WO2013041011A1 - 通信方法、终端、基站和系统 - Google Patents

通信方法、终端、基站和系统 Download PDF

Info

Publication number
WO2013041011A1
WO2013041011A1 PCT/CN2012/081526 CN2012081526W WO2013041011A1 WO 2013041011 A1 WO2013041011 A1 WO 2013041011A1 CN 2012081526 W CN2012081526 W CN 2012081526W WO 2013041011 A1 WO2013041011 A1 WO 2013041011A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
location
csr
scheduling request
Prior art date
Application number
PCT/CN2012/081526
Other languages
English (en)
French (fr)
Inventor
胡南
Original Assignee
中国移动通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信集团公司 filed Critical 中国移动通信集团公司
Publication of WO2013041011A1 publication Critical patent/WO2013041011A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to MTC communication technologies in the field of communications, and in particular to communication methods, terminals, base stations and systems.
  • MTC machine-type communication
  • devices devices and devices
  • the discussion of related study items is just beginning in the 3GPP standard, and it is being investigated whether it is necessary to optimize the network for this type of communication, especially if the future massive devices are applied to the actual network, whether it will be Human to Human (human) Communication with people) has an impact.
  • MTC communication considering the application prospects of MTC communication in the future, how to ensure the performance of MTC communication is an important research direction.
  • the core network specification 22.368 defines 16 important features in MTC communication, including low mobility, time control, delay tolerance, online small data transmission, etc., for different applications, including metering ), remote control, etc., may have one feature or a combination of several features, and existing protocols are not efficient in supporting MTC communication.
  • the vertical axis in Fig. 1 represents the frequency domain bandwidth of the channel, and the horizontal axis represents the time domain resource occupied by the channel.
  • the SR (scheduling request) at different time-frequency positions in Figure 1 is available to different users. If the device type communication terminal needs to send uplink data to the evolved base station, it must first send a scheduling request to the evolved base station on the SR. Only after the evolved base station receives the scheduling request of the machine type communication terminal, it is possible to pass the downlink control.
  • the channel indicates that the machine type communication terminal transmits the uplink data at a specific location of the data transmission portion in FIG. When the machine type communication terminal transmits a scheduling request on the SR of the time-frequency location, the evolved base station notifies the machine type communication terminal through the higher layer signaling.
  • the machine type communication terminal receives the PUCCH configuration command sent by the evolved base station, and the command includes a plurality of parameters, by which the device type communication terminal can determine the time-frequency position and the repetition period of the uplink scheduling request SR. 3) if the uplink data needs to be sent, the machine type communication terminal sends a scheduling request to the evolved base station on the SR allocated to it;
  • the evolved base station After receiving the scheduling request, the evolved base station allocates uplink data transmission resources to the machine type communication terminal through the downlink control channel;
  • the machine type communication terminal performs uplink transmission according to the allocated uplink data transmission resource. If the machine type communication terminal does not receive the data transmission resource allocation indication sent by the evolved base station after issuing the SR, it needs to wait for the next SR transmission opportunity to appear. And resend the scheduling request.
  • the uplink communication has the following requirements:
  • the machine type communication terminal is required to quickly transmit the alarm information to the evolved base station;
  • the existing uplink communication mechanism in order to ensure that the machine type communication terminal can quickly transmit the uplink data, it is necessary to allocate more SR opportunities for the machine type communication terminal, that is, the cycle of assigning the SR opportunity to the machine type communication terminal is short (several Milliseconds or ten milliseconds).
  • the machine type communication terminal since the machine type communication terminal is often in a dormant state from the viewpoint of power saving, the allocated SR is often wasted. If the saving of the air interface resource is considered, the period of setting the opportunity for the machine type communication terminal SR is long (ten or dozens of minutes), and the requirement that the machine type communication terminal can quickly send the uplink data at any time cannot be satisfied. Therefore, the prior art is applied to the alarm type MTC application, or the waste of the air interface resource may be caused or the delay of the transmission of the uplink data by the machine type communication terminal is large.
  • the machine type communication terminal only transmits the SR at a specific time-frequency position. If it is missed once, it needs to wait for the next time-frequency position to send the SR, and for the alarm-like MTC application, if an alarm occurs, it is required.
  • the machine type communication terminal quickly transmits uplink alarm information to the evolved base station.
  • the object of the present invention is to provide a communication method, terminal, base station and system for the defect that the data upload of the machine type communication in the prior art is not timely.
  • the communication method according to the embodiment of the present invention includes: the base station sends the CSR location information that is available to the multiple terminals to the terminal, and receives the uplink scheduling request reported by the terminal at the CSR location.
  • the base station After receiving the uplink scheduling request of the terminal, the base station includes: the base station identifies the terminal that issues the uplink scheduling request according to the uplink scheduling request, and allocates the uplink transmission resource to the terminal.
  • the step of the base station identifying the terminal that sends the uplink scheduling request includes: determining, by the base station, the terminal that sends the uplink scheduling request according to the terminal identifier carried by the uplink scheduling request.
  • the method further includes: the base station delivering, to the terminal, SR location information that is available for a single terminal.
  • the repetition period of the SR is longer than the repetition period of the CSR.
  • a communication method is provided.
  • the communication method includes: the terminal receives the CSR location information that is sent by the base station and is shared by the multiple terminals, and sends an uplink scheduling request to the base station at the CSR location.
  • the terminal After the step of transmitting the uplink scheduling request to the base station, the terminal includes: the terminal receives the uplink transmission resource allocated by the base station according to the uplink scheduling request, and uses the uplink transmission resource to perform uplink data transmission.
  • the method further includes: the terminal receiving the SR location information that is sent by the base station and is dedicated to a single terminal.
  • the specific includes:
  • the terminal determines the nearest subframe that carries the SR location and the CSR location; if the subframe carrying the SR location precedes the subframe carrying the CSR location or both are in the same subframe, the terminal selects to carry the SR in the subframe.
  • the uplink scheduling request is sent to the base station at the SR location of the location subframe. If the subframe carrying the SR location is after the subframe carrying the CSR location, the terminal selects to send an uplink scheduling request to the base station at the CSR location of the subframe carrying the CSR location.
  • the method further includes: after transmitting the uplink scheduling request to the base station, if the terminal does not receive the indication information for allocating the uplink transmission resource that is sent by the base station, the terminal sends the uplink scheduling request to the base station again at the SR location or the CSR location.
  • a communication terminal includes:
  • the information receiving module is configured to receive CSR location information that is sent by the base station and is shared by the multiple terminals.
  • the first request sending module is configured to send an uplink scheduling request to the base station at the CSR location.
  • the terminal further includes:
  • the resource receiving module is configured to receive an uplink transmission resource that is allocated by the base station according to the uplink scheduling request, and a data transmission module, configured to use the uplink transmission resource to perform uplink data transmission.
  • the information receiving module is further configured to receive SR location information that is sent by the base station and is dedicated to a single terminal.
  • the terminal specifically includes:
  • a subframe determining module configured to determine a nearest subframe that carries the SR location and the CSR location when the uplink data needs to be sent;
  • a second request sending module configured to: if the subframe carrying the SR location is in the same subframe before the subframe carrying the CSR location, or in the same subframe, select to send an uplink scheduling to the base station at the SR location of the subframe carrying the SR location request.
  • the second request sending module is further configured to: if the subframe carrying the SR location is after the subframe carrying the CSR location, select to send an uplink scheduling request to the base station at the CSR location of the CSR-capable subframe.
  • the terminal further includes:
  • the indication information judging module is configured to: after receiving the uplink scheduling request to the base station, determine whether the indication information of the allocated uplink transmission resource delivered by the base station is received;
  • the second request sending module is further configured to: if the indication information of the allocated uplink transmission resource delivered by the base station is not received, send the uplink scheduling request to the base station again at the SR location or the CSR location.
  • a communication base station includes:
  • the information sending module is configured to send, to the terminal, CSR location information that is shared by the multiple terminals, and the request receiving module is configured to receive an uplink scheduling request that is reported by the terminal at the CSR location.
  • the base station further includes:
  • the terminal identification module is configured to identify the terminal that sends the uplink scheduling request according to the uplink scheduling request, and the resource allocation module is configured to allocate the uplink transmission resource to the identified terminal.
  • the terminal identification module is configured to identify, according to the terminal identifier carried in the uplink scheduling request, the terminal that issues the uplink scheduling request.
  • the information sending module is further used to deliver a single terminal to the terminal.
  • SR location information used.
  • a communication system includes:
  • a base station configured to send, to the terminal, CSR location information that is shared by the multiple terminals, and receive an uplink scheduling request that is reported by the terminal at the CSR location;
