WO2013041737A1 - Electric power converter system with parallel units and fault tolerance - Google Patents

Electric power converter system with parallel units and fault tolerance Download PDF

Info

Publication number
WO2013041737A1
WO2013041737A1 PCT/ES2011/070662 ES2011070662W WO2013041737A1 WO 2013041737 A1 WO2013041737 A1 WO 2013041737A1 ES 2011070662 W ES2011070662 W ES 2011070662W WO 2013041737 A1 WO2013041737 A1 WO 2013041737A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion
units
output current
conversion units
operational
Prior art date
Application number
PCT/ES2011/070662
Other languages
English (en)
French (fr)
Inventor
Jesús MAYOR LUSARRETA
Carlos GIRONÉS REMÍREZ
Original Assignee
Ingeteam Power Technology, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ingeteam Power Technology, S.A. filed Critical Ingeteam Power Technology, S.A.
Priority to PCT/ES2011/070662 priority Critical patent/WO2013041737A1/es
Priority to EP11791010.9A priority patent/EP2760120A1/en
Priority to BR112014007049-0A priority patent/BR112014007049B1/pt
Priority to US14/346,654 priority patent/US10680531B2/en
Priority to JP2014531282A priority patent/JP6062946B2/ja
Priority to KR1020147010402A priority patent/KR101942609B1/ko
Publication of WO2013041737A1 publication Critical patent/WO2013041737A1/es

