to or greater than the threshold value. This can be said that the supply of the reducing agent is prohibited when the amount of the reducing agent passing through the NOx catalyst 7 exceeds the allowable range. In contrast, in this embodiment, the supply of the reducing agent is prohibited when the reducing agent passes through the NOx catalyst 7 regardless of the amount of the reducing agent that passes through the NOx catalyst 7.
  • the flow rate or the exhaust flow rate of the exhaust gas passing through the NOx catalyst 7 is greater than or equal to the threshold, the temperature of the temperature or the exhaust of NOx catalyst 7 is equal to or smaller than the threshold, the amount of adsorption of the adsorption rate or NH 3 in NH 3 in the NOx catalyst 7 is greater than or equal to the threshold
  • the supply of the reducing agent is prohibited when at least one of the above applies.
  • These threshold values are set as values at which the reducing agent passes through the NOx catalyst 7. Since other devices are the same as those in the first embodiment, the description thereof is omitted.
  • FIG. 10 is a flowchart showing a flow for prohibiting the supply of the reducing agent according to the present embodiment. This routine is executed every predetermined time by the ECU 10. In addition, about the step in which the same process as the flow shown in FIG. 6 is made, the same code
  • step S201 it is determined whether or not the flow rate of the exhaust gas passing through the NOx catalyst 7 is at least one of a threshold value, the temperature of the NOx catalyst 7 is not more than the threshold value, and the NH 3 adsorption rate on the NOx catalyst 7 is not less than the threshold value.
  • the These threshold values are obtained in advance by experiments or the like as values at which the reducing agent passes through the NOx catalyst 7.
  • the flow rate of the exhaust gas may be a flow rate of the exhaust gas.
  • the temperature of the NOx catalyst 7 may be the exhaust temperature.
  • the adsorption rate of NH 3 in the NOx catalyst 7 may be the adsorption amount of NH 3 in the NOx catalyst 7.
  • step S201 it may be determined whether or not the reducing agent passes through the NOx catalyst 7.
  • step S201 the first coefficient K1, the second coefficient K2, and the third coefficient K3 are calculated in the same manner as in the flow shown in FIG. 6, and it is determined whether or not any of these values is greater than or equal to the threshold value. May be. Moreover, you may determine whether the value which multiplied at least 2 among the 1st coefficient K1, the 2nd coefficient K2, and the 3rd coefficient K3 is more than a threshold value. Further, it may be determined whether or not the passing-through coefficient RM calculated in step S105 is equal to or greater than a threshold value. These threshold values are obtained in advance by experiments or the like as values at which the reducing agent passes through the NOx catalyst 7.
  • step S201 If an affirmative determination is made in step S201, the process proceeds to step S108, whereas if a negative determination is made, the process proceeds to step S109.
  • the ECU 10 that prohibits the supply of the reducing agent corresponds to the weight reduction unit in the present invention.
  • the supply of the reducing agent can be prohibited when there is a possibility that the accuracy of the detection value of the PM sensor 17 is lowered by the reducing agent that has passed through the NOx catalyst 7.
  • the detection value of PM sensor 17 changes with a reducing agent, it can suppress that the precision of the failure determination of the filter 5 falls.
  • the reducing agent is supplied so that the amount of reducing agent reaching the PM sensor 17 is less than the threshold value.
  • This threshold is the amount of reducing agent when the influence on the detection value of the PM sensor 17 exceeds the allowable range. That is, in this embodiment, the reducing agent is supplied so that the influence on the detection value of the PM sensor 17 does not exceed the allowable range.
  • a reducing agent may be supplied so that the reducing agent does not pass through the NOx catalyst 7. Since other devices are the same as those of the first embodiment, the description thereof is omitted.
  • the supply amount of the reducing agent is decreased as the flow rate of the exhaust gas passing through the NOx catalyst 7 is increased or the flow rate of the exhaust gas is increased. Further, the lower the temperature of the NOx catalyst 7 or the temperature of the exhaust, the smaller the amount of reducing agent supplied. Further, the higher the NH 3 adsorption rate in the NOx catalyst 7 or the larger the NH 3 adsorption amount, the smaller the reducing agent supply amount.
  • the ECU 10 that reduces the supply amount of the reducing agent corresponds to the weight reduction unit in the present invention.
  • FIG. 11 is a flowchart showing a control flow of the supply amount of the reducing agent according to the present embodiment. This routine is executed by the ECU 10 every predetermined time. In addition, about the step in which the same process as the flow shown in FIG. 6 is made, the same code
  • step S107 If an affirmative determination is made in step S107, the process proceeds to step S301, and in step S301, the pass-through flag is turned ON.
  • the pass-through flag is a flag that is turned ON when the estimated generation amount QM is larger than the threshold value QP. Note that the initial value of the pass-through flag is OFF. Further, when the reducing agent passes through the NOx catalyst 7, the passing flag may be turned ON. Note that the pass-through flag is used in an embodiment described later, and therefore does not need to be set in the present embodiment.
  • a passing-through amount QS is calculated.
  • the passing-through amount QS is a value obtained by subtracting the threshold value QP used in step S107 from the estimated generation amount QM. That is, the amount of reducing agent that has passed through the NOx catalyst 7 and has exceeded the allowable range is calculated as the passing amount QS. Note that the pass-through amount QS is a value used in an embodiment described later, and thus does not need to be calculated in this embodiment.
  • a correction coefficient KQ is calculated.
  • the correction coefficient KQ is a coefficient for correcting the supply amount QU of the reducing agent, and is a coefficient for correcting the reducing agent that reaches the PM sensor 17 to be within an allowable range.
  • the correction coefficient KQ is a value obtained by dividing the threshold QP by the estimated generation amount QM. This correction coefficient KQ is set so that the amount of reducing agent passing through the NOx catalyst 7 decreases to the threshold value QP.
  • step S304 the final reducing agent supply amount QU is calculated by multiplying the reducing agent supply amount QU by the correction coefficient KQ. That is, the new supply amount QU of the reducing agent calculated in step S304 is the amount of reducing agent actually supplied.
  • step S107 If a negative determination is made in step S107, the process proceeds to step S305, and 1 is substituted for the correction coefficient KQ. That is, the supply amount QU of the reducing agent is not changed.
  • the reducing agent can be supplied while suppressing the amount of the reducing agent passing through the NOx catalyst 7 within an allowable range, it is possible to suppress a decrease in the NOx purification rate. Moreover, since it can suppress that the detected value of PM sensor 17 changes with a reducing agent, it can suppress that the precision of the failure determination of the filter 5 falls.
  • an upper limit value of the reducing agent supply amount is set according to the flow rate of exhaust gas passing through the NOx catalyst 7 or the flow rate of exhaust gas. Since other devices are the same as those in the first embodiment, the description thereof is omitted.
  • the supply amount of the reducing agent is corrected based on the estimated generation amount QM, but in this example, the estimated generation amount QM is not calculated.
  • the upper limit value of the supply amount is set without correcting the supply amount of the reducing agent. For example, even if the amount of reducing agent required is larger than the upper limit value, the actually supplied reducing agent is set to the upper limit value. That is, the supply amount of the reducing agent is reduced.
  • the upper limit value of the supply amount of the reducing agent is an upper limit value of the reducing agent amount that has an effect on the detection value of the PM sensor 17 within an allowable range.
  • the relationship between the upper limit of the amount of reducing agent and the flow rate of exhaust gas or the flow rate of exhaust gas is obtained in advance through experiments or the like and stored in the ECU 10.
  • the ECU 10 that reduces the supply amount of the reducing agent corresponds to the weight reduction unit in the present invention.
  • FIG. 12 is a flowchart showing a control flow of the supply amount of the reducing agent according to the present embodiment. This routine is executed by the ECU 10 every predetermined time. In addition, about the step in which the same process as the flow shown in FIG. 6 is made, the same code
  • step S101 When an affirmative determination is made in step S101, the process proceeds to step S401.
  • step S401 an upper limit value of the reducing agent supply amount is set.
  • the upper limit value of the supply amount of the reducing agent is obtained based on the exhaust gas flow rate or the exhaust gas flow rate. For example, the higher the exhaust flow rate or the higher the exhaust flow rate, the smaller the upper limit value. This relationship may be obtained in advance through experiments or the like and mapped.
  • step S402 the supply amount QU of the reducing agent is calculated.
  • a command value calculated by the ECU 10 can be used as the supply amount QU of the reducing agent.
  • the supply amount QU of the reducing agent is set to a value corresponding to the amount of NOx in the exhaust gas, for example.
  • step S403 it is determined whether or not the supply amount QU of the reducing agent calculated in step S402 is equal to or less than the upper limit value set in step S401. If an affirmative determination is made in step S403, the process proceeds to step S404. On the other hand, if a negative determination is made, the process proceeds to step S405.
  • step S404 the reducing agent supply amount QU calculated in step S402 is set to the final reducing agent supply amount QU.
  • step S405 the upper limit value set in step S401 is set to the final reducing agent supply amount QU.
  • the reducing agent can be prevented from adhering to the PM sensor 17. Thereby, the precision of the failure determination of the filter 5 can be improved.
  • the upper limit value of the supply amount of the reducing agent is set based on the flow rate of the exhaust gas passing through the NOx catalyst 7 or the flow rate of the exhaust gas.
  • the temperature of the NOx catalyst 7 Alternatively, the upper limit value of the reducing agent supply amount may be calculated based on the exhaust temperature, the adsorption rate of NH 3 on the NOx catalyst 7, and the adsorption amount of NH 3 on the NOx catalyst 7.
  • the relationship between the temperature of the NOx catalyst 7 or the temperature of the exhaust, the adsorption rate of NH 3 on the NOx catalyst 7, the adsorption amount of NH 3 on the NOx catalyst 7 and the upper limit value of the supply amount of the reducing agent is determined in advance by experiments or the like. It asks and memorizes it in ECU10.
  • the reducing agent is adsorbed to the NOx catalyst 7 in advance before the operating state in which the reducing agent reaches the PM sensor 17 is reached. Since other devices are the same as those in the first embodiment, the description thereof is omitted.
  • the supply amount of the reducing agent is reduced.
  • the NOx catalyst 7 is set before the operating state is reached.
  • the reducing agent is adsorbed on the surface. For example, assuming that the intake air amount has increased to the maximum from the current value, the temperature of the NOx catalyst 7 increases from the current value to a temperature at which the reducing agent does not pass through the NOx catalyst 7 until the NOx catalyst 7 rises.
  • An amount of reducing agent corresponding to the amount of NOx estimated to flow into the catalyst 7 is supplied in advance. If the intake air amount increases, the exhaust gas flow rate or the exhaust gas flow rate increases, so that the supply amount of the reducing agent is reduced. However, the exhaust air temperature increases as the intake air amount increases.
  • the temperature of the NOx catalyst 7 rises, so that it becomes difficult for the reducing agent to pass through the NOx catalyst 7. That is, when the temperature of the NOx catalyst 7 becomes sufficiently high, an amount of reducing agent corresponding to the amount of NOx can be supplied.
  • the maximum value of the temperature at which the reducing agent may reach the PM sensor 17 is calculated, and the reducing agent to be supplied during the time required to increase from the current temperature to the maximum value is adsorbed to the NOx catalyst 7 in advance. Let me.