  • the terminal is configured to receive CSR location information that is sent by the base station and is shared by the multiple terminals, and send an uplink scheduling request to the base station at the CSR location.
  • the base station is further configured to identify, according to the terminal identifier carried in the uplink scheduling request, the terminal that sends the uplink scheduling request, and allocate the uplink transmission resource to the terminal;
  • the terminal is further configured to receive an uplink transmission resource allocated by the base station according to the uplink scheduling request, and use the uplink transmission resource to perform uplink data transmission.
  • the base station is further configured to send, to the terminal, SR location information that is available for a single terminal;
  • the terminal is further configured to receive the SR location information that is sent by the base station and is dedicated to the single terminal.
  • the uplink data needs to be sent, determine the latest subframe that carries the SR location and the CSR location, and if the subframe carrying the SR location carries the CSR Before the subframe of the location or both of the subframes, the uplink scheduling request is sent to the base station at the SR location of the subframe carrying the SR location; if the subframe carrying the SR location is after the subframe carrying the CSR location, And selecting to send an uplink scheduling request to the base station at the CSR location that carries the CSR location subframe.
  • the terminal is further configured to: after sending the uplink scheduling request to the base station, if the indication information of the allocated uplink transmission resource that is sent by the base station is not received, send the uplink scheduling request to the base station again at the SR location or the CSR location. .
  • the communication method, the terminal, the base station, and the system in the embodiments of the present invention by introducing a CSR shared by multiple MTC terminals, make the uplink communication of the new LTE system more suitable for the MTC application of the alarm type: (1)
  • the first evolved base station can be configured.
  • FIG. 1 is a schematic structural diagram of an LTE uplink channel according to the prior art
  • FIG. 2 is a schematic structural diagram of an LTE uplink channel according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of a communication method in accordance with an embodiment of the present invention.
  • the LTE uplink channel structure of the present invention includes a CSR (common scheduling request), where each CSR occupies two LTE uplink channel RBs (ie, resource blocks).
  • the unit allocated for LTE system resources which is 12 virtual subcarriers in the frequency domain and 0.5 ms slots in the time domain).
  • the modulation mode of the CSR is QPSK, and the location of the CSR is notified by the evolved base station to the MTC terminal in the connected state by using the high layer control signaling, and the MTC terminal can send the C-RNTI of the MTC terminal in the QPSK manner on the CSR.
  • Network temporary identifier used to distinguish the identity of each terminal in the cell).
  • FIG. 3 is a flowchart of a communication method according to an embodiment of the present invention.
  • Step SI 02 The MTC terminal enters an RRC (Radio Resource Control) connection state through random access;
  • RRC Radio Resource Control
  • Step S104 The MTC terminal receives a PUCCH (physical uplink control chanel) configuration command sent by the evolved base station, where the command includes a parameter, by which the MTC terminal can determine the time-frequency location and the repetition period of the transmitting SR. ;
  • PUCCH physical uplink control chanel
  • Step S106 The MTC terminal receives the high layer control signaling sent by the evolved base station, such as RRC signaling or MAC CE signaling, and the signaling content is the time-frequency location, the repetition period, and the orthogonal codeword information that can be used. Or determining the time-frequency location, the repetition period, and the related information using the orthogonal codeword, where the signaling is carried by the RRC control signaling, and may be broadcast signaling or dedicated control signaling;
  • Step S108 If transmission is needed Uplink data, the MTC terminal determines, according to the received PUCCH configuration command and the upper layer control command, the latest subframe in which the SR and the CSR can be sent;
  • Step S1082 If the subframe in which the SR can be sent is before the subframe in which the CSR can be sent or in the same subframe, the MTC terminal sends an uplink scheduling request to the evolved base station at the SR position of the subframe, where the uplink scheduling request corresponds to a specific MTC terminal;
  • Step S1084 If the subframe in which the SR can be sent is after the subframe in which the CSR can be sent, the MTC terminal selects to send the uplink scheduling request of the MTC terminal to the evolved base station at the CSR position of the subframe, where the uplink scheduling request is The sending is implemented by sending a C-RNTI, where each C-RNTI corresponds to one MTC terminal, that is, after receiving the uplink scheduling request, the evolved base station can identify the MTC terminal that sends the request through the C-RNTI;
  • Step S110 If the evolved base station receives the uplink scheduling request at the SR location, according to the location of the SR in the subframe in the received uplink scheduling request, the MTC terminal that sends the uplink scheduling request may be determined, and the downlink control signal is sent.
  • the MTC terminal is allocated an uplink transmission resource; if the evolved base station receives the C-RNTI at the CSR location, the MTC terminal that sends the uplink scheduling request may be determined according to the C-RNTI, and the downlink control signaling is sent to allocate the MTC terminal.
  • Step S112 The MTC terminal performs uplink transmission according to the allocated uplink transmission resource. If the MTC terminal sends an uplink scheduling request (through the SR or CSR), and does not receive the allocation indication of the uplink transmission resource sent by the evolved base station, the MTC terminal Step S108 starts re-operation, that is, the MTC terminal re-sends the uplink scheduling request to the evolved base station at the location of the SR or the CSR until the evolved type The base station sends an allocation indication of the uplink transmission resource to the MTC terminal.
  • CSR and SR have the following differences:
  • An SR of an time-frequency location and an orthogonal code are only allocated to a specific MTC terminal, so the evolved base station can determine the time-frequency location of the SR and the orthogonal code through the MTC terminal to determine the MTC terminal that issued the SR.
  • Identity a time-frequency CSR and an orthogonal code are assigned to a group of MTC terminals, that is, the CSR is shared by multiple MTC terminals, and the SR is dedicated to a certain MTC terminal;
  • the uplink scheduling request sent by the MTC terminal on the SR is a string of 1 (that is, the string is all 1), indicating that the uplink transmission resource is required; and the CSR transmits the C-RNTI of the MTC terminal.
  • SRs are arranged at upper and lower ends of a subframe, where each two SRs is a group, and a distance between each group of SRs is less than a set of SRs;
  • FIG. 2 in the subframe of the LTE uplink channel of the present invention, the arrangement positions of the SRs are consistent with those in FIG. 1, and the CSRs are arranged in a vacant position between each group of SRs.
  • the existing SR arrangement is not limited to the method in FIG. 1, and each group of SRs may have a space between them, or may be full without vacancies; accordingly, the CSR of the present invention is not arranged. It is limited to the mode in FIG. 2, which can be adjusted according to the arrangement of the SRs, that is, the CSR can fill the vacant position between each group of SRs, or can not be full, or even can be used in the LTE uplink channel according to requirements. Only the CSRs are arranged in the sub-frames, and the SRs are not arranged.
  • the communication method of the present invention further provides an embodiment, which is different from the embodiment in FIG. 3 in that the SR and the CSR are selected to send an uplink scheduling request.
  • the SR and the CSR are selected to send an uplink scheduling request.
  • the subframe of the SR, the embodiment of the method sends the uplink scheduling request only at the CSR location:
  • Step S202 The MTC terminal enters an RRC (Radio Resource Control) connection state by using random access;
  • RRC Radio Resource Control
  • Step S204 The MTC terminal receives the high layer control signaling sent by the evolved base station, such as RRC signaling or MAC CE signaling, and the signaling content is the time-frequency location, the repetition period, and the orthogonal codeword information that can be used. Or determining the time-frequency location, the repetition period, and the related information using the orthogonal codeword, where the signaling is carried by the RRC control signaling, and may be broadcast signaling or dedicated control signaling;
  • Step S206 If the uplink data needs to be sent, the MTC terminal determines, according to the received high-level control instruction, the latest subframe in which the CSR can be sent;
  • Step S208 The MTC terminal sends the uplink scheduling request of the MTC terminal to the evolved base station at the CSR position of the determined subframe, and the sending of the uplink scheduling request is implemented by sending a C-RNTI, where each C-RNTI is implemented.
  • the evolved base station can identify the MTC terminal that sends the request through the C-RNTI;
  • Step S210 The evolved base station receives the C-RNTI at the CSR location, and determines the MTC terminal that sends the uplink scheduling request according to the C-RNTI, and sends the downlink control signaling to allocate the uplink transmission resource to the MTC terminal.
  • Step S212 The MTC terminal performs uplink transmission according to the allocated uplink transmission resource. If the MTC terminal sends an uplink scheduling request (through the CSR), and does not receive the allocation indication of the uplink transmission resource sent by the evolved base station, the MTC terminal proceeds from the step S208 starts to re-operate, that is, the MTC terminal resends the uplink scheduling request to the evolved base station at the location of the CSR until the evolved base station sends an allocation indication of the uplink transmission resource to the MTC terminal.
  • the communication method of the foregoing embodiment adds an uplink control channel CSR, which is a multi-user shared channel, occupies two uplink resource blocks, and each CSR can be used by the MTC terminal to transmit 16-bit C-RNTI information; the uplink control channel CSR
  • the information such as the time-frequency location and the occupied orthogonal codeword is configured by the evolved base station, and the MTC terminal is notified through the RRC layer control signaling.
  • the communication method proposed by the present invention introduces the CSR shared by multiple MTC terminals, so that the uplink communication of the new LTE system is more suitable for the MTC application of the alarm type: (1)
  • the first evolved base station can be configured to Each MTC terminal has a longer period of SR, so as to adapt to the sparse uplink communication of the MTC terminal, and saves air interface resources; (2) then the evolved base station configures a CSR shorter than the SR period for use by all MTC terminals; (3)