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the present invention applies to the field of electric power supply, and more specifically, to the electric power converters between the supply network and the power generation and consumption equipment.
  • one of the usual techniques is to use multiple parallel conversion units, so that for N units a total power equal to N times the power of each conversion unit is obtained.
  • It is defined as a conversion unit, the electronic device that is responsible for adapting an input electrical energy, either alternating current (AC) or direct current (DC), to characteristics imposed on the output thereof, said output being connected to a load or an energy evacuation point.
  • AC alternating current
  • DC direct current
  • each conversion unit consists of a conversion module that connects to a generator (machine side conversion module) and a conversion module that connects to an electrical network (network side conversion module).
  • Each module consists of power semiconductors such as, bipolar insulated gate transistors, (IGBT) of the "insulated gate bipolar transistor"), integrated gate switched thyristor (IGCT) and bipolar transistors of an insulated gate increased by injection (IEGT), which cut an input voltage through high frequency switching in order to obtain at the output a voltage whose instantaneous mean value is desired.
  • IGBT bipolar insulated gate transistors
  • IEGT integrated gate switched thyristor
  • US 2006/0214428 presents a conversion system equipped with a reserve conversion unit, which is used when any of the other conversion units is out of service.
  • WO2009 / 027520 takes advantage of the oversizing of the network side conversion modules in the output current, due to the low power factors required by the network codes.
  • This invention has the disadvantage that in the event that if any of the conversion units is out of service, the conversion system does not have sufficient capacity to meet the network requirements for which it was designed.
  • the object of the present invention is to provide the conversion system with greater availability with the necessary conversion units for which it has been designed to operate under nominal conditions.
  • the present invention solves the problems described above by means of an electric power converter that adapts the maximum output current of the conversion modules that form it when any of the conversion units ceases to be operational (either partially or totally, that is, provided that said unit is not capable of generating the maximum current assigned to it).
  • This invention is therefore especially useful in power generation systems. wind power, in which the space dedicated to the energy converter is very limited, although it can, however, be applied to any other environment.
  • an electrical energy conversion system comprising at least two conversion units, each of which in turn comprises a first conversion module adapted to connect to an electrical network (which, for the sake of clarity, we will refer to this document as a network-side conversion module) and a second conversion module adapted to connect to an electrical generation device (which we will call in this document machine-side conversion module).
  • Each conversion module has a maximum output current, thus leaving the output power of the system determined by said maximum currents.
  • the system comprises control means that establish the maximum output current of the operational conversion modules, as well as the switching frequency of all or a subset of the operational conversion modules to thereby increase the availability of the failure conversion system.
  • Control means adapted to:
  • control means are either a single controller connected to all the conversion units and therefore set the maximum output current of the conversion modules that constitute them in a manner synchronized; or a plurality of independent controllers, each of which is connected to a conversion unit and controls it in isolation.
  • a representative point of the conversion system for measuring the coolant temperature is the input of at least one of the conversion modules.
  • the conversion system is valid for any configuration of the machine side conversion modules and the network side conversion modules, with two preferred options being a four quadrant configuration (4Q) and a passive configuration.
  • an electric energy conversion method comprising the following steps:
  • the operational conversion modules operate at the switching frequency set by the control means.
  • Figure 1 shows a conventional DC / AC bi-level converter module according to the state of the art, in turn composed of three switching cells, one per phase.
  • Figure 2 shows an electrical energy conversion system with four conversion units, according to a preferred embodiment of the present invention, as well as an electrical network and an energy generating device as an example of interaction.
  • Figure 3 shows an electrical energy conversion system according to another preferred embodiment of the present invention, with two conversion units sharing the network filter RC.
  • this invention when this invention is referred to as a coolant (for example, water), it is not limited to conversion systems exclusively for liquid cooling, but the concept must be extrapolated to systems that can be cooled by air.
  • a coolant for example, water
  • Figure 1 shows a conventional electric energy conversion module 1, with a bi-level DC / AC topology.
  • the conversion module 1 is composed of as many switching cells 3 as active phases, and in turn, each of these switching cells 3 is composed of a plurality of power semiconductors 2 (in this example, two semiconductors 2 per cell of switching 3 as it is a bilevel system).
  • Each switching cell 3 is responsible for setting to the output AC 4 the instantaneous average voltage required in the corresponding active phase. To do this, semiconductors 2 cut the DC 5 input voltage.
  • conduction loss During its operation in conduction, there is also a loss energy that depends, for a given current, on the voltage drop that occurs between the collector and emitter of the semiconductor 2. This energy dissipation is called conduction loss.
  • the average loss power of the power semiconductor 2 during a switching period can be expressed as:
  • Pav Fswx j TM ' V (t). Item). dt
  • Pav is the average power of losses
  • Fsw is the frequency of switching
  • Vl is the instantaneous power dissipated in semiconductor 2.
  • the dissipated power in each power semiconductor 2 is transformed into heat, increasing the working temperature of the semiconductor 2.
  • the thermal transfer that occurs in the semiconductor 2 due to its loss power is typically calculated by finite elements taking into account the three-dimensional system.
  • the temperature at the junction of the semiconductor 2 can be represented by the following equations:
  • TJIGBT Pav IGBT x (Rth ha + Rth ch + Rth jc ) + TA
  • TjpwD Pav FWD x (Rth ha + Rth ch + Rth jc ) + TA
  • Pavi GBT is the average power loss in the IGBT
  • Pavpw B is the average power loss in the diode
  • Rth ha is the thermal resistance presented by the radiator
  • Rth ch is the thermal resistance of the cold plate (of the English "cold p ⁇ ate") of semiconductor 2
  • Rth jc is the thermal resistance between the cold plate and the silicon junction
  • T A is the ambient temperature.
  • the equations described show how the temperature acquired by the power semiconductor 2 depends on the average power, which is directly related to the switching frequency. For a given conversion module with a specific radiator and IGBT (i.e. given thermal resistances), it depends on the temperature of the radiator, which in the case of a water-cooled radiator in turn depends on the temperature at the that the cooling water is found.
  • the power semiconductors 2 are manufactured for a maximum working temperature, (being a typical value 125 5 C). However, in order to extend the life of semiconductor 2, semiconductor 2 is not allowed to exceed a maximum safety temperature (typical value 1 15 5 C). This maximum safety temperature limits the output current of the semiconductor 2 below the maximum current for which it has been designed, thus losing the conversion module 1 ability to evacuate power to the Use the maximum design output current.
  • these same power semiconductors that are part of the conversion module 1 are capable of evacuating a greater current, in this example, of 1350A.
  • this increase in the output current implies an increase in the temperature at the junction of the IGBT, (following the example, from 1 1 1 g C to 123 5 C), thus finding the power semiconductors 2 outside the safety margins imposed.
  • the switching frequency (2KHz) while maintaining the output current (1350A), there is also a reduction in temperature (from 123 5 C to 1 13 5 C), once again within the design limits .
  • the temperature at the junction is reduced in the same proportion.
  • the maximum current that the different conversion modules 1 can handle is completely linked to the switching frequency of the semiconductors 2 and the coolant inlet temperature.
  • FIG. 2 An example of a system according to a preferred embodiment of the present invention is presented in Figure 2.
  • the system consists of four conversion units 14, each of which comprises a network side disconnector 6, a network filter 7, a first conversion module 8 AC / DC, a second conversion module 9 DC / AC, a dv / dt filter 10, a machine-side switch 1 1, and control means 12.
  • the control means 12 in turn implements a preferred embodiment of the method of the invention, as described below.
  • the control means 12 comprise an independent controller in each conversion unit 14, but the option of using a single controller connected to all conversion units 14.
  • the converter system is adapted to be connected at one end to an electrical network 15, and at another end to a power generation system 13.
  • Said power generation system 13 can be a wind system, in which the power supply is especially useful. space saving derived from the present invention, but any other power generation system 13 is also valid. Additionally, the windings of both the network side and the machine side may be electrically decoupled.
  • control means 12 modifies the output current of the rest of the operational conversion modules.
  • Figure 3 shows a conversion system 16 formed by two conversion units 14, which share the RC (resistor and capacitor) of the network filter 7. Also, both conversion units 14 can share the entire network filter 7. again, in case of failure of one of the two conversion units 14, the control means 12 determine the switching frequency of the operating conversion module 14 as a function of the water inlet temperature and set a maximum output current of the Conversion unit 14 operative in order to increase the availability of the conversion system 16 in case of failure.
  • Each conversion unit 14 also comprises a switch on the machine side 1 1 and a switch on DC 6, allowing the conversion unit 14 to be isolated out of service.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

Método y sistema de conversión de energía eléctrica con al menos dos unidades de conversión (14), que comprende medios de control (12) que establecen la corriente máxima de salida de los módulos de conversión operativos, así como la frecuencia de conmutación de la totalidad o de un subgrupo de los módulos de conversión operativos, para aumentar así la disponibilidad del sistema de conversión ante fallos.