  • FIG. 13 is a flowchart showing a control flow of the supply amount of the reducing agent according to the present embodiment. This routine is executed by the ECU 10 every predetermined time. In addition, about the step in which the same process as the flow shown in FIG. 6 is made, the same code
  • step S101 If an affirmative determination is made in step S101, the process proceeds to step S501.
  • step S501 the maximum temperature TM of the NOx catalyst 7 at which the reducing agent may reach the PM sensor 17 is calculated.
  • the maximum temperature TM may be changed according to the intake air amount.
  • the maximum temperature TM is obtained in advance through experiments or the like, mapped, and stored in the ECU 10.
  • a temperature increase amount ⁇ TSCR which is a value obtained by subtracting the current temperature TP of the NOx catalyst 7 from the maximum temperature TM, is calculated.
  • This temperature increase amount ⁇ TSCR is a temperature that must increase before the reducing agent reaches the PM sensor 17 when the operating state of the internal combustion engine 1 changes.
  • the NH 3 increase amount URQ is calculated.
  • the NH 3 increase amount URQ is the amount of reducing agent added to the amount of reducing agent required to reduce NOx in the exhaust gas. That is, it is the supply amount of the reducing agent that is increased more than usual.
  • the NH 3 increase amount URQ is correlated with the temperature increase amount ⁇ TSCR calculated in step S502, and is obtained from the map shown in FIG.
  • FIG. 14 is a diagram showing the relationship between the temperature increase amount ⁇ TSCR and the NH 3 increase amount URQ.
  • the NH 3 increase amount URQ can be a reducing agent amount that is insufficient while reducing the supply amount of the reducing agent.
  • the relationship shown in FIG. 14 is obtained in advance through experiments or the like and is mapped and stored in the ECU 10.
  • step S504 the current NH 3 increase amount UEX is read.
  • step S505 it is determined whether the NH 3 increase amount URQ calculated in step S503 is larger than the current NH 3 increase amount UEX read in step S504. In this step, it is determined whether or not it is necessary to increase the reducing agent from the current time. That is, if the NH 3 increase amount UEX at the current time is sufficiently large, there is no need to newly increase the amount, and there is a possibility that the reducing agent is consumed unnecessarily, so the determination of this step is made. If an affirmative determination is made in step S505, the process proceeds to step S506. On the other hand, if a negative determination is made, it is not necessary to increase the reducing agent, and thus this routine is terminated.
  • step S506 the reducing agent is increased by the increased amount UAD.
  • This increased amount UAD is set so that the reducing agent does not increase rapidly.
  • a part of the reducing agent may not be adsorbed on the NOx catalyst 7 and may flow out of the NOx catalyst 7, so that the increasing amount is reduced so as to suppress the outflow of the reducing agent.
  • UAD is determined. If the increased amount UAD is smaller than the NH 3 increased amount URQ, the increased amount UAD is increased every time this routine is executed a plurality of times, and finally reaches the NH 3 increased amount URQ. .
  • This increase amount UAD is a specified value, and an optimum value is obtained in advance through experiments or the like and stored in the ECU 10.
  • the value obtained by adding the amount of increase UAD the NH 3 amount of increase UEX at the present time is the NH 3 amount of increase UEX newly at this time.
  • the ECU 10 that processes the flow shown in FIG. 13 corresponds to the increasing unit in the present invention.
  • Example 5 a case where the increase of the reducing agent described in Example 5 is not in time, or a case where the reducing agent is supplied every specified period will be described. Since other devices are the same as those in the first embodiment, the description thereof is omitted.
  • the reducing agent is supplied when the integrated value of the amount of NOx flowing into the NOx catalyst 7 reaches a threshold value or every specified period.
  • a specified amount of reducing agent corresponding to the integrated value of the NOx amount is supplied.
  • the reducing agent is supplied every specified period, the reducing agent is supplied according to the integrated value of the amount of NOx flowing into the NOx catalyst 7 during the specified period.
  • the reducing agent when there is a possibility that the reducing agent may reach the PM sensor 17, the reducing agent is not immediately supplied even when it is time to supply the reducing agent. That is, when the supply amount of the reducing agent is smaller than usual, the reducing agent is not supplied even when it is time to supply the reducing agent. Then, the reducing agent is supplied after there is no possibility that the reducing agent reaches the PM sensor 17. That is, the supply of the reducing agent is postponed. At this time, the supply amount of the reducing agent is increased by an amount capable of purifying NOx flowing into the NOx catalyst 7 during the period in which the supply of the reducing agent is postponed.
  • the amount of reducing agent to be supplied is determined according to the amount of NOx that has flowed into the NOx catalyst 7 up to the present time since the previous supply of reducing agent.
  • an amount of the reducing agent may be supplied in accordance with the reduction amount of the reducing agent adsorbed on the NOx catalyst 7.
  • FIG. 15 is a time chart showing the transition of the integrated value of the general supply flag and the amount of NOx flowing into the NOx catalyst 7.
  • FIG. 15 may be a diagram when the supply amount of the reducing agent is not reduced.
  • FIG. 15 may be a diagram showing a general supply timing of the reducing agent. When the supply flag is turned ON, the reducing agent is supplied. When the supply flag is OFF, the amount of NOx flowing into the NOx catalyst 7 is integrated.
  • the supply flag is turned ON for each specified period.
  • This specified period is set in advance as a period during which the supply of the reducing agent is necessary, and is, for example, several seconds to several tens of seconds.
  • the supply flag is turned on, the supply amount of the reducing agent is determined according to the integrated value of the NOx amount at that time. That is, since the reducing agent adsorbed on the NOx catalyst 7 is consumed by the NOx that has already flowed into the NOx catalyst 7, the reducing agent is supplied so as to supplement the consumed reducing agent.
  • the supply flag may be turned on to supply the reducing agent.
  • FIG. 16 is a time chart showing the transition of the supply flag and the integrated value of the amount of NOx flowing into the NOx catalyst 7 when the reducing agent supply control according to this embodiment is performed.
  • the passage flag in FIG. 16 When the passage flag in FIG. 16 is ON, the reducing agent may pass through the NOx catalyst 7.
  • the passage flag is turned ON when the intake air amount is greater than or equal to the threshold and the temperature of the NOx catalyst 7 is less than the threshold. While this passage flag is ON, the reducing agent is not supplied. That is, the supply of the reducing agent is postponed without turning on the supply flag. While the supply of the reducing agent is postponed, the NOx amount is accumulated, and when the passage flag is turned off, the supply flag is turned on, and the amount corresponding to the accumulated value of the NOx amount at this time Of reducing agent is supplied.
  • FIG. 17 is a flowchart showing a control flow of the supply amount of the reducing agent according to the present embodiment. This routine is executed by the ECU 10 every predetermined time. In addition, about the step in which the same process as the flow shown in FIG. 6 is made, the same code
  • step S101 If an affirmative determination is made in step S101, the process proceeds to step S601.
  • step S601 it is determined whether it is a supply time of the reducing agent. Since the supply of the reducing agent is performed every predetermined period set in advance, it is determined that it is the supply timing of the reducing agent when the predetermined period has elapsed since the previous supply of the reducing agent. If an affirmative determination is made in step S601, the process proceeds to step S602. On the other hand, if a negative determination is made, the process proceeds to step S606, and the amount of NOx flowing into the NOx catalyst 7 is integrated. And after step S606 is performed, it returns to step S601. That is, the amount of NOx flowing into the NOx catalyst 7 is integrated until an affirmative determination is made in step S601.
  • step S602 it is determined whether or not the passage flag is ON. That is, it is determined whether or not the reducing agent may reach the PM sensor 17. For example, the flow rate of the exhaust gas passing through the NOx catalyst 7 or the flow rate of the exhaust gas is at least a threshold value, the temperature of the NOx catalyst 7 or the exhaust gas temperature is at or below the threshold value, When it corresponds to one, the passage flag is turned ON. This may be the same as the condition for prohibiting the supply of the reducing agent described in the second embodiment. If a positive determination is made in step S602, the process proceeds to step S607.
  • step S607 the amount of NOx flowing into the NOx catalyst 7 is integrated. And after step S607 is performed, it returns to step S602. That is, the amount of NOx flowing into the NOx catalyst 7 is integrated until a negative determination is made in step S602.
  • step S603 the supply amount of the reducing agent is calculated.
  • the supply amount of the reducing agent is calculated based on a value obtained by adding the integrated value of the NOx amount calculated in step S606 and the integrated value of the NOx amount calculated in step S607.
  • the relationship between the integrated value of the NOx amount and the reducing agent supply amount is obtained in advance through experiments or the like and stored in the ECU 10.
  • step S604 the supply flag is turned ON.
  • step S605 the reducing agent is supplied according to the supply amount of the reducing agent calculated in step S603.
  • the ECU 10 that processes the flow shown in FIG. 17 corresponds to the postponing section in the present invention.