  • the scheduling request can be sent to the evolved base station on the nearest CSR or SR, which reduces the delay of the uplink data communication; and, because the CSR with a shorter period is all the MTCs.
  • the terminal is shared, so there is no waste of air interface resources like a dedicated SR.
  • a communication system includes: an MTC terminal, configured to receive a CSR location that is delivered by an eNB and is shared by multiple MTC terminals. Information, sending an uplink scheduling request to the eNB at the CSR location;
  • An eNB (evolved Node B) is configured to send CSR location information that is shared by multiple MTC terminals to the MTC terminal, and receive an uplink scheduling request reported by the MTC terminal at the CSR location.
  • the eNB is further configured to identify an MTC terminal that sends an uplink scheduling request according to the uplink scheduling request, and allocate an uplink transmission resource to the MTC terminal, and receive uplink data that is transmitted by the MTC terminal according to the allocated uplink transmission resource;
  • the MTC terminal is further configured to receive an uplink transmission resource allocated by the eNB according to the uplink scheduling request, and use the uplink transmission resource to perform uplink data transmission.
  • the eNB includes:
  • the information sending module is configured to send, to the MTC terminal, CSR location information that is shared by multiple MTC terminals;
  • the request receiving module is configured to receive an uplink scheduling request reported by the MTC terminal at the CSR location.
  • the eNB further includes:
  • a terminal identification module configured to identify, according to an uplink scheduling request, an MTC terminal that sends an uplink scheduling request
  • a resource allocation module configured to allocate an uplink transmission resource to the identified MTC terminal
  • a data receiving module configured to receive uplink data that is transmitted by the MTC terminal according to the allocated uplink transmission resource.
  • the terminal identification module is configured to: after receiving the uplink scheduling request, identify the terminal that sends the uplink scheduling request according to the terminal identifier (ie, C-RNTI) carried by the uplink scheduling request.
  • the terminal identifier ie, C-RNTI
  • the information sending module is further configured to send, to the MTC terminal, SR location information that is available for a single MTC terminal.
  • the MTC terminal includes:
  • An information receiving module configured to receive CSR location information that is sent by an eNB and is shared by multiple MTC terminals
  • the first request sending module is configured to send an uplink scheduling request to the eNB at the CSR location.
  • the MTC terminal further includes:
  • a resource receiving module configured to receive an uplink transmission resource allocated by the eNB according to the uplink scheduling request;
  • the data transmission module is configured to perform uplink data transmission by using an uplink transmission resource.
  • the information receiving module is further configured to receive SR location information that is sent by the eNB and is dedicated to a single MTC terminal.
  • the MTC terminal specifically includes:
  • a subframe determining module configured to determine a nearest subframe that carries the SR location and the CSR location when the uplink data needs to be sent;
  • a second request sending module configured to: if the subframe carrying the SR location is in the same subframe before the subframe carrying the CSR location or both, select to send an uplink scheduling request to the eNB at the SR location of the subframe carrying the SR location.
  • the second request sending module is further configured to: if the subframe carrying the SR location is after the subframe carrying the CSR location, select to send an uplink scheduling request to the eNB at the CSR location of the CSR-capable subframe.
  • the MTC terminal also includes:
  • the indication information determining module is configured to: after receiving the uplink scheduling request to the eNB, determine whether the indication information of the allocated uplink transmission resource delivered by the eNB is received;
  • the second request sending module is further configured to: if the indication information of the allocated uplink transmission resource delivered by the eNB is not received, send an uplink scheduling request to the eNB again at the SR location or the CSR location.
  • an uplink control channel CSR is added, which is a multi-user shared channel, occupies two uplink resource blocks, and each CSR can be used by the MTC terminal to send 16-bit C-RNTI information; the uplink control channel CSR
  • the information such as the time-frequency location and the occupied orthogonal codeword is configured by the evolved base station, and the MTC terminal is notified through the RRC layer control signaling.
  • the communication system proposed by the present invention introduces the CSR shared by multiple MTC terminals, so that the uplink communication of the new LTE system is more suitable for the MTC application of the alarm type: (1)
  • the first evolved base station can be configured to Each MTC terminal has a longer period of SR, so as to adapt to the sparse uplink communication of the MTC terminal, and saves air interface resources; (2) then the evolved base station configures a CSR shorter than the SR period for use by all MTC terminals; (3)
  • the scheduling request can be sent to the evolved base station on the latest CSR or SR, which reduces the delay of the uplink data communication; and, because the CSR with a shorter period is all the MTCs.
  • the terminal is shared, so there is no waste of air interface resources like a dedicated SR. Terminal embodiment
  • an MTC terminal is provided.
  • An information receiving module configured to receive CSR location information that is sent by an eNB and is shared by multiple MTC terminals
  • the first request sending module is configured to send an uplink scheduling request to the eNB at the CSR location.
  • the MTC terminal further includes:
  • the resource receiving module is configured to receive an uplink transmission resource allocated by the eNB according to the uplink scheduling request, and a data transmission module, configured to use the uplink transmission resource to perform uplink data transmission.
  • the information receiving module is further configured to receive SR location information that is sent by the eNB and is dedicated to a single MTC terminal.
  • the MTC terminal specifically includes:
  • a subframe determining module configured to determine a nearest subframe that carries the SR location and the CSR location when the uplink data needs to be sent;
  • a second request sending module configured to: if the subframe carrying the SR location is in the same subframe before the subframe carrying the CSR location or both, select to send an uplink scheduling request to the eNB at the SR location of the subframe carrying the SR location.
  • the second request sending module is further configured to: if the subframe carrying the SR location is after the subframe carrying the CSR location, select to send an uplink scheduling request to the eNB at the CSR location of the CSR-capable subframe.
  • the MTC terminal also includes:
  • the indication information determining module is configured to: after receiving the uplink scheduling request to the eNB, determine whether the indication information of the allocated uplink transmission resource delivered by the eNB is received;
  • the second request sending module is further configured to: if the indication information of the allocated uplink transmission resource delivered by the eNB is not received, send an uplink scheduling request to the eNB again at the SR location or the CSR location.
  • an uplink control channel (CSR) is added, which is a multi-user shared channel, occupies two uplink resource blocks, and each CSR can be used by the MTC terminal to transmit 16-bit C-RNTI information; Information such as the time-frequency location and the occupied orthogonal codeword is configured by the evolved base station, and the MTC terminal is informed by the RRC layer control signaling.
  • CSR uplink control channel
  • the MTC terminal of the present invention introduces the CSR shared by multiple MTC terminals, so that the uplink communication of the new LTE system is more suitable for the MTC application of the alarm type: (1)
  • the first evolved base station can be configured for each The longer-term SR of the MTC terminal, so as to adapt to the sparse uplink communication of the MTC terminal, and save the air interface resources; (2) then the evolved base station configures the CSR shorter than the SR period for use by all the MTC terminals; (3)
  • an MTC terminal once an MTC terminal has alarm information, it can send a scheduling request to the evolved base station on the latest CSR or SR, which reduces the delay of the uplink data communication; and, because the CSR with a short period is all the MTC terminals. Shared, it will not cause waste of air interface resources like a dedicated SR.
  • an eNB (evolved Node B) is provided.
  • the eNB of this embodiment includes:
  • An information sending module configured to send, to the MTC terminal, CSR location information that is shared by multiple terminals;
  • the request receiving module is configured to receive an uplink scheduling request reported by the MTC terminal at the CSR location.
  • the eNB of this embodiment further includes:
  • a terminal identification module configured to identify, according to an uplink scheduling request, an MTC terminal that sends an uplink scheduling request
  • a resource allocation module configured to allocate an uplink transmission resource to the identified MTC terminal
  • a data receiving module configured to receive uplink data that is transmitted by the MTC terminal according to the allocated uplink transmission resource.
  • the terminal identification module is configured to: after receiving the uplink scheduling request, identify the MTC terminal that sends the uplink scheduling request according to the terminal identifier (ie, C-RNTI) carried in the uplink scheduling request.
  • the terminal identifier ie, C-RNTI
  • the information delivery module is also used to deliver the SR location information dedicated to a single MTC terminal to the MTC terminal.
  • an uplink control channel (CSR) is added, which is a multi-user shared channel, occupies two uplink resource blocks, and each CSR can be used by the MTC terminal to transmit 16-bit C-RNTI information; Information such as the time-frequency location and the occupied orthogonal codeword is configured by the evolved base station, and the MTC terminal is informed by the RRC layer control signaling.
  • CSR uplink control channel
  • the eNB of the present invention introduces a CSR shared by multiple MTC terminals.
  • the uplink communication of the new LTE system is more suitable for the MTC application of the alarm type: (1)
  • the evolved base station can be configured for each longer period SR of the MTC terminal, so as to adapt to the sparse uplink communication of the MTC terminal, and save the air interface.
  • the evolved base station then configures a CSR that is shorter than the SR period for use by all MTC terminals; (3) as such, once an MTC terminal has an alarm message, it can send a schedule on the nearest CSR or SR.
  • the request to the evolved base station reduces the delay of the uplink data communication; and, since the CSR with a short period is shared by all the MTC terminals, it does not cause waste of air interface resources like a dedicated SR.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种通信方法、终端、基站和系统,其中,该方法包括:基站向终端下发可供多个终端共用的 CSR位置信息,接收终端在 CSR位置上报的上行调度请求。本发明的通信方法、终端、基站和系统,通过引入多个 MTC终端共用的 CSR,使新的 LTE系统的上行通信更适合告警类的 MTC应用,演进型基站可以配置给每个 MTC终端较长周期的 SR,从而适应 MTC终端上行通信较稀疏的特点,节约了空口资源。

