WO2013039233A1 - Material for protecting photovoltaic cell - Google Patents

Material for protecting photovoltaic cell Download PDF

Info

Publication number
WO2013039233A1
WO2013039233A1 PCT/JP2012/073727 JP2012073727W WO2013039233A1 WO 2013039233 A1 WO2013039233 A1 WO 2013039233A1 JP 2012073727 W JP2012073727 W JP 2012073727W WO 2013039233 A1 WO2013039233 A1 WO 2013039233A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
protective material
film
layer
pressure
Prior art date
Application number
PCT/JP2012/073727
Other languages
French (fr)
Japanese (ja)
Inventor
治 赤池
直哉 二宮
由美 満倉
雅秀 小西
畠山 研一
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority claimed from JP2012203025A external-priority patent/JP2013084928A/en
Priority claimed from JP2012203034A external-priority patent/JP2013123036A/en
Priority claimed from JP2012203031A external-priority patent/JP2013077818A/en
Priority claimed from JP2012203027A external-priority patent/JP2013084929A/en
Priority claimed from JP2012203036A external-priority patent/JP6007037B2/en
Publication of WO2013039233A1 publication Critical patent/WO2013039233A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell protective material and a solar cell module having the protective material.
  • a solar cell is usually manufactured by laminating a front protective material, a sealing material, a power generation element, a sealing material, and a back protective material in this order, and bonding and integrating them by heating and melting by vacuum lamination.
  • the vacuum lamination is generally performed under conditions of 130 to 180 ° C. and 10 to 40 minutes.
  • the protective material for solar cells is a front surface protective material or a back surface protective material, it is an important requirement that the solar cell protective material has excellent durability against ultraviolet rays, moisture resistance, and the like.
  • a solar cell protective material effective for improving the weight, impact resistance, and durability of solar cells a material in which a weather-resistant film and a moisture-proof film are bonded together with an adhesive or a pressure-sensitive adhesive is known (for example, (See Patent Documents 1 and 2).
  • a polyester adhesive is used for a moisture-proof film having a water vapor transmission rate of 0.22 [g / (m 2 ⁇ day)] using a biaxially stretched polyester film as a base material.
  • a solar cell protective material is prepared by laminating a weather-resistant polyester film and a polypropylene film on the back surface, and the moisture resistance after a 1000 hour test is evaluated at 85 ° C. and 85% humidity, and a proposal for preventing moisture degradation is made.
  • a polyurethane adhesive layer is provided on both sides of a moisture-proof film having a water vapor transmission rate of 1 to 2 [g / (m 2 ⁇ day)] based on a biaxially stretched polyester film.
  • the surface protection material for solar cells was manufactured by laminating weather-resistant polyester films on both sides, and the barrier performance and interlayer strength after 1000 hours accelerated test at 85 ° C and 85% humidity were evaluated to prevent deterioration of both characteristics. I am making a proposal.
  • Patent Document 5 a PVF film using a two-component curable polyurethane adhesive on a moisture-proof film having a water vapor transmission rate of 0.5 [g / (m 2 ⁇ day)], which is also based on a biaxially stretched polyester film.
  • PCT pressure cooker test
  • the moisture-proof film is a film (inorganic thin film) in which an inorganic thin film is deposited on a film base material in order to obtain high moisture resistance. Vapor-deposited film) is used.
  • This inorganic thin film deposited film base material uses a film having a melting point higher than the vacuum lamination temperature, and when the thickness is thin, wrinkles and protrusions are formed on the surface of the protective material and the interface between the protective material and the sealing material due to vacuum lamination. There may be a problem of appearance failure such as occurrence or peeling between the protective material and the sealing material.
  • the roll length that can be handled in the unit production process is short in the production process of the moisture-proof film accompanied by vapor deposition or the decrease in light transmittance due to the increase in the thickness of the entire protective material.
  • the production cost increases, resulting in a significant decrease in the strength and power generation efficiency of the solar cell and a decrease in the production efficiency of the protective material.
  • the thickness of the solar cell element side is thicker than the inorganic layer exhibiting the moisture-proofing effect among the total thickness of the protection material, so that the moisture inflow from the edge of the protection material increases and the moisture-proofing effect. As a result, the power generation efficiency of the solar cell is significantly reduced.
  • a thin inorganic vapor deposition film with a thickness of less than 50 ⁇ m is used without using a thick inorganic vapor deposition film, a new film using an adhesive or adhesive on the back side of the inorganic vapor deposition surface is used. By bonding, the protective material can be given rigidity that can withstand the vacuum lamination process.
  • the problem to be solved by the present invention is to provide a solar cell protective material that has no appearance defects such as wrinkles, is excellent in appearance, and is excellent in moisture resistance, in particular, end face moisture resistance, as well as using this solar cell protection material.
  • the object is to provide a solar cell module.
  • the inventors have made the elastic modulus of the pressure-sensitive adhesive layer used for bonding below a specific elastic modulus near the vacuum lamination temperature, and the thickness of the pressure-sensitive adhesive layer is 13 to 45 ⁇ m. It has been found that a protective material for a solar cell can be provided which prevents deterioration in appearance after vacuum lamination without using a thick inorganic vapor-deposited film, and is excellent in peel strength and moisture resistance, in particular, end face moisture resistance.
  • the present invention (1) A protective material for solar cells in which a fluororesin film, an adhesive layer (i) composed of an adhesive (i), and a resin film having a metal oxide layer are laminated in this order, and the metal
  • the thickness of the base material of the resin film having an oxide layer is 30 ⁇ m or less
  • the thickness of the pressure-sensitive adhesive layer (i) is 13 to 45 ⁇ m
  • the pressure-sensitive adhesive layer (i) is 100 ° C., frequency 10 Hz, strain 0
  • a protective material for solar cells having a tensile storage elastic modulus at 1% of 5.0 ⁇ 10 4 to 5.0 ⁇ 10 5 Pa (2)
  • the solar cell protective material according to (1), wherein the pressure-sensitive adhesive (i) is a pressure-sensitive adhesive containing no carboxyl group or amino group
  • the protective material for solar cells according to (1) or (2), wherein the base material of the resin film having the metal oxide layer is a polyester film, (4) The water vapor permeability of the resin film having the metal oxide layer at
  • the solar cell protective material according to any one of (5) Fluorine resin film, pressure-sensitive adhesive layer (i) made of pressure-sensitive adhesive (i), resin film having a metal oxide layer, pressure-sensitive adhesive layer (ii) made of pressure-sensitive adhesive or adhesive, and melting point 180
  • an adhesive layer (i) composed of an adhesive (i), and a resin film having a metal oxide layer are laminated in this order (1)
  • the tensile storage elastic modulus of the pressure-sensitive adhesive layer (i) comprising the pressure-sensitive adhesive (i) at 0 ° C., a frequency of 10 Hz, and a strain of 0.1% is 1.0 ⁇ 10 6 to 1.0 ⁇ 10 8 Pa.
  • the present inventors have found that the glass transition point of the adhesive layer that bonds the films to each other in order to maintain good moisture resistance in a wide temperature range from a low temperature (eg, ⁇ 40 ° C.) to a high temperature (eg, 85 ° C.). As a result, the present invention was completed. That is, the present invention (16) A solar cell protective material having in this order a weather-resistant layer, an adhesive layer 1, and a moisture-proof layer 1 having an inorganic layer on a substrate, and the glass transition point of the adhesive layer 1 is 0 ° C. or lower.
  • Solar cell protective material (17) The solar cell protection according to (16), wherein the interlayer strength between the weather resistant layer and the moisture-proof layer 1 is 10 N / 15 mm or more after the condensation freezing test, and the degradation rate of the interlayer strength is less than 20%.
  • Material (18) The solar cell protective material according to (16) or (17), wherein the adhesive layer 1 contains an acrylic pressure-sensitive adhesive. (19) The solar cell protective material according to any one of (16) to (18), wherein the base material of the moisture-proof layer 1 is a polyester film, (20) The solar cell protective material according to any one of (16) to (19), further comprising an adhesive layer 2 and a moisture-proof layer 2 having an inorganic layer on the substrate.
  • Solar cell protective material (23) The solar cell protective material according to any one of (16) to (22), wherein the weather resistant layer is a 2-ethylene-4-fluoroethylene copolymer film, (24) The moisture vapor transmission rate of the moisture-proof layer 1 and / or the moisture-proof layer 2 at a temperature of 40 ° C. and a relative humidity of 90% is less than 0.1 [g / (m 2 ⁇ day)], and after the condensation freezing test.
  • a solar cell module comprising the solar cell protective material according to any one of the above, Is to provide.
  • the present invention even without using a thick inorganic thin film vapor-deposited film, the problem of poor appearance of the protective material for solar cells is solved, and the peel strength, moisture resistance, durability and weather resistance are excellent, and particularly the end face moisture resistance It is possible to provide a protective material for a solar cell that is excellent in performance. Moreover, the solar cell module using the solar cell protective material can not only achieve a good appearance, but also prevent a decrease in power generation efficiency. In particular, the solar cell module using the solar cell protective material of the second embodiment of the present invention does not cause appearance defects such as wrinkles even by high-temperature vacuum lamination with a vacuum lamination temperature of 150 ° C. or higher. It is excellent in production efficiency without deterioration of moisture resistance.
  • the solar cell protective material of the third embodiment of the present invention is excellent in flexibility and moisture resistance without generation of moisture resistance degradation and delamination over a long period of time, and simultaneously prevents the performance degradation of the solar cell module, And it is effective in improving the durability of the solar cell module.
  • the solar cell protective material of the 4th embodiment of this invention is excellent in durability and a weather resistance, and can maintain favorable moisture-proof property in the wide temperature range from low temperature to high temperature.
  • a fluororesin film, an adhesive layer (i) composed of an adhesive (i), and a resin film having a metal oxide layer are laminated in this order.
  • the substrate thickness of the resin film having the metal oxide layer is 30 ⁇ m or less
  • the pressure-sensitive adhesive layer (i) has a thickness of 13 to 45 ⁇ m
  • the pressure-sensitive adhesive layer (i) has a temperature of 100 ° C.
  • the tensile storage elastic modulus at a frequency of 10 Hz and a strain of 0.1% is 5.0 ⁇ 10 4 to 5.0 ⁇ 10 5 Pa.
  • the solar cell protective material according to the second embodiment of the present invention includes a fluororesin film, a pressure-sensitive adhesive layer (i) comprising a pressure-sensitive adhesive (i), a resin film having a metal oxide layer, a pressure-sensitive adhesive, or an adhesive. And a high melting point film having a melting point of 180 ° C. or more and a shrinkage rate of 0.5% or less, and the pressure-sensitive adhesive layer (i) has a thickness of 13 to 45 ⁇ m.
  • the tensile storage elastic modulus of the pressure-sensitive adhesive layer (i) at 100 ° C., frequency 10 Hz, and strain 0.1% is 5.0 ⁇ 10 4 to 5.0 ⁇ 10 5 Pa.
  • the solar cell protective material according to the third embodiment of the present invention includes a fluororesin film, an intermediate film, a pressure-sensitive adhesive layer (i) comprising a pressure-sensitive adhesive (i), and a resin film having a metal oxide layer.
  • the water vapor permeability of the resin film is 0.1 [g / (m 2 ⁇ day)], the melting point of the intermediate film is 150 ° C. or less, and the pressure-sensitive adhesive layer (i)
  • the adhesive layer (i) has a tensile storage modulus of 5.0 ⁇ 10 4 to 5.0 ⁇ 10 5 Pa at 100 ° C., a frequency of 10 Hz, and a strain of 0.1%. is there.
  • the fluororesin film is used as a weather resistant film.
  • the fluororesin film those excellent in hydrolysis resistance and weather resistance can be used without particular limitation.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetra Fluoroethylene-hexafluoropropylene copolymer
  • ETFE tetrafluoroethylene-ethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • the said fluororesin film is shape
  • a film having a melting point near the temperature during vacuum lamination that is, a film having a melting point of 180 ° C. or lower.
  • a weather resistant film having the melting point within the above temperature range the temperature in the vacuum lamination, the molecules in the film generated by the history of the force applied in the previous process and the thermal history, crystal orientation Can be relaxed and residual strain can be reduced.
  • the characteristic change is small even in the temperature and humidity change at the time of vacuum lamination or high temperature and high humidity.
  • the thickness of the fluororesin film is generally about 20 to 200 ⁇ m, preferably 20 to 100 ⁇ m, more preferably 20 to 50 ⁇ m from the viewpoints of film handling and cost.
  • the resin film having a metal oxide layer is a film having at least one metal oxide layer made of a metal oxide on at least one surface of a substrate, and is a film having moisture resistance.
  • the inner surface side of the solar cell by moisture and water permeation can be protected.
  • a resin film is preferable, and any material can be used without particular limitation as long as it is a resin that can be usually used for a solar cell member.
  • polyolefins such as homopolymers or copolymers such as ethylene, propylene and butene, amorphous polyolefins such as cyclic polyolefins, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), nylon 6 , Nylon 66, nylon 12, polyamide such as copolymer nylon, ethylene-vinyl acetate copolymer partial hydrolyzate (EVOH), polyimide, polyetherimide, polysulfone, polyethersulfone, polyetheretherketone, polycarbonate, Examples include polyvinyl butyral, polyarylate, fluororesin, acrylic resin, and biodegradable resin.
  • polyesters, polyamides, and polyolefins are preferable from the viewpoints of film properties and cost.
  • polyester is preferable, and polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are particularly preferable.
  • the base material is a known additive such as an antistatic agent, a light blocking agent, an ultraviolet absorber, a plasticizer, a lubricant, a filler, a colorant, a stabilizer, a lubricant, a crosslinking agent, an antiblocking agent, an oxidation agent.
  • An inhibitor or the like can be contained.
  • the base material is formed by using the raw materials and the like, but may be unstretched or stretched.
  • Such a substrate can be produced by a conventionally known method.
  • the raw material is melted by an extruder, extruded by an annular die or a T die, and rapidly cooled to be substantially amorphous and not oriented.
  • a stretched film can be produced.
  • a multilayer die it is possible to produce a single layer film made of one kind of resin, a multilayer film made of one kind of resin, a multilayer film made of various kinds of resins, and the like.
  • the unstretched film is subjected to a known method such as uniaxial stretching, tenter sequential biaxial stretching, tenter simultaneous biaxial stretching, tubular simultaneous biaxial stretching, or the like.
  • a film stretched in a uniaxial direction or a biaxial direction can be produced by stretching in a direction perpendicular to it (horizontal axis).
  • the draw ratio can be arbitrarily set, but the heat shrinkage at 100 ° C. is preferably 0.01 to 5%, more preferably 0.01 to 2%. Further, the thermal shrinkage at 150 ° C. is more preferably 0.01 to 5%, and particularly preferably 0.01 to 2%.
  • biaxially stretched polyethylene naphthalate film biaxially stretched polyethylene terephthalate, polyethylene terephthalate and / or coextruded biaxially stretched film of polyethylene naphthalate and other plastics are preferable.
  • anchor coating agents include solvent-based or aqueous polyester resins, isocyanate resins, urethane resins, acrylic resins, modified vinyl resins, vinyl alcohol resins, vinyl butyral resins, ethylene vinyl alcohol resins, nitrocellulose resins, oxazoline group-containing resins, carbodiimides.
  • a group-containing resin, a melamine group-containing resin, an epoxy group-containing resin, a modified styrene resin, a modified silicone resin, or the like can be used alone or in combination of two or more.
  • Anchor coating agents contain silane coupling agents, titanium coupling agents, alkyl titanates, light blockers, UV absorbers, stabilizers, lubricants, antiblocking agents, antioxidants, etc.
  • a material obtained by copolymerizing an agent or the like with the above resin can be contained.
  • the anchor coat layer As a method for forming the anchor coat layer, a known coating method is appropriately adopted. For example, any method such as a reverse roll coater, a gravure coater, a rod coater, an air doctor coater, or a coating method using a spray can be used.
  • the substrate may be immersed in an anchor coating agent solution.
  • the solvent can be evaporated using a known drying method such as hot air drying at a temperature of about 80 to 200 ° C., heat drying such as hot roll drying, or infrared drying.
  • the crosslinking process by electron beam irradiation can also be performed.
  • the formation of the anchor coat layer may be a method performed in the middle of the substrate production line (inline) or a method performed after manufacturing the substrate film (offline).
  • the thickness of the base material is 30 ⁇ m or less from the viewpoint of end face moisture resistance of the solar cell protective material, and from the viewpoint of preventing appearance deterioration after high-temperature vacuum lamination without using a thick inorganic thin film deposited film. It is preferably 10 to 30 ⁇ m, more preferably 12 to 25 ⁇ m, and particularly preferably 12 to 20 ⁇ m. Furthermore, it is preferable that the thickness of the base material is thinner than the thickness of the fluororesin film, thereby obtaining a solar cell protective material excellent in flexibility. When the solar cell module using such a solar cell protective material is bent, the solar cell protective material can follow the bending, and the solar cell protective material and the sealing material are delaminated. Is unlikely to occur.
  • Examples of the material constituting the metal oxide layer include oxides such as silicon, aluminum, magnesium, zinc, tin, nickel, and titanium, oxide carbides, oxynitrides, oxycarbonitrides, and mixtures thereof. Silicon oxide, silicon oxycarbide, silicon oxynitride, silicon oxycarbonitride, aluminum oxide, carbonized oxycarbide because there is no fear of leakage of current when applied to solar cells and high moisture resistance can be stably maintained. Metal oxides such as aluminum and aluminum oxynitride and mixtures thereof are preferred.
  • any method such as a vapor deposition method and a coating method can be used, but a vapor deposition method is preferred in that a uniform thin film having a high gas barrier property can be obtained.
  • This vapor deposition method includes methods such as physical vapor deposition (PVD) and chemical vapor deposition (CVD). Examples of physical vapor deposition include vacuum vapor deposition, ion plating, and sputtering, and chemical vapor deposition includes plasma CVD using plasma, and a catalyst that thermally decomposes a material gas using a heated catalyst body. Examples include chemical vapor deposition (Cat-CVD).
  • the thickness of the metal oxide layer is preferably 40 to 1000 nm, more preferably 40 to 800 nm, and still more preferably 50 to 600 nm, from the viewpoint of stable moisture-proof performance and transparency.
  • the metal oxide layer can be formed into a multi-layer by using the various film formation methods mentioned above to improve moisture resistance. In that case, the same film formation method may be used, or a different film formation method may be used for each layer. However, it is effective to improve the moisture resistance and productivity by continuously performing them under reduced pressure. This is preferable.
  • the water vapor transmission rate of the resin film having a metal oxide layer at a temperature of 40 ° C. and a relative humidity of 90% is preferably less than 0.1 [g / (m 2 ⁇ day)], more preferably 0 from the viewpoint of moisture resistance. 0.05 [g / (m 2 ⁇ day)] or less, more preferably 0.03 [g / (m 2 ⁇ day)] or less.
  • the water vapor transmission rate can be adjusted by appropriately adjusting the selection of the base material, the selection of the metal oxide constituting the metal oxide layer, the thickness of the metal oxide layer, the oxidation number of the metal oxide, and the like.
  • the water vapor transmission rate is measured in accordance with the conditions of JIS Z 0222 “Method of moisture permeability test for moisture-proof packaging containers” and JIS Z 0208 “Method of moisture permeability test for moisture-proof packaging materials (cup method)”. It is measured by the method described in the examples.
  • an adhesive is a liquid property (fluidity) for adhering and adhering to an adherend by applying a slight pressure at room temperature for a short time without using water, a solvent, heat or the like.
  • a solid property cohesive force
  • adhesives such as solution-type adhesives, thermosetting adhesives, and hot-melt adhesives solidify due to chemical reaction, solvent volatilization, temperature changes, etc., adhesives are semi-solid and require a solidification process. In other words, the state does not change even after the bonding is formed.
  • the pressure-sensitive adhesive layer (i) in the present invention is a layer for bonding one side of a fluororesin film and a resin film having a metal oxide layer.
  • the tensile storage elastic modulus of the pressure-sensitive adhesive layer (i) at 100 ° C., a frequency of 10 Hz, and a strain of 0.1% is 5.0 ⁇ 10 4 to 5.0 ⁇ 10 5 Pa.
  • the deformation and stress of the moisture-proof film layer in the protective material due to the shrinkage of the sealing material can be relieved, and the propagation of stress that causes wrinkles on the surface of the fluororesin film can be prevented, and thick inorganic vapor deposition It is possible to prevent poor appearance without using a film.
  • this stress propagation mitigation action in the vacuum lamination process also reduces the stress action on the metal oxide layer surface in contact with the pressure-sensitive adhesive layer, and it is possible to obtain the effect of preventing the deterioration of moisture resistance in the subsequent durability test. It is. Therefore, in this invention, even if it does not use the thick inorganic vapor deposition film which resists shrinkage
  • the tensile storage modulus of the pressure-sensitive adhesive layer (i) exceeds 5.0 ⁇ 10 5 Pa, there is a possibility that the pressure-sensitive adhesive layer (i) cannot sufficiently absorb the stress generated due to film shrinkage or the like. is there.
  • the tensile storage elastic modulus of the pressure-sensitive adhesive layer (i) is set to 5.0 ⁇ 10 5 Pa or less, the pressure generated by the shrinkage of the film can be sufficiently absorbed by the pressure-sensitive adhesive layer (i). Deterioration can be prevented.
  • the tensile storage elastic modulus is less than 5.0 ⁇ 10 4 Pa, the pressure-sensitive adhesive layer (i) flows during the vacuum lamination process and protrudes greatly from the protective material to obtain a laminate having a uniform thickness.
  • the tensile storage elastic modulus of the pressure-sensitive adhesive layer (i) at 100 ° C., frequency 10 Hz, and strain 0.1% is preferably 7 ⁇ 10 4 Pa to 3 ⁇ 10 5 Pa. Furthermore, the tensile storage elastic modulus of the pressure-sensitive adhesive layer (i) at 0 ° C., a frequency of 10 Hz, and a strain of 0.1% is preferably 1.0 ⁇ 10 6 to 1.0 ⁇ 10 8 Pa. In addition, a tensile storage elastic modulus is measured by the method as described in an Example.
  • the tensile storage elastic modulus can be adjusted (controlled) by the component composition of the pressure-sensitive adhesive layer (i) and the crosslinking agent.
  • the tensile storage elastic modulus increases, and using a monomer having a low glass transition point (Tg) and reducing the amount of the crosslinking agent added.
  • the pressure-sensitive adhesive (i) used for the pressure-sensitive adhesive layer (i) has a tensile storage elastic modulus at 100 ° C.
  • the acrylic pressure-sensitive adhesive is the main component. More preferred.
  • the main component is a purpose that allows other components to be contained within a range that does not impede the effect of the present invention, and does not limit the specific content, but is generally a pressure-sensitive adhesive layer (i ) Is 50 parts by mass or more, preferably 65 parts by mass or more, more preferably 80 parts by mass or more and occupies a range of 100 parts by mass or less.
  • acrylic pressure-sensitive adhesive examples include a main monomer component having a low glass transition point (Tg) that imparts tackiness, a comonomer component having a high Tg that imparts adhesiveness and cohesive force, and a functional group-containing monomer for improving crosslinking and adhesion.
  • Tg glass transition point
  • comonomer component having a high Tg that imparts adhesiveness and cohesive force
  • a functional group-containing monomer for improving crosslinking and adhesion What consists of the polymer or copolymer (henceforth "acrylic (co) polymer") which mainly has a component is preferable.
  • alkyl acrylate esters such as ethyl acrylate, butyl acrylate, amyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, cyclohexyl acrylate, benzyl acrylate, and the like.
  • alkyl methacrylates such as butyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, and benzyl methacrylate. These may be used alone or in combination of two or more.
  • Examples of the comonomer component of the acrylic pressure-sensitive adhesive include methyl acrylate, methyl methacrylate, ethyl methacrylate, vinyl acetate, styrene, acrylonitrile and the like. These may be used alone or in combination of two or more.
  • Examples of the functional group-containing monomer component of the acrylic pressure-sensitive adhesive include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, maleic acid, and itaconic acid, 2-hydroxyethyl (meth) acrylate, and 2-hydroxypropyl (methacrylic acid). ) Hydroxyl group-containing monomers such as acrylate and N-methylolacrylamide, acrylamide, methacrylamide, glycidyl methacrylate and the like. These may be used alone or in combination of two or more.
  • the initiator used for polymerization of the monomer component of the acrylic pressure-sensitive adhesive examples include azobisisobutylnitrile, benzoyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, and the like.
  • the copolymerization form of the acrylic (co) polymer used as the main component of the said acrylic adhesive Any of a random, a block, and a graft copolymer may be sufficient.
  • the molecular weight when the acrylic pressure-sensitive adhesive is the above-mentioned acrylic (co) polymer is preferably 300,000 to 1,500,000 in terms of weight average molecular weight, more preferably 400,000 to 1,000,000. preferable. By setting the weight average molecular weight within the above range, adhesion to the adherend and adhesion durability can be secured, and floating and peeling can be suppressed.
  • the content of the functional group-containing monomer component unit is preferably in the range of 1 to 25% by mass.
  • the adhesion and the degree of crosslinking with the adherend are ensured, and the tensile storage elastic modulus of the adhesive layer, which is an essential condition in the present invention, is 5.0 ⁇ 10 at 100 ° C.
  • the value can be 4 to 5.0 ⁇ 10 5 Pa.
  • the present inventors have found that the carboxyl group or amino group contained in the pressure-sensitive adhesive used affects the moisture-proof performance of the protective material in the high-temperature and high-humidity test. If the pressure-sensitive adhesive (i) contains a reactive carboxyl group or amino group, the pressure-sensitive adhesive is likely to be hydrolyzed, whereby the metal oxide layer is likely to deteriorate, and the moisture-proof performance may be reduced. is there. In particular, in a high temperature and high humidity environment, hydrolysis reaction is likely to be caused by moisture. Therefore, the pressure-sensitive adhesive (i) is preferably a pressure-sensitive adhesive that does not contain a carboxyl group or an amino group. Furthermore, it is more preferable that it is an adhesive which does not contain a carboxyl group and an amino group.
  • the pressure-sensitive adhesive in the present invention preferably contains an ultraviolet absorber.
  • an ultraviolet absorber that can be used, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5), which has good compatibility with acrylic pressure-sensitive adhesives and hardly causes bleed-out after compounding.
  • the blending of the ultraviolet absorber is preferably 0.1 to 10 parts by mass, more preferably 1 to 7 parts by mass in terms of solid content with respect to 100 parts by mass of the acrylic polymer. If the amount is less than 0.1 parts by mass, satisfactory ultraviolet absorption performance cannot be obtained. If the amount is 10 parts by mass or more, the obtained ultraviolet absorption performance is not improved, and the adhesive performance and durability are extremely reduced. Moreover, it is preferable that the glass transition point of an adhesive layer (i) is 0 degrees C or less.
  • the glass transition point of the pressure-sensitive adhesive layer (i) exceeds 0 ° C., it becomes impossible to maintain good moisture resistance by the metal oxide layer over a wide temperature range from low temperature (eg ⁇ 40 ° C.) to high temperature (eg 85 ° C.). There is a risk.
  • the glass transition point is more preferably ⁇ 40 to 0 ° C. in order to prevent weakening of the pressure-sensitive adhesive layer (i).
  • the glass transition point of the adhesive layer (i) is specifically determined by the method described in the examples. The glass transition point can be adjusted by appropriately adjusting the type and molecular weight of the pressure-sensitive adhesive (i).
  • the pressure-sensitive adhesive layer (i) may be formed by directly applying the pressure-sensitive adhesive (i) to the metal oxide layer of the resin film having the fluorine resin film or the metal oxide layer.
  • the adhesive (i) is applied to the release-treated surface of the release sheet that has been subjected to the release treatment, and this is bonded to the metal oxide layer of the resin film having a fluorine-based resin film or metal oxide layer. Can be formed.
  • the pressure-sensitive adhesive to be coated includes an organic solvent system, an emulsion system, and a solvent-free system, but an organic solvent system is preferable for uses such as solar cell members that are required to have water resistance.
  • organic solvent system examples include toluene, xylene, methanol, ethanol, isobutanol, n-butanol, acetone, methyl ethyl ketone, ethyl acetate, and tetrahydrofuran. These may be used alone or in combination of two or more.
  • the coating liquid is preferably prepared using these organic solvents so that the solid content concentration is in the range of 10 to 50% by mass.
  • Coating of the coating liquid is, for example, conventionally known coating methods such as bar coating, roll coating, knife coating, roll knife coating, die coating, gravure coating, air doctor coating, doctor blade coating, etc. It can be done by a method.
  • the pressure-sensitive adhesive layer (i) is formed by drying treatment usually at a temperature of 70 to 110 ° C. for about 1 to 5 minutes.
  • the thickness of the pressure-sensitive adhesive layer (i) is 13 ⁇ m or more, preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more from the viewpoint of obtaining sufficient adhesive force.
  • the structural change that occurs in the pressure-sensitive adhesive layer (i) during the high-temperature and high-humidity test prevents the stress on the metal oxide layer surface of the resin film having a metal oxide layer from increasing, resulting in inferior moisture resistance. Therefore, the thickness is 45 ⁇ m or less, preferably 30 ⁇ m or less.
  • the stress on the metal oxide layer surface acts as a product of the thickness of the pressure-sensitive adhesive layer (i) and the stress generated in the pressure-sensitive adhesive layer (i).
  • the decrease in moisture resistance during the durability test is significant.
  • the protective material for a solar cell of the present invention preferably has a high melting point film on the side opposite to the fluorine resin film.
  • the high melting point film used has a melting point of 180 ° C. or higher and a shrinkage rate of 0.5% or lower.
  • the heat shrinkage rate of the film is preferably 0.5% or less in both the length direction and the width direction.
  • the thermal shrinkage rate of the high melting point film is 0.5% or less, preferably 0.4% or less, from the viewpoint of reducing the occurrence of residual stress in the vacuum lamination process and preventing the curling of the solar cell protective material. More preferably, it is 0.3% or less.
  • a heat shrinkage rate is measured by the method as described in an Example.
  • a material of a high melting point film For example, polyester, polyamide, polyphenylene sulfide, etc. are mentioned. Among them, preferred specific examples include polyethylene terephthalate (melting point: 260 ° C.), polyethylene naphthalate (melting point: 262 ° C.), and the like.
  • the high melting point film may be a single layer or a laminated structure having a plurality of high melting point films.
  • the thickness of the high melting point film is from 25 to 250 ⁇ m from the viewpoint of preventing wrinkles after vacuum lamination and curling of solar cell protective materials. It is preferably 38 to 220 ⁇ m, more preferably 50 to 200 ⁇ m.
  • the adhesive layer (ii) is a layer for bonding the back surface of the metal oxide layer surface of the resin film having a metal oxide layer and a high melting point film using an adhesive or an adhesive.
  • a pressure-sensitive adhesive it is desirable to use the same as the pressure-sensitive adhesive (i).
  • a pressure-sensitive adhesive a polyurethane-based adhesive having excellent hydrolysis resistance, It is desirable to use ii) in a range where the tensile storage elastic modulus is the same as that of the pressure-sensitive adhesive layer (i).
  • the adhesive layer (ii) made of an adhesive or an adhesive is formed by directly applying an adhesive to the back surface of a metal oxide layer surface of a resin film having a metal oxide layer or a high melting point film.
  • the adhesive may be applied to the release-treated surface of the release sheet that has been subjected to the release treatment, and this may be bonded to the back surface of the metal oxide layer surface of the resin film having the metal oxide layer or a high melting point film.
  • the thickness of the adhesive layer (ii) is preferably 13 ⁇ m or more, more preferably 15 ⁇ m or more, and still more preferably 20 ⁇ m or more when a pressure-sensitive adhesive is used from the viewpoint of obtaining sufficient adhesive force.
  • the thickness is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less, from the viewpoint of reducing the thickness of the lower layer side from the moisture-proof film as much as possible.
  • an adhesive agent Preferably it is 4 micrometers or more, More preferably, it is 6 micrometers or more, More preferably, it is 8 micrometers or more.
  • the thickness on the lower layer side of the moisture-proof film is preferably as thin as possible, and the thickness is preferably 10 ⁇ m or less, and an adhesive is used from the viewpoint of preventing moisture from entering from the end face. It is desirable to do.
  • the solar cell protective material of the present invention preferably has an intermediate film between the fluororesin film and the pressure-sensitive adhesive layer (i).
  • the intermediate film can be directly bonded to the pressure-sensitive adhesive layer formed on the metal oxide layer surface of the moisture-proof film. Since the intermediate film has a melting point of 150 ° C. or lower, it is melted in a vacuum lamination step, and may be provided on the back side from the intermediate film by a pressure-down adhesive layer, moisture-proof film, and further from the moisture-proof film.
  • An end-sealed film is formed on the side surfaces of the film and the like to protect the pressure-sensitive adhesive layer, the base material of the moisture-proof film, and the like, thereby preventing the moisture-proof property from decreasing and delamination from occurring.
  • the intermediate film is excellent in weather resistance and wet heat resistance and has good adhesion to each layer forming the solar cell protective material. From the above viewpoint, it is the same as the solar cell sealing material. It is desirable to use a film.
  • the melting point of the intermediate film is preferably 120 ° C. or less, more preferably 110 ° C. or less, and further preferably 100 ° C. or less.
  • the lower limit is usually 50 ° C. and preferably 60 ° C.
  • the melting point of the intermediate film is particularly preferably 60 to 110 ° C.
  • the intermediate film it is desirable that it is rich in flexibility and excellent in ultraviolet rays and humidification durability in consideration of use as a solar cell surface protective material.
  • examples of such an intermediate film include a film containing ethylene-vinyl acetate or polyethylene as a main component, for example, a film containing 50% by mass or more and less than 100% by mass.
  • a film containing polyethylene having a low melting point as a main component for example, a film containing 50% by mass or more and less than 100% by mass is preferable.
  • a resin composition in which an ultraviolet absorber or a colorant is kneaded with a resin such as low density polyethylene (LDPE) or ethylene- ⁇ -olefin copolymer is preferably used.
  • LDPE low density polyethylene
  • ethylene- ⁇ -olefin copolymer ethylene- ⁇ -olefin copolymer
  • a film containing 50% by mass or more and less than 100% by mass is particularly preferable.
  • middle film although various commercial items are mention
  • benzophenone ultraviolet absorbers include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-n.
  • benzotriazole ultraviolet absorber examples include hydroxyphenyl-substituted benzotriazole compounds such as 2- (2-hydroxy-5-methylphenyl) benzotriazole and 2- (2-hydroxy-5-tert-butylphenyl).
  • Benzotriazole 2- (2-hydroxy-3,5-dimethylphenyl) benzotriazole, 2- (2-methyl-4-hydroxyphenyl) benzotriazole, 2- (2-hydroxy-3-methyl-5-t- Butylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-amylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, etc. be able to.
  • triazine ultraviolet absorbers examples include 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol, 2- ( Examples include 4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyloxy) phenol.
  • salicylic acid esters include phenyl salicylate and p-octylphenyl salicylate.
  • the amount of the ultraviolet absorber is usually about 0.01 to 2.0% by mass in the intermediate film, and preferably 0.05 to 0.5% by mass.
  • a hindered amine light stabilizer is preferably used as a weather stabilizer that imparts weather resistance in addition to the ultraviolet absorber.
  • a hindered amine light stabilizer does not absorb ultraviolet rays like an ultraviolet absorber, but exhibits a remarkable synergistic effect when used together with an ultraviolet absorber.
  • hindered amine light stabilizers include dimethyl succinate-1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, poly [ ⁇ 6- (1,1,1 3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ 2, 2,6,6-tetramethyl-4-piperidyl ⁇ imino ⁇ ], N, N′-bis (3-aminopropyl) ethylenediamine-2,4-bis [N-butyl-N- (1,2,2, 6,6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5-triazine condensate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, 2- (3 , 5-di-tert-4 Hydroxybenzyl) -2-
  • the thickness of the intermediate film is 50 ⁇ m or more from the viewpoint of easy handling of the film, preferably 100 ⁇ m or more, more preferably 200 ⁇ m or more. Preferably it is 300 micrometers or more.
  • the upper limit is not particularly limited, but is usually 500 ⁇ m from the viewpoint of handling.
  • the thickness of the intermediate film is preferably 100 to 500 ⁇ m from the above.
  • the solar cell protective material according to the fourth embodiment of the present invention is a solar cell protective material having a weatherproof layer, an adhesive layer 1 and a moisture-proof layer 1 having an inorganic layer on a base material in this order. It is a solar cell protective material whose glass transition point of the said adhesive layer 1 is 0 degrees C or less.
  • weather resistant layer examples include a weather resistant resin composition coating layer and a weather resistant film, and a weather resistant film is preferred.
  • the weather-resistant film can be used without limitation as long as it has hydrolysis resistance and weather resistance.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • FEP Tetrafluoroethylene / hexafluoropropylene copolymer
  • EFE ethylene / tetrafluoroethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • PVDF polyvinyl fluoride
  • PVDF polyvinyl fluoride
  • PVDF polyvinyl fluoride
  • PVDF polyvinyl fluoride
  • PVDF polyvinyl fluoride
  • Fluorine resin Polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); Polycarbonate; Acrylic resin such as polymethyl methacrylate (PMMA); Films of various resins such as polyamide Door can be.
  • the weather resistant film may contain two or more of these resins, or may be a laminated film
  • vacuum lamination It is preferable to use a film having a melting point near the time temperature, that is, a film having a melting point of 180 ° C. or lower.
  • a weather-resistant film having a melting point within the above temperature range the molecular and crystal orientation in the film caused by the history of the force applied in the previous process and the thermal history at the temperature during vacuum lamination.
  • the residual strain can be reduced by relaxation.
  • the weather resistant film it is preferable that the change in characteristics is small even in the temperature / humidity change at the time of vacuum lamination or high temperature and high humidity.
  • the weather resistant film is a known additive, for example, an antistatic agent, an ultraviolet absorber, a plasticizer, a lubricant, a filler, a colorant, a stabilizer such as a light stabilizer, a lubricant, a crosslinking agent, an antiblocking agent, An antioxidant etc. can be contained.
  • the thickness of the weather-resistant layer is generally about 20 to 200 ⁇ m. In the case of a weather-resistant film, it is preferably 20 to 100 ⁇ m, more preferably 20 to 50 ⁇ m from the viewpoint of ease of handling and cost.
  • the moisture-proof layer 1 is a layer having at least one inorganic layer on at least one surface of a substrate, and is a layer having moisture resistance.
  • the inorganic layer can protect the inner surface side of a solar cell or the like due to moisture and water permeation.
  • the moisture-proof layer 1 is adhere
  • a resin film is preferable, and as a material thereof, a resin that can be used for packaging materials such as ordinary packaging materials and electronic devices, solar cell members, electronic paper members, and organic EL members. If it can be used, there is no particular limitation.
  • polyolefins such as homopolymers or copolymers such as ethylene, propylene and butene; amorphous polyolefins such as cyclic polyolefins; polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); nylon 6 , Polyamides such as nylon 66, nylon 12, copolymer nylon; ethylene-vinyl acetate copolymer partial hydrolyzate (EVOH), polyimide, polyetherimide, polysulfone, polyethersulfone, polyetheretherketone, polycarbonate, polyvinyl Examples include butyral, polyarylate, fluororesin, acrylic resin, and biodegradable resin.
  • polyesters, polyamides, and polyolefins are preferable from the viewpoints of film properties and cost.
  • polyester is preferable, and polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are particularly preferable.
  • the base material is a known additive such as an antistatic agent, a light blocking agent, an ultraviolet absorber, a plasticizer, a lubricant, a filler, a colorant, a stabilizer, a lubricant, a crosslinking agent, an antiblocking agent, an oxidation agent.
  • An inhibitor or the like can be contained.
  • the resin film as the substrate may be unstretched or stretched.
  • Such a substrate can be produced by a conventionally known method.
  • the raw material is melted by an extruder, extruded by an annular die or a T die, and rapidly cooled to be substantially amorphous and not oriented.
  • a stretched film can be produced.
  • a multilayer die it is possible to produce a single layer film made of one kind of resin, a multilayer film made of one kind of resin, a multilayer film made of various kinds of resins, and the like.
  • the unstretched film is subjected to a known method such as uniaxial stretching, tenter sequential biaxial stretching, tenter simultaneous biaxial stretching, tubular simultaneous biaxial stretching, or the like.
  • a film stretched in a uniaxial direction or a biaxial direction can be produced by stretching in a direction (horizontal axis) perpendicular thereto.
  • the draw ratio can be arbitrarily set, but the heat shrinkage at 100 ° C. is preferably 0.01 to 5%, more preferably 0.01 to 2%.
  • biaxially stretched polyethylene naphthalate film biaxially stretched polyethylene terephthalate film, coextruded biaxially stretched film of polyethylene naphthalate and polyethylene terephthalate, or coextrusion biaxially of these resins and other resins
  • a stretched film is preferred.
  • the thickness of the substrate is 30 ⁇ m or less, preferably 10 to 30 ⁇ m, more preferably 12 to 25 ⁇ m, and still more preferably 12 to 20 ⁇ m, from the viewpoint of moisture resistance of the end face of the protective sheet. Furthermore, when the thickness of the base material of the moisture-proof layer 1 is smaller than the thickness of the weatherproof layer, a solar cell protective material excellent in flexibility is obtained, and when the solar cell module is bent, the solar cell protective material is The bending can be followed, and delamination between the solar cell protective material and the sealing material hardly occurs, which is preferable. In particular, it is more preferable for the reason described above that both the thickness of the base material of the moisture-proof layer 1 and the thickness of the base material of the moisture-proof layer 2 are thinner than the thickness of the weather-resistant layer.
  • an anchor coat layer by applying an anchor coat agent to the base material in order to improve adhesion with the inorganic layer.
  • the anchor coating agent include solvent-based or aqueous polyester resins, isocyanate resins, urethane resins, acrylic resins, vinyl resins, vinyl alcohol resins, and other alcoholic hydroxyl group-containing resins, vinyl butyral resins, nitrocellulose resins, oxazoline group-containing resins, Examples thereof include carbodiimide group-containing resins, methylene group-containing resins, epoxy group-containing resins, styrene resins, and silicone resins. These can be used alone or in combination of two or more.
  • the anchor coat layer contains a silane coupling agent, a titanium coupling agent, an alkyl titanate, an ultraviolet absorber, a stabilizer such as a weather resistance stabilizer, a lubricant, an anti-blocking agent, an antioxidant, etc., if necessary. can do.
  • the anchor coat layer As a method for forming the anchor coat layer, a known coating method is appropriately adopted. For example, any method such as a reverse roll coater, a gravure coater, a rod coater, an air doctor coater, and a coating method using a spray can be used.
  • the substrate may be immersed in a resin solution.
  • the solvent can be evaporated using a known drying method such as hot air drying at a temperature of about 80 to 200 ° C., heat drying such as hot roll drying, or infrared drying.
  • the crosslinking process by electron beam irradiation can also be performed.
  • the formation of the anchor coat layer may be a method performed in the middle of the substrate production line (inline) or a method performed after the substrate production (offline).
  • Examples of inorganic substances constituting the inorganic layer include silicon, aluminum, magnesium, zinc, tin, nickel, titanium, and oxides, carbides, nitrides, oxycarbides, oxynitrides, oxycarbonitrides, diamond-like carbons thereof. Or a mixture thereof, but silicon oxide, silicon oxide carbide, silicon oxynitride, silicon oxycarbonitride, aluminum oxide, carbon oxide carbonization because there is no fear of leakage of current when applied to solar cells.
  • Inorganic oxides such as aluminum and aluminum oxynitride, nitrides such as silicon nitride and aluminum nitride, diamond-like carbon, and mixtures thereof are preferred.
  • silicon oxide, silicon oxycarbide, silicon oxynitride, silicon oxycarbonitride, silicon nitride, aluminum oxide, aluminum oxycarbide, aluminum oxynitride, aluminum nitride, and mixtures thereof can maintain high moisture resistance stably.
  • any method such as a vapor deposition method and a coating method can be used, but the vapor deposition method is preferred in that a uniform thin film having a high gas barrier property can be obtained.
  • This vapor deposition method includes methods such as physical vapor deposition (PVD) and chemical vapor deposition (CVD).
  • the inorganic layer may be a single layer or a multilayer, and the multilayer can be formed by using the various film forming methods mentioned above to improve moisture resistance. In that case, the same film formation method may be used, or a different film formation method may be used for each layer. However, it is effective to improve the moisture resistance and productivity by continuously performing them under reduced pressure. This is preferable.
  • each layer may consist of the same inorganic substance, or may consist of a different inorganic substance.
  • the thickness of the inorganic layer is preferably 10 to 1000 nm, more preferably 20 to 800 nm, and even more preferably 30 to 600 nm from the viewpoint of high moisture-proof performance and transparency.
  • the moisture permeability of the moisture-proof layer is adjusted by appropriately selecting the inorganic material constituting the inorganic layer, the thickness of the inorganic layer, the thickness of the moisture-proof layer, the oxidation number of the inorganic layer, and the like. be able to.
  • the water vapor transmission rate of the moisture-proof layer at a temperature of 40 ° C. and a relative humidity of 90% is preferably less than 0.1 [g / (m 2 ⁇ day)], more preferably 0.05 [g / ( m 2 ⁇ day)] or less, and more preferably 0.03 [g / (m 2 ⁇ day)] or less.
  • Adjustment of the water vapor transmission rate of the moisture-proof layer is performed by appropriately adjusting the selection of the base material, the selection of the inorganic substance constituting the inorganic layer, the thickness of the inorganic layer, the thickness of the moisture-proof layer, the oxidation number of the inorganic layer, and the like. be able to.
  • the degree of deterioration of the water vapor transmission rate from the initial water vapor transmission rate after the condensation freezing test is preferably less than 3, and more preferably 2 or less.
  • the water vapor transmission rate is measured in accordance with the conditions of JIS Z 0222 “Method of moisture permeability test for moisture-proof packaging containers” and JIS Z 0208 “Method of moisture permeability test for moisture-proof packaging materials (cup method)”. It is measured by the method described in the examples.
  • the glass transition point of the contact bonding layer 1 shall be 0 degrees C or less.
  • the glass transition point of the adhesive layer 1 exceeds 0 ° C., it becomes impossible to maintain good moisture resistance by the moisture-proof layer in a wide temperature range from low temperature (eg ⁇ 40 ° C.) to high temperature (eg 85 ° C.).
  • the glass transition point is more preferably ⁇ 40 to 0 ° C. for preventing brittleness of the adhesive and the pressure-sensitive adhesive layer.
  • the glass transition point of the adhesive layer 1 is specifically determined by the method described in the examples.
  • the tensile storage elastic modulus of the adhesive layer 1 at 0 ° C., frequency 10 Hz, and strain 0.1% is preferably 1.0 ⁇ 10 6 to 1.0 ⁇ 10 8 Pa. More preferably, the tensile storage elastic modulus at a temperature of 10 ° C., a frequency of 10 Hz, and a strain of 0.1% is 5.0 ⁇ 10 4 to 5.0 ⁇ 10 5 Pa.
  • stress generated by film shrinkage and the like can be sufficiently absorbed by the pressure-sensitive adhesive layer at low temperature, and moisture-proof Can be prevented.
  • the pressure generated by the shrinkage of the film can be sufficiently absorbed by the pressure-sensitive adhesive layer at high temperature, and moisture-proof Deterioration can be prevented.
  • the adhesive layer 1 is composed of an adhesive or an adhesive.
  • the pressure-sensitive adhesive is also called a pressure-sensitive adhesive (pressure-sensitive adhesive), and can be bonded by applying a slight pressure at room temperature for a short time without using water, solvent, heat or the like.
  • adhesives such as solution-type adhesives, thermosetting adhesives, and hot-melt adhesives solidify due to chemical reactions, solvent volatilization, temperature changes, etc.
  • pressure-sensitive adhesives are semi-solid and remain in their state after bonding Does not change, no solidification process is required, and the state does not change even after the bonding is formed.
  • adhesive agent in this specification, it distinguishes from an adhesive agent.
  • the pressure-sensitive adhesive according to the present invention preferably includes an acrylic pressure-sensitive adhesive, and more preferably includes an acrylic pressure-sensitive adhesive as a main component.
  • the main component is a purpose that allows other components to be included within a range that does not impede the effects of the present invention, and does not limit the specific content, but generally the configuration of the adhesive layer 1.
  • the total component is 100 parts by mass, it is 50 parts by mass or more, preferably 65 parts by mass or more, more preferably 80 parts by mass or more and occupies a range of 100 parts by mass or less.
  • Acrylic pressure-sensitive adhesives include a main monomer component having a low glass transition point (Tg) that provides tackiness, a comonomer component having a high Tg that provides adhesion and cohesion, and a functional group-containing monomer component for improving crosslinking and adhesion.
  • Tg glass transition point
  • a comonomer component having a high Tg that provides adhesion and cohesion and a functional group-containing monomer component for improving crosslinking and adhesion.
  • acrylic (co) polymer a polymer or copolymer
  • Examples of the main monomer component of the acrylic pressure-sensitive adhesive include alkyl acrylates such as ethyl acrylate, butyl acrylate, amyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, cyclohexyl acrylate, and benzyl acrylate, And alkyl methacrylates such as butyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, and benzyl methacrylate. These may be used alone or in combination of two or more.
  • Examples of the comonomer component of the acrylic pressure-sensitive adhesive include methyl acrylate, methyl methacrylate, ethyl methacrylate, vinyl acetate, styrene, acrylonitrile and the like. These may be used alone or in combination of two or more.
  • Examples of the functional group-containing monomer component of the acrylic pressure-sensitive adhesive include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, maleic acid, and itaconic acid, 2-hydroxyethyl (meth) acrylate, and 2-hydroxypropyl (meth). Examples thereof include hydroxyl group-containing monomers such as acrylate and N-methylolacrylamide, acrylamide, methacrylamide, and glycidyl methacrylate. These may be used alone or in combination of two or more.
  • the initiator used for polymerization of the monomer component of the acrylic pressure-sensitive adhesive examples include azobisisobutylnitrile, benzoyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, and the like.
  • the copolymerization form of the acrylic (co) polymer used as the main component of the said acrylic adhesive Any of a random, a block, and a graft copolymer may be sufficient.
  • the molecular weight when the acrylic pressure-sensitive adhesive is the above-mentioned acrylic (co) polymer is preferably 300,000 to 1,500,000 in terms of weight average molecular weight, more preferably 400,000 to 1,000,000. . By setting the weight average molecular weight within the above range, adhesion to the adherend and adhesion durability can be secured, and floating and peeling can be suppressed.
  • the content of the functional group-containing monomer component unit is preferably in the range of 1 to 25% by mass. By making this content within the range, the adhesion and the degree of crosslinking with the adherend are ensured, and the tensile storage elastic modulus in the low temperature region at 0 ° C., frequency 10 Hz, strain 0.1% of the adhesive layer 1 is obtained. 1.0 ⁇ 10 6 to 1.0 ⁇ 10 7 Pa.
  • the adhesive according to the present invention includes adhesives such as solution-type adhesives, thermosetting adhesives, hot-melt adhesives, etc., which are solidified by chemical reaction, solvent evaporation, temperature change, etc. To do.
  • the adhesive preferably includes a polyurethane adhesive, and more preferably includes a polyurethane adhesive as a main component.
  • the main component is a purpose that allows other components to be included within a range that does not impede the effects of the present invention, and does not limit the specific content, but generally the configuration of the adhesive layer 1.
  • the total component is 100 parts by mass, it is 50 parts by mass or more, preferably 65 parts by mass or more, more preferably 80 parts by mass or more and occupies a range of 100 parts by mass or less.
  • the polyurethane adhesive a type in which the main agent and the curing agent are solidified by a chemical reaction is preferable.
  • the main agent a polyol having a molecular weight of 400 to 20000 is preferably used, and a polyol having a molecular weight of 600 to 10,000 is more preferably used in consideration of a balance between coating film formability and reactivity during curing.
  • Specific examples of the main agent of the adhesive include a composition containing polycarbonate polyol, polyether polyol, polyacryl polyol, polyurethane polyol or polyester polyol.
  • Polycarbonate polyol can be obtained, for example, by copolymerizing diphenyl carbonate and diols such as ethylene glycol, propylene glycol, butanediol, neopentyl glycol (NPG), and cyclohexanediol. It can also be obtained by copolymerizing polycaprolactone polyol and polycarbonate diol.
  • diphenyl carbonate and diols such as ethylene glycol, propylene glycol, butanediol, neopentyl glycol (NPG), and cyclohexanediol. It can also be obtained by copolymerizing polycaprolactone polyol and polycarbonate diol.
  • the polyether polyol can be obtained, for example, by performing ring-opening polymerization of alkylene oxide such as ethylene oxide, propylene oxide, and tetrahydrofuran using an alkali catalyst or an acid catalyst as a catalyst.
  • alkylene oxide such as ethylene oxide, propylene oxide, and tetrahydrofuran
  • an alkali catalyst or an acid catalyst as a catalyst.
  • active hydrogen-containing compound serving as a starting material for the ring-opening polymerization
  • polyhydric alcohols such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol can be used.
  • the polyacrylic polyol can be obtained by copolymerizing a (meth) acrylic acid ester having a hydroxyl group and another monomer.
  • examples of the (meth) acrylic acid ester having a hydroxyl group include hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, and hydroxybutyl methacrylate.
  • examples of other monomers include methyl methacrylate, butyl methacrylate, and cyclohexyl methacrylate having an alicyclic structure.
  • Polyurethane polyol can be obtained by urethanization reaction of diol and diisocyanate at a ratio of hydroxyl group to isocyanate group of 1 or more.
  • the diol component and the diisocyanate component can be selected in consideration of the fluidity of the polyurethane polyol and the solubility in a solvent.
  • the diol component is preferably a diol having a primary hydroxyl group such as propylene glycol, tetramethylene glycol, or neopentyl glycol.
  • Examples of the diisocyanate component include aliphatic diisocyanates, alicyclic diisocyanates, and aromatic isocyanates.
  • polyester polyol examples include dicarboxylic acid compounds such as succinic acid, glutaric acid, adipic acid, isophthalic acid (IPA), and terephthalic acid (TPA), and diols such as ethylene glycol, propylene glycol, butanediol, neopentyl glycol, and cyclohexanediol. Alternatively, it can be obtained by copolymerizing with polytetramethylene glycol or the like.
  • dicarboxylic acid compounds such as succinic acid, glutaric acid, adipic acid, isophthalic acid (IPA), and terephthalic acid (TPA)
  • diols such as ethylene glycol, propylene glycol, butanediol, neopentyl glycol, and cyclohexanediol.
  • IPA isophthalic acid
  • TPA terephthalic acid
  • diols such as ethylene glycol, prop
  • polyester polyol As a raw material is preferable in terms of high adhesion to an adherend, but from the viewpoint of suppressing thermal deterioration due to hydrolysis of ester bonds, a polyester polyol having a small number of ester bond groups that can serve as hydrolysis points. It is desirable to select. For example, it is desirable to have a glycol having a long alkyl chain such as neopentyl glycol (NPG) and a glycol having an alicyclic structure such as 1,4-cyclohexanedimethanol. Furthermore, it is desirable to select a hydrolysis-resistant polyester polyol that includes a polyether structure in the main chain structure, such as polytetramethylene glycol (PTMG).
  • PTMG polytetramethylene glycol
  • the molecular weight per ester group of such a polyester polyol is preferably 100 to 5,000, more preferably 120 to 3,000.
  • a polyol what contains at least 1 sort (s) chosen from a polycarbonate polyol, a polyether polyol, and a polyurethane polyol from viewpoints, such as heat stability and humidity stability, is preferable.
  • those containing 30% by mass or more of at least one selected from polycarbonate polyol, polyether polyol and polyurethane polyol are more preferred, and those containing 30 to 70% by mass are particularly preferred. Further, it is preferable to add 0 to 30% by mass of other components.
  • acrylic resins, epoxy resins, polyolefins and the like for improving adhesion are preferable. Furthermore, a styrene-butadiene rubber excellent in high cold resistance and hydrolysis resistance can be preferably used.
  • diisocyanate is preferable, and any of aliphatic diisocyanate, aromatic diisocyanate and alicyclic diisocyanate can be preferably used.
  • aliphatic diisocyanate include hexamethylene diisocyanate (HDI).
  • aromatic diisocyanate include xylylene diisocyanate (XDI) and diphenylmethane diisocyanate (MDI).
  • alicyclic diisocyanate include isophorone diisocyanate (IPDI) and dicyclohexylmethane diisocyanate (H12MDI).
  • a polycarbonate-based polyurethane adhesive obtained by reacting a polycarbonate polyol and diisocyanate is more preferable from the viewpoints of thermal stability, humidity stability, and the like.
  • HDI having a flexible methylene chain is preferably used as the diisocyanate from the viewpoint of obtaining a sufficient crosslinking density even during curing.
  • a material containing an epoxy compound it is preferable to use as a main component. In order for the crosslinking reaction to proceed sufficiently during the curing of the adhesive, the hydroxyl group of the main polyol must be sufficiently close to the isocyanate group of the curing agent.
  • the curing agent needs to penetrate between the polymer chains of the main polyol.
  • the molecular weight of the curing agent is preferably smaller than that of the polyol, and the molecular weight of the diisocyanate contained in the curing agent is preferably 300 to 10,000, more preferably 1,000 to 5,000.
  • a method using a mixture of a plurality of polyols having different molecular weights as the main agent is preferable. .
  • the physical properties of the adhesive as described above are preferably (main agent viscosity / curing agent viscosity) or (curing agent viscosity / main agent viscosity) of 5 or more, and more preferably 10 or more.
  • the viscosity of the main agent is preferably 100 to 1500 (mPa ⁇ s, 25 ° C.), more preferably 400 to 1300 (mPa ⁇ s, 25 ° C.).
  • the viscosity of the curing agent is preferably 30 to 3000 (mPa ⁇ s, 25 ° C.).
  • the adhesion to the adherend and the degree of crosslinking are ensured, and the tensile storage elasticity in the low temperature region at 0 ° C., frequency 10 Hz, and strain 0.1% of the adhesive layer 1.
  • the rate can be controlled to 1.0 ⁇ 10 6 to 1.0 ⁇ 10 8 Pa, preferably 1.0 ⁇ 10 7 to 1.0 ⁇ 10 8 Pa.
  • the adhesive layer 1 according to the present invention preferably contains an ultraviolet absorber.
  • ultraviolet absorbers examples include 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-butylphenyl) benzotriazole, 2- (2-hydroxy-5-octylphenyl) benzotriazole, 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chlorobenzotriazole, 2- (3,5-di-t-amyl) Benzotriazoles such as 2-hydroxyphenyl) benzotriazole; benzophenones such as 2-hydroxy-4-methoxybenzophenone and 2-hydroxy-4-n-octyloxybenzophenone; 2- [4,6-bis (2, 4-Dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy Triazines such as phenol and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyloxy) phenol; Salicylate
  • the blending of the ultraviolet absorber is preferably 0.1 to 10 parts by mass, more preferably 1 to 7 parts by mass in terms of solid content with respect to 100 parts by mass of the pressure-sensitive adhesive or adhesive. If the amount is less than 0.1 parts by mass, satisfactory ultraviolet absorption performance cannot be obtained. If the amount is 10 parts by mass or more, in addition to the improvement in ultraviolet absorption performance to be obtained, adhesion performance or adhesive performance and durability are extremely reduced. .
  • the glass transition point of the adhesive layer 1 can be adjusted by appropriately adjusting the type or molecular weight of the adhesive or pressure-sensitive adhesive.
  • the adhesive layer 1 may be formed by directly applying a pressure-sensitive adhesive or adhesive coating liquid to the inorganic layer of the weather-resistant layer or moisture-proof layer, or applying the pressure-sensitive adhesive or adhesive. It can be formed by coating the release liquid on the release-treated surface of the release sheet that has been subjected to the release treatment, and bonding the resulting liquid to the inorganic layer of the weather-resistant layer or moisture-proof layer, and then peeling the release sheet.
  • the coating liquid used for coating it is preferable to use the above-mentioned pressure-sensitive adhesive or adhesive dissolved in an organic solvent, dissolved or dispersed in water, etc.
  • an organic solvent examples include toluene, xylene, methanol, ethanol, isobutanol, n-butanol, acetone, methyl ethyl ketone, ethyl acetate, tetrahydrofuran and the like. These may be used alone or in combination of two or more.
  • the coating liquid is preferably prepared using these organic solvents so that the solid content concentration is in the range of 10 to 50% by mass.
  • Coating of the coating liquid is, for example, conventionally known coating methods such as bar coating, roll coating, knife coating, roll knife coating, die coating, gravure coating, air doctor coating, doctor blade coating, etc. It can be done by a method.
  • the adhesive layer 1 is formed by drying treatment usually at a temperature of 70 to 110 ° C. for about 1 to 5 minutes.
  • the thickness of the adhesive layer 1 is preferably 4 ⁇ m or more, more preferably 6 ⁇ m or more from the viewpoint of obtaining a sufficient adhesive force. Moreover, from the viewpoint of preventing the moisture-proof performance from deteriorating due to an increase in stress on the inorganic layer surface of the moisture-proof layer, the thickness is preferably 12 ⁇ m or less, more preferably 10 ⁇ m or less. When using an adhesive, it is 13 micrometers or more from a viewpoint of obtaining sufficient adhesive force, Preferably it is 15 micrometers or more, More preferably, it is 20 micrometers or more.
  • the thickness is 45 ⁇ m or less from the viewpoint of preventing the moisture-proof performance from deteriorating due to an increase in stress on the inorganic layer of the moisture-proof layer due to the structural change that occurs in the adhesive layer 1 when using high temperature and high humidity. Is preferable, and it is more preferable that it is 30 micrometers or less.
  • the protective material for solar cells of the present invention as described above has an interlayer strength between the weather resistant layer and the moisture-proof layer of 10 N / 15 mm or more after the condensation freezing test, and a deterioration rate of the interlayer strength from the initial interlayer strength is less than 20%. Preferably there is.
  • the interlayer strength is more preferably 8 N / 15 mm or more. The condensation freezing test and the deterioration rate will be described later.
  • the adhesive layer 2 and the moisture-proof layer 2 having an inorganic layer on the substrate may be further provided on the moisture-proof layer 1 in this order (moisture-proof layer 1 / adhesive layer 2 / moisture-proof layer 2). ).
  • moisture-proof layer 1 / adhesive layer 2 / moisture-proof layer 2). moisture-proof layer 1 / adhesive layer 2 / moisture-proof layer 2.
  • the structure of weathering layer / adhesive layer 1 / inorganic layer / base material / adhesive layer 2 / inorganic layer / base material is preferable because moisture resistance becomes better.
  • the adhesive layer 2 is preferably exemplified by the same configuration as the adhesive layer 1 described above.
  • the moisture-proof layer 2 is preferably exemplified by the same configuration as the moisture-proof layer 1 described above.
  • each of the films constituting the solar cell protective material of the present invention is a known additive, for example, an antistatic agent, a light blocking agent, an ultraviolet absorber, a plasticizer, a lubricant, a filler, a colorant, Stabilizers, lubricants, crosslinking agents, antiblocking agents, antioxidants and the like can be contained.
  • the protective material for a solar cell of the present invention is obtained by applying a pressure-sensitive adhesive or an adhesive to each film formed as described above, and drying the pressure-sensitive adhesive layer and the adhesive layer at a temperature of 70 to 140 ° C., for example. It can be manufactured by bonding together at a temperature of ° C.
  • the obtained laminate is preferably cured at a temperature of 30 to 80 ° C. for 1 to 7 days.
  • the solar cell protective material of the present invention is excellent in flexibility and moisture resistance, in which moisture resistance and interlayer strength do not deteriorate even after heat treatment under a high heat environment, that is, heat lamination conditions.
  • the thickness of the protective material for solar cells is not particularly limited, but is preferably 200 to 600 ⁇ m, more preferably 200 to 590 ⁇ m, more preferably 200 to 350 ⁇ m, and still more preferably 220 to 320 ⁇ m. It is used in the form of a sheet.
  • the protective material for solar cells of the present invention uses a moisture-proof film having a metal oxide layer as a substrate and a moisture permeability of less than 0.1 [g / (m 2 ⁇ day)], so that the initial moisture-proof property is
  • the transmittance is preferably 0.1 [g / (m 2 ⁇ day)] or less, and more preferably 0.05 [g / (m 2 ⁇ day)] or less.
  • the protective material for solar cell of the present invention is preferably a protective material for solar cell that is excellent in initial moisture resistance and excellent in moisture resistance and prevention of delamination even when stored in a high temperature and high humidity environment.
  • the pressure-sensitive adhesive (i) its moisture resistance is determined by the degree of deterioration due to the continuous high-temperature and high-humidity environment by the vacuum lamination and the pressure coker test (120 ° C.) according to JIS C 60068-2-66. , (The water vapor transmission rate after the high-temperature and high-humidity environment / initial water vapor transmission rate) is preferably within 25, more preferably within 15 and even more preferably within 10.
  • the “initial moisture resistance” of the protective material for solar cells in the present invention refers to moisture resistance before the member receives a history of heat, etc. in a high temperature and high humidity environment such as vacuum lameet conditions. It means the value before sex degradation occurs.
  • each moisture-proof property in the present invention can be evaluated according to various conditions of JIS Z0222 “Method of testing moisture permeability of moisture-proof packaging container” and JIS Z0208 “Method of testing moisture permeability of moisture-proof packaging material (cup method)”.
  • the protective material for a solar cell of the present invention comprises a pressure lamination tester according to JIS C 60068-2-66 (120 ° C.) by providing the pressure-sensitive adhesive and an intermediate film having a melting point of 150 ° C. or less on a moisture-proof film. The delamination after the continuous high heat treatment due to the above can be prevented.
  • the solar cell protective material of the present invention is particularly used for a surface protection member for a solar cell of a compound-based power generation element solar cell module or a flexible solar cell module. And the rusting of the electrode can be prevented, and the retention of the electromotive force over a long period can be achieved.
  • the solar cell protective material has a structure of the solar cell protective material, in particular, by laminating a fluorine-based resin film on the metal oxide layer of the moisture-proof film via the specific adhesive layer, even under high temperature conditions. Realizes solar cell protection material with excellent moisture resistance and moisture resistance, and does not deteriorate the interlayer strength over a long period of time, effectively preventing the performance of solar cells and the like from being deteriorated, and effective in improving the durability of solar cells, etc. It is possible to provide a surface protective material for a highly moisture-proof solar cell and electronic paper.
  • the solar cell surface protective material may be a sealing material / surface protective material integrated type formed by laminating a sealing material.
  • the solar cell protective material can be used as a solar cell surface protective member as it is or by being bonded to a glass plate or the like. What is necessary is just to produce by the well-known method, in order to manufacture the solar cell module and / or solar cell of this invention using the protective material for solar cells of this invention.
  • a solar cell module can be produced by using the solar cell protective material of the present invention in a layer structure of a surface protective member such as a solar cell front sheet or back sheet, and fixing the solar cell element together with a sealing material.
  • a solar cell module various types can be exemplified.
  • the solar cell protective material of the present invention is used as a front surface protective material, a sealing material, a solar cell element, and a solar cell module produced using a back surface protective material, specifically, a front surface protective material (protective material for solar cell of the present invention) / sealing material (sealing resin layer) / solar cell element.
  • a solar cell element formed on the inner peripheral surface of a front protective material (protective material for solar cell of the present invention), for example, an amorphous solar cell on a fluororesin-based transparent protective material Sealing material on top of the device made by sputtering etc. And the like can be mentioned configuration, such as to form a surface protective material. It is optional to attach a glass plate to the outside of the solar cell protective material of the present invention as the front protective material. In addition, when using the above-mentioned sealing material / surface protective material integrated surface protective material, the above-mentioned sealing material may not be used.
  • Examples of solar cell elements include single crystal silicon type, polycrystalline silicon type, amorphous silicon type, gallium-arsenic, copper-indium-selenium, copper-indium-gallium-selenium, cadmium-tellurium, etc. II-VI compound semiconductor type, dye-sensitized type, organic thin film type, and the like can be mentioned.
  • the moisture resistance is less than 0.1 [g / (m 2 ⁇ day)] in terms of water vapor transmission rate depending on the type of the solar cell power generation element.
  • a pressure-sensitive adhesive having a specific physical property value and thickness as described above is appropriately selected according to the element type from a low moisture-proof film of about 0.01 to a high moisture-proof film of less than 0.01 [g / (m 2 ⁇ day)]. And can be formed by laminating.
  • the other members constituting the solar cell module produced using the solar cell protective material of the present invention are not particularly limited, but examples of the sealing material include ethylene-vinyl acetate copolymer. Coalescence can be mentioned.
  • the back surface protection material is a single layer or multilayer sheet such as metal or various thermoplastic resin films, for example, metals such as tin, aluminum, stainless steel, inorganic materials such as glass, polyester, inorganic vapor deposition polyester, fluorine-containing resin. And a single-layer or multilayer protective material such as polyolefin.
  • the surface of the protective material on the front surface and / or the back surface can be subjected to a known surface treatment such as a primer treatment or a corona treatment in order to improve the adhesion to the sealing material or other members.
  • Front surface protective material (protective material for solar cell of the present invention) / sealing material / solar cell element / sealing material / back surface protective material described above for a solar cell module produced using the solar cell protective material of the present invention
  • the solar cell protective material, sealing material, solar cell element, sealing material, and back sheet are laminated in order from the solar light receiving side, and a junction box (from the solar cell element) is further formed on the lower surface of the back sheet.
  • a terminal box for connecting wiring for taking out the generated electricity to the outside is bonded.
  • the solar cell elements are connected by wiring in order to conduct the generated current to the outside. The wiring is taken out through a through hole provided in the backsheet and connected to the junction box.
  • a known manufacturing method can be applied and is not particularly limited, but in general, the solar cell protective material, the sealing resin layer, the solar cell element, the sealing of the present invention. It has the process of laminating
  • the step of vacuum suction and thermocompression bonding is, for example, a vacuum laminator, the temperature is preferably 130 to 180 ° C., more preferably 130 to 150 ° C., the degassing time is 2 to 15 minutes, and the press pressure is 0.05 to 1 MPa.
  • the pressing time is preferably 8 to 45 minutes, more preferably 10 to 40 minutes, and heating and pressing are performed. Also, batch type manufacturing equipment, roll-to-roll type manufacturing equipment, and the like can be applied.
  • the solar cell module manufactured using the solar cell protective material of the present invention is a small solar cell represented by a mobile device, a large solar cell installed on a roof or a roof, depending on the type and module shape of the applied solar cell.
  • the battery can be applied to various uses regardless of whether it is indoors or outdoors.
  • high moisture resistance is required for use as a protective material for solar cells for flexible solar cell modules such as compound-based power generation element solar cell modules and amorphous silicon, and for use in electronic paper. Therefore, it is effectively used as a protective material for solar cells in consideration of this continuous high heat treatment. Therefore, the solar cell module manufactured using the solar cell protective material of the present invention is particularly preferably used as the surface protective material of the electronic device.
  • the vibration frequency is 10 Hz
  • the strain is 0.1%
  • the heating rate is 3 ° C./min.
  • the stress against the strain applied to the sample was measured from ⁇ 100 ° C. to 180 ° C. in the transverse direction with 25 mm between the chucks, and the tensile storage elastic modulus (Pa) at 0 ° C. and 100 ° C. was obtained from the obtained data.
  • the tensile storage elastic modulus was set to 0 Pa.
  • the vibration frequency was 10 Hz
  • the strain was 0.1%
  • the temperature rising rate was 3 ° C / min
  • the stress against the strain applied to the sample was measured from ⁇ 100 ° C. to 180 ° C. in the transverse direction with 25 mm between the chucks, and the tensile storage elastic modulus (Pa) at 0 ° C. and 100 ° C. was obtained from the obtained data.
  • the tensile storage elastic modulus was set to 0.
  • Each prepared adhesive coating solution or adhesive coating solution (B14 to 16) is applied onto a silicone release PET film, cured at 40 ° C. for 5 days, and then kept at 100 ° C. for 30 minutes for adhesion. An agent layer or an adhesive layer was formed. Thereafter, only the pressure-sensitive adhesive layer or adhesive layer was taken out, and a plurality of the pressure-sensitive adhesive layers or adhesive layers were stacked to prepare a sample (length 4 mm, width 60 mm, thickness 200 ⁇ m).
  • the vibration frequency was 10 Hz
  • the strain was 0.1%
  • the temperature rising rate was 3 ° C / min
  • the stress against the strain applied to the sample was measured from ⁇ 100 ° C. to 100 ° C. in the transverse direction with a chuck spacing of 25 mm
  • the tensile storage elastic modulus (Pa) at 0 ° C. and 100 ° C. was obtained from the obtained data.
  • PC test (4) -1 Each of the solar cell protective materials (F-1-1 to F-1-18) was cut into 150 mm ⁇ 150 mm squares, and this was used as a surface protective material. Glass, sealing material, surface protective material (fluorine resin film Layered in the order of the sealing material side and the other side), using a vacuum laminator (manufactured by NPC, “LM30 ⁇ 30”), 140 ° C., 15 minutes, pressure 0.1 MPa Vacuum lamination was performed under the conditions of: Next, a pressure cooker test was performed using a pressure cooker test LSK-500 manufactured by Tommy Seiko Co., Ltd. under the test (PC 24-1) conditions of 120 ° C., 100% humidity, and 24 hours.
  • a pressure cooker test LSK-500 manufactured by Tommy Seiko Co., Ltd. under the test (PC 24-1) conditions of 120 ° C., 100% humidity, and 24 hours.
  • Each of the solar cell protective materials (F-2-1 to F-2-14) was cut into 150 mm ⁇ 150 mm squares, and this was used as a surface protective material.
  • a pressure cooker test was performed using a pressure cooker test LSK-500 manufactured by Tommy Seiko Co., Ltd. under the test (PC 24-2) conditions of 120 ° C., 100% humidity, and 24 hours.
  • Each of the solar cell protective materials (F-3-1 to F-3-8) was cut into 150 mm ⁇ 150 mm squares, and this was used as a surface protective material.
  • a pressure cooker test Tomy Seiko Co., Ltd., “LSK-500”
  • PC48 pressure cooker test
  • Appearance (8) -1 Appearance after vacuum lamination
  • Protective materials for solar cells are 150 mm x 150 mm Cut out into corners, use this as a surface protective material, and laminate it in the order of glass, sealing material, surface protective material (fluorine resin film opposite to the sealing material side), and vacuum laminator (Co., Ltd. ) Made by NPC, “LM30 ⁇ 30”) at 140 ° C., 15 minutes, pressure 0.1 MPa (F-1-1 to F-1-18) or 150 ° C., 11 minutes, pressure Vacuum lamination was performed under conditions of 0.1 MPa (F-2-1 to F-2-14) to prepare samples. The appearance of the obtained sample was observed and evaluated according to the following evaluation criteria.
  • A good solar cell module without wrinkles on the surface protective material surface can be obtained.
  • X Wrinkles are observed on the surface protective material surface.
  • Interlayer strength and interlayer strength deterioration rate (9) -1: Interlayer strength Protective materials for solar cells (F-1-1 to F-1-18, F-2-1 to F-2-14) Cut into strips with a measurement width of 15 mm, using a tensile testing machine ("STA-1150" manufactured by ORIENTIC Co., Ltd.) at 300 mm / min, with a tensile direction of 180 degrees, and the interlayer strength between the fluororesin film and the moisture-proof film (N / 15 mm) was measured and evaluated according to the following evaluation criteria.
  • Interlayer strength is 5 N / 15 mm or more.
  • X The interlayer strength is less than 5 N / 15 mm.
  • interlayer strength deterioration rate (%) [1 ⁇ (interlayer strength of solar cell protective material after condensation freeze test or dump heat test) / (initial interlaminar strength of solar cell protective material)] ⁇ 100
  • Each solar cell protective material (F-1-1 to F-1-18) is cut into a 150 mm ⁇ 150 mm square, and this is used as a surface protective material to make glass, a sealing material, and a surface protective material.
  • Laminate so that the fluororesin film is in the order opposite to the sealing material side, and then place green cobalt chloride paper of 1 cm on each side at a position 2 cm from the center of the glass and at the center of the glass.
  • sandwiched between a sealing material and a surface protective material using a vacuum laminator (manufactured by NPC Corporation, “LM30 ⁇ 30”) at 140 ° C., 15 minutes, pressure 0.1 MPa
  • a vacuum laminate was performed to prepare a sample.
  • the obtained sample was subjected to a pressure cooker test under the test conditions of 120 ° C., 100% humidity, and 24 hours by a pressure cooker test (Tomy Seiko Co., Ltd., “LSK-500”). The appearance after the pressure cooker test was observed and evaluated according to the following evaluation criteria.
  • The color of the cobalt chloride paper at the center of the glass and the cobalt chloride paper at a position 2 cm from the edge remains green.
  • X The cobalt chloride paper at the center of the glass remained green, but the cobalt chloride paper at a position 2 cm from the end turns red. Or both cobalt chloride papers turn red.
  • Moisture resistance The moisture resistance of the resin films having the metal oxide layer (moisture-proof films C-1 to C-4) is determined according to JIS Z 0222 “ In accordance with the conditions of “moisture-proof packaging container moisture permeability test method” and JIS Z 0208 “moisture-proof packaging material moisture permeability test method (cup method)”, the water vapor permeability was determined and evaluated by the following method.
  • the moisture resistance of the solar cell protective material is determined immediately after the production of the solar cell protective material (F-1-1 to F-1-18, F-2-1 to F-2-14, F-3-1 to F-3-8, F-4-1 to F-4-6), after pressure cooker test (PC24-1) (F-1-1 to F-1-18), pressure cooker test (PC24-2) After (F-2-1 to F-2-14), after pressure cooker test (P48) (F-3-1 to F-3-8), after condensation freezing test and after dump heat test (F-4- 1 to F-4-6) were evaluated in the same manner as described above.
  • the water vapor transmission rate immediately after the production of the solar cell protective material was taken as the initial water vapor transmission rate.
  • sample Sample using moisture-proof film: urethane adhesive (AD900 and CAT-RT85 manufactured by Toyo Morton Co., Ltd. 10: 1.5) on the surface of a stretched polypropylene film (P1146 manufactured by Toyobo Co., Ltd.) having a thickness of 60 ⁇ m The mixture was applied and dried to form an adhesive layer having a thickness of about 3 ⁇ m. On the adhesive layer, the metal oxide layer surface side of the moisture-proof film (C1 to C4) after production and storage at 40 ° C. for one week was laminated to obtain a sample.
  • urethane adhesive AD900 and CAT-RT85 manufactured by Toyo Morton Co., Ltd. 10: 1.5
  • P1146 manufactured by Toyobo Co., Ltd.
  • Sample using a protective material for solar cell urethane adhesive (AD900 and CAT-RT85 manufactured by Toyo Morton Co., Ltd. 10: 1) on the surface of a stretched polypropylene film (P1146 manufactured by Toyobo Co., Ltd.) having a thickness of 60 ⁇ m. 5) was applied and dried to form an adhesive layer having a thickness of about 3 ⁇ m. The substrate surface side of each solar cell protective material was laminated on this adhesive layer to obtain a sample.
  • urethane adhesive AD900 and CAT-RT85 manufactured by Toyo Morton Co., Ltd. 10: 1
  • a stretched polypropylene film P1146 manufactured by Toyobo Co., Ltd.
  • the substrate surface side of each solar cell protective material was laminated on this adhesive layer to obtain a sample.
  • Fluorine resin film A-1 As the fluororesin film A-1, a tetrafluoroethylene-ethylene copolymer (ETFE) film (manufactured by Asahi Glass Co., Ltd., trade name: Aflex 50MW1250DCS, thickness 50 ⁇ m) was used.
  • ETFE tetrafluoroethylene-ethylene copolymer
  • Adhesive coating liquid B-1 Nitrogen gas was introduced into a reaction apparatus equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen introduction tube, and the air in the reaction apparatus was replaced with nitrogen gas. Thereafter, in this reactor, butyl acrylate and methyl acrylate as main monomers were reacted at 60 ° C. for 8 hours to obtain a solution of an acrylic copolymer having a weight average molecular weight of 800,000 having a hydroxyl group introduced as a functional group. . The resulting acrylic copolymer solution was blended with an isocyanate crosslinking agent and a benzotriazole ultraviolet absorber to prepare an adhesive coating solution B-1.
  • a pressure-sensitive adhesive coating solution B-2 was prepared in the same manner as in the production of the pressure-sensitive adhesive coating solution B-1, except that the weight average molecular weight of the acrylic copolymer was adjusted to 500,000.
  • a pressure-sensitive adhesive coating solution B-3 was prepared in the same manner as in the production of the pressure-sensitive adhesive coating solution B-1, except that a carboxyl group was introduced as a functional group of the acrylic copolymer.
  • a pressure-sensitive adhesive coating solution B-4 was prepared in the same manner as in the production of the pressure-sensitive adhesive coating solution B-1, except that an amino group was introduced as a functional group of the acrylic copolymer.
  • a pressure-sensitive adhesive coating solution B-5 was prepared in the same manner as in the production of the pressure-sensitive adhesive coating solution B-1, except that the weight average molecular weight of the acrylic copolymer was adjusted to 100,000.
  • Adhesive coating solution B-6 As a main ingredient containing a polyester polyol component, A1143 (trade name, molecular weight per ester group is 109, viscosity is 500 [mPa ⁇ s]) manufactured by Mitsui Chemicals Polyurethane Co., Ltd. is used. Takenate A-50 (trade name) manufactured by Mitsui Chemicals, Inc. is used as a curing agent containing diisocyanate and aromatic xylylene diisocyanate, and mixed so that the mass ratio of the main agent / curing agent is 9/1. Then, an adhesive coating solution B-6 was prepared by diluting with ethyl acetate so that the solid content concentration was 35% by mass.
  • a pressure-sensitive adhesive coating solution B-7 was prepared in the same manner as B-1, except that no benzotriazole ultraviolet absorber was added.
  • Adhesive coating solution B-8 was prepared in the same manner as B-2, except that no benzotriazole ultraviolet absorber was added.
  • Adhesive coating solution B-9) As a main component containing a polycarbonate polyol component, a polycaprolactone polyol having an average molecular weight of 2000 (trade name “Placcel 210N” manufactured by Daicel Chemical Industries, Ltd.) and a polycarbonate diol having an average molecular weight of 500 (trade name “manufactured by Daicel Chemical Industries, Ltd.”) Plaxel CD CD205 "), and mixed so that the mass ratio of polycaprolactone polyol / polycarbonate diol is 60/40, dissolved in ethyl acetate, and has a solid content of about 50 mass% and a viscosity of 400 [mPa ⁇ s]. A polyol solution was obtained.
  • Adhesive coating solution B-10 Using a reactor equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen gas inlet tube, a mixed solution of 90 parts by mass of butyl acrylate, 10 parts by mass of acrylic acid, 75 parts by mass of ethyl acetate, and 75 parts by mass of toluene, 0.3 parts by mass of azobisisobutyronitrile was added, and polymerization was performed at 80 ° C. for 8 hours in a nitrogen gas atmosphere. After completion of the reaction, the solid content was adjusted to 30% by mass with toluene to obtain a resin having a mass average molecular weight of 500,000.
  • Coronate L (trade name: Nippon Polyurethane Industry Co., Ltd., solid content: 75% by mass) is added as an isocyanate-based cross-linking agent, and pressure-sensitive adhesive coating solution B- 10 was prepared.
  • Adhesive coating solution B-11 Using a reactor equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen gas inlet tube, 70 parts by mass of 2-ethylhexyl acrylate, 10 parts by mass of methyl acrylate, 5 parts by mass of acrylic acid, 20 parts by mass of ethyl acetate, 0.3 parts by mass of azobisisobutyronitrile was added to a mixed solution of 20 parts by mass of toluene, and polymerization was performed at 80 ° C. for 8 hours in a nitrogen gas atmosphere.
  • Adhesive coating liquid B-12 (Adhesive coating liquid B-12) Using a reactor equipped with a thermometer, stirrer, reflux condenser, and nitrogen gas inlet tube, 40 parts by mass of butyl acrylate, 10 parts by mass of isobutyl acrylate, 40 parts by mass of methyl acrylate, 10 parts by mass of acrylic acid, acetic acid 0.3 parts by mass of azobisisobutyronitrile was added to a mixed solution of 75 parts by mass of ethyl and 75 parts by mass of toluene, and polymerization was performed at 80 ° C. for 8 hours in a nitrogen gas atmosphere.
  • Adhesive coating solution B-13 (Adhesive coating solution B-13) HD1013 manufactured by Rock Paint Co., Ltd. is used as the main agent containing the polyurethane polyol component, and H62 manufactured by Rock Paint Co., Ltd. is used as the curing agent containing the aliphatic hexamethylene diisocyanate component, resulting in a weight ratio of 10: 1.
  • H62 manufactured by Rock Paint Co., Ltd. is used as the curing agent containing the aliphatic hexamethylene diisocyanate component, resulting in a weight ratio of 10: 1.
  • Adhesive coating liquid B-14 In a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas inlet tube and a condenser, n-butyl acrylate 60 parts by weight, methyl acrylate 40 parts by weight, 4-hydroxybutyl acrylate 5 parts by weight, a polymerization initiator Then, 0.1 part by weight of 2,2-azobisisobutyronitrile and 200 parts by weight of ethyl acetate were added, and the atmosphere was purged with nitrogen for 1 hour, and then kept at around 60 ° C. while stirring in a nitrogen stream for 9 hours. A polymerization reaction was performed to prepare an acrylic polymer solution (1) having a weight average molecular weight of 300,000.
  • Adhesive coating solution B-15 In a four-necked flask equipped with a stirring blade, thermometer, nitrogen gas inlet tube, and condenser, n-butyl acrylate 100 parts by weight, acrylic acid 3 parts by weight, 4-hydroxybutyl acrylate 2 parts by weight, as a polymerization initiator Then, 0.1 part by weight of 2,2-azobisisobutyronitrile and 200 parts by weight of ethyl acetate were added, and the atmosphere was purged with nitrogen for 1 hour, and then kept at around 60 ° C. for 9 hours while stirring under a nitrogen stream. Reaction was performed to prepare an acrylic polymer solution (2) having a weight average molecular weight of 400,000.
  • Adhesive coating solution B-16 (Adhesive coating solution B-16) IS801 manufactured by Toyo Ink Mfg. Co., Ltd. (molecular weight per ester group: 105, viscosity 1700 [mPa ⁇ sec]) is used as the main component containing the polyester polyol component, and Toyo is used as the curing agent containing the hexamethylene diisocyanate component and isophorone diisocyanate. Using CR001 manufactured by Ink Manufacturing Co., Ltd., mixing at a mass ratio of 10: 1, diluting with ethyl acetate to a solid content concentration of 30% by mass, and then applying the adhesive coating solution B-16 Prepared. The glass transition point (Tg) of the adhesive layer comprising the adhesive coating solution 2 was 32 ° C.
  • Tables 1 to 3 show the tensile storage elastic modulus and glass transition point of the pressure-sensitive adhesive layer or adhesive layer formed using each coating solution.
  • ⁇ Resin film having metal oxide layer moisture-proof film
  • thermoproof film C-2 The same moisture-proof film except that the base material was changed to a biaxially stretched polyethylene naphthalate film with a thickness of 25 ⁇ m (manufactured by Teijin DuPont Films, Inc., trade name: “Q51C”) in the production of the moisture-proof film C-1.
  • C-2 was produced.
  • the produced moisture-proof film C-2 had a moisture-proof property of 0.01 [g / (m 2 ⁇ day)].
  • High melting point film D-1 A polyethylene terephthalate film (Mitsubishi Resin Co., Ltd., trade name: Diafoil T-100, thickness: 50 ⁇ m) is passed through a drying furnace with a furnace length of 27 m and a temperature of 170 ° C. at a rate of 50 meters / minute and heat-treated to have a high melting point. Film D-1 was produced. The high melting point film D-1 had a thermal shrinkage of 0.3% and a melting point of 252 ° C.
  • High melting point film D-2 A polyethylene terephthalate film (manufactured by Mitsubishi Plastics, trade name: Diafoil T-100, thickness: 50 ⁇ m) was used as the high melting point film D-2.
  • the high melting point film D-2 had a heat shrinkage rate of 1.2% and a melting point of 252 ° C.
  • E-1 An ethylene-vinyl acetate sealing material (trade name: EVASKY S11 (thickness: 500 ⁇ m, melting point: 69.6 ° C.)) manufactured by Bridgestone Corporation was used as an intermediate film.
  • E-2 Add necessary additives to low density polyethylene resin, knead well to prepare low density polyethylene resin, and then extrude the low density polyethylene resin with an extruder, unstretched with a thickness of 140 ⁇ m An intermediate film made of low density polyethylene resin was produced. The melting point was 109 ° C.
  • E-3 Layer thickness ratio of homopolypropylene resin composition and ethylene-propylene random copolymer resin with an extruder 0.1: 0.8: 0.1 (homopolypropylene resin layer is the central layer, ethylene-propylene random A copolymer resin was multilayer extruded with both outer layers) to produce a 190 ⁇ m thick unstretched polypropylene resin film, which was used as an intermediate film.
  • the melting point measured by the above method was 162.3 ° C.
  • ethylene-vinyl acetate copolymer manufactured by Bridgestone Corporation, trade name: EVASKY S11, thickness: 500 ⁇ m
  • EVASKY S11 thickness: 500 ⁇ m
  • Example 1-1 The adhesive coating liquid B-1 was applied to the fluororesin film A-1 and dried so as to have a solid content of 20 g / m 2, and the 20 ⁇ m-thick adhesive layer (i) surface and metal of the moisture-proof film C-1 were produced. The oxide layer surface was bonded, and then cured at 40 ° C. for 5 days to produce a solar cell protective material F-1-1 having a thickness of 82 ⁇ m. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-1. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-1 was 0.01 [g / (m 2 ⁇ day)].
  • Example 1-2 A solar cell protective material F-1-2 having a thickness of 92 ⁇ m was obtained in the same manner as in Example 1-1 except that the coating amount of the pressure-sensitive adhesive coating solution B-1 was changed to a solid content of 30 g / m 2. Was made. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-2. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-2 was 0.01 [g / (m 2 ⁇ day)].
  • Example 1-3 A solar cell protective material F-1-3 having a thickness of 95 ⁇ m was produced in the same manner as in Example 1-1, except that the moisture-proof film C-1 was changed to the moisture-proof film C-2. Using the obtained solar cell protective material F-1-3, various measurements and evaluations were performed. The results are shown in Table 4. The initial water vapor permeability of the protective material F-1-3 for solar cells was 0.01 [g / (m 2 ⁇ day)].
  • Example 1-4 A solar cell protective material F-1-4 having a thickness of 105 ⁇ m was obtained in the same manner as in Example 1-3, except that the coating amount of the adhesive coating solution B-1 was changed to a solid content of 30 g / m 2. Was made. Using the obtained solar cell protective material F-1-4, various measurements and evaluations were performed. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-4 was 0.01 [g / (m 2 ⁇ day)].
  • Example 1-5 A solar cell protective material F-1-5 having a thickness of 82 ⁇ m was produced in the same manner as in Example 1-1 except that the adhesive coating liquid B-1 was changed to the adhesive coating liquid B-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-5. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-5 was 0.01 [g / (m 2 ⁇ day)].
  • Example 1-6 A solar cell protective material F-1-6 having a thickness of 92 ⁇ m was produced in the same manner as in Example 1-2 except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-6. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-6 was 0.01 [g / (m 2 ⁇ day)].
  • Example 1-7 A solar cell protective material F-1-7 having a thickness of 95 ⁇ m was produced in the same manner as in Example 1-3, except that the adhesive coating liquid B-1 was changed to the adhesive coating liquid B-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-7. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-7 was 0.01 [g / (m 2 ⁇ day)].
  • Example 1-8 A solar cell protective material F-1-8 having a thickness of 105 ⁇ m was produced in the same manner as in Example 1-4, except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-8. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-8 was 0.01 [g / (m 2 ⁇ day)].
  • Comparative Example 1-1 A solar cell protective material F-1-9 having a thickness of 82 ⁇ m was produced in the same manner as in Example 1-1 except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-3. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-9. The results are shown in Table 4. The initial water vapor transmission rate of the solar cell protective material F-1-9 was 0.01 [g / (m 2 ⁇ day)].
  • Comparative Example 1-2 A solar cell protective material F-1-10 having a thickness of 92 ⁇ m was obtained in the same manner as in Comparative Example 1-1 except that the coating amount of the adhesive coating solution B-3 was changed to a solid content of 30 g / m 2. Was made. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-10. The results are shown in Table 4. The initial water vapor transmission rate of the solar cell protective material F-1-10 was 0.01 [g / (m 2 ⁇ day)].
  • Comparative Example 1-3 A solar cell protective material F-1-11 having a thickness of 82 ⁇ m was produced in the same manner as in Example 1-1 except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-4. Using the obtained solar cell protective material F-1-11, various measurements and evaluations were performed. The results are shown in Table 4. The initial water vapor transmission rate of the solar cell protective material F-1-11 was 0.01 [g / (m 2 ⁇ day)].
  • Comparative Example 1-4 A solar cell protective material F-1-12 having a thickness of 92 ⁇ m was obtained in the same manner as in Comparative Example 1-3, except that the coating amount of the adhesive coating solution B-4 was changed to a solid content of 30 g / m 2. Was made. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-12. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-12 was 0.01 [g / (m 2 ⁇ day)].
  • Comparative Example 1-5 A solar cell protective material F-1-13 having a thickness of 82 ⁇ m was produced in the same manner as in Example 1-1 except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-5. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-13. The results are shown in Table 4. The initial water vapor transmission rate of the solar cell protective material F-1-13 was 0.01 [g / (m 2 ⁇ day)].
  • Comparative Example 1-6 A solar cell protective material F-1-14 having a thickness of 112 ⁇ m was obtained in the same manner as in Example 1-1 except that the coating amount of the adhesive coating solution B-1 was changed to a solid content of 50 g / m 2. Was made. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-14. The results are shown in Table 4. The initial water vapor transmission rate of the solar cell protective material F-1-14 was 0.01 [g / (m 2 ⁇ day)].
  • Comparative Example 1-7 A solar cell protective material F-1-15 having a thickness of 112 ⁇ m was produced in the same manner as in Comparative Example 1-6, except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-15. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-15 was 0.01 [g / (m 2 ⁇ day)].
  • Comparative Example 1-8 A solar cell protective material F-1-16 having a thickness of 120 ⁇ m was produced in the same manner as in Example 1-1 except that the moisture-proof film C-1 was changed to the moisture-proof film C-3. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-16. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-16 was 0.01 [g / (m 2 ⁇ day)].
  • Comparative Example 1-9 A solar cell protective material F-1-17 having a thickness of 120 ⁇ m was produced in the same manner as in Comparative Example 1-8, except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-17. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-17 was 0.01 [g / (m 2 ⁇ day)].
  • Comparative Example 1-10 The thickness was changed in the same manner as in Example 1-1 except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-6 and the coating amount was changed to a solid content of 8 g / m 2.
  • a protective material F-1-18 for a solar cell of 70 ⁇ m was produced.
  • Various measurements and evaluations were performed using the obtained solar cell protective material F-1-18.
  • the results are shown in Table 4.
  • the initial water vapor transmission rate of the solar cell protective material F-1-18 was 0.01 [g / (m 2 ⁇ day)].
  • the thickness of the pressure-sensitive adhesive layer, the pressure-sensitive adhesive layer at 100 ° C., the frequency of 10 Hz, the tensile storage elastic modulus at a strain of 0.1%, and the substrate thickness of the moisture-proof film are within the specified range of the present invention.
  • the solar cell protective materials of Examples 1-1 to 8 are all excellent in appearance, and excellent in interlayer strength and moisture resistance, particularly in end face moisture resistance.
  • Example 2-1 The adhesive coating liquid B-1 was applied to the fluororesin film A-1 and dried so as to have a solid content of 20 g / m 2, and the 20 ⁇ m-thick adhesive layer (i) surface and metal of the moisture-proof film C-1 were produced. The oxide layer surface was bonded, and the adhesive coating solution B-7 was applied and dried on the opposite surface of the metal oxide layer surface of the moisture-proof film C-1 to a solid content of 20 g / m 2. The surface of the adhesive layer (ii) and the high melting point film D-1 were bonded. Thereafter, it was cured at 40 ° C. for 5 days to produce a solar cell protective material F-2-1 having a thickness of 152 ⁇ m. Using the obtained solar cell protective material F-2-1, various measurements and evaluations were performed. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-1 was 0.01 [g / (m 2 ⁇ day)].
  • Example 2-2 A solar cell protective material F-2-2 having a thickness of 152 ⁇ m was produced in the same manner as in Example 2-1, except that the pressure-sensitive adhesive coating liquid B-1 was changed to the pressure-sensitive adhesive coating liquid B-2. Using the obtained solar cell protective material F-2-2, various measurements and evaluations were performed. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-2 was 0.01 [g / (m 2 ⁇ day)].
  • Example 2-3 A solar cell protective material F-2-3 having a thickness of 165 ⁇ m was produced in the same manner as in Example 2-1, except that the moisture-proof film C-1 was changed to the moisture-proof film C-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-3. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-3 was 0.01 [g / (m 2 ⁇ day)].
  • Example 2-4 A solar cell protective material F-2-4 having a thickness of 165 ⁇ m was produced in the same manner as in Example 2-3 except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-4. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-4 was 0.01 [g / (m 2 ⁇ day)].
  • Example 2-5 In the same manner as in Example 2-1, except that the pressure-sensitive adhesive coating liquid B-7 was changed to pressure-sensitive adhesive coating liquid B-8, and the coating amount was changed to a solid content of 8 g / m 2.
  • a protective material F-2-5 for solar cells of 140 ⁇ m was produced.
  • Various measurements and evaluations were performed using the obtained solar cell protective material F-2-5. The results are shown in Table 5.
  • the initial water vapor transmission rate of the solar cell protective material F-2-5 was 0.01 [g / (m 2 ⁇ day)].
  • Comparative Example 2-1 A solar cell protective material F-2-6 having a thickness of 182 ⁇ m was obtained in the same manner as in Example 2-1, except that the coating amount of the adhesive coating solution B-1 was changed to a solid content of 50 g / m 2. Was made. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-6. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-6 was 0.01 [g / (m 2 ⁇ day)].
  • Comparative Example 2-2 A solar cell protective material F-2-7 having a thickness of 195 ⁇ m was produced in the same manner as in Comparative Example 2-1, except that the moisture-proof film C-1 was changed to the moisture-proof film C-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-7. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-7 was 0.01 [g / (m 2 ⁇ day)].
  • Comparative Example 2-3 A solar cell protective material F-2-8 having a thickness of 152 ⁇ m was produced in the same manner as in Example 2-1, except that the adhesive coating liquid B-1 was changed to the adhesive coating liquid B-3. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-8. The results are shown in Table 5. The initial water vapor transmission rate of the solar cell protective material F-2-8 was 0.01 [g / (m 2 ⁇ day)].
  • Comparative Example 2-4 A solar cell protective material F-2-9 having a thickness of 152 ⁇ m was produced in the same manner as in Example 2-1, except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-4. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-9. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-9 was 0.01 [g / (m 2 ⁇ day)].
  • Comparative Example 2-5 A solar cell protective material F-2-10 having a thickness of 152 ⁇ m was produced in the same manner as in Example 2-1, except that the adhesive coating liquid B-1 was changed to the adhesive coating liquid B-5. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-10. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-10 was 0.01 [g / (m 2 ⁇ day)].
  • Comparative Example 2-6 A solar cell protective material F-2-11 having a thickness of 152 ⁇ m was produced in the same manner as in Example 2-1, except that the high melting point film D-1 was changed to the high melting point film D-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-11. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-11 was 0.01 [g / (m 2 ⁇ day)].
  • Comparative Example 2-7 A solar cell protective material F-2-12 having a thickness of 152 ⁇ m was produced in the same manner as in Comparative Example 2-6, except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-12. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-12 was 0.01 [g / (m 2 ⁇ day)].
  • Comparative Example 2-8 A solar cell protective material F-2-13 having a thickness of 190 ⁇ m was produced in the same manner as in Example 2-1, except that the moisture-proof film C-1 was changed to the moisture-proof film C-3. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-13. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-13 was 0.01 [g / (m 2 ⁇ day)].
  • Comparative Example 2-9 The adhesive coating liquid B-1 was changed to the adhesive coating liquid B-6, the coating amount was changed to a solid content of 8 g / m 2 , and the adhesive coating liquid B-7 was changed to the adhesive coating liquid B.
  • a solar cell protective material F-2-14 having a thickness of 128 ⁇ m was produced in the same manner as in Example 2-1, except that the coating amount was changed to ⁇ 9 and the coating amount was changed to 8 g / m 2 in solid content.
  • Various measurements and evaluations were performed using the obtained solar cell protective material F-2-14. The results are shown in Table 5.
  • the initial water vapor permeability of the solar cell protective material F-2-14 was 0.01 [g / (m 2 ⁇ day)].
  • the thickness of the pressure-sensitive adhesive layer (i), the tensile strength of the pressure-sensitive adhesive layer (i) at 100 ° C., the frequency of 10 Hz, and the strain of 0.1%, the substrate thickness of the moisture-proof film, and the high melting point The protective materials for solar cells of Comparative Examples 2-1 to 9 in which any one of the heat shrinkage rates of the films was outside the specified range of the present invention were inferior in moisture resistance and / or interlayer strength. On the other hand, the protective materials for solar cells of Examples 2-1 to 5 are all excellent in appearance and excellent in moisture resistance and interlayer strength.
  • Example 3-1 An adhesive coating solution B-10 was applied to a 38 ⁇ m silicone release PET film so as to have a solid content of 20 g / m 2 and dried to form an adhesive layer (i) surface having a thickness of 20 ⁇ m. Moisture-proof film B-10 is bonded to the surface of the pressure-sensitive adhesive layer (i), then the silicone release PET film is peeled off, and the intermediate film E-1 is bonded to the other pressure-sensitive adhesive surface, followed by curing at 40 ° C. for 4 days. A laminate was prepared. Further, a fluororesin film was overlapped with the intermediate film E-1 surface of the produced laminate, and adhered by hot pressing at 90 ° C. for 30 seconds to produce a solar cell protective material F-3-1 having a thickness of 582 ⁇ m. Various measurements and evaluations were performed using the obtained solar cell protective material F-3-1. The results are shown in Table 6.
  • Example 3-2 A protective material F-3-2 for a solar cell having a thickness of 222 ⁇ m was produced in the same manner as in Example 3-1, except that the intermediate film was changed to E-2. Using the obtained solar cell protective material F-3-2, various measurements and evaluations were performed. The results are shown in Table 6.
  • Example 3-3 A protective material F-3-3 for a solar cell having a thickness of 582 ⁇ m was produced in the same manner as in Example 3-1, except that the adhesive coating solution was changed to B-11. Various measurements and evaluations were performed using the obtained solar cell protective material F-3-3. The results are shown in Table 6.
  • Example 3-4 A protective material F-3-4 having a thickness of 222 ⁇ m was prepared in the same manner as in Example 3-2 except that the adhesive coating solution was changed to B-11. Various measurements and evaluations were performed using the obtained solar cell protective material F-3-4. The results are shown in Table 6.
  • Comparative Example 3-1 A solar cell protective material F-3-5 having a thickness of 582 ⁇ m was prepared in the same manner as in Example 3-1, except that the pressure-sensitive adhesive coating solution B-10 of Example 3-1 was changed to C-3. The obtained solar cell protective material F-3-5 was used for various measurements and evaluations. The results are shown in Table 6.
  • Comparative Example 3-2 A solar cell protective material F-3-6 having a thickness of 272 ⁇ m was produced in the same manner as in Example 3-1, except that the intermediate film E-1 of Example 3-1 was changed to E-3. The obtained solar cell protective material F-3-6 was used for various measurements and evaluations. The results are shown in Table 6.
  • Comparative Example 3-3 A solar cell protective material F-3-7 having a thickness of 582 ⁇ m was produced in the same manner as in Example 3-1, except that the moisture-proof film C-1 of Example 3-1 was changed to C-4. The obtained solar cell protective material F-3-7 was used for various measurements and evaluations. The results are shown in Table 6.
  • Comparative Example 3-4 Same as Example 3-1, except that the adhesive coating solution B-10 of Example 3-1 was changed to the adhesive coating solution B-13 and the thickness after drying was 6 ⁇ m. Thus, a solar cell protective material F-3-8 having a thickness of 568 ⁇ m was produced. Various measurements and evaluations were performed using the obtained solar cell protective material F-3-8. The results are shown in Table 6.
  • Comparative Example 3-2 using an intermediate film having a melting point exceeding the range of the present invention is inferior in moisture resistance with time and insufficient in preventing the occurrence of delamination, and has a tensile storage elastic modulus of the present invention.
  • Comparative Example 3-1 using a pressure-sensitive adhesive layer deviating from the above range is inferior in moisture resistance over time
  • Comparative Example 3-4 using an adhesive layer instead of the pressure-sensitive adhesive layer is moisture-proof over time. And inferior in preventing delamination.
  • Example 4-1 The adhesive coating liquid B-14 is applied and dried on the fluorine resin film A-1 so that the solid content is 20 g / m 2, and the formed adhesive layer surface having a thickness of 20 ⁇ m is bonded to the metal oxide layer surface of the moisture-proof film. Then, it was cured at 40 ° C. for 5 days to produce a solar cell protective material having a thickness of 82 ⁇ m, and various evaluations were performed. The results are shown in Table 7 below. The initial water vapor transmission rate of the solar cell protective material was 0.01 [g / (m 2 ⁇ day)].
  • Examples 4-2 and 4-3 A solar cell protective material having a thickness of 82 ⁇ m was produced in the same manner as in Example 4-1, except that the pressure-sensitive adhesive coating solution or adhesive coating solution shown in Tables 3 and 7 was used. Various evaluations were performed in the same manner as in Example 4-1, using the produced solar cell protective material. The results are shown in Table 7 below. The initial water vapor transmission rate of each solar cell protective material was 0.01 [g / (m 2 ⁇ day)].
  • Examples 4-4 and 4-5 and Comparative Example 4-1 A laminated moisture-proof film composed of a weather-resistant film, an adhesive layer and a moisture-proof film was prepared in the same manner as in Example 4-1, except that the pressure-sensitive adhesive coating solution or adhesive coating solution shown in Tables 3 and 7 was used. Furthermore, the pressure-sensitive adhesive coating solution or adhesive coating solution shown in Table 3 is applied and dried on the moisture-proof film so as to have a solid content of 20 g / m 2, and the formed 20 ⁇ m-thick adhesive layer and the moisture-proof film inorganic layer surface Was then cured at 40 ° C.
  • the solar cell protective material of the present invention solves the problem of poor appearance and is excellent in interlayer adhesion strength, peel strength, durability, weather resistance, moisture resistance and long-term moisture resistance. Furthermore, the solar cell module using the solar cell protective material of the present invention can not only achieve a good appearance but also prevent a decrease in power generation efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A material for protecting a photovoltaic cell formed of a fluororesin film, an adhesive layer (i) comprising an adhesive (i), and a resin film having a metallic oxide layer, laminated in stated order, wherein a base material of the resin film having the metallic oxide layer has a thickness of 30 μm or less, the thickness of the adhesive layer (i) is 13-45 μm, and the tensile storage elasticity modulus of the adhesive layer (i) at 100°C, a frequency of 10 Hz, and distortion of 0.1% is 5.0×104-5.0×105 Pa.