  • the reducing agent when there is a possibility that the reducing agent may reach the PM sensor 17, it is possible to suppress the change in the detection value of the PM sensor 17 due to the influence of the reducing agent by prohibiting the supply of the reducing agent. . Thereby, it can suppress that the precision of the failure determination of the filter 5 falls. Further, when supplying the reducing agent after prohibiting the supply of the reducing agent, the amount of the reducing agent adsorbed on the NOx catalyst 7 can be quickly recovered by increasing the amount of the reducing agent supplied. Thereby, it can suppress that a NOx purification rate falls.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 PMセンサの検出精度の低下により、フィルタの故障判定の精度が低下することを抑制する。このため、フィルタと、フィルタよりも下流側に選択還元型NOx触媒と、選択還元型NOx触媒へ還元剤を供給する供給装置と、選択還元型NOx触媒よりも下流側で排気中の粒子状物質の量を検出するPMセンサと、選択還元型NOx触媒の温度が閾値以下の場合、排気の温度が閾値以下の場合、排気の流量が閾値以上の場合、前記選択還元型NOx触媒における還元剤の吸着量が閾値以上の場合の少なくとも1つに該当する場合には、何れにも該当しない場合よりも、還元剤の供給量を少なくする減量部と、を備える。

Description

内燃機関の排気浄化装置
 本発明は、内燃機関の排気浄化装置に関する。
 選択還元型NOx触媒(以下、単に「NOx触媒」ともいう。)に対して尿素を供給する排気浄化装置において、尿素からアンモニアへの反応途中に生成される中間生成物の排気通路内における蓄積量が上限量に達すると、尿素水の供給を禁止する技術が知られている(例えば、特許文献1参照。)。この技術によれば、中間生成物の排気通路内における蓄積量が上限量に達するまでは、還元剤をNOx触媒に供給することができる。
 ところで、排気通路には、粒子状物質(以下、単に「PM」ともいう。)を捕集するためのフィルタを備えることがある。さらに、このフィルタの故障を判定するために、排気中のPM量を検出するPMセンサを備えることがある。このPMセンサの電極またはカバーに前記中間生成物が付着すると、PM量を正確に検出することが困難となる虞がある。そうすると、フィルタの故障判定の精度が低くなる虞がある。
特開2009-085172号公報
 本発明は、上記したような問題点に鑑みてなされたものであり、その目的は、PMセンサの検出精度の低下により、フィルタの故障判定の精度が低下することを抑制することにある。
 上記課題を達成するために本発明に係る内燃機関の排気浄化装置は、
 内燃機関の排気通路に設けられ排気中の粒子状物質を捕集するフィルタと、
 前記フィルタよりも下流側に設けられ供給される還元剤によりNOxを還元する選択還元型NOx触媒と、
 前記選択還元型NOx触媒よりも上流側から該選択還元型NOx触媒へ還元剤を供給する供給装置と、
 前記選択還元型NOx触媒よりも下流側で排気中の粒子状物質の量を検出するPMセンサと、
 前記選択還元型NOx触媒の温度が閾値以下の場合、排気の温度が閾値以下の場合、排気の流量が閾値以上の場合、前記選択還元型NOx触媒における還元剤の吸着量が閾値以上の場合の少なくとも1つに該当する場合には、何れにも該当しない場合よりも、還元剤の供給量を少なくする減量部と、
 を備える。
 ここで、供給装置から還元剤を供給したときに、排気や選択還元型NOx触媒の状態によっては、還元剤の一部が選択還元型NOx触媒を通り抜けてPMセンサに付着することがある。PMセンサに還元剤が付着すると、該PMセンサの出力値が変化してしまい、PMを正確に検出することが困難となる。これに対し減量部は、選択還元型NOx触媒を還元剤が通り抜ける状態の場合には、通り抜けない状態の場合よりも、還元剤の供給量を少なくする。これにより、選択還元型NOx触媒を還元剤が通り抜けることを抑制できるため、PMセンサに還元剤が付着することを抑制できる。このため、フィルタの故障判定の精度が低下することを抑制できる。
 そして、たとえば、選択還元型NOx触媒の温度が低い場合、または、排気の温度が低い場合、排気の流量が多い場合、選択還元型NOx触媒に吸着している還元剤の量が多い場合に、選択還元型NOx触媒を還元剤が通り抜ける状態となり得る。
 選択還元型NOx触媒の温度が低くなると、該選択還元型NOx触媒において還元剤が反応し難くなるため、該選択還元型NOx触媒を還元剤が通り抜けやすくなる。すなわち、選択還元型NOx触媒の温度と、選択還元型NOx触媒を通り抜ける還元剤の量と、には相関関係がある。また、選択還元型NOx触媒よりも上流側の排気の温度が低くなると、該選択還元型NOx触媒において還元剤が反応し難くなるため、該選択還元型NOx触媒を還元剤が通り抜けやすくなる。すなわち、排気の温度と、選択還元型NOx触媒を通り抜ける還元剤の量と、には相関関係がある。また、選択還元型NOx触媒を通過する排気の流量が多くなると、該選択還元型NOx触媒において還元剤の反応が終了する前に還元剤が該選択還元型NOx触媒を通り抜けやすくなる。すなわち、排気の流量と、選択還元型NOx触媒を通り抜ける還元剤の量と、には相関関係がある。また、選択還元型NOx触媒に吸着している還元剤量が多くなると、該選択還元型NOx触媒に還元剤が吸着し難くなるので、還元剤が該選択還元型NOx触媒を通り抜けやすくなる。すなわち、還元剤の吸着量と、選択還元型NOx触媒を通り抜ける還元剤の量と、には相関関係がある。
 このため、選択還元型NOx触媒の温度が閾値以下の場合、排気の温度が閾値以下の場合、排気の流量が閾値以上の場合、選択還元型NOx触媒における還元剤の吸着量が閾値以上の場合の少なくとも1つに該当する場合には、還元剤の供給量を少なくしている。そうすると、PMセンサに還元剤が付着することを抑制できるため、フィルタの故障判定の精度が低下することを抑制できる。
 なお、ここでいう選択還元型NOx触媒の温度における閾値は、選択還元型NOx触媒を還元剤が通り抜ける温度の上限値、または、PMセンサに還元剤が付着する温度の上限値とすることができる。また、PMセンサに付着する還元剤量が許容範囲内となる選択還元型NOx触媒の温度を閾値としてもよい。
 また、排気の温度における閾値は、選択還元型NOx触媒を還元剤が通り抜ける温度の上限値、または、PMセンサに還元剤が付着する温度の上限値とすることができる。また、PMセンサに付着する還元剤量が許容範囲内となる排気の温度を閾値としてもよい。
 また、排気の流量における閾値は、選択還元型NOx触媒を還元剤が通り抜ける流量の下限値、または、PMセンサに還元剤が付着する流量の下限値とすることができる。また、PMセンサに付着する還元剤量が許容範囲内となる流量を閾値としてもよい。なお、排気の流量に代えて排気の流速としてもよい。
 また、還元剤の吸着量における閾値は、選択還元型NOx触媒を還元剤が通り抜ける吸着量の下限値、または、PMセンサに還元剤が付着する吸着量の下限値とすることができる。また、PMセンサに付着する還元剤量が許容範囲内となる吸着量を閾値としてもよい。なお、選択還元型NOx触媒における還元剤の吸着量に代えて、選択還元型NOx触媒における還元剤の吸着率としてもよい。この吸着率は、吸着している還元剤量を、最大限吸着可能な還元剤量で除算した値である。
 なお、還元剤には、供給装置から供給される物質、供給装置から供給される物質から最終的に生成される物質、供給装置から供給される物質から最終的に生成される物質に至るまでの中間生成物が含まれる。この何れかが選択還元型NOx触媒においてNOxと反応し、該NOxが還元される。
 また、還元剤の供給量を少なくすることには、還元剤の供給を行わないことも含むことができる。還元剤の供給を禁止するとしてもよい。還元剤の供給を行わないことにより、PMセンサに還元剤が付着することをより抑制できる。
 また、本発明においては、前記選択還元型NOx触媒を通り抜ける還元剤の量が、
 前記選択還元型NOx触媒の温度または排気の温度が低いほど多くなり、
 排気の流量が多いほど多くなり、
 前記選択還元型NOx触媒における還元剤の吸着量が多いほど多くなるものとして、
 前記減量部は、前記選択還元型NOx触媒を通り抜ける還元剤の量を、前記選択還元型NOx触媒の温度または排気の温度、前記排気の流量、前記選択還元型NOx触媒における還元剤の吸着量の少なくとも1つに基づいて算出し、該選択還元型NOx触媒を通り抜ける還元剤の量が閾値未満となるように還元剤の供給量を決定することができる。
 ここで、選択還元型NOx触媒の温度と、選択還元型NOx触媒を通り抜ける還元剤の量と、には相関関係があり、選択還元型NOx触媒の温度が低くなるほど、選択還元型NOx触媒を通り抜ける還元剤の量が多くなる。また、排気の温度と、選択還元型NOx触媒を通り抜ける還元剤の量と、には相関関係があり、排気の温度が低くなるほど、選択還元型NOx触媒を通り抜ける還元剤の量が多くなる。また、排気の流量と、選択還元型NOx触媒を通り抜ける還元剤の量と、には相関関係があり、排気の流量が多くなるほど、選択還元型NOx触媒を通り抜ける還元剤の量が多くなる。また、選択還元型NOx触媒における還元剤の吸着量と、選択還元型NOx触媒を通り抜ける還元剤の量と、には相関関係があり、吸着量が多くなるほど、選択還元型NOx触媒を通り抜ける還元剤の量が多くなる。これらの関係に基づけば、選択還元型NOx触媒を通り抜ける還元剤の量を求めることができる。
 選択還元型NOx触媒を通り抜ける還元剤の量の閾値は、選択還元型NOx触媒を通り抜ける還元剤量であって、PMセンサの検出値に対して与える影響が許容範囲を超えるときの還元剤量とすることができる。また、閾値は、選択還元型NOx触媒を通り抜ける還元剤量であって、PMセンサの検出値が変化する還元剤量の下限値としてもよい。すなわち、選択還元型NOx触媒を通り抜ける還元剤の量が閾値以上となると、PMセンサに付着する還元剤の影響によりフィルタの故障判定の精度が低くなる。これに対し、選択還元型NOx触媒を通り抜ける還元剤の量が閾値未満となるように還元剤を供給すれば、還元剤がPMセンサの検出値にほとんど影響を与えないため、フィルタの故障判定の精度が低くなることを抑制できる。
 また、本発明においては、前記選択還元型NOx触媒を通り抜ける還元剤の量が、
 前記選択還元型NOx触媒の温度または排気の温度が低いほど多くなり、
 排気の流量が多いほど多くなり、
 前記選択還元型NOx触媒における還元剤の吸着量が多いほど多くなるものとして、
 前記減量部は、前記選択還元型NOx触媒を通り抜ける還元剤の量を、前記選択還元型NOx触媒の温度または排気の温度、前記排気の流量、前記選択還元型NOx触媒における還元剤の吸着量の少なくとも1つに基づいて算出し、該選択還元型NOx触媒を通り抜ける還元剤の量が閾値以上の場合に還元剤の供給を禁止することができる。
 上述のように、選択還元型NOx触媒の温度と、選択還元型NOx触媒を通り抜ける還元剤の量と、には相関関係があり、選択還元型NOx触媒の温度が低くなるほど、選択還元型NOx触媒を通り抜ける還元剤の量が多くなる。また、排気の温度と、選択還元型NOx触媒を通り抜ける還元剤の量と、には相関関係があり、排気の温度が低くなるほど、選択還元型NOx触媒を通り抜ける還元剤の量が多くなる。また、排気の流量と、選択還元型NOx触媒を通り抜ける還元剤の量と、には相関関係があり、排気の流量が多くなるほど、選択還元型NOx触媒を通り抜ける還元剤の量が多くなる。また、選択還元型NOx触媒における還元剤の吸着量と、選択還元型NOx触媒を通り抜ける還元剤の量と、には相関関係があり、吸着量が多くなるほど、選択還元型NOx触媒を通り抜ける還元剤の量が多くなる。これらの関係に基づけば、選択還元型NOx触媒を通り抜ける還元剤の量を求めることができる。