Description

通信方法、 终端、 基站和系统 技术领域
本发明涉及通信领域中 MTC通信技术, 具体地, 涉及通信方法、 终端、 基站和系统。
背景技术
MTC (machine-type communication, 机器类型通信) 指的是机器与机器
(设备与设备) 之间而不需要人参与的一种通信方式。 目前正在 3GPP标准 中刚开始进行相关的 study item的讨论,正在研究是否有必要对该类型通信进 行网络方面的优化, 特别是未来海量设备应用到实际网络中时, 是否会对 Human to Human (人与人之间的通信) 造成影响。 同时考虑到未来 MTC通 信的应用前景, 如何保证 MTC通信的性能是一个重要的研究方向。
目前核心网规范 22.368定义了 MTC通信中 16种重要的 feature (特点), 包括低移动型、 时间控制型、 时延容忍型、 在线小数据传输型等, 针对不同 的应用, 包括 metering (抄表)、 远程控制等, 可能具有一个特点或者几个特 点的组合, 现有的协议在支持 MTC通信时并不高效。
如图 1所示, 图 1中的纵轴表示信道的频域带宽, 横轴表示信道所占的 时域资源。 图 1中不同时频位置的 SR ( scheduling request)供不同用户使用。 机器类型通信终端如果需要发送上行数据给演进型基站, 则必须首先在 SR 上向演进型基站发送调度请求, 只有当演进型基站收到机器类型通信终端的 调度请求后, 才有可能通过下行控制信道来指示机器类型通信终端在图 1 中 数据传输部分的具体位置来发送上行数据。 而机器类型通信终端在什么时频 位置的 SR上发送调度请求时由演进型基站通过高层信令告知机器类型通信 终端的。
整个上行通信的流程为:
1 ) 机器类型通信终端通过随机接入进入 RRC连接状态;
2)机器类型通信终端接收演进型基站发来的 PUCCH配置指令, 该命令 包括若干参数, 通过这些参数机器类型通信终端可以确定发送上行调度请求 SR的时频位置和重复周期; 3 ) 如果需要发送上行数据, 机器类型通信终端在为其分配的 SR上面发 送调度请求给演进型基站;
4)演进型基站收到调度请求后, 将通过下行控制信道为机器类型通信终 端分配上行数据传输资源;
5 )机器类型通信终端按照分配的上行数据传输资源来进行上行传输, 如 果机器类型通信终端发出 SR后未收到演进型基站发出的数据传输资源分配 指示, 则需要等待下次 SR发送机会的出现并重新发送调度请求。
对于某些告警类的 MTC应用 (例如火灾报警器、 海啸报警器), 其上行 通信有如下需求:
( 1 )一旦发生警情, 则需要机器类型通信终端能够快速的将报警信息传 输给演进型基站;
(2)无警情发生时, 尽量降低机器类型通信终端通信所需功耗, 以达到 节电的目的。
如果采用现有的上行通信机制, 为了保证机器类型通信终端能够迅速发 送上行数据, 则必须为机器类型通信终端分配较多的 SR机会, 即为机器类 型通信终端分配 SR机会的周期较短 (几毫秒或十几毫秒)。 但是, 由于机器 类型通信终端从节电考虑, 经常处于休眠状态, 即分配的 SR经常是被浪费 了。 如果考虑空口资源的节约, 将配置给机器类型通信终端 SR机会的周期 设定较长(十几或几十分钟), 则无法满足机器类型通信终端随时快速发送上 行数据的需求。 因此, 现有技术应用于告警类 MTC应用, 或者会导致空口资 源的浪费或者是导致机器类型通信终端发送上行数据的时延较大。
现有技术中, 机器类型通信终端只有在特定的时频位置发送 SR, 如果错 过一次, 需要等待下一次时频位置才可以发送 SR, 而对于告警类 MTC应用 而言, 一旦发生报警, 则需要机器类型通信终端迅速发送上行报警信息给演 进型基站。
发明内容
本发明的目的是针对现有技术中机器类型通信的数据上传不及时的缺 陷, 提出一种通信方法、 终端、 基站和系统。
为实现上述目的, 根据本发明的一个方面, 提供了一种通信方法。 根据本发明实施例的通信方法, 包括: 基站向终端下发可供多个终端共 用的 CSR位置信息, 接收终端在 CSR位置上报的上行调度请求。
在接收终端的上行调度请求的歩骤之后包括: 基站根据上行调度请求识 别发出上行调度请求的终端, 并为终端分配上行传输资源。
基站识别发出上行调度请求终端的歩骤具体包括: 基站根据上行调度请 求携带的终端标识识别发出上行调度请求的终端。
在上述技术方案中, 还包括: 基站向终端下发可供单个终端专用的 SR 位置信息。
在上述技术方案中, SR的重复周期比 CSR的重复周期长。
为实现上述目的, 根据本发明的一个方面, 提供了一种通信方法。
根据本发明实施例的通信方法, 包括: 终端接收基站下发的可供多个终 端共用的 CSR位置信息, 在 CSR位置向基站发送上行调度请求。
在向基站发送上行调度请求的歩骤之后包括: 终端接收基站根据上行调 度请求分配的上行传输资源, 利用上行传输资源进行上行数据的传输。
在上述技术方案中, 进一歩包括: 终端接收基站下发的可供单个终端专 用的 SR位置信息。
在上述技术方案中, 具体包括:
在需要发送上行数据时, 终端确定最近的携带 SR位置和 CSR位置的子 帧; 如果携带 SR位置的子帧在携带 CSR位置的子帧之前或者两者处于同一 子帧,终端选择在该携带 SR位置子帧的 SR位置上向基站发送上行调度请求; 如果携带 SR位置的子帧在携带 CSR位置的子帧之后,终端选择在该携带 CSR 位置子帧的 CSR位置上向基站发送上行调度请求。
在上述技术方案中, 还包括: 终端在向基站发送上行调度请求后, 如果 未收到基站下发的分配上行传输资源的指示信息, 则在 SR位置或 CSR位置 向基站再次发送上行调度请求。
为实现上述目的, 根据本发明的另一个方面, 提供了一种通信终端。 根据本发明实施例的通信终端, 包括:
信息接收模块,用于接收基站下发的可供多个终端共用的 CSR位置信息; 第一请求发送模块, 用于在 CSR位置向基站发送上行调度请求。 在上述技术方案中, 终端还包括:
资源接收模块, 用于接收基站根据上行调度请求分配的上行传输资源; 数据传输模块, 用于利用上行传输资源进行上行数据的传输。
在上述技术方案中, 信息接收模块, 还用于接收基站下发的可供单个终 端专用的 SR位置信息。
在上述技术方案中, 终端具体包括:
子帧确定模块, 用于在需要发送上行数据时, 确定最近的携带 SR位置 和 CSR位置的子帧;
第二请求发送模块, 用于如果携带 SR位置的子帧在携带 CSR位置的子 帧之前或者两者处于同一子帧,选择在该携带 SR位置子帧的 SR位置上向所 述基站发送上行调度请求。
在上述技术方案中, 第二请求发送模块, 还用于如果携带 SR位置的子 帧在携带 CSR位置的子帧之后, 选择在该携带 CSR位置子帧的 CSR位置上 向基站发送上行调度请求。
在上述技术方案中, 终端还包括:
指示信息判断模块, 用于在向基站发送上行调度请求后, 判断是否收到 基站下发的分配上行传输资源的指示信息;
第二请求发送模块, 还用于如果未收到基站下发的分配上行传输资源的 指示信息, 则在 SR位置或 CSR位置向基站再次发送上行调度请求。
为实现上述目的, 根据本发明的另一个方面, 提供了一种通信基站。 根据本发明实施例的通信基站, 包括:
信息下发模块, 用于向终端下发可供多个终端共用的 CSR位置信息; 请求接收模块, 用于接收终端在 CSR位置上报的上行调度请求。
在上述技术方案中, 基站还包括:
终端识别模块, 用于根据上行调度请求识别发出上行调度请求的终端; 资源分配模块, 用于为识别出的终端分配上行传输资源。
在上述技术方案中, 终端识别模块, 用于根据上行调度请求携带的终端 标识识别发出上行调度请求的终端。
在上述技术方案中, 信息下发模块, 还用于向终端下发可供单个终端专 用的 SR位置信息。
为实现上述目的, 根据本发明的另一个方面, 提供了一种通信系统。 根据本发明实施例的通信系统, 包括:
基站, 用于向终端下发可供多个终端共用的 CSR位置信息, 接收终端在 CSR位置上报的上行调度请求;
终端, 用于接收基站下发的可供多个终端共用的 CSR位置信息, 在 CSR 位置向基站发送上行调度请求。
在上述技术方案中, 基站, 还用于根据上行调度请求携带的终端标识识 别发出上行调度请求的终端, 并为终端分配上行传输资源;
终端, 还用于接收基站根据上行调度请求分配的上行传输资源, 利用上 行传输资源进行上行数据的传输。
在上述技术方案中, 基站, 还用于向终端下发可供单个终端专用的 SR 位置信息;