Description

太陽電池用保護材Protective material for solar cells
 本発明は、太陽電池用保護材、及び該保護材を有する太陽電池モジュールに関する。 The present invention relates to a solar cell protective material and a solar cell module having the protective material.
 近年、資源の有効利用や環境汚染の防止等の面から、太陽光を直接電気エネルギーに変換する太陽電池が注目され、開発が進められている。太陽電池は、通常、前面保護材、封止材、発電素子、封止材及び裏面保護材をこの順で積層し、真空ラミネーションによる加熱溶融により接着一体化することで製造される。真空ラミネーションは、一般的に130~180℃、10~40分の条件で行われる。
 太陽電池用保護材は、前面保護材であっても裏面保護材であっても、紫外線に対する耐久性、防湿性等に優れることが重要な要件とされる。太陽電池の軽量化、耐衝撃性及び耐久性の向上に有効な太陽電池用保護材として、耐候性フィルムと防湿フィルムとを接着剤や粘着剤で貼り合わせたものが知られている(例えば、特許文献1及び2を参照)。
 また、特許文献3では、二軸延伸ポリエステルフィルムを基材とする水蒸気透過率が0.22[g/(m2・日)]の防湿フィルムにポリエステル系接着剤を用い、無機蒸着面側に耐候性ポリエステルフィルム、背面にポリプロピレンフィルムと張り合わせることにより太陽電池保護材を作製し85℃、85%湿度下で、1000時間試験後の防湿性を評価して、防湿性低下防止の提案を行なっている。
 また、特許文献4の実施例では、二軸延伸ポリエステルフィルムを基材とする水蒸気透過率が1~2[g/(m2・日)]の防湿フィルムの両側にポリウレタン系接着剤層を設け、その両側に耐候性ポリエステルフィルムを積層し太陽電池用表面保護材を製作し、85℃、85%湿度下で1000時間加速試験後のバリア性能と層間強度を評価し、両特性の劣化防止の提案を行なっている。
 特許文献5では、同じく二軸延伸ポリエステルフィルムを基材とする水蒸気透過率が0.5[g/(m2・日)]の防湿フィルムに二液硬化型ポリウレタン系接着剤を用いてPVFフィルムを貼り合わせた後、プレッシャークッカーテスト(PCT)(高温高圧による過酷環境試験、105℃ 92時間)前後の防湿性と層間強度を評価、特性の劣化防止の提案を行なっている。
In recent years, solar cells that directly convert sunlight into electrical energy have attracted attention and are being developed from the viewpoint of effective use of resources and prevention of environmental pollution. A solar cell is usually manufactured by laminating a front protective material, a sealing material, a power generation element, a sealing material, and a back protective material in this order, and bonding and integrating them by heating and melting by vacuum lamination. The vacuum lamination is generally performed under conditions of 130 to 180 ° C. and 10 to 40 minutes.
Whether the protective material for solar cells is a front surface protective material or a back surface protective material, it is an important requirement that the solar cell protective material has excellent durability against ultraviolet rays, moisture resistance, and the like. As a solar cell protective material effective for improving the weight, impact resistance, and durability of solar cells, a material in which a weather-resistant film and a moisture-proof film are bonded together with an adhesive or a pressure-sensitive adhesive is known (for example, (See Patent Documents 1 and 2).
In Patent Document 3, a polyester adhesive is used for a moisture-proof film having a water vapor transmission rate of 0.22 [g / (m 2 · day)] using a biaxially stretched polyester film as a base material. A solar cell protective material is prepared by laminating a weather-resistant polyester film and a polypropylene film on the back surface, and the moisture resistance after a 1000 hour test is evaluated at 85 ° C. and 85% humidity, and a proposal for preventing moisture degradation is made. ing.
In the example of Patent Document 4, a polyurethane adhesive layer is provided on both sides of a moisture-proof film having a water vapor transmission rate of 1 to 2 [g / (m 2 · day)] based on a biaxially stretched polyester film. The surface protection material for solar cells was manufactured by laminating weather-resistant polyester films on both sides, and the barrier performance and interlayer strength after 1000 hours accelerated test at 85 ° C and 85% humidity were evaluated to prevent deterioration of both characteristics. I am making a proposal.
In Patent Document 5, a PVF film using a two-component curable polyurethane adhesive on a moisture-proof film having a water vapor transmission rate of 0.5 [g / (m 2 · day)], which is also based on a biaxially stretched polyester film. After bonding, the moisture resistance and interlayer strength before and after the pressure cooker test (PCT) (severe environment test by high temperature and pressure, 105 ° C., 92 hours) are evaluated, and the proposal for preventing the deterioration of characteristics is made.
特許第3978911号公報Japanese Patent No. 3978911 特許第3978912号公報Japanese Patent No. 3978912 特開2007-150084号公報JP 2007-150084 A 特開2009-188072号公報JP 2009-188072 A 特開2009-49252号公報JP 2009-49252 A
 前述の耐候性フィルムと防湿フィルムとを接着剤や粘着剤で貼り合わせた保護材において、防湿フィルムとしては、高い防湿性を獲得するためにフィルム基材に無機薄膜を蒸着させたフィルム(無機薄膜蒸着フィルム)が用いられる。この無機薄膜蒸着フィルム基材は真空ラミネーション温度より高い融点のフィルムが使用されており、その厚みが薄い場合、真空ラミネーションにより保護材の表面や保護材と封止材との界面にシワや突起が発生したり、保護材と封止材との剥離が生じたりする等の外観不良の問題が生じることがある。一方、厚みが50μm以上の肉厚無機蒸着フィルムを用いる場合、保護材全体の厚みの増加による光線透過率の低下や、蒸着を伴う防湿フィルムの製造工程において単位製造工程で扱えるロール長さが短くなることから生産コストの増加となるため、太陽電池の強度及び発電効率の著しい低下や保護材の生産効率の低下をもたらす。
 また、肉厚無機蒸着フィルムを用いる場合、保護材全体の厚みのうち防湿作用を奏する無機層よりも太陽電池素子側の厚みが厚いため、保護材端部からの水蒸気流入が増加して防湿作用が低下してしまい、太陽電池の著しい発電効率の低下をもたらす。
 また、肉厚無機蒸着フィルムを使用せず、フィルム基材の厚みが50μm未満の薄肉無機蒸着フィルムを使用する場合は、無機蒸着面の背面側に粘着剤や接着剤を使用して新たなフィルムを貼合することで、真空ラミネーション工程に耐えられる剛性を保護材に付与することが挙げられる。
 しかし、新たにフィルムをドライラミネーション工程等により貼合する場合、真空ラミネーション工程やその後の耐久試験にてフィルムがドライラミネーション工程において蓄積した残留応力が防湿フィルムの背面から作用することにより無機蒸着面が損傷し防湿性能が著しく低下する問題があった。
In the protective material in which the above weather-resistant film and moisture-proof film are bonded with an adhesive or a pressure-sensitive adhesive, the moisture-proof film is a film (inorganic thin film) in which an inorganic thin film is deposited on a film base material in order to obtain high moisture resistance. Vapor-deposited film) is used. This inorganic thin film deposited film base material uses a film having a melting point higher than the vacuum lamination temperature, and when the thickness is thin, wrinkles and protrusions are formed on the surface of the protective material and the interface between the protective material and the sealing material due to vacuum lamination. There may be a problem of appearance failure such as occurrence or peeling between the protective material and the sealing material. On the other hand, when using a thick inorganic vapor-deposited film with a thickness of 50 μm or more, the roll length that can be handled in the unit production process is short in the production process of the moisture-proof film accompanied by vapor deposition or the decrease in light transmittance due to the increase in the thickness of the entire protective material. As a result, the production cost increases, resulting in a significant decrease in the strength and power generation efficiency of the solar cell and a decrease in the production efficiency of the protective material.
In addition, when using a thick inorganic vapor-deposited film, the thickness of the solar cell element side is thicker than the inorganic layer exhibiting the moisture-proofing effect among the total thickness of the protection material, so that the moisture inflow from the edge of the protection material increases and the moisture-proofing effect. As a result, the power generation efficiency of the solar cell is significantly reduced.
In addition, when a thin inorganic vapor deposition film with a thickness of less than 50 μm is used without using a thick inorganic vapor deposition film, a new film using an adhesive or adhesive on the back side of the inorganic vapor deposition surface is used. By bonding, the protective material can be given rigidity that can withstand the vacuum lamination process.
However, when a new film is pasted by a dry lamination process, etc., the inorganic vapor deposition surface is affected by the residual stress accumulated from the back of the moisture-proof film in the vacuum lamination process and subsequent durability tests. There was a problem that the moisture-proof performance was significantly deteriorated due to damage.
 このように、従来技術を用いた太陽電池用保護材においては、シワ等の外観不良を抑制することと、防湿作用や発電効率の低下を解決することとの両立が実現できなかった。 Thus, in the solar cell protective material using the conventional technology, it has not been possible to realize both the suppression of the appearance defect such as wrinkles and the solution of the moisture-proof effect and the decrease in power generation efficiency.
 本発明が解決しようとする課題は、シワ等の外観不良がなく外観に優れ、防湿性、特に端面防湿性に優れる太陽電池用保護材を提供すること、並びにこの太陽電池用保護材を用いた太陽電池モジュールを提供することにある。 The problem to be solved by the present invention is to provide a solar cell protective material that has no appearance defects such as wrinkles, is excellent in appearance, and is excellent in moisture resistance, in particular, end face moisture resistance, as well as using this solar cell protection material. The object is to provide a solar cell module.
 本発明者らは、鋭意検討を重ねた結果、貼合に用いる粘着剤層の弾性率を真空ラミネーション温度付近において特定の弾性率以下とし、粘着剤層の厚みを13~45μmとすることで、肉厚無機蒸着フィルムを用いることなく真空ラミネーション後の外観低下を防止し、かつ、剥離強度及び防湿性、特に端面防湿性に優れた太陽電池用保護材を提供することができることを見出した。 As a result of intensive studies, the inventors have made the elastic modulus of the pressure-sensitive adhesive layer used for bonding below a specific elastic modulus near the vacuum lamination temperature, and the thickness of the pressure-sensitive adhesive layer is 13 to 45 μm. It has been found that a protective material for a solar cell can be provided which prevents deterioration in appearance after vacuum lamination without using a thick inorganic vapor-deposited film, and is excellent in peel strength and moisture resistance, in particular, end face moisture resistance.
 すなわち本発明は、
(1)フッ素系樹脂フィルム、粘着剤(i)からなる粘着剤層(i)、及び金属酸化物層を有する樹脂フィルムがこの順に積層されてなる太陽電池用保護材であって、前記の金属酸化物層を有する樹脂フィルムの基材の厚みが30μm以下であり、前記粘着剤層(i)の厚みが13~45μmであり、前記粘着剤層(i)の100℃、周波数10Hz、歪0.1%における引っ張り貯蔵弾性率が5.0×104~5.0×105Paである、太陽電池用保護材、
(2)前記粘着剤(i)が、カルボキシル基又はアミノ基を含まない粘着剤である、(1)に記載の太陽電池用保護材、
(3)前記金属酸化物層を有する樹脂フィルムの基材がポリエステル系フィルムである、(1)又は(2)に記載の太陽電池用保護材、
(4)前記金属酸化物層を有する樹脂フィルムの温度40℃、相対湿度90%における水蒸気透過率が0.1[g/(m2・日)]未満である、(1)~(3)のいずれかに記載の太陽電池用保護材、
(5)フッ素系樹脂フィルム、粘着剤(i)からなる粘着剤層(i)、金属酸化物層を有する樹脂フィルム、粘着剤または接着剤からなる粘接着剤層(ii)、及び融点180℃以上、熱収縮率0.5%以下の高融点フィルムがこの順に積層されてなる、(1)~(4)のいずれかに記載の太陽電池用保護材、
(6)フッ素系樹脂フィルム、融点が150℃以下の中間フィルム、粘着剤(i)からなる粘着剤層(i)、及び金属酸化物層を有する樹脂フィルムがこの順に積層されてなる(1)~(5)のいずれかに記載の太陽電池用保護材、
(7)前記中間フィルムの厚みが50~600μmである(6)に記載の太陽電池用保護材、
(8)前記中間フィルムが、ポリエチレン樹脂を主成分として含む(6)又は(7)に記載の太陽電池用保護材、
(9)前記防湿フィルムの金属酸化物層側に前記粘着剤層及び中間フィルムを有する(6)~(8)のいずれかに記載の太陽電池用保護材、
(10)前記金属酸化物層を有する樹脂フィルムの基材の厚みが前記フッ素系樹脂フィルムの厚みより薄い、(1)~(9)のいずれかに記載の太陽電池用保護材、
(11)前記粘着剤(i)からなる粘着剤層(i)の0℃、周波数10Hz、歪0.1%における引っ張り貯蔵弾性率が1.0×106~1.0×108Paである、(1)~(10)のいずれかに記載の太陽電池用保護材、
(12)前記粘着剤(i)からなる粘着剤層(i)のガラス転移点が0℃以下である(1)~(11)のいずれかに記載の太陽電池用保護材。
(13)初期水蒸気透過率が0.1[g/(m2・日)]未満である(1)~(12)のいずれかに記載の太陽電池用保護材、
(14)最高温度が150℃未満である真空ラミネーション工程に使用される、(1)~(13)のいずれかに記載の太陽電池用保護材、
(15)(1)~(14)のいずれかに記載の太陽電池用保護材を有する太陽電池用モジュール、
を提供するものである。
That is, the present invention
(1) A protective material for solar cells in which a fluororesin film, an adhesive layer (i) composed of an adhesive (i), and a resin film having a metal oxide layer are laminated in this order, and the metal The thickness of the base material of the resin film having an oxide layer is 30 μm or less, the thickness of the pressure-sensitive adhesive layer (i) is 13 to 45 μm, and the pressure-sensitive adhesive layer (i) is 100 ° C., frequency 10 Hz, strain 0 A protective material for solar cells having a tensile storage elastic modulus at 1% of 5.0 × 10 4 to 5.0 × 10 5 Pa,
(2) The solar cell protective material according to (1), wherein the pressure-sensitive adhesive (i) is a pressure-sensitive adhesive containing no carboxyl group or amino group,
(3) The protective material for solar cells according to (1) or (2), wherein the base material of the resin film having the metal oxide layer is a polyester film,
(4) The water vapor permeability of the resin film having the metal oxide layer at a temperature of 40 ° C. and a relative humidity of 90% is less than 0.1 [g / (m 2 · day)] (1) to (3) The solar cell protective material according to any one of
(5) Fluorine resin film, pressure-sensitive adhesive layer (i) made of pressure-sensitive adhesive (i), resin film having a metal oxide layer, pressure-sensitive adhesive layer (ii) made of pressure-sensitive adhesive or adhesive, and melting point 180 The protective material for solar cells according to any one of (1) to (4), wherein a high melting point film having a heat shrinkage rate of 0.5% or less at a temperature of 0 ° C. or higher is laminated in this order
(6) A fluororesin film, an intermediate film having a melting point of 150 ° C. or lower, an adhesive layer (i) composed of an adhesive (i), and a resin film having a metal oxide layer are laminated in this order (1) The solar cell protective material according to any one of to (5),
(7) The solar cell protective material according to (6), wherein the intermediate film has a thickness of 50 to 600 μm,
(8) The solar cell protective material according to (6) or (7), wherein the intermediate film contains a polyethylene resin as a main component.
(9) The solar cell protective material according to any one of (6) to (8), which has the pressure-sensitive adhesive layer and an intermediate film on the metal oxide layer side of the moisture-proof film,
(10) The protective material for solar cell according to any one of (1) to (9), wherein the thickness of the base material of the resin film having the metal oxide layer is thinner than the thickness of the fluororesin film,
(11) The tensile storage elastic modulus of the pressure-sensitive adhesive layer (i) comprising the pressure-sensitive adhesive (i) at 0 ° C., a frequency of 10 Hz, and a strain of 0.1% is 1.0 × 10 6 to 1.0 × 10 8 Pa. The solar cell protective material according to any one of (1) to (10),
(12) The solar cell protective material according to any one of (1) to (11), wherein the pressure-sensitive adhesive layer (i) comprising the pressure-sensitive adhesive (i) has a glass transition point of 0 ° C. or lower.
(13) The protective material for solar cells according to any one of (1) to (12), wherein the initial water vapor permeability is less than 0.1 [g / (m 2 · day)],
(14) The solar cell protective material according to any one of (1) to (13), which is used in a vacuum lamination step having a maximum temperature of less than 150 ° C.
(15) A solar cell module having the solar cell protective material according to any one of (1) to (14),
Is to provide.
 また、本発明者らは、低温(例えば-40℃)から高温(例えば85℃)の広い温度範囲で良好な防湿性を維持するためには、フィルム同士を接着する接着層のガラス転移点が重要なファクターであることを見出し、本発明を完成した。
 すなわち本発明は、
(16)耐候層、接着層1、及び、基材上に無機層を有する防湿層1をこの順に有する太陽電池用保護材であって、前記接着層1のガラス転移点が0℃以下である太陽電池用保護材、
(17)前記耐候層と前記防湿層1との層間強度が結露凍結試験後において10N/15mm以上であり、かつ層間強度の劣化率が20%未満である(16)に記載の太陽電池用保護材、
(18)前記接着層1がアクリル系粘着剤を含む(16)又は(17)に記載の太陽電池用保護材、
(19)前記防湿層1の基材がポリエステル系フィルムである(16)~(18)のいずれかに記載の太陽電池用保護材、
(20)さらに、接着層2、及び、基材上に無機層を有する防湿層2を有する(16)~(19)のいずれかに記載の太陽電池用保護材、
(21)接着層2の100℃、周波数10Hz、歪0.1%における引っ張り貯蔵弾性率が5.0×104~5.0×105Paである、(20)に記載の太陽電池用保護材、
(22)接着層2の0℃、周波数10Hz、歪0.1%における引っ張り貯蔵弾性率が1.0×106~1.0×108Paである、(20)又は(21)に記載の太陽電池用保護材、
(23)前記耐候層が、2-エチレン-4-フッ化エチレン共重合体フィルムである(16)~(22)のいずれかに記載の太陽電池用保護材、
(24)前記防湿層1及び/又は防湿層2の、温度40℃、相対湿度90%における水蒸気透過率が0.1[g/(m2・日)]未満であり、結露凍結試験後における水蒸気透過率の劣化度が3未満である(16)~(23)のいずれかに記載の太陽電池用保護材、
(25)前記基材の厚みが前記フッ素系樹脂フィルムの厚みよりも薄い、(16)~(24)のいずれかに記載の太陽電池用保護材、
(26)最高温度が150℃未満である真空ラミネーション工程に使用される、(16)~(25)のいずれかに記載の太陽電池用保護材、及び
(27)(16)~(26)のいずれかに記載の太陽電池用保護材を有する太陽電池用モジュール、
を提供するものである。
In addition, the present inventors have found that the glass transition point of the adhesive layer that bonds the films to each other in order to maintain good moisture resistance in a wide temperature range from a low temperature (eg, −40 ° C.) to a high temperature (eg, 85 ° C.). As a result, the present invention was completed.
That is, the present invention
(16) A solar cell protective material having in this order a weather-resistant layer, an adhesive layer 1, and a moisture-proof layer 1 having an inorganic layer on a substrate, and the glass transition point of the adhesive layer 1 is 0 ° C. or lower. Solar cell protective material,
(17) The solar cell protection according to (16), wherein the interlayer strength between the weather resistant layer and the moisture-proof layer 1 is 10 N / 15 mm or more after the condensation freezing test, and the degradation rate of the interlayer strength is less than 20%. Material,
(18) The solar cell protective material according to (16) or (17), wherein the adhesive layer 1 contains an acrylic pressure-sensitive adhesive.
(19) The solar cell protective material according to any one of (16) to (18), wherein the base material of the moisture-proof layer 1 is a polyester film,
(20) The solar cell protective material according to any one of (16) to (19), further comprising an adhesive layer 2 and a moisture-proof layer 2 having an inorganic layer on the substrate.
(21) The solar cell according to (20), wherein the adhesive layer 2 has a tensile storage elastic modulus of 5.0 × 10 4 to 5.0 × 10 5 Pa at 100 ° C., a frequency of 10 Hz, and a strain of 0.1%. Protective layer,
(22) The adhesive layer 2 according to (20) or (21), wherein the tensile storage elastic modulus at 0 ° C., a frequency of 10 Hz, and a strain of 0.1% is 1.0 × 10 6 to 1.0 × 10 8 Pa. Solar cell protective material,
(23) The solar cell protective material according to any one of (16) to (22), wherein the weather resistant layer is a 2-ethylene-4-fluoroethylene copolymer film,
(24) The moisture vapor transmission rate of the moisture-proof layer 1 and / or the moisture-proof layer 2 at a temperature of 40 ° C. and a relative humidity of 90% is less than 0.1 [g / (m 2 · day)], and after the condensation freezing test The protective material for solar cells according to any one of (16) to (23), wherein the degree of deterioration of water vapor permeability is less than 3.
(25) The solar cell protective material according to any one of (16) to (24), wherein the thickness of the base material is thinner than the thickness of the fluororesin film,
(26) The solar cell protective material according to any one of (16) to (25) and (27), (16) to (26), which is used in a vacuum lamination step having a maximum temperature of less than 150 ° C. A solar cell module comprising the solar cell protective material according to any one of the above,
Is to provide.
 本発明によれば、肉厚無機薄膜蒸着フィルムを使用しなくとも、太陽電池用保護材の外観不良の問題を解消し、剥離強度、防湿性、耐久性及び耐候性に優れ、特に端面防湿性に優れた太陽電池用保護材を提供することができる。
 また、該太陽電池用保護材を使用する太陽電池モジュールは、良好な外観を実現することができるのみならず、発電効率の低下を防止できる。特に、本発明の第2の実施態様の太陽電池用保護材を使用する太陽電池モジュールは、真空ラミネーション温度を150℃以上とした高温真空ラミネーションによってもシワ等の外観不良が生じることがなく、また、防湿性の劣化がなく生産効率に優れる。
 また、本発明の第3の実施態様の太陽電池保護材は、長期に防湿性劣化やデラミネーションの発生がなく柔軟性と防湿性に優れており、太陽電池モジュールの性能低下を同時に防止し、かつ太陽電池モジュールの耐久性の向上に有効である。
 また、本発明の第4の実施態様の太陽電池保護材は、耐久性及び耐候性に優れ、また低温から高温の広い温度範囲で良好な防湿性を維持できる。
According to the present invention, even without using a thick inorganic thin film vapor-deposited film, the problem of poor appearance of the protective material for solar cells is solved, and the peel strength, moisture resistance, durability and weather resistance are excellent, and particularly the end face moisture resistance It is possible to provide a protective material for a solar cell that is excellent in performance.
Moreover, the solar cell module using the solar cell protective material can not only achieve a good appearance, but also prevent a decrease in power generation efficiency. In particular, the solar cell module using the solar cell protective material of the second embodiment of the present invention does not cause appearance defects such as wrinkles even by high-temperature vacuum lamination with a vacuum lamination temperature of 150 ° C. or higher. It is excellent in production efficiency without deterioration of moisture resistance.
Moreover, the solar cell protective material of the third embodiment of the present invention is excellent in flexibility and moisture resistance without generation of moisture resistance degradation and delamination over a long period of time, and simultaneously prevents the performance degradation of the solar cell module, And it is effective in improving the durability of the solar cell module.
Moreover, the solar cell protective material of the 4th embodiment of this invention is excellent in durability and a weather resistance, and can maintain favorable moisture-proof property in the wide temperature range from low temperature to high temperature.
以下に本発明を更に詳細に説明する。
(第1~第3の実施態様)
<太陽電池用保護材>
 本発明の第1の実施態様である太陽電池用保護材は、フッ素系樹脂フィルム、粘着剤(i)からなる粘着剤層(i)、及び金属酸化物層を有する樹脂フィルムがこの順に積層されてなり、前記の金属酸化物層を有する樹脂フィルムの基材厚みが30μm以下であり、前記粘着剤層(i)の厚みが13~45μmであり、前記粘着剤層(i)の100℃、周波数10Hz、歪0.1%における引っ張り貯蔵弾性率が5.0×104~5.0×105Paである。
 本発明の第2の実施態様である太陽電池用保護材は、フッ素系樹脂フィルム、粘着剤(i)からなる粘着剤層(i)、金属酸化物層を有する樹脂フィルム、粘着剤又は接着剤からなる粘接着剤層(ii)、及び融点180℃以上、収縮率0.5%以下の高融点フィルムがこの順に積層されてなり、前記粘着剤層(i)の厚みが13~45μmであり、前記粘着剤層(i)の100℃、周波数10Hz、歪0.1%における引っ張り貯蔵弾性率が5.0×104~5.0×105Paである。
 本発明の第3の実施態様である太陽電池用保護材は、フッ素系樹脂フィルム、中間フィルム、粘着剤(i)からなる粘着剤層(i)、及び金属酸化物層を有する樹脂フィルムがこの順に積層されてなり、前記樹脂フィルムの水蒸気透過率が0.1[g/(m2・日)]であり、前記中間フィルムの融点が150℃以下であり、かつ前記粘着剤層(i)の厚みが13~45μmであり、更に前記粘着剤層(i)の100℃、周波数10Hz、歪0.1%における引っ張り貯蔵弾性率が5.0×104~5.0×105Paである。
The present invention is described in further detail below.
(First to third embodiments)
<Protective material for solar cells>
In the solar cell protective material according to the first embodiment of the present invention, a fluororesin film, an adhesive layer (i) composed of an adhesive (i), and a resin film having a metal oxide layer are laminated in this order. The substrate thickness of the resin film having the metal oxide layer is 30 μm or less, the pressure-sensitive adhesive layer (i) has a thickness of 13 to 45 μm, and the pressure-sensitive adhesive layer (i) has a temperature of 100 ° C. The tensile storage elastic modulus at a frequency of 10 Hz and a strain of 0.1% is 5.0 × 10 4 to 5.0 × 10 5 Pa.
The solar cell protective material according to the second embodiment of the present invention includes a fluororesin film, a pressure-sensitive adhesive layer (i) comprising a pressure-sensitive adhesive (i), a resin film having a metal oxide layer, a pressure-sensitive adhesive, or an adhesive. And a high melting point film having a melting point of 180 ° C. or more and a shrinkage rate of 0.5% or less, and the pressure-sensitive adhesive layer (i) has a thickness of 13 to 45 μm. The tensile storage elastic modulus of the pressure-sensitive adhesive layer (i) at 100 ° C., frequency 10 Hz, and strain 0.1% is 5.0 × 10 4 to 5.0 × 10 5 Pa.
The solar cell protective material according to the third embodiment of the present invention includes a fluororesin film, an intermediate film, a pressure-sensitive adhesive layer (i) comprising a pressure-sensitive adhesive (i), and a resin film having a metal oxide layer. The water vapor permeability of the resin film is 0.1 [g / (m 2 · day)], the melting point of the intermediate film is 150 ° C. or less, and the pressure-sensitive adhesive layer (i) The adhesive layer (i) has a tensile storage modulus of 5.0 × 10 4 to 5.0 × 10 5 Pa at 100 ° C., a frequency of 10 Hz, and a strain of 0.1%. is there.
[フッ素系樹脂フィルム]
 本発明において、フッ素系樹脂フィルムは耐候性フィルムとして用いられる。
 フッ素系樹脂フィルムは、耐加水分解性や耐候性に優れたものが特に制限なく使用でき、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-エチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)及びポリフッ化ビニル(PVF)等からなるフィルムが挙げられる。前記フッ素系樹脂フィルムは、前記の樹脂を用いて成形してなるものであれば、単層でも多層でもよく、他のフィルムと積層されていてもよい。
 真空ラミネーション工程において、太陽電池用保護材を製造する積層工程で生じた耐候性フィルム内の残留歪を軽減し、高温高湿時における保護材層内の残留応力を低減する効果を得るためには、真空ラミネーション時の温度付近に融点をもつフィルム、すなわち、融点が180℃以下のフィルムを用いることが好ましい。また、前記融点が上記の温度範囲内の耐候性フィルムを用いることで、真空ラミネーション時の温度で、それまでの工程で加えられた力の履歴や熱履歴によって生じたフィルム内の分子、結晶配向を緩和させ残留歪を低減させることができる。
[Fluorine resin film]
In the present invention, the fluororesin film is used as a weather resistant film.
As the fluororesin film, those excellent in hydrolysis resistance and weather resistance can be used without particular limitation. For example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetra Fluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), etc. A film. As long as the said fluororesin film is shape | molded using the said resin, a single layer or a multilayer may be sufficient and it may be laminated | stacked with the other film.
In the vacuum lamination process, to reduce the residual strain in the weather-resistant film produced in the lamination process for manufacturing the solar cell protective material, and to obtain the effect of reducing the residual stress in the protective material layer at high temperature and high humidity It is preferable to use a film having a melting point near the temperature during vacuum lamination, that is, a film having a melting point of 180 ° C. or lower. In addition, by using a weather resistant film having the melting point within the above temperature range, the temperature in the vacuum lamination, the molecules in the film generated by the history of the force applied in the previous process and the thermal history, crystal orientation Can be relaxed and residual strain can be reduced.
 また、フッ素系樹脂フィルムとして、真空ラミネーション時や高温高湿時の温度及び湿度変化においてもその特性変化が小さいことが好ましいことから、事前の熱処理等による低収縮率化等が行われたフィルムが好ましく使用される。
 フッ素系樹脂フィルムの厚さは、一般に20~200μm程度であり、フィルムの取り扱いやすさとコストの点から20~100μmが好ましく、20~50μmがより好ましい。
In addition, as the fluororesin film, it is preferable that the characteristic change is small even in the temperature and humidity change at the time of vacuum lamination or high temperature and high humidity. Preferably used.
The thickness of the fluororesin film is generally about 20 to 200 μm, preferably 20 to 100 μm, more preferably 20 to 50 μm from the viewpoints of film handling and cost.
[金属酸化物層を有する樹脂フィルム]
 本発明において金属酸化物層を有する樹脂フィルムは、基材の少なくとも一方の面に金属酸化物からなる金属酸化物層を少なくとも1層有するフィルムであり、防湿性を有するフィルムである。この金属酸化物層により、湿気、水の透過による太陽電池の内面側を保護することができる。
[Resin film having a metal oxide layer]
In the present invention, the resin film having a metal oxide layer is a film having at least one metal oxide layer made of a metal oxide on at least one surface of a substrate, and is a film having moisture resistance. By this metal oxide layer, the inner surface side of the solar cell by moisture and water permeation can be protected.
 前記基材としては、樹脂フィルムが好ましく、その材料としては、通常太陽電池用部材に使用しうる樹脂であれば特に制限なく用いることができる。具体的には、エチレン、プロピレン、ブテン等の単独重合体又は共重合体等のポリオレフィン、環状ポリオレフィン等の非晶質ポリオレフィン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ナイロン6、ナイロン66、ナイロン12、共重合ナイロン等のポリアミド、エチレン-酢酸ビニル共重合体の部分加水分解物(EVOH)、ポリイミド、ポリエーテルイミド、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリカーボネート、ポリビニルブチラール、ポリアリレート、フッ素樹脂、アクリル樹脂、生分解性樹脂等が挙げられる。これらの中では、フィルム物性、コスト等の点から、ポリエステル、ポリアミド、ポリオレフィンが好ましい。中でも、フィルム物性の点から、ポリエステルが好ましく、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)が特に好ましい。 As the substrate, a resin film is preferable, and any material can be used without particular limitation as long as it is a resin that can be usually used for a solar cell member. Specifically, polyolefins such as homopolymers or copolymers such as ethylene, propylene and butene, amorphous polyolefins such as cyclic polyolefins, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), nylon 6 , Nylon 66, nylon 12, polyamide such as copolymer nylon, ethylene-vinyl acetate copolymer partial hydrolyzate (EVOH), polyimide, polyetherimide, polysulfone, polyethersulfone, polyetheretherketone, polycarbonate, Examples include polyvinyl butyral, polyarylate, fluororesin, acrylic resin, and biodegradable resin. Among these, polyesters, polyamides, and polyolefins are preferable from the viewpoints of film properties and cost. Among these, from the viewpoint of film physical properties, polyester is preferable, and polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are particularly preferable.
 また、前記基材は、公知の添加剤、例えば、帯電防止剤、光線遮断剤、紫外線吸収剤、可塑剤、滑剤、フィラー、着色剤、安定剤、潤滑剤、架橋剤、ブロッキング防止剤、酸化防止剤等を含有することができる。
 前記基材は、前記の原料等を用いて成形してなるものであるが、未延伸であってもよいし延伸したものであってもよい。
The base material is a known additive such as an antistatic agent, a light blocking agent, an ultraviolet absorber, a plasticizer, a lubricant, a filler, a colorant, a stabilizer, a lubricant, a crosslinking agent, an antiblocking agent, an oxidation agent. An inhibitor or the like can be contained.
The base material is formed by using the raw materials and the like, but may be unstretched or stretched.
 かかる基材は、従来公知の方法により製造することができ、例えば、原料を押出機により溶融し、環状ダイやTダイにより押出して、急冷することにより実質的に無定型で配向していない未延伸フィルムを製造することができる。また、多層ダイを用いることにより、1種の樹脂からなる単層フィルム、1種の樹脂からなる多層フィルム、多種の樹脂からなる多層フィルム等を製造することができる。 Such a substrate can be produced by a conventionally known method. For example, the raw material is melted by an extruder, extruded by an annular die or a T die, and rapidly cooled to be substantially amorphous and not oriented. A stretched film can be produced. Further, by using a multilayer die, it is possible to produce a single layer film made of one kind of resin, a multilayer film made of one kind of resin, a multilayer film made of various kinds of resins, and the like.
 この未延伸フィルムを一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、フィルムの流れ(縦軸)方向又はフィルムの流れ方向とそれに直角な(横軸)方向に延伸することにより、一軸方向又はニ軸方向に延伸したフィルムを製造することができる。延伸倍率は任意に設定できるが、100℃における熱収縮率が、0.01~5%であることが好ましく、0.01~2%であることがより好ましい。更に150℃における熱収縮率が、0.01~5%であることが更に好ましく、0.01~2%であることが特に好ましい。中でもフィルム物性の点から、二軸延伸ポリエチレンナフタレートフィルムや二軸延伸ポリエチレンテレフタレート、ポリエチレンテレフタレート及び/又はポリエチレンナフタレートと他のプラスチックの共押出二軸延伸フィルムが好ましい。 The unstretched film is subjected to a known method such as uniaxial stretching, tenter sequential biaxial stretching, tenter simultaneous biaxial stretching, tubular simultaneous biaxial stretching, or the like. A film stretched in a uniaxial direction or a biaxial direction can be produced by stretching in a direction perpendicular to it (horizontal axis). The draw ratio can be arbitrarily set, but the heat shrinkage at 100 ° C. is preferably 0.01 to 5%, more preferably 0.01 to 2%. Further, the thermal shrinkage at 150 ° C. is more preferably 0.01 to 5%, and particularly preferably 0.01 to 2%. Among these, from the viewpoint of film properties, biaxially stretched polyethylene naphthalate film, biaxially stretched polyethylene terephthalate, polyethylene terephthalate and / or coextruded biaxially stretched film of polyethylene naphthalate and other plastics are preferable.
 なお、上記基材には、金属酸化物薄層との密着性向上のため、アンカーコート剤を塗布し、アンカーコート層を設けることが好ましい。アンカーコート剤としては、溶剤性又は水性のポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、変性ビニル樹脂、ビニルアルコール樹脂、ビニルブチラール樹脂、エチレンビニルアルコール樹脂、ニトロセルロース樹脂、オキサゾリン基含有樹脂、カルボジイミド基含有樹脂、メラミン基含有樹脂、エポキシ基含有樹脂、変性スチレン樹脂及び変性シリコーン樹脂等を単独、あるいは2種以上組み合わせて使用することができる。
 またアンカーコート剤は、シラン系カップリング剤、チタン系カップリング剤、アルキルチタネート、光線遮断剤、紫外線吸収剤、安定剤、潤滑剤、ブロッキング防止剤、酸化防止剤等を含有したり、紫外線吸収剤等を上記樹脂と共重合させたものを含有することができる。
In addition, it is preferable to apply | coat an anchor coating agent and to provide an anchor coat layer in the said base material for the adhesive improvement with a metal oxide thin layer. Examples of anchor coating agents include solvent-based or aqueous polyester resins, isocyanate resins, urethane resins, acrylic resins, modified vinyl resins, vinyl alcohol resins, vinyl butyral resins, ethylene vinyl alcohol resins, nitrocellulose resins, oxazoline group-containing resins, carbodiimides. A group-containing resin, a melamine group-containing resin, an epoxy group-containing resin, a modified styrene resin, a modified silicone resin, or the like can be used alone or in combination of two or more.
Anchor coating agents contain silane coupling agents, titanium coupling agents, alkyl titanates, light blockers, UV absorbers, stabilizers, lubricants, antiblocking agents, antioxidants, etc. A material obtained by copolymerizing an agent or the like with the above resin can be contained.
 アンカーコート層の形成方法としては、公知のコーティング方法が適宜採択される。例えば、リバースロールコーター、グラビアコーター、ロッドコーター、エアドクタコーター、またはスプレイを用いたコーティング方法等の方法がいずれも使用できる。また、基材をアンカーコート剤液に浸漬して行ってもよい。塗布後は、80~200℃程度の温度での熱風乾燥、熱ロール乾燥等の加熱乾燥や、赤外線乾燥等の公知の乾燥方法を用いて溶媒を蒸発させることができる。また、耐水性、耐久性を高めるために、電子線照射による架橋処理を行うこともできる。また、アンカーコート層の形成は、基材の製造ラインの途中で行う方法(インライン)でも、基材フィルム製造後に行う方法(オフライン)でもよい。 As a method for forming the anchor coat layer, a known coating method is appropriately adopted. For example, any method such as a reverse roll coater, a gravure coater, a rod coater, an air doctor coater, or a coating method using a spray can be used. Alternatively, the substrate may be immersed in an anchor coating agent solution. After coating, the solvent can be evaporated using a known drying method such as hot air drying at a temperature of about 80 to 200 ° C., heat drying such as hot roll drying, or infrared drying. Moreover, in order to improve water resistance and durability, the crosslinking process by electron beam irradiation can also be performed. Further, the formation of the anchor coat layer may be a method performed in the middle of the substrate production line (inline) or a method performed after manufacturing the substrate film (offline).
 本発明において、上記基材の厚さは、太陽電池用保護材の端面防湿性の観点、肉厚無機薄膜蒸着フィルムを用いずに高温真空ラミネーション後の外観低下を防止する観点から、30μm以下であり、好ましくは10~30μm、より好ましくは12~25μm、特に好ましくは12~20μmである。
 更に、基材の厚みが前記フッ素系樹脂フィルムの厚みより薄いことが好ましく、これにより柔軟性に優れた太陽電池用保護材が得られる。このような太陽電池用保護材を用いた太陽電池モジュールは、曲げられた際に、太陽電池用保護材がその曲げに追従することができ、太陽電池用保護材と封止材とのデラミネーションが起こりにくい。
In the present invention, the thickness of the base material is 30 μm or less from the viewpoint of end face moisture resistance of the solar cell protective material, and from the viewpoint of preventing appearance deterioration after high-temperature vacuum lamination without using a thick inorganic thin film deposited film. It is preferably 10 to 30 μm, more preferably 12 to 25 μm, and particularly preferably 12 to 20 μm.
Furthermore, it is preferable that the thickness of the base material is thinner than the thickness of the fluororesin film, thereby obtaining a solar cell protective material excellent in flexibility. When the solar cell module using such a solar cell protective material is bent, the solar cell protective material can follow the bending, and the solar cell protective material and the sealing material are delaminated. Is unlikely to occur.
 金属酸化物層を構成する物質としては、珪素、アルミニウム、マグネシウム、亜鉛、錫、ニッケル、チタン等の酸化物、酸化炭化物、酸化窒化物、酸化炭化窒化物及びこれらの混合物等が挙げられる。太陽電池に適用した場合に電流がリークする等のおそれがない点及び高い防湿性が安定に維持できる点から、酸化珪素、酸化炭化珪素、酸化窒化珪素、酸化炭化窒化珪素、酸化アルミニウム、酸化炭化アルミニウム及び酸化窒化アルミニウム等の金属酸化物並びにこれらの混合物が好ましい。
 上記金属酸化物層の形成方法としては、蒸着法、コーティング法等の方法がいずれも使用できるが、ガスバリア性の高い均一な薄膜が得られるという点で蒸着法が好ましい。この蒸着法には、物理気相蒸着(PVD)、あるいは化学気相蒸着(CVD)等の方法が含まれる。物理気相蒸着法としては、真空蒸着、イオンプレーティング、スパッタリング等が挙げられ、化学気相蒸着法としては、プラズマを利用したプラズマCVD、加熱触媒体を用いて材料ガスを接触熱分解する触媒化学気相成長法(Cat-CVD)等が挙げられる。
Examples of the material constituting the metal oxide layer include oxides such as silicon, aluminum, magnesium, zinc, tin, nickel, and titanium, oxide carbides, oxynitrides, oxycarbonitrides, and mixtures thereof. Silicon oxide, silicon oxycarbide, silicon oxynitride, silicon oxycarbonitride, aluminum oxide, carbonized oxycarbide because there is no fear of leakage of current when applied to solar cells and high moisture resistance can be stably maintained. Metal oxides such as aluminum and aluminum oxynitride and mixtures thereof are preferred.
As a method for forming the metal oxide layer, any method such as a vapor deposition method and a coating method can be used, but a vapor deposition method is preferred in that a uniform thin film having a high gas barrier property can be obtained. This vapor deposition method includes methods such as physical vapor deposition (PVD) and chemical vapor deposition (CVD). Examples of physical vapor deposition include vacuum vapor deposition, ion plating, and sputtering, and chemical vapor deposition includes plasma CVD using plasma, and a catalyst that thermally decomposes a material gas using a heated catalyst body. Examples include chemical vapor deposition (Cat-CVD).
 前記金属酸化物層の厚さは、安定な防湿性能の発現と透明性の点から、40~1000nmであることが好ましく、40~800nmがより好ましく、50~600nmが更に好ましい。
 また、上記金属酸化物層は、上記に挙げられる種々の成膜法を用い多層成膜し、防湿性を高めることが可能である。その場合、同一の成膜法を用いてもよいし、各層ごとに異なる成膜法を用いてもよいが、何れも減圧下で連続して行うことが、効率的な防湿性向上、生産性の点で好ましい。
The thickness of the metal oxide layer is preferably 40 to 1000 nm, more preferably 40 to 800 nm, and still more preferably 50 to 600 nm, from the viewpoint of stable moisture-proof performance and transparency.
In addition, the metal oxide layer can be formed into a multi-layer by using the various film formation methods mentioned above to improve moisture resistance. In that case, the same film formation method may be used, or a different film formation method may be used for each layer. However, it is effective to improve the moisture resistance and productivity by continuously performing them under reduced pressure. This is preferable.
 金属酸化物層を有する樹脂フィルムの温度40℃、相対湿度90%における水蒸気透過率は、防湿性の観点から、好ましくは0.1[g/(m2・日)]未満、より好ましくは0.05[g/(m2・日)]以下、更に好ましくは、0.03[g/(m2・日)]以下である。
 水蒸気透過率の調整は、基材の選択、金属酸化物層を構成する金属酸化物の選択、金属酸化物層の厚み及び金属酸化物の酸化数等を適宜調整することにより行うことができる。
 水蒸気透過率の測定方法は、JIS Z 0222「防湿包装容器の透湿度試験方法」、JIS Z 0208「防湿包装材料の透湿度試験方法(カップ法)」の諸条件に順じ、具体的には実施例に記載の方法で測定される。
The water vapor transmission rate of the resin film having a metal oxide layer at a temperature of 40 ° C. and a relative humidity of 90% is preferably less than 0.1 [g / (m 2 · day)], more preferably 0 from the viewpoint of moisture resistance. 0.05 [g / (m 2 · day)] or less, more preferably 0.03 [g / (m 2 · day)] or less.
The water vapor transmission rate can be adjusted by appropriately adjusting the selection of the base material, the selection of the metal oxide constituting the metal oxide layer, the thickness of the metal oxide layer, the oxidation number of the metal oxide, and the like.
The water vapor transmission rate is measured in accordance with the conditions of JIS Z 0222 “Method of moisture permeability test for moisture-proof packaging containers” and JIS Z 0208 “Method of moisture permeability test for moisture-proof packaging materials (cup method)”. It is measured by the method described in the examples.
[粘着層(i)]
 本発明において、粘着剤とは、水、溶剤、熱などを使用せず、常温で短時間、わずかな圧力を加えるだけで接着し、被着体に濡れていくための液体の性質(流動性)と剥離に抵抗する固体の性質(凝集力)とを同時に有するものをいい、通常の接着剤とは区別されるものである。溶液型接着剤、熱硬化型接着剤、ホットメルト接着剤などの接着剤が化学反応、溶媒揮散、温度変化などによって固化するのに対し、粘着剤は半固体であり、固化の過程が必要でなく、接合形成後もその状態が変わらないものである。
 本発明における粘着剤層(i)は、フッ素系樹脂フィルムの片方の面と金属酸化物層を有する樹脂フィルムとを貼合させる層である。粘着剤層(i)の100℃、周波数10Hz、歪0.1%における引っ張り貯蔵弾性率は5.0×104~5.0×105Paである。
[Adhesive layer (i)]
In the present invention, an adhesive is a liquid property (fluidity) for adhering and adhering to an adherend by applying a slight pressure at room temperature for a short time without using water, a solvent, heat or the like. ) And a solid property (cohesive force) that resists peeling, and is distinguished from a normal adhesive. While adhesives such as solution-type adhesives, thermosetting adhesives, and hot-melt adhesives solidify due to chemical reaction, solvent volatilization, temperature changes, etc., adhesives are semi-solid and require a solidification process. In other words, the state does not change even after the bonding is formed.
The pressure-sensitive adhesive layer (i) in the present invention is a layer for bonding one side of a fluororesin film and a resin film having a metal oxide layer. The tensile storage elastic modulus of the pressure-sensitive adhesive layer (i) at 100 ° C., a frequency of 10 Hz, and a strain of 0.1% is 5.0 × 10 4 to 5.0 × 10 5 Pa.
 これによれば、封止材の収縮による保護材中の防湿フィルム層の変形や応力を緩和し、フッ素系樹脂フィルム表面にシワを生じさせる応力の伝播を防止することができ、肉厚無機蒸着フィルムを用いることなく外観不良を防止することが可能である。また真空ラミネーション工程での本応力伝播の軽減作用は粘着剤層と接する金属酸化物層面への応力作用の軽減をももたらし、その後の耐久試験における防湿性能の劣化を防止する効果を得ることが可能である。したがって、本発明においては、封止材の収縮に抵抗する肉厚無機蒸着フィルムを使用しなくとも、太陽電池用保護材の外観不良の問題を解消することができる。 According to this, the deformation and stress of the moisture-proof film layer in the protective material due to the shrinkage of the sealing material can be relieved, and the propagation of stress that causes wrinkles on the surface of the fluororesin film can be prevented, and thick inorganic vapor deposition It is possible to prevent poor appearance without using a film. In addition, this stress propagation mitigation action in the vacuum lamination process also reduces the stress action on the metal oxide layer surface in contact with the pressure-sensitive adhesive layer, and it is possible to obtain the effect of preventing the deterioration of moisture resistance in the subsequent durability test. It is. Therefore, in this invention, even if it does not use the thick inorganic vapor deposition film which resists shrinkage | contraction of a sealing material, the problem of the external appearance defect of the protective material for solar cells can be eliminated.
 前記粘着剤層(i)の前記引っ張り貯蔵弾性率が5.0×105Paを越える場合、フィルムの収縮等により発生する応力を粘着剤層(i)で吸収することが十分にできない恐れがある。粘着剤層(i)の引っ張り貯蔵弾性率を5.0×105Pa以下とすることにより、フィルムの収縮等により発生する応力を粘着剤層(i)で十分に吸収することができ、防湿性の劣化を防止することができる。一方、前記引っ張り貯蔵弾性率が5.0×104Pa未満の場合、真空ラミネーション工程中に粘着剤層(i)が流動し保護材から大きくはみ出してしまい均一な厚みをもった積層体を得ることができない。
 前記観点から、粘着剤層(i)の100℃、周波数10Hz、歪0.1%における引っ張り貯蔵弾性率は、7×104Pa~3×105Paであることが好ましい。更に粘着剤層(i)の0℃、周波数10Hz、歪0.1%における引張り貯蔵弾性率が、1.0×106~1.0×108Paであることが好ましい。
 なお、引っ張り貯蔵弾性率は、実施例に記載の方法で測定される。
When the tensile storage modulus of the pressure-sensitive adhesive layer (i) exceeds 5.0 × 10 5 Pa, there is a possibility that the pressure-sensitive adhesive layer (i) cannot sufficiently absorb the stress generated due to film shrinkage or the like. is there. By setting the tensile storage elastic modulus of the pressure-sensitive adhesive layer (i) to 5.0 × 10 5 Pa or less, the pressure generated by the shrinkage of the film can be sufficiently absorbed by the pressure-sensitive adhesive layer (i). Deterioration can be prevented. On the other hand, when the tensile storage elastic modulus is less than 5.0 × 10 4 Pa, the pressure-sensitive adhesive layer (i) flows during the vacuum lamination process and protrudes greatly from the protective material to obtain a laminate having a uniform thickness. I can't.
From the above viewpoint, the tensile storage elastic modulus of the pressure-sensitive adhesive layer (i) at 100 ° C., frequency 10 Hz, and strain 0.1% is preferably 7 × 10 4 Pa to 3 × 10 5 Pa. Furthermore, the tensile storage elastic modulus of the pressure-sensitive adhesive layer (i) at 0 ° C., a frequency of 10 Hz, and a strain of 0.1% is preferably 1.0 × 10 6 to 1.0 × 10 8 Pa.
In addition, a tensile storage elastic modulus is measured by the method as described in an Example.
 引っ張り貯蔵弾性率は上記粘着剤層(i)の成分組成や架橋剤により調整(制御)することができる。高ガラス転移点(Tg)のモノマーを使用することや架橋剤添加量を増やすことにより引っ張り貯蔵弾性率は上昇し、低ガラス転移点(Tg)のモノマーを使用することや架橋剤添加量を減らすことにより引っ張り貯蔵弾性率は低下する。
 本発明において、上記粘着剤層(i)に用いられる粘着剤(i)としては、100℃での引っ張り貯蔵弾性率を5.0×104~5×105Paとするために、また、更に常温(20℃)において接着強度を維持するために1×106Pa以上の引っ張り貯蔵弾性率を発揮する観点から、アクリル系粘着剤を含むものが好ましく、アクリル系粘着剤を主成分とするものがさらに好ましい。ここで、主成分とは、本発明の効果を妨げない範囲で、他の成分を含むことを許容する趣旨であり、具体的な含有率を制限するものではないが、一般に粘着剤層(i)の構成成分全体を100質量部とした場合、50質量部以上であり、好ましくは65質量部以上、さらに好ましくは80質量部以上であって100質量部以下の範囲を占める成分である。