 選択還元型NOx触媒を通り抜ける還元剤の量の閾値は、選択還元型NOx触媒を通り抜ける還元剤量であって、PMセンサの検出値に対して与える影響が許容範囲を超えるときの還元剤量とすることができる。また、閾値は、選択還元型NOx触媒を通り抜ける還元剤量であって、PMセンサの検出値が変化する還元剤量の下限値としてもよい。すなわち、選択還元型NOx触媒を通り抜ける還元剤の量が閾値以上となると、PMセンサに付着する還元剤の影響によりフィルタの故障判定の精度が低くなる。これに対し、選択還元型NOx触媒を通り抜ける還元剤の量が閾値以上の場合に、還元剤の供給を禁止すれば、フィルタの故障判定の精度が低くなることを抑制できる。
 また、本発明においては、前記選択還元型NOx触媒を還元剤が通り抜ける状態となって前記減量部により還元剤の供給量が少なくされたときにNOxを還元させる還元剤を、該選択還元型NOx触媒を還元剤が通り抜けない状態のときに予め供給しておく増量部を備えることができる。
 ここで、減量部により還元剤の供給量が少なくされている間は、選択還元型NOx触媒に流入するNOxにより、選択還元型NOx触媒に吸着しているNOx量が減少していく。この状態が長く続き、選択還元型NOx触媒に吸着していた還元剤を全て消費してしまうと、NOxの浄化ができなくなる虞がある。これに対し、増量部は、減量部により還元剤の供給量が少なくされる前に、予め、選択還元型NOx触媒に通常よりも多くの還元剤を吸着させておく。ここでいう通常とは、排気中のNOx量に応じた還元剤を供給する場合である。通常では、たとえば、選択還元型NOx触媒において消費された還元剤を補うように、還元剤の供給量が決定される。
 一方、増量部は、選択還元型NOx触媒において消費された還元剤の量よりも多くの還元剤を供給する。このときには、選択還元型NOx触媒に最大限吸着可能な還元剤の量を超えないようにする。このように、予め多くの還元剤を選択還元型NOx触媒に吸着させておくことで、減量部により還元剤の供給量が少なくされているときに、還元剤が不足することを抑制できる。これにより、NOxの浄化率が低下することを抑制できる。
 また、本発明においては、前記増量部は、前記選択還元型NOx触媒を還元剤が通り抜けない該選択還元型NOx触媒の温度と、現時点における前記選択還元型NOx触媒の温度と、の差に基づいて、供給する還元剤の量を決定することができる。
 上述のように、排気の流量が多い場合や選択還元型NOx触媒の温度が低い場合には、選択還元型NOx触媒を還元剤が通り抜けやすい。ここで、排気の流量が増加すると、排気の温度が上昇するため、選択還元型NOx触媒の温度が徐々に高くなる。このため、排気の流量が増加して選択還元型NOx触媒を還元剤が通り抜ける状態となっても、選択還元型NOx触媒の温度が高くなれば還元剤が通り抜けない状態となる。すなわち、現時点では選択還元型NOx触媒の温度が低いために還元剤が通り抜けるとしても、温度が上昇すれば還元剤が通り抜けなくなる。そして、選択還元型NOx触媒を還元剤が通り抜けない状態となれば、還元剤の供給量を少なくする必要はない。したがって、選択還元型NOx触媒を還元剤が通り抜けなくなる温度まで上昇する間の還元剤を補うように、増量部が予め選択還元型NOx触媒に還元剤を吸着させておけば、該還元剤が通り抜けなくなる温度まで上昇する間のNOxの浄化率が低下することを抑制できる。
 また、本発明においては、前記選択還元型NOx触媒を還元剤が通り抜ける状態となってから、通り抜けない状態となるまでの間に、還元剤を供給する時期となった場合には、該選択還元型NOx触媒を還元剤が通り抜けない状態となるまで還元剤の供給を延期し、該選択還元型NOx触媒を還元剤が通り抜けない状態となった後に供給する還元剤の量を、前回の還元剤の供給時から該選択還元型NOx触媒に流入したNOx量の積算値に基づいて決定する延期部を備えることができる。
 たとえば、増量部が予め還元剤を吸着させておくことができなかった場合、又は、還元剤の供給がある程度長い間隔で供給される場合には、減量部により還元剤の供給量が少なくされているときに還元剤が不足する虞がある。一般に、還元剤の供給は、選択還元型NOx触媒に流入するNOx量の積算値が規定値に達した場合、または、規定期間ごとに行われる。還元剤の供給を規定期間ごとに行う場合には、一般的には、規定期間内に選択還元型NOx触媒に流入したNOx量の積算値に基づいて還元剤の量が決定される。このように、選択還元型NOx触媒に流入するNOx量の積算値が規定値に達した場合、または、前回の還元剤の供給から規定期間が経過した場合に、還元剤を供給する時期となる。
 そして、減量部により還元剤の供給量が少なくされる期間に、還元剤を供給する時期となっても、このときには還元剤の供給を行わない。そして、選択還元型NOx触媒を還元剤が通り抜けない状態となってから還元剤を供給する。そして、還元剤を供給するときには、還元剤を供給する時期となったときのNOx量の積算値ではなく、実際に還元剤を供給するときのNOx量の積算値を用いて還元剤の供給量を決定する。すなわち、還元剤の供給を延期していた間に選択還元型NOx触媒に流入したNOx量に対応する還元剤を加えて供給する。これにより、選択還元型NOx触媒に吸着している還元剤の量を速やかに増加させることができるため、NOxの浄化率が低下することを抑制できる。
 本発明によれば、PMセンサの検出精度の低下により、フィルタの故障判定の精度が低下することを抑制できる。
実施例に係る内燃機関の排気浄化装置の概略構成を示す図である。 PMセンサの概略構成図である。 PMセンサの検出値の推移を示したタイムチャートである。 フィルタが正常な場合と故障している場合とのPMセンサの検出値の推移を示したタイムチャートである。 PMセンサの検出値が正常な場合と、異常な場合との推移を示したタイムチャートである。 実施例1に係る還元剤の供給を禁止するフローを示したフローチャートである。 NOx触媒を通過する排気の流量と、第一係数K1との関係を示した図である。 NOx触媒の温度と、第二係数K2との関係を示した図である。 NOx触媒におけるNHの吸着率と、第三係数K3との関係を示した図である。 実施例2に係る還元剤の供給を禁止するフローを示したフローチャートである。 実施例3に係る還元剤の供給量の制御フローを示したフローチャートである。 実施例4に係る還元剤の供給量の制御フローを示したフローチャートである。 実施例5に係る還元剤の供給量の制御フローを示したフローチャートである。 温度増加量ΔTSCRと、NH増加量URQと、の関係を示した図である。 一般的な供給フラグおよびNOx触媒に流入するNOx量の積算値の推移を示したタイムチャートである。 実施例6に係る還元剤の供給制御を行った場合の供給フラグおよびNOx触媒に流入するNOx量の積算値の推移を示したタイムチャートである。 実施例6に係る還元剤の供給量の制御フローを示したフローチャートである。
 以下、本発明に係る内燃機関の排気浄化装置の具体的な実施態様について図面に基づいて説明する。
 図1は、本実施例に係る内燃機関の排気浄化装置の概略構成を示す図である。図1に示す内燃機関1は、ディーゼル機関であるが、ガソリン機関であってもよい。
 内燃機関1には、吸気通路2及び排気通路3が接続されている。吸気通路2には、該吸気通路2を流通する吸気の量を検出するエアフローメータ11が設けられている。一方、排気通路3には、排気の流れ方向の上流側から順に、酸化触媒4、フィルタ5、噴射弁6、選択還元型NOx触媒7(以下、NOx触媒7という。)が設けられている。
 酸化触媒4は、酸化能を有する触媒であればよく、たとえば三元触媒であってもよい。酸化触媒4は、フィルタ5に担持されていてもよい。
 フィルタ5は、排気中のPMを捕集する。なお、フィルタ5には、触媒が担持されていてもよい。フィルタ5によってPMが捕集されることで、該フィルタ5にPMが徐々に堆積する。そして、フィルタ5の温度を強制的に上昇させる、所謂フィルタの再生処理を実行することで、該フィルタ5に堆積したPMを酸化させて除去することができる。たとえば、酸化触媒4にHCを供給することでフィルタ5の温度を上昇させることができる。また、酸化触媒4を備えずに、フィルタ5の温度を上昇させる他の装置を備えていてもよい。さらに、内燃機関1から高温のガスを排出させることでフィルタ5の温度を上昇させてもよい。
 噴射弁6は、還元剤を噴射する。還元剤には、例えば、尿素水等のアンモニア由来のものが用いられる。たとえば、噴射弁6から噴射された尿素水は、排気の熱で加水分解されアンモニア(NH)となり、その一部又は全部がNOx触媒7に吸着する。以下では、噴射弁6から還元剤として尿素水を噴射するものとする。なお、本実施例においては噴射弁6が、本発明における供給装置に相当する。
 NOx触媒7は、還元剤が存在するときに、排気中のNOxを還元する。例えば、NOx触媒7にアンモニア(NH)を予め吸着させておけば、NOx触媒7をNOxが通過するときにNOxをアンモニアにより還元させることができる。
 酸化触媒4よりも上流の排気通路3には、排気の温度を検出する第一排気温度センサ12が設けられている。酸化触媒4よりも下流で且つフィルタ5よりも上流の排気通路3には、排気の温度を検出する第二排気温度センサ13が設けられている。フィルタ5よりも下流で且つ噴射弁6よりも上流の排気通路3には、排気の温度を検出する第三排気温度センサ14及び排気中のNOx濃度を検出する第一NOxセンサ15が設けられている。NOx触媒7よりも下流の排気通路3には、排気中のNOx濃度を検出する第二NOxセンサ16及び排気中のPM量を検出するPMセンサ17が設けられている。これらセンサの全てが必須というわけではなく、必要に応じて設けることができる。
 以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU10が併設されている。このECU10は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1を制御する。
 ECU10には、上記センサの他、アクセルペダルの踏込量に応じた電気信号を出力し機関負荷を検出可能なアクセル開度センサ18、及び機関回転数を検出するクランクポジションセンサ19が電気配線を介して接続され、これらセンサの出力信号がECU10に入力されるようになっている。一方、ECU10には、噴射弁6が電気配線を介して接続されており、該ECU10により噴射弁6が制御される。
 ECU10は、フィルタ5に堆積しているPM量が所定量以上になると、前記フィルタの再生処理を実施する。なお、フィルタの再生処理は、内燃機関1が搭載されている車両の走行距離が所定距離以上となったときに行ってもよい。また、規定期間ごとにフィルタの再生処理を実施してもよい。
 また、ECU10は、PMセンサ17により検出されるPM量に基づいて、フィルタ5の故障判定を行う。ここで、フィルタ5が割れる等の故障が発生すると、該フィルタ5を通り抜けるPM量が増加する。このPM量の増加をPMセンサ17により検出すれば、フィルタ5の故障を判定することができる。
 たとえば、フィルタ5の故障判定は、PMセンサ17の検出値に基づいて算出される所定期間中のPM量の積算値と、フィルタ5が所定の状態であると仮定した場合における所定期間中のPM量の積算値とを比較することで行われる。
 ここで図2は、PMセンサ17の概略構成図である。PMセンサ17は、自身に堆積したPM量に対応する電気信号を出力するセンサである。PMセンサ17は、一対の電極171と、該一対の電極171の間に設けられる絶縁体172と、を備えて構成されている。一対の電極171の間にPMが付着すると、該一対の電極171の間の電気抵抗が変化する。この電気抵抗の変化は、排気中のPM量と相関関係にあるため、該電気抵抗の変化に基づいて、排気中のPM量を検出することができる。このPM量は、単位時間当たりのPMの質量としてもよく、所定時間におけるPMの質量としてもよい。なお、PMセンサ17の構成は、図2に示したものに限らない。すなわち、PMを検出し、且つ、還元剤の影響により検出値に変化が生じるPMセンサであればよい。
 次に、図3は、PMセンサ17の検出値の推移を示したタイムチャートである。内燃機関1の始動直後のAで示される期間は、排気通路3内で凝縮する水がPMセンサ17に付着する虞がある期間である。PMセンサ17に水か付着すると、該PMセンサ17の検出値が変化したり、PMセンサ17が故障したりするため、この期間ではPMセンサ17によるPM量の検出は行われない。