终端, 还用于接收基站下发的可供单个终端专用的 SR位置信息, 在需 要发送上行数据时, 确定最近的携带 SR位置和 CSR位置的子帧, 如果携带 SR位置的子帧在携带 CSR位置的子帧之前或者两者处于同一子帧, 选择在 该携带 SR位置子帧的 SR位置上向所述基站发送上行调度请求; 如果携带 SR位置的子帧在携带 CSR位置的子帧之后, 选择在该携带 CSR位置子帧的 CSR位置上向基站发送上行调度请求。
在上述技术方案中, 终端, 还用于在向基站发送上行调度请求后, 如果 未收到基站下发的分配上行传输资源的指示信息, 则在 SR位置或 CSR位置 向基站再次发送上行调度请求。
本发明各实施例的通信方法、 终端、 基站和系统, 通过引入多个 MTC 终端共用的 CSR, 使新的 LTE系统的上行通信更适合告警类的 MTC应用: ( 1 ) 首先演进型基站可以配置给每个 MTC终端较长周期的 SR, 从而适应 MTC终端上行通信较稀疏的特点, 节约了空口资源; (2)然后演进型基站配 置比 SR周期更短的 CSR供所有 MTC终端使用; (3 ) 如此一来, 一旦某个 MTC终端有告警信息,则可以在最近的 CSR或者 SR上发送调度请求给演进 型基站, 降低了上行数据通信的时延; 而且, 由于周期较短的 CSR 是所有 MTC终端共享的, 故不会造成像专用的 SR那样的空口资源浪费。 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说 明书中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优 点可通过在所写的说明书、 权利要求书、 以及附图中所特别指出的结构来实 现和获得。
下面通过附图和实施例, 对本发明的技术方案做进一歩的详细描述。 附图说明
附图用来提供对本发明的进一歩理解, 并且构成说明书的一部分, 与本 发明的实施例一起用于解释本发明, 并不构成对本发明的限制。 在附图中: 图 1为根据现有技术中 LTE上行信道的结构示意图;
图 2为根据本发明实施例的 LTE上行信道的结构示意图;
图 3为根据本发明实施例的通信方法的流程图。
具体实施方式
以下结合附图对本发明的优选实施例进行说明, 应当理解, 此处所描述 的优选实施例仅用于说明和解释本发明, 并不用于限定本发明。
本发明涉及的 LTE上行信道的具体结构如图 2所示, 与图 1中现有 LTE 上行信道的结构类似的是, 图 2中的纵轴表示 LTE上行信道的频域带宽, 横 轴表示 LTE上行信道的时域资源。 在现有的 LTE上行信道中含有 SR和数据 传输资源之外,本发明的 LTE上行信道结构中加入了 CSR(common scheduling request) 其中, 每个 CSR占用 2个 LTE上行信道的 RB (即资源块, 为 LTE 系统资源分配的单位,在频域上为 12个虚拟子载波,在时域上是 0.5ms时隙)。 其中, 对 CSR的调制方式为 QPSK, CSR的位置由演进型基站通过高层控制 信令告知处于连接状态下的 MTC终端, MTC终端可以在 CSR上以 QPSK方 式发送 MTC终端的 C-RNTI (小区无线网络临时标识, 用于区分小区内每个 终端的身份)。
方法实施例
根据本发明实施例, 提供了一种通信方法, 图 3为根据本发明实施例的 通信方法的流程图。
如图 3所示, 本方法实施例具体包括: 歩骤 SI 02: MTC终端通过随机接入进入 RRC (Radio Resource Control, 无线资源控制) 连接状态;
歩骤 S104: MTC终端接收演进型基站发来的 PUCCH (physical uplink control chanel, 物理上行控制信道)配置指令, 该指令包括若干参数, 通过这 些参数 MTC终端可以确定发送 SR的时频位置和重复周期;
歩骤 S106: MTC终端接收演进型基站发来的高层控制信令, 如 RRC信 令或者 MAC CE信令,其信令内容为 CSR的时频位置、重复周期和可以使用 的正交码字信息或者可以确定时频位置、 重复周期和使用正交码字的相关信 息,该信令由 RRC控制信令承载,可以是广播信令,也可以是专用控制信令; 歩骤 S108: 如果需要发送上行数据, MTC终端根据接收的 PUCCH配置 指令和高层控制指令, 确定最近的可以发送 SR和 CSR的子帧;
歩骤 S1082: 如果可以发送 SR的子帧在可以发送 CSR的子帧之前或者 处于同一子帧, 则 MTC终端在此子帧的 SR位置上发送上行调度请求给演进 型基站, 该上行调度请求对应一个特定的 MTC终端;
歩骤 S1084: 如果可以发送 SR的子帧在可以发送 CSR的子帧之后, 则 MTC终端选择在此子帧的 CSR位置上发送此 MTC终端的上行调度请求给演 进型基站, 该上行调度请求的发送通过发送 C-RNTI的方式实现, 其中, 每 个 C-RNTI对应一个 MTC终端,亦即,演进型基站在接收该上行调度请求后, 能够通过 C-RNTI识别出发送请求的 MTC终端;
歩骤 S110: 如果演进型基站接收到了 SR位置上的上行调度请求, 则根 据接收到上行调度请求中 SR在子帧上的位置, 可以确定发出此上行调度请 求的 MTC终端, 并发送下行控制信令来为 MTC终端分配上行传输资源; 如 果演进型基站接收到了 CSR位置上的 C-RNTI, 可以根据 C-RNTI确定发出 此上行调度请求的 MTC终端, 并发送下行控制信令来为 MTC终端分配上行 传输资源;
歩骤 S112: MTC终端按照分配的上行传输资源进行上行传输,如果 MTC 终端发出上行调度请求 (通过 SR或 CSR) 后, 未收到演进型基站发出的上 行传输资源的分配指示,则 MTC终端从歩骤 S108开始重新操作,亦即, MTC 终端向演进型基站重新在 SR或 CSR的位置发送上行调度请求, 直至演进型 基站向 MTC终端下发上行传输资源的分配指示为止。
在本发明的通信方法与系统中, CSR与 SR存在以下不同之处:
1 ) 一个时频位置的 SR与一个正交码只会分配给某一个特定的 MTC终 端, 因此演进型基站可以通过 MTC终端发送 SR的时频位置和正交码来确定 发出此 SR的 MTC终端身份; 一个时频位置的 CSR与一个正交码是分配给 一组 MTC终端的, 亦即, CSR是多个 MTC终端共用的, 而 SR是某个 MTC 终端专用的;
2) MTC终端在 SR上发送的上行调度请求是一连串 1 (即字符串全为 1 ) 的字符串,表示需要上行传输资源;而 CSR上发送的是 MTC终端的 C-RNTI
( 16比特), 用于表示某个 MTC终端需要上行传输资源。
如图 1所示, 现有的 LTE上行信道的子帧中, SR排列在子帧的上下两 端, 其中, 每两个 SR为一组, 每组 SR之间空余一组 SR的距离; 如图 2所 示, 本发明的 LTE上行信道的子帧中, SR的排列位置与图 1 中保持一致, 而 CSR排列在每组 SR之间的空余位置。
需要说明的是, 现有的 SR排列方式并不局限于图 1 中的方式, 其每组 SR之间可以有空余, 也可以排满而无空余; 与此相应, 本发明 CSR的排列 也不局限于图 2中的方式, 其可以根据 SR的排列方式而进行相应的调整, 即 CSR可以排满每组 SR之间的空余位置, 也可以不排满, 甚至, 可以根据 需要在 LTE上行信道的子帧中仅排列 CSR, 而不排列 SR。
本发明的通信方法又提供了一种实施例, 与图 3实施例在 SR和 CSR位 置选择发送上行调度请求不同, 在该方法实施例中, 仅存在可以发送 CSR的 子帧, 不存在可以发送 SR的子帧, 故本方法实施例仅在 CSR位置发送上行 调度请求:
歩骤 S202: MTC终端通过随机接入进入 RRC (Radio Resource Control, 无线资源控制) 连接状态;
歩骤 S204: MTC终端接收演进型基站发来的高层控制信令, 如 RRC信 令或者 MAC CE信令,其信令内容为 CSR的时频位置、重复周期和可以使用 的正交码字信息或者可以确定时频位置、 重复周期和使用正交码字的相关信 息,该信令由 RRC控制信令承载,可以是广播信令,也可以是专用控制信令; 歩骤 S206: 如果需要发送上行数据, MTC 终端根据接收的高层控制指 令, 确定最近的可以发送 CSR的子帧;
歩骤 S208: MTC终端在确定的子帧的 CSR位置上发送该 MTC终端的 上行调度请求给演进型基站, 该上行调度请求的发送通过发送 C-RNTI的方 式实现, 其中, 每个 C-RNTI对应一个 MTC终端, 亦即, 演进型基站在接收 该上行调度请求后, 能够通过 C-RNTI识别出发送请求的 MTC终端;
歩骤 S210: 演进型基站接收到了 CSR 位置上的 C-RNTI , 可以根据 C-RNTI 确定发出此上行调度请求的 MTC 终端, 并发送下行控制信令来为 MTC终端分配上行传输资源;
歩骤 S212: MTC终端按照分配的上行传输资源进行上行传输,如果 MTC 终端发出上行调度请求 (通过 CSR) 后, 未收到演进型基站发出的上行传输 资源的分配指示, 则 MTC终端从歩骤 S208开始重新操作, 亦即, MTC终端 向演进型基站重新在 CSR的位置发送上行调度请求,直至演进型基站向 MTC 终端下发上行传输资源的分配指示为止。
上述实施例的通信方法, 新增了上行控制信道 CSR, 该信道为多用户共 享信道, 占用 2个上行资源块, 每个 CSR可以供 MTC终端发送 16比特的 C-RNTI信息; 上行控制信道 CSR的时频位置和占用的正交码字等信息由演 进型基站配置,并且通过 RRC层控制信令告知 MTC终端。与现有技术相比, 本发明提出的通信方法, 通过引入多个 MTC终端共用的 CSR, 使新的 LTE 系统的上行通信更适合告警类的 MTC应用: (1 )首先演进型基站可以配置给 每个 MTC终端较长周期的 SR, 从而适应 MTC终端上行通信较稀疏的特点, 节约了空口资源; (2) 然后演进型基站配置比 SR 周期更短的 CSR供所有 MTC终端使用; (3 ) 如此一来, 一旦某个 MTC终端有告警信息, 则可以在 最近的 CSR或者 SR上发送调度请求给演进型基站, 降低了上行数据通信的 时延; 而且, 由于周期较短的 CSR是所有 MTC终端共享的, 故不会造成像 专用的 SR那样的空口资源浪费。
系统实施例
根据本发明实施例, 提供了一种通信系统。 本实施例的通信系统包括: MTC终端, 用于接收 eNB下发的可供多个 MTC终端共用的 CSR位置 信息, 在 CSR位置向 eNB发送上行调度请求;
eNB (evolved Node B, 演进型基站), 用于向 MTC终端下发可供多个 MTC终端共用的 CSR位置信息, 接收 MTC终端在 CSR位置上报的上行调 度请求。
其中, eNB , 还用于根据上行调度请求识别发出上行调度请求的 MTC终 端, 并为 MTC终端分配上行传输资源, 接收 MTC终端根据分配的上行传输 资源传输的上行数据;
MTC终端, 还用于接收 eNB根据上行调度请求分配的上行传输资源, 利用上行传输资源进行上行数据的传输。
其中, eNB包括:
信息下发模块, 用于向 MTC终端下发可供多个 MTC终端共用的 CSR 位置信息;
请求接收模块, 用于接收 MTC终端在 CSR位置上报的上行调度请求。 其中, eNB还包括:
终端识别模块, 用于根据上行调度请求识别发出上行调度请求的 MTC 终端;
资源分配模块, 用于为识别出的 MTC终端分配上行传输资源; 数据接收模块,用于接收 MTC终端根据分配的上行传输资源传输的上行 数据。
其中, 终端识别模块, 用于接收上行调度请求后, 根据上行调度请求携 带的终端标识 (即 C-RNTI) 识别发出上行调度请求的终端。
其中, 信息下发模块, 还用于向 MTC终端下发可供单个 MTC终端专用 的 SR位置信息。
其中, MTC终端包括:
信息接收模块,用于接收 eNB下发的可供多个 MTC终端共用的 CSR位 置信息;
第一请求发送模块, 用于在 CSR位置向 eNB发送上行调度请求。
其中, MTC终端还包括:
资源接收模块, 用于接收 eNB根据上行调度请求分配的上行传输资源; 数据传输模块, 用于利用上行传输资源进行上行数据的传输。 信息接收模块, 还用于接收 eNB下发的可供单个 MTC终端专用的 SR 位置信息。
MTC终端具体包括:
子帧确定模块, 用于在需要发送上行数据时, 确定最近的携带 SR位置 和 CSR位置的子帧;
第二请求发送模块, 用于如果携带 SR位置的子帧在携带 CSR位置的子 帧之前或者两者处于同一子帧, 选择在该携带 SR位置子帧的 SR位置上向 eNB发送上行调度请求。
第二请求发送模块, 还用于如果携带 SR位置的子帧在携带 CSR位置的 子帧之后, 选择在该携带 CSR位置子帧的 CSR位置上向 eNB发送上行调度 请求。
MTC终端还包括:
指示信息判断模块, 用于在向 eNB发送上行调度请求后, 判断是否收到 eNB下发的分配上行传输资源的指示信息;
第二请求发送模块, 还用于如果未收到 eNB下发的分配上行传输资源的 指示信息, 则在 SR位置或 CSR位置向 eNB再次发送上行调度请求。
本实施例的通信系统, 新增了上行控制信道 CSR, 该信道为多用户共享 信道,占用 2个上行资源块,每个 CSR可以供 MTC终端发送 16比特的 C-RNTI 信息; 上行控制信道 CSR的时频位置和占用的正交码字等信息由演进型基站 配置, 并且通过 RRC层控制信令告知 MTC终端。
与现有技术相比,本发明提出的通信系统,通过引入多个 MTC终端共用 的 CSR, 使新的 LTE系统的上行通信更适合告警类的 MTC应用: (1 ) 首先 演进型基站可以配置给每个 MTC终端较长周期的 SR, 从而适应 MTC终端 上行通信较稀疏的特点, 节约了空口资源; (2) 然后演进型基站配置比 SR 周期更短的 CSR供所有 MTC终端使用; (3 ) 如此一来, 一旦某个 MTC终 端有告警信息,则可以在最近的 CSR或者 SR上发送调度请求给演进型基站, 降低了上行数据通信的时延; 而且, 由于周期较短的 CSR是所有 MTC终端 共享的, 故不会造成像专用的 SR那样的空口资源浪费。 终端实施例
根据本发明实施例, 提供了一种 MTC终端。
本实施例的 MTC终端, 包括:
信息接收模块,用于接收 eNB下发的可供多个 MTC终端共用的 CSR位 置信息;
第一请求发送模块, 用于在 CSR位置向 eNB发送上行调度请求。
其中, MTC终端还包括:
资源接收模块, 用于接收 eNB根据上行调度请求分配的上行传输资源; 数据传输模块, 用于利用上行传输资源进行上行数据的传输。
所述信息接收模块, 还用于接收 eNB下发的可供单个 MTC终端专用的 SR位置信息。
MTC终端具体包括:
子帧确定模块, 用于在需要发送上行数据时, 确定最近的携带 SR位置 和 CSR位置的子帧;
第二请求发送模块, 用于如果携带 SR位置的子帧在携带 CSR位置的子 帧之前或者两者处于同一子帧, 选择在该携带 SR位置子帧的 SR位置上向 eNB发送上行调度请求。
第二请求发送模块, 还用于如果携带 SR位置的子帧在携带 CSR位置的 子帧之后, 选择在该携带 CSR位置子帧的 CSR位置上向 eNB发送上行调度 请求。
MTC终端还包括:
指示信息判断模块, 用于在向 eNB发送上行调度请求后, 判断是否收到 eNB下发的分配上行传输资源的指示信息;
第二请求发送模块, 还用于如果未收到 eNB下发的分配上行传输资源的 指示信息, 则在 SR位置或 CSR位置向 eNB再次发送上行调度请求。
在本实施例中, 新增了上行控制信道 CSR, 该信道为多用户共享信道, 占用 2个上行资源块, 每个 CSR可以供 MTC终端发送 16比特的 C-RNTI信 息; 上行控制信道 CSR的时频位置和占用的正交码字等信息由演进型基站配 置, 并且通过 RRC层控制信令告知 MTC终端。 与现有技术相比, 本发明的 MTC终端, 通过引入多个 MTC终端共用的 CSR, 使新的 LTE系统的上行通信更适合告警类的 MTC应用: (1 ) 首先演 进型基站可以配置给每个 MTC终端较长周期的 SR, 从而适应 MTC终端上 行通信较稀疏的特点, 节约了空口资源; (2) 然后演进型基站配置比 SR周 期更短的 CSR供所有 MTC终端使用; (3 ) 如此一来, 一旦某个 MTC终端 有告警信息, 则可以在最近的 CSR或者 SR上发送调度请求给演进型基站, 降低了上行数据通信的时延; 而且, 由于周期较短的 CSR是所有 MTC终端 共享的, 故不会造成像专用的 SR那样的空口资源浪费。
基站实施例
根据本发明实施例, 提供了一种 eNB (evolved Node B, 演进型基站)。 本实施例的 eNB, 包括:
信息下发模块, 用于向 MTC终端下发可供多个终端共用的 CSR位置信 息;
请求接收模块, 用于接收 MTC终端在 CSR位置上报的上行调度请求。 本实施例的 eNB, 还包括:
终端识别模块, 用于根据上行调度请求识别发出上行调度请求的 MTC 终端;
资源分配模块, 用于为识别出的 MTC终端分配上行传输资源; 数据接收模块,用于接收 MTC终端根据分配的上行传输资源传输的上行 数据。
所述终端识别模块, 用于接收上行调度请求后, 根据上行调度请求携带 的终端标识 (即 C-RNTI) 识别发出上行调度请求的 MTC终端。
信息下发模块, 还用于向 MTC终端下发可供单个 MTC终端专用的 SR 位置信息。
在本实施例中, 新增了上行控制信道 CSR, 该信道为多用户共享信道, 占用 2个上行资源块, 每个 CSR可以供 MTC终端发送 16比特的 C-RNTI信 息; 上行控制信道 CSR的时频位置和占用的正交码字等信息由演进型基站配 置, 并且通过 RRC层控制信令告知 MTC终端。
与现有技术相比, 本发明的 eNB, 通过引入多个 MTC终端共用的 CSR, 使新的 LTE系统的上行通信更适合告警类的 MTC应用: (1 ) 首先演进型基 站可以配置给每个 MTC终端较长周期的 SR, 从而适应 MTC终端上行通信 较稀疏的特点, 节约了空口资源; (2) 然后演进型基站配置比 SR周期更短 的 CSR供所有 MTC终端使用; (3 ) 如此一来, 一旦某个 MTC终端有告警 信息, 则可以在最近的 CSR或者 SR上发送调度请求给演进型基站, 降低了 上行数据通信的时延; 而且, 由于周期较短的 CSR是所有 MTC终端共享的, 故不会造成像专用的 SR那样的空口资源浪费。
最后应说明的是: 以上所述仅为本发明的优选实施例而已, 并不用于限 制本发明, 尽管参照前述实施例对本发明进行了详细的说明, 对于本领域的 技术人员来说, 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换。 凡在本发明的精神和原则之内, 所作 的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利 要求 书
1. 一种通信方法, 其特征在于, 包括:
基站向终端下发可供多个终端共用的 CSR位置信息, 接收所述终端在所 述 CSR位置上报的上行调度请求。
2. 根据权利要求 1所述的方法, 其特征在于, 在接收终端的上行调度请 求的歩骤之后包括:
基站根据所述上行调度请求识别发出所述上行调度请求的终端, 并为所 述终端分配上行传输资源。
3. 根据权利要求 2所述的方法, 其特征在于, 基站识别发出上行调度请 求终端的歩骤具体包括:
所述基站根据所述上行调度请求携带的终端标识识别发出所述上行调度 请求的终端。
4. 根据权利要求 1所述的方法, 其特征在于, 还包括:
所述基站向终端下发可供单个终端专用的 SR位置信息。
5. 根据权利要求 4所述的方法, 其特征在于, 所述 SR的重复周期比所 述 CSR的重复周期长。
6. 一种通信方法, 其特征在于, 包括:
终端接收基站下发的可供多个终端共用的 CSR位置信息, 在所述 CSR 位置向所述基站发送上行调度请求。
7. 根据权利要求 6所述的方法, 其特征在于, 在向基站发送上行调度请 求的歩骤之后包括:
终端接收所述基站根据所述上行调度请求分配的上行传输资源, 利用所 述上行传输资源进行上行数据的传输。
8. 根据权利要求 7所述的方法, 其特征在于, 进一歩包括:
所述终端接收所述基站下发的可供单个终端专用的 SR位置信息。
9. 根据权利要求 8所述的方法, 其特征在于,
在需要发送上行数据时, 所述终端确定最近的携带 SR位置和 CSR位置 的子帧;
如果携带 SR位置的子帧在携带 CSR位置的子帧之前或者两者处于同一 子帧,所述终端选择在该携带 SR位置子帧的 SR位置上向所述基站发送上行 调度请求。
10. 根据权利要求 9所述的方法, 其特征在于,
如果携带 SR位置的子帧在携带 CSR位置的子帧之后, 所述终端选择在 该携带 CSR位置子帧的 CSR位置上向所述基站发送上行调度请求。
11. 根据权利要求 9或 10所述的方法, 其特征在于,
所述终端在向所述基站发送上行调度请求后, 如果未收到所述基站下发 的分配上行传输资源的指示信息, 则在所述 SR位置或 CSR位置向所述基站 再次发送上行调度请求。
12. 一种通信终端, 其特征在于, 包括:
信息接收模块,用于接收基站下发的可供多个终端共用的 CSR位置信息; 第一请求发送模块,用于在所述 CSR位置向所述基站发送上行调度请求。
13. 根据权利要求 12所述的终端, 其特征在于, 还包括:
资源接收模块, 用于接收所述基站根据所述上行调度请求分配的上行传 输资源;
数据传输模块, 用于利用所述上行传输资源进行上行数据的传输。
14. 根据权利要求 12所述的终端, 其特征在于,
所述信息接收模块,还用于接收所述基站下发的可供单个终端专用的 SR 位置信息。
15. 根据权利要求 14所述的终端, 其特征在于, 所述终端具体包括: 子帧确定模块, 用于在需要发送上行数据时, 确定最近的携带 SR位置 和 CSR位置的子帧;
第二请求发送模块, 用于如果携带 SR位置的子帧在携带 CSR位置的子 帧之前或者两者处于同一子帧,选择在该携带 SR位置子帧的 SR位置上向所 述基站发送上行调度请求。
16. 根据权利要求 15所述的终端, 其特征在于,
所述第二请求发送模块, 还用于如果携带 SR位置的子帧在携带 CSR位 置的子帧之后, 选择在该携带 CSR位置子帧的 CSR位置上向所述基站发送 上行调度请求。
17. 根据权利要求 15或 16所述的终端, 其特征在于, 还包括: 指示信息判断模块, 用于在向所述基站发送上行调度请求后, 判断是否 收到所述基站下发的分配上行传输资源的指示信息;
所述第二请求发送模块, 还用于如果未收到所述基站下发的分配上行传 输资源的指示信息, 则在所述 SR位置或 CSR位置向所述基站再次发送上行 调度请求。
18. 一种通信基站, 其特征在于, 包括:
信息下发模块, 用于向终端下发可供多个终端共用的 CSR位置信息; 请求接收模块,用于接收所述终端在所述 CSR位置上报的上行调度请求。
19. 根据权利要求 18所述的基站, 其特征在于, 还包括:
终端识别模块, 用于根据所述上行调度请求识别发出所述上行调度请求 的终端;
资源分配模块, 用于为识别出的终端分配上行传输资源。
20. 根据权利要求 19所述的基站, 其特征在于,
所述终端识别模块, 用于根据所述上行调度请求携带的终端标识识别发 出所述上行调度请求的终端。
21. 根据权利要求 18所述的基站, 其特征在于,
所述信息下发模块, 还用于向终端下发可供单个终端专用的 SR位置信 息。
22. 一种通信系统, 其特征在于, 包括:
基站, 用于向终端下发可供多个终端共用的 CSR位置信息, 接收所述终 端在所述 CSR位置上报的上行调度请求;
终端, 用于接收所述基站下发的可供多个终端共用的 CSR位置信息, 在 所述 CSR位置向所述基站发送上行调度请求。
23. 根据权利要求 22所述的系统, 其特征在于,
所述基站, 还用于根据所述上行调度请求携带的终端标识识别发出所述 上行调度请求的终端, 并为所述终端分配上行传输资源; 所述终端, 还用于接收所述基站根据所述上行调度请求分配的上行传输 资源, 利用所述上行传输资源进行上行数据的传输。
24. 根据权利要求 22所述的系统, 其特征在于,
所述基站, 还用于向所述终端下发可供单个终端专用的 SR位置信息; 所述终端, 还用于接收所述基站下发的可供单个终端专用的 SR位置信 息, 在需要发送上行数据时, 确定最近的携带 SR位置和 CSR位置的子帧, 如果携带 SR位置的子帧在携带 CSR位置的子帧之前或者两者处于同一子帧, 选择在该携带 SR位置子帧的 SR位置上向所述基站发送上行调度请求;如果 携带 SR位置的子帧在携带 CSR位置的子帧之后,选择在该携带 CSR位置子 帧的 CSR位置上向所述基站发送上行调度请求。
25. 根据权利要求 24所述的系统, 其特征在于, 所述终端, 还用于在向 所述基站发送上行调度请求后, 如果未收到所述基站下发的分配上行传输资 源的指示信息, 则在所述 SR位置或 CSR位置向所述基站再次发送上行调度 请求。
PCT/CN2012/081526 2011-09-20 2012-09-18 通信方法、终端、基站和系统 WO2013041011A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011102792232A CN103024906A (zh) 2011-09-20 2011-09-20 通信方法、终端、基站和系统
CN201110279223.2 2011-09-20

Publications (1)

Publication Number Publication Date
WO2013041011A1 true WO2013041011A1 (zh) 2013-03-28

Family

ID=47913878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081526 WO2013041011A1 (zh) 2011-09-20 2012-09-18 通信方法、终端、基站和系统

Country Status (2)

Country Link
CN (1) CN103024906A (zh)
WO (1) WO2013041011A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3113526B1 (en) * 2014-02-27 2019-12-25 Huawei Technologies Co., Ltd. Resource scheduling method and device
KR102182491B1 (ko) * 2014-08-08 2020-11-24 주식회사 아이티엘 자원 패턴을 기반으로 d2d 데이터를 전송하는 방법 및 장치
CN107231686B (zh) * 2016-03-23 2020-02-14 中国移动通信有限公司研究院 一种物联网中的上行数据传输方法、基站及终端
CN105848265B (zh) * 2016-05-03 2019-11-26 上海华为技术有限公司 一种数据发送方法、终端设备以及接入网设备
CN108494537B (zh) * 2018-02-26 2021-03-09 北京中电普华信息技术有限公司 应用于快速调度的上行调度请求资源配置方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008085602A1 (en) * 2007-01-10 2008-07-17 Motorola, Inc. Method and apparatus for the dynamic and contention-free allocation of communication resources
CN101640905A (zh) * 2008-07-31 2010-02-03 大唐移动通信设备有限公司 一种上行调度请求的配置方法
CN101827425A (zh) * 2010-04-21 2010-09-08 新邮通信设备有限公司 一种上行发送数据的方法和系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101542388B1 (ko) * 2008-02-05 2015-08-07 엘지전자 주식회사 무선 이동 통신 시스템에 있어서 상향링크 제어정보 전송 방법
CN101394668B (zh) * 2008-10-24 2012-04-18 中兴通讯股份有限公司 一种调度请求信号的发送方法及装置
US10187758B2 (en) * 2009-12-29 2019-01-22 Qualcomm Incorporated Method and apparatus for providing shared scheduling request resources

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008085602A1 (en) * 2007-01-10 2008-07-17 Motorola, Inc. Method and apparatus for the dynamic and contention-free allocation of communication resources
CN101640905A (zh) * 2008-07-31 2010-02-03 大唐移动通信设备有限公司 一种上行调度请求的配置方法
CN101827425A (zh) * 2010-04-21 2010-09-08 新邮通信设备有限公司 一种上行发送数据的方法和系统

Also Published As

Publication number Publication date
CN103024906A (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
EP3340703B1 (en) Method and apparatus for transmitting or receiving paging in wireless communication system
US11452139B2 (en) Random access procedure for latency reduction
EP2672757B1 (en) Delayed scheduling method and system
KR20180035638A (ko) RRC Inactive 및 active 상태에서 data 전송 결정 및 방법 및 장치
KR101343307B1 (ko) 무선 네트워크에서의 브로드캐스트 및/또는 멀티캐스트의 통신 방법 및 그 장치
US20130294363A1 (en) Method and device for data transmission
TW201826815A (zh) 需求式系統資訊傳遞進程
WO2015013976A1 (zh) 空闲状态随机接入方法及设备
WO2013067926A1 (zh) 控制信息传输方法
US20130114494A1 (en) Method and apparatus for transmitting uplink data burst in wireless connection system
US20140293861A1 (en) Apparatus for transmitting/receiving multicast data in wireless communication system and method thereof
JPWO2015141841A1 (ja) 端末装置、集積回路、および、無線通信方法
WO2012116624A1 (zh) 一种传输数据的方法及设备
WO2012159402A1 (zh) 利用寻呼信道传输业务数据的方法及系统、用户设备
WO2013041011A1 (zh) 通信方法、终端、基站和系统
WO2013131438A1 (zh) 一种集群传输通知、处理方法及装置
KR101845558B1 (ko) 무선 통신 시스템에서의 그룹 페이징 방법 및 장치와 이를 이용한 랜덤 액세스 수행 방법 및 장치
CN102045784B (zh) 一种移动终端和上行增强随机接入信道接入的方法
CN101926105A (zh) 增强-专用传输信道传输时用户终端的编址和寻址方法
US20230319949A1 (en) Method and apparatus for sidelink transmission in case of discontinuous reception
WO2022083930A1 (en) Method and apparatus for relay communication
JP2023508824A (ja) 基準シグナリング設計および構成のためのシステムならびに方法
TW201531133A (zh) 一種用於傳輸上行回應消息的方法和設備
WO2013085128A1 (en) Method and apparatus for transmitting a mac control message in wireless access system
US20230362923A1 (en) Methods, base station and terminal device for uplink transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833689

Country of ref document: EP

Kind code of ref document: A1