The tensile storage elastic modulus can be adjusted (controlled) by the component composition of the pressure-sensitive adhesive layer (i) and the crosslinking agent. By using a monomer having a high glass transition point (Tg) and increasing the amount of the crosslinking agent added, the tensile storage elastic modulus increases, and using a monomer having a low glass transition point (Tg) and reducing the amount of the crosslinking agent added. As a result, the tensile storage modulus decreases.
In the present invention, the pressure-sensitive adhesive (i) used for the pressure-sensitive adhesive layer (i) has a tensile storage elastic modulus at 100 ° C. of 5.0 × 10 4 to 5 × 10 5 Pa, Further, from the viewpoint of exhibiting a tensile storage elastic modulus of 1 × 10 6 Pa or more in order to maintain the adhesive strength at room temperature (20 ° C.), those containing an acrylic pressure-sensitive adhesive are preferable, and the acrylic pressure-sensitive adhesive is the main component. More preferred. Here, the main component is a purpose that allows other components to be contained within a range that does not impede the effect of the present invention, and does not limit the specific content, but is generally a pressure-sensitive adhesive layer (i ) Is 50 parts by mass or more, preferably 65 parts by mass or more, more preferably 80 parts by mass or more and occupies a range of 100 parts by mass or less.
 前記アクリル系粘着剤としては、粘着性を与える低ガラス転移点(Tg)の主モノマー成分、接着性や凝集力を与える高Tgのコモノマー成分、及び架橋や接着性改良のための官能基含有モノマー成分を主とする重合体又は共重合体(以下、「アクリル系(共)重合体」という。)よりなるものが好ましい。
 前記アクリル系粘着剤の主モノマー成分としては、例えば、アクリル酸エチル、アクリル酸ブチル、アクリル酸アミル、アクリル酸2-エチルヘキシル、アクリル酸オクチル、アクリル酸シクロヘキシル、アクリル酸ベンジル等のアクリル酸アルキルエステルや、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル等のメタクリル酸アルキルエステル等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of the acrylic pressure-sensitive adhesive include a main monomer component having a low glass transition point (Tg) that imparts tackiness, a comonomer component having a high Tg that imparts adhesiveness and cohesive force, and a functional group-containing monomer for improving crosslinking and adhesion. What consists of the polymer or copolymer (henceforth "acrylic (co) polymer") which mainly has a component is preferable.
Examples of the main monomer component of the acrylic pressure-sensitive adhesive include alkyl acrylate esters such as ethyl acrylate, butyl acrylate, amyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, cyclohexyl acrylate, benzyl acrylate, and the like. And alkyl methacrylates such as butyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, and benzyl methacrylate. These may be used alone or in combination of two or more.
 前記アクリル系粘着剤のコモノマー成分としては、アクリル酸メチル、メタクリル酸メチル、メタクリル酸エチル、酢酸ビニル、スチレン、アクリロニトリル等が挙げられる。これらは単独で用いてもよいし、2種以上組み合わせて用いてもよい。
 前記アクリル系粘着剤の官能基含有モノマー成分としては、例えば、アクリル酸、メタクリル酸、マレイン酸、イタコン酸等のカルボキシル基含有モノマーや、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、N-メチロールアクリルアミド等のヒドロキシル基含有モノマー、アクリルアミド、メタクリルアミド、グリシジルメタクリレート等が挙げられる。これらは単独で用いてもよいし、2種以上組み合わせて用いてもよい。
Examples of the comonomer component of the acrylic pressure-sensitive adhesive include methyl acrylate, methyl methacrylate, ethyl methacrylate, vinyl acetate, styrene, acrylonitrile and the like. These may be used alone or in combination of two or more.
Examples of the functional group-containing monomer component of the acrylic pressure-sensitive adhesive include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, maleic acid, and itaconic acid, 2-hydroxyethyl (meth) acrylate, and 2-hydroxypropyl (methacrylic acid). ) Hydroxyl group-containing monomers such as acrylate and N-methylolacrylamide, acrylamide, methacrylamide, glycidyl methacrylate and the like. These may be used alone or in combination of two or more.
 前記アクリル系粘着剤のモノマー成分の重合に使用する開始剤の例としては、アゾビスイソブチルニトリル、ベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、クメンハイドロパーオキサイド等が挙げられる。また、前記アクリル系粘着剤の主成分となるアクリル系(共)重合体の共重合形態については特に制限はなく、ランダム、ブロック、グラフト共重合体のいずれであってもよい。
 また、前記アクリル系粘着剤が上述のアクリル系(共)重合体である場合の分子量としては、重量平均分子量で30万~150万であるものが好ましく、40万~100万であることがさらに好ましい。重量平均分子量を上記範囲にすることによって被着体に対する密着性や接着耐久性を確保し、浮きや剥がれ等を抑制することができる。
Examples of the initiator used for polymerization of the monomer component of the acrylic pressure-sensitive adhesive include azobisisobutylnitrile, benzoyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, and the like. Moreover, there is no restriction | limiting in particular about the copolymerization form of the acrylic (co) polymer used as the main component of the said acrylic adhesive, Any of a random, a block, and a graft copolymer may be sufficient.
The molecular weight when the acrylic pressure-sensitive adhesive is the above-mentioned acrylic (co) polymer is preferably 300,000 to 1,500,000 in terms of weight average molecular weight, more preferably 400,000 to 1,000,000. preferable. By setting the weight average molecular weight within the above range, adhesion to the adherend and adhesion durability can be secured, and floating and peeling can be suppressed.
 さらに、前記アクリル系(共)重合体において、官能基含有モノマー成分単位の含有量は、1~25質量%の範囲が好ましい。この含有量を前記範囲内にすることにより、被着体との密着性及び架橋度を確保し、本発明において必須条件である粘着層の引っ張り貯蔵弾性率を、100℃において5.0×104~5.0×105Paの値にすることができる。 Further, in the acrylic (co) polymer, the content of the functional group-containing monomer component unit is preferably in the range of 1 to 25% by mass. By making this content within the above range, the adhesion and the degree of crosslinking with the adherend are ensured, and the tensile storage elastic modulus of the adhesive layer, which is an essential condition in the present invention, is 5.0 × 10 at 100 ° C. The value can be 4 to 5.0 × 10 5 Pa.
 更に本発明者らは、高温高湿試験での保護材の防湿性能は使用する粘着剤に含まれるカルボキシル基やアミノ基が影響を与えることを見出した。粘着剤(i)に反応性を持ったカルボキシル基やアミノ基が含まれていると、粘着剤が加水分解しやすく、それにより金属酸化物層が劣化しやすくなり、防湿性能が低下する恐れがある。特に高温高湿環境下においては水分により加水分解反応が引き起こされやすい。したがって、粘着剤(i)としては、カルボキシル基又はアミノ基を含まない粘着剤であることが好ましい。更に、カルボキシル基及びアミノ基を含まない粘着剤であることがより好ましい。 Furthermore, the present inventors have found that the carboxyl group or amino group contained in the pressure-sensitive adhesive used affects the moisture-proof performance of the protective material in the high-temperature and high-humidity test. If the pressure-sensitive adhesive (i) contains a reactive carboxyl group or amino group, the pressure-sensitive adhesive is likely to be hydrolyzed, whereby the metal oxide layer is likely to deteriorate, and the moisture-proof performance may be reduced. is there. In particular, in a high temperature and high humidity environment, hydrolysis reaction is likely to be caused by moisture. Therefore, the pressure-sensitive adhesive (i) is preferably a pressure-sensitive adhesive that does not contain a carboxyl group or an amino group. Furthermore, it is more preferable that it is an adhesive which does not contain a carboxyl group and an amino group.
 本発明における粘着剤には、紫外線吸収剤を含有することが好ましい。使用しうる紫外線吸収剤としては、アクリル系粘着剤と相溶性が良く、配合後ブリードアウト等が生じにくい2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-オクチルフェニル)ベンゾトリアゾール、2-(3-t-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール等のベンゾトリアゾール系、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクチルオキシベンゾフェノン等のベンゾフェノン系、2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシルオキシ)フェノール等のトリアジン系、P-tert-ブチルフェニルサリシレート、フェニルサリシレート等のサリシレート系紫外線吸収剤のうち、1種類あるいは2種類以上を混合して使用することが可能である。紫外線吸収剤の配合については、アクリル系ポリマー100質量部に対して、固形分換算で0.1~10質量部であることが好ましく、更に1~7質量部であることがより好ましい。0.1質量部未満では満足する紫外線吸収性能が得られず、10質量部以上では、得られる紫外線吸収性能に向上がないことに加えて、粘着性能や耐久性が極度に低下する。
 また、粘着剤層(i)のガラス転移点は0℃以下であることが好ましい。粘着剤層(i)のガラス転移点が0℃を超えると低温(例えば-40℃)から高温(例えば85℃)の広い温度範囲で金属酸化物層による良好な防湿性を維持できなくなってしてしまう恐れがある。ガラス転移点は、粘着剤層(i)の脆弱化を防ぐ理由で、-40~0℃であることがより好ましい。
 上記接着剤層(i)のガラス転移点は、具体的には実施例に記載の方法で求められる。
 ガラス転移点の調整は、粘着剤(i)の種類や分子量等を適宜調整することにより行うことができる。
The pressure-sensitive adhesive in the present invention preferably contains an ultraviolet absorber. As the ultraviolet absorber that can be used, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5), which has good compatibility with acrylic pressure-sensitive adhesives and hardly causes bleed-out after compounding. -Butylphenyl) benzotriazole, 2- (2-hydroxy-5-octylphenyl) benzotriazole, 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chlorobenzotriazole, 2- ( Benzotriazoles such as 3,5-di-t-amyl-2-hydroxyphenyl) benzotriazole, benzophenones such as 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octyloxybenzophenone, 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine-2 Yl] -5- (octyloxy) phenol, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyloxy) phenol and the like, P-tert-butyl Among salicylate-based ultraviolet absorbers such as phenyl salicylate and phenyl salicylate, one kind or a mixture of two or more kinds can be used. The blending of the ultraviolet absorber is preferably 0.1 to 10 parts by mass, more preferably 1 to 7 parts by mass in terms of solid content with respect to 100 parts by mass of the acrylic polymer. If the amount is less than 0.1 parts by mass, satisfactory ultraviolet absorption performance cannot be obtained. If the amount is 10 parts by mass or more, the obtained ultraviolet absorption performance is not improved, and the adhesive performance and durability are extremely reduced.
Moreover, it is preferable that the glass transition point of an adhesive layer (i) is 0 degrees C or less. If the glass transition point of the pressure-sensitive adhesive layer (i) exceeds 0 ° C., it becomes impossible to maintain good moisture resistance by the metal oxide layer over a wide temperature range from low temperature (eg −40 ° C.) to high temperature (eg 85 ° C.). There is a risk. The glass transition point is more preferably −40 to 0 ° C. in order to prevent weakening of the pressure-sensitive adhesive layer (i).
The glass transition point of the adhesive layer (i) is specifically determined by the method described in the examples.
The glass transition point can be adjusted by appropriately adjusting the type and molecular weight of the pressure-sensitive adhesive (i).
本発明において、粘着剤層(i)は、前記フッ素系樹脂フィルムもしくは金属酸化物層を有する樹脂フィルムの金属酸化物層に粘着剤(i)を直接塗工することにより形成してもよいし、また、粘着剤(i)を、剥離処理された剥離シートの剥離処理面に塗工し、これをフッ素系樹脂フィルムもしくは金属酸化物層を有する樹脂フィルムの金属酸化物層に接合することにより形成することができる。 In the present invention, the pressure-sensitive adhesive layer (i) may be formed by directly applying the pressure-sensitive adhesive (i) to the metal oxide layer of the resin film having the fluorine resin film or the metal oxide layer. In addition, the adhesive (i) is applied to the release-treated surface of the release sheet that has been subjected to the release treatment, and this is bonded to the metal oxide layer of the resin film having a fluorine-based resin film or metal oxide layer. Can be formed.
 塗工する前記粘着剤(以下、塗工液という。)には、有機溶剤系、エマルション系、無溶剤系があるが、耐水性が問われる太陽電池部材等の用途には有機溶剤系が好ましい。
 有機溶剤系の塗工液に用いられる有機溶剤としては、例えば、トルエン、キシレン、メタノール、エタノール、イソブタノール、n-ブタノール、アセトン、メチルエチルケトン、酢酸エチル、テトラヒドロフラン等が挙げられる。これらは1種を単独で用いてもよく、2種以上組み合わせて用いてもよい。
The pressure-sensitive adhesive to be coated (hereinafter referred to as coating liquid) includes an organic solvent system, an emulsion system, and a solvent-free system, but an organic solvent system is preferable for uses such as solar cell members that are required to have water resistance. .
Examples of the organic solvent used in the organic solvent-based coating liquid include toluene, xylene, methanol, ethanol, isobutanol, n-butanol, acetone, methyl ethyl ketone, ethyl acetate, and tetrahydrofuran. These may be used alone or in combination of two or more.
 塗工液は、塗工の利便さから、これらの有機溶剤を使用して、固形分濃度が10~50質量%の範囲になるように調製するのが好ましい。
 塗工液の塗工は、例えば、バーコート法、ロールコート法、ナイフコート法、ロールナイフコート法、ダイコート法、グラビアコート法、エアドクターコート法、ドクターブレードコート法等、従来公知の塗工方法により行うことができる。
 塗工後、通常70~110℃の温度で1~5分程度乾燥処理することにより、粘着剤層(i)が形成される。
For the convenience of coating, the coating liquid is preferably prepared using these organic solvents so that the solid content concentration is in the range of 10 to 50% by mass.
Coating of the coating liquid is, for example, conventionally known coating methods such as bar coating, roll coating, knife coating, roll knife coating, die coating, gravure coating, air doctor coating, doctor blade coating, etc. It can be done by a method.
After the application, the pressure-sensitive adhesive layer (i) is formed by drying treatment usually at a temperature of 70 to 110 ° C. for about 1 to 5 minutes.
 粘着剤層(i)の厚さは、十分な接着力を得る観点から13μm以上であり、好ましくは15μm以上、より好ましくは20μm以上である。また、高温高湿試験中において粘着剤層(i)に発生する構造変化により、金属酸化物層を有する樹脂フィルムの金属酸化物層面への応力が増大して防湿性能が劣下するのを防止する観点から、上記厚さは45μm以下であり、好ましくは30μm以下である。特に粘着剤層(i)の厚みが50μmを超えると金属酸化物層面への応力は、粘着剤層(i)の厚みと粘着剤層(i)で発生する応力との積として作用するため、耐久試験中の防湿性の低下は著しくなる。 The thickness of the pressure-sensitive adhesive layer (i) is 13 μm or more, preferably 15 μm or more, more preferably 20 μm or more from the viewpoint of obtaining sufficient adhesive force. In addition, the structural change that occurs in the pressure-sensitive adhesive layer (i) during the high-temperature and high-humidity test prevents the stress on the metal oxide layer surface of the resin film having a metal oxide layer from increasing, resulting in inferior moisture resistance. Therefore, the thickness is 45 μm or less, preferably 30 μm or less. In particular, when the thickness of the pressure-sensitive adhesive layer (i) exceeds 50 μm, the stress on the metal oxide layer surface acts as a product of the thickness of the pressure-sensitive adhesive layer (i) and the stress generated in the pressure-sensitive adhesive layer (i). The decrease in moisture resistance during the durability test is significant.
[高融点フィルム]
 本発明の太陽電池用保護材は、フッ素系樹脂フィルムと反対面側に高融点フィルムを有しているのが好ましい。用いられる高融点フィルムは、融点180℃以上、収縮率0.5%以下である。該フィルムの熱収縮率は、長さ方向、幅方向のいずれにおいても0.5%以下であることが好ましい。
 このような高融点フィルムを用いることで、真空ラミネーション工程に耐えられる剛性を太陽電池保護材に付与することができるとともに、高融点フィルムに発生する応力を緩和し、金属酸化物層を有する樹脂フィルムへの応力の伝播を防止することができる。これによれば、金属酸化物層を有する樹脂フィルムの防湿性能低下を抑制することができる。
[High melting point film]
The protective material for a solar cell of the present invention preferably has a high melting point film on the side opposite to the fluorine resin film. The high melting point film used has a melting point of 180 ° C. or higher and a shrinkage rate of 0.5% or lower. The heat shrinkage rate of the film is preferably 0.5% or less in both the length direction and the width direction.
By using such a high melting point film, rigidity that can withstand the vacuum lamination process can be imparted to the solar cell protective material, and the stress generated in the high melting point film is alleviated and a resin film having a metal oxide layer Propagation of stress to can be prevented. According to this, the moisture-proof performance fall of the resin film which has a metal oxide layer can be suppressed.
 高融点フィルムの熱収縮率は、真空ラミネーション工程における残留応力の発生を低下させること及び太陽電池用保護材のカールを防止する観点から、0.5%以下であり、好ましくは0.4%以下、より好ましくは0.3%以下である。なお、熱収縮率は、実施例に記載の方法で測定される。 The thermal shrinkage rate of the high melting point film is 0.5% or less, preferably 0.4% or less, from the viewpoint of reducing the occurrence of residual stress in the vacuum lamination process and preventing the curling of the solar cell protective material. More preferably, it is 0.3% or less. In addition, a heat shrinkage rate is measured by the method as described in an Example.
 高融点フィルムの材料としては特に限定されず、例えばポリエステル、ポリアミド、ポリフェニレンサルファイド等が挙げられる。その中でも好ましい具体例としては、ポリエチレンテレフタレート(融点:260℃)、ポリエチレンナフタレート(融点:262℃)等が挙げられる。
 高融点フィルムは、単層でも、複数の高融点フィルムを有する積層構成でもよく、高融点フィルムの厚みは、真空ラミネーション後のシワ防止や太陽電池用保護材のカール抑制の点から、25~250μmが好ましく、38~220μmがより好ましく、50~200μmが更に好ましい。
It does not specifically limit as a material of a high melting point film, For example, polyester, polyamide, polyphenylene sulfide, etc. are mentioned. Among them, preferred specific examples include polyethylene terephthalate (melting point: 260 ° C.), polyethylene naphthalate (melting point: 262 ° C.), and the like.
The high melting point film may be a single layer or a laminated structure having a plurality of high melting point films. The thickness of the high melting point film is from 25 to 250 μm from the viewpoint of preventing wrinkles after vacuum lamination and curling of solar cell protective materials. It is preferably 38 to 220 μm, more preferably 50 to 200 μm.
[粘接着層(ii)]
 本発明において粘接着層(ii)は、粘着剤又は接着剤を使用し金属酸化物層を有する樹脂フィルムの金属酸化物層面の背面と高融点フィルムとを貼合させる層である。
粘着剤を使用する場合は粘着剤(i)と同様なものを使用することが望ましく、接着剤を使用する場合は耐加水分解性に優れたポリウレタン系接着剤であって、粘接着層(ii)が粘着剤層(i)と同様な引っ張り貯蔵弾性率となる範囲で使用することが望ましい。
 粘着剤もしくは接着剤からなる粘接着層(ii)は、金属酸化物層を有する樹脂フィルムの金属酸化物層面の背面もしくは高融点フィルムに粘接着剤を直接塗工することにより形成してもよいし、また、粘接着剤を、剥離処理された剥離シートの剥離処理面に塗工し、これを金属酸化物層を有する樹脂フィルムの金属酸化物層面の背面もしくは高融点フィルムに接合することにより形成することができる。
 粘接着層(ii)の厚さは、十分な接着力を得るとの観点から、粘着剤を使用する場合は好ましくは13μm以上、より好ましくは15μm以上、更に好ましくは20μm以上である。また、端面からの水分の浸入を防ぐためには防湿フィルムより下層側の厚みは極力薄くする観点から、上記厚さは50μm以下が好ましく、30μm以下であることがより好ましい。また接着剤を使用する場合は好ましくは4μm以上、より好ましくは6μm以上、更に好ましくは8μm以上である。また、端面からの水分の浸入を防ぐためには防湿フィルムより下層側の厚みは極力薄くする観点から、上記厚さは10μm以下が好ましく、端面からの水分の浸入を防ぐ観点からは接着剤を使用することが望ましい。
[Adhesive layer (ii)]
In the present invention, the adhesive layer (ii) is a layer for bonding the back surface of the metal oxide layer surface of the resin film having a metal oxide layer and a high melting point film using an adhesive or an adhesive.
When using a pressure-sensitive adhesive, it is desirable to use the same as the pressure-sensitive adhesive (i). When using a pressure-sensitive adhesive, a polyurethane-based adhesive having excellent hydrolysis resistance, It is desirable to use ii) in a range where the tensile storage elastic modulus is the same as that of the pressure-sensitive adhesive layer (i).
The adhesive layer (ii) made of an adhesive or an adhesive is formed by directly applying an adhesive to the back surface of a metal oxide layer surface of a resin film having a metal oxide layer or a high melting point film. Alternatively, the adhesive may be applied to the release-treated surface of the release sheet that has been subjected to the release treatment, and this may be bonded to the back surface of the metal oxide layer surface of the resin film having the metal oxide layer or a high melting point film. Can be formed.
The thickness of the adhesive layer (ii) is preferably 13 μm or more, more preferably 15 μm or more, and still more preferably 20 μm or more when a pressure-sensitive adhesive is used from the viewpoint of obtaining sufficient adhesive force. In order to prevent moisture from entering from the end face, the thickness is preferably 50 μm or less, and more preferably 30 μm or less, from the viewpoint of reducing the thickness of the lower layer side from the moisture-proof film as much as possible. Moreover, when using an adhesive agent, Preferably it is 4 micrometers or more, More preferably, it is 6 micrometers or more, More preferably, it is 8 micrometers or more. In order to prevent moisture from entering from the end face, the thickness on the lower layer side of the moisture-proof film is preferably as thin as possible, and the thickness is preferably 10 μm or less, and an adhesive is used from the viewpoint of preventing moisture from entering from the end face. It is desirable to do.
[中間フィルム]
 本発明の太陽電池用保護材は、フッ素系樹脂フィルムと粘着剤層(i)との間に中間フィルムを有しているのが好ましい。該中間フィルムは、前記防湿フィルムの金属酸化物層面に形成される粘着剤層に直接貼り合わせることができる。当該中間フィルムは150℃以下の融点を有することから、真空ラミネーション工程において溶融しドローダウンにより該中間フィルムより裏面の粘着剤層、防湿フィルム、さらには防湿フィルムより裏面に設けられることがある背面フィルム等の側面に端面封止の膜を形成し、粘着剤層、防湿フィルムの基材等を保護し、防湿性の低下とデラミネーションの発生を防止するものである。
 以上より、中間フィルムは耐候性、耐湿熱性に優れかつ太陽電池用保護材を形成する各層と良好な密着性を有するものであることが好ましく、上記観点から、太陽電池用封止材と同様のフィルムを用いることが望ましい。
[Intermediate film]
The solar cell protective material of the present invention preferably has an intermediate film between the fluororesin film and the pressure-sensitive adhesive layer (i). The intermediate film can be directly bonded to the pressure-sensitive adhesive layer formed on the metal oxide layer surface of the moisture-proof film. Since the intermediate film has a melting point of 150 ° C. or lower, it is melted in a vacuum lamination step, and may be provided on the back side from the intermediate film by a pressure-down adhesive layer, moisture-proof film, and further from the moisture-proof film. An end-sealed film is formed on the side surfaces of the film and the like to protect the pressure-sensitive adhesive layer, the base material of the moisture-proof film, and the like, thereby preventing the moisture-proof property from decreasing and delamination from occurring.
From the above, it is preferable that the intermediate film is excellent in weather resistance and wet heat resistance and has good adhesion to each layer forming the solar cell protective material. From the above viewpoint, it is the same as the solar cell sealing material. It is desirable to use a film.
 前記中間フィルムの融点は、上記観点から、120℃以下であることが好ましく、110℃以下であることがより好ましく、100℃以下であることが更に好ましい。その下限値は通常50℃であり、60℃であることが好ましい。中間フィルムの融点は60~110℃であることが特に好ましい。
 融点が上記の温度範囲内の中間フィルムを用いることで、真空ラミネーション時の温度で、それまでの工程で加えられた力の履歴や熱履歴によって生じたフィルム内の分子・結晶配向を緩和させ残留歪を低減させる効果も併せて得ることができる。
From the above viewpoint, the melting point of the intermediate film is preferably 120 ° C. or less, more preferably 110 ° C. or less, and further preferably 100 ° C. or less. The lower limit is usually 50 ° C. and preferably 60 ° C. The melting point of the intermediate film is particularly preferably 60 to 110 ° C.
By using an intermediate film with a melting point within the above temperature range, it remains at the temperature at the time of vacuum lamination, relaxing the molecular and crystal orientation in the film caused by the history of the force applied in the previous process and the thermal history. The effect of reducing distortion can also be obtained.
 中間フィルムとしては、太陽電池表面保護材への使用を考えると、可撓性に富み、紫外線、加湿耐久性に優れることが望ましい。このような中間フィルムとしては、エチレン-酢酸ビニルまたはポリエチレン等を主成分として含むフィルム、例えば50質量%以上、100質量%未満含むフィルムが挙げられる。更に、上記の観点から、融点の低いポリエチレンを主成分として含むフィルム、例えば50質量%以上、100質量%未満含むフィルムが好ましい。なかでも低密度ポリエチレン(LDPE)、エチレン-α-オレフィン共重合体などの樹脂に紫外線吸収剤や着色剤を練り込んだ樹脂組成物を成膜したものが好ましく用いられるが、更に低密度ポリエチレン(LDPE)またはエチレン-α-オレフィン共重合体などを主成分として含むフィルム、例えば50質量%以上、100質量%未満含むフィルムが特に好ましい。 As the intermediate film, it is desirable that it is rich in flexibility and excellent in ultraviolet rays and humidification durability in consideration of use as a solar cell surface protective material. Examples of such an intermediate film include a film containing ethylene-vinyl acetate or polyethylene as a main component, for example, a film containing 50% by mass or more and less than 100% by mass. Furthermore, from the above viewpoint, a film containing polyethylene having a low melting point as a main component, for example, a film containing 50% by mass or more and less than 100% by mass is preferable. Of these, a resin composition in which an ultraviolet absorber or a colorant is kneaded with a resin such as low density polyethylene (LDPE) or ethylene-α-olefin copolymer is preferably used. LDPE) or an ethylene-α-olefin copolymer as a main component, for example, a film containing 50% by mass or more and less than 100% by mass is particularly preferable.
 なお、中間フィルムに用いられる上記紫外線吸収剤としては、種々の市販品があげられるが、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、サリチル酸エステル系など各種タイプのものを挙げることができる。ベンゾフェノン系紫外線吸収剤としては、例えば、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-n-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-n-オクタデシルオキシベンゾフェノン、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、2-ヒドロキシ-5-クロロベンゾフェノン、2、4-ジヒドロキシベンゾフェノン、2、2’-ジヒドロキシ-4-メトキシベンゾフェノン、2、2’-ジヒドロキシ-4、4’-ジメトキシベンゾフェノン、2、2’、4、4’-テトラヒドロキシベンゾフェノンなどを挙げることができる。 In addition, as said ultraviolet absorber used for an intermediate | middle film, although various commercial items are mention | raise | lifted, various types, such as a benzophenone series, a benzotriazole series, a triazine series, and a salicylic acid ester series, can be mentioned. Examples of benzophenone ultraviolet absorbers include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-n. -Dodecyloxybenzophenone, 2-hydroxy-4-n-octadecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, 2-hydroxy-5-chlorobenzophenone, 2 4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, etc. It is possible.
 ベンゾトリアゾール系紫外線吸収剤としては、ヒドロキシフェニル置換ベンゾトリアゾール化合物であって、例えば、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3、5-ジメチルフェニル)ベンゾトリアゾール、2-(2-メチル-4-ヒドロキシフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-メチル-5-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3、5-ジ-t-アミルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3、5-ジ-t-ブチルフェニル)ベンゾトリアゾールなどを挙げることができる。またトリアジン系紫外線吸収剤としては、2-[4、6-ビス(2、4-ジメチルフェニル)-1、3、5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール、2-(4、6-ジフェニル-1、3、5-トリアジン-2-イル)-5-(ヘキシルオキシ)フェノールなどを挙げることができる。サリチル酸エステル系としては、フェニルサリチレート、p-オクチルフェニルサリチレートなどを挙げることができる。該紫外線吸収剤の配合量は、中間フィルム中、通常、0.01~2.0質量%程度であり、0.05~0.5質量%配合することが好ましい。 Examples of the benzotriazole ultraviolet absorber include hydroxyphenyl-substituted benzotriazole compounds such as 2- (2-hydroxy-5-methylphenyl) benzotriazole and 2- (2-hydroxy-5-tert-butylphenyl). Benzotriazole, 2- (2-hydroxy-3,5-dimethylphenyl) benzotriazole, 2- (2-methyl-4-hydroxyphenyl) benzotriazole, 2- (2-hydroxy-3-methyl-5-t- Butylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-amylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, etc. be able to. Examples of triazine ultraviolet absorbers include 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol, 2- ( Examples include 4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyloxy) phenol. Examples of salicylic acid esters include phenyl salicylate and p-octylphenyl salicylate. The amount of the ultraviolet absorber is usually about 0.01 to 2.0% by mass in the intermediate film, and preferably 0.05 to 0.5% by mass.
 紫外線吸収剤以外に耐候性を付与する耐候安定剤としては、ヒンダードアミン系光安定化剤が好適に用いられる。ヒンダードアミン系光安定化剤は、紫外線吸収剤のようには紫外線を吸収しないが、紫外線吸収剤と併用することによって著しい相乗効果を示す。 A hindered amine light stabilizer is preferably used as a weather stabilizer that imparts weather resistance in addition to the ultraviolet absorber. A hindered amine light stabilizer does not absorb ultraviolet rays like an ultraviolet absorber, but exhibits a remarkable synergistic effect when used together with an ultraviolet absorber.
 ヒンダードアミン系光安定化剤としては、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2、2、6、6-テトラメチルピペリジン重縮合物、ポリ[{6-(1、1、3、3-テトラメチルブチル)アミノ-1、3、5-トリアジン-2、4-ジイル}{(2、2、6、6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{{2、2、6、6-テトラメチル-4-ピペリジル}イミノ}]、N、N′-ビス(3-アミノプロピル)エチレンジアミン-2、4-ビス[N-ブチル-N-(1、2、2、6、6-ペンタメチル-4-ピペリジル)アミノ]-6-クロロ-1、3、5-トリアジン縮合物、ビス(2、2、6、6-テトラメチル-4-ピペリジル)セバケート、2-(3、5-ジ-tert-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1、2、2、6、6-ペンタメチル-4-ピペリジル)などを挙げることができる。該ヒンダードアミン系光安定化剤の添加量は、中間フィルム中、通常、0.01~0.5質量%程度であり、0.05~0.3質量%添加することが好ましい。 Examples of hindered amine light stabilizers include dimethyl succinate-1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, poly [{6- (1,1,1 3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {{2, 2,6,6-tetramethyl-4-piperidyl} imino}], N, N′-bis (3-aminopropyl) ethylenediamine-2,4-bis [N-butyl-N- (1,2,2, 6,6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5-triazine condensate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, 2- (3 , 5-di-tert-4 Hydroxybenzyl) -2-n-butyl malonic acid bis (1,2,2,6,6-pentamethyl-4-piperidyl) and the like. The amount of the hindered amine light stabilizer added is usually about 0.01 to 0.5% by mass in the intermediate film, preferably 0.05 to 0.3% by mass.
 本発明においては、中間フィルムの厚みはフィルムの取り扱いやすさの点から50μm以上、好ましくは100μm以上、より好ましくは200μm以上、保護材の部分放電確保の観点からは更に厚いことが望まれ、更に好ましくは300μm以上である。その上限値は特に制限はないが、通常、取り扱いの点から500μmである。中間フィルムの厚みは以上から100~500μmが好ましい。 In the present invention, the thickness of the intermediate film is 50 μm or more from the viewpoint of easy handling of the film, preferably 100 μm or more, more preferably 200 μm or more. Preferably it is 300 micrometers or more. The upper limit is not particularly limited, but is usually 500 μm from the viewpoint of handling. The thickness of the intermediate film is preferably 100 to 500 μm from the above.
(第4の実施態様)
<太陽電池用保護材>
 本発明の第4の実施態様である太陽電池用保護材は、耐候層、接着層1、及び、基材上に無機層を有する防湿層1をこの順に有する太陽電池用保護材であって、前記接着層1のガラス転移点が0℃以下である太陽電池用保護材である。
(Fourth embodiment)
<Protective material for solar cells>
The solar cell protective material according to the fourth embodiment of the present invention is a solar cell protective material having a weatherproof layer, an adhesive layer 1 and a moisture-proof layer 1 having an inorganic layer on a base material in this order. It is a solar cell protective material whose glass transition point of the said adhesive layer 1 is 0 degrees C or less.
[耐候層]
 本発明において、耐候層としては、耐候性の樹脂組成物の塗布層や、耐候性フィルムからなるものが挙げられるが、耐候性フィルムからなるものが好ましい。
 本発明において、耐候性フィルムは、耐加水分解性や耐候性を有するものが制限なく使用でき、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)及びポリフッ化ビニル(PVF)等のフッ素系樹脂;ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル;ポリカーボネート;ポリメチルメタアクリレート(PMMA)等のアクリル系樹脂;ポリアミド等の各種樹脂のフィルムを用いることができる。耐候性フィルムは、これらの樹脂の2種以上を含むものであってもよく、また、2枚以上のフィルムの積層フィルムであってもよい。
[Weatherproof layer]
In the present invention, examples of the weather resistant layer include a weather resistant resin composition coating layer and a weather resistant film, and a weather resistant film is preferred.
In the present invention, the weather-resistant film can be used without limitation as long as it has hydrolysis resistance and weather resistance. For example, polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), Tetrafluoroethylene / hexafluoropropylene copolymer (FEP), ethylene / tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), etc. Fluorine resin; Polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); Polycarbonate; Acrylic resin such as polymethyl methacrylate (PMMA); Films of various resins such as polyamide Door can be. The weather resistant film may contain two or more of these resins, or may be a laminated film of two or more films.
 真空ラミネーション工程において、太陽電池用保護材を製造する積層工程で生じた耐候層の残留歪を軽減し、高温高湿時における保護シート内の残留応力を低減する効果を得るためには、真空ラミネーション時の温度付近に融点をもつフィルム、すなわち、融点が180℃以下のフィルムを用いることが好ましい。また、融点が上記の温度範囲内の耐候性フィルムを用いることで、真空ラミネーション時の温度で、それまでの工程で加えられた力の履歴や熱履歴によって生じたフィルム内の分子、結晶配向を緩和させ残留歪を低減させることができる。 In order to obtain the effect of reducing the residual strain of the weathering layer generated in the lamination process of manufacturing the solar cell protective material in the vacuum lamination process and reducing the residual stress in the protective sheet at high temperature and high humidity, vacuum lamination It is preferable to use a film having a melting point near the time temperature, that is, a film having a melting point of 180 ° C. or lower. In addition, by using a weather-resistant film having a melting point within the above temperature range, the molecular and crystal orientation in the film caused by the history of the force applied in the previous process and the thermal history at the temperature during vacuum lamination. The residual strain can be reduced by relaxation.
 また、耐候性フィルムとして、真空ラミネーション時や高温高湿時の温度・湿度変化においてもその特性変化が小さいことが好ましいことから、事前の熱処理等による低収縮率化等が行われたフィルムが好ましく使用される。
 更に、耐候性フィルムは、公知の添加剤、例えば、帯電防止剤、紫外線吸収剤、可塑剤、滑剤、フィラー、着色剤、光安定剤等の安定剤、潤滑剤、架橋剤、ブロッキング防止剤、酸化防止剤等を含有することができる。また、これらの各種添加剤を含有する樹脂層を積層してもよい。
 耐候層の厚さは、一般に20~200μm程度であり、耐候性フィルムの場合は取り扱いやすさとコストの点から20~100μmが好ましく、20~50μmがより好ましい。
Further, as the weather resistant film, it is preferable that the change in characteristics is small even in the temperature / humidity change at the time of vacuum lamination or high temperature and high humidity. used.
Furthermore, the weather resistant film is a known additive, for example, an antistatic agent, an ultraviolet absorber, a plasticizer, a lubricant, a filler, a colorant, a stabilizer such as a light stabilizer, a lubricant, a crosslinking agent, an antiblocking agent, An antioxidant etc. can be contained. Moreover, you may laminate | stack the resin layer containing these various additives.
The thickness of the weather-resistant layer is generally about 20 to 200 μm. In the case of a weather-resistant film, it is preferably 20 to 100 μm, more preferably 20 to 50 μm from the viewpoint of ease of handling and cost.
[防湿層]
 本発明に係る防湿層1は、基材の少なくとも一方の面に無機層を少なくとも1層有する層であり、防湿性を有する層である。無機層により、湿気、水の透過による太陽電池等の内面側を保護することができる。
 なお、防湿層1は後述する接着層1を介して既述の耐候層と接着される。また、防湿層1と以下に記載の防湿層2を合わせて「防湿層」ということがある。
[Dampproof layer]
The moisture-proof layer 1 according to the present invention is a layer having at least one inorganic layer on at least one surface of a substrate, and is a layer having moisture resistance. The inorganic layer can protect the inner surface side of a solar cell or the like due to moisture and water permeation.
In addition, the moisture-proof layer 1 is adhere | attached on the above-mentioned weather resistance layer through the contact bonding layer 1 mentioned later. Further, the moisture-proof layer 1 and the moisture-proof layer 2 described below may be collectively referred to as “moisture-proof layer”.
 防湿層の基材としては、樹脂フィルムが好ましく、その材料としては、通常の包装材料や電子デバイス等のパッケージ材料や、太陽電池用部材、電子ペーパー用部材、有機EL用部材に使用しうる樹脂であれば特に制限なく用いることができる。具体的には、エチレン、プロピレン、ブテン等の単独重合体又は共重合体等のポリオレフィン;環状ポリオレフィン等の非晶質ポリオレフィン;ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル;ナイロン6、ナイロン66、ナイロン12、共重合ナイロン等のポリアミド;エチレン-酢酸ビニル共重合体部分加水分解物(EVOH)、ポリイミド、ポリエーテルイミド、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリカーボネート、ポリビニルブチラール、ポリアリレート、フッ素樹脂、アクリル樹脂、生分解性樹脂等が挙げられる。これらの中では、フィルム物性、コスト等の点から、ポリエステル、ポリアミド、ポリオレフィンが好ましい。中でも、フィルム物性の点から、ポリエステルが好ましく、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)が特に好ましい。 As the base material of the moisture-proof layer, a resin film is preferable, and as a material thereof, a resin that can be used for packaging materials such as ordinary packaging materials and electronic devices, solar cell members, electronic paper members, and organic EL members. If it can be used, there is no particular limitation. Specifically, polyolefins such as homopolymers or copolymers such as ethylene, propylene and butene; amorphous polyolefins such as cyclic polyolefins; polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); nylon 6 , Polyamides such as nylon 66, nylon 12, copolymer nylon; ethylene-vinyl acetate copolymer partial hydrolyzate (EVOH), polyimide, polyetherimide, polysulfone, polyethersulfone, polyetheretherketone, polycarbonate, polyvinyl Examples include butyral, polyarylate, fluororesin, acrylic resin, and biodegradable resin. Among these, polyesters, polyamides, and polyolefins are preferable from the viewpoints of film properties and cost. Among these, from the viewpoint of film physical properties, polyester is preferable, and polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are particularly preferable.
 また、上記基材は、公知の添加剤、例えば、帯電防止剤、光線遮断剤、紫外線吸収剤、可塑剤、滑剤、フィラー、着色剤、安定剤、潤滑剤、架橋剤、ブロッキング防止剤、酸化防止剤等を含有することができる。
 上記基材としての樹脂フィルムは、未延伸であってもよいし延伸したものであってもよい。
In addition, the base material is a known additive such as an antistatic agent, a light blocking agent, an ultraviolet absorber, a plasticizer, a lubricant, a filler, a colorant, a stabilizer, a lubricant, a crosslinking agent, an antiblocking agent, an oxidation agent. An inhibitor or the like can be contained.
The resin film as the substrate may be unstretched or stretched.
 かかる基材は、従来公知の方法により製造することができ、例えば、原料を押出機により溶融し、環状ダイやTダイにより押出して、急冷することにより実質的に無定型で配向していない未延伸フィルムを製造することができる。また、多層ダイを用いることにより、1種の樹脂からなる単層フィルム、1種の樹脂からなる多層フィルム、多種の樹脂からなる多層フィルム等を製造することができる。 Such a substrate can be produced by a conventionally known method. For example, the raw material is melted by an extruder, extruded by an annular die or a T die, and rapidly cooled to be substantially amorphous and not oriented. A stretched film can be produced. Further, by using a multilayer die, it is possible to produce a single layer film made of one kind of resin, a multilayer film made of one kind of resin, a multilayer film made of various kinds of resins, and the like.
 この未延伸フィルムを一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、フィルムの流れ(縦軸)方向又はフィルムの流れ方向とそれに直角な(横軸)方向に延伸することにより、一軸方向または二軸方向に延伸したフィルムを製造することができる。延伸倍率は任意に設定できるが、100℃における熱収縮率が、0.01~5%、更には0.01~2%であることが好ましい。中でもフィルム物性の点から、二軸延伸ポリエチレンナフタレートフィルムや、二軸延伸ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートとポリエチレンテレフタレートの共押出二軸延伸フィルム、またはこれらの樹脂と他の樹脂の共押出二軸延伸フィルムが好ましい。 The unstretched film is subjected to a known method such as uniaxial stretching, tenter sequential biaxial stretching, tenter simultaneous biaxial stretching, tubular simultaneous biaxial stretching, or the like. A film stretched in a uniaxial direction or a biaxial direction can be produced by stretching in a direction (horizontal axis) perpendicular thereto. The draw ratio can be arbitrarily set, but the heat shrinkage at 100 ° C. is preferably 0.01 to 5%, more preferably 0.01 to 2%. Among these, from the viewpoint of film properties, biaxially stretched polyethylene naphthalate film, biaxially stretched polyethylene terephthalate film, coextruded biaxially stretched film of polyethylene naphthalate and polyethylene terephthalate, or coextrusion biaxially of these resins and other resins A stretched film is preferred.
 本発明において、上記基材の厚さは、保護シートの端面防湿性の観点から、30μm以下であり、好ましくは10~30μm、より好ましくは12~25μm、更に好ましくは12~20μmである。
 更に、防湿層1の基材の厚みが前記耐候層の厚みより薄いと、柔軟性に優れた太陽電池用保護材が得られ、太陽電池モジュールが曲げられた際に、太陽電池用保護材がその曲げに追従することができ、太陽電池用保護材と封止材とのデラミネーションが起こりにくいので、好ましい。特に防湿層1の基材の厚み及び防湿層2の基材の厚みのいずれもが前記耐候層の厚みより薄いことが、前述の理由より、より好ましい。
In the present invention, the thickness of the substrate is 30 μm or less, preferably 10 to 30 μm, more preferably 12 to 25 μm, and still more preferably 12 to 20 μm, from the viewpoint of moisture resistance of the end face of the protective sheet.
Furthermore, when the thickness of the base material of the moisture-proof layer 1 is smaller than the thickness of the weatherproof layer, a solar cell protective material excellent in flexibility is obtained, and when the solar cell module is bent, the solar cell protective material is The bending can be followed, and delamination between the solar cell protective material and the sealing material hardly occurs, which is preferable. In particular, it is more preferable for the reason described above that both the thickness of the base material of the moisture-proof layer 1 and the thickness of the base material of the moisture-proof layer 2 are thinner than the thickness of the weather-resistant layer.
 なお、上記基材には、無機層との密着性向上のため、アンカーコート剤を塗布することによりアンカーコート層を設けることが好ましい。アンカーコート剤としては、溶剤性又は水性のポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、ビニル樹脂、ビニルアルコール樹脂等のアルコール性水酸基含有樹脂、ビニルブチラール樹脂、ニトロセルロース樹脂、オキサゾリン基含有樹脂、カルボジイミド基含有樹脂、メチレン基含有樹脂、エポキシ基含有樹脂、スチレン樹脂及びシリコーン樹脂等が挙げられる。これらは単独、あるいは2種以上を組み合わせて使用することができる。また、アンカーコート層は必要に応じ、シラン系カップリング剤、チタン系カップリング剤、アルキルチタネート、紫外線吸収剤、耐候安定剤等の安定剤、潤滑剤、ブロッキング防止剤、酸化防止剤等を含有することができる。 In addition, it is preferable to provide an anchor coat layer by applying an anchor coat agent to the base material in order to improve adhesion with the inorganic layer. Examples of the anchor coating agent include solvent-based or aqueous polyester resins, isocyanate resins, urethane resins, acrylic resins, vinyl resins, vinyl alcohol resins, and other alcoholic hydroxyl group-containing resins, vinyl butyral resins, nitrocellulose resins, oxazoline group-containing resins, Examples thereof include carbodiimide group-containing resins, methylene group-containing resins, epoxy group-containing resins, styrene resins, and silicone resins. These can be used alone or in combination of two or more. In addition, the anchor coat layer contains a silane coupling agent, a titanium coupling agent, an alkyl titanate, an ultraviolet absorber, a stabilizer such as a weather resistance stabilizer, a lubricant, an anti-blocking agent, an antioxidant, etc., if necessary. can do.
 アンカーコート層の形成方法としては、公知のコーティング方法が適宜採択される。例えば、リバースロールコーター、グラビアコーター、ロッドコーター、エアドクタコーター、スプレイを用いたコーティング方法等の方法がいずれも使用できる。また、基材を樹脂液に浸漬して行ってもよい。塗布後は、80~200℃程度の温度での熱風乾燥、熱ロール乾燥等の加熱乾燥や、赤外線乾燥等の公知の乾燥方法を用いて溶媒を蒸発させることができる。また、耐水性、耐久性を高めるために、電子線照射による架橋処理を行うこともできる。また、アンカーコート層の形成は、基材の製造ラインの途中で行う方法(インライン)でも、基材製造後に行う方法(オフライン)でもよい。 As a method for forming the anchor coat layer, a known coating method is appropriately adopted. For example, any method such as a reverse roll coater, a gravure coater, a rod coater, an air doctor coater, and a coating method using a spray can be used. Alternatively, the substrate may be immersed in a resin solution. After coating, the solvent can be evaporated using a known drying method such as hot air drying at a temperature of about 80 to 200 ° C., heat drying such as hot roll drying, or infrared drying. Moreover, in order to improve water resistance and durability, the crosslinking process by electron beam irradiation can also be performed. Further, the formation of the anchor coat layer may be a method performed in the middle of the substrate production line (inline) or a method performed after the substrate production (offline).
 無機層を構成する無機物質としては、珪素、アルミニウム、マグネシウム、亜鉛、錫、ニッケル、チタン、あるいはこれらの酸化物、炭化物、窒化物、酸化炭化物、酸化窒化物、酸化炭化窒化物、ダイヤモンドライクカーボンまたはこれらの混合物等が挙げられるが、太陽電池に適用した場合に電流がリークする等の恐れがない点から、酸化珪素、酸化炭化珪素、酸化窒化珪素、酸化炭化窒化珪素、酸化アルミニウム、酸化炭化アルミニウム及び酸化窒化アルミニウム等の無機酸化物、窒化珪素及び窒化アルミニウム等の窒化物、ダイヤモンドライクカーボン並びにこれらの混合物が好ましい。特に、酸化珪素、酸化炭化珪素、酸化窒化珪素、酸化炭化窒化珪素、窒化珪素、酸化アルミニウム、酸化炭化アルミニウム、酸化窒化アルミニウム、窒化アルミニウム及びこれらの混合物は、高い防湿性が安定に維持できる点で好ましい。
 無機層の形成方法としては、蒸着法、コーティング法等の方法がいずれも使用できるが、ガスバリア性の高い均一な薄膜が得られるという点で蒸着法が好ましい。この蒸着法には、物理気相蒸着(PVD)、あるいは化学気相蒸着(CVD)等の方法が含まれる。物理気相蒸着法としては、真空蒸着、イオンプレーティング、スパッタリング等が挙げられ、化学気相蒸着法としては、プラズマを利用したプラズマCVD、加熱触媒体を用いて材料ガスを接触熱分解する触媒化学気相成長法(Cat-CVD)等が挙げられる。
 また、上記無機層は、無機層は単層の他、多層であってもよく、上記に挙げられる種々の成膜法を用い多層成膜し、防湿性を高めることが可能である。その場合、同一の成膜法を用いてもよいし、各層ごとに異なる成膜法を用いてもよいが、何れも減圧下で連続して行うことが、効率的な防湿性向上、生産性の点で好ましい。
 また、無機層が多層の場合、各層は同じ無機物質からなっていても、異なる無機物質からなっていてもよい。
Examples of inorganic substances constituting the inorganic layer include silicon, aluminum, magnesium, zinc, tin, nickel, titanium, and oxides, carbides, nitrides, oxycarbides, oxynitrides, oxycarbonitrides, diamond-like carbons thereof. Or a mixture thereof, but silicon oxide, silicon oxide carbide, silicon oxynitride, silicon oxycarbonitride, aluminum oxide, carbon oxide carbonization because there is no fear of leakage of current when applied to solar cells. Inorganic oxides such as aluminum and aluminum oxynitride, nitrides such as silicon nitride and aluminum nitride, diamond-like carbon, and mixtures thereof are preferred. In particular, silicon oxide, silicon oxycarbide, silicon oxynitride, silicon oxycarbonitride, silicon nitride, aluminum oxide, aluminum oxycarbide, aluminum oxynitride, aluminum nitride, and mixtures thereof can maintain high moisture resistance stably. preferable.