 Aで示される期間の後のBで示される期間では、前回の内燃機関1の運転時にPMセンサ17に付着したPMを除去する処理を行う。この処理は、PMセンサ17の温度を、PMが酸化する温度まで上昇させることにより行われる。このBで示される期間においても、PMセンサ17によるPM量の検出は行われない。
 Bで示される期間の後のCで示される期間は、PMの検出に適した温度となるまでに要する期間である。すなわち、Bで示される期間においてPMセンサ17の温度がPMの検出に適した温度よりも高くなるため、温度が低下してPMの検出に適した温度となるまで待っている。このCで示される期間においても、PMセンサ17によるPM量の検出は行われない。
 そして、Cで示される期間の後のDで示される期間でPMの検出が行われる。なお、Dで示される期間であっても、PMセンサ17にある程度のPMが堆積するまでは、検出値が増加しない。すなわち、ある程度のPMが堆積して、一対の電極171の間に電流が流れるようになってから検出値が増加を始める。その後は、排気中のPM量に応じて検出値が増加していく。
 ここで、PMセンサ17は、フィルタ5よりも下流側に設けられている。そのため、PMセンサ17には、フィルタ5に捕集されずに、該フィルタ5を通過したPMが付着する。従って、PMセンサ17におけるPM堆積量は、フィルタ5を通過したPM量の積算値に対応した量となる。
 ここで、図4は、フィルタ5が正常な場合と故障している場合とのPMセンサ17の検出値の推移を示したタイムチャートである。フィルタ5が故障している場合には、PMセンサ17にPMが早く堆積するため、検出値の増加が始まる時点Eが、正常なフィルタ5と比較して早くなる。このため、たとえば、内燃機関1の始動後から所定時間Fが経過したときの検出値が閾値以上であれば、フィルタ5が故障していると判定できる。この所定時間Fは、正常なフィルタ5であればPMセンサ17の検出値が増加しておらず、且つ、故障しているフィルタ5であればPMセンサ17の検出値が増加している時間である。この所定時間Fは、実験等により求められる。また、閾値は、フィルタ5が故障しているときのPMセンサ17の検出値の下限値として予め実験等により求められる。
 ところで、PMセンサ17をフィルタ5よりも下流で且つNOx触媒7よりも上流に設けることも考えられる。しかし、このような位置にPMセンサ17を設けると、フィルタ5からPMセンサ17までの距離が短くなる。このため、フィルタ5の割れている箇所を通過したPMが排気中に分散しないままPMセンサ17の周辺に到達する虞がある。そうすると、フィルタ5が割れている位置によっては、PMセンサ17にPMがほとんど付着しないために、PMが検出されないこともあり、故障判定の精度が低下する虞がある。
 これに対して本実施例では、NOx触媒7よりも下流にPMセンサ17を設けているため、フィルタ5からPMセンサ17までの距離が長い。このため、PMセンサ17の周辺では、フィルタ5を通過したPMが排気中に分散している。したがって、フィルタ5の割れている位置によらずにPMを検出することができる。しかし、噴射弁6よりも下流側にPMセンサ17を設けているため、該噴射弁6から噴射される還元剤がPMセンサ17に付着する虞がある。このPMセンサ17に付着する還元剤は、たとえば、尿素、及び、尿素からアンモニアに至るまでの中間生成物(ビウレット、シアヌル酸)である。このようにPMセンサ17に還元剤が付着すると、PMセンサ17の検出値が変化する虞がある。
 ここで図5は、PMセンサ17の検出値が正常な場合と、異常な場合との推移を示したタイムチャートである。異常な検出値は、PMセンサ17に還元剤が付着したときの検出値とすることができる。
 正常な検出値は、時間の経過とともに検出値が増加する。すなわち、PMセンサ17に付着したPM量に応じて検出値が増加していく。一方、異常な検出値は、検出値が増加するだけでなく減少する場合がある。ここで、PMセンサ17に前記中間生成物が付着して所定量以上堆積すると、PMが堆積したときと同じように、PMセンサ17の検出値が増加する。ここで、中間生成物であるビウレットは、132-190℃のときに生成され、それよりも温度が高くなると気化する。また、中間生成物であるシアヌル酸は、190-360℃で生成され、それよりも温度が高くなると気化する。このように、PMと比較すると中間生成物は低温で気化する。このため、PMセンサ17に付着していた中間生成物は、内燃機関1の排気の温度が高いときに気化する。そうすると、中間生成物の堆積量が減少するため、PMセンサ17の検出値が減少する。これは、PMセンサ17にPMのみが堆積しているときには起こらない現象である。
 また、PMセンサ17のカバーに中間生成物が付着して堆積すると、該カバーを閉塞させる虞がある。このカバーが中間生成物により閉塞されると、PMが一対の電極171に到達できなくなるので、PMが検出されなくなる。このため、フィルタ5の故障判定の精度が低下する虞がある。
 このように、NOx触媒7を還元剤が通り抜けると、フィルタ5の故障判定が困難となる虞がある。一般的に尿素水から熱分解及び加水分解を経てNHが生成されることを考慮すると、NOx触媒7を還元剤が通り抜ける原因として、以下の3つが考えられる。
 (1)NOx触媒7の温度又は排気の温度が低い。すなわち、NOx触媒7または排気の温度が低いと、還元剤の熱分解などの反応に時間がかかるので、還元剤の反応が完了する前にNOx触媒7を通過してしまう。
 (2)NOx触媒7を通過する排気の流量が多い。なお、NOx触媒7を通過する排気の流速が速いとしてもよい。すなわち、排気の流量が多いと、還元剤がNOx触媒7と接する時間が短くなるため、還元剤の反応が完了する前にNOx触媒7を通過してしまう。
 (3)NOx触媒7に吸着しているNH量が多い。なお、NH吸着率が高いとしてもよい。NH吸着率は、NOx触媒7に最大限吸着可能なNH量に対して、NOx触媒7に吸着しているNH量の比である。すなわち、NOx触媒7に吸着しているNH量が多いほど、加水分解が進み難くなるので、還元剤の反応が完了する前にNOx触媒7を通過してしまう。
 上記(1),(2)は、反応時間が不足することにより起こる現象であり、(3)はNHの吸着量が多いことにより起こる現象である。そして、これら(1),(2),(3)に対する対策として以下のことが考えられる。
 (1)NOx触媒7の温度または排気の温度が低い場合に、還元剤の供給量を低減させる。
 (2)排気の流量が多い場合または排気の流速が高い場合に、必要最小限の還元剤を供給する。なお、排気の流量が多い場合または排気の流速が高い場合に代えて、加速時としてもよい。
 (3)NHの吸着量が多い、またはNHの吸着率が高い場合に、必要最小限の還元剤を供給する。
 これに対し本実施例では、たとえば、NOx触媒7を通過する排気の流量または排気の流速、NOx触媒7の温度または排気の温度、NOx触媒7におけるNHの吸着率またはNHの吸着量の少なくとも1つに基づいて、PMセンサ17に到達する還元剤量を算出する。そして、PMセンサ17に到達する還元剤量が閾値以上の場合には、還元剤の供給を禁止する。すなわち、PMセンサ17に到達する還元剤量が閾値未満の場合に限り還元剤を供給する。この閾値は、PMセンサ17の検出値に対して与える影響が許容範囲を超えるときの値として予め実験等により求めることができる。そして、本実施例では還元剤の供給を禁止するECU10が、本発明における減量部に相当する。
 図6は、本実施例に係る還元剤の供給を禁止するフローを示したフローチャートである。本ルーチンは、ECU10により所定の時間毎に実行される。
 ステップS101では、還元剤を供給する前提条件が成立しているか否か判定される。本ステップでは、還元剤を供給可能な状態であるか否か判定される。
 たとえば各種センサが正常であるときに、還元剤を供給する前提条件が成立していると判定される。各種センサが正常であるか否かは、周知の技術により判定することができる。また、たとえば内燃機関1の運転状態が、還元剤の供給に適した運転状態であるときに、還元剤を供給する前提条件が成立していると判定される。ステップS101で肯定判定がなされた場合にはステップS102へ進み、否定判定がなされた場合には本ルーチンを終了させる。
 ステップS102では、NOx触媒7を通過する排気の流量に基づいて第一係数K1が算出される。この第一係数K1は、NOx触媒7に流入する還元剤量に対して、排気の流量が多いことが原因となってNOx触媒7を通り抜ける還元剤量の割合を示した値である。なお、NOx触媒7を通過する排気の流量に代えて、NOx触媒7を通過する排気の流速に基づいて第一係数K1を算出してもよい。また、NOx触媒7を通過する排気の流量に代えて、排気通路3を流通する排気の流量または排気の流速としてもよい。排気の流量または流速は、エアフローメータ11により検出される吸入空気量に基づいて算出することができる。
 ここで、図7は、NOx触媒7を通過する排気の流量と、第一係数K1との関係を示した図である。なお、排気の流量に代えて排気の流速としても同様の関係になる。ここで、排気の流量が例えば50g/sになるまでは、還元剤がNOx触媒7を通り抜けることがないものとし、この間の第一係数K1は一定の値とする。そして、排気の流量が例えば50g/s以上となると、排気の流量の増加に従って、第一係数K1が増加する。すなわち、排気の流量が多いほど、還元剤がNOx触媒7を通り抜けやすくなる。このため、排気の流量が多いほど、NOx触媒7を通り抜ける還元剤量が多くなるので、第一係数K1が大きくなる。この関係は、予め実験等により求めてECU10に記憶させておく。
 ステップS103では、NOx触媒7の温度に基づいて第二係数K2が算出される。この第二係数K2は、NOx触媒7に流入する還元剤量に対して、NOx触媒7の温度が低いことが原因となってNOx触媒7を通り抜ける還元剤量の割合を示した値である。なお、NOx触媒7の温度に代えて、排気の温度に基づいて第二係数K2を算出してもよい。排気の温度は、NOx触媒7よりも下流側の排気の温度、またはNOx触媒7を通過する排気の温度としてもよい。また、NOx触媒7の温度は、第三排気温度センサ14により検出される温度としてもよい。また、NOx触媒7の温度を検出するセンサを備えて、該NOx触媒7の温度を直接検出してもよい。
 ここで、図8は、NOx触媒7の温度と、第二係数K2との関係を示した図である。なお、NOx触媒7の温度に代えて排気の温度としても同様の関係になる。NOx触媒7の温度が例えば220℃以上となると、NOx触媒7の温度が十分に高いことにより還元剤の反応が促進される。このため、220℃以上では還元剤がNOx触媒7を通り抜けることがないものとし、この間の第二係数K2は一定の値とする。そして、NOx触媒7の温度が例えば220℃未満となると、NOx触媒7の温度が低いほど、第二係数K2が大きくなる。すなわち、NOx触媒7の温度が低いほど、還元剤がNOx触媒7を通り抜けやすくなる。このため、NOx触媒7の温度が低いほど、NOx触媒7を通り抜ける還元剤量が多くなるので、第二係数K2が大きくなる。この関係は、予め実験等により求めてECU10に記憶させておく。
 ステップS104では、NOx触媒7におけるNHの吸着率に基づいて第三係数K3が算出される。この第三係数K3は、NOx触媒7に流入する還元剤量に対して、NOx触媒7におけるNHの吸着率が高いことが原因となってNOx触媒7を通り抜ける還元剤量の割合を示した値である。NOx触媒7におけるNHの吸着率は、NOx触媒7に吸着されているNH量を、NOx触媒7が最大限吸着可能なNH量で除算した値である。NOx触媒7に吸着されているNH量は、たとえば還元剤の供給量、NOx触媒7の温度、排気の流量などに基づいて求めることができる。また、NOx触媒7が最大限吸着可能なNH量は、たとえばNOx触媒7の温度及びNOx触媒7の劣化の度合いに応じて変化する。これらの関係は、予め実験等により求めておくことができる。なお、NOx触媒7におけるNHの吸着率は、周知の技術により求めることもできる。
 ここで、図9は、NOx触媒7におけるNHの吸着率と、第三係数K3との関係を示した図である。なお、NHの吸着率に代えてNHの吸着量としても同様の関係になる。NOx触媒7におけるNHの吸着率が例えば0.8になるまでは、還元剤がNOx触媒7を通り抜けることがないものとし、この間の第三係数K3は一定の値とする。そして、NOx触媒7におけるNHの吸着率が例えば0.8以上となると、吸着率の増加に従って、第三係数K3が増加する。すなわち、吸着率が高いほど、還元剤がNOx触媒7を通り抜けやすくなる。このため、吸着率が高いほど、NOx触媒7を通り抜ける還元剤量が多くなるので、第三係数K3が大きくなる。この関係は、予め実験等により求めてECU10に記憶させておく。また、NOx触媒7におけるNHの吸着量と、第三係数K3との関係を実験等により求めてECU10に記憶させておいてもよい。