Description

METODO Y SISTEMA DE CONVERSION DE ENERGIA ELECTRICA
D E S C R I P C I Ó N
CAMPO DE LA INVENCIÓN
La presente invención se aplica al campo de suministro de energía eléctrica, y más específicamente, a los conversores de energía eléctrica entre la red de suministro y los equipos de generación y consumo de dicha energía.
ANTECEDENTES DE LA INVENCIÓN
La industria dedicada a la generación de energía, y en particular la industria de las energías renovables, requiere sistemas de conversión de energía eléctrica con potencias cada vez mayores. Para conseguir sistemas de conversión de alta potencia, una de las técnicas habituales es utilizar múltiples unidades de conversión en paralelo, de tal forma que para N unidades se obtiene una potencia total igual a N veces la potencia de cada unidad de conversión. Se define como unidad de conversión, al dispositivo electrónico que se encarga de adaptar una energía eléctrica de entrada, ya sea corriente alterna (AC) o corriente continua (DC), a unas características impuestas sobre la salida del mismo, estando dicha salida conectada a una carga o a un punto de evacuación de energía.
La principal razón que hace necesaria el uso de varias unidades de conversión en paralelo, son los módulos de conversión. En general, cada unidad de conversión está formada por un módulo de conversión que se conecta a un generador (módulo de conversión lado máquina) y un módulo de conversión que se conecta a una red eléctrica (módulo de conversión lado red). Cada módulo está formado por semiconductores de potencia tales como, transistores bipolares de puerta aislada, (IGBT, del inglés "insulated gate bipolar transistor"), tiristor conmutado de puerta integrada (IGCT, del inglés "Integrated Gate Comutated Thyristor") y transistores bipolares de puerta aislada aumentados mediante inyección (IEGT, del inglés "injection enhanced insulated gate bipolar transistor"), los cuales trocean una tensión de entrada mediante conmutaciones a alta frecuencia con el fin de obtener a la salida una tensión cuyo valor medio instantáneo sea el deseado.
Dotar a los sistemas completos de múltiples unidades de conversión, ha provocado que las unidades de conversión dispongan de elementos de desacoplo necesarios, que les permiten aislarse del resto de unidades en caso de fallo. Cuando ocurre un fallo, es decir, cuando una unidad de conversión deja de estar operativa (por ejemplo, porque al menos uno de sus módulos de conversión falla) y no es capaz de generar la corriente de salida que se le requiere, la potencia máxima que el sistema en conjunto es capaz de generar decae en un factor de 1/N.
Sin embargo, si se aumenta el número de unidades de conversión para reducir dicho factor de 1/N, se produce un aumento de la complejidad del sistema, así como de su costo y del espacio necesario para instalarlo. Asimismo, aumenta la probabilidad de que se produzca un fallo en alguna de las unidades de conversión.
En particular, los requerimientos de sistemas de conversión de alta potencia con una mejor disponibilidad han aumentado considerablemente debido al auge de las nuevas ubicaciones de generación de energía eólica fuera de costa (del inglés "offshore"), en los que se incrementa la problemática debido a la dificultad que presenta su mantenimiento y la gran pérdida de energía que supone su falta de disponibilidad. Por ello, diferentes sistemas y métodos de aplicación se han desarrollado con el objetivo de aumentar la disponibilidad de los sistemas de conversión.
US 2006/0214428 presenta un sistema de conversión dotado de una unidad de conversión de reserva, que es utilizada cuando alguna de las demás unidades de conversión queda fuera de servicio.
Esta solución implica por lo tanto sobredimensionar el número de unidades de conversión del sistema, lo cual tiene el claro inconveniente de suponer un aumento de la complejidad, el coste, y del espacio requerido. Este inconveniente se ve agravado en turbinas eólicas donde el sistema de conversión se ubica en la barquilla del aerogenerador, donde el espacio es realmente limitado debido al alto costo que presentan los materiales que se utilizan en la envolvente de la barquilla.
Adicionalmente, supone un uso ineficiente de los recursos, ya que la unidad de reserva sólo actúa cuando falla alguna de las otras unidades de conversión; y sólo es capaz de compensar el fallo de una única unidad de conversión (si se desea compensar el fallo de más unidades, es necesario instalar múltiples unidades de reserva, agravando todos los inconvenientes descritos). Por otra parte, WO2009/027520 aprovecha el sobredimensionamiento que tienen los módulos de conversión lado red en la corriente de salida, debido a los bajos factores de potencia que les exigen los códigos de red.
Para ello presenta un sistema de conversión en el cual todas las unidades de conversión están acopladas en DC y pueden trabajar como módulo de conversión de lado máquina o módulo de conversión lado red en función del estado de las diferentes unidades de conversión.
Esta invención presenta el inconveniente de que en el caso de que si alguna de las unidades de conversión se encuentra fuera de servicio, el sistema de conversión no tiene capacidad suficiente para cumplir los requerimientos de red para los que fue concebida.
Adicionalmente, obliga a todas las unidades de conversión a estar dimensionadas para cumplir los requerimientos exigidos en los módulos de conversión lado red, aumentando la complejidad y el coste de los mismos, y resultando en un uso ineficiente de recursos cuando éstos operan como módulos de conversión lado máquina.
El objeto de la presente invención es dotar al sistema de conversión de una mayor disponibilidad con las unidades de conversión necesarias para las que ha sido concebida para operar en condiciones nominales.