As the method for forming the inorganic layer, any method such as a vapor deposition method and a coating method can be used, but the vapor deposition method is preferred in that a uniform thin film having a high gas barrier property can be obtained. This vapor deposition method includes methods such as physical vapor deposition (PVD) and chemical vapor deposition (CVD). Examples of physical vapor deposition include vacuum vapor deposition, ion plating, and sputtering, and chemical vapor deposition includes plasma CVD using plasma, and a catalyst that thermally decomposes a material gas using a heated catalyst body. Examples include chemical vapor deposition (Cat-CVD).
Further, the inorganic layer may be a single layer or a multilayer, and the multilayer can be formed by using the various film forming methods mentioned above to improve moisture resistance. In that case, the same film formation method may be used, or a different film formation method may be used for each layer. However, it is effective to improve the moisture resistance and productivity by continuously performing them under reduced pressure. This is preferable.
Moreover, when an inorganic layer is a multilayer, each layer may consist of the same inorganic substance, or may consist of a different inorganic substance.
 無機層の厚さは、高い防湿性能の発現と透明性の点から、10~1000nmであることが好ましく、20~800nmがより好ましく、30~600nmがさらに好ましい。  The thickness of the inorganic layer is preferably 10 to 1000 nm, more preferably 20 to 800 nm, and even more preferably 30 to 600 nm from the viewpoint of high moisture-proof performance and transparency. *
 防湿層の水蒸気透過率の調整は、前記のとおり、前記無機層を構成する無機物質の選択、無機層の厚さ、防湿層の厚さ及び無機層の酸化数等を適宜調整することにより行うことができる。 As described above, the moisture permeability of the moisture-proof layer is adjusted by appropriately selecting the inorganic material constituting the inorganic layer, the thickness of the inorganic layer, the thickness of the moisture-proof layer, the oxidation number of the inorganic layer, and the like. be able to.
 防湿層の温度40℃、相対湿度90%における水蒸気透過率は、防湿性の観点から、好ましくは0.1[g/(m2・日)]未満、より好ましくは0.05[g/(m2・日)]以下、更に好ましくは、0.03[g/(m2・日)]以下である。
 防湿層の水蒸気透過率の調整は、基材の選択、無機層を構成する無機物質の選択、無機層の厚さ、防湿層の厚さ及び無機層の酸化数等を適宜調整することにより行うことができる。
 防湿層1及び/又は防湿層2は、結露凍結試験後における初期水蒸気透過率からの水蒸気透過率の劣化度が3未満であることが好ましく、2以下であることがより好ましい。
 水蒸気透過率の測定方法は、JIS Z 0222「防湿包装容器の透湿度試験方法」、JIS Z 0208「防湿包装材料の透湿度試験方法(カップ法)」の諸条件に順じ、具体的には実施例に記載の方法で測定される。
From the viewpoint of moisture resistance, the water vapor transmission rate of the moisture-proof layer at a temperature of 40 ° C. and a relative humidity of 90% is preferably less than 0.1 [g / (m 2 · day)], more preferably 0.05 [g / ( m 2 · day)] or less, and more preferably 0.03 [g / (m 2 · day)] or less.
Adjustment of the water vapor transmission rate of the moisture-proof layer is performed by appropriately adjusting the selection of the base material, the selection of the inorganic substance constituting the inorganic layer, the thickness of the inorganic layer, the thickness of the moisture-proof layer, the oxidation number of the inorganic layer, and the like. be able to.
In the moisture-proof layer 1 and / or the moisture-proof layer 2, the degree of deterioration of the water vapor transmission rate from the initial water vapor transmission rate after the condensation freezing test is preferably less than 3, and more preferably 2 or less.
The water vapor transmission rate is measured in accordance with the conditions of JIS Z 0222 “Method of moisture permeability test for moisture-proof packaging containers” and JIS Z 0208 “Method of moisture permeability test for moisture-proof packaging materials (cup method)”. It is measured by the method described in the examples.
[接着層1]
 本発明において、接着層1のガラス転移点は0℃以下とする。接着層1のガラス転移点が0℃を超えると低温(例えば-40℃)から高温(例えば85℃)の広い温度範囲で防湿層による良好な防湿性を維持できなくなってしてしまう。ガラス転移点は、接着剤および粘着剤層の脆弱化を防ぐ理由で、-40~0℃であることがより好ましい。
 上記接着層1のガラス転移点は、具体的には実施例に記載の方法で求められる。
 また、接着層1の0℃、周波数10Hz、歪0.1%における引張り貯蔵弾性率は、1.0×106~1.0×108Paであることが好ましく、更に接着層1の100℃、周波数10Hz、歪0.1%における引張り貯蔵弾性率が、5.0×104~5.0×105Paであることがより好ましい。0℃、周波数10Hz、歪0.1%における引張り貯蔵弾性率が上記範囲内であると、低温において、フィルムの収縮等により発生する応力を粘着剤層で十分に吸収することができ、防湿性の劣化を防止することができる。また、100℃、周波数10Hz、歪0.1%における引張り貯蔵弾性率が上記範囲であると、高温において、フィルムの収縮等により発生する応力を粘着剤層で十分に吸収することができ、防湿性の劣化を防止することができる。
[Adhesive layer 1]
In this invention, the glass transition point of the contact bonding layer 1 shall be 0 degrees C or less. When the glass transition point of the adhesive layer 1 exceeds 0 ° C., it becomes impossible to maintain good moisture resistance by the moisture-proof layer in a wide temperature range from low temperature (eg −40 ° C.) to high temperature (eg 85 ° C.). The glass transition point is more preferably −40 to 0 ° C. for preventing brittleness of the adhesive and the pressure-sensitive adhesive layer.
The glass transition point of the adhesive layer 1 is specifically determined by the method described in the examples.
The tensile storage elastic modulus of the adhesive layer 1 at 0 ° C., frequency 10 Hz, and strain 0.1% is preferably 1.0 × 10 6 to 1.0 × 10 8 Pa. More preferably, the tensile storage elastic modulus at a temperature of 10 ° C., a frequency of 10 Hz, and a strain of 0.1% is 5.0 × 10 4 to 5.0 × 10 5 Pa. When the tensile storage modulus at 0 ° C., frequency 10 Hz, and strain 0.1% is within the above range, stress generated by film shrinkage and the like can be sufficiently absorbed by the pressure-sensitive adhesive layer at low temperature, and moisture-proof Can be prevented. Further, when the tensile storage modulus at 100 ° C., frequency 10 Hz, and strain 0.1% is within the above range, the pressure generated by the shrinkage of the film can be sufficiently absorbed by the pressure-sensitive adhesive layer at high temperature, and moisture-proof Deterioration can be prevented.
 接着層1は、粘着剤又は接着剤で構成される。粘着剤は、Pressure-sensitive Adhesive(感圧性接着剤)とも呼ばれ、水、溶剤、熱などを使用せず、常温で短時間、わずかな圧力を加えるだけで接着できるものである。溶液型接着剤、熱硬化型接着剤、ホットメルト接着剤などの接着剤が化学反応、溶媒揮散、温度変化などによって固化するのに対し、粘着剤は半固体であり、接合形成後もその状態が変わらず、固化の過程が必要でなく、接合形成後もその状態が変わらないものである。以下、本明細書においては接着剤と区別する。 The adhesive layer 1 is composed of an adhesive or an adhesive. The pressure-sensitive adhesive is also called a pressure-sensitive adhesive (pressure-sensitive adhesive), and can be bonded by applying a slight pressure at room temperature for a short time without using water, solvent, heat or the like. While adhesives such as solution-type adhesives, thermosetting adhesives, and hot-melt adhesives solidify due to chemical reactions, solvent volatilization, temperature changes, etc., pressure-sensitive adhesives are semi-solid and remain in their state after bonding Does not change, no solidification process is required, and the state does not change even after the bonding is formed. Hereinafter, in this specification, it distinguishes from an adhesive agent.
 本発明に係る粘着剤としては、アクリル系粘着剤を含むものが好ましく、アクリル系粘着剤を主成分とするものがさらに好ましい。ここで、主成分とは、本発明の効果を妨げない範囲で、他の成分を含むことを許容する趣旨であり、具体的な含有率を制限するものではないが、一般に接着層1の構成成分全体を100質量部とした場合、50質量部以上であり、好ましくは65質量部以上、さらに好ましくは80質量部以上であって100質量部以下の範囲を占める成分である。 The pressure-sensitive adhesive according to the present invention preferably includes an acrylic pressure-sensitive adhesive, and more preferably includes an acrylic pressure-sensitive adhesive as a main component. Here, the main component is a purpose that allows other components to be included within a range that does not impede the effects of the present invention, and does not limit the specific content, but generally the configuration of the adhesive layer 1. When the total component is 100 parts by mass, it is 50 parts by mass or more, preferably 65 parts by mass or more, more preferably 80 parts by mass or more and occupies a range of 100 parts by mass or less.
 アクリル系粘着剤としては、粘着性を与える低ガラス転移点(Tg)の主モノマー成分、接着性や凝集力を与える高Tgのコモノマー成分、及び架橋や接着性改良のための官能基含有モノマー成分を主とする重合体又は共重合体(以下、「アクリル系(共)重合体」という。)よりなるものが好ましい。
 アクリル系粘着剤の主モノマー成分としては、例えば、アクリル酸エチル、アクリル酸ブチル、アクリル酸アミル、アクリル酸2-エチルヘキシル、アクリル酸オクチル、アクリル酸シクロヘキシル、アクリル酸ベンジル等のアクリル酸アルキルエステルや、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル等のメタクリル酸アルキルエステル等が挙げられる。これらは単独で用いてもよいし、2種以上組み合わせて用いてもよい。
Acrylic pressure-sensitive adhesives include a main monomer component having a low glass transition point (Tg) that provides tackiness, a comonomer component having a high Tg that provides adhesion and cohesion, and a functional group-containing monomer component for improving crosslinking and adhesion. Of these, a polymer or copolymer (hereinafter referred to as “acrylic (co) polymer”) is preferred.
Examples of the main monomer component of the acrylic pressure-sensitive adhesive include alkyl acrylates such as ethyl acrylate, butyl acrylate, amyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, cyclohexyl acrylate, and benzyl acrylate, And alkyl methacrylates such as butyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, and benzyl methacrylate. These may be used alone or in combination of two or more.
 アクリル系粘着剤のコモノマー成分としては、アクリル酸メチル、メタクリル酸メチル、メタクリル酸エチル、酢酸ビニル、スチレン、アクリロニトリル等が挙げられる。これらは単独で用いてもよいし、2種以上組み合わせて用いてもよい。
 アクリル系粘着剤の官能基含有モノマー成分としては、例えば、アクリル酸、メタクリル酸、マレイン酸、イタコン酸等のカルボキシル基含有モノマーや、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、N-メチロールアクリルアミド等のヒドロキシル基含有モノマー、アクリルアミド、メタクリルアミド、グリシジルメタクリレート等が挙げられる。これらは単独で用いてもよいし、2種以上組み合わせて用いてもよい。
Examples of the comonomer component of the acrylic pressure-sensitive adhesive include methyl acrylate, methyl methacrylate, ethyl methacrylate, vinyl acetate, styrene, acrylonitrile and the like. These may be used alone or in combination of two or more.
Examples of the functional group-containing monomer component of the acrylic pressure-sensitive adhesive include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, maleic acid, and itaconic acid, 2-hydroxyethyl (meth) acrylate, and 2-hydroxypropyl (meth). Examples thereof include hydroxyl group-containing monomers such as acrylate and N-methylolacrylamide, acrylamide, methacrylamide, and glycidyl methacrylate. These may be used alone or in combination of two or more.
 アクリル系粘着剤のモノマー成分の重合に使用する開始剤の例としては、アゾビスイソブチルニトリル、ベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、クメンハイドロパーオキサイド等が挙げられる。また、前記アクリル系粘着剤の主成分となるアクリル系(共)重合体の共重合形態については特に制限はなく、ランダム、ブロック、グラフト共重合体のいずれであってもよい。
 また、アクリル系粘着剤が上述のアクリル系(共)重合体である場合の分子量としては、重量平均分子量で30万~150万であるものが好ましく、40万~100万であることがさらに好ましい。重量平均分子量を上記範囲にすることによって被着体に対する密着性や接着耐久性を確保し、浮きや剥がれ等を抑制することができる。
Examples of the initiator used for polymerization of the monomer component of the acrylic pressure-sensitive adhesive include azobisisobutylnitrile, benzoyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, and the like. Moreover, there is no restriction | limiting in particular about the copolymerization form of the acrylic (co) polymer used as the main component of the said acrylic adhesive, Any of a random, a block, and a graft copolymer may be sufficient.
The molecular weight when the acrylic pressure-sensitive adhesive is the above-mentioned acrylic (co) polymer is preferably 300,000 to 1,500,000 in terms of weight average molecular weight, more preferably 400,000 to 1,000,000. . By setting the weight average molecular weight within the above range, adhesion to the adherend and adhesion durability can be secured, and floating and peeling can be suppressed.
 さらに、アクリル系(共)重合体において、官能基含有モノマー成分単位の含有量は、1~25質量%の範囲が好ましい。この含有量を範囲内にすることにより、被着体との密着性及び架橋度を確保し、接着層1の0℃、周波数10Hz、歪0.1%における低温領域での引張り貯蔵弾性率を、1.0×106~1.0×107Paに制御することができる。 Further, in the acrylic (co) polymer, the content of the functional group-containing monomer component unit is preferably in the range of 1 to 25% by mass. By making this content within the range, the adhesion and the degree of crosslinking with the adherend are ensured, and the tensile storage elastic modulus in the low temperature region at 0 ° C., frequency 10 Hz, strain 0.1% of the adhesive layer 1 is obtained. 1.0 × 10 6 to 1.0 × 10 7 Pa.
 本発明に係る接着剤としては、前述したように、溶液型接着剤、熱硬化型接着剤、ホットメルト接着剤などの接着剤が挙げられ、これらは化学反応、溶媒揮散、温度変化などによって固化する。接着剤としては、ポリウレタン系接着剤を含むものが好ましく、ポリウレタン系接着剤を主成分とするものがさらに好ましい。ここで、主成分とは、本発明の効果を妨げない範囲で、他の成分を含むことを許容する趣旨であり、具体的な含有率を制限するものではないが、一般に接着層1の構成成分全体を100質量部とした場合、50質量部以上であり、好ましくは65質量部以上、さらに好ましくは80質量部以上であって100質量部以下の範囲を占める成分である。
 ポリウレタン系接着剤としては、主剤と硬化剤とが化学反応して固化するタイプのものが好ましい。この主剤としては、塗膜形成性と硬化時の反応性のバランスを考慮し、分子量400~20000のポリオールを使用するのが好ましく、更に分子量600~10000のポリオールを使用するのがより好ましい。
 接着剤の主剤としては、具体的には、ポリカーボネートポリオール、ポリエーテルポリオール、ポリアクリルポリオール、ポリウレタンポリオールあるいはポリエステルポリオールを含む組成物等が挙げられる。
As mentioned above, the adhesive according to the present invention includes adhesives such as solution-type adhesives, thermosetting adhesives, hot-melt adhesives, etc., which are solidified by chemical reaction, solvent evaporation, temperature change, etc. To do. The adhesive preferably includes a polyurethane adhesive, and more preferably includes a polyurethane adhesive as a main component. Here, the main component is a purpose that allows other components to be included within a range that does not impede the effects of the present invention, and does not limit the specific content, but generally the configuration of the adhesive layer 1. When the total component is 100 parts by mass, it is 50 parts by mass or more, preferably 65 parts by mass or more, more preferably 80 parts by mass or more and occupies a range of 100 parts by mass or less.
As the polyurethane adhesive, a type in which the main agent and the curing agent are solidified by a chemical reaction is preferable. As the main agent, a polyol having a molecular weight of 400 to 20000 is preferably used, and a polyol having a molecular weight of 600 to 10,000 is more preferably used in consideration of a balance between coating film formability and reactivity during curing.
Specific examples of the main agent of the adhesive include a composition containing polycarbonate polyol, polyether polyol, polyacryl polyol, polyurethane polyol or polyester polyol.
 ポリカーボネートポリオールは、例えば、ジフェニルカーボネートと、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール(NPG)、シクロヘキサンジオール等のジオールとを共重合させて得ることができる。また、ポリカプロラクトンポリオールとポリカーボネートジオールとを共重合させて得ることもできる。 Polycarbonate polyol can be obtained, for example, by copolymerizing diphenyl carbonate and diols such as ethylene glycol, propylene glycol, butanediol, neopentyl glycol (NPG), and cyclohexanediol. It can also be obtained by copolymerizing polycaprolactone polyol and polycarbonate diol.
 ポリエーテルポリオールは、例えばエチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等のアルキレンオキサイドを、アルカリ触媒又は酸触媒を触媒として開環重合を行うことで得ることができる。開環重合の出発物質となる活性水素含有化合物としてはエチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-へキサンジオール等の多価アルコールを用いることができる。 The polyether polyol can be obtained, for example, by performing ring-opening polymerization of alkylene oxide such as ethylene oxide, propylene oxide, and tetrahydrofuran using an alkali catalyst or an acid catalyst as a catalyst. As the active hydrogen-containing compound serving as a starting material for the ring-opening polymerization, polyhydric alcohols such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol can be used.
 ポリアクリルポリオールは、水酸基をもった(メタ)アクリル酸エステルと他のモノマーとを共重合させて得ることができる。水酸基をもった(メタ)アクリル酸エステルとしては、例えば、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、ヒドロキシブチルアクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルメタクリレートが挙げられる。また他のモノマーとしては、メチルメタクリレート、ブチルメタクリレート、脂環式構造を有するシクロヘキシルメタクリレート等を挙げることができる。 The polyacrylic polyol can be obtained by copolymerizing a (meth) acrylic acid ester having a hydroxyl group and another monomer. Examples of the (meth) acrylic acid ester having a hydroxyl group include hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, and hydroxybutyl methacrylate. Examples of other monomers include methyl methacrylate, butyl methacrylate, and cyclohexyl methacrylate having an alicyclic structure.
 ポリウレタンポリオールは、ジオールとジイソシアネートを、イソシアネート基に対する水酸基の比が1以上の割合でウレタン化反応させることにより得ることができる。ジオール成分、ジイソシアネート成分は、ポリウレタンポリオールの流動性や溶剤への溶解性等を考慮して選択することができる。ジオール成分として好ましくは、プロピレングリコール、テトラメチレングリコール、ネオペンチルグリコール等の1級水酸基を有するジオールが挙げられる。また、ジイソシアネート成分としては、脂肪族ジイソシアネート、脂環系ジイソシアネート、芳香族イソシアネートが挙げられる。 Polyurethane polyol can be obtained by urethanization reaction of diol and diisocyanate at a ratio of hydroxyl group to isocyanate group of 1 or more. The diol component and the diisocyanate component can be selected in consideration of the fluidity of the polyurethane polyol and the solubility in a solvent. The diol component is preferably a diol having a primary hydroxyl group such as propylene glycol, tetramethylene glycol, or neopentyl glycol. Examples of the diisocyanate component include aliphatic diisocyanates, alicyclic diisocyanates, and aromatic isocyanates.
 ポリエステルポリオールは、例えばコハク酸、グルタル酸、アジピン酸、イソフタル酸(IPA)、テレフタル酸(TPA)等のジカルボン酸化合物と、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、シクロヘキサンジオール等のジオール、又はポリテトラメチレングリコール等とを共重合させて得ることができる。 Examples of the polyester polyol include dicarboxylic acid compounds such as succinic acid, glutaric acid, adipic acid, isophthalic acid (IPA), and terephthalic acid (TPA), and diols such as ethylene glycol, propylene glycol, butanediol, neopentyl glycol, and cyclohexanediol. Alternatively, it can be obtained by copolymerizing with polytetramethylene glycol or the like.
 ポリエステルポリオールを原料とする接着剤は被着体との密着性が高いという点で好ましいが、エステル結合の加水分解による熱劣化を抑制する観点から、加水分解点となり得るエステル結合基数が少ないポリエステルポリオールを選択することが望ましい。例えばネオペンチルグリコール(NPG)等のアルキル鎖の長いグリコール、1,4-シクロヘキサンジメタノール等の脂環構造をもつグリコールを有することが望ましい。
 さらに、例えばポリテトラメチレングリコール(PTMG)のように主鎖構造にポリエーテル構造を含む、耐加水分解ポリエステルポリオールを選択することが望ましい。このようなポリエステルポリオールのエステル基1個当たりの分子量は、好ましくは100~5,000、より好ましくは120~3,000である。
 ポリオールとしては、熱安定性、湿度安定性等の観点から、ポリカーボネートポリオール、ポリエーテルポリオール及びポリウレタンポリオールから選ばれる少なくとも1種を含むものが好ましい。
An adhesive using polyester polyol as a raw material is preferable in terms of high adhesion to an adherend, but from the viewpoint of suppressing thermal deterioration due to hydrolysis of ester bonds, a polyester polyol having a small number of ester bond groups that can serve as hydrolysis points. It is desirable to select. For example, it is desirable to have a glycol having a long alkyl chain such as neopentyl glycol (NPG) and a glycol having an alicyclic structure such as 1,4-cyclohexanedimethanol.
Furthermore, it is desirable to select a hydrolysis-resistant polyester polyol that includes a polyether structure in the main chain structure, such as polytetramethylene glycol (PTMG). The molecular weight per ester group of such a polyester polyol is preferably 100 to 5,000, more preferably 120 to 3,000.
As a polyol, what contains at least 1 sort (s) chosen from a polycarbonate polyol, a polyether polyol, and a polyurethane polyol from viewpoints, such as heat stability and humidity stability, is preferable.
 更に、ポリカーボネートポリオール、ポリエーテルポリオール及びポリウレタンポリオールから選ばれる少なくとも1種を30質量%以上含有するものがより好ましく、30~70質量%含有するものが特に好ましく使用できる。
 また、他の成分を0~30質量%加えることが好ましく、当該他の成分として密着性を向上させるためのアクリル系樹脂、エポキシ系樹脂、ポリオレフィン等が好ましい。更に、高耐寒性、耐加水分解性に優れたスチレンーブタジエンゴム等を好ましく使用できる。
Further, those containing 30% by mass or more of at least one selected from polycarbonate polyol, polyether polyol and polyurethane polyol are more preferred, and those containing 30 to 70% by mass are particularly preferred.
Further, it is preferable to add 0 to 30% by mass of other components. As the other components, acrylic resins, epoxy resins, polyolefins and the like for improving adhesion are preferable. Furthermore, a styrene-butadiene rubber excellent in high cold resistance and hydrolysis resistance can be preferably used.
 硬化剤としては、ジイソシアネートが好ましく、脂肪族系ジイソシアネート、芳香族系ジイソシアネート及び脂環系ジイソシアネートのいずれも好ましく使用できる。脂肪族系ジイソシアネートの具体例としては、ヘキサメチレンジイソシアネート(HDI)等が挙げられる。芳香族系ジイソシアネートの具体例としては、キシリレンジイソシアネート(XDI)、ジフェニルメタンジイソシアネート(MDI)等が挙げられる。脂環系ジイソシアネートの具体例としては、イソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタンジイソシアネート(H12MDI)等が挙げられる。
 ポリウレタン系接着剤としては、熱安定性、湿度安定性等の観点から、ポリカーボネートポリオールと、ジイソシアネートとを反応させて得られるポリカーボネート系ポリウレタン接着剤がより好ましい。特に、硬化時においても十分な架橋密度が得られる観点から、ジイソシアネートとして、柔軟なメチレン鎖を有するHDIを用いるのが好ましい。
 また、より熱的に安定な接着剤層を得るために、主剤にエポキシ系化合物を含んだものを用いることが好ましい。
 接着剤硬化時に架橋反応が十分に進行するためには、主剤のポリオールの水酸基と硬化剤のイソシアネート基が十分近づかなくてはならない。すなわち、主剤のポリオールのポリマー鎖間に硬化剤が浸透する必要がある。そのためには硬化剤の分子量はポリオールより小さい方が好ましく、硬化剤に含まれるジイソシアネートの分子量は300~10000が好ましく、より好ましくは分子量1000~5000である。
 十分な架橋密度を得、かつ残存する官能基数を抑えるために、異なる分子量の主剤と硬化剤を用いるという考え方に基づいて、例えば、主剤として分子量の異なるポリオールを複数種混合して用いる方法が好ましい。
As the curing agent, diisocyanate is preferable, and any of aliphatic diisocyanate, aromatic diisocyanate and alicyclic diisocyanate can be preferably used. Specific examples of the aliphatic diisocyanate include hexamethylene diisocyanate (HDI). Specific examples of the aromatic diisocyanate include xylylene diisocyanate (XDI) and diphenylmethane diisocyanate (MDI). Specific examples of the alicyclic diisocyanate include isophorone diisocyanate (IPDI) and dicyclohexylmethane diisocyanate (H12MDI).
As the polyurethane-based adhesive, a polycarbonate-based polyurethane adhesive obtained by reacting a polycarbonate polyol and diisocyanate is more preferable from the viewpoints of thermal stability, humidity stability, and the like. In particular, HDI having a flexible methylene chain is preferably used as the diisocyanate from the viewpoint of obtaining a sufficient crosslinking density even during curing.
Moreover, in order to obtain a more thermally stable adhesive layer, it is preferable to use a material containing an epoxy compound as a main component.
In order for the crosslinking reaction to proceed sufficiently during the curing of the adhesive, the hydroxyl group of the main polyol must be sufficiently close to the isocyanate group of the curing agent. That is, the curing agent needs to penetrate between the polymer chains of the main polyol. For this purpose, the molecular weight of the curing agent is preferably smaller than that of the polyol, and the molecular weight of the diisocyanate contained in the curing agent is preferably 300 to 10,000, more preferably 1,000 to 5,000.
In order to obtain a sufficient crosslinking density and to suppress the number of remaining functional groups, based on the idea of using a main agent and a curing agent having different molecular weights, for example, a method using a mixture of a plurality of polyols having different molecular weights as the main agent is preferable. .
 以上のような接着剤の物性としては、(主剤の粘度/硬化剤の粘度)もしくは(硬化剤の粘度/主剤の粘度)が5以上であることが好ましく、より好ましくは10以上である。また主剤の粘度は、100~1500(mPa・s、25℃)が好ましく、より好ましくは400~1300(mPa・s、25℃)である。硬化剤の粘度としては30~3000(mPa・s、25℃)が好ましい。
 本発明における接着剤の主剤と硬化剤の好ましい配合比は、質量比で主剤/硬化剤=5~25、官能基のモル比でNCO基/OH基=0.8~9である。
The physical properties of the adhesive as described above are preferably (main agent viscosity / curing agent viscosity) or (curing agent viscosity / main agent viscosity) of 5 or more, and more preferably 10 or more. The viscosity of the main agent is preferably 100 to 1500 (mPa · s, 25 ° C.), more preferably 400 to 1300 (mPa · s, 25 ° C.). The viscosity of the curing agent is preferably 30 to 3000 (mPa · s, 25 ° C.).
In the present invention, a preferable blending ratio of the main agent and the curing agent of the adhesive is main agent / curing agent = 5 to 25 in terms of mass ratio, and NCO group / OH group = 0.8 to 9 in terms of molar ratio of functional groups.
 この配合比を前記範囲内にすることにより、被着体との密着性及び架橋度を確保し、接着剤層1の0℃、周波数10Hz、歪0.1%における低温領域での引張り貯蔵弾性率を、1.0×106~1.0×108Pa、好ましくは1.0×107~1.0×108Paに制御することができる。
 本発明に係る接着層1には、紫外線吸収剤を含有することが好ましい。使用し得る紫外線吸収剤としては、配合後ブリードアウト等が生じにくい、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-オクチルフェニル)ベンゾトリアゾール、2-(3-t-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール等のベンゾトリアゾール系;2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクチルオキシベンゾフェノン等のベンゾフェノン系;2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシルオキシ)フェノール等のトリアジン系;P-tert-ブチルフェニルサリシレート、フェニルサリシレート等のサリシレート系紫外線吸収剤のうち、1種類または2種類以上を混合して使用することが可能である。紫外線吸収剤の配合については、粘着剤または接着剤100質量部に対して、固形分換算で0.1~10質量部であることが好ましく、さらに1~7質量部であることがより好ましい。0.1質量部未満では満足する紫外線吸収性能が得られず、10質量部以上では、得られる紫外線吸収性能に向上がないことに加えて、接着性能または粘着性能や耐久性が極度に低下する。
By adjusting the blending ratio within the above range, the adhesion to the adherend and the degree of crosslinking are ensured, and the tensile storage elasticity in the low temperature region at 0 ° C., frequency 10 Hz, and strain 0.1% of the adhesive layer 1. The rate can be controlled to 1.0 × 10 6 to 1.0 × 10 8 Pa, preferably 1.0 × 10 7 to 1.0 × 10 8 Pa.
The adhesive layer 1 according to the present invention preferably contains an ultraviolet absorber. Examples of ultraviolet absorbers that can be used include 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-butylphenyl) benzotriazole, 2- (2-hydroxy-5-octylphenyl) benzotriazole, 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chlorobenzotriazole, 2- (3,5-di-t-amyl) Benzotriazoles such as 2-hydroxyphenyl) benzotriazole; benzophenones such as 2-hydroxy-4-methoxybenzophenone and 2-hydroxy-4-n-octyloxybenzophenone; 2- [4,6-bis (2, 4-Dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy Triazines such as phenol and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyloxy) phenol; Salicylates such as P-tert-butylphenyl salicylate and phenyl salicylate Among the ultraviolet absorbers, one kind or a mixture of two or more kinds can be used. The blending of the ultraviolet absorber is preferably 0.1 to 10 parts by mass, more preferably 1 to 7 parts by mass in terms of solid content with respect to 100 parts by mass of the pressure-sensitive adhesive or adhesive. If the amount is less than 0.1 parts by mass, satisfactory ultraviolet absorption performance cannot be obtained. If the amount is 10 parts by mass or more, in addition to the improvement in ultraviolet absorption performance to be obtained, adhesion performance or adhesive performance and durability are extremely reduced. .
 接着層1のガラス転移点の調整は、接着剤または粘着剤の種類や分子量等を適宜調整することにより行うことができる。
 本発明において、接着層1は、耐候層または防湿層の無機層に粘着剤又は接着剤の塗工液を直接塗工することにより形成してもよいし、また、粘着剤又は接着剤の塗工液を、剥離処理された剥離シートの剥離処理面に塗工し、これを耐候層または防湿層の無機層に貼り合わせた後に剥離シートを剥離することにより形成することができる。
The glass transition point of the adhesive layer 1 can be adjusted by appropriately adjusting the type or molecular weight of the adhesive or pressure-sensitive adhesive.
In the present invention, the adhesive layer 1 may be formed by directly applying a pressure-sensitive adhesive or adhesive coating liquid to the inorganic layer of the weather-resistant layer or moisture-proof layer, or applying the pressure-sensitive adhesive or adhesive. It can be formed by coating the release liquid on the release-treated surface of the release sheet that has been subjected to the release treatment, and bonding the resulting liquid to the inorganic layer of the weather-resistant layer or moisture-proof layer, and then peeling the release sheet.
 塗工する際に使用される塗工液は、既述の粘着剤又は接着剤を、有機溶剤に溶解させたもの、水に溶解または分散させたもの等を使用することが好ましいが、耐水性が問われる太陽電池部材等の用途には有機溶剤に溶解させたものが好ましい。
 有機溶剤としては、例えば、トルエン、キシレン、メタノール、エタノール、イソブタノール、n-ブタノール、アセトン、メチルエチルケトン、酢酸エチル、テトラヒドロフラン等が挙げられる。これらは1種を単独で用いてもよく、2種以上組み合わせて用いてもよい。
As the coating liquid used for coating, it is preferable to use the above-mentioned pressure-sensitive adhesive or adhesive dissolved in an organic solvent, dissolved or dispersed in water, etc. For applications such as solar cell members that are questioned, those dissolved in an organic solvent are preferred.
Examples of the organic solvent include toluene, xylene, methanol, ethanol, isobutanol, n-butanol, acetone, methyl ethyl ketone, ethyl acetate, tetrahydrofuran and the like. These may be used alone or in combination of two or more.
 塗工液は、塗工の利便さから、これらの有機溶剤を使用して、固形分濃度が10~50質量%の範囲になるように調製するのが好ましい。
 塗工液の塗工は、例えば、バーコート法、ロールコート法、ナイフコート法、ロールナイフコート法、ダイコート法、グラビアコート法、エアドクターコート法、ドクターブレードコート法等、従来公知の塗工方法により行うことができる。
 塗工後、通常70~110℃の温度で1~5分程度乾燥処理することにより、接着層1が形成される。
For the convenience of coating, the coating liquid is preferably prepared using these organic solvents so that the solid content concentration is in the range of 10 to 50% by mass.
Coating of the coating liquid is, for example, conventionally known coating methods such as bar coating, roll coating, knife coating, roll knife coating, die coating, gravure coating, air doctor coating, doctor blade coating, etc. It can be done by a method.
After the coating, the adhesive layer 1 is formed by drying treatment usually at a temperature of 70 to 110 ° C. for about 1 to 5 minutes.
 接着層1の厚さは、接着剤を用いる場合は十分な接着力を得る観点から4μm以上であるのが好ましく、より好ましくは6μm以上である。また、防湿層の無機層面への応力が増大して防湿性能が劣化するのを防止する観点から、厚さは12μm以下であるのが好ましく、より好ましくは10μm以下である。粘着剤を用いる場合は、十分な接着力を得る観点から13μm以上であり、好ましくは15μm以上、より好ましくは20μm以上である。また、高温高湿の使用において接着層1に発生する構造変化により防湿層の無機層への応力が増大して防湿性能が劣化するのを防止する観点から、上記厚さは45μm以下であるのが好ましく、30μm以下であるのがより好ましい。 In the case of using an adhesive, the thickness of the adhesive layer 1 is preferably 4 μm or more, more preferably 6 μm or more from the viewpoint of obtaining a sufficient adhesive force. Moreover, from the viewpoint of preventing the moisture-proof performance from deteriorating due to an increase in stress on the inorganic layer surface of the moisture-proof layer, the thickness is preferably 12 μm or less, more preferably 10 μm or less. When using an adhesive, it is 13 micrometers or more from a viewpoint of obtaining sufficient adhesive force, Preferably it is 15 micrometers or more, More preferably, it is 20 micrometers or more. In addition, the thickness is 45 μm or less from the viewpoint of preventing the moisture-proof performance from deteriorating due to an increase in stress on the inorganic layer of the moisture-proof layer due to the structural change that occurs in the adhesive layer 1 when using high temperature and high humidity. Is preferable, and it is more preferable that it is 30 micrometers or less.
 以上のような本発明の太陽電池用保護材は、耐候層と防湿層との層間強度が結露凍結試験後において10N/15mm以上、かつ初期層間強度からの層間強度の劣化率が20%未満であることが好ましい。該層間強度は8N/15mm以上であることがより好ましい。
 上記結露凍結試験及び劣化率については後述する。
The protective material for solar cells of the present invention as described above has an interlayer strength between the weather resistant layer and the moisture-proof layer of 10 N / 15 mm or more after the condensation freezing test, and a deterioration rate of the interlayer strength from the initial interlayer strength is less than 20%. Preferably there is. The interlayer strength is more preferably 8 N / 15 mm or more.
The condensation freezing test and the deterioration rate will be described later.
 本発明においては、さらに、接着層2、及び、基材上に無機層を有する防湿層2をこの順に防湿層1上に有していてもよい(防湿層1/接着層2/防湿層2)。かかる構成を有することでさらに防湿性を高めることができる。特に耐候層/接着層1/無機層/基材/接着層2/無機層/基材の構成であると、防湿性がより良好となり好ましい。
 接着層2としては既述の接着層1と同様な構成が好ましく例示される。また、防湿層2についても既述の防湿層1と同様な構成が好ましく例示される。
 本発明の太陽電池用保護材を構成する各フィルムは前述したように、それぞれ、公知の添加剤、例えば、帯電防止剤、光線遮断剤、紫外線吸収剤、可塑剤、滑剤、フィラー、着色剤、安定剤、潤滑剤、架橋剤、ブロッキング防止剤、酸化防止剤等を含有することができる。
 本発明の太陽電池用保護材は、上述の製膜された各フィルムに粘着剤や接着剤を塗工し、例えば70~140℃の温度で粘着剤層、接着層を乾燥させ、0~80℃の温度下、貼り合わせて製造することができる。粘着剤層や接着剤層を十分飽和架橋度に到達させることの観点から、得られた積層体は30~80℃の温度で、1~7日間養生を行うことが好ましい。
 本発明の太陽電池用保護材は、高熱環境、すなわち、熱ラミネート条件での熱処理を経ても、防湿性及び層間強度が劣化しない柔軟性と防湿性に優れるものである。
 太陽電池用保護材の厚みは、特に限定されるものではないが、好ましくは200~600μmであり、より好ましくは200~590μmであり、より好ましくは200~350μmであり、更に好ましくは220~320μmのシート状で用いられる。
In the present invention, the adhesive layer 2 and the moisture-proof layer 2 having an inorganic layer on the substrate may be further provided on the moisture-proof layer 1 in this order (moisture-proof layer 1 / adhesive layer 2 / moisture-proof layer 2). ). By having such a configuration, it is possible to further improve moisture resistance. In particular, the structure of weathering layer / adhesive layer 1 / inorganic layer / base material / adhesive layer 2 / inorganic layer / base material is preferable because moisture resistance becomes better.
The adhesive layer 2 is preferably exemplified by the same configuration as the adhesive layer 1 described above. The moisture-proof layer 2 is preferably exemplified by the same configuration as the moisture-proof layer 1 described above.
As described above, each of the films constituting the solar cell protective material of the present invention is a known additive, for example, an antistatic agent, a light blocking agent, an ultraviolet absorber, a plasticizer, a lubricant, a filler, a colorant, Stabilizers, lubricants, crosslinking agents, antiblocking agents, antioxidants and the like can be contained.
The protective material for a solar cell of the present invention is obtained by applying a pressure-sensitive adhesive or an adhesive to each film formed as described above, and drying the pressure-sensitive adhesive layer and the adhesive layer at a temperature of 70 to 140 ° C., for example. It can be manufactured by bonding together at a temperature of ° C. From the viewpoint of sufficiently bringing the pressure-sensitive adhesive layer and the adhesive layer to the degree of saturation crosslinking, the obtained laminate is preferably cured at a temperature of 30 to 80 ° C. for 1 to 7 days.
The solar cell protective material of the present invention is excellent in flexibility and moisture resistance, in which moisture resistance and interlayer strength do not deteriorate even after heat treatment under a high heat environment, that is, heat lamination conditions.
The thickness of the protective material for solar cells is not particularly limited, but is preferably 200 to 600 μm, more preferably 200 to 590 μm, more preferably 200 to 350 μm, and still more preferably 220 to 320 μm. It is used in the form of a sheet.
(太陽電池用保護材の防湿性)
 本発明の太陽電池用保護材は、基材に金属酸化物層を有する水蒸気透過率0.1[g/(m2・日)]未満の防湿フィルムを用いることにより、初期防湿性が、水蒸気透過率で好ましくは0.1[g/(m2・日)]以下であり、より好ましくは0.05[g/(m2・日)]以下であるものとすることができる。
 本発明の太陽電池用保護材は、初期防湿性に優れ、且つ、高温高湿環境下での保存においても防湿性やデラミネーション防止にも優れる太陽電池用保護材であることが好ましい。
(Moisture resistance of solar cell protective material)
The protective material for solar cells of the present invention uses a moisture-proof film having a metal oxide layer as a substrate and a moisture permeability of less than 0.1 [g / (m 2 · day)], so that the initial moisture-proof property is The transmittance is preferably 0.1 [g / (m 2 · day)] or less, and more preferably 0.05 [g / (m 2 · day)] or less.
The protective material for solar cell of the present invention is preferably a protective material for solar cell that is excellent in initial moisture resistance and excellent in moisture resistance and prevention of delamination even when stored in a high temperature and high humidity environment.
 また、前記粘着剤(i)を用いることにより、その防湿性は、真空ラミネーション及びJIS C 60068-2-66に準じるプレッシャークーカーテスト(120℃)による連続する高温高湿環境による劣化度、すなわち、(前記の高温高湿環境後の水蒸気透過率/初期水蒸気透過率)を、好ましくは25以内、より好ましくは15以内、更に好ましくは10以内とすることができる。
 なお、本発明における太陽電池用保護材の「初期防湿性」とは、部材が真空ラミート条件等の高温高湿環境下での熱等の履歴を受ける前の防湿性をいい、熱等による防湿性劣化が起こる前の値を意味する。よって、製造直後から高温高湿処理前までの経時的な変化を含むものである。例えば、100℃前後の高温高湿環境処理や、130~180℃で10分~40分行われる熱ラミネーション処理等の熱処理が行われていない状態での防湿性の値を意味する。「初期水蒸気透過率」も同様である。
 本発明における各防湿性はJIS Z0222「防湿包装容器の透湿度試験方法」、JIS Z0208「防湿包装材量の透湿度試験方法(カップ法)」の諸条件に準じ評価することができる。
Further, by using the pressure-sensitive adhesive (i), its moisture resistance is determined by the degree of deterioration due to the continuous high-temperature and high-humidity environment by the vacuum lamination and the pressure coker test (120 ° C.) according to JIS C 60068-2-66. , (The water vapor transmission rate after the high-temperature and high-humidity environment / initial water vapor transmission rate) is preferably within 25, more preferably within 15 and even more preferably within 10.
The “initial moisture resistance” of the protective material for solar cells in the present invention refers to moisture resistance before the member receives a history of heat, etc. in a high temperature and high humidity environment such as vacuum lameet conditions. It means the value before sex degradation occurs. Therefore, it includes changes over time from immediately after manufacture to before high-temperature and high-humidity treatment. For example, it means a moisture-proof value in a state where heat treatment such as high temperature and high humidity environment treatment at around 100 ° C. or thermal lamination treatment performed at 130 to 180 ° C. for 10 to 40 minutes is not performed. The same applies to the “initial water vapor transmission rate”.
Each moisture-proof property in the present invention can be evaluated according to various conditions of JIS Z0222 “Method of testing moisture permeability of moisture-proof packaging container” and JIS Z0208 “Method of testing moisture permeability of moisture-proof packaging material (cup method)”.
(太陽電池用保護材の層間強度)
 本発明の太陽電池用保護材は、前記粘着剤と融点が150℃以下の中間フィルムを防湿フィルム上に設けることにより、真空ラミネーション及びJIS C 60068-2-66に準じるプレッシャークーカーテスト(120℃)による連続する高熱処理後のデラミネーション発生を防止することができる。
(Interlayer strength of protective material for solar cells)
The protective material for a solar cell of the present invention comprises a pressure lamination tester according to JIS C 60068-2-66 (120 ° C.) by providing the pressure-sensitive adhesive and an intermediate film having a melting point of 150 ° C. or less on a moisture-proof film. The delamination after the continuous high heat treatment due to the above can be prevented.
(太陽電池用保護材の用途)
 本発明の太陽電池用保護材は、特に化合物系発電素子太陽電池モジュール又はフレキシブル太陽電池モジュールの太陽電池用表面保護部材に用いられることが、湿気ないし水の透過による発電素子の劣化、内部の導線や電極の発錆を防止することができ、長期に渡る起電力の保持を達成できることから好ましい。
(Application of protective material for solar cells)
The solar cell protective material of the present invention is particularly used for a surface protection member for a solar cell of a compound-based power generation element solar cell module or a flexible solar cell module. And the rusting of the electrode can be prevented, and the retention of the electromotive force over a long period can be achieved.
 太陽電池用保護材は、該太陽電池用保護材の構成、特に、防湿フィルムの金属酸化物層に前記特定の粘着剤層を介してフッ素系樹脂フィルムを積層することにより、高温条件下においても長期に防湿性、層間強度が劣化しない柔軟性と防湿性に優れた太陽電池用保護材を実現し、太陽電池等の性能低下を同時に防止すること、及び太陽電池等の耐久性の向上に有効な高防湿太陽電池用、電子ペーパー用表面保護材を提供することができる。
 太陽電池用表面保護材は、封止材を積層してなる封止材・表面保護材一体型であってもよい。予め封止材を更に積層することにより、真空ラミネーション工程における裏面保護シート、封止材、発電素子、封止材、前面保護シートそれぞれを個々に積層する作業を低減でき、太陽電池モジュール製造の効率化を図ることができる。
The solar cell protective material has a structure of the solar cell protective material, in particular, by laminating a fluorine-based resin film on the metal oxide layer of the moisture-proof film via the specific adhesive layer, even under high temperature conditions. Realizes solar cell protection material with excellent moisture resistance and moisture resistance, and does not deteriorate the interlayer strength over a long period of time, effectively preventing the performance of solar cells and the like from being deteriorated, and effective in improving the durability of solar cells, etc. It is possible to provide a surface protective material for a highly moisture-proof solar cell and electronic paper.
The solar cell surface protective material may be a sealing material / surface protective material integrated type formed by laminating a sealing material. By further laminating the sealing material in advance, it is possible to reduce the work of individually laminating the back surface protection sheet, the sealing material, the power generating element, the sealing material, and the front surface protection sheet in the vacuum lamination process, and the efficiency of manufacturing the solar cell module Can be achieved.
<太陽電池モジュール、太陽電池の製造方法>
 前記太陽電池用保護材は、そのまま、あるいはガラス板等と貼り合わせて太陽電池用表面保護部材として用いることができる。本発明の太陽電池用保護材を用いて本発明の太陽電池モジュール及び/又は太陽電池を製造するには、公知の方法により、作製すればよい。
<Solar cell module, solar cell manufacturing method>
The solar cell protective material can be used as a solar cell surface protective member as it is or by being bonded to a glass plate or the like. What is necessary is just to produce by the well-known method, in order to manufacture the solar cell module and / or solar cell of this invention using the protective material for solar cells of this invention.
 本発明の太陽電池用保護材を太陽電池用フロントシート、バックシート等の表面保護部材の層構成に使用し、太陽電池素子を封止材とともに固定することにより太陽電池モジュールを製作することができる。このような太陽電池モジュールとしては、種々のタイプのものを例示することができ、好ましくは、本発明の太陽電池用保護材を前面保護材として使用した場合、封止材と、太陽電池素子と、裏面保護材とを用いて作製された太陽電池モジュールが挙げられ、具体的には、前面保護材(本発明の太陽電池用保護材)/封止材(封止樹脂層)/太陽電池素子/封止材(封止樹脂層)/裏面保護材の構成のもの、裏面保護材の内周面上に形成させた太陽電池素子上に封止材と前面保護材(本発明の太陽電池用保護材)を形成させるような構成のもの、前面保護材(本発明の太陽電池用保護材)の内周面上に形成させた太陽電池素子、例えばフッ素樹脂系透明保護材上にアモルファス太陽電池素子をスパッタリング等で作製したものの上に封止材と裏面保護材を形成させるような構成のもの等を挙げることができる。上記前面保護材として本発明の太陽電池用保護材の外側にガラス板を貼り合わせることは任意である。なお、前述の封止材・表面保護材一体型の表面保護材を用いる場合は、上記の封止材は用いなくてもよい場合がある。 A solar cell module can be produced by using the solar cell protective material of the present invention in a layer structure of a surface protective member such as a solar cell front sheet or back sheet, and fixing the solar cell element together with a sealing material. . As such a solar cell module, various types can be exemplified. Preferably, when the solar cell protective material of the present invention is used as a front surface protective material, a sealing material, a solar cell element, And a solar cell module produced using a back surface protective material, specifically, a front surface protective material (protective material for solar cell of the present invention) / sealing material (sealing resin layer) / solar cell element. / Sealant (sealing resin layer) / back surface protective material, on the solar cell element formed on the inner peripheral surface of the back surface protection material and the front surface protection material (for the solar cell of the present invention) A solar cell element formed on the inner peripheral surface of a front protective material (protective material for solar cell of the present invention), for example, an amorphous solar cell on a fluororesin-based transparent protective material Sealing material on top of the device made by sputtering etc. And the like can be mentioned configuration, such as to form a surface protective material. It is optional to attach a glass plate to the outside of the solar cell protective material of the present invention as the front protective material. In addition, when using the above-mentioned sealing material / surface protective material integrated surface protective material, the above-mentioned sealing material may not be used.