 ステップS105では、通り抜け係数RMが算出される。通り抜け係数RMは、第一係数K1に第二係数K2及び第三係数K3を乗算した値である。すなわち、通り抜け係数RMは、NOx触媒7に流入する還元剤量に対して、NOx触媒7を通り抜ける還元剤量の割合を示した値である。
 ステップS106では、還元剤の供給量QUに、ステップS105で算出される通り抜け係数RMを乗算して、推定発生量QMが算出される。推定発生量QMは、NOx触媒7を通り抜ける還元剤量の推定値である。還元剤の供給量QUは、ECU10で算出される指令値を用いることができる。還元剤の供給量QUは、たとえば、排気中のNOx量に応じた値に設定される。排気中のNOx量は内燃機関1の運転状態に基づいて推定することができる。
 ステップS107では、推定発生量QMが閾値QP以上であるか否か判定される。この閾値QPは、NOx触媒7を通り抜ける還元剤量であって、PMセンサ17の検出値に対して与える影響が許容範囲を超えるときの還元剤量である。すなわち、推定発生量QMが閾値QP以上となると、PMセンサ17に付着する還元剤の影響によりフィルタ5の故障判定の精度が低くなる。
 ステップS107で肯定判定がなされた場合にはステップS108へ進み、一方、否定判定がなされた場合にはステップS109へ進む。
 ステップS108では、還元剤の供給が禁止される。すなわち、還元剤を供給すると、NOx触媒7を通り抜ける還元剤によりPMセンサ17の検出値が変化してしまうので、還元剤の供給を禁止している。
 ステップS109では、還元剤の供給が許可される。すなわち、NOx触媒7を通り抜ける還元剤がほとんどないため、還元剤によりPMセンサの検出値が変化することはない。
 なお、図6に示したフローでは、第一係数K1,第二係数K2,第三係数K3の全てを用いて通り抜け係数RMを算出しているが、何れか1つの値を通り抜け係数RMとしてもよい。また、何れか2つの値を乗算して通り抜け係数RMとしてもよい。
 また、本実施例では通り抜け係数RMを用いて還元剤の供給を禁止するか否か判定しているが、通り抜け係数RMや第一係数K1,第二係数K2,第三係数K3を用いずに判定することもできる。すなわち、NOx触媒7を通り抜ける還元剤の量が閾値以上の場合に、還元剤の供給を禁止すればよい。この場合、上記ステップS102からステップS106は必要ない。そして、ステップS107において、NOx触媒7を通り抜ける還元剤の量が閾値以上か否か判定する。同様に、ステップS107では、たとえば、NOx触媒7を通過する排気の流量または排気の流速が閾値以上、NOx触媒7の温度または排気の温度が閾値以下、NOx触媒7におけるNHの吸着率またはNHの吸着量が閾値以上の少なくとも1つに該当するか否か判定してもよい。これらの閾値は、PMセンサ17の検出値に対して与える影響が許容範囲を超えるときの値として予め実験等により求めておく。
 以上説明したように、本実施例によれば、NOx触媒7を通り抜ける還元剤によりPMセンサ17の検出値の精度が低くなる虞がある場合に、還元剤の供給を禁止することができる。これにより、PMセンサ17の検出値が還元剤により変化することを抑制できるため、フィルタ5の故障判定の精度が低下することを抑制できる。
 前記図6に示したフローでは、推定発生量QMが閾値以上であるときに還元剤の供給を禁止している。これは、NOx触媒7を通過する還元剤量が許容範囲を超えるときに還元剤の供給を禁止しているともいえる。これに対し、本実施例では、NOx触媒7を通り抜ける還元剤の量によらず、NOx触媒7を還元剤が通り抜ける状態の場合に、還元剤の供給を禁止する。たとえば、NOx触媒7を通過する排気の流量または排気の流速が閾値以上、NOx触媒7の温度または排気の温度が閾値以下、NOx触媒7におけるNHの吸着率またはNHの吸着量が閾値以上の少なくとも1つに該当するときに還元剤の供給を禁止する。これら閾値は、還元剤がNOx触媒7を通り抜ける値として設定される。その他の装置等は実施例1と同じため説明を省略する。
 図10は、本実施例に係る還元剤の供給を禁止するフローを示したフローチャートである。本ルーチンは、ECU10により所定の時間毎に実行される。なお、図6に示したフローと同じ処理がなされるステップについては、同じ符号を付して説明を省略する。
 ステップS101で肯定判定がなされた場合にステップS201へ進む。ステップS201では、NOx触媒7を通過する排気の流量が閾値以上、NOx触媒7の温度が閾値以下、NOx触媒7におけるNHの吸着率が閾値以上の少なくとも1つに該当するか否か判定される。これらの閾値は、還元剤がNOx触媒7を通り抜ける値として予め実験等により求めておく。排気の流量は、排気の流速としてもよい。NOx触媒7の温度は、排気の温度としてもよい。NOx触媒7におけるNHの吸着率は、NOx触媒7におけるNHの吸着量としてもよい。なお、ステップS201では、還元剤がNOx触媒7を通り抜けるか否か判定してもよい。
 また、ステップS201では、図6に示したフローと同様にして、第一係数K1,第二係数K2,第三係数K3を算出し、これらの何れかの値が閾値以上であるか否か判定してもよい。また、第一係数K1,第二係数K2,第三係数K3のうち、少なくとも2つを乗算した値が閾値以上であるか否か判定してもよい。また、ステップS105で算出される通り抜け係数RMが閾値以上であるか否か判定してもよい。これら閾値は、還元剤がNOx触媒7を通り抜ける値として予め実験等により求めておく。
 ステップS201で肯定判定がなされた場合にはステップS108へ進み、一方、否定判定がなされた場合にはステップS109へ進む。
 なお、本実施例では還元剤の供給を禁止するECU10が、本発明における減量部に相当する。
 以上説明したように、本実施例によれば、NOx触媒7を通り抜けた還元剤によりPMセンサ17の検出値の精度が低くなる虞がある場合に、還元剤の供給を禁止することができる。これにより、PMセンサ17の検出値が還元剤により変化することを抑制できるため、フィルタ5の故障判定の精度が低下することを抑制できる。
 本実施例では、PMセンサ17に到達する還元剤量が閾値未満となるように還元剤を供給する。この閾値は、PMセンサ17の検出値に与える影響が許容範囲を超えるときの還元剤量である。すなわち、本実施例では、PMセンサ17の検出値に対して与える影響が許容範囲を超えないように還元剤を供給する。NOx触媒7を還元剤が通り抜けないように還元剤を供給してもよい。その他の装置などは実施例1と同じため説明を省略する。
 たとえば、NOx触媒7を通過する排気の流量が多いほど、または排気の流速が高いほど、還元剤の供給量を少なくする。また、NOx触媒7の温度または排気の温度が低いほど、還元剤の供給量を少なくする。また、NOx触媒7におけるNHの吸着率が高いほど、またはNHの吸着量が多いほど、還元剤の供給量を少なくする。なお、本実施例では還元剤の供給量を少なくするECU10が、本発明における減量部に相当する。
 図11は、本実施例に係る還元剤の供給量の制御フローを示したフローチャートである。本ルーチンはECU10により所定の時間毎に実行される。なお、図6に示したフローと同じ処理がなされるステップについては、同じ符号を付して説明を省略する。
 ステップS107で肯定判定がなされた場合にはステップS301へ進み、ステップS301では、通り抜けフラグがONとされる。通り抜けフラグは、推定発生量QMが閾値QPよりも大きいときにONとされるフラグである。なお、通り抜けフラグの初期値はOFFである。また、NOx触媒7を還元剤が通り抜ける状態のときに、通り抜けフラグをONとしてもよい。なお、通り抜けフラグは、後述の実施例において使用するため、本実施例では設定しなくてもよい。
 ステップS302では、通り抜け量QSが算出される。通り抜け量QSは、推定発生量QMからステップS107で用いられる閾値QPを減算した値である。すなわち、NOx触媒7を通過した還元剤であって、許容範囲を超えた分の還元剤量が通り抜け量QSとして算出される。なお、通り抜け量QSは、後述の実施例において使用する値であるため、本実施例では算出しなくてもよい。
 ステップS303では、補正係数KQが算出される。補正係数KQは、還元剤の供給量QUを補正するための係数であり、PMセンサ17に到達する還元剤が許容範囲内となるように補正するための係数である。補正係数KQは、閾値QPを推定発生量QMで除算した値である。この補正係数KQは、NOx触媒7を通過する還元剤量が閾値QPまで減少するように設定される。
 ステップS304では、還元剤の供給量QUに補正係数KQを乗算することにより、最終的な還元剤の供給量QUが算出される。すなわち、ステップS304で算出される新たな還元剤の供給量QUが、実際に供給される還元剤量となる。
 また、ステップS107で否定判定がなされた場合には、ステップS305へ進み、補正係数KQに1が代入される。すなわち、還元剤の供給量QUが変わらないようにしている。
 このようにして、NOx触媒7を通り抜ける還元剤の量を許容範囲内に抑えつつ還元剤を供給することができるため、NOxの浄化率の低下を抑制できる。また、PMセンサ17の検出値が還元剤により変化することを抑制できるため、フィルタ5の故障判定の精度が低下することを抑制できる。
 本実施例においては、NOx触媒7を通過する排気の流量または排気の流速に応じて還元剤の供給量の上限値を設ける。その他の装置などは実施例1と同じため、説明を省略する。
 ここで、実施例3では、推定発生量QMに基づいて還元剤の供給量を補正しているが、本実施例では、推定発生量QMを算出しない。また、本実施例では、還元剤の供給量は補正せずに、供給量の上限値を設ける。たとえば、必要とされる還元剤量が上限値より多い場合であっても、実際に供給する還元剤は上限値とする。すなわち、還元剤の供給量を少なくする。この還元剤の供給量の上限値は、PMセンサ17の検出値に与える影響が許容範囲内となる還元剤量の上限値である。還元剤量の上限値と、排気の流量または排気の流速との関係は、予め実験等により求めてECU10に記憶させておく。なお、本実施例では還元剤の供給量を少なくするECU10が、本発明における減量部に相当する。
 図12は、本実施例に係る還元剤の供給量の制御フローを示したフローチャートである。本ルーチンはECU10により所定の時間毎に実行される。なお、図6に示したフローと同じ処理がなされるステップについては、同じ符号を付して説明を省略する。
 ステップS101で肯定判定がなされた場合に、ステップS401へ進む。ステップS401では、還元剤の供給量の上限値が設定される。還元剤の供給量の上限値は、排気の流量または排気の流速に基づいて求める。たとえば、排気の流量が多いほど、または、排気の流速が高いほど、上限値を小さくする。この関係は、予め実験等により求めてマップ化しておいてもよい。
 ステップS402では、還元剤の供給量QUが算出される。還元剤の供給量QUは、ECU10で算出される指令値を用いることができる。還元剤の供給量QUは、たとえば、排気中のNOx量に応じた値に設定される。
 ステップS403では、ステップS402で算出される還元剤の供給量QUが、ステップS401で設定される上限値以下であるか否か判定される。ステップS403で肯定判定がなされた場合にはステップS404へ進み、一方、否定判定がなされた場合にはステップS405へ進む。
 ステップS404では、ステップS402で算出される還元剤の供給量QUが、最終的な還元剤の供給量QUに設定される。
 ステップS405では、ステップS401で設定される上限値が、最終的な還元剤の供給量QUに設定される。
 このようにして、簡易的に還元剤の供給量の上限を設定しても、還元剤がPMセンサ17に付着することを抑制できる。これにより、フィルタ5の故障判定の精度を高めることができる。
 なお、本実施例では、還元剤の供給量の上限値を、NOx触媒7を通過する排気の流量または排気の流速に基づいて設定しているが、これに代えて、NOx触媒7の温度、または、排気の温度、NOx触媒7におけるNHの吸着率、NOx触媒7におけるNHの吸着量に基づいて、還元剤の供給量の上限値を算出してもよい。