Existe por lo tanto la necesidad de un sistema de conversión de energía eléctrica con una mayor disponibilidad y menores requerimientos de espacio, capaz de adaptarse a situaciones de fallo de alguna de las unidades de conversión que lo forman, sin sobredimensionar por ello el número o las prestaciones de dichas unidades de conversión, y realizando por lo tanto un uso eficiente de los recursos que lo forman.
RESUMEN DE LA INVENCIÓN
La presente invención soluciona los problemas anteriormente descritos mediante un conversor de energía eléctrica que adapta la corriente máxima de salida de los módulos de conversión que lo forman cuando alguna de las unidades de conversión deja de estar operativa (ya sea parcial o totalmente, es decir, siempre que dicha unidad no es capaz de generar la corriente máxima que tiene asignada). Esta invención resulta por tanto especialmente útil en sistemas de generación de energía eólica, en los que el espacio dedicado al conversor de energía es muy limitado, aunque puede, no obstante, ser aplicada a cualquier otro entorno.
En un primer aspecto de la invención se proporciona un sistema de conversión de energía eléctrica que comprende al menos dos unidades de conversión, cada una de las cuales comprende a su vez un primer módulo de conversión adaptado para conectarse a una red eléctrica (el cual, por claridad, denominaremos en el presente documento módulo de conversión lado red) y un segundo módulo de conversión adaptado para conectarse a un dispositivo de generación eléctrica (el cual denominaremos en el presente documento módulo de conversión lado máquina). Cada módulo de conversión tiene una corriente máxima de salida, quedando por tanto la potencia de salida del sistema determinada por dichas corrientes máximas.
Para permitir adaptar el sistema a situaciones en las que se produce un fallo en alguna de las unidades de conversión y ésta deja de ser capaz de generar la corriente máxima de salida asignada, el sistema comprende medios de control que establecen la corriente máxima de salida de los módulos de conversión operativos, así como la frecuencia de conmutación de la totalidad o de un subgrupo de los módulos de conversión operativos para aumentar así la disponibilidad del sistema de conversión ante fallos.
Con el fin de establecer dicha corriente máxima de salida, el sistema incorpora
- Medios de control adaptados para:
- Detectar el número de unidades de conversión operativas del sistema
- Medir la temperatura del líquido refrigerante en al menos un punto representativo del sistema de conversión
- Calcular y establecer la frecuencia de conmutación en al menos un módulo de conversión operativo en función del número de unidades de conversión operativas y de la temperatura del líquido refrigerante.
- Establecer una corriente máxima de salida de cada módulo de conversión en función de la temperatura del líquido refrigerante y de la frecuencia de conmutación.
- Módulos de conversión adaptados para:
- Operar a la frecuencia establecida por los medios de control
Preferentemente, los medios de control son, o bien un único controlador conectado a todas las unidades de conversión y que por lo tanto establece la corriente máxima de salida de los módulos de conversión que las constituyen de manera sincronizada; o bien una pluralidad de controladores independientes, cada uno de los cuales se conecta a una unidad de conversión y la controla de manera aislada.
En una realización preferida, un punto representativo del sistema de conversión para medir la temperatura de líquido refrigerante es la entrada de al menos uno de los módulos de conversión.
El sistema de conversión es válido para cualquier configuración de los módulos de conversión lado máquina y de los módulos de conversión lado red, siendo dos opciones preferentes una configuración de cuatro cuadrantes (4Q) y una configuración pasiva.
En un segundo aspecto de la invención, se presenta un método de conversión de energía eléctrica que comprende los siguientes pasos:
- detectar el número de unidades de conversión operativas,
- establecer las necesidades de corriente máxima de salida de los módulos de conversión que constituyen las unidades de conversión que se encuentran operativas.
- medir la temperatura del líquido refrigerante en un punto representativo del sistema de conversión.
- calcular y establecer la frecuencia de conmutación de al menos un módulo de conversión operativo, en función del número de unidades de conversión operativas y de la temperatura del líquido refrigerante.
En una realización preferida, los módulos de conversión operativos operan a la frecuencia de conmutación establecida por los medios de control.
Se presentan dos opciones preferentes respecto a la sincronización de la actuación sobre los módulos de conversión:
- Modificar la corriente máxima de salida de todos los módulos de conversión de manera sincronizada.
- Modificar la corriente máxima de salida de cada módulo de conversión de manera independiente.
Se consigue por lo tanto con el presente método y sistema adaptarse a situaciones de fallo de alguna de las unidades de conversión, compensando parcial o totalmente la disminución de potencia de salida causada por dicho fallo, y sin necesidad de sobredimensionar el número de unidades de conversión ni utilizar unidades de conversión de reserva, reduciendo así el espacio y los componentes necesarios del conversor. Ésta y otras ventajas de la invención serán aparentes a la luz de la descripción detallada de la misma.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Con objeto de ayudar a una mejor comprensión de las características de la invención de acuerdo con un ejemplo preferente de realización práctica de la misma y para complementar esta descripción, se acompaña como parte integrante de la misma las siguientes figuras, cuyo carácter es ilustrativo y no limitativo:
La figura 1 muestra un módulo convertidor binivel DC/AC convencional de acuerdo con el estado de la técnica, compuesto a su vez por tres células de conmutación, una por fase.
La figura 2 presenta un sistema de conversión de energía eléctrica con cuatro unidades de conversión, de acuerdo a una realización preferente de la presente invención, así como una red eléctrica y un dispositivo generador de energía como ejemplo de interacción.
La figura 3 muestra un sistema de conversión de energía eléctrica de acuerdo a otra realización preferente de la presente invención, con dos unidades de conversión que comparten el RC del filtro de red.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
En este texto, el término "comprende" y sus derivaciones (como "comprendiendo", etc.) no deben entenderse en un sentido excluyente, es decir, estos términos no deben interpretarse como excluyentes de la posibilidad de que lo que se describe y define pueda incluir más elementos, etapas, etc.
Nótese asimismo que a pesar de que la descripción detallada de la invención se realiza en función de una serie de realizaciones preferentes con un número determinado de unidades de conversión y con unas ciertas características de la tensión de entrada y salida del sistema, éste es válido para cualquier otro número de unidades de conversión, así como para cualquier otra configuración de entrada y salida del sistema.
Por otra parte, se debe entender que cuando en esta invención se habla de líquido refrigerante (por ejemplo, agua) no se limita a sistemas de conversión exclusivamente de refrigeración líquida sino que debe extrapolarse el concepto a sistemas que puedan ser refrigerados por aire.
La figura 1 presenta un módulo de conversión 1 de energía eléctrica convencional, con topología binivel DC/AC. El módulo de conversión 1 está compuesto por tantas células de conmutación 3 como fases activas, y a su vez, cada una de estas células de conmutación 3 está compuesta por una pluralidad de semiconductores 2 de potencia (en este ejemplo, dos semiconductores 2 por célula de conmutación 3 al tratarse de un sistema binivel). Cada célula de conmutación 3 se encarga de fijar a la salida AC 4 la tensión media instantánea necesaria en la fase activa correspondiente. Para ello, los semiconductores 2 trocean la tensión de entrada DC 5.
Durante el encendido del IGBT, aparece un estado transitorio en el que la tensión entre el colector y emisor del semiconductor 2 de potencia decrece hasta ser cercana a cero, mientras que la corriente que circula por el semiconductor 2 crece hasta el valor deseado. Durante el apagado del IGBT, la tensión crece hasta pasar a ser la tensión de entrada DC 5 y la corriente decrece hasta cero. Finalmente, durante el apagado del diodo, la tensión decrece desde aproximadamente cero hasta menos la tensión de entrada DC 5, y la corriente decrece desde el valor correspondiente a la tensión que circulaba en el instante de la transición, hasta cero.
Todos estos transitorios provocan una disipación de energía en las conmutaciones del semiconductor 2 de potencia, denominada perdidas de conmutación.
Durante su funcionamiento en conducción, también existe una energía de perdida que depende, para una corriente dada, de la caída de tensión que se produce entre el colector y emisor del semiconductor 2. Esta disipación de energía se denomina perdida de conducción.
Para una frecuencia de conmutación del modulo de conversión 1 , se puede expresar la potencia media de pérdidas del semiconductor 2 de potencia durante un periodo de conmutación como:
1
Pav = Fswx j™ 'V(t). I (t). dt
Donde Pav es la potencia media de pérdidas, Fsw es la frecuencia de conmutación, y V.l es la potencia instantánea disipada en el semiconductor 2.
La potencia disipada en cada semiconductor 2 de potencia, se transforma en calor, incrementando la temperatura de trabajo del semiconductor 2. La transferencia térmica que se produce en el semiconductor 2 debido a su potencia de pérdidas se calcula típicamente mediante elementos finitos teniendo en cuenta el sistema de forma tridimensional.
Mediante un modelo simplificado en estado estacionario, se tiene que la temperatura en la unión del semiconductor 2 se puede representar por las siguientes ecuaciones:
TJIGBT = PavIGBT x (Rthha + Rthch + Rthjc) + TA TjpwD = PavFWD x (Rthha + Rthch + Rthjc) + TA
Donde PaviGBT es la potencia media de pérdidas en el IGBT; PavpwB es la potencia media de perdidas en el diodo; Rthha es la resistencia térmica que presenta el radiador; Rthch es la resistencia térmica de la placa fría (del inglés "cold píate") del semiconductor 2; Rthjc es la resistencia térmica entre la placa fría y la unión de silicio; y TA es la temperatura ambiente.
Mediante las ecuaciones descritas se observa como la temperatura que adquiere el semiconductor 2 de potencia depende de la potencia media, la cual está directamente relacionada con la frecuencia de conmutación. Para un modulo de conversión dado con un radiador y un IGBT concretos (es decir, unas resistencias térmicas dadas), depende de la temperatura del radiador, el cual si se trata de un radiador refrigerado por agua depende a su vez de la temperatura a la que se encuentra el agua refrigerante. Los semiconductores 2 de potencia se fabrican para una temperatura máxima de trabajo, (siendo un valor típico 1255C). Sin embargo, con el objetivo de alargar la vida del semiconductor 2, no se permite que el semiconductor 2 supere una temperatura máxima de seguridad (valor típico 1 155C). Esta temperatura máxima de seguridad, limita la corriente de salida del semiconductor 2 por debajo de la corriente máxima para la que ha sido diseñado, perdiendo por tanto el modulo de conversión 1 capacidad de evacuar potencia al no utilizar la corriente máxima de salida de diseño.
Si tomamos como ejemplo un módulo de conversión 1 con una frecuencia de conmutación de 2,5Khz, en el cual se tiene una tensión de continua igual a 1080V, según el modelo descrito se extrae una corriente eficaz de salida de 1000A cuando la temperatura de entrada de agua es de 555C.
Sin embargo, por diseño estos mismos semiconductores de potencia que forman parte del modulo de conversión 1 , son capaces de evacuar una corriente mayor, en este ejemplo, de 1350A. Bajo las mismas condiciones, este aumento en la corriente de salida supone un incremento de la temperatura en la unión del IGBT, (siguiendo con el ejemplo, de 1 1 1 gC a 1235C), encontrándose por tanto los semiconductores 2 de potencia fuera de los márgenes de seguridad impuestos. No obstante, al reducir la frecuencia de conmutación (2KHz) manteniendo la corriente de salida (1350A), también se produce una reducción en la temperatura (de 1235C a 1 135C), volviendo a estar dentro de los límites de diseño.
Asimismo, si se reduce o bien la temperatura ambiente en refrigeraciones de aire, o bien la temperatura de entrada de agua, la temperatura en la unión se ve reducida en la misma proporción.
Con esta explicación se puede comprender que la máxima corriente que los diferentes módulos de conversión 1 pueden llegar a manejar está completamente ligada a la frecuencia de conmutación de los semiconductores 2 y a la temperatura de entrada del líquido refrigerante.
En la figura 2 se presenta un ejemplo de un sistema de acuerdo a una realización preferente de la presente invención. En particular, el sistema está formado por cuatro unidades de conversión 14, cada una de las cuales comprende un seccionador de lado red 6, un filtro de red 7, un primer módulo de conversión 8 AC/DC, un segundo módulo de conversión 9 DC/AC, un filtro dv/dt 10, un seccionador de lado máquina 1 1 , y unos medios de control 12. Los medios de control 12 implementan a su vez una realización preferente del método de la invención, tal y como se describe a continuación. Asimismo, en el presente ejemplo los medios de control 12 comprenden un controlador independiente en cada unidad de conversión 14, pero se contempla también la opción de utilizar un único controlador conectado a todas las unidades de conversión 14.
El sistema convertidor está adaptado para conectarse en un extremo a una red eléctrica 15, y en otro extremo a un sistema de generación de energía 13. Dicho sistema de generación de energía 13 puede tratarse de un sistema eólico, en el cual resulta especialmente útil el ahorro de espacio derivado de la presente invención, pero es válido asimismo cualquier otro sistema de generación de energía 13. Adicionalmente, los devanados tanto del lado red como del lado máquina pueden estar desacoplados eléctricamente.
Si alguna de las unidades de conversión 14 que forman parte del sistema queda fuera de servicio, es decir, no es capaz de proporcionar la corriente de salida requerida, los medios de control 12 modifican la corriente de salida del resto de módulos de conversión operativos.
Si se reduce la temperatura del líquido refrigerante (por ejemplo la temperatura de entrada de agua) en un factor ΔΤ, la temperatura en la unión se ve reducida también en dicho factor. Si suponemos que el sistema está formado por N unidades de conversión 14 que evacúan cada una de ellas unas pérdidas máximas al agua de Puc. Las pérdidas totales (Ptotal) del sistema de conversión son Ptotal=N x Puc.
Si una unidad de conversión se queda fuera de servicio, se tiene que si la corriente máxima de salida de cada unidad de conversión 14 permanece constante (3 x 1000A para un sistema con cuatro unidades originalmente y una salida nominal de 4000A), las perdidas evacuadas al agua del nuevo sistema son de (N-1 ) veces las pérdidas de cada unidad de conversión 14, es decir: Ptotal=(N-1 ) x Puc.
Por lo tanto si suponemos que tenemos un salto térmico entre la entrada y la salida del intercambiador de pérdidas del sistema de conversión de k (K/kW), si el sistema de conversión se encuentra con todas las unidades de conversión 14 operativas (corriente máxima de salida de 4 x 1000A=4000A) se tiene el salto térmico respecto al ambiente de ΔΤ=(Ν x Puc) x k.
Asimismo, si una unidad de conversión (14) se queda fuera de servicio (corriente máxima de salida de 3x1000A=3000A) se tiene el salto térmico respecto al ambiente de ΔΤ=((Ν-1 ) x Puc) x k.
Por lo tanto se tiene que el salto térmico entre el ambiente y el líquido refrigerante en el caso de que una unidad de conversión 14 se quede fuera de servicio se reduce según (ΔΤη-1 )/ΔΤη=(Ν-1 )/Ν. Conociendo la nueva temperatura de entrada de agua y sabiendo las necesidades máximas de corriente que se van a necesitar en los módulos de conversión operativos, se puede calcular la frecuencia de conmutación de los mismos. Dicha frecuencia de conmutación puede cambiarse independientemente en el módulo de conversión de lado red 8, en el módulo de conversión de lado máquina 9, o en ambos.
La figura 3 presenta un sistema de conversión 16 formado por dos unidades de conversión 14, que comparten el RC (resistencia y condensador) del filtro de red 7. Asimismo, ambas unidades de conversión 14 pueden compartir la totalidad del filtro de red 7. De nuevo, en caso de fallo de una de las dos unidades de conversión 14, los medios de control 12 determinan la frecuencia de conmutación del módulo de conversión 14 operativo en función de la temperatura de entrada de agua y fija una corriente máxima de salida de la unidad de conversión 14 operativa con el fin de aumentar la disponibilidad del sistema de conversión 16 en caso de fallo.
Cada unidad de conversión 14 comprende también un seccionador en el lado máquina 1 1 y un seccionador en DC 6, permitiendo aislar la unidad de conversión 14 fuera de servicio.
A la vista de esta descripción y figuras, el experto en la materia podrá entender que la invención ha sido descrita según algunas realizaciones preferentes de la misma, pero que múltiples variaciones pueden ser introducidas en dichas realizaciones preferentes, sin salir del objeto de la invención tal y como ha sido reivindicada.

Claims

REIVINDICACIONES
1 . Sistema de conversión de energía eléctrica que comprende al menos dos unidades de conversión (14), comprendiendo cada unidad de conversión (14) un primer módulo de conversión (8) adaptado para conectarse a una red eléctrica (15) y un segundo módulo de conversión (9) adaptado para conectarse a un dispositivo de generación eléctrica (13) caracterizado porque el sistema comprende, además medios de control (12) adaptados para:
- detectar un número de unidades de conversión (14) operativas del sistema, - medir una temperatura del líquido refrigerante en al menos un punto del sistema de conversión,
- calcular y establecer una frecuencia de conmutación en al menos un módulo de conversión operativo en función del número de unidades de conversión (14) operativas y de la temperatura de entrada del líquido refrigerante,
- establecer una corriente máxima de salida de cada módulo de conversión en función de la temperatura del líquido refrigerante y de la frecuencia de conmutación;
y módulos de conversión adaptados para operar a la frecuencia establecida por los medios de control (12).
2. Sistema de conversión según la reivindicación anterior caracterizado porque los medios de control (12) son un único controlador conectado a todas las unidades de conversión (14).
3. Sistema de conversión según la reivindicación 1 caracterizado porque los medios de control (12) comprenden una pluralidad de controladores independientes, estando cada uno de dichos controladores independientes conectado a una unidad de conversión (14).
4. Sistema de conversión según cualquiera de las reivindicaciones anteriores caracterizado porque los primeros módulos de conversión (8), y los segundos módulos de conversión (9) tienen una configuración seleccionada entre: configuración de cuatro cuadrantes, y configuración pasiva.
5. Método de conversión de energía eléctrica que comprende:
- detectar un número de unidades de conversión operativas,
- establecer unas necesidades de corriente máxima de salida de unos módulos de conversión, que constituyen unas unidades de conversión que se encuentran operativas,
- medir la temperatura de un líquido refrigerante en al menos un punto del sistema de conversión,
- calcular y establecer una frecuencia de conmutación de al menos un módulo de conversión operativo en función del número de unidades de conversión operativas y de la temperatura del líquido refrigerante.
6. Método de conversión según la reivindicación 5 caracterizado porque los módulos de conversión operativos operan a la frecuencia de conmutación establecida por los medios de control.
7. Método de conversión según cualquiera de las reivindicaciones 5 o 6 caracterizado porque el paso de establecer la corriente máxima de salida de las unidades de conversión (3) operativas comprende establecer de forma sincronizada la corriente máxima de salida de todas las unidades de conversión (3) operativas.
8. Método de conversión según cualquiera de las reivindicaciones 5 a 7 caracterizado porque el paso de establecer la corriente máxima de salida de las unidades de conversión (3) operativas comprende modificar independientemente la corriente máxima de salida de todas las unidades de conversión (3) operativas.
PCT/ES2011/070662 2011-09-22 2011-09-22 Electric power converter system with parallel units and fault tolerance WO2013041737A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/ES2011/070662 WO2013041737A1 (es) 2011-09-22 2011-09-22 Electric power converter system with parallel units and fault tolerance
EP11791010.9A EP2760120A1 (en) 2011-09-22 2011-09-22 Electric power converter system with parallel units and fault tolerance
BR112014007049-0A BR112014007049B1 (pt) 2011-09-22 2011-09-22 sistema e método de conversão de energia elétrica
US14/346,654 US10680531B2 (en) 2011-09-22 2011-09-22 Electric power converter system with parallel units and fault tolerance
JP2014531282A JP6062946B2 (ja) 2011-09-22 2011-09-22 電気エネルギー変換システム及び方法
KR1020147010402A KR101942609B1 (ko) 2011-09-22 2011-09-22 병렬 유닛 및 내고장성을 갖는 전력 변환 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2011/070662 WO2013041737A1 (es) 2011-09-22 2011-09-22 Electric power converter system with parallel units and fault tolerance

Publications (1)

Publication Number Publication Date
WO2013041737A1 true WO2013041737A1 (es) 2013-03-28

Family

ID=45093785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070662 WO2013041737A1 (es) 2011-09-22 2011-09-22 Electric power converter system with parallel units and fault tolerance

Country Status (6)

Country Link
US (1) US10680531B2 (es)
EP (1) EP2760120A1 (es)
JP (1) JP6062946B2 (es)
KR (1) KR101942609B1 (es)
BR (1) BR112014007049B1 (es)
WO (1) WO2013041737A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419442B2 (en) 2012-08-14 2016-08-16 Kr Design House, Inc. Renewable energy power distribution system
CN106153208A (zh) * 2015-05-12 2016-11-23 通用汽车环球科技运作有限责任公司 无需使用专用温度估计或测量装置的在线igbt结的温度估计

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201718315D0 (en) * 2017-11-06 2017-12-20 Owen Mumford Ltd Auto-injector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19748479C1 (de) * 1997-11-03 1999-04-15 Aloys Wobben Pulswechselrichter mit variabler Pulsfrequenz und Windenergieanlage mit einem Pulswechselrichter
WO2005027301A1 (en) * 2003-09-16 2005-03-24 General Electric Company Method for operating a frequency converter of a generator
US20060214428A1 (en) 2003-06-16 2006-09-28 Repower Systems Ag Wind farm
WO2009027520A2 (en) 2007-08-31 2009-03-05 Vestas Wind Systems A/S Modular converter system with interchangeable converter modules
WO2010079235A2 (en) * 2009-01-12 2010-07-15 Vestas Wind Systems A/S Load dependent converter switching frequency
US20110133461A1 (en) * 2011-01-17 2011-06-09 Vestas Wind Systems A/S Operating Wind Turbines Under Converter Faults

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7808780B2 (en) * 2008-02-28 2010-10-05 International Business Machines Corporation Variable flow computer cooling system for a data center and method of operation
JP2011135713A (ja) * 2009-12-25 2011-07-07 Toyota Motor Corp 電動機駆動制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19748479C1 (de) * 1997-11-03 1999-04-15 Aloys Wobben Pulswechselrichter mit variabler Pulsfrequenz und Windenergieanlage mit einem Pulswechselrichter
US20060214428A1 (en) 2003-06-16 2006-09-28 Repower Systems Ag Wind farm
WO2005027301A1 (en) * 2003-09-16 2005-03-24 General Electric Company Method for operating a frequency converter of a generator
WO2009027520A2 (en) 2007-08-31 2009-03-05 Vestas Wind Systems A/S Modular converter system with interchangeable converter modules
WO2010079235A2 (en) * 2009-01-12 2010-07-15 Vestas Wind Systems A/S Load dependent converter switching frequency
US20110133461A1 (en) * 2011-01-17 2011-06-09 Vestas Wind Systems A/S Operating Wind Turbines Under Converter Faults

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2760120A1

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419442B2 (en) 2012-08-14 2016-08-16 Kr Design House, Inc. Renewable energy power distribution system
CN106153208A (zh) * 2015-05-12 2016-11-23 通用汽车环球科技运作有限责任公司 无需使用专用温度估计或测量装置的在线igbt结的温度估计
CN106153208B (zh) * 2015-05-12 2019-08-20 通用汽车环球科技运作有限责任公司 无需使用专用温度估计或测量装置的在线igbt结的温度估计

Also Published As

Publication number Publication date
US20140312704A1 (en) 2014-10-23
KR101942609B1 (ko) 2019-01-25
JP2014526878A (ja) 2014-10-06
US10680531B2 (en) 2020-06-09
BR112014007049B1 (pt) 2020-12-29
KR20140064983A (ko) 2014-05-28
BR112014007049A2 (pt) 2017-03-28
JP6062946B2 (ja) 2017-01-18
EP2760120A1 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
Hillers et al. Optimal design of the modular multilevel converter for an energy storage system based on split batteries
JP3314256B2 (ja) 電気車の電力変換装置
US8964387B2 (en) Power converter arrangement and method for operating a power converter arrangement
US11026354B2 (en) Cooling methods for medium voltage drive systems
US11211878B2 (en) DC chopper for MMC cell with integrated chopper resistor
BR102015018236A2 (pt) sistema de potência para um navio e método para fornecer potência para um navio
Backlund et al. Topologies, voltage ratings and state of the art high power semiconductor devices for medium voltage wind energy conversion
ES2714426T3 (es) Dispositivo para conmutar corrientes continuas
Carroll Power electronics for very high power applications
US20170170744A1 (en) Vehicle power conversion device
WO2013041737A1 (es) Electric power converter system with parallel units and fault tolerance
ES2928907T3 (es) Método de funcionamiento de una pluralidad de circuitos troceadores
Li et al. Application of active NPC converter on generator side for MW direct-driven wind turbine
US20200099312A1 (en) Converter
BR102015018691A2 (pt) conversor de potência e sistema para conversão de potência
ES2523823T3 (es) Unidad de alimentación de CC para una unidad de suministro de potencia
JP2006042406A (ja) 電力変換装置のスタック構造
BR102015018280A2 (pt) sistema de potência e método para fornecer potência
Shakweh New breed of medium voltage converters
CN108242884B (zh) 单路mppt并网用的光伏逆变器系统及其短路保护方法
BRPI0008892B1 (pt) Installation for protection of dc / ac voltage converters.
Xin et al. A new voltage class 2.3 kV IGBT enables new solutions for 1500 VDC system
Li et al. ETO light multilevel converters for large electric vehicle and hybrid electric vehicle drives
Atcitty et al. Smart GaN-based Inverters for Grid-tied Energy Storage Systems-Presentation.
Iosifidis et al. Design of press-pack thyristor modules based on phase-change material cooling for SSSC short-circuit protection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11791010

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014531282

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011791010

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011791010

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147010402

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14346654

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014007049

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014007049

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140324