 太陽電池素子としては、例えば、単結晶シリコン型、多結晶シリコン型、アモルファスシリコン型、ガリウム-砒素、銅-インジウム-セレン、銅-インジウム-ガリウム-セレン、カドミウム-テルル等のIII-V族やII-VI族化合物半導体型、色素増感型、有機薄膜型等が挙げられる。
 本発明における太陽電池用保護材を用いて、太陽電池モジュールを形成する場合、前記太陽電池発電素子の種類により防湿性が、水蒸気透過率で0.1[g/(m2・日)]未満程度の低防湿フィルムから0.01[g/(m2・日)]未満程度の高防湿フィルムまで素子のタイプに応じて適宜選択し、前述したように特定の物性値と厚みを有する粘着剤を使用し積層して形成することができる。
Examples of solar cell elements include single crystal silicon type, polycrystalline silicon type, amorphous silicon type, gallium-arsenic, copper-indium-selenium, copper-indium-gallium-selenium, cadmium-tellurium, etc. II-VI compound semiconductor type, dye-sensitized type, organic thin film type, and the like can be mentioned.
When a solar cell module is formed using the solar cell protective material in the present invention, the moisture resistance is less than 0.1 [g / (m 2 · day)] in terms of water vapor transmission rate depending on the type of the solar cell power generation element. A pressure-sensitive adhesive having a specific physical property value and thickness as described above is appropriately selected according to the element type from a low moisture-proof film of about 0.01 to a high moisture-proof film of less than 0.01 [g / (m 2 · day)]. And can be formed by laminating.
 本発明の太陽電池用保護材を用いて作製された太陽電池モジュールを構成する他の各部材については、特に限定されるものではないが、封止材としては、例えば、エチレン-酢酸ビニル共重合体を挙げることができる。裏面保護材としては、金属や各種熱可塑性樹脂フィルム等の単層もしくは多層のシートであり、例えば、錫、アルミ、ステンレス等の金属、ガラス等の無機材料、ポリエステル、無機物蒸着ポリエステル、フッ素含有樹脂、ポリオレフィン等の単層もしくは多層の保護材を挙げることができる。前面及び/又は裏面の保護材の表面には、封止材や他の部材との接着性を向上させるためにプライマー処理やコロナ処理等公知の表面処理を施すことができる。 The other members constituting the solar cell module produced using the solar cell protective material of the present invention are not particularly limited, but examples of the sealing material include ethylene-vinyl acetate copolymer. Coalescence can be mentioned. The back surface protection material is a single layer or multilayer sheet such as metal or various thermoplastic resin films, for example, metals such as tin, aluminum, stainless steel, inorganic materials such as glass, polyester, inorganic vapor deposition polyester, fluorine-containing resin. And a single-layer or multilayer protective material such as polyolefin. The surface of the protective material on the front surface and / or the back surface can be subjected to a known surface treatment such as a primer treatment or a corona treatment in order to improve the adhesion to the sealing material or other members.
 本発明の太陽電池用保護材を用いて作製された太陽電池モジュールを既述した前面保護材(本発明の太陽電池用保護材)/封止材/太陽電池素子/封止材/裏面保護材のような構成のものを例として説明する。太陽光受光側から順に、本発明の太陽電池用保護材、封止材、太陽電池素子、封止材、バックシートが積層されてなり、更に、バックシートの下面にジャンクションボックス(太陽電池素子から発電した電気を外部へ取り出すための配線を接続する端子ボックス)が接着されてなる。太陽電池素子は、発電電流を外部へ電導するために配線により連結されている。配線は、バックシートに設けられた貫通孔を通じて外部へ取り出され、ジャンクションボックスに接続されている。 Front surface protective material (protective material for solar cell of the present invention) / sealing material / solar cell element / sealing material / back surface protective material described above for a solar cell module produced using the solar cell protective material of the present invention An example of such a configuration will be described. The solar cell protective material, sealing material, solar cell element, sealing material, and back sheet are laminated in order from the solar light receiving side, and a junction box (from the solar cell element) is further formed on the lower surface of the back sheet. A terminal box for connecting wiring for taking out the generated electricity to the outside is bonded. The solar cell elements are connected by wiring in order to conduct the generated current to the outside. The wiring is taken out through a through hole provided in the backsheet and connected to the junction box.
 太陽電池モジュールの製造方法としては、公知の製造方法が適用でき、特に限定されるものではないが、一般的には、本発明の太陽電池用保護材、封止樹脂層、太陽電池素子、封止樹脂層、裏面保護材の順に積層する工程と、それらを真空吸引し加熱圧着する工程を有する。前記真空吸引し加熱圧着する工程は、例えば、真空ラミネーターで、温度が好ましくは130~180℃、より好ましくは130~150℃、脱気時間が2~15分、プレス圧力が0.05~1MPa、プレス時間が好ましくは8~45分、より好ましくは10~40分で加熱加圧圧着することよりなる。
 また、バッチ式の製造設備やロール・ツー・ロール式の製造設備等も適用することができる。
As a manufacturing method of the solar cell module, a known manufacturing method can be applied and is not particularly limited, but in general, the solar cell protective material, the sealing resin layer, the solar cell element, the sealing of the present invention. It has the process of laminating | stacking a stop resin layer and a back surface protective material in order, and the process of vacuum-sucking them and carrying out thermocompression bonding. The step of vacuum suction and thermocompression bonding is, for example, a vacuum laminator, the temperature is preferably 130 to 180 ° C., more preferably 130 to 150 ° C., the degassing time is 2 to 15 minutes, and the press pressure is 0.05 to 1 MPa. The pressing time is preferably 8 to 45 minutes, more preferably 10 to 40 minutes, and heating and pressing are performed.
Also, batch type manufacturing equipment, roll-to-roll type manufacturing equipment, and the like can be applied.
 本発明の太陽電池用保護材を用いて作製された太陽電池モジュールは、適用される太陽電池のタイプとモジュール形状により、モバイル機器に代表される小型太陽電池、屋根や屋上に設置される大型太陽電池等屋内、屋外に関わらず各種用途に適用することができる。特に、電子デバイスの中でも、化合物系発電素子太陽電池モジュールやアモルファスシリコン系等のフレキシブル太陽電池モジュール用の太陽電池用保護材として、また、電子ペーパー等への使用においては、高防湿性が要求されることから、この連続する高熱処理を考慮した太陽電池用保護材として有効に用いられる。そのため、本発明の太陽電池用保護材を用いて作製された太陽電池モジュールは、特に前記電子デバイスの表面保護材として好ましく用いられる。 The solar cell module manufactured using the solar cell protective material of the present invention is a small solar cell represented by a mobile device, a large solar cell installed on a roof or a roof, depending on the type and module shape of the applied solar cell. The battery can be applied to various uses regardless of whether it is indoors or outdoors. In particular, among electronic devices, high moisture resistance is required for use as a protective material for solar cells for flexible solar cell modules such as compound-based power generation element solar cell modules and amorphous silicon, and for use in electronic paper. Therefore, it is effectively used as a protective material for solar cells in consideration of this continuous high heat treatment. Therefore, the solar cell module manufactured using the solar cell protective material of the present invention is particularly preferably used as the surface protective material of the electronic device.
 以下に、本発明を実施例によりさらに具体的に説明するが、これらの実施例及び比較例により本発明は制限を受けるものではない。なお、種々の物性の測定及び評価は次のようにして行った。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by these examples and comparative examples. Various physical properties were measured and evaluated as follows.
[物性測定及び評価]
(1)フィルムの融点
 示差走査熱量計(ティー・エイ・インスツルメント(株)製、Q20)を用いて、JIS K7121に準じて、サンプル約10mgを加熱速度10℃/分で-40℃から200℃まで昇温し、融解ピークを確認、200℃で1分間保持した後、冷却速度10℃/分で-40℃まで降温し、再度、加熱速度10℃/分で300℃まで昇温した時に測定されたサーモグラムから結晶融解ピーク温度の中で最大ピークを融点(Tm)[℃]として求めた。なお,ポリエステルなど融点が200℃を超え融解ピークが観測されない場合は,昇温上限温度を300℃とし、その後同様な測定を行なって融点を求めた。
[Measurement and evaluation of physical properties]
(1) Melting point of film Using a differential scanning calorimeter (Q20 manufactured by QA Instruments Co., Ltd.), according to JIS K7121, about 10 mg of sample was heated from −40 ° C. at a heating rate of 10 ° C./min. The temperature was raised to 200 ° C., the melting peak was confirmed, held at 200 ° C. for 1 minute, then cooled to −40 ° C. at a cooling rate of 10 ° C./min, and again raised to 300 ° C. at a heating rate of 10 ° C./min. The maximum peak among the crystal melting peak temperatures was determined as the melting point (Tm) [° C.] from the thermogram measured occasionally. When the melting point exceeded 200 ° C. and no melting peak was observed, such as polyester, the upper limit temperature for heating was set to 300 ° C., and then the same measurement was performed to determine the melting point.
(2)フィルムの熱収縮率
 15cm四方にカットしたフィルムの内側に250mm間隔に平行に標線を4本引き、ノギスで標線間距離を測定した。該フィルムの標線の外側をクリップで挟んで150℃オーブン中に吊り下げ、30分放置し加熱処理を行い、その後室温に戻し1時間放置後、下記の式より熱収縮率を算出した。
 μ=[(L1-L2)/L1]×100
  μ:熱収縮率(%)
  L1:未処理のフィルムの標線間の距離(mm)
  L2:加熱処理後のフィルムの標線間の距離(mm)
(2) Thermal contraction rate of the film Four standard lines were drawn in parallel to the interval of 250 mm on the inside of the film cut in 15 cm square, and the distance between the standard lines was measured with a caliper. The outside of the marked line of the film was sandwiched between clips, suspended in an oven at 150 ° C., left to stand for 30 minutes, and then subjected to heat treatment.
μ = [(L1-L2) / L1] × 100
μ: Thermal contraction rate (%)
L1: Distance between marked lines of untreated film (mm)
L2: Distance between marked lines of the film after heat treatment (mm)
(3)引っ張り貯蔵弾性率及びガラス転移点
 (3)-1
 調製された各塗工液(B1~6及び9)を、シリコーン離型PETフィルム上に塗布し、40℃で5日間養生し、更にその後100℃、30分保持して粘着剤層または接着剤層を形成した。その後、当該粘着剤層または接着剤層のみを取り出し、該粘着剤層または接着剤層を複数枚重ねてサンプル(縦4mm、横60mm、厚み200μm)を作製した。得られた各サンプルについて、粘弾性測定装置(アイティ計測(株)製、「粘弾性スペクトロメーターDVA-200」)を用いて、振動周波数10Hz、歪0.1%、昇温速度3℃/分、チャック間25mmで横方向について、-100℃から180℃までサンプルに印加される歪に対する応力を測定し、得られたデータから0℃及び100℃における引っ張り貯蔵弾性率(Pa)を求めた。なお、昇温時におけるサンプル形状変化の理由から100℃での測定が困難な場合、引っ張り貯蔵弾性率は0Paとした。また、得られた損失正接(tanδ=損失弾性率/貯蔵弾性率)曲線においてピークを示す温度をガラス転移点(Tg)として求めた。なお、ピークが複数ある場合は、一番高い温度をガラス転移点とする。
(3) Tensile storage modulus and glass transition point (3) -1
Each of the prepared coating liquids (B1 to 6 and 9) is applied onto a silicone release PET film, cured at 40 ° C. for 5 days, and then kept at 100 ° C. for 30 minutes to be a pressure-sensitive adhesive layer or adhesive A layer was formed. Thereafter, only the pressure-sensitive adhesive layer or adhesive layer was taken out, and a plurality of the pressure-sensitive adhesive layers or adhesive layers were stacked to prepare a sample (length 4 mm, width 60 mm, thickness 200 μm). For each of the obtained samples, using a viscoelasticity measuring device (“Viscoelastic Spectrometer DVA-200” manufactured by IT Measurement Co., Ltd.), the vibration frequency is 10 Hz, the strain is 0.1%, and the heating rate is 3 ° C./min. The stress against the strain applied to the sample was measured from −100 ° C. to 180 ° C. in the transverse direction with 25 mm between the chucks, and the tensile storage elastic modulus (Pa) at 0 ° C. and 100 ° C. was obtained from the obtained data. When the measurement at 100 ° C. is difficult due to the sample shape change at the time of temperature rise, the tensile storage elastic modulus was set to 0 Pa. Moreover, the temperature which shows a peak in the obtained loss tangent (tan-delta = loss elastic modulus / storage elastic modulus) curve was calculated | required as a glass transition point (Tg). When there are a plurality of peaks, the highest temperature is taken as the glass transition point.
 (3)-2
 調製された各塗工液(B10~13)をシリコーン離型PETフィルム上に25g/m2(乾燥後の厚みが25μm)となるよう塗布し、40℃で4日間養生し、更にその後150℃、30分保持し粘着剤層または接着剤層を形成した。その後当該粘着剤層または接着剤層のみを取り出し、当該粘着剤層または接着剤層を複数枚重ねてサンプル(縦4mm、横60mm、厚み200μm)を作製した。得られたサンプルについて、粘弾性測定装置(アイティ計測(株)製、「粘弾性スペクトロメーターDVA-200」)を用いて、振動周波数10Hz、歪0.1%、昇温速度3℃/分、チャック間25mmで横方向について、-100℃から180℃までサンプルに印加される歪に対する応力を測定し、得られたデータから0℃及び100℃における引張り貯蔵弾性率(Pa)を求めた。なお、昇温時にサンプル形状変化から100℃での測定が困難な場合、引っ張り貯蔵弾性率は0とした。また、得られた損失正接(tanδ=損失弾性率/貯蔵弾性率)曲線においてピークを示す温度をガラス転移点(Tg)として求めた。なお、ピークが複数ある場合は、一番高い温度をガラス転移点とする。
(3) -2
Each of the prepared coating liquids (B10 to 13) was applied onto a silicone release PET film so as to be 25 g / m 2 (the thickness after drying was 25 μm), cured at 40 ° C. for 4 days, and then 150 ° C. For 30 minutes to form a pressure-sensitive adhesive layer or an adhesive layer. Thereafter, only the pressure-sensitive adhesive layer or adhesive layer was taken out, and a plurality of the pressure-sensitive adhesive layers or adhesive layers were stacked to prepare a sample (length 4 mm, width 60 mm, thickness 200 μm). About the obtained sample, using a viscoelasticity measuring apparatus ("Viscoelastic Spectrometer DVA-200" manufactured by IT Measurement Co., Ltd.), the vibration frequency was 10 Hz, the strain was 0.1%, the temperature rising rate was 3 ° C / min, The stress against the strain applied to the sample was measured from −100 ° C. to 180 ° C. in the transverse direction with 25 mm between the chucks, and the tensile storage elastic modulus (Pa) at 0 ° C. and 100 ° C. was obtained from the obtained data. When the measurement at 100 ° C. is difficult due to the sample shape change at the time of temperature rise, the tensile storage elastic modulus was set to 0. Moreover, the temperature which shows a peak in the obtained loss tangent (tan-delta = loss elastic modulus / storage elastic modulus) curve was calculated | required as a glass transition point (Tg). When there are a plurality of peaks, the highest temperature is taken as the glass transition point.
 (3)-3
 調製された各接着剤塗工液または粘着剤塗工液(B14~16)を、シリコーン離型PETフィルム上に塗布し、40℃で5日間養生し、さらにその後100℃、30分保持し粘着剤層または接着剤層を形成した。その後、当該粘着剤層または接着剤層のみを取り出し、当該粘着剤層または接着剤層を複数枚重ねてサンプル(縦4mm、横60mm、厚み200μm)を作製した。得られたサンプルについて、粘弾性測定装置(アイティ計測(株)製、「粘弾性スペクトロメーターDVA-200」)を用いて、振動周波数10Hz、歪0.1%、昇温速度3℃/分、チャック間25mmで横方向について、-100℃から100℃までサンプルに印加される歪に対する応力を測定し、得られたデータから0℃及び100℃における引張り貯蔵弾性率(Pa)を求めた。また、得られた損失正接(tanδ=損失弾性率/貯蔵弾性率)曲線においてピークを示す温度をガラス転移点(Tg)として求めた。なお、ピークが複数ある場合は、一番高い温度をガラス転移点とする。
(3) -3
Each prepared adhesive coating solution or adhesive coating solution (B14 to 16) is applied onto a silicone release PET film, cured at 40 ° C. for 5 days, and then kept at 100 ° C. for 30 minutes for adhesion. An agent layer or an adhesive layer was formed. Thereafter, only the pressure-sensitive adhesive layer or adhesive layer was taken out, and a plurality of the pressure-sensitive adhesive layers or adhesive layers were stacked to prepare a sample (length 4 mm, width 60 mm, thickness 200 μm). About the obtained sample, using a viscoelasticity measuring apparatus ("Viscoelastic Spectrometer DVA-200" manufactured by IT Measurement Co., Ltd.), the vibration frequency was 10 Hz, the strain was 0.1%, the temperature rising rate was 3 ° C / min, The stress against the strain applied to the sample was measured from −100 ° C. to 100 ° C. in the transverse direction with a chuck spacing of 25 mm, and the tensile storage elastic modulus (Pa) at 0 ° C. and 100 ° C. was obtained from the obtained data. Moreover, the temperature which shows a peak in the obtained loss tangent (tan-delta = loss elastic modulus / storage elastic modulus) curve was calculated | required as a glass transition point (Tg). When there are a plurality of peaks, the highest temperature is taken as the glass transition point.
(4)プレッシャークッカー(PC)試験
 (4)-1
 各太陽電池用保護材(F-1-1~F-1-18)を150mm×150mm角に切り出し、これを表面保護材として用い、ガラス、封止材、表面保護材(フッ素系樹脂フィルムが封止材側と反対側になる)の順になるように積層し、真空ラミネーター((株)エヌ・ピー・シー製、「LM30×30」)を用いて140℃、15分、圧力0.1MPaの条件で真空ラミネートを行った。次に、トミー精工社製プレッシャークッカー試験LSK-500を用い、120℃、湿度100%、24時間の試験(PC24-1)条件でプレッシャークッカー試験を行った。
(4) Pressure cooker (PC) test (4) -1
Each of the solar cell protective materials (F-1-1 to F-1-18) was cut into 150 mm × 150 mm squares, and this was used as a surface protective material. Glass, sealing material, surface protective material (fluorine resin film Layered in the order of the sealing material side and the other side), using a vacuum laminator (manufactured by NPC, “LM30 × 30”), 140 ° C., 15 minutes, pressure 0.1 MPa Vacuum lamination was performed under the conditions of: Next, a pressure cooker test was performed using a pressure cooker test LSK-500 manufactured by Tommy Seiko Co., Ltd. under the test (PC 24-1) conditions of 120 ° C., 100% humidity, and 24 hours.
 (4)-2
 各太陽電池用保護材(F-2-1~F-2-14)を150mm×150mm角に切り出し、これを表面保護材として用い、ガラス、封止材、表面保護材(フッ素系樹脂フィルムが封止材側と反対側になる)の順になるように積層し、真空ラミネーター((株)エヌ・ピー・シー製、「LM30×30」)を用いて150℃、11分、圧力0.1MPaの条件で真空ラミネートを行った。次に、トミー精工社製プレッシャークッカー試験LSK-500を用い、120℃、湿度100%、24時間の試験(PC24-2)条件でプレッシャークッカー試験を行った。
(4) -2
Each of the solar cell protective materials (F-2-1 to F-2-14) was cut into 150 mm × 150 mm squares, and this was used as a surface protective material. Glass, sealing material, surface protective material (fluorine resin film Layered in the order of the sealing material side and the other side), and using a vacuum laminator (manufactured by NPC Corporation, “LM30 × 30”), 150 ° C., 11 minutes, pressure 0.1 MPa Vacuum lamination was performed under the conditions of: Next, a pressure cooker test was performed using a pressure cooker test LSK-500 manufactured by Tommy Seiko Co., Ltd. under the test (PC 24-2) conditions of 120 ° C., 100% humidity, and 24 hours.
 (4)-3
 各太陽電池用保護材(F-3-1~F-3-8)を150mm×150mm角に切り出し、これを表面保護材として用い、ガラス、封止材、表面保護材(フッ素系樹脂フィルムが封止材側と反対側になる)の順になるように積層し、真空ラミネーター((株)エヌ・ピー・シー製、「LM30×30」)を用いて150℃、15分、圧力0.1MPaの条件で真空ラミネートを行った。次に、プレッシャークッカー試験((株)トミー精工、「LSK-500」)を用い、105℃、湿度100%、48時間の試験(PC48)条件でプレッシャークッカー試験を行った。
(4) -3
Each of the solar cell protective materials (F-3-1 to F-3-8) was cut into 150 mm × 150 mm squares, and this was used as a surface protective material. Glass, sealing material, surface protective material (fluorine resin film Layered in the order of the sealing material side and the other side), and using a vacuum laminator (manufactured by NPC, “LM30 × 30”), 150 ° C., 15 minutes, pressure 0.1 MPa Vacuum lamination was performed under the conditions of: Next, using a pressure cooker test (Tomy Seiko Co., Ltd., “LSK-500”), a pressure cooker test was conducted under the test (PC48) conditions of 105 ° C., 100% humidity and 48 hours.
(5)プレッシャークッカー・デラミネーション試験
 各太陽電池用保護材(F-3-1~F-3-8)を150mm×150mm角に切り出し、これを表面保護材として用い、ガラス、封止材、表面保護材(フッ素系樹脂フィルムが封止材側と反対側になる)の順になるように積層し、真空ラミネーター((株)エヌ・ピー・シー製、「LM30×30」)を用いて150℃、15分、圧力0.1MPaの条件で真空ラミネートを行った。次に、プレッシャークッカー試験((株)トミー精工、「LSK-500」)を用い、105℃、湿度100%の条件でプレッシャークッカー試験を行い、表面保護材の端面部においてデラミネーションの発生を目視で確認できるまでの試験時間を測定した。90時間にてデラミネーションが発生を確認できないものは90時間超(>90)とした。
(5) Pressure cooker delamination test Each solar cell protective material (F-3-1 to F-3-8) was cut into 150 mm × 150 mm squares, and this was used as a surface protective material to make glass, sealing material, Laminate so that the surface protective material (the fluororesin film is opposite to the sealing material side) in this order, and use a vacuum laminator (manufactured by NPC, "LM30x30") to 150 Vacuum lamination was performed under the conditions of ° C, 15 minutes, and pressure of 0.1 MPa. Next, using a pressure cooker test (Tomy Seiko Co., Ltd., “LSK-500”), a pressure cooker test is performed at 105 ° C. and a humidity of 100%, and the occurrence of delamination is visually observed at the end face of the surface protective material. The test time until it can be confirmed was measured. Those in which the occurrence of delamination could not be confirmed in 90 hours were over 90 hours (> 90).
(6)結露凍結試験(HF)
 各太陽電池用保護材(F-4-1~F-4-6)を150mm×150mm角に切り出し、これを表面保護材として用い、ガラス、封止材、表面保護材(フッ素系樹脂フィルムが封止材側と反対側になる)の順になるように積層し、真空ラミネーター((株)エヌ・ピー・シー製、「LM30×30」)を用いて150℃、11分、圧力0.1MPaの条件で真空ラミネートを行いサンプルを作製した。
 JIS C 8990-2004に準拠した方法により、超低温恒温恒湿機(エスペック(株)製、「PSL-2KPH」)を用いて、温度85℃、相対湿度85%環境下でサンプルを20時間保持し、次に1.5時間かけて温度を-40℃とし、温度-40℃環境下でサンプルを1時間保持し、これを1サイクルとして、再度1.5時間かけて温度を85℃に戻し前記サイクルを20回繰り返した。
(6) Condensation freezing test (HF)
Each of the solar cell protective materials (F-4-1 to F-4-6) is cut into 150 mm × 150 mm squares, and this is used as a surface protective material. Glass, sealing material, surface protective material (fluorine resin film Layered in the order of the sealant side and the other side), using a vacuum laminator (manufactured by NPC, "LM30x30") at 150 ° C for 11 minutes, pressure 0.1 MPa A sample was prepared by vacuum lamination under the following conditions.
Using a method in accordance with JIS C 8990-2004, a sample is held for 20 hours in an environment of 85 ° C. and 85% relative humidity using an ultra-low temperature and humidity chamber (manufactured by ESPEC Corporation, “PSL-2KPH”). Then, the temperature is set to −40 ° C. over 1.5 hours, and the sample is held for 1 hour in the temperature −40 ° C. environment. The cycle was repeated 20 times.
(7)ダンプヒート試験(DH)
 各太陽電池用保護材(F-4-1~F-4-6)を150mm×150mm角に切り出し、これを表面保護材として用い、ガラス、封止材、表面保護材(フッ素系樹脂フィルムが封止材側と反対側になる)の順になるように積層し、真空ラミネーター((株)エヌ・ピー・シー製、「LM30×30」)を用いて150℃、11分、圧力0.1MPaの条件で真空ラミネートを行いサンプルを作製した。
 JIS C 60068-3-4に準拠した方法により、恒温恒湿機(エスペック(株)製、商品名:PH-3KT)を用いて温度85℃、相対湿度85%環境下でサンプルを400時間保持した。
(7) Dump heat test (DH)
Each of the solar cell protective materials (F-4-1 to F-4-6) is cut into 150 mm × 150 mm squares, and this is used as a surface protective material. Glass, sealing material, surface protective material (fluorine resin film Layered in the order of the sealant side and the other side), using a vacuum laminator (manufactured by NPC, "LM30x30") at 150 ° C for 11 minutes, pressure 0.1 MPa A sample was prepared by vacuum lamination under the following conditions.
Using a method in accordance with JIS C 60068-3-4, a sample is held for 400 hours at 85 ° C. and 85% relative humidity using a thermo-hygrostat (trade name: PH-3KT, manufactured by ESPEC Corporation). did.
(8)外観
 (8)-1:真空ラミネーション後の外観
 各太陽電池用保護材(F-1-1~F-1-18、F-2-1~F-2-14)を150mm×150mm角に切り出し、これを表面保護材として用い、ガラス、封止材、表面保護材(フッ素系樹脂フィルムが封止材側と反対側になる)の順になるように積層し、真空ラミネーター((株)エヌ・ピー・シー製、「LM30×30」)を用いて140℃、15分、圧力0.1MPaの条件(F-1-1~F-1-18)または150℃、11分、圧力0.1MPaの条件(F-2-1~F-2-14)で真空ラミネートを行いサンプルを作製した。得られたサンプルの外観を観察し、以下の評価基準に従って評価した。
 ○:表面保護材表面にシワがなく良好な太陽電池モジュールが得られる。
 ×:表面保護材表面にシワが見られる。
(8) Appearance (8) -1: Appearance after vacuum lamination Protective materials for solar cells (F-1-1 to F-1-18, F-2-1 to F-2-14) are 150 mm x 150 mm Cut out into corners, use this as a surface protective material, and laminate it in the order of glass, sealing material, surface protective material (fluorine resin film opposite to the sealing material side), and vacuum laminator (Co., Ltd. ) Made by NPC, “LM30 × 30”) at 140 ° C., 15 minutes, pressure 0.1 MPa (F-1-1 to F-1-18) or 150 ° C., 11 minutes, pressure Vacuum lamination was performed under conditions of 0.1 MPa (F-2-1 to F-2-14) to prepare samples. The appearance of the obtained sample was observed and evaluated according to the following evaluation criteria.
◯: A good solar cell module without wrinkles on the surface protective material surface can be obtained.
X: Wrinkles are observed on the surface protective material surface.
 (8)-2:結露凍結試験後またはダンプヒート試験後の外観
 結露凍結試験後またはダンプヒート試験後の各太陽電池用保護材(F-4-1~F-4-6)を目視で確認し、以下の評価基準に従って評価した。
 ○:初期の状態と比較して変化していない。
 ×:初期の状態と比較して接着層が白化している。
(8) -2: Appearance after condensation freeze test or dump heat test Protective materials for solar cells (F-4-1 to F-4-6) visually confirmed after condensation freeze test or dump heat test And evaluated according to the following evaluation criteria.
○: No change compared to the initial state.
X: The adhesive layer is whitened compared with the initial state.
(9)層間強度及び層間強度劣化率
 (9)-1:層間強度
 各太陽電池用保護材(F-1-1~F-1-18、F-2-1~F-2-14)を測定幅15mmの短冊状に切り出し、引っ張り試験機((株)ORIENTIC製、「STA-1150」)を用いて300mm/minで、引張り方向は180度でフッ素系樹脂フィルムと防湿フィルムとの層間強度(N/15mm)を測定し、以下の評価基準に従って評価した。
 ○:層間強度が5N/15mm以上である。
 ×:層間強度が5N/15mm未満である。
(9) Interlayer strength and interlayer strength deterioration rate (9) -1: Interlayer strength Protective materials for solar cells (F-1-1 to F-1-18, F-2-1 to F-2-14) Cut into strips with a measurement width of 15 mm, using a tensile testing machine ("STA-1150" manufactured by ORIENTIC Co., Ltd.) at 300 mm / min, with a tensile direction of 180 degrees, and the interlayer strength between the fluororesin film and the moisture-proof film (N / 15 mm) was measured and evaluated according to the following evaluation criteria.
○: Interlayer strength is 5 N / 15 mm or more.
X: The interlayer strength is less than 5 N / 15 mm.
 (9)-2:層間強度及び層間強度劣化率
 各太陽電池用保護材(F-4-1~F-4-6)を測定幅15mmの短冊状に切り出し、引っ張り試験機(ORIENTIC製、「STA-1150」)を用いて300mm/minで、引張り方向は180度でフッ素系樹脂フィルムと防湿フィルム1(フッ素系樹脂フィルム側からみて1層目の防湿フィルム)との層間強度(N/15mm)を測定した。
 測定は、太陽電池用保護材作製直後、結露凍結試験後、及びダンプヒート試験後のそれぞれについて行った。
 また、太陽電池用保護材作製後の層間強度(初期層間強度)に対して、結露凍結試験後またはダンプヒート試験後の層間強度がどれだけ劣化したかを層間強度劣化率(%)として次式により求めた。
 層間強度劣化率(%)=[1-(結露凍結試験後またはダンプヒート試験後の太陽電池用保護材の層間強度)/(太陽電池用保護材の初期層間強度)]×100
(9) -2: Interlayer strength and interlayer strength deterioration rate Each solar cell protective material (F-4-1 to F-4-6) was cut into a strip shape with a measurement width of 15 mm, and a tensile tester (made by ORIENTIC, “ STA-1150 ") at 300 mm / min, the tensile direction is 180 degrees, and the interlaminar strength (N / 15 mm) between the fluororesin film and the moisture-proof film 1 (first moisture-proof film as seen from the fluororesin film side) ) Was measured.
The measurement was performed immediately after the production of the solar cell protective material, after the condensation freezing test, and after the dump heat test.
Also, how much the interlayer strength after the condensation freezing test or the dump heat test has deteriorated relative to the interlayer strength (initial interlayer strength) after the solar cell protective material is produced is expressed by the following formula as the interlayer strength deterioration rate (%) Determined by
Interlayer strength deterioration rate (%) = [1− (interlayer strength of solar cell protective material after condensation freeze test or dump heat test) / (initial interlaminar strength of solar cell protective material)] × 100
(10)端面防湿性
 各太陽電池用保護材(F-1-1~F-1-18)を150mm×150mm角に切り出し、これを表面保護材として用い、ガラス、封止材、表面保護材(フッ素系樹脂フィルムが封止材側と反対側になる)の順になるように積層し、次に、一辺1cmの緑色の塩化コバルト紙をガラス端部中央から2cmの位置とガラス中央部に位置するように、封止材と表面保護材の間に挟み、真空ラミネーター((株)エヌ・ピー・シー製、「LM30×30」)を用いて140℃、15分、圧力0.1MPaの条件で真空ラミネートを行いサンプルを作製した。得られたサンプルについて、プレッシャークッカー試験((株)トミー精工、「LSK-500」)により、120℃、湿度100%、24時間の試験条件でプレッシャークッカー試験を行った。プレッシャークッカー試験後の外観を観察し、以下の評価基準に従って評価した。
 ○:ガラス中央部の塩化コバルト紙及び端部から2cmの位置の塩化コバルト紙とも色が緑色のままである。
 ×:ガラス中央部の塩化コバルト紙は緑色のままであったが端部から2cmの位置の塩化コバルト紙は赤色に変色する。または、両方の塩化コバルト紙が赤色に変色する。
(10) Moisture resistance at the end face Each solar cell protective material (F-1-1 to F-1-18) is cut into a 150 mm × 150 mm square, and this is used as a surface protective material to make glass, a sealing material, and a surface protective material. Laminate so that the fluororesin film is in the order opposite to the sealing material side, and then place green cobalt chloride paper of 1 cm on each side at a position 2 cm from the center of the glass and at the center of the glass. As described above, sandwiched between a sealing material and a surface protective material, using a vacuum laminator (manufactured by NPC Corporation, “LM30 × 30”) at 140 ° C., 15 minutes, pressure 0.1 MPa A vacuum laminate was performed to prepare a sample. The obtained sample was subjected to a pressure cooker test under the test conditions of 120 ° C., 100% humidity, and 24 hours by a pressure cooker test (Tomy Seiko Co., Ltd., “LSK-500”). The appearance after the pressure cooker test was observed and evaluated according to the following evaluation criteria.
◯: The color of the cobalt chloride paper at the center of the glass and the cobalt chloride paper at a position 2 cm from the edge remains green.
X: The cobalt chloride paper at the center of the glass remained green, but the cobalt chloride paper at a position 2 cm from the end turns red. Or both cobalt chloride papers turn red.
(11)防湿性
 金属酸化物層を有する樹脂フィルム(防湿フィルムC-1~C-4)の防湿性は、各防湿フィルム作製後40℃で一週間保管した後の時点で、JIS Z 0222「防湿包装容器の透湿度試験方法」、JIS Z 0208「防湿包装材料の透湿度試験方法(カップ法)」の諸条件に順じ、次の手法で水蒸気透過率を求め、評価した。また、太陽電池用保護材の防湿性は、太陽電池用保護材作製直後(F-1-1~F-1-18、F-2-1~F-2-14、F-3-1~F-3-8、F-4-1~F-4-6)、プレッシャークッカー試験(PC24-1)後(F-1-1~F-1-18)、プレッシャークッカー試験(PC24-2)後(F-2-1~F-2-14)、プレッシャークッカー試験(P48)後(F-3-1~F-3-8)、結露凍結試験後及びダンプヒート試験後(F-4-1~F-4-6)において、上記と同様にして評価した。なお、太陽電池用保護材作製直後の水蒸気透過率を初期水蒸気透過率とした。
(11) Moisture resistance The moisture resistance of the resin films having the metal oxide layer (moisture-proof films C-1 to C-4) is determined according to JIS Z 0222 “ In accordance with the conditions of “moisture-proof packaging container moisture permeability test method” and JIS Z 0208 “moisture-proof packaging material moisture permeability test method (cup method)”, the water vapor permeability was determined and evaluated by the following method. Further, the moisture resistance of the solar cell protective material is determined immediately after the production of the solar cell protective material (F-1-1 to F-1-18, F-2-1 to F-2-14, F-3-1 to F-3-8, F-4-1 to F-4-6), after pressure cooker test (PC24-1) (F-1-1 to F-1-18), pressure cooker test (PC24-2) After (F-2-1 to F-2-14), after pressure cooker test (P48) (F-3-1 to F-3-8), after condensation freezing test and after dump heat test (F-4- 1 to F-4-6) were evaluated in the same manner as described above. The water vapor transmission rate immediately after the production of the solar cell protective material was taken as the initial water vapor transmission rate.
(水蒸気透過率の算出)
 透湿面積10.0cm×10.0cm角の下記各サンプルを2枚用い、延伸ポリプロピレンフィルムが内側となるようにして、吸湿剤として無水塩化カルシウム約20gを入れ四辺を封じた袋を作製し、その袋を温度40℃相対湿度90%の恒温恒湿装置に入れ、72時間以上の間隔でおよそ200日目まで質量測定し、4日目以降の経過時間と袋質量との回帰直線の傾きから温度40℃、相対湿度90%における水蒸気透過率[g/(m2・日)]を算出した。
(Calculation of water vapor transmission rate)
Using each of the following samples of a moisture permeable area 10.0 cm × 10.0 cm square, making a stretched polypropylene film inside, producing a bag containing about 20 g of anhydrous calcium chloride as a hygroscopic agent and sealing four sides, The bag is put into a constant temperature and humidity device at a temperature of 40 ° C. and a relative humidity of 90%, and the mass is measured until about 200 days at intervals of 72 hours or more. From the slope of the regression line between the elapsed time after the fourth day and the bag mass. The water vapor transmission rate [g / (m 2 · day)] at a temperature of 40 ° C. and a relative humidity of 90% was calculated.
(サンプル)
 防湿性フィルムを使用したサンプル:厚み60μmの延伸ポリプロピレンフィルム(東洋紡績(株)製 P1146)の表面に、ウレタン系接着剤(東洋モートン(株)製AD900とCAT-RT85を10:1.5の割合で配合したもの)を塗布、乾燥し、厚み約3μmの接着層を形成した。この接着層上に、作製後、一週間40℃で保管後の防湿フィルム(C1~C4)の金属酸化物層面側をラミネートし、サンプルを得た。
(sample)
Sample using moisture-proof film: urethane adhesive (AD900 and CAT-RT85 manufactured by Toyo Morton Co., Ltd. 10: 1.5) on the surface of a stretched polypropylene film (P1146 manufactured by Toyobo Co., Ltd.) having a thickness of 60 μm The mixture was applied and dried to form an adhesive layer having a thickness of about 3 μm. On the adhesive layer, the metal oxide layer surface side of the moisture-proof film (C1 to C4) after production and storage at 40 ° C. for one week was laminated to obtain a sample.
 太陽電池用保護材を使用したサンプル:厚み60μmの延伸ポリプロピレンフィルム(東洋紡績(株)製 P1146)の表面に、ウレタン系接着剤(東洋モートン(株)製AD900とCAT-RT85を10:1.5の割合で配合したもの)を塗布、乾燥し、厚み約3μmの接着層を形成した。この接着層上に各太陽電池用保護材の基材面側をラミネートし、サンプルを得た。 Sample using a protective material for solar cell: urethane adhesive (AD900 and CAT-RT85 manufactured by Toyo Morton Co., Ltd. 10: 1) on the surface of a stretched polypropylene film (P1146 manufactured by Toyobo Co., Ltd.) having a thickness of 60 μm. 5) was applied and dried to form an adhesive layer having a thickness of about 3 μm. The substrate surface side of each solar cell protective material was laminated on this adhesive layer to obtain a sample.
(12)防湿性(水蒸気透過率)劣化度
 (11)で得られた水蒸気透過率を用いて、防湿性劣化度を次式により求めた。
防湿性劣化度=(各試験後の太陽電池用保護材の水蒸気透過率)/(太陽電池用保護材の初期水蒸気透過率)
 なお、太陽電池用保護材F-1-1~F-1-18及びF-2-1~F-2-14については、以下の評価基準に従って評価した。
 ○:太陽電池用保護材の初期水蒸気透過率に対して試験後の水蒸気透過率が3倍未満である。
 ×:太陽電池用保護材の初期水蒸気透過率に対して試験後の水蒸気透過率が3倍以上である。
(12) Deterioration degree of moisture resistance (water vapor transmission rate) Using the water vapor transmission rate obtained in (11), the deterioration degree of moisture resistance was determined by the following equation.
Degree of moisture proof deterioration = (water vapor transmission rate of solar cell protective material after each test) / (initial water vapor transmission rate of solar cell protective material)
The solar cell protective materials F-1-1 to F-1-18 and F-2-1 to F-2-14 were evaluated according to the following evaluation criteria.
○: The water vapor transmission rate after the test is less than 3 times the initial water vapor transmission rate of the solar cell protective material.
X: The water vapor transmission rate after a test is 3 times or more with respect to the initial water vapor transmission rate of the protective material for solar cells.
[構成材]
<フッ素系樹脂フィルム>
(フッ素系樹脂フィルムA-1)
 フッ素系樹脂フィルムA-1として、テトラフルオロエチレン-エチレン共重合体(ETFE)フィルム(旭硝子(株)製、商品名:アフレックス50MW1250DCS、厚み50μm)を使用した。
[Constituent materials]
<Fluorine resin film>
(Fluorine resin film A-1)
As the fluororesin film A-1, a tetrafluoroethylene-ethylene copolymer (ETFE) film (manufactured by Asahi Glass Co., Ltd., trade name: Aflex 50MW1250DCS, thickness 50 μm) was used.
<塗工液>
(粘着剤塗工液B-1)
 撹拌機、温度計、還流冷却器および窒素導入管を備えた反応装置に、窒素ガスを導入して、この反応装置内の空気を窒素ガスに置換した。その後、この反応装置中に、ブチルアクリレート、メチルアクリレートを主モノマーとして、60℃で8時間反応させ、官能基としてヒドロキシル基を導入した重量平均分子量80万のアクリル系共重合体の溶液を得た。得られたアクリル系共重合体溶液にイソシアネート系架橋剤、ベンゾトリアゾール系紫外線吸収剤を配合し、粘着剤塗工液B-1を調製した。
<Coating fluid>
(Adhesive coating liquid B-1)
Nitrogen gas was introduced into a reaction apparatus equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen introduction tube, and the air in the reaction apparatus was replaced with nitrogen gas. Thereafter, in this reactor, butyl acrylate and methyl acrylate as main monomers were reacted at 60 ° C. for 8 hours to obtain a solution of an acrylic copolymer having a weight average molecular weight of 800,000 having a hydroxyl group introduced as a functional group. . The resulting acrylic copolymer solution was blended with an isocyanate crosslinking agent and a benzotriazole ultraviolet absorber to prepare an adhesive coating solution B-1.
(粘着剤塗工液B-2)
 粘着剤塗工液B-1の製造において、アクリル系共重合体の重量平均分子量を50万に調整したこと以外は同様にして、粘着剤塗工液B-2を調製した。
(Adhesive coating solution B-2)
A pressure-sensitive adhesive coating solution B-2 was prepared in the same manner as in the production of the pressure-sensitive adhesive coating solution B-1, except that the weight average molecular weight of the acrylic copolymer was adjusted to 500,000.
(粘着剤塗工液B-3)
 粘着剤塗工液B-1の製造において、アクリル系共重合体の官能基としてカルボキシル基を導入したこと以外は同様にして、粘着剤塗工液B-3を調製した。
(Adhesive coating solution B-3)
A pressure-sensitive adhesive coating solution B-3 was prepared in the same manner as in the production of the pressure-sensitive adhesive coating solution B-1, except that a carboxyl group was introduced as a functional group of the acrylic copolymer.
(粘着剤塗工液B-4)
 粘着剤塗工液B-1の製造において、アクリル系共重合体の官能基としてアミノ基を導入したこと以外は同様にして、粘着剤塗工液B-4を調製した。
(Adhesive coating solution B-4)
A pressure-sensitive adhesive coating solution B-4 was prepared in the same manner as in the production of the pressure-sensitive adhesive coating solution B-1, except that an amino group was introduced as a functional group of the acrylic copolymer.
(粘着剤塗工液B-5)
 粘着剤塗工液B-1の製造において、アクリル系共重合体の重量平均分子量を10万に調整したこと以外は同様にして、粘着剤塗工液B-5を調製した。
(Adhesive coating solution B-5)
A pressure-sensitive adhesive coating solution B-5 was prepared in the same manner as in the production of the pressure-sensitive adhesive coating solution B-1, except that the weight average molecular weight of the acrylic copolymer was adjusted to 100,000.
(接着剤塗工液B-6)
 ポリエステルポリオール成分を含む主剤として、三井化学ポリウレタン(株)製、A1143(商品名、エステル基1つあたりの分子量は109、粘度500[mPa・s])を用い、これに、脂環系のイソホロンジイソシアネートと芳香族系のキシリレンジイソシアネートを含む硬化剤として三井化学(株)製、タケネートA-50(商品名)を使用し、主剤/硬化剤の質量比が9/1となるように混合し、固形分濃度が35質量%となるように酢酸エチルで希釈して接着剤塗工液B-6を調製した。
(Adhesive coating solution B-6)
As a main ingredient containing a polyester polyol component, A1143 (trade name, molecular weight per ester group is 109, viscosity is 500 [mPa · s]) manufactured by Mitsui Chemicals Polyurethane Co., Ltd. is used. Takenate A-50 (trade name) manufactured by Mitsui Chemicals, Inc. is used as a curing agent containing diisocyanate and aromatic xylylene diisocyanate, and mixed so that the mass ratio of the main agent / curing agent is 9/1. Then, an adhesive coating solution B-6 was prepared by diluting with ethyl acetate so that the solid content concentration was 35% by mass.
(粘着剤塗工液B-7)
 ベンゾトリアゾール系紫外線吸収剤を配合しないこと以外はB-1と同様にして、粘着剤塗工液B-7を調製した。
(Adhesive coating solution B-7)
A pressure-sensitive adhesive coating solution B-7 was prepared in the same manner as B-1, except that no benzotriazole ultraviolet absorber was added.
(粘着剤塗工液B-8)
 ベンゾトリアゾール系紫外線吸収剤を配合しないこと以外はB-2と同様にして、粘接着剤塗工液B-8を調製した。
(Adhesive coating liquid B-8)
Adhesive coating solution B-8 was prepared in the same manner as B-2, except that no benzotriazole ultraviolet absorber was added.
(接着剤塗工液B-9)
 ポリカーボネートポリオール成分を含む主剤として、平均分子量2000のポリカプロラクトンポリオール(ダイセル化学工業(株)製、商品名「プラクセル210N」)、平均分子量500のポリカーボネートジオール(ダイセル化学工業(株)製、商品名「プラクセルCD CD205」)を使用し、ポリカプロラクトンポリオール/ポリカーボネートジオールの質量比が60/40となるように混合し、酢酸エチルに溶解させ、固形分約50質量%、粘度400[mPa・s]のポリオール溶液とした。このポリオール溶液に、硬化成分としてスミジュールN3300(住化バイエルウレタン(株)製)を、質量比が10/0.5となるように配合し、固形分濃度が35質量%となるように酢酸エチルで希釈して接着剤塗工液B-9を調製した。
(Adhesive coating solution B-9)
As a main component containing a polycarbonate polyol component, a polycaprolactone polyol having an average molecular weight of 2000 (trade name “Placcel 210N” manufactured by Daicel Chemical Industries, Ltd.) and a polycarbonate diol having an average molecular weight of 500 (trade name “manufactured by Daicel Chemical Industries, Ltd.”) Plaxel CD CD205 "), and mixed so that the mass ratio of polycaprolactone polyol / polycarbonate diol is 60/40, dissolved in ethyl acetate, and has a solid content of about 50 mass% and a viscosity of 400 [mPa · s]. A polyol solution was obtained. In this polyol solution, Sumidur N3300 (manufactured by Sumika Bayer Urethane Co., Ltd.) was blended as a curing component so that the mass ratio was 10 / 0.5, and acetic acid was added so that the solid content concentration was 35% by mass. Diluted with ethyl to prepare adhesive coating solution B-9.
(粘着剤塗工液B-10)
 温度計、撹拌機、還流冷却管、窒素ガス導入管を備えた反応装置を用い、アクリル酸ブチル90質量部、アクリル酸10質量部、酢酸エチル75質量部、トルエン75質量部の混合溶液に、アゾビスイソブチロニトリル0.3質量部を加え、窒素ガス雰囲気下、80℃で8時間重合した。反応終了後、トルエンにて固形分30質量%に調製し、質量平均分子量50万である樹脂を得た。得られた樹脂100質量部に対して、イソシアナート系架橋剤としてコロネートL(商品名:日本ポリウレタン工業社製、固形分75質量%)1質量部を添加して、粘着剤塗工液B-10を調製した。
(Adhesive coating solution B-10)
Using a reactor equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen gas inlet tube, a mixed solution of 90 parts by mass of butyl acrylate, 10 parts by mass of acrylic acid, 75 parts by mass of ethyl acetate, and 75 parts by mass of toluene, 0.3 parts by mass of azobisisobutyronitrile was added, and polymerization was performed at 80 ° C. for 8 hours in a nitrogen gas atmosphere. After completion of the reaction, the solid content was adjusted to 30% by mass with toluene to obtain a resin having a mass average molecular weight of 500,000. To 100 parts by mass of the obtained resin, 1 part by mass of Coronate L (trade name: Nippon Polyurethane Industry Co., Ltd., solid content: 75% by mass) is added as an isocyanate-based cross-linking agent, and pressure-sensitive adhesive coating solution B- 10 was prepared.
(粘着剤塗工液B-11)
 温度計、撹拌機、還流冷却管、窒素ガス導入管を備えた反応装置を用い、アクリル酸2-エチルヘキシル70質量部、アクリル酸メチル10質量部,アクリル酸5質量部、酢酸エチル20質量部、トルエン20質量部の混合溶液に、アゾビスイソブチロニトリル0.3質量部を加え、窒素ガス雰囲気下、80℃で8時間重合した。反応終了後、トルエンにて固形分30質量%に調製し、質量平均分子量50万である樹脂を得た。得られた樹脂100質量部に対して、イソシアナート系架橋剤としてコロネートL(商品名:日本ポリウレタン工業社製、固形分75質量%)1質量部を添加して、粘着剤塗工液B-11を調製した。
(Adhesive coating solution B-11)
Using a reactor equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen gas inlet tube, 70 parts by mass of 2-ethylhexyl acrylate, 10 parts by mass of methyl acrylate, 5 parts by mass of acrylic acid, 20 parts by mass of ethyl acetate, 0.3 parts by mass of azobisisobutyronitrile was added to a mixed solution of 20 parts by mass of toluene, and polymerization was performed at 80 ° C. for 8 hours in a nitrogen gas atmosphere. After completion of the reaction, the solid content was adjusted to 30% by mass with toluene to obtain a resin having a mass average molecular weight of 500,000. To 100 parts by mass of the obtained resin, 1 part by mass of Coronate L (trade name: Nippon Polyurethane Industry Co., Ltd., solid content: 75% by mass) is added as an isocyanate-based cross-linking agent, and pressure-sensitive adhesive coating solution B- 11 was prepared.
(粘着剤塗工液B-12)
 温度計、撹拌機、還流冷却管、窒素ガス導入管を備えた反応装置を用い、アクリル酸ブチル40質量部、アクリル酸イソブチル10質量部、アクリル酸メチル40、質量部アクリル酸10質量部、酢酸エチル75質量部、トルエン75質量部の混合溶液に、アゾビスイソブチロニトリル0.3質量部を加え、窒素ガス雰囲気下、80℃で8時間重合した。反応終了後、トルエンにて固形分30質量%に調製し、質量平均分子量50万である樹脂を得た。得られた樹脂100質量部に対して、イソシアナート系架橋剤としてコロネートL(商品名:日本ポリウレタン工業社製、固形分75質量%)1質量部を添加して、粘着剤塗工液B-12を調製した。
(Adhesive coating liquid B-12)
Using a reactor equipped with a thermometer, stirrer, reflux condenser, and nitrogen gas inlet tube, 40 parts by mass of butyl acrylate, 10 parts by mass of isobutyl acrylate, 40 parts by mass of methyl acrylate, 10 parts by mass of acrylic acid, acetic acid 0.3 parts by mass of azobisisobutyronitrile was added to a mixed solution of 75 parts by mass of ethyl and 75 parts by mass of toluene, and polymerization was performed at 80 ° C. for 8 hours in a nitrogen gas atmosphere. After completion of the reaction, the solid content was adjusted to 30% by mass with toluene to obtain a resin having a mass average molecular weight of 500,000. To 100 parts by mass of the obtained resin, 1 part by mass of Coronate L (trade name: Nippon Polyurethane Industry Co., Ltd., solid content: 75% by mass) is added as an isocyanate-based cross-linking agent, and pressure-sensitive adhesive coating solution B- 12 was prepared.
(接着剤塗工液B-13)
 ポリウレタンポリオール成分を含む主剤としてロックペイント株式会社製HD1013を使用し、脂肪族系のヘキサメチレンジイソシアナート成分を含む硬化剤としてロックペイント株式会社製H62を使用し、重量比で10:1となるように混合し、固形分濃度が30質量%となるように酢酸エチルで希釈して接着剤塗工液B-13を調製した。
(Adhesive coating solution B-13)
HD1013 manufactured by Rock Paint Co., Ltd. is used as the main agent containing the polyurethane polyol component, and H62 manufactured by Rock Paint Co., Ltd. is used as the curing agent containing the aliphatic hexamethylene diisocyanate component, resulting in a weight ratio of 10: 1. Were mixed with each other and diluted with ethyl acetate so that the solid content concentration was 30% by mass to prepare an adhesive coating solution B-13.
(粘着剤塗工液B-14)
 攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、アクリル酸n-ブチル60重量部、アクリル酸メチル40重量部、4-ヒドロキシブチルアクリレート5重量部、重合開始剤として、2,2-アゾビスイソブチロニトリル0.1重量部と酢酸エチル200重量部を投入し、1時間窒素置換した後、窒素気流下で撹拝しながら60℃付近に保って9時間重合反応を行い、重量平均分子量30万のアクリル系ポリマー溶液(1)を調製した。ポリマー溶液(1)の固形分100重量部に対して架橋剤として0.2重量部のイソシアネート架橋剤(トリメチロールプロパンのヘキサメチレンジイソシアネート付加物;三井武田ケミカル社製、D-160N)とを均一に混合撹搾し、粘着剤塗工液B-14を調製した。
(Adhesive coating liquid B-14)
In a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas inlet tube and a condenser, n-butyl acrylate 60 parts by weight, methyl acrylate 40 parts by weight, 4-hydroxybutyl acrylate 5 parts by weight, a polymerization initiator Then, 0.1 part by weight of 2,2-azobisisobutyronitrile and 200 parts by weight of ethyl acetate were added, and the atmosphere was purged with nitrogen for 1 hour, and then kept at around 60 ° C. while stirring in a nitrogen stream for 9 hours. A polymerization reaction was performed to prepare an acrylic polymer solution (1) having a weight average molecular weight of 300,000. Uniformity of 0.2 parts by weight of isocyanate cross-linking agent (hexamethylene diisocyanate adduct of trimethylolpropane; manufactured by Mitsui Takeda Chemical Co., D-160N) as a cross-linking agent with respect to 100 parts by weight of solid content of polymer solution (1) The mixture was mixed and stirred to prepare an adhesive coating solution B-14.
(粘着剤塗工液B-15)
 攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、アクリル酸n-ブチル100重量部、アクリル酸3重量部、4-ヒドロキシブチルアクリレート2重量部、重合開始剤として、2,2-アゾビスイソブチロニトリル0.1重量部と酢酸エチル200重量部を投入し、1時間窒素置換した後、窒素気流下で撹拝しながら60℃付近に保って9時間重合反応を行い、重量平均分子量40万のアクリル系ポリマー溶液(2)を調製した。ポリマー溶液(2)の固形分100重量部に対して架橋剤として0.2重量部のイソシアネート架橋剤(トリメチロールプロパンのヘキサメチレンジイソシアネート付加物;三井武田ケミカル社製、D-160N)とを均一に混合撹搾し、粘着剤塗工液B-15を調製した。
(Adhesive coating solution B-15)
In a four-necked flask equipped with a stirring blade, thermometer, nitrogen gas inlet tube, and condenser, n-butyl acrylate 100 parts by weight, acrylic acid 3 parts by weight, 4-hydroxybutyl acrylate 2 parts by weight, as a polymerization initiator Then, 0.1 part by weight of 2,2-azobisisobutyronitrile and 200 parts by weight of ethyl acetate were added, and the atmosphere was purged with nitrogen for 1 hour, and then kept at around 60 ° C. for 9 hours while stirring under a nitrogen stream. Reaction was performed to prepare an acrylic polymer solution (2) having a weight average molecular weight of 400,000. Uniformly 0.2 parts by weight of an isocyanate crosslinking agent (hexamethylene diisocyanate adduct of trimethylolpropane; manufactured by Mitsui Takeda Chemical Co., D-160N) as a crosslinking agent with respect to 100 parts by weight of the solid content of the polymer solution (2) The mixture was mixed and stirred to prepare an adhesive coating solution B-15.
(接着剤塗工液B-16)
 ポリエステルポリオール成分を含む主剤として東洋インキ製造(株)製IS801(エステル基1つあたりの分子量は105、粘度1700[mPa・sec])を用い、ヘキサメチレンジイソシアネート成分とイソホロンジイソシアネートを含む硬化剤として東洋インキ製造(株)製CR001を使用し、質量比で10:1となるように混合し、固形分濃度が30質量%となるように酢酸エチルで希釈して接着剤塗工液B-16を調製した。なお、接着剤塗工液2からなる接着層のガラス転移点(Tg)は32℃であった。
(Adhesive coating solution B-16)
IS801 manufactured by Toyo Ink Mfg. Co., Ltd. (molecular weight per ester group: 105, viscosity 1700 [mPa · sec]) is used as the main component containing the polyester polyol component, and Toyo is used as the curing agent containing the hexamethylene diisocyanate component and isophorone diisocyanate. Using CR001 manufactured by Ink Manufacturing Co., Ltd., mixing at a mass ratio of 10: 1, diluting with ethyl acetate to a solid content concentration of 30% by mass, and then applying the adhesive coating solution B-16 Prepared. The glass transition point (Tg) of the adhesive layer comprising the adhesive coating solution 2 was 32 ° C.
 各塗工液を用いて形成された粘着剤層または接着剤層の引っ張り貯蔵弾性率及びガラス転移点を表1~3に示す。 Tables 1 to 3 show the tensile storage elastic modulus and glass transition point of the pressure-sensitive adhesive layer or adhesive layer formed using each coating solution.
<金属酸化物層を有する樹脂フィルム(防湿フィルム)>
(防湿フィルムC-1)
 基材として、厚み12μmの二軸延伸ポリエチレンナフタレートフィルム(帝人デュポンフィルム(株)製、商品名:「Q51C」)を用い、そのコロナ処理面に、下記のコート液を塗布乾燥して厚み0.1μmのコート層を形成した。
 次いで、真空蒸着装置を使用して1.33×10-3Pa(1×10-5Torr)の真空下でSiOを加熱蒸発させ、コート層上に厚み50nmのSiOx(x=1.5)の金属酸化物層を有する樹脂フィルムC-1を得た。作製した防湿フィルムC-1の防湿性は0.01[g/(m2・日)]であった。
<Resin film having metal oxide layer (moisture-proof film)>
(Dampproof film C-1)
A biaxially stretched polyethylene naphthalate film (made by Teijin DuPont Films Co., Ltd., trade name: “Q51C”) having a thickness of 12 μm was used as a substrate, and the following coating solution was applied to the corona-treated surface and dried to obtain a thickness of 0. A 1 μm coat layer was formed.
Next, SiO was heated and evaporated under a vacuum of 1.33 × 10 −3 Pa (1 × 10 −5 Torr) using a vacuum deposition apparatus, and SiOx (x = 1.5) having a thickness of 50 nm was formed on the coating layer. A resin film C-1 having a metal oxide layer was obtained. The moisture-proof film C-1 produced had a moisture-proof property of 0.01 [g / (m 2 · day)].
(コート液)
 ポリビニルアルコール樹脂(日本合成化学(株)製、商品名:「ゴーセノール」、ケン化度:97.0~98.8mol%、重合度:2400)220gをイオン交換水2810gに加え加温溶解した水溶液に、20℃で撹拌しながら35mol%塩酸645gを加えた。次いで、10℃でブチルアルデヒド3.6gを撹拌しながら添加し、5分後に、アセトアルデヒド143gを撹拌しながら滴下し、樹脂微粒子を析出させた。次いで、60℃で2時間保持した後、液を冷却し、炭酸水素ナトリウムで中和し、水洗、乾燥し、ポリビニルアセトアセタール樹脂粉末(アセタール化度75mol%)を得た。
 また、架橋剤としてイソシアネート樹脂(住友バイエルウレタン(株)製、商品名:「スミジュールN-3200」)を用い、水酸基に対するイソシアネート基の当量比が1:2になるように混合した。
(Coating solution)
An aqueous solution obtained by adding 220 g of polyvinyl alcohol resin (manufactured by Nippon Synthetic Chemical Co., Ltd., trade name: “GOHSENOL”, degree of saponification: 97.0 to 98.8 mol%, degree of polymerization: 2400) to 2810 g of ion-exchanged water and dissolving by heating. To the mixture, 645 g of 35 mol% hydrochloric acid was added while stirring at 20 ° C. Subsequently, 3.6 g of butyraldehyde was added with stirring at 10 ° C., and after 5 minutes, 143 g of acetaldehyde was added dropwise with stirring to precipitate resin fine particles. Subsequently, after hold | maintaining at 60 degreeC for 2 hours, the liquid was cooled, neutralized with sodium hydrogencarbonate, washed with water, and dried, and the polyvinyl acetoacetal resin powder (acetalization degree 75 mol%) was obtained.
Further, an isocyanate resin (manufactured by Sumitomo Bayer Urethane Co., Ltd., trade name: “Sumidule N-3200”) was used as a crosslinking agent, and the mixture was mixed so that the equivalent ratio of isocyanate groups to hydroxyl groups was 1: 2.
(防湿フィルムC-2)
 防湿フィルムC-1の作製において、基材を、厚み25μmの二軸延伸ポリエチレンナフタレートフィルム(帝人デュポンフィルム(株)製、商品名:「Q51C」)に変更したこと以外は同様にして防湿フィルムC-2を作製した。作製した防湿フィルムC-2の防湿性は0.01[g/(m2・日)]であった。
(Dampproof film C-2)
The same moisture-proof film except that the base material was changed to a biaxially stretched polyethylene naphthalate film with a thickness of 25 μm (manufactured by Teijin DuPont Films, Inc., trade name: “Q51C”) in the production of the moisture-proof film C-1. C-2 was produced. The produced moisture-proof film C-2 had a moisture-proof property of 0.01 [g / (m 2 · day)].
(防湿フィルムC-3)
 防湿フィルムC-1の作製において、基材を、厚み50μmの二軸延伸ポリエチレンナフタレートフィルム(帝人デュポンフィルム(株)製、商品名:「Q51C」)に変更したこと以外は同様にして防湿フィルムC-3を作製した。作製した防湿フィルムC-3の防湿性は0.01[g/(m2・日)]であった。
(Moisture-proof film C-3)
The same moisture-proof film except that the base material was changed to a 50 μm-thick biaxially stretched polyethylene naphthalate film (manufactured by Teijin DuPont Films, trade name: “Q51C”) in the production of the moisture-proof film C-1. C-3 was produced. The produced moisture-proof film C-3 had a moisture-proof property of 0.01 [g / (m 2 · day)].
(防湿フィルムC-4)
 厚み12μmのポリエチレンテレフタレート樹脂フィルムにシリカを蒸着した三菱樹脂製テックバリアLXを防湿フィルムC-4として使用した。作製した防湿フィルムC-4の防湿性は0.2[g/(m2・日)]であった。
(Moisture-proof film C-4)
A tech barrier LX made by Mitsubishi Plastics in which silica was vapor-deposited on a polyethylene terephthalate resin film having a thickness of 12 μm was used as the moisture-proof film C-4. The produced moisture-proof film C-4 had a moisture-proof property of 0.2 [g / (m 2 · day)].
<高融点フィルム>
(高融点フィルムD-1)
 ポリエチレンテレフタレートフィルム(三菱樹脂(株)製、商品名:ダイアホイルT-100、厚み:50μm)を炉長27m、温度170℃の乾燥炉に50メートル/分の速度で通過させ熱処理して高融点フィルムD-1を作製した。高融点フィルムD-1の熱収縮率は0.3%、融点は252℃であった。
<High melting point film>
(High melting point film D-1)
A polyethylene terephthalate film (Mitsubishi Resin Co., Ltd., trade name: Diafoil T-100, thickness: 50 μm) is passed through a drying furnace with a furnace length of 27 m and a temperature of 170 ° C. at a rate of 50 meters / minute and heat-treated to have a high melting point. Film D-1 was produced. The high melting point film D-1 had a thermal shrinkage of 0.3% and a melting point of 252 ° C.
(高融点フィルムD-2)
 ポリエチレンテレフタレートフィルム(三菱樹脂(株)製、商品名:ダイアホイルT-100、厚み:50μm)を高融点フィルムD-2として使用した。高融点フィルムD-2の熱収縮率は1.2%、融点は252℃であった。
(High melting point film D-2)
A polyethylene terephthalate film (manufactured by Mitsubishi Plastics, trade name: Diafoil T-100, thickness: 50 μm) was used as the high melting point film D-2. The high melting point film D-2 had a heat shrinkage rate of 1.2% and a melting point of 252 ° C.
(中間フィルム)
E-1:ブリヂストン社製のエチレン-酢酸ビニル製封止材(商品名:EVASKY S11(厚み500μm、融点;69.6℃))を中間フィルムとして使用した。
(Intermediate film)
E-1: An ethylene-vinyl acetate sealing material (trade name: EVASKY S11 (thickness: 500 μm, melting point: 69.6 ° C.)) manufactured by Bridgestone Corporation was used as an intermediate film.
E-2:低密度ポリエチレン樹脂に、所要の添加剤を添加し、十分に混練して低密度ポリエチレン樹脂を調製し、次いで、該低密度ポリエチレン樹脂を押出機で押し出して、厚み140μmの無延伸低密度ポリエチレン樹脂からなる中間フィルムを製造した。融点は109℃であった。 E-2: Add necessary additives to low density polyethylene resin, knead well to prepare low density polyethylene resin, and then extrude the low density polyethylene resin with an extruder, unstretched with a thickness of 140 μm An intermediate film made of low density polyethylene resin was produced. The melting point was 109 ° C.
E-3:ホモポリプロピレン樹脂組成物とエチレン-プロピレンランダム共重合体樹脂とを押出機で層厚み比0.1:0.8:0.1(ホモポリプロピレン樹脂層が中心層、エチレン-プロピレンランダム共重合体樹脂が両外層)で多層押出して、厚み190μmの無延伸ポリプロピレン樹脂フィルムを製造し、中間フィルムとして使用した。前述の方法で測定した融点は162.3℃であった。 E-3: Layer thickness ratio of homopolypropylene resin composition and ethylene-propylene random copolymer resin with an extruder 0.1: 0.8: 0.1 (homopolypropylene resin layer is the central layer, ethylene-propylene random A copolymer resin was multilayer extruded with both outer layers) to produce a 190 μm thick unstretched polypropylene resin film, which was used as an intermediate film. The melting point measured by the above method was 162.3 ° C.
<封止材>
 封止材として、エチレン-酢酸ビニル共重合体(EVA)(ブリヂストン(株)製、商品名:EVASKY S11、厚み:500μm)を使用した。
<Encapsulant>
As the sealing material, ethylene-vinyl acetate copolymer (EVA) (manufactured by Bridgestone Corporation, trade name: EVASKY S11, thickness: 500 μm) was used.
<ガラス>
 縦150mm、横150mm、厚さ3mmの白板ガラスを使用した。
<Glass>
White plate glass having a length of 150 mm, a width of 150 mm, and a thickness of 3 mm was used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例1-1
 フッ素系樹脂フィルムA-1に粘着剤塗工液B-1を固形分20g/m2となるよう塗布乾燥し、作製した厚み20μmの粘着剤層(i)面と防湿フィルムC-1の金属酸化物層面とを貼合し、その後40℃で5日間養生し、厚み82μmの太陽電池用保護材F-1-1を作製した。得られた太陽電池用保護材F-1-1を使用し、各種測定及び評価を行った。結果を表4に示す。なお太陽電池用保護材F-1-1の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Example 1-1
The adhesive coating liquid B-1 was applied to the fluororesin film A-1 and dried so as to have a solid content of 20 g / m 2, and the 20 μm-thick adhesive layer (i) surface and metal of the moisture-proof film C-1 were produced. The oxide layer surface was bonded, and then cured at 40 ° C. for 5 days to produce a solar cell protective material F-1-1 having a thickness of 82 μm. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-1. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-1 was 0.01 [g / (m 2 · day)].
実施例1-2
 粘着剤塗工液B-1の塗布量を固形分30g/m2となるように変更したこと以外は実施例1-1と同様にして、厚み92μmの太陽電池用保護材F-1-2を作製した。得られた太陽電池用保護材F-1-2を使用し、各種測定及び評価を行った。結果を表4に示す。なお太陽電池用保護材F-1-2の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Example 1-2
A solar cell protective material F-1-2 having a thickness of 92 μm was obtained in the same manner as in Example 1-1 except that the coating amount of the pressure-sensitive adhesive coating solution B-1 was changed to a solid content of 30 g / m 2. Was made. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-2. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-2 was 0.01 [g / (m 2 · day)].
実施例1-3
 防湿フィルムC-1を防湿フィルムC-2に変更したこと以外は実施例1-1と同様にして、厚み95μmの太陽電池用保護材F-1-3を作製した。得られた太陽電池用保護材F-1-3を使用し、各種測定及び評価を行った。結果を表4に示す。なお太陽電池用保護材F-1-3の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Example 1-3
A solar cell protective material F-1-3 having a thickness of 95 μm was produced in the same manner as in Example 1-1, except that the moisture-proof film C-1 was changed to the moisture-proof film C-2. Using the obtained solar cell protective material F-1-3, various measurements and evaluations were performed. The results are shown in Table 4. The initial water vapor permeability of the protective material F-1-3 for solar cells was 0.01 [g / (m 2 · day)].
実施例1-4
 粘着剤塗工液B-1の塗布量を固形分30g/m2となるように変更したこと以外は実施例1-3と同様にして、厚み105μmの太陽電池用保護材F-1-4を作製した。得られた太陽電池用保護材F-1-4を使用し、各種測定及び評価を行った。結果を表4に示す。なお太陽電池用保護材F-1-4の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Example 1-4
A solar cell protective material F-1-4 having a thickness of 105 μm was obtained in the same manner as in Example 1-3, except that the coating amount of the adhesive coating solution B-1 was changed to a solid content of 30 g / m 2. Was made. Using the obtained solar cell protective material F-1-4, various measurements and evaluations were performed. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-4 was 0.01 [g / (m 2 · day)].
実施例1-5
 粘着剤塗工液B-1を粘着剤塗工液B-2に変更したこと以外は実施例1-1と同様にして、厚み82μmの太陽電池用保護材F-1-5を作製した。得られた太陽電池用保護材F-1-5を使用し、各種測定及び評価を行った。結果を表4に示す。なお太陽電池用保護材F-1-5の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Example 1-5
A solar cell protective material F-1-5 having a thickness of 82 μm was produced in the same manner as in Example 1-1 except that the adhesive coating liquid B-1 was changed to the adhesive coating liquid B-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-5. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-5 was 0.01 [g / (m 2 · day)].
実施例1-6
 粘着剤塗工液B-1を粘着剤塗工液B-2に変更したこと以外は実施例1-2と同様にして、厚み92μmの太陽電池用保護材F-1-6を作製した。得られた太陽電池用保護材F-1-6を使用し、各種測定及び評価を行った。結果を表4に示す。なお太陽電池用保護材F-1-6の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Example 1-6
A solar cell protective material F-1-6 having a thickness of 92 μm was produced in the same manner as in Example 1-2 except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-6. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-6 was 0.01 [g / (m 2 · day)].
実施例1-7
 粘着剤塗工液B-1を粘着剤塗工液B-2に変更したこと以外は実施例1-3と同様にして、厚み95μmの太陽電池用保護材F-1-7を作製した。得られた太陽電池用保護材F-1-7を使用し、各種測定及び評価を行った。結果を表4に示す。なお太陽電池用保護材F-1-7の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Example 1-7
A solar cell protective material F-1-7 having a thickness of 95 μm was produced in the same manner as in Example 1-3, except that the adhesive coating liquid B-1 was changed to the adhesive coating liquid B-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-7. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-7 was 0.01 [g / (m 2 · day)].
実施例1-8
 粘着剤塗工液B-1を粘着剤塗工液B-2に変更したこと以外は実施例1-4と同様にして、厚み105μmの太陽電池用保護材F-1-8を作製した。得られた太陽電池用保護材F-1-8を使用し、各種測定及び評価を行った。結果を表4に示す。なお太陽電池用保護材F-1-8の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Example 1-8
A solar cell protective material F-1-8 having a thickness of 105 μm was produced in the same manner as in Example 1-4, except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-8. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-8 was 0.01 [g / (m 2 · day)].
比較例1-1
 粘着剤塗工液B-1を粘着剤塗工液B-3に変更したこと以外は実施例1-1と同様にして、厚み82μmの太陽電池用保護材F-1-9を作製した。得られた太陽電池用保護材F-1-9を使用し、各種測定及び評価を行った。結果を表4に示す。なお太陽電池用保護材F-1-9の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Comparative Example 1-1
A solar cell protective material F-1-9 having a thickness of 82 μm was produced in the same manner as in Example 1-1 except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-3. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-9. The results are shown in Table 4. The initial water vapor transmission rate of the solar cell protective material F-1-9 was 0.01 [g / (m 2 · day)].
比較例1-2
 粘着剤塗工液B-3の塗布量を固形分30g/m2となるように変更したこと以外は比較例1-1と同様にして、厚み92μmの太陽電池用保護材F-1-10を作製した。得られた太陽電池用保護材F-1-10を使用し、各種測定及び評価を行った。結果を表4に示す。なお太陽電池用保護材F-1-10の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Comparative Example 1-2
A solar cell protective material F-1-10 having a thickness of 92 μm was obtained in the same manner as in Comparative Example 1-1 except that the coating amount of the adhesive coating solution B-3 was changed to a solid content of 30 g / m 2. Was made. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-10. The results are shown in Table 4. The initial water vapor transmission rate of the solar cell protective material F-1-10 was 0.01 [g / (m 2 · day)].
比較例1-3
 粘着剤塗工液B-1を粘着剤塗工液B-4に変更したこと以外は実施例1-1と同様にして、厚み82μmの太陽電池用保護材F-1-11を作製した。得られた太陽電池用保護材F-1-11を使用し、各種測定及び評価を行った。結果を表4に示す。なお太陽電池用保護材F-1-11の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Comparative Example 1-3
A solar cell protective material F-1-11 having a thickness of 82 μm was produced in the same manner as in Example 1-1 except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-4. Using the obtained solar cell protective material F-1-11, various measurements and evaluations were performed. The results are shown in Table 4. The initial water vapor transmission rate of the solar cell protective material F-1-11 was 0.01 [g / (m 2 · day)].
比較例1-4
 粘着剤塗工液B-4の塗布量を固形分30g/m2となるように変更したこと以外は比較例1-3と同様にして、厚み92μmの太陽電池用保護材F-1-12を作製した。得られた太陽電池用保護材F-1-12を使用し、各種測定及び評価を行った。結果を表4に示す。なお太陽電池用保護材F-1-12の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Comparative Example 1-4
A solar cell protective material F-1-12 having a thickness of 92 μm was obtained in the same manner as in Comparative Example 1-3, except that the coating amount of the adhesive coating solution B-4 was changed to a solid content of 30 g / m 2. Was made. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-12. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-12 was 0.01 [g / (m 2 · day)].
比較例1-5
 粘着剤塗工液B-1を粘着剤塗工液B-5に変更したこと以外は実施例1-1と同様にして、厚み82μmの太陽電池用保護材F-1-13を作製した。得られた太陽電池用保護材F-1-13を使用し、各種測定及び評価を行った。結果を表4に示す。なお太陽電池用保護材F-1-13の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Comparative Example 1-5
A solar cell protective material F-1-13 having a thickness of 82 μm was produced in the same manner as in Example 1-1 except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-5. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-13. The results are shown in Table 4. The initial water vapor transmission rate of the solar cell protective material F-1-13 was 0.01 [g / (m 2 · day)].
比較例1-6
 粘着剤塗工液B-1の塗布量を固形分50g/m2となるように変更したこと以外は実施例1-1と同様にして、厚み112μmの太陽電池用保護材F-1-14を作製した。得られた太陽電池用保護材F-1-14を使用し、各種測定及び評価を行った。結果を表4に示す。なお太陽電池用保護材F-1-14の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Comparative Example 1-6
A solar cell protective material F-1-14 having a thickness of 112 μm was obtained in the same manner as in Example 1-1 except that the coating amount of the adhesive coating solution B-1 was changed to a solid content of 50 g / m 2. Was made. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-14. The results are shown in Table 4. The initial water vapor transmission rate of the solar cell protective material F-1-14 was 0.01 [g / (m 2 · day)].
比較例1-7
 粘着剤塗工液B-1を粘着剤塗工液B-2に変更したこと以外は比較例1-6と同様にして、厚み112μmの太陽電池用保護材F-1-15を作製した。得られた太陽電池用保護材F-1-15を使用し、各種測定及び評価を行った。結果を表4に示す。なお太陽電池用保護材F-1-15の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Comparative Example 1-7
A solar cell protective material F-1-15 having a thickness of 112 μm was produced in the same manner as in Comparative Example 1-6, except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-15. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-15 was 0.01 [g / (m 2 · day)].
比較例1-8
 防湿フィルムC-1を防湿フィルムC-3に変更したこと以外は実施例1-1と同様にして、厚み120μmの太陽電池用保護材F-1-16を作製した。得られた太陽電池用保護材F-1-16を使用し、各種測定及び評価を行った。結果を表4に示す。なお太陽電池用保護材F-1-16の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Comparative Example 1-8
A solar cell protective material F-1-16 having a thickness of 120 μm was produced in the same manner as in Example 1-1 except that the moisture-proof film C-1 was changed to the moisture-proof film C-3. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-16. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-16 was 0.01 [g / (m 2 · day)].
比較例1-9
 粘着剤塗工液B-1を粘着剤塗工液B-2に変更したこと以外は比較例1-8と同様にして、厚み120μmの太陽電池用保護材F-1-17を作製した。得られた太陽電池用保護材F-1-17を使用し、各種測定及び評価を行った。結果を表4に示す。なお太陽電池用保護材F-1-17の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Comparative Example 1-9
A solar cell protective material F-1-17 having a thickness of 120 μm was produced in the same manner as in Comparative Example 1-8, except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-17. The results are shown in Table 4. The initial water vapor permeability of the solar cell protective material F-1-17 was 0.01 [g / (m 2 · day)].
比較例1-10
 粘着剤塗工液B-1を接着剤塗工液B-6に変更し、塗布量を固形分8g/m2となるように変更したこと以外は実施例1-1と同様にして、厚み70μmの太陽電池用保護材F-1-18を作製した。得られた太陽電池用保護材F-1-18を使用し、各種測定及び評価を行った。結果を表4に示す。なお太陽電池用保護材F-1-18の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Comparative Example 1-10
The thickness was changed in the same manner as in Example 1-1 except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-6 and the coating amount was changed to a solid content of 8 g / m 2. A protective material F-1-18 for a solar cell of 70 μm was produced. Various measurements and evaluations were performed using the obtained solar cell protective material F-1-18. The results are shown in Table 4. The initial water vapor transmission rate of the solar cell protective material F-1-18 was 0.01 [g / (m 2 · day)].
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、粘着剤層の厚み、粘着剤層の100℃、周波数10Hz、歪0.1%における引っ張り貯蔵弾性率、防湿フィルムの基材厚みのいずれかが本発明の規定範囲外である比較例1-1~10の太陽電池用保護材は、いずれも端面防湿性に劣るものであった。また、防湿性及び/又は層間強度に劣るものであった。
 これに対し、実施例1-1~8の太陽電池用保護材は、いずれも外観に優れ、かつ、層間強度及び防湿性、特に端面防湿性に優れる。
As apparent from Table 4, the thickness of the pressure-sensitive adhesive layer, the pressure-sensitive adhesive layer at 100 ° C., the frequency of 10 Hz, the tensile storage elastic modulus at a strain of 0.1%, and the substrate thickness of the moisture-proof film are within the specified range of the present invention. The protective materials for solar cells of Comparative Examples 1-1 to 10, which were outside, were inferior in end face moisture resistance. Moreover, it was inferior to moisture resistance and / or interlayer strength.
On the other hand, the solar cell protective materials of Examples 1-1 to 8 are all excellent in appearance, and excellent in interlayer strength and moisture resistance, particularly in end face moisture resistance.
実施例2-1
 フッ素系樹脂フィルムA-1に粘着剤塗工液B-1を固形分20g/m2となるよう塗布乾燥し、作製した厚み20μmの粘着剤層(i)面と防湿フィルムC-1の金属酸化物層面とを貼合し、更に粘着剤塗工液B-7を固形分20g/m2となるよう防湿フィルムC-1の金属酸化物層面の反対面に塗布乾燥し、作製した厚み20μmの粘接着剤層(ii)面と高融点フィルムD-1とを貼合した。その後40℃で5日間養生し、厚み152μmの太陽電池用保護材F-2-1を作製した。得られた太陽電池用保護材F-2-1を使用し、各種測定及び評価を行った。結果を表5に示す。なお太陽電池用保護材F-2-1の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Example 2-1
The adhesive coating liquid B-1 was applied to the fluororesin film A-1 and dried so as to have a solid content of 20 g / m 2, and the 20 μm-thick adhesive layer (i) surface and metal of the moisture-proof film C-1 were produced. The oxide layer surface was bonded, and the adhesive coating solution B-7 was applied and dried on the opposite surface of the metal oxide layer surface of the moisture-proof film C-1 to a solid content of 20 g / m 2. The surface of the adhesive layer (ii) and the high melting point film D-1 were bonded. Thereafter, it was cured at 40 ° C. for 5 days to produce a solar cell protective material F-2-1 having a thickness of 152 μm. Using the obtained solar cell protective material F-2-1, various measurements and evaluations were performed. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-1 was 0.01 [g / (m 2 · day)].
実施例2-2
 粘着剤塗工液B-1を粘着剤塗工液B-2に変更したこと以外は実施例2-1と同様にして、厚み152μmの太陽電池用保護材F-2-2を作製した。得られた太陽電池用保護材F-2-2を使用し、各種測定及び評価を行った。結果を表5に示す。なお太陽電池用保護材F-2-2の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Example 2-2
A solar cell protective material F-2-2 having a thickness of 152 μm was produced in the same manner as in Example 2-1, except that the pressure-sensitive adhesive coating liquid B-1 was changed to the pressure-sensitive adhesive coating liquid B-2. Using the obtained solar cell protective material F-2-2, various measurements and evaluations were performed. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-2 was 0.01 [g / (m 2 · day)].
実施例2-3
 防湿フィルムC-1を防湿フィルムC-2に変更したこと以外は実施例2-1と同様にして、厚み165μmの太陽電池用保護材F-2-3を作製した。得られた太陽電池用保護材F-2-3を使用し、各種測定及び評価を行った。結果を表5に示す。なお太陽電池用保護材F-2-3の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Example 2-3
A solar cell protective material F-2-3 having a thickness of 165 μm was produced in the same manner as in Example 2-1, except that the moisture-proof film C-1 was changed to the moisture-proof film C-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-3. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-3 was 0.01 [g / (m 2 · day)].
実施例2-4
 粘着剤塗工液B-1を粘着剤塗工液B-2に変更したこと以外は実施例2-3と同様にして、厚み165μmの太陽電池用保護材F-2-4を作製した。得られた太陽電池用保護材F-2-4を使用し、各種測定及び評価を行った。結果を表5に示す。なお太陽電池用保護材F-2-4の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Example 2-4
A solar cell protective material F-2-4 having a thickness of 165 μm was produced in the same manner as in Example 2-3 except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-4. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-4 was 0.01 [g / (m 2 · day)].
実施例2-5
 粘着剤塗工液B-7を粘着剤塗工液B-8に変更し、塗布量を固形分8g/m2となるように変更したこと以外は実施例2-1と同様にして、厚み140μmの太陽電池用保護材F-2-5を作製した。得られた太陽電池用保護材F-2-5を使用し、各種測定及び評価を行った。結果を表5に示す。なお太陽電池用保護材F-2-5の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Example 2-5
In the same manner as in Example 2-1, except that the pressure-sensitive adhesive coating liquid B-7 was changed to pressure-sensitive adhesive coating liquid B-8, and the coating amount was changed to a solid content of 8 g / m 2. A protective material F-2-5 for solar cells of 140 μm was produced. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-5. The results are shown in Table 5. The initial water vapor transmission rate of the solar cell protective material F-2-5 was 0.01 [g / (m 2 · day)].
比較例2-1
 粘着剤塗工液B-1の塗布量を固形分50g/m2となるように変更したこと以外は実施例2-1と同様にして、厚み182μmの太陽電池用保護材F-2-6を作製した。得られた太陽電池用保護材F-2-6を使用し、各種測定及び評価を行った。結果を表5に示す。なお太陽電池用保護材F-2-6の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Comparative Example 2-1
A solar cell protective material F-2-6 having a thickness of 182 μm was obtained in the same manner as in Example 2-1, except that the coating amount of the adhesive coating solution B-1 was changed to a solid content of 50 g / m 2. Was made. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-6. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-6 was 0.01 [g / (m 2 · day)].
比較例2-2
 防湿フィルムC-1を防湿フィルムC-2に変更したこと以外は比較例2-1と同様にして、厚み195μmの太陽電池用保護材F-2-7を作製した。得られた太陽電池用保護材F-2-7を使用し、各種測定及び評価を行った。結果を表5に示す。なお太陽電池用保護材F-2-7の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Comparative Example 2-2
A solar cell protective material F-2-7 having a thickness of 195 μm was produced in the same manner as in Comparative Example 2-1, except that the moisture-proof film C-1 was changed to the moisture-proof film C-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-7. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-7 was 0.01 [g / (m 2 · day)].
比較例2-3
 粘着剤塗工液B-1を粘着剤塗工液B-3に変更したこと以外は実施例2-1と同様にして、厚み152μmの太陽電池用保護材F-2-8を作製した。得られた太陽電池用保護材F-2-8を使用し、各種測定及び評価を行った。結果を表5に示す。なお太陽電池用保護材F-2-8の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Comparative Example 2-3
A solar cell protective material F-2-8 having a thickness of 152 μm was produced in the same manner as in Example 2-1, except that the adhesive coating liquid B-1 was changed to the adhesive coating liquid B-3. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-8. The results are shown in Table 5. The initial water vapor transmission rate of the solar cell protective material F-2-8 was 0.01 [g / (m 2 · day)].
比較例2-4
 粘着剤塗工液B-1を粘着剤塗工液B-4に変更したこと以外は実施例2-1と同様にして、厚み152μmの太陽電池用保護材F-2-9を作製した。得られた太陽電池用保護材F-2-9を使用し、各種測定及び評価を行った。結果を表5に示す。なお太陽電池用保護材F-2-9の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Comparative Example 2-4
A solar cell protective material F-2-9 having a thickness of 152 μm was produced in the same manner as in Example 2-1, except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-4. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-9. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-9 was 0.01 [g / (m 2 · day)].
比較例2-5
 粘着剤塗工液B-1を粘着剤塗工液B-5に変更したこと以外は実施例2-1と同様にして、厚み152μmの太陽電池用保護材F-2-10を作製した。得られた太陽電池用保護材F-2-10を使用し、各種測定及び評価を行った。結果を表5に示す。なお太陽電池用保護材F-2-10の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Comparative Example 2-5
A solar cell protective material F-2-10 having a thickness of 152 μm was produced in the same manner as in Example 2-1, except that the adhesive coating liquid B-1 was changed to the adhesive coating liquid B-5. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-10. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-10 was 0.01 [g / (m 2 · day)].
比較例2-6
 高融点フィルムD-1を高融点フィルムD-2に変更したこと以外は実施例2-1と同様にして、厚み152μmの太陽電池用保護材F-2-11を作製した。得られた太陽電池用保護材F-2-11を使用し、各種測定及び評価を行った。結果を表5に示す。なお太陽電池用保護材F-2-11の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Comparative Example 2-6
A solar cell protective material F-2-11 having a thickness of 152 μm was produced in the same manner as in Example 2-1, except that the high melting point film D-1 was changed to the high melting point film D-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-11. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-11 was 0.01 [g / (m 2 · day)].
比較例2-7
 粘着剤塗工液B-1を粘着剤塗工液B-2に変更したこと以外は比較例2-6と同様にして、厚み152μmの太陽電池用保護材F-2-12を作製した。得られた太陽電池用保護材F-2-12を使用し、各種測定及び評価を行った。結果を表5に示す。なお太陽電池用保護材F-2-12の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Comparative Example 2-7
A solar cell protective material F-2-12 having a thickness of 152 μm was produced in the same manner as in Comparative Example 2-6, except that the adhesive coating solution B-1 was changed to the adhesive coating solution B-2. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-12. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-12 was 0.01 [g / (m 2 · day)].
比較例2-8
 防湿フィルムC-1を防湿フィルムC-3に変更したこと以外は実施例2-1と同様にして、厚み190μmの太陽電池用保護材F-2-13を作製した。得られた太陽電池用保護材F-2-13を使用し、各種測定及び評価を行った。結果を表5に示す。なお太陽電池用保護材F-2-13の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Comparative Example 2-8
A solar cell protective material F-2-13 having a thickness of 190 μm was produced in the same manner as in Example 2-1, except that the moisture-proof film C-1 was changed to the moisture-proof film C-3. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-13. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-13 was 0.01 [g / (m 2 · day)].
比較例2-9
 粘着剤塗工液B-1を接着剤塗工液B-6に変更し、塗布量を固形分8g/m2と変更したこと及び粘着剤塗工液B-7を接着剤塗工液B-9に変更し、塗布量を固形分8g/m2となるよう変更したこと以外は実施例2-1と同様にして、厚み128μmの太陽電池用保護材F-2-14を作製した。得られた太陽電池用保護材F-2-14を使用し、各種測定及び評価を行った。結果を表5に示す。なお太陽電池用保護材F-2-14の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Comparative Example 2-9
The adhesive coating liquid B-1 was changed to the adhesive coating liquid B-6, the coating amount was changed to a solid content of 8 g / m 2 , and the adhesive coating liquid B-7 was changed to the adhesive coating liquid B. A solar cell protective material F-2-14 having a thickness of 128 μm was produced in the same manner as in Example 2-1, except that the coating amount was changed to −9 and the coating amount was changed to 8 g / m 2 in solid content. Various measurements and evaluations were performed using the obtained solar cell protective material F-2-14. The results are shown in Table 5. The initial water vapor permeability of the solar cell protective material F-2-14 was 0.01 [g / (m 2 · day)].
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5から明らかなように、粘着剤層(i)の厚み、粘着剤層(i)の100℃、周波数10Hz、歪0.1%における引っ張り貯蔵弾性率、防湿フィルムの基材厚み、高融点フィルムの熱収縮率のいずれかが本発明の規定範囲外である比較例2-1~9の太陽電池用保護材は、防湿性及び/又は層間強度に劣るものであった。
 これに対し、実施例2-1~5の太陽電池用保護材は、いずれも外観に優れ、かつ、防湿性及び層間強度に優れる。
As is apparent from Table 5, the thickness of the pressure-sensitive adhesive layer (i), the tensile strength of the pressure-sensitive adhesive layer (i) at 100 ° C., the frequency of 10 Hz, and the strain of 0.1%, the substrate thickness of the moisture-proof film, and the high melting point The protective materials for solar cells of Comparative Examples 2-1 to 9 in which any one of the heat shrinkage rates of the films was outside the specified range of the present invention were inferior in moisture resistance and / or interlayer strength.
On the other hand, the protective materials for solar cells of Examples 2-1 to 5 are all excellent in appearance and excellent in moisture resistance and interlayer strength.
実施例3-1
 38μmシリコーン離型PETフィルムに粘着剤塗工液B-10を固形分20g/m2となるよう塗布し乾燥して、厚み20μmの粘着剤層(i)面を形成した。形成した粘着剤層(i)面に防湿フィルムB-10を貼り合せ、その後シリコーン離型PETフィルムを剥離し、もう一方の粘着面に中間フィルムE-1を貼合し40℃で4日間養生し積層体を作製した。さらにフッ素系樹脂フィルムを、作製した積層体の中間フィルムE-1面と重ね、90℃、30秒間の熱プレスにより接着し582μmの太陽電池用保護材F-3-1を作製した。得られた太陽電池用保護材F-3-1を使用し、各種測定及び評価を行った。結果を表6に示す。
Example 3-1
An adhesive coating solution B-10 was applied to a 38 μm silicone release PET film so as to have a solid content of 20 g / m 2 and dried to form an adhesive layer (i) surface having a thickness of 20 μm. Moisture-proof film B-10 is bonded to the surface of the pressure-sensitive adhesive layer (i), then the silicone release PET film is peeled off, and the intermediate film E-1 is bonded to the other pressure-sensitive adhesive surface, followed by curing at 40 ° C. for 4 days. A laminate was prepared. Further, a fluororesin film was overlapped with the intermediate film E-1 surface of the produced laminate, and adhered by hot pressing at 90 ° C. for 30 seconds to produce a solar cell protective material F-3-1 having a thickness of 582 μm. Various measurements and evaluations were performed using the obtained solar cell protective material F-3-1. The results are shown in Table 6.
実施例3-2
 中間フィルムをE-2とした以外は実施例3-1同様にして厚み222μm太陽電池用保護材F-3-2を作製した。得られた太陽電池用保護材F-3-2を使用し、各種測定及び評価を行った。結果を表6に示す。
Example 3-2
A protective material F-3-2 for a solar cell having a thickness of 222 μm was produced in the same manner as in Example 3-1, except that the intermediate film was changed to E-2. Using the obtained solar cell protective material F-3-2, various measurements and evaluations were performed. The results are shown in Table 6.
実施例3-3
 粘着剤塗工液をB-11とした以外は実施例3-1同様にして厚み582μm太陽電池用保護材F-3-3を作製した。得られた太陽電池用保護材F-3-3を使用し、各種測定及び評価を行った。結果を表6に示す。
Example 3-3
A protective material F-3-3 for a solar cell having a thickness of 582 μm was produced in the same manner as in Example 3-1, except that the adhesive coating solution was changed to B-11. Various measurements and evaluations were performed using the obtained solar cell protective material F-3-3. The results are shown in Table 6.
実施例3-4
 粘着剤塗工液をB-11とした以外は実施例3-2同様にして厚み222μm太陽電池用保護材F-3-4を作製した。得られた太陽電池用保護材F-3-4を使用し、各種測定及び評価を行った。結果を表6に示す。
Example 3-4
A protective material F-3-4 having a thickness of 222 μm was prepared in the same manner as in Example 3-2 except that the adhesive coating solution was changed to B-11. Various measurements and evaluations were performed using the obtained solar cell protective material F-3-4. The results are shown in Table 6.
比較例3-1
 実施例3-1の粘着剤塗工液B-10をC-3としたこと以外は実施例3-1と同様にして厚み582μmの太陽電池用保護材F-3-5を作製した。得られた太陽電池用保護材F-3-5を使用し、各種測定及び評価を行った。結果を表6に示す。
Comparative Example 3-1
A solar cell protective material F-3-5 having a thickness of 582 μm was prepared in the same manner as in Example 3-1, except that the pressure-sensitive adhesive coating solution B-10 of Example 3-1 was changed to C-3. The obtained solar cell protective material F-3-5 was used for various measurements and evaluations. The results are shown in Table 6.
比較例3-2
 実施例3-1の中間フィルムE-1をE-3としたこと以外は実施例3-1と同様にして厚み272μmの太陽電池用保護材F-3-6を作製した。得られた太陽電池用保護材F-3-6を使用し、各種測定及び評価を行った。結果を表6に示す。
Comparative Example 3-2
A solar cell protective material F-3-6 having a thickness of 272 μm was produced in the same manner as in Example 3-1, except that the intermediate film E-1 of Example 3-1 was changed to E-3. The obtained solar cell protective material F-3-6 was used for various measurements and evaluations. The results are shown in Table 6.
比較例3-3
 実施例3-1の防湿フィルムC-1をC-4としたこと以外は実施例3-1と同様にして厚み582μmの太陽電池用保護材F-3-7を作製した。得られた太陽電池用保護材F-3-7を使用し、各種測定及び評価を行った。結果を表6に示す。
Comparative Example 3-3
A solar cell protective material F-3-7 having a thickness of 582 μm was produced in the same manner as in Example 3-1, except that the moisture-proof film C-1 of Example 3-1 was changed to C-4. The obtained solar cell protective material F-3-7 was used for various measurements and evaluations. The results are shown in Table 6.
比較例3-4
実施例3-1の粘着剤塗工液B-10を接着剤塗工液B-13に変更し、乾燥後の厚みが6μmとなるように塗工したこと以外は実施例3-1と同様にして厚み568μmの太陽電池用保護材F-3-8を作製した。得られた太陽電池用保護材F-3-8を使用し、各種測定及び評価を行った。結果を表6に示す。
Comparative Example 3-4
Same as Example 3-1, except that the adhesive coating solution B-10 of Example 3-1 was changed to the adhesive coating solution B-13 and the thickness after drying was 6 μm. Thus, a solar cell protective material F-3-8 having a thickness of 568 μm was produced. Various measurements and evaluations were performed using the obtained solar cell protective material F-3-8. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6より、本発明の構成を有する実施例3-1~4はいずれも、長期に防湿性が劣化せず、デラミネーションの発生が防止されたものであった。また、融点が本発明の範囲を越える中間フィルムを用いた比較例3-2は、経時による防湿性に劣り、またデラミネーションの発生防止が不十分なものであり、引張り貯蔵弾性率が本発明の範囲を逸脱する粘着剤層を用いた比較例3-1は経時による防湿性に劣るものであり、粘着剤層に代えて接着剤層を使用した比較例3-4は、経時による防湿性に劣り、またデラミネーションの発生防止に劣るものであった。なお、防湿フィルムの水蒸気透過率が0.1[g/(m2・日)]より高い防湿フィルムを使用した比較例3-3は、水蒸気透過率の劣化度は劣るものではないが、PC48後の水蒸気透過率が高いものであり、実用上好ましくないものであった。 As can be seen from Table 6, in Examples 3-1 to 4 having the configuration of the present invention, the moisture-proof property was not deteriorated for a long time, and the occurrence of delamination was prevented. Further, Comparative Example 3-2 using an intermediate film having a melting point exceeding the range of the present invention is inferior in moisture resistance with time and insufficient in preventing the occurrence of delamination, and has a tensile storage elastic modulus of the present invention. Comparative Example 3-1 using a pressure-sensitive adhesive layer deviating from the above range is inferior in moisture resistance over time, and Comparative Example 3-4 using an adhesive layer instead of the pressure-sensitive adhesive layer is moisture-proof over time. And inferior in preventing delamination. In Comparative Example 3-3 using a moisture-proof film having a moisture-proof film having a water vapor transmission rate higher than 0.1 [g / (m 2 · day)], the degree of deterioration of the water vapor transmission rate is not inferior, but PC48 The later water vapor permeability was high, which was not preferable for practical use.
実施例4-1
 フッ素系樹脂フィルムA-1に粘着剤塗工液B-14を固形分20g/m2となるよう塗布乾燥し、形成した厚み20μmの接着層面と防湿フィルムの金属酸化物層面とを貼合し、その後40℃で5日間養生し、厚み82μmの太陽電池用保護材を作製し、各種の評価を行った。結果を下記表7に示す。なお、太陽電池用保護材の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Example 4-1
The adhesive coating liquid B-14 is applied and dried on the fluorine resin film A-1 so that the solid content is 20 g / m 2, and the formed adhesive layer surface having a thickness of 20 μm is bonded to the metal oxide layer surface of the moisture-proof film. Then, it was cured at 40 ° C. for 5 days to produce a solar cell protective material having a thickness of 82 μm, and various evaluations were performed. The results are shown in Table 7 below. The initial water vapor transmission rate of the solar cell protective material was 0.01 [g / (m 2 · day)].
実施例4-2及び4-3
 表3及び7に示す粘着剤塗工液又は接着剤塗工液に変更したこと以外は実施例4-1と同様にして、厚み82μmの太陽電池用保護材を作製した。作製した太陽電池用保護材を用い、実施例4-1と同様にして各種の評価を行った。結果を下記表7に示す。なお、各太陽電池用保護材の初期水蒸気透過率は0.01[g/(m2・日)]であった。
Examples 4-2 and 4-3
A solar cell protective material having a thickness of 82 μm was produced in the same manner as in Example 4-1, except that the pressure-sensitive adhesive coating solution or adhesive coating solution shown in Tables 3 and 7 was used. Various evaluations were performed in the same manner as in Example 4-1, using the produced solar cell protective material. The results are shown in Table 7 below. The initial water vapor transmission rate of each solar cell protective material was 0.01 [g / (m 2 · day)].
実施例4-4、4-5及び比較例4-1
 表3及び7に示す粘着剤塗工液又は接着剤塗工液に変更した以外は実施例4-1と同様にして、耐候性フィルムと接着層と防湿フィルムとからなる積層防湿フィルムを作製し、さらに、防湿フィルム上に表3に示す粘着剤塗工液又は接着剤塗工液を固形分20g/m2となるよう塗布乾燥し、形成した厚み20μmの接着層と防湿フィルムの無機層面とを貼合し、その後40℃で5日間養生し、厚み164μmの太陽電池用保護材を作製した(耐候性フィルム/接着層/防湿フィルム/接着層/防湿フィルム)。作製した太陽電池用保護材を用い、実施例4-1と同様にして各種の評価を行った。結果を表7に示す。なお、各太陽電池用保護材のる初期水蒸気透過率は0.01[g/(m2・日)]であった。
Examples 4-4 and 4-5 and Comparative Example 4-1
A laminated moisture-proof film composed of a weather-resistant film, an adhesive layer and a moisture-proof film was prepared in the same manner as in Example 4-1, except that the pressure-sensitive adhesive coating solution or adhesive coating solution shown in Tables 3 and 7 was used. Furthermore, the pressure-sensitive adhesive coating solution or adhesive coating solution shown in Table 3 is applied and dried on the moisture-proof film so as to have a solid content of 20 g / m 2, and the formed 20 μm-thick adhesive layer and the moisture-proof film inorganic layer surface Was then cured at 40 ° C. for 5 days to produce a solar cell protective material having a thickness of 164 μm (weather-resistant film / adhesive layer / moisture-proof film / adhesive layer / moisture-proof film). Various evaluations were performed in the same manner as in Example 4-1, using the produced solar cell protective material. The results are shown in Table 7. The initial water vapor permeability of each solar cell protective material was 0.01 [g / (m 2 · day)].
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明の太陽電池用保護材は、外観不良の問題を解消し、層間接着強度、剥離強度、耐久性、耐候性、防湿性及び長期防湿性に優れる。
 更に、本発明の太陽電池用保護材を使用する太陽電池モジュールは、良好な外観を実現することができるのみならず、発電効率の低下を防止できる。
The solar cell protective material of the present invention solves the problem of poor appearance and is excellent in interlayer adhesion strength, peel strength, durability, weather resistance, moisture resistance and long-term moisture resistance.
Furthermore, the solar cell module using the solar cell protective material of the present invention can not only achieve a good appearance but also prevent a decrease in power generation efficiency.

Claims (27)

  1.  フッ素系樹脂フィルム、粘着剤(i)からなる粘着剤層(i)、及び金属酸化物層を有する樹脂フィルムがこの順に積層されてなる太陽電池用保護材であって、前記の金属酸化物層を有する樹脂フィルムの基材の厚みが30μm以下であり、前記粘着剤層(i)の厚みが13~45μmであり、前記粘着剤層(i)の100℃、周波数10Hz、歪0.1%における引っ張り貯蔵弾性率が5.0×104~5.0×105Paである、太陽電池用保護材。 A protective material for a solar cell in which a fluororesin film, a pressure-sensitive adhesive layer (i) comprising a pressure-sensitive adhesive (i), and a resin film having a metal oxide layer are laminated in this order, and the metal oxide layer The thickness of the substrate of the resin film having a thickness of 30 μm or less, the thickness of the pressure-sensitive adhesive layer (i) is 13 to 45 μm, and the pressure-sensitive adhesive layer (i) is 100 ° C., frequency 10 Hz, strain 0.1%. A solar cell protective material having a tensile storage elastic modulus of 5.0 × 10 4 to 5.0 × 10 5 Pa.
  2.  前記粘着剤(i)が、カルボキシル基又はアミノ基を含まない粘着剤である、請求項1に記載の太陽電池用保護材。 The solar cell protective material according to claim 1, wherein the pressure-sensitive adhesive (i) is a pressure-sensitive adhesive containing no carboxyl group or amino group.
  3.  前記金属酸化物層を有する樹脂フィルムの基材がポリエステル系フィルムである、請求項1又は2に記載の太陽電池用保護材。 The solar cell protective material according to claim 1 or 2, wherein a base material of the resin film having the metal oxide layer is a polyester film.
  4.  前記金属酸化物層を有する樹脂フィルムの温度40℃、相対湿度90%における水蒸気透過率が0.1[g/(m2・日)]未満である、請求項1~3のいずれかに記載の太陽電池用保護材。 The water vapor permeability at a temperature of 40 ° C and a relative humidity of 90% of the resin film having the metal oxide layer is less than 0.1 [g / (m 2 · day)]. Protective material for solar cells.
  5.  フッ素系樹脂フィルム、粘着剤(i)からなる粘着剤層(i)、金属酸化物層を有する樹脂フィルム、粘着剤または接着剤からなる粘接着剤層(ii)、及び融点180℃以上、熱収縮率0.5%以下の高融点フィルムがこの順に積層されてなる、請求項1~4のいずれかに記載の太陽電池用保護材。 A fluorine-based resin film, a pressure-sensitive adhesive layer (i) composed of a pressure-sensitive adhesive (i), a resin film having a metal oxide layer, a pressure-sensitive adhesive layer (ii) composed of a pressure-sensitive adhesive or an adhesive, and a melting point of 180 ° C. or higher. The protective material for a solar cell according to any one of claims 1 to 4, wherein a high melting point film having a heat shrinkage rate of 0.5% or less is laminated in this order.
  6.  フッ素系樹脂フィルム、融点が150℃以下の中間フィルム、粘着剤(i)からなる粘着剤層(i)、及び金属酸化物層を有する樹脂フィルムがこの順に積層されてなる請求項1~5のいずれかに記載の太陽電池用保護材。 6. The fluororesin film, an intermediate film having a melting point of 150 ° C. or less, an adhesive layer (i) comprising an adhesive (i), and a resin film having a metal oxide layer are laminated in this order. The protective material for solar cells in any one.
  7.  前記中間フィルムの厚みが50~600μmである請求項6に記載の太陽電池用保護材。 The solar cell protective material according to claim 6, wherein the intermediate film has a thickness of 50 to 600 µm.
  8.  前記中間フィルムが、ポリエチレン樹脂を主成分として含む請求項6又は7に記載の太陽電池用保護材。 The solar cell protective material according to claim 6 or 7, wherein the intermediate film contains a polyethylene resin as a main component.
  9.  前記防湿フィルムの金属酸化物層側に前記粘着剤層及び中間フィルムを有する請求項6~8のいずれかに記載の太陽電池用保護材。 The solar cell protective material according to any one of claims 6 to 8, which has the pressure-sensitive adhesive layer and the intermediate film on the metal oxide layer side of the moisture-proof film.
  10.  前記金属酸化物層を有する樹脂フィルムの基材の厚みが前記フッ素系樹脂フィルムの厚みより薄い、請求項1~9のいずれかに記載の太陽電池用保護材。 The solar cell protective material according to any one of claims 1 to 9, wherein a thickness of a base material of the resin film having the metal oxide layer is thinner than a thickness of the fluororesin film.
  11.  前記粘着剤(i)からなる粘着剤層(i)の0℃、周波数10Hz、歪0.1%における引っ張り貯蔵弾性率が1.0×106~1.0×108Paである、請求項1~10のいずれかに記載の太陽電池用保護材。 The tensile storage elastic modulus of the pressure-sensitive adhesive layer (i) comprising the pressure-sensitive adhesive (i) at 0 ° C., a frequency of 10 Hz, and a strain of 0.1% is 1.0 × 10 6 to 1.0 × 10 8 Pa. Item 11. The solar cell protective material according to any one of Items 1 to 10.
  12.  前記粘着剤(i)からなる粘着剤層(i)のガラス転移点が0℃以下である請求項1~11のいずれかに記載の太陽電池用保護材。 The solar cell protective material according to any one of claims 1 to 11, wherein the pressure-sensitive adhesive layer (i) comprising the pressure-sensitive adhesive (i) has a glass transition point of 0 ° C or lower.
  13.  初期水蒸気透過率が0.1[g/(m2・日)]未満である請求項1~12のいずれかに記載の太陽電池用保護材。 The protective material for solar cells according to any one of claims 1 to 12, wherein the initial water vapor permeability is less than 0.1 [g / (m 2 · day)].
  14.  最高温度が150℃未満である真空ラミネーション工程に使用される、請求項1~13のいずれかに記載の太陽電池用保護材。 The solar cell protective material according to any one of claims 1 to 13, which is used in a vacuum lamination process having a maximum temperature of less than 150 ° C.
  15.  請求項1~14のいずれかに記載の太陽電池用保護材を有する太陽電池用モジュール。 A solar cell module comprising the solar cell protective material according to any one of claims 1 to 14.
  16.  耐候層、接着層1、及び、基材上に無機層を有する防湿層1をこの順に有する太陽電池用保護材であって、前記接着層1のガラス転移点が0℃以下である太陽電池用保護材。 A solar cell protective material having a weather resistance layer, an adhesive layer 1 and a moisture-proof layer 1 having an inorganic layer on a base material in this order, wherein the glass transition point of the adhesive layer 1 is 0 ° C. or lower. Protective layer.
  17.  前記耐候層と前記防湿層1との層間強度が結露凍結試験後において10N/15mm以上であり、かつ層間強度の劣化率が20%未満である請求項16に記載の太陽電池用保護材。 The protective material for solar cells according to claim 16, wherein the interlayer strength between the weather resistant layer and the moisture-proof layer 1 is 10 N / 15 mm or more after the condensation freezing test, and the degradation rate of the interlayer strength is less than 20%.
  18.  前記接着層1がアクリル系粘着剤を含む請求項16又は17に記載の太陽電池用保護材。 The solar cell protective material according to claim 16 or 17, wherein the adhesive layer 1 contains an acrylic pressure-sensitive adhesive.
  19.  前記防湿層1の基材がポリエステル系フィルムである請求項16~18のいずれかに記
    載の太陽電池用保護材。
    The solar cell protective material according to any one of claims 16 to 18, wherein the base material of the moisture-proof layer 1 is a polyester film.
  20.  さらに、接着層2、及び、基材上に無機層を有する防湿層2を有する請求項16~19のいずれかに記載の太陽電池用保護材。 The solar cell protective material according to any one of claims 16 to 19, further comprising an adhesive layer 2 and a moisture-proof layer 2 having an inorganic layer on the substrate.
  21.  接着層2の100℃、周波数10Hz、歪0.1%における引っ張り貯蔵弾性率が5.0×104~5.0×105Paである、請求項20に記載の太陽電池用保護材。 The solar cell protective material according to claim 20, wherein the adhesive layer 2 has a tensile storage elastic modulus of 5.0 × 10 4 to 5.0 × 10 5 Pa at 100 ° C., a frequency of 10 Hz, and a strain of 0.1%.
  22.  接着層2の0℃、周波数10Hz、歪0.1%における引っ張り貯蔵弾性率が1.0×106~1.0×108Paである、請求項20又は21に記載の太陽電池用保護材。 The solar cell protection according to claim 20 or 21, wherein the adhesive layer 2 has a tensile storage elastic modulus of 1.0 × 10 6 to 1.0 × 10 8 Pa at 0 ° C., a frequency of 10 Hz, and a strain of 0.1%. Wood.
  23.  前記耐候層が、2-エチレン-4-フッ化エチレン共重合体フィルムである請求項16~22のいずれかに記載の太陽電池用保護材。 The solar cell protective material according to any one of claims 16 to 22, wherein the weather-resistant layer is a 2-ethylene-4-fluoroethylene copolymer film.
  24.  前記防湿層1及び/又は防湿層2の、温度40℃、相対湿度90%における水蒸気透過率が0.1[g/(m2・日)]未満であり、結露凍結試験後における水蒸気透過率の劣化度が3未満である請求項16~23のいずれかに記載の太陽電池用保護材。 The moisture barrier layer 1 and / or the moisture barrier layer 2 has a water vapor transmission rate of less than 0.1 [g / (m 2 · day)] at a temperature of 40 ° C. and a relative humidity of 90%, and the water vapor transmission rate after the condensation freezing test. The solar cell protective material according to any one of claims 16 to 23, which has a degree of degradation of less than 3.
  25.  前記基材の厚みが前記フッ素系樹脂フィルムの厚みよりも薄い、請求項16~24のいずれかに記載の太陽電池用保護材。 The solar cell protective material according to any one of claims 16 to 24, wherein the thickness of the base material is thinner than the thickness of the fluororesin film.
  26.  最高温度が150℃未満である真空ラミネーション工程に使用される、請求項16~25のいずれかに記載の太陽電池用保護材。 The solar cell protective material according to any one of claims 16 to 25, which is used in a vacuum lamination step having a maximum temperature of less than 150 ° C.
  27.  請求項16~26のいずれかに記載の太陽電池用保護材を有する太陽電池用モジュール。 A solar cell module comprising the solar cell protective material according to any one of claims 16 to 26.
PCT/JP2012/073727 2011-09-16 2012-09-14 Material for protecting photovoltaic cell WO2013039233A1 (en)

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
JP2011-203160 2011-09-16
JP2011203160 2011-09-16
JP2011-209406 2011-09-26
JP2011209402 2011-09-26
JP2011209406 2011-09-26
JP2011-209402 2011-09-26
JP2011-245857 2011-11-09
JP2011245857 2011-11-09
JP2012-183096 2012-08-22
JP2012183096 2012-08-22
JP2012203025A JP2013084928A (en) 2011-09-26 2012-09-14 Solar battery protective material
JP2012-203027 2012-09-14
JP2012-203031 2012-09-14
JP2012203034A JP2013123036A (en) 2011-11-09 2012-09-14 Solar battery protective material
JP2012-203025 2012-09-14
JP2012203031A JP2013077818A (en) 2011-09-16 2012-09-14 Solar cell protective material
JP2012-203034 2012-09-14
JP2012203027A JP2013084929A (en) 2011-09-26 2012-09-14 Solar battery protective material
JP2012203036A JP6007037B2 (en) 2012-08-22 2012-09-14 Laminated moistureproof film, protective material for solar cell, and solar cell
JP2012-203036 2012-09-14

Publications (1)

Publication Number Publication Date
WO2013039233A1 true WO2013039233A1 (en) 2013-03-21

Family

ID=47883449

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/073727 WO2013039233A1 (en) 2011-09-16 2012-09-14 Material for protecting photovoltaic cell
PCT/JP2012/073728 WO2013039234A1 (en) 2011-09-16 2012-09-14 Solar cell protective material

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073728 WO2013039234A1 (en) 2011-09-16 2012-09-14 Solar cell protective material

Country Status (1)

Country Link
WO (2) WO2013039233A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007181A (en) * 2013-06-25 2015-01-15 日立化成株式会社 Connection material for solar battery, solar cell module prepared using the same and method of producing the same
WO2015008614A1 (en) * 2013-07-17 2015-01-22 東レフィルム加工株式会社 Rearside protective sheet for solar cell module
JP2016204461A (en) * 2015-04-17 2016-12-08 富士フイルム株式会社 Functional film and manufacturing method of functional film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204997A (en) * 2007-02-16 2008-09-04 Toppan Printing Co Ltd Rear surface protective sheet for solar cell
JP2009135457A (en) * 2007-11-05 2009-06-18 Techno Polymer Co Ltd Back sheet for solar cells
JP2009200385A (en) * 2008-02-25 2009-09-03 Toppan Printing Co Ltd Protective sheet for solar cell and solar cell module using same
JP2010027815A (en) * 2008-07-18 2010-02-04 Daio Paper Corp Rear surface protecting sheet for solar cell module
JP2010238790A (en) * 2009-03-30 2010-10-21 Lintec Corp Protection sheet for solar cell module, and solar cell module using the same
JP2010263193A (en) * 2009-04-08 2010-11-18 Nippon Shokubai Co Ltd Backsheet for solar cell module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3078936B2 (en) * 1992-12-28 2000-08-21 キヤノン株式会社 Solar cell
JP5262044B2 (en) * 2007-09-27 2013-08-14 凸版印刷株式会社 Solar cell back surface sealing sheet and solar cell module using the same
JP4993504B2 (en) * 2008-04-02 2012-08-08 三井・デュポンポリケミカル株式会社 Laminate sheet for solar cell and solar cell module using the same
JP2010016286A (en) * 2008-07-07 2010-01-21 Toppan Printing Co Ltd Sheet for sealing backside of solar battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204997A (en) * 2007-02-16 2008-09-04 Toppan Printing Co Ltd Rear surface protective sheet for solar cell
JP2009135457A (en) * 2007-11-05 2009-06-18 Techno Polymer Co Ltd Back sheet for solar cells
JP2009200385A (en) * 2008-02-25 2009-09-03 Toppan Printing Co Ltd Protective sheet for solar cell and solar cell module using same
JP2010027815A (en) * 2008-07-18 2010-02-04 Daio Paper Corp Rear surface protecting sheet for solar cell module
JP2010238790A (en) * 2009-03-30 2010-10-21 Lintec Corp Protection sheet for solar cell module, and solar cell module using the same
JP2010263193A (en) * 2009-04-08 2010-11-18 Nippon Shokubai Co Ltd Backsheet for solar cell module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007181A (en) * 2013-06-25 2015-01-15 日立化成株式会社 Connection material for solar battery, solar cell module prepared using the same and method of producing the same
WO2015008614A1 (en) * 2013-07-17 2015-01-22 東レフィルム加工株式会社 Rearside protective sheet for solar cell module
JP2016204461A (en) * 2015-04-17 2016-12-08 富士フイルム株式会社 Functional film and manufacturing method of functional film

Also Published As

Publication number Publication date
WO2013039234A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5540840B2 (en) Solar cell backside sealing sheet
WO2012124742A1 (en) Laminated moisture proof film
WO2012091122A1 (en) Laminated moisture-proof film
JP2010263193A (en) Backsheet for solar cell module
JP2010238790A (en) Protection sheet for solar cell module, and solar cell module using the same
JP2012148560A (en) Laminated moisture-proof film
JP2014060390A (en) Solar cell protective sheet
JP5865739B2 (en) Laminated moisture barrier film
KR101350557B1 (en) Back sheet for solar cell module and solar cell module comprising the same
JP6007037B2 (en) Laminated moistureproof film, protective material for solar cell, and solar cell
JP2014041900A (en) Solar battery protective material and solar battery
WO2013039233A1 (en) Material for protecting photovoltaic cell
WO2013100108A1 (en) Protective material for solar cells
JP6135060B2 (en) Back protection sheet for solar cell module
JP2012213937A (en) Moisture-proof laminate sheet
TW201315609A (en) Protective material for solar cell
JP2012148561A (en) Laminated moisture-proof film
JP2014058155A (en) Production method of laminate sheet
JP5474171B1 (en) Protective material for solar cells
JP2013077818A (en) Solar cell protective material
JP2013084929A (en) Solar battery protective material
JP2012158154A (en) Transparent laminated moisture-proof film
JP2013123036A (en) Solar battery protective material
JP2012214023A (en) Laminated moisture proof film
JP2012244068A (en) Solar cell protective material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832567

Country of ref document: EP

Kind code of ref document: A1