 NOx触媒7の温度、または、排気の温度、NOx触媒7におけるNHの吸着率、NOx触媒7におけるNHの吸着量と、還元剤の供給量の上限値と、の関係は予め実験等により求めてECU10に記憶させておく。
 本実施例では、還元剤がPMセンサ17に到達するような運転状態となる前に、予め還元剤をNOx触媒7に吸着させておく。その他の装置などは実施例1と同じため、説明を省略する。
 前記実施例では、還元剤がPMセンサ17に到達するような運転状態になると、還元剤の供給量を少なくしているが、本実施例では、そのような運転状態となる前にNOx触媒7に還元剤を吸着させておく。たとえば、吸入空気量が現時点における値から最大限増加したときを想定し、NOx触媒7の温度が、現時点の値から該NOx触媒7を還元剤が通り抜けなくなる温度まで上昇するまでの間に、NOx触媒7に流入すると推定されるNOxの量に応じた量の還元剤を予め供給しておく。なお、吸入空気量が増加すると、排気の流量または排気の流速が増加するために、還元剤の供給量が少なくされる状態となるが、吸入空気量が増加することで排気の温度が上昇する。そうすると、NOx触媒7の温度が上昇するために、NOx触媒7を還元剤が通り抜け難くなる。すなわち、NOx触媒7の温度が十分に高くなれば、NOxの量に応じた量の還元剤を供給することができる。
 したがって、PMセンサ17に還元剤が到達する虞のある温度の最高値を算出し、現時点での温度から該最高値まで上昇するのに要する時間に供給するべき還元剤を予めNOx触媒7に吸着させておく。
 図13は、本実施例に係る還元剤の供給量の制御フローを示したフローチャートである。本ルーチンはECU10により所定の時間毎に実行される。なお、図6に示したフローと同じ処理がなされるステップについては、同じ符号を付して説明を省略する。
 ステップS101で肯定判定がなされた場合には、ステップS501へ進む。ステップS501では、PMセンサ17に還元剤が到達する可能性のあるNOx触媒7の最高温度TMが算出される。この最高温度TMは、吸入空気量に応じて変化させてもよい。そして、最高温度TMは、予め実験等により求めてマップ化しECU10に記憶させておく。
 ステップS502では、最高温度TMから現時点におけるNOx触媒7の温度TPを減算した値である温度増加量ΔTSCRが算出される。この温度増加量ΔTSCRは、内燃機関1の運転状態が変化したときに、PMセンサ17に還元剤が到達しない状態となるまでに上昇しなくてはならない温度である。
 ステップS503では、NH増加量URQが算出される。NH増加量URQは、排気中のNOxを還元させるために必要となる還元剤量に対して、上乗せする還元剤量である。すなわち、通常よりも増加させる分の還元剤の供給量である。NH増加量URQは、ステップS502で算出される温度増加量ΔTSCRと相関関係にあり、図14で示されるマップにより得られる。ここで、図14は、温度増加量ΔTSCRと、NH増加量URQと、の関係を示した図である。温度増加量ΔTSCRが大きいほど、NOx触媒7の温度が、PMセンサ17に還元剤が到達しなくなる温度まで上昇するまでに時間を要するため、NH増加量URQがより大きくなる。この、NH増加量URQは、還元剤の供給量を少なくしている間に不足する還元剤量とすることができる。図14の関係は予め実験等により求めてマップ化し、ECU10に記憶させておく。
 ステップS504では、現時点でのNH増加量UEXが読み込まれる。
 ステップS505では、ステップS503で算出されるNH増加量URQが、ステップS504で読み込まれる現時点でのNH増加量UEXよりも多いか否か判定される。本ステップでは、現時点よりも還元剤を増量する必要があるか否か判定される。すなわち、現時点でのNH増加量UEXが十分多ければ、新たに増量する必要はなく、また、無駄に還元剤を消費する虞もあるため、本ステップの判定がなされる。ステップS505で肯定判定がなされた場合にはステップS506へ進み、一方、否定判定がなされた場合には還元剤を増量する必要はないため本ルーチンを終了させる。
 ステップS506では、還元剤を増量分UADだけ増量させる。この増量分UADは、還元剤が急激に増加しないように設定される。ここで、NH増加量URQを一度に上乗せすると、還元剤の一部がNOx触媒7に吸着せずに該NOx触媒7から流出する虞があるため、還元剤の流出を抑えるように増量分UADが決定される。そして、NH増加量URQよりも増量分UADが小さい場合には、本ルーチンが複数回実行されるたびに増量分UADだけ増量されていき、最終的にNH増加量URQに達することになる。この増量分UADは規定の値であり、最適値を予め実験等により求めてECU10に記憶させておく。
 ステップS507では、現時点でのNH増加量UEXに増量分UADを加算した値が、新たに現時点でのNH増加量UEXとされる。
 なお、本実施例においては図13に示すフローを処理するECU10が、本発明における増量部に相当する。
 このように、還元剤の供給量を少なくするのに備えて、予めNOx触媒7により多くの還元剤を吸着させておく。これにより、還元剤の供給量を減少させた場合であっても、還元剤が不足することを抑制できるため、NOxの浄化率が低下することを抑制できる。また、還元剤がPMセンサ17に到達する虞があるときには、還元剤の供給量を減少させることができるため、PMセンサ17の検出値が還元剤の影響を受けて変化することを抑制できる。このため、フィルタ5の故障判定の精度を高めることができる。
 本実施例では、実施例5で説明した還元剤の増量が間に合わない場合、または、規定期間ごとに還元剤を供給する場合について説明する。その他の装置などは実施例1と同じため、説明を省略する。
 一般に、還元剤の供給は、NOx触媒7に流入したNOx量の積算値が閾値に達したときに行うか、または、規定期間毎に行う。NOx触媒7に流入したNOx量の積算値が閾値に達したときに還元剤の供給を行う場合には、該NOx量の積算値に対応した規定量の還元剤が供給される。また、規定期間毎に還元剤の供給を行う場合には、規定期間にNOx触媒7に流入したNOx量の積算値に応じて還元剤が供給される。
 これに対し本実施例では、PMセンサ17に還元剤が到達する虞があるときには、還元剤を供給する時期となった場合であっても、還元剤の供給をすぐには行わない。すなわち、還元剤の供給量が通常よりも少なくされている場合に還元剤を供給する時期となっても、還元剤の供給を行わない。そして、還元剤がPMセンサ17に到達する虞がなくなってから還元剤を供給する。すなわち、還元剤の供給を延期する。このときの還元剤の供給量は、還元剤の供給を延期している期間にNOx触媒7に流入したNOxを浄化可能な分だけ増量して行われる。すなわち、供給される還元剤の量は、前回の還元剤の供給から、現時点までにNOx触媒7に流入したNOx量に応じて決定される。これは、NOx触媒7に吸着している還元剤の減少分に応じた量の還元剤を供給するとしてもよい。
 図15は、一般的な供給フラグおよびNOx触媒7に流入するNOx量の積算値の推移を示したタイムチャートである。図15は、還元剤の供給量が少なくされていないときの図としてもよい。また、図15は、還元剤の一般的な供給時期を示した図としてもよい。供給フラグがONとなると、還元剤が供給される。供給フラグがOFFとなっているときには、NOx触媒7に流入するNOx量が積算される。
 図15では、規定期間ごとに供給フラグがONとされる。この規定期間は、還元剤の供給が必要となる期間として予め設定されており、たとえば、数秒から数十秒である。供給フラグがONとなると、そのときのNOx量の積算値に応じて還元剤の供給量が決定される。すなわち、すでにNOx触媒7に流入したNOxにより、NOx触媒7に吸着していた還元剤が消費されているため、この消費された分の還元剤を補うように還元剤を供給する。
 なお、NOx触媒7に流入するNOx量の積算値が閾値に達すると、供給フラグがONとなり、還元剤の供給を行うようにしてもよい。
 図16は、本実施例に係る還元剤の供給制御を行った場合の供給フラグおよびNOx触媒7に流入するNOx量の積算値の推移を示したタイムチャートである。なお、図16中の通過フラグがONとなっているときには、還元剤がNOx触媒7を通り抜ける虞がある。たとえば、吸入空気量が閾値以上で、且つ、NOx触媒7の温度が閾値未満のときに通過フラグがONとなる。この通過フラグがONとなっている間は、還元剤の供給を行わない。すなわち、供給フラグをONとせずに還元剤の供給を延期させる。そして、還元剤の供給を延期している間もNOx量が積算され、通過フラグがOFFとなったときに、供給フラグがONとされると共に、このときのNOx量の積算値に応じた量の還元剤が供給される。
 図17は、本実施例に係る還元剤の供給量の制御フローを示したフローチャートである。本ルーチンはECU10により所定の時間毎に実行される。なお、図6に示したフローと同じ処理がなされるステップについては、同じ符号を付して説明を省略する。
 ステップS101で肯定判定がなされた場合には、ステップS601へ進む。ステップS601では、還元剤の供給時期であるか否か判定される。還元剤の供給は、予め設定されている規定期間ごとに行われるため、前回の還元剤の供給から規定期間が経過しているときに還元剤の供給時期であると判定される。ステップS601で肯定判定がなされた場合にはステップS602へ進み、一方、否定判定がなされた場合にはステップS606へ進み、NOx触媒7に流入するNOx量が積算される。そして、ステップS606が実行された後にステップS601へ戻る。すなわち、ステップS601で肯定判定がなされるまで、NOx触媒7に流入するNOx量が積算される。
 ステップS602では、通過フラグがONとなっているか否か判定される。すなわち、PMセンサ17に還元剤が到達する虞のある状態であるか否か判定される。たとえば、NOx触媒7を通過する排気の流量または排気の流速が閾値以上、NOx触媒7の温度または排気の温度が閾値以下、NOx触媒7におけるNH3の吸着率またはNH3の吸着量が閾値以上の少なくとも1つに該当するときに通過フラグがONとなる。これは、実施例2で説明した還元剤の供給を禁止する条件と同じとしてもよい。そして、ステップS602で肯定判定がなされた場合にはステップS607へ進む。
 ステップS607では、NOx触媒7に流入するNOx量が積算される。そして、ステップS607が実行された後にステップS602へ戻る。すなわち、ステップS602で否定判定がなされるまで、NOx触媒7に流入するNOx量が積算される。
 一方、ステップS602で否定判定がなされた場合には、ステップS603へ進む。ステップS603では、還元剤の供給量が算出される。還元剤の供給量は、ステップS606で算出されるNOx量の積算値と、ステップS607で算出されるNOx量の積算値と、を加算した値に基づいて算出される。NOx量の積算値と還元剤供給量との関係は、予め実験等により求めてECU10に記憶させておく。
 ステップS604では、供給フラグがONとされる。そして、ステップS605では、ステップS603で算出される還元剤の供給量にしたがって、還元剤が供給される。
 なお、本実施例においては図17に示すフローを処理するECU10が、本発明における延期部に相当する。
 このように、PMセンサ17に還元剤が到達する虞のある場合には、還元剤の供給を禁止することで、PMセンサ17の検出値が還元剤から影響を受けて変化することを抑制できる。これにより、フィルタ5の故障判定の精度が低下することを抑制できる。また、還元剤の供給を禁止した後に還元剤を供給するときには、還元剤の供給量を増量することにより、NOx触媒7に吸着している還元剤の量を速やかに回復させることができる。これにより、NOx浄化率が低下することを抑制できる。
1     内燃機関
2     吸気通路
3     排気通路
4     酸化触媒
5     フィルタ
6     噴射弁
7     選択還元型NOx触媒
10   ECU
11   エアフローメータ
12   第一排気温度センサ
13   第二排気温度センサ
14   第三排気温度センサ
15   第一NOxセンサ
16   第二NOxセンサ
17   PMセンサ
18   アクセル開度センサ
19   クランクポジションセンサ

Claims (6)

  1.  内燃機関の排気通路に設けられ排気中の粒子状物質を捕集するフィルタと、
     前記フィルタよりも下流側に設けられ供給される還元剤によりNOxを還元する選択還元型NOx触媒と、
     前記選択還元型NOx触媒よりも上流側から該選択還元型NOx触媒へ還元剤を供給する供給装置と、
     前記選択還元型NOx触媒よりも下流側で排気中の粒子状物質の量を検出するPMセンサと、
     前記選択還元型NOx触媒の温度が閾値以下の場合、排気の温度が閾値以下の場合、排気の流量が閾値以上の場合、前記選択還元型NOx触媒における還元剤の吸着量が閾値以上の場合の少なくとも1つに該当する場合には、何れにも該当しない場合よりも、還元剤の供給量を少なくする減量部と、
     を備える内燃機関の排気浄化装置。
  2.  前記選択還元型NOx触媒を通り抜ける還元剤の量が、
     前記選択還元型NOx触媒の温度または排気の温度が低いほど多くなり、
     排気の流量が多いほど多くなり、
     前記選択還元型NOx触媒における還元剤の吸着量が多いほど多くなるものとして、
     前記減量部は、前記選択還元型NOx触媒を通り抜ける還元剤の量を、前記選択還元型NOx触媒の温度または排気の温度、前記排気の流量、前記選択還元型NOx触媒における還元剤の吸着量の少なくとも1つに基づいて算出し、該選択還元型NOx触媒を通り抜ける還元剤の量が閾値未満となるように還元剤の供給量を決定する請求項1に記載の内燃機関の排気浄化装置。
  3.  前記選択還元型NOx触媒を通り抜ける還元剤の量が、
     前記選択還元型NOx触媒の温度または排気の温度が低いほど多くなり、
     排気の流量が多いほど多くなり、
     前記選択還元型NOx触媒における還元剤の吸着量が多いほど多くなるものとして、
     前記減量部は、前記選択還元型NOx触媒を通り抜ける還元剤の量を、前記選択還元型NOx触媒の温度または排気の温度、前記排気の流量、前記選択還元型NOx触媒における還元剤の吸着量の少なくとも1つに基づいて算出し、該選択還元型NOx触媒を通り抜ける還元剤の量が閾値以上の場合に還元剤の供給を禁止する請求項1に記載の内燃機関の排気浄化装置。
  4.  前記選択還元型NOx触媒を還元剤が通り抜ける状態となって前記減量部により還元剤の供給量が少なくされたときにNOxを還元させる還元剤を、該選択還元型NOx触媒を還元剤が通り抜けない状態のときに予め供給しておく増量部を備える請求項1から3の何れか1項に記載の内燃機関の排気浄化装置。
  5.  前記増量部は、前記選択還元型NOx触媒を還元剤が通り抜けない該選択還元型NOx触媒の温度と、現時点における前記選択還元型NOx触媒の温度と、の差に基づいて、供給する還元剤の量を決定する請求項4に記載の内燃機関の排気浄化装置。
  6.  前記選択還元型NOx触媒を還元剤が通り抜ける状態となってから、通り抜けない状態となるまでの間に、還元剤を供給する時期となった場合には、該選択還元型NOx触媒を還元剤が通り抜けない状態となるまで還元剤の供給を延期し、該選択還元型NOx触媒を還元剤が通り抜けない状態となった後に供給する還元剤の量を、前回の還元剤の供給時から該選択還元型NOx触媒に流入したNOx量の積算値に基づいて決定する延期部を備える請求項1から5の何れか1項に記載の内燃機関の排気浄化装置。
PCT/JP2011/071345 2011-09-20 2011-09-20 内燃機関の排気浄化装置 WO2013042188A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/634,155 US9382830B2 (en) 2011-09-20 2011-09-20 Exhaust gas purification apparatus for an internal combustion engine
JP2012541243A JP5344096B2 (ja) 2011-09-20 2011-09-20 内燃機関の排気浄化装置
CN201180013053.1A CN103797222B (zh) 2011-09-20 2011-09-20 内燃机的排气净化装置
PCT/JP2011/071345 WO2013042188A1 (ja) 2011-09-20 2011-09-20 内燃機関の排気浄化装置
EP11860707.6A EP2759682A4 (en) 2011-09-20 2011-09-20 EXHAUST PURIFYING DEVICE FOR INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071345 WO2013042188A1 (ja) 2011-09-20 2011-09-20 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
WO2013042188A1 true WO2013042188A1 (ja) 2013-03-28

Family

ID=47914001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071345 WO2013042188A1 (ja) 2011-09-20 2011-09-20 内燃機関の排気浄化装置

Country Status (5)

Country Link
US (1) US9382830B2 (ja)
EP (1) EP2759682A4 (ja)
JP (1) JP5344096B2 (ja)
CN (1) CN103797222B (ja)
WO (1) WO2013042188A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2024258B1 (en) * 2019-11-18 2021-07-29 Visser & Smit Bv System and method for nox removal
EP3821971A1 (en) * 2019-11-18 2021-05-19 Visser & Smit Hanab B.V. System and method for nox removal
US11339702B2 (en) * 2020-09-15 2022-05-24 Ford Global Technologies, Llc Methods and systems for an exhaust gas aftertreatment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085172A (ja) 2007-10-02 2009-04-23 Mitsubishi Fuso Truck & Bus Corp 排気浄化装置
JP2011080439A (ja) * 2009-10-09 2011-04-21 Nippon Soken Inc パティキュレートフィルタの異常検出装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4592505B2 (ja) * 2005-06-09 2010-12-01 三菱ふそうトラック・バス株式会社 排気浄化装置
US8384397B2 (en) * 2006-05-01 2013-02-26 Filter Sensing Technologies, Inc. Method and system for controlling filter operation
JP4900002B2 (ja) * 2007-04-05 2012-03-21 トヨタ自動車株式会社 内燃機関の排気浄化システム
US8505279B2 (en) * 2009-03-26 2013-08-13 GM Global Technology Operations LLC Exhaust gas treatment system including a four-way catalyst and urea SCR catalyst and method of using the same
JP2010229957A (ja) * 2009-03-30 2010-10-14 Ngk Spark Plug Co Ltd 内燃機関の排気システム及びそれに用いる粒子状物質測定センサ
JP5251711B2 (ja) * 2009-04-30 2013-07-31 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2010275917A (ja) * 2009-05-28 2010-12-09 Honda Motor Co Ltd 粒子状物質検出手段の故障判定装置
US8635855B2 (en) * 2009-06-17 2014-01-28 GM Global Technology Operations LLC Exhaust gas treatment system including a lean NOx trap and two-way catalyst and method of using the same
US20110030343A1 (en) * 2009-08-06 2011-02-10 Caterpillar Inc. Scr reductant deposit removal
JP2011080926A (ja) * 2009-10-09 2011-04-21 Denso Corp パティキュレート検出素子
JP5288060B1 (ja) 2011-09-06 2013-09-11 トヨタ自動車株式会社 内燃機関の排気系暖機システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085172A (ja) 2007-10-02 2009-04-23 Mitsubishi Fuso Truck & Bus Corp 排気浄化装置
JP2011080439A (ja) * 2009-10-09 2011-04-21 Nippon Soken Inc パティキュレートフィルタの異常検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2759682A4

Also Published As

Publication number Publication date
US20140199210A1 (en) 2014-07-17
JPWO2013042188A1 (ja) 2015-03-26
EP2759682A4 (en) 2015-10-21
CN103797222A (zh) 2014-05-14
EP2759682A1 (en) 2014-07-30
US9382830B2 (en) 2016-07-05
JP5344096B2 (ja) 2013-11-20
CN103797222B (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
JP6240068B2 (ja) 内燃機関の排気浄化装置
JP6036772B2 (ja) 内燃機関の制御装置
JP5120464B2 (ja) 排気浄化装置の異常検出装置及び排気浄化装置の異常検出方法
CN104160123B (zh) 内燃机的排气净化装置
JP5590241B2 (ja) 内燃機関の排気浄化装置
US20150192048A1 (en) Abnormality diagnosis device and exhaust gas purification device of internal combustion engine
JP5692397B2 (ja) 内燃機関の排気浄化装置
JP5344093B2 (ja) 内燃機関の排気浄化装置
JP5344096B2 (ja) 内燃機関の排気浄化装置
WO2012140739A1 (ja) 選択還元型NOx触媒の劣化検出装置
JP5692398B2 (ja) 内燃機関の排気浄化装置
JP2013087653A (ja) 内燃機関の排気浄化装置
JP2013199913A (ja) 内燃機関の排気浄化装置
JP2013087652A (ja) 内燃機関の排気浄化装置
JP2013238164A (ja) 内燃機関の排気浄化装置
JP2013096285A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012541243

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13634155

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011860707

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011860707

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE