WO2013039136A1 - Image display device and image display method - Google Patents

Image display device and image display method Download PDF

Info

Publication number
WO2013039136A1
WO2013039136A1 PCT/JP2012/073427 JP2012073427W WO2013039136A1 WO 2013039136 A1 WO2013039136 A1 WO 2013039136A1 JP 2012073427 W JP2012073427 W JP 2012073427W WO 2013039136 A1 WO2013039136 A1 WO 2013039136A1
Authority
WO
WIPO (PCT)
Prior art keywords
image display
signal
synchronization signal
image
display
Prior art date
Application number
PCT/JP2012/073427
Other languages
French (fr)
Japanese (ja)
Inventor
裕樹 菅股
井上 浩
義学 倉橋
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2013039136A1 publication Critical patent/WO2013039136A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/22Detection of presence or absence of input display information or of connection or disconnection of a corresponding information source

Definitions

  • the present disclosure relates to an image display device and an image display method. Specifically, the present invention relates to an image display device and an image display method suitable for use in a relatively small image display device such as a head-mounted display.
  • a head mounted display (hereinafter referred to as “HMD”) used by being mounted on a user's head is known (for example, see Patent Document 1).
  • the HMD generally includes a display unit that displays an image to be recognized by the user, and a support frame that supports the display unit and is attached to the user's head.
  • a glasses-type frame is preferably used because it can be easily mounted on the user's head.
  • a liquid crystal display device using a liquid crystal display (LCD) such as a display device of a personal computer (hereinafter referred to as “PC”) is widely used.
  • LCD liquid crystal display
  • PC personal computer
  • liquid crystal display devices have become widespread as home televisions and the like.
  • the liquid crystal display device includes an LCD composed of a liquid crystal panel, an LCD control unit including a drive circuit and a control circuit for controlling driving of the LCD, and a light source such as a backlight for performing image display on the LCD.
  • a light source such as a backlight for performing image display on the LCD.
  • the LCD control unit controls the LCD based on a video signal input from an external device such as a PC.
  • a video signal used for controlling the LCD includes a vertical synchronization signal and a horizontal synchronization signal in addition to an image signal for displaying an image.
  • a video signal used for LCD control may be disturbed, for example, when the device starts up or when noise occurs for some reason during the operation of the device.
  • the disturbance of the video signal for example, the vertical synchronization signal becomes unstable.
  • the disordered video signal is used and the LCD is controlled by the LCD control unit, normal image display cannot be performed.
  • an image processing circuit such as a scaler is generally mounted to correct the disturbance of the video signal. That is, the LCD control unit is provided with an image processing circuit, and the video signal input to the LCD control unit is processed into a normal state in advance by the image processing circuit, and the normal state of the video signal input to the LCD control unit Is secured.
  • the conventional liquid crystal display device adopts a configuration in which the video signal used for the control of the LCD control unit is processed in advance by a predetermined image processing circuit such as a scaler to cope with the disturbance of the video signal.
  • a predetermined image processing circuit such as a scaler to cope with the disturbance of the video signal.
  • Patent Document 2 provides a block for periodically outputting correction data set in advance as a circuit for processing a video signal input to the LCD control unit, and the data output from this block is controlled by LCD control.
  • a technique for canceling noise periodically riding on data input to the LCD control unit by adding an offset to the data input to the unit is disclosed.
  • an image display apparatus that is relatively small and requires mobility, such as an HMD
  • an image processing circuit such as a scaler
  • the LCD when an image display configuration using an LCD is adopted in an HMD or the like, depending on the specifications of the LCD control unit, etc., for example, when the device is started, the LCD
  • an image display command for the control unit is executed, there may be a problem that vertical stripes appear in the display image, for example.
  • a display image may be defective due to a disturbance of a video signal, but in order to ensure a small configuration and mobility.
  • a circuit configuration such as a scaler.
  • the present disclosure has been made in view of the circumstances as described above, and is an image display device capable of solving the problem of a display image caused by a disturbance of a video signal without using an image processing circuit such as a scaler. It is another object of the present invention to provide an image display method.
  • One aspect of the present disclosure receives and inputs image display means for displaying an image, display control means for controlling the image display means, and a video signal including a digital image signal, a vertical synchronization signal, and a horizontal synchronization signal.
  • the video signal is directly output to the display control means, and at least one of the vertical sync signal and the horizontal sync signal is extracted from the input video signal, and the at least one sync signal is extracted.
  • the video signal input / output means for output and the input of the at least one synchronization signal are input based on a comparison between a time when the output of the at least one synchronization signal is constant and a preset reference time
  • the synchronization signal detection means for detecting that the synchronization signal is in a stable state and the input of the video signal to the video signal input / output means is started. After that, when it is detected by the synchronization signal detection means that the synchronization signal is in a stable state, the display control means outputs an image display signal that causes the display control means to perform image display by the image display means. And an output unit.
  • the synchronization signal detection means that the output of the input synchronization signal is constant during the reference time is a predetermined number of times set in advance, and that the synchronization signal is in a stable state. It may be detected.
  • the reference time has a predetermined width that is set based on the scanning frequency of the synchronization signal.
  • the image display means includes a liquid crystal display and a light source for displaying an image on the liquid crystal display, and the display control means controls the liquid crystal control unit that controls the liquid crystal display and the light source.
  • a light source control unit, and the image display signal output means starts driving the liquid crystal display by outputting an image display signal to the liquid crystal control unit, and displays an image on the liquid crystal control unit.
  • the light source may be turned on by outputting the image display signal to the light source control unit after a predetermined time has elapsed since the signal was output.
  • the image display signal output means outputs the image display signal to the display control means when the synchronization signal detection means no longer detects that the synchronization signal is in a stable state after outputting the image display signal.
  • a signal for interrupting the image display by is output.
  • Another aspect of the present disclosure is an image display method for displaying an image on the liquid crystal display by directly inputting a video signal including a digital image signal, a vertical synchronization signal, and a horizontal synchronization signal to a means for controlling the liquid crystal display.
  • the image display And an image display method comprising:
  • the figure which shows the structure of a HMD system The block diagram which shows the structure of a HMD system. Explanatory drawing about the malfunction of the display image in a HMD system. Explanatory drawing about the image display sequence in a HMD system. The flowchart about the image display sequence in a HMD system. Explanatory drawing about control of the LCD unit in a HMD system. The figure which shows the example of application of a HMD system.
  • the present disclosure is premised on a configuration in which a video signal for displaying an image is directly input to a display control unit that controls a configuration for displaying an image such as an LCD.
  • an HMD head mounted display
  • an image display device of the type worn on the user's head will be described as an example of the image display device.
  • the HMD 1 displays a video based on a video signal on one eye of a user of the HMD 1 (hereinafter simply referred to as “user”) by a liquid crystal display (LCD), thereby giving the user Make the video visible.
  • LCD liquid crystal display
  • the HMD 1 constitutes an HMD system 50 together with the repeater 2. That is, the HMD system 50 includes the HMD 1 and the repeater 2 and displays an image on the LCD in the HMD 1 based on a video signal input from the outside to the repeater 2.
  • the HMD 1 and the repeater 2 are connected to each other by a dedicated cable 51 as a wire harness.
  • the video signal input from the outside to the repeater 2 includes a digital image signal, a vertical synchronization signal (V_SYNC), and a horizontal synchronization signal (H_SYNC).
  • the video signal input to the repeater 2 is output from, for example, an HDMI (High-Definition Multimedia Interface) terminal or a DVI-D (Digital Visual Interface-Digital) terminal of an external device such as a PC or a smartphone.
  • HDMI High-Definition Multimedia Interface
  • DVI-D Digital Visual Interface-Digital
  • the video signal input to the repeater 2 is sent to the HMD 1 via the cable 51.
  • the cable 51 is a dedicated cable configured to be compatible with the repeater 2 and the HMD 1, for example. However, a general-purpose cable compatible with the repeater 2 and the HMD 1 may be used.
  • the HMD 1 includes a display unit 3 and a frame 4 that supports the display unit 3.
  • the display unit 3 includes an LCD unit 5 as an image display unit that performs image display using liquid crystal, and a control unit 6 that controls the LCD unit 5.
  • the LCD unit 5 and the control unit 6 are accommodated in a housing 3a included in the display unit 3 (see FIG. 1).
  • the LCD unit 5 includes an LCD 7 and a backlight 8.
  • the LCD 7 has a liquid crystal panel including liquid crystals, a drive circuit for supplying electric signals to the liquid crystal panel, and the like.
  • the backlight 8 is a light source for displaying an image on the LCD 7.
  • the backlight 8 is comprised by LED (Light Emitting Diode).
  • the backlight 8 is not limited to the LED, and may be a cold cathode tube such as a small fluorescent tube using a cold cathode.
  • the LCD unit 5 performs liquid crystal display on the LCD 7 using light from the backlight 8 under the control of the control unit 6.
  • the LCD 7 includes, for example, a color filter that decomposes white light from the backlight 8 into component light of three colors R (red), G (green), and B (blue) for each pixel.
  • the transmittance of light in the pixel is controlled, and the transmittance of component light is controlled for each pixel.
  • the LCD unit 5 having the LCD 7 and the backlight 8 functions as an image display unit that performs image display.
  • the control unit 6 includes a CPU (Central Processing Unit) 9, an HDMI receiver 10, an LCD controller 11, an LED backlight drive IC (Integrated Circuit) 12, and a power supply IC 13.
  • CPU Central Processing Unit
  • HDMI receiver 10 an HDMI receiver
  • LCD controller 11 an LCD controller
  • LED backlight drive IC Integrated Circuit
  • the CPU 9 is a main control unit that controls the operation of the display unit 3.
  • the CPU 9 outputs control signals to the HDMI receiver 10, the LCD controller 11, and the LED backlight drive IC 12.
  • the CPU 9 is connected to the HDMI receiver 10, the LCD controller 11, and the like through a data communication bus.
  • the HDMI receiver 10 receives an input of a video signal sent from the repeater 2 through the cable 51.
  • the HDMI receiver 10 directly outputs the input video signal to the LCD controller 11. That is, the HDMI receiver 10 directly outputs the input video signal to the LCD controller 11 without passing through an image processing circuit such as a scaler that processes the video signal with the LCD controller 11. Therefore, the video signal output from the HDMI receiver 10 is directly input to the LCD controller 11.
  • the HDMI receiver 10 is controlled by the CPU 9 by receiving a control signal from the CPU 9.
  • the LCD controller 11 controls the operation of the LCD 7 constituting the LCD unit 5 based on the control signal input from the CPU 9.
  • the LCD controller 11 includes a dot clock generation circuit that generates a dot clock, a video processor, a frame memory, an LCD drive circuit as an LCD driver, and the like.
  • the dot clock generation circuit generates a dot clock signal for sampling each pixel of the digital image signal included in the video signal sent from the HDMI receiver 10.
  • the vertical synchronization signal and horizontal synchronization signal output from the HDMI receiver 10 are input to the dot clock generation circuit.
  • the video processor included in the LCD controller 11 is a microprocessor that controls the writing and reading of images to and from the frame memory.
  • the digital image signal sent from the HDMI receiver 10 is once written in the frame memory and read out from the frame memory as necessary by the video processor.
  • the digital image signal read from the frame memory is supplied from the video processor to the LCD drive circuit included in the LCD controller 11.
  • the digital image signal writing operation to the frame memory is performed in synchronization with the vertical synchronizing signal and the horizontal synchronizing signal.
  • a digital image signal read operation from the frame memory by the video processor is performed in synchronization with a synchronization signal output from the LCD drive circuit.
  • the LCD drive circuit included in the LCD controller 11 generates an image signal for the LCD 7 in the LCD controller 11 in accordance with the digital image signal output from the video processor.
  • the image signal generated by the LCD drive circuit is input to the LCD 7, the image display by the LCD 7 is performed.
  • the LED backlight drive IC 12 controls the operation of the backlight 8 constituting the LCD unit 5 based on the control signal input from the CPU 9. Specifically, the LED backlight drive IC 12 controls the drive current that flows through the backlight 8 that is an LED, and controls the drive of the backlight 8 such as on / off of the backlight 8 and brightness setting. When the drive current output from the LED backlight drive IC 12 is supplied to the backlight 8, the backlight 8 emits light.
  • the LCD controller 11 and the LED backlight drive IC 12 constitute a display control unit 14 that controls the LCD unit 5 having the LCD 7 and the backlight 8 in the control unit 6.
  • the display control unit 14 including the LCD controller 11 and the LED backlight drive IC 12 functions as display control means for controlling the LCD unit 5 having the LCD 7 and the backlight 8.
  • the LCD controller 11 that controls the LCD 7 functions as a liquid crystal control unit
  • the LED backlight drive IC 12 that controls the backlight 8 functions as a light source control unit.
  • the LCD controller 11 and the LED backlight drive IC 12 are controlled by the CPU 9 by receiving a control signal from the CPU 9. That is, the CPU 9 sends a control signal to the LCD controller 11 and the LED backlight drive IC 12 to cause the LCD controller 11 and the LED backlight drive IC 12 to control the operation of the LCD unit 5. Then, after executing an image display command for the LCD controller 11, the CPU 9 sends a control signal to the LED backlight drive IC 12 to turn on the backlight 8 and cause the LCD unit 5 to display an image.
  • the power supply IC 13 constitutes a power supply unit that receives the supply of power supplied from the repeater 2 via the cable 51 in the control unit 6 of the HMD 1.
  • the electric power of this power supply unit is used to drive each unit constituting the HMD 1 such as the CPU 9 and the LCD controller 11 of the control unit 6.
  • the control unit 6 is provided with a storage unit that stores a control program and the like in advance. This storage unit is connected to the CPU 9 by a data communication bus.
  • the display unit 3 has a half mirror 15 for allowing the user to recognize the video.
  • the half mirror 15 is provided so as to be positioned in front of the left eye of the user while being rotatably supported by a mirror holder 3b provided on one end side of the housing 3a of the display unit 3.
  • the display unit 3 causes the user to recognize the video displayed by the LCD unit 5 by the half mirror 15. Further, the half mirror 15 transmits external light and makes it enter the user's eyes. Therefore, the user can visually recognize the video displayed by the display unit 3 on the background recognized by the external light.
  • the HMD 1 of the present embodiment is a see-through video display device that transmits external light and displays a video displayed by the display unit 3 to the user.
  • the HMD according to the present invention need not be a see-through type.
  • the frame 4 is a spectacle-type frame, and is a mounting portion that supports the display unit 3 and is mounted on the user's head.
  • the frame 4 supports the display unit 3 so that the display unit 3 can display an image to the user as described above while being mounted on the user's head.
  • the display unit 3 is attached to the left side of the user with the frame 4 mounted on the head with respect to the frame 4. Therefore, the HMD 1 of the present embodiment causes the user to visually recognize the video by displaying the video with respect to the left eye of the user.
  • the spectacle-shaped frame 4 is connected to the front part 41 located in front of the user's face, the armor part 42 extending rearward from the left and right ends of the front part 41, and the armor parts 42 to be rotatable.
  • the temple part 43 is provided.
  • the front part 41 has the left and right end sides on the side where the armor part 42 to which the pair of temple parts 43 are connected is provided.
  • the front portion 41 has a shape that is gently curved so that the central portion thereof is convex on the side (front side) opposite to the side on which the temple portion 43 extends.
  • the armored portion 42 is a portion that is provided on the left and right ends of the front portion 41 and protrudes along the direction in which the temple portion 43 extends from the front portion 41.
  • a temple portion 43 is rotatably attached to the rear end portion of each armor portion 42.
  • the pair of temple portions 43 sandwich the user's face from both the left and right sides.
  • the temple portion 43 has a cell portion 43a that becomes a portion that covers the user's ear in the latter half portion that faces inward from the front side to the rear side.
  • the armor part 42 and the temple part 43 are connected by a screw or the like at a hinge part 44 provided at the rear end part of the armor part 42.
  • the temple part 43 is connected to the hinge part 44 so that the temple part 43 can be folded with respect to the configuration including the front part 41 and the armored part 42 with the vertical direction as the rotational axis direction.
  • a cover sheet 45 for protecting the user's eyes is attached to the lower side of the front portion 41.
  • the cover sheet 45 includes two sheet members 46 provided corresponding to the left and right eyes of the user, and a holding body 47 that holds the sheet members 46 against the frame 4.
  • the sheet member 46 is a sheet-like or plate-like member having transparency that covers the left and right eyes of the user.
  • the sheet member 46 is provided in the spectacle-type frame 4 in a manner like a lens in general spectacles.
  • the sheet member 46 is a plate-like member made of a synthetic resin material such as transparent plastic. As described above, the user of the see-through type HMD 1 recognizes the display by the display unit 3 and obtains the field of view by the external light transmitted through the transparent sheet member 46.
  • the holding body 47 includes a pair of holding portions 47a that hold the two sheet members 46, and a connecting portion 47b that connects these holding portions 47a.
  • Each holding portion 47 a is a frame-like portion formed so that the lower side is open, and has a shape corresponding to the outer edge of the substantially half portion on the upper side of the sheet member 46. Accordingly, each sheet member 46 is held in a state in which the outer edge of the upper half portion is surrounded by the holding portion 47 a of the holding body 47.
  • the connecting portion 47b is a portion that connects a pair of holding portions 47a that hold the sheet member 46 on both the left and right sides at the left and right central portions.
  • a nose pad portion 48 that contacts the user's nose is provided in the connecting portion 47b of the holding body 47.
  • the nose pad portion 48 has a pair of pads that come into contact with the nose of the user from both the left and right sides when the frame 4 is attached.
  • the cover sheet 45 is attached to the frame 4 by attaching the portion of the holding body 47 to the front portion 41 of the frame 4.
  • the frame 4 supports the display unit 3 by the mounting member 49.
  • the attachment member 49 is fixed to an inner portion of the housing 3a of the display unit 3.
  • the attachment member 49 is attached to the left temple part 43 in a state in which the extension part extending forward of the user from the position of the hinge part 44 of the left temple part 43 is penetrated, whereby the display unit 3 is attached.
  • the frame 4 is supported.
  • the display unit 3 to which the attachment member 49 is fixed is attached to the frame 4 in a state in which the extension portion on the front side of the hinge portion 44 that is the front end portion of the temple portion 43 is inserted into the hole of the attachment member 49.
  • the support part of the display unit 3 with respect to the frame 4 by the attachment member 49 is configured so that the position of the display unit 3 can be adjusted in the front-rear direction with respect to the frame 4, for example.
  • the frame 4 having the above-described configuration is applied to both ears of the user by the pair of temple parts 43, and the front side is supported by the user's nose muscles by the nose pad part 48 having two pads. Supported at four locations.
  • the display unit 3 is supported by the glasses-type frame 4 so that the display unit 3 is disposed on the left front side of the user's head.
  • the HMD 1 is configured for the left eye that displays an image on the left eye of the user, but the HMD according to the present invention has a right eye that displays an image on the right eye of the user. Or a configuration for left and right eyes.
  • the repeater 2 includes a video signal input terminal 21 that receives a video signal input from the outside, and a power supply input terminal 22 that receives a supply of power from the outside.
  • the video signal input terminal 21 is a terminal for receiving an input of a video signal output from an output terminal such as an HDMI terminal or a DVI-D terminal included in an external device such as a PC. Therefore, an HDMI cable, an HDMI-DVI-D conversion cable, or the like is connected to the video signal input terminal 21.
  • a USB cable or an AC adapter of an external battery connected via USB is connected to the power supply input terminal 22.
  • the repeater 2 may be configured to incorporate a battery.
  • the repeater 2 has a CPU 23 and a power supply IC 24.
  • the CPU 23 is a control unit that controls the operation of the repeater 2.
  • the CPU 23 receives and outputs a video signal from the video signal input terminal 21.
  • the video signal output from the CPU 23 is sent to the display unit 3 of the HMD 1 through the cable 51.
  • the video signal sent to the display unit 3 by the cable 51 is received by the HDMI receiver 10 of the control unit 6.
  • the repeater 2 has the operation part 25 operated by the user.
  • the operation unit 25 includes, for example, a switch such as a dip switch, a button, and the like.
  • An operation signal generated by the operation of the operation unit 25 is input to the CPU 23.
  • the operation unit 25 of the repeater 2 for example, brightness adjustment of the display image by the LCD unit 5, switching between right eye and left eye by rotating the display image, turning on / off the display image Switching off or the like is performed.
  • the power supply IC 24 constitutes a power supply unit that receives supply of power supplied from the outside by the power supply input terminal 22 in the repeater 2.
  • the power of this power supply unit is used to drive the CPU 23 and the like.
  • the power supplied to the power supply unit including the power supply IC 24 for example, the above-described USB-connected external battery, AC adapter, or battery power is used.
  • the power supply IC 24 converts the AC voltage supplied from the power supply input terminal 22 into a stable DC voltage.
  • a video signal (hereinafter referred to as “controller input video signal”) input from the HDMI receiver 10 to the LCD controller 11 is unstable, for example, when the apparatus is activated. It may become a state. Further, as described above, in the control unit 6 of the HMD 1, the video signal output from the HDMI receiver 10 is directly input to the LCD controller 11. Therefore, in the HMD 1 of the present embodiment, when the controller input video signal is in an unstable state, the unstable video signal is input to the LCD controller 11 as it is.
  • the repeater When the display image ON is set in the operation unit 25, the image display command from the CPU 9 to the LCD controller 11 is executed in the HMD 1 before the video signal is input from the repeater 2 to the HMD 1. Become.
  • the LCD unit 5 when an image display command from the CPU 9 to the LCD controller 11 is executed before the controller input video signal is stabilized, that is, in a state where the controller input video signal is unstable, at the time of starting the apparatus, the LCD unit 5 There may be a problem with the display image. In this case, as a problem that occurs in the display image by the LCD unit 5, for example, vertical stripes may appear in the display image.
  • FIG. 3 shows an example of a normal image and an image with vertical stripes.
  • FIG. 3A shows a schematic diagram of a normal image.
  • FIG. 3B shows a schematic diagram of an image including vertical stripes as an example of a case where a defect occurs in the display image by the LCD unit 5. That is, the phenomenon that vertical stripes appear in the display image as shown in FIG. 3B occurs when the CPU 9 executes an image display command to the LCD controller 11 before the controller input video signal is stabilized as described above.
  • the specification of the LCD controller 11 can be cited as one of the causes of the phenomenon of vertical stripes caused by the image display command being executed before the controller input video signal is stabilized. Yes.
  • the phenomenon of vertical stripes is caused by the specifications of the LCD controller 11, the vertical stripes generated on the display screen may be maintained without disappearing even after the controller input video signal is stabilized.
  • an image processing circuit such as a scaler in the control unit 6 of the HMD 1.
  • the image processing circuit is provided so as to process the controller input video signal. Accordingly, the image processing circuit in this case is mounted at a position for receiving the controller input video signal output from the HDMI receiver 10 as indicated by reference numeral 11a in FIG.
  • the image processing circuit 11a performs a processing process in advance to a normal state. Accordingly, a normal video signal is always input to the LCD controller 11.
  • the HMD 1 according to the present embodiment is a relatively small image display device that is used by being mounted on the user's head as described above. For this reason, in the HMD 1 of this embodiment, it is difficult to mount an image processing circuit such as a scaler as described above from the viewpoint of low power consumption and miniaturization. In particular, since a large amount of power is required for signal processing in the image processing circuit and the power consumption of the CPU 9 also increases, the configuration in which the image processing circuit is mounted is not applicable to a power saving configuration such as the HMD1. Have difficulty.
  • a control sequence (hereinafter referred to as “image display sequence”) at the time of image display as described below is performed.
  • image display sequence a control sequence at the time of image display as described below is performed.
  • the HDMI receiver 10 directly output the video signal to the display control unit 14 (the LCD controller 11 thereof) means that the HDMI receiver 10 inputs the controller input video to the LCD controller 11.
  • the signal output path does not have a configuration for applying some processing to the video signal such as the image processing circuit 11a (see FIG. 2).
  • the controller input video signal output from the HDMI receiver 10 is input to the LCD controller 11 without being processed.
  • the video signal stable state is detected based on the state of the synchronization signal included in the controller input video signal.
  • the video signal stable state is detected based on the vertical synchronization signal among the synchronization signals.
  • a vertical synchronization signal is extracted from the controller input video signal output from the HDMI receiver 10.
  • the vertical synchronization signal is extracted from the controller input video signal by, for example, separating the vertical synchronization signal from the video signal by a synchronization separation circuit provided in an interface portion or the like inside the HDMI receiver 10.
  • the HDMI receiver 10 receives the input of the video signal output from the repeater 2, and directly outputs the input video signal to the display control unit 14 (the LCD controller 11 thereof). Then, a vertical synchronization signal (V_SYNC) is extracted from the input video signal, and functions as video signal input / output means for outputting the extracted vertical synchronization signal.
  • V_SYNC vertical synchronization signal
  • the vertical synchronization signal extracted from the controller input video signal output from the HDMI receiver 10 is input to the CPU 9.
  • the CPU 9 detects that the input vertical synchronization signal is in a stable state (hereinafter referred to as “synchronization signal stable state”) as the video signal stable state.
  • the vertical synchronization signal (V_SYNC) periodically repeats a high level (hereinafter referred to as “H level”) and a low level (hereinafter referred to as “L level”). It is a pulse signal.
  • H level high level
  • L level low level
  • the CPU 9 detects the synchronization signal stable state from the transition state of the signal level between the H level and the L level.
  • the CPU 9 has an input port that receives an input of a vertical synchronizing signal, and detects on / off of the vertical synchronizing signal, that is, an H level / L level at this input port.
  • the state of the H level continues for the period ⁇ X with respect to the vertical synchronization signal (V_SYNC). That is, the state in which the H level continues during the period ⁇ X is stably repeated with the interval period ⁇ Y.
  • the interval period ⁇ Y is a period shorter than the period ⁇ X and the vertical synchronization signal is in the L level.
  • the continuous time of the H level is not uniform for the vertical synchronization signal, or the continuous time of the H level is shorter than the period ⁇ X in the stable state.
  • the period ⁇ X is a period determined by the scanning frequency of the vertical synchronization signal (hereinafter referred to as “vertical scanning frequency”). For example, when the vertical scanning frequency is 60 [Hz], the period required to scan once in the vertical direction, in other words, the period for drawing an image of one frame is (1/60) ⁇ 1000 ⁇ 16.5 [ ms].
  • the interval period ⁇ Y is a period that is not affected by the stable state of the controller input video signal or has a small effect.
  • the CPU 9 From the input vertical synchronization signal, the CPU 9 continues from the H level to the L level from the time when the output of the vertical synchronization signal is kept at the H level, that is, from the time when the output level of the vertical synchronization signal changes from the L level to the H level.
  • the synchronous signal stable state is detected based on a preset reference time with respect to the time until the point of time (hereinafter referred to as “continuous H level time”). Specifically, the CPU 9 measures the continuous H level time for the input vertical synchronization signal.
  • the CPU 9 detects the synchronization signal stable state by comparing the measurement time of the continuous H level time with a preset reference time.
  • the CPU9 detects a synchronous signal stable state, for example, when the measurement time of continuous H level time corresponds with the preset reference time.
  • the reference time set in advance is set to 16.4 [ms], which is the same as the period ⁇ X, according to the example when the scanning frequency is 60 [Hz] as described above. That is, in this case, the synchronization signal stable state is detected when the measurement time of the continuous H level time by the CPU 9 is 16.4 [ms] which is the same as the period ⁇ X in the state where the video signal is stable.
  • the reference time to be compared with the measurement time of the continuous H level time is set and stored in advance in a storage unit or the like included in the control unit 6.
  • the CPU9 will output the image display signal which performs the image display by the LCD unit 5 with respect to the display control part 14, if a synchronous signal stable state is detected based on reference
  • the image display signal sent from the CPU 9 to the display control unit 14 includes an image display command signal from the CPU 9 to the LCD controller 11 and a control signal from the CPU 9 to the LED backlight drive IC 12.
  • an image display command signal from the CPU 9 to the LCD controller 11 turns on the display register of the LCD controller 11, and sends the LCD 7 to the LCD controller 11. This is a signal for starting the drive control for.
  • the control signal from the CPU 9 to the LED backlight drive IC 12 is a signal for causing the LED backlight drive IC 12 to turn on the backlight 8.
  • control signal sent from the CPU 9 to the display control unit 14 includes an image non-display signal for stopping the image display by the LCD unit 5.
  • the image non-display signal sent from the CPU 9 to the display control unit 14 includes an image non-display command signal from the CPU 9 to the LCD controller 11 and a control signal from the CPU 9 to the LED backlight drive IC 12.
  • an image non-display command signal from the CPU 9 to the LCD controller 11 turns off the display register of the LCD controller 11, and the LCD controller 11 This is a signal for stopping drive control for the LCD 7.
  • the control signal from the CPU 9 to the LED backlight drive IC 12 is a signal for causing the LED backlight drive IC 12 to turn off the backlight 8.
  • the CPU 9 functions as a synchronization signal detection unit. That is, in the present embodiment, the CPU 9 receives the vertical synchronization signal output from the HDMI receiver 10 and is based on a reference time set in advance for a time during which the output of the vertical synchronization signal is constant, that is, a continuous H level time. , It is detected that the input vertical synchronization signal is in a stable state (synchronization signal stable state).
  • the CPU 9 functions as an image display signal output unit. That is, in this embodiment, when the CPU 9 detects the synchronization signal stable state after the input of the video signal to the HDMI receiver 10 is started, the CPU 9 causes the display control unit 14 to perform image display by the LCD unit 5. Output a signal.
  • the image display signal sent from the CPU 9 to the display control unit 14 includes the image display command signal for the LCD controller 11 and the control signal for the LED backlight drive IC 12 as described above.
  • the relay 2 is turned on by the user.
  • the operation of turning on the power of the repeater 2 is, for example, an operation of a power switch of the repeater 2, or when an external battery is connected to the power supply input terminal 22 of the repeater 2, the power of the external battery is turned on. It is an operation to insert.
  • the image display sequence in the HMD 1 of the present embodiment is executed as an image display method for displaying an image on the LCD 7 by directly inputting the video signal input from the repeater 2 to the LCD controller 11 which is a means for controlling the LCD 7. Is done.
  • the image display flag is turned off in the state where the processing in the HMD 1 is started (S10). That is, the display register of the LCD controller 11 is in an off state.
  • the operation is an image display operation or an image non-display operation (S20).
  • whether the image display operation or the image non-display operation is determined is determined by the state of the operation unit 25 of the repeater 2.
  • an on / off switch for switching between image display and image non-display is provided as the operation unit 25.
  • the image display operation or the image non-display operation it is determined whether the image display operation or the image non-display operation. That is, when the changeover switch of the operation unit 25 is in the on state, it is determined as an image display operation, and when the changeover switch is in the off state, it is determined as an image non-display operation.
  • the timing indicated by the arrow T ⁇ b> 1 corresponds to the timing when the user switches on the image display / image non-display switch of the operation unit 25 after the processing in the HMD 1 is started.
  • the video signal is input next.
  • the video signal is input to the repeater 2 from an external device such as a PC via an HDMI cable or an HDMI-DVI-D conversion cable connected to the video signal input terminal 21 of the repeater 2.
  • the video signal input to the repeater 2 is input to the HMD 1 through the cable 51.
  • the video signal from the repeater 2 is received by the HDMI receiver 10.
  • the timing when the video signal is input to the HMD 1 corresponds to the timing indicated by the arrow T2.
  • step S30 it is determined whether or not image display flag is off (S30).
  • step S30 it is determined whether or not image display by the LCD unit 5 has already been performed. That is, the determination of the image display operation in step S20 is, for example, the first time after the repeater 2 is turned on and the processing of the HMD 1 is started, and the switch on the operation unit 25 is turned on by the user. It is determined whether it is a determination.
  • step S30 Yes
  • the image display is not yet performed, and the determination of the image display operation in step S20 is the first time after the processing of HMD1 is started. This is the case.
  • the image display flag is not off in step S30 (S30, No), that is, if the image display flag is on, the image is already being displayed.
  • Step S30 when it is determined that the image display flag is off (S30, Yes), it is determined whether or not the video signal is stable (S40).
  • the determination as to whether or not the video signal is stable is performed by the detection of the video signal stable state by the CPU 9 as described above, that is, the detection of the synchronous signal stable state. Specifically, the CPU 9 detects a vertical synchronization signal extracted from the controller input video signal. The CPU 9 detects the synchronization signal stable state from the measurement time of the continuous H level time for the detected vertical synchronization signal and the preset reference time.
  • step S40 when the CPU 9 detects the synchronization signal stable state, it is determined that the video signal is stable (S40, Yes).
  • the process in step S40 is repeatedly performed until it is determined that the video signal is stable. That is, if it is determined in step S40 that the video signal is not stable (No in S40), it is determined again whether the video signal is stable. Therefore, according to step S40, waiting is performed until the video signal input to the HMD 1 is stabilized.
  • step S40 the CPU 9 presets the step of detecting the vertical synchronization signal (V_SYNC) from the controller input video signal and the time (continuous H level time) during which the output of the vertical synchronization signal is constant. Based on the reference time, a step of detecting that the vertical synchronization signal detected by the detecting step is in a stable state is performed.
  • V_SYNC vertical synchronization signal
  • step S40 If it is determined in step S40 that the video signal is stable (S40, Yes), an image display command is executed (S50), and the backlight 8 is turned on (S60).
  • step S50 the CPU 9 sends an image display command signal to the LCD controller 11, and the LCD controller 11 starts driving the LCD 7.
  • step S60 a signal for turning on the backlight 8 with the set brightness is sent from the CPU 9 to the LED backlight drive IC 12.
  • Step S50 and Step S60 are steps performed when the synchronization signal stable state is detected by the CPU 9, and correspond to a step of executing image display by the LCD 7 of the LCD unit 5.
  • step S70 When the backlight 8 is turned on in step S60, the image display flag is turned on (S70). That is, the display register included in the LCD controller 11 is turned on. The case where it is determined in step S30 that the image display flag is not off (S30, No) will be described later.
  • step S20 If it is determined in step S20 that the image is not displayed, it is determined whether or not the image display flag is off (S80). In step S80, as in step S30 described above, it is determined whether or not image display by the LCD unit 5 has already been performed.
  • step S80 If the image display flag is off in step S80 (S80, Yes), the image display is not yet performed, and the determination of the image non-display operation in step S20 is made after the processing of HMD1 is started. This is the first time. On the other hand, if the image display flag is not off in step S80 (S80, No), that is, if the image display flag is on, the image is already being displayed.
  • step S80 determines whether the image display flag is not off (S80, No)
  • an image non-display command is executed (S90), and the backlight 8 is turned off (S100).
  • step S ⁇ b> 90 an image non-display command signal is sent from the CPU 9 to the LCD controller 11, and the LCD controller 11 stops driving the LCD 7.
  • step 100 a signal for turning off the backlight 8 is sent from the CPU 9 to the LED backlight drive IC 12.
  • step S100 the image display flag is turned off (S110). That is, the display register included in the LCD controller 11 is turned off.
  • step S80 determines whether the image display flag is OFF (S80, Yes). If it is determined in step S80 that the image display flag is OFF (S80, Yes), the process proceeds to step S20. That is, in this case, since the image display is not yet performed, the backlight 8 is not turned off by the image non-display command.
  • the processing associated with the image display operation and the image non-display operation as described above is performed in accordance with the switching of the image display operation / image non-display operation in step S20. Then, in the processing flow shown in FIG. 5, the CPU 9 performs each of the processing when the image display operation is performed (S30 to S70) and the processing when the image non-display operation is performed (S80 to S110). This is performed by reading and executing a predetermined control program stored in the storage unit or the like of the control unit 6.
  • the HMD 1 of the present embodiment in which the image display sequence as described above is performed, it is possible to eliminate the problem of the display image caused by the disturbance of the video signal without using an image processing circuit such as a scaler. Specifically, in the HMD 1 of the present embodiment, after waiting for the controller input video signal to become stable in the processing flow described above (S40), an image display command for the LCD controller 11 is executed. (S50). Thereby, problems such as vertical stripes appearing in the display image can be avoided.
  • an image display command for the LCD controller 11 is executed while the controller input video signal is unstable, for example, a phenomenon that vertical stripes appear in the display image (see FIG. 3B) may occur. Therefore, as in the image display sequence in the HMD 1 of the present embodiment, when the controller input video signal is in a stable state, an image display command to the LCD controller 11 is executed, thereby causing a display image defect such as a vertical stripe phenomenon. Therefore, normal image display (see FIG. 3A) can be ensured.
  • an image processing circuit 11a such as a scaler (see FIG. 2) does not exist between the HDMI receiver 10 and the LCD controller 11, and the controller input video signal Is effective in a configuration in which is input directly from the HDMI receiver 10 to the LCD controller 11.
  • the vertical synchronizing signal (V_SYNC) has a non-uniform continuous H level time or a time (period) in which the continuous H level time is derived from the vertical scanning frequency. Or shorter than [Delta] X).
  • the continuous H level time of the length of the period ⁇ X is repeated together with the interval period ⁇ Y in which the output level becomes the L level.
  • the image display sequence of the present embodiment it is detected as the synchronization signal stable state that the continuous H level time is constant for the reference time for a predetermined number of times in the synchronization signal stable state detection process. Therefore, when a time having the same length as the period ⁇ X is set as the reference time, it is detected as the synchronization signal stable state that the continuous H level time has become the period ⁇ X continuously for a predetermined number of times.
  • step S20 in the processing flow shown in FIG. 5 the CPU 9 detects the synchronization signal stable state when the measured continuous H level time is 16.4 [ms] for three consecutive times.
  • the timing indicated by the arrow T3 corresponds to the timing at which the continuous H level time of the period ⁇ X is generated three times in succession. That is, the synchronization signal stable state is detected by the CPU 9 at the timing indicated by the arrow T3 in FIG. 4, whereby the image display command is executed and the backlight 8 is turned on.
  • the continuous H level time continuously measured by the CPU 9 is the first 16.4 [ms], the second 16.4 [ms], and the third 14 [ms]
  • the continuous H level time is measured again from the first time.
  • the predetermined number of times that the continuous H level time of the reference time continues is preset and stored in a storage unit or the like included in the control unit 6. Further, the predetermined number of times that the continuous H level time of the reference time continues is not particularly limited, and is appropriately set according to the transition mode of the vertical synchronization signal (V_SYNC), the specification of the LCD controller 11, and the like.
  • the reference time used in the sync signal stable state detection process has a predetermined width set based on the vertical scanning frequency.
  • the reference time used for the synchronization signal stable state detection process is preferably a time defined by a predetermined numerical range.
  • the reference time used for the detection process of the synchronization signal stable state is defined as a numerical range having a predetermined width
  • the continuous H level time measured by the CPU 9 is a value within the numerical range
  • the signal of the continuous H level time is counted as one of the number of times required to continue for a predetermined number of times as described above.
  • the continuous H level time measured by the CPU 9 is within the range of 15.0 to 18.0 [ms]. If it is a value, the signal of the continuous H level time is counted as one of the number of times required to continue for a predetermined number of times. In this example, for example, the continuous H level time continuously measured by the CPU 9 is 15.5 [ms] for the first time, 17.0 [ms] for the second time, and 16.5 [ms] for the third time. If there is, the output of the vertical synchronizing signal becomes constant for the reference time, that is, the continuous H level time becomes the reference time for three consecutive times.
  • the width (numerical range) of the reference time used for the sync signal stable state detection process is set based on the vertical scanning frequency. For example, when the vertical scanning frequency is 60 [Hz], the period ⁇ X in the vertical synchronization signal is 16.4 [ms] as described above. Therefore, when the vertical scanning frequency is 60 [Hz], the reference time is set as 16.4 ms ⁇ several ms, for example. In this case, specifically, the reference time is set as 15.0 to 18.0 [ms], for example.
  • the reference time is set as, for example, 14.2 ms ⁇ several ms, and specifically, set as, for example, 13.0 to 16.0 [ms].
  • the reference time is 16.4 [ms that is the period ⁇ X at each vertical scanning frequency. ]
  • 14.2 [ms] are set. Accordingly, the reference time in this case is set as 13.0 to 18.0 [ms], for example.
  • the reference time used in the sync signal stable state detection process is set as a numerical range having a predetermined width set based on the vertical scanning frequency, so that the sync signal stable state detection process is performed.
  • the error of the period ⁇ X with respect to the vertical synchronization signal when the video signal is stable is allowed. As a result, it is possible to avoid a situation in which the synchronization signal stable state is not detected due to a slight change in the period ⁇ X of the vertical synchronization signal, although the video signal is in a stable state. As a result, it is possible to accurately detect the synchronization signal stable state.
  • the HMD 1 of the present embodiment includes the LCD 7 and the backlight 8 in the LCD unit 5 that performs image display, and the LCD controller 11 that controls the LCD 7 in the display control unit 14 that controls the LCD unit 5. And an LED backlight drive IC 12 that controls the backlight 8.
  • the HMD 1 of the present embodiment when causing the LCD unit 5 to perform image display based on the image display signal output from the CPU 9, starts control of the LCD 7 by the LCD controller 11, and then performs LED back-up after a predetermined time has elapsed. Control of the backlight 8 is started by the write drive IC 12. That is, when the LCD unit 5 displays an image, a predetermined time difference is provided between the output timing of the control signal from the CPU 9 to the LCD controller 11 and the output timing of the control signal from the CPU 9 to the LED backlight drive IC 12.
  • the CPU 9 when it is determined that the video signal is stable, the CPU 9 sends an image display command signal to the LCD controller 11 and the LCD controller 11 starts driving the LCD 7. Then, a signal for turning on the backlight 8 is sent from the CPU 9 to the LED backlight drive IC 12 (S60).
  • the backlight 8 is turned on after a predetermined time has elapsed from the timing at which the image display command to the LCD controller 11 is executed. That is, the CPU 9 outputs a control signal to the LED backlight drive IC 12 after a predetermined time has elapsed after outputting the image display command signal to the LCD controller 11.
  • the predetermined time (hereinafter referred to as “light lighting standby time”) from the output timing of the image display command signal by the CPU 9 to the output timing of the control signal for lighting the backlight 8 is, for example, several 10 to It is set as a time within a range of several hundred ms.
  • the light turn-on standby time is set based on the time from when the LCD controller 11 receives the image display command from the CPU 9 until the display on sequence executed is completed.
  • the light lighting standby time will be described with reference to FIG.
  • FIG. 6 in the LCD controller 11, when an image display command signal from the CPU 9 is input and the image display command is turned on at timing t1, execution of the display on sequence is started. .
  • a display on sequence in the LCD controller 11 for example, a built-in power supply is started up.
  • the LCD 7 is ready for image display.
  • the backlight 8 is turned on to display the image on the LCD 7.
  • the light lighting standby time in the CPU 9 is set to a time longer than the time from when the LCD controller 11 receives the image display command until the display on sequence is completed.
  • the light lighting standby time is a time ⁇ Z from the timing t1 when the image display command is turned on in the LCD controller 11 to the timing t2 when the backlight 8 is turned on. Therefore, the light lighting standby time (time ⁇ Z) is set as a time longer than the time from the timing t1 when the image display command is turned on to the timing t3 when the display on sequence is completed.
  • the light lighting standby time there is a slight time lag between the timing t3 when the display on sequence is completed in the LCD controller 11 and the timing t2 when the backlight 8 is turned on.
  • the light lighting standby time (time ⁇ Z) is set to 100 ms, for example.
  • the light lighting standby time is appropriately set according to the specifications of the LCD controller 11 and the like.
  • the light lighting standby time is set and stored in advance in a storage unit or the like included in the control unit 6.
  • the lighting control of the backlight 8 is performed after a predetermined time has elapsed, thereby ensuring a normal image for the display image by the LCD unit 5. be able to. If the backlight 8 is turned on before the display on sequence is completed in the LCD controller 11, a normal image may not be displayed depending on the specifications of the LCD controller 11. Therefore, as described above, by providing a light turn-on standby time in the control of the LCD unit 5 by the CPU 9, when the backlight 8 is turned on, the completion state of the display on sequence in the LCD controller 11 is obtained. Normal image display according to 5 can be ensured.
  • control executed in a state where image display by the LCD unit 5 is performed based on the above-described image display sequence will be described.
  • the control described here is image display interruption control performed by the CPU 9 based on a predetermined control program. After outputting the image display signal to the LCD unit 5, the CPU 9 causes the display control unit 14 to interrupt the image display by the LCD unit 5 when the synchronization signal stable state is not detected, that is, the image non-display described above. Output the display signal.
  • the image display interruption control described here is executed in a state where image display is performed as described above. Therefore, the image display interruption control is executed when it is determined in step S30 that the image display flag is not OFF (No in S30), that is, when the image display flag is ON in the processing flow shown in FIG. Control.
  • step S20 when the determination of the image display operation in step S20 is the first time after the processing of the HMD1 is started, the image display is not yet performed. In S30, it is determined that the display flag is off (S30, Yes).
  • step S40 when the synchronization signal stable state is detected and it is determined that the video signal is stable (S40, Yes), an image display command is executed (S50), and the backlight 8 is turned on. (S60) The image display flag is turned on (S70), and image display by the LCD unit 5 is performed.
  • the determination on the video signal in step S40 performed when the image display flag is determined OFF in step S30 is as described above. This is performed immediately after the start of the input of the video signal to 10.
  • step S30 when image display is once started in steps S50 to S70 and then it is determined in step S20 that the image display operation is performed, in step S30, the image display flag is not turned off (ON (Step S30, No), it is determined whether or not the video signal is stable (S120). Whether or not the video signal is stable in step S120 is determined by the same method as in step S40 described above.
  • step S120 If it is determined in step S120 that the video signal is stable (S120, Yes), the image display is continued as it is, and the process proceeds to step S20. On the other hand, when it is determined in step S120 that the video signal is not stable (S120, No), an image similar to that when the image non-display operation is determined in step S20 during image display (S80, No). Non-display processing (S90 to S110) is performed.
  • the CPU 9 continues the determination process as to whether or not the video signal is stable, similarly to step S40.
  • an image non-display signal is output from the CPU 9 to the display control unit 14. That is, similar to the processing of steps S90 to S110 in the processing flow shown in FIG. 5, the image non-display command is executed and the backlight 8 is turned off, so that the image display by the LCD unit 5 is interrupted.
  • the image display interruption control As described above, when the video signal is disturbed during the operation of the HMD 1, the image display by the LCD unit 5 can be stopped. Thereby, it is possible to prevent the image disturbed by the disturbance of the video signal from being displayed to the user, and it is possible to prevent the user from feeling uncomfortable due to the disturbance of the image.
  • the vertical synchronization signal (V_SYNC) is employed as the synchronization signal included in the video signal when detecting the stable state of the video signal, but is not limited thereto. That is, the synchronization signal used for detecting the video signal stable state may be a horizontal synchronization signal (H_SYNC) or both a vertical synchronization signal (V_SYNC) and a horizontal synchronization signal (H_SYNC). Therefore, the synchronization signal detected and output from the HDMI receiver 10 and received by the CPU 9 may be at least one of the vertical synchronization signal (V_SYNC) and the horizontal synchronization signal (H_SYNC).
  • the display unit 3 included in the HMD 1 employs a display method using the LCD 7, but is not limited thereto.
  • the HMD 1 is, for example, a retinal scanning type image display device that projects scanned laser light onto a user's retina, a CRT (Cathode-ray tube), an organic EL (Electro Luminescence) element, or the like.
  • the image display device used may be used. That is, the present invention can be applied to all display devices that handle synchronization signals such as vertical synchronization signals and horizontal synchronization signals.
  • the repeater 2 is an external device connected to the HMD 1 with the cable 51.
  • a configuration in which the repeater 2 is built in the HMD 1 can be realized by incorporating the configuration having the function of the repeater 2 in the HMD 1.
  • the video signal input from the repeater 2 to the HMD 1 is input from the external device such as a PC to the repeater 2, but the video signal input to the HMD 1 is It may be stored in the repeater 2.
  • the video signal storage portion in the repeater 2 includes, for example, an internal storage device such as a RAM, an SD card, a USB flash memory, a CD (Compact Disk), an FD (Flexible Disk), and an MO (Magneto-Optical Disk). ), A storage device such as a DVD (Digital Versatile Disk), HD (Hard Disk), or the like is used as appropriate.
  • the HMD system 50 ⁇ / b> A of this application example is a system that displays an image from the smartphone 71 on the HMD 1.
  • the HDMI cable 72 is connected to the video signal input terminal 21 of the repeater 2 via the Dock-HDMI conversion adapter 75 connected to the smartphone 71.
  • An external battery 73 connected by USB is connected to the power supply input terminal 22 of the repeater 2 by a power supply USB cable 74.
  • the external battery 73 and the smartphone 71 are connected by the Dock-USB conversion cable 76 via the Dock-HDMI conversion adapter 75. As a result, power is supplied from the external battery 73 to the smartphone 71. If the Dock-USB conversion cable 76 is not connected between the external battery 73 and the smartphone 71, power is not supplied to the smartphone 71, but the operation of this system is not affected.
  • the video signal is not output from the smartphone 71 on the image display side, that is, in a state where the power of the repeater 2 is not turned on. For this reason, in the HMD system 50A of this application example, the output operation of the video signal from the smartphone 71 to the repeater 2 is necessarily performed after the repeater 2 is turned on.
  • the HMD 1 of the present embodiment receives an input of an LCD unit 5 that performs image display, a display control unit 14 that controls the LCD unit 5, and a video signal including a digital image signal, a vertical synchronization signal, and a horizontal synchronization signal.
  • the HDMI receiver 10 that detects and outputs the vertical synchronization signal from the input video signal, and the input of the vertical synchronization signal output from the HDMI receiver 10.
  • a synchronization signal detecting means for detecting that the input vertical synchronization signal is in a stable state based on a reference time set in advance for a time when the output of the vertical synchronization signal is constant, and an image to the HDMI receiver 10
  • the synchronization signal detection means detects that the vertical synchronization signal is in a stable state. If that, the display control unit 14, and a CPU9 to function as each means of the image display signal output means for outputting an image display signal to perform image display by LCD unit 5. Thereby, the malfunction of the display image resulting from disturbance of a video signal can be eliminated, without using image processing circuits, such as a scaler.
  • the CPU 9 as the synchronization signal detecting means indicates that the output of the input vertical synchronization signal is constant for a reference time, and that the predetermined number of times has been consecutively set. It is detected that the synchronization signal is in a stable state. As a result, the synchronization signal stable state corresponding to the video signal stable state can be accurately detected. As a result, it is possible to effectively eliminate the display image defect caused by the disturbance of the video signal.
  • the reference time has a predetermined width set based on the vertical scanning frequency.
  • the LCD unit 5 includes the LCD 7 and the backlight 8 for performing image display by the LCD 7, and the display control unit 14 includes the LCD controller 11 that controls the LCD 7, And an LED backlight drive IC 12 that controls the backlight 8.
  • the LCD controller 11 starts controlling the LCD 7 and then performs a predetermined time (write After the lighting standby time) elapses, control of the backlight 8 is started by the LED backlight drive IC 12. Thereby, a normal image can be ensured for the display image by the LCD unit 5.
  • the CPU 9 functioning as the image display signal output means outputs the image display signal, and when the synchronization signal stable state is no longer detected, the display control unit 14 displays the LCD unit 5.
  • a signal (image non-display signal) for interrupting the image display by is output.
  • a method of display in which a vertical synchronization signal detected by a step of detecting a vertical synchronization signal from a video signal and a detection time based on a reference time set in advance for a time when the output of the vertical synchronization signal is constant is stable. And a step of displaying an image when the vertical synchronization signal is detected to be stable by the detecting step.
  • HMD image display device
  • LCD Liquid Crystal Display
  • LCD Liquid Crystal Display
  • CPU synchronization signal detection means, image display signal output means
  • HDMI receiver video signal input / output means
  • LCD controller liquid crystal controller
  • LED backlight drive IC light source controller
  • Display control unit display control means 50 HMD system

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

This image display device is provided with an LCD unit (5) for displaying an image, a display controller (14) for controlling the LCD unit (5), an HDMI receiver (10) for receiving image signal input, outputting the received image signal directly to the display controller (14) and detecting and outputting a vertical synchronization signal from the inputted image signal, and a CPU (9) having a function for receiving the input of the vertical synchronization signal outputted from the HDMI receiver (10) and detecting a synchronization signal stable state on the basis of a reference time set previously for the time in which the vertical synchronization signal becomes constant, and a function for outputting an image display signal for executing image display by the LCD unit (5) to the display controller (14) when the synchronization signal stable state is detected.

Description

画像表示装置および画像表示方法Image display device and image display method
 本開示は、画像表示装置および画像表示方法に関する。詳しくは、例えばヘッドマウントディスプレイのような比較的小型の画像表示装置に用いて好適な画像表示装置および画像表示方法に関する。 The present disclosure relates to an image display device and an image display method. Specifically, the present invention relates to an image display device and an image display method suitable for use in a relatively small image display device such as a head-mounted display.
 従来、画像表示装置として、使用者の頭部に装着されて用いられるヘッドマウントディスプレイ(以下「HMD」という。)が知られている(例えば、特許文献1参照)。HMDは、一般的に、使用者に認識させる画像を表示する表示ユニットと、この表示ユニットを支持し使用者の頭部に装着される支持フレームとを備える。HMDを構成する支持フレームとしては、使用者の頭部への装着が容易であること等から、眼鏡型のフレームが好適に用いられている。 Conventionally, as an image display device, a head mounted display (hereinafter referred to as “HMD”) used by being mounted on a user's head is known (for example, see Patent Document 1). The HMD generally includes a display unit that displays an image to be recognized by the user, and a support frame that supports the display unit and is attached to the user's head. As the support frame constituting the HMD, a glasses-type frame is preferably used because it can be easily mounted on the user's head.
 また、画像表示装置としては、例えばパーソナルコンピュータ(以下「PC」という。)の表示装置等、液晶ディスプレイ(LCD:Liquid Crystal Display)を用いた液晶表示装置が広く用いられている。特に、近年では、液晶表示装置は、家庭用のテレビ等として広く普及している。 Further, as the image display device, for example, a liquid crystal display device using a liquid crystal display (LCD) such as a display device of a personal computer (hereinafter referred to as “PC”) is widely used. In particular, in recent years, liquid crystal display devices have become widespread as home televisions and the like.
 液晶表示装置は、液晶パネル等により構成されるLCDと、LCDの駆動を制御するための駆動回路や制御回路を含むLCD制御部と、LCDによる画像表示を行うためのバックライト等の光源とを有する。液晶表示装置においては、LCD制御部に対して画像表示命令が実行されると、光源が点灯され、画像表示が行われる。LCD制御部は、例えばPCのような外部装置等から入力される映像信号に基づいてLCDの制御を行う。一般に、LCDの制御に用いられる映像信号には、画像を表示するための画像信号のほか、垂直同期信号、および水平同期信号が含まれる。 The liquid crystal display device includes an LCD composed of a liquid crystal panel, an LCD control unit including a drive circuit and a control circuit for controlling driving of the LCD, and a light source such as a backlight for performing image display on the LCD. Have. In the liquid crystal display device, when an image display command is executed to the LCD control unit, the light source is turned on and image display is performed. The LCD control unit controls the LCD based on a video signal input from an external device such as a PC. In general, a video signal used for controlling the LCD includes a vertical synchronization signal and a horizontal synchronization signal in addition to an image signal for displaying an image.
 このような液晶表示装置においては、例えば装置の起動時や、装置の動作中において何らかの原因でノイズが生じた時等、LCDの制御に用いられる映像信号が乱れる場合がある。映像信号の乱れとしては、例えば、垂直同期信号が不安定な状態となることが挙げられる。乱れた状態の映像信号が用いられてLCD制御部によるLCDの制御が行われた場合、正常な画像表示を行うことができない。 In such a liquid crystal display device, a video signal used for LCD control may be disturbed, for example, when the device starts up or when noise occurs for some reason during the operation of the device. As the disturbance of the video signal, for example, the vertical synchronization signal becomes unstable. When the disordered video signal is used and the LCD is controlled by the LCD control unit, normal image display cannot be performed.
 このため、例えばPCの表示装置やテレビ等の据え置き型の液晶表示装置においては、一般に、例えばスケーラ等のような画像処理回路が実装され、映像信号の乱れが補正される。すなわち、LCD制御部に画像処理回路が備えられ、LCD制御部に入力される映像信号が画像処理回路によってあらかじめ正常な状態に加工処理され、LCD制御部に入力される映像信号についての正常な状態が確保される。 For this reason, in a stationary liquid crystal display device such as a PC display device or a television, for example, an image processing circuit such as a scaler is generally mounted to correct the disturbance of the video signal. That is, the LCD control unit is provided with an image processing circuit, and the video signal input to the LCD control unit is processed into a normal state in advance by the image processing circuit, and the normal state of the video signal input to the LCD control unit Is secured.
 このように、従来の液晶表示装置においては、LCD制御部の制御に用いられる映像信号をスケーラ等の所定の画像処理回路によってあらかじめ加工処理することで、映像信号の乱れに対応するという構成が採用されている。例えば、特許文献2には、LCD制御部に入力される映像信号を処理する回路として、あらかじめ設定された補正データを周期的に出力するブロックを設け、このブロックから出力されるデータを、LCD制御部に入力されるデータにオフセットとして付加することで、LCD制御部に入力されるデータに周期的に乗るノイズをキャンセルする技術が開示されている。 As described above, the conventional liquid crystal display device adopts a configuration in which the video signal used for the control of the LCD control unit is processed in advance by a predetermined image processing circuit such as a scaler to cope with the disturbance of the video signal. Has been. For example, Patent Document 2 provides a block for periodically outputting correction data set in advance as a circuit for processing a video signal input to the LCD control unit, and the data output from this block is controlled by LCD control. A technique for canceling noise periodically riding on data input to the LCD control unit by adding an offset to the data input to the unit is disclosed.
特開2010-134134号公報JP 2010-134134 A 特開2002-108289号公報JP 2002-108289 A
 HMDのような比較的小型で移動性が要求される画像表示装置においては、低消費電力・小型化の観点から、上述したようなスケーラ等の画像処理回路を実装することは困難である。一方で、HMD等においてLCDを用いた画像表示構成を採用する場合、LCD制御部の仕様等によっては、例えば装置の起動時において、LCD制御部に入力される映像信号が安定する前に、LCD制御部に対する画像表示命令が実行されると、例えば表示画像に縦縞が入るといった不具合が生じる場合がある。 In an image display apparatus that is relatively small and requires mobility, such as an HMD, it is difficult to mount an image processing circuit such as a scaler as described above from the viewpoint of low power consumption and miniaturization. On the other hand, when an image display configuration using an LCD is adopted in an HMD or the like, depending on the specifications of the LCD control unit, etc., for example, when the device is started, the LCD When an image display command for the control unit is executed, there may be a problem that vertical stripes appear in the display image, for example.
 このように、比較的小型なHMD等においてLCDを用いた画像表示構成を採用する場合、映像信号の乱れによる表示画像の不具合が生じることがあるものの、小型な構成や移動性を確保するためには、表示画像の不具合にスケーラ等の回路構成によって対応することが困難であるという状況が存在する。 As described above, when an image display configuration using an LCD is adopted in a relatively small HMD or the like, a display image may be defective due to a disturbance of a video signal, but in order to ensure a small configuration and mobility. However, there is a situation where it is difficult to cope with display image defects by a circuit configuration such as a scaler.
 本開示は、上記のような事情に鑑みてなされたものであって、スケーラ等の画像処理回路を用いることなく、映像信号の乱れに起因する表示画像の不具合を解消することができる画像表示装置および画像表示方法を提供することを目的とする。 The present disclosure has been made in view of the circumstances as described above, and is an image display device capable of solving the problem of a display image caused by a disturbance of a video signal without using an image processing circuit such as a scaler. It is another object of the present invention to provide an image display method.
 本開示の一側面は、画像表示を行う画像表示手段と、前記画像表示手段を制御する表示制御手段と、デジタル画像信号、垂直同期信号および水平同期信号を含む映像信号の入力を受け、入力された前記映像信号を前記表示制御手段に直接出力し、入力された前記映像信号から前記垂直同期信号および前記水平同期信号のうち少なくともいずれか一方の同期信号を抽出し、前記少なくとも一方の同期信号を出力する映像信号入出力手段と、前記少なくとも一方の同期信号の入力を受け、前記前記少なくとも一方の同期信号の出力が一定となる時間とあらかじめ設定された基準時間との比較に基づき、入力された前記同期信号が安定した状態であることを検知する同期信号検知手段と、前記映像信号入出力手段への前記映像信号の入力が開始された後に、前記同期信号検知手段により前記同期信号が安定した状態であることが検知されると、前記表示制御手段に、前記画像表示手段による画像表示を実行させる画像表示信号を出力する画像表示信号出力手段と、を備える画像表示装置である。 One aspect of the present disclosure receives and inputs image display means for displaying an image, display control means for controlling the image display means, and a video signal including a digital image signal, a vertical synchronization signal, and a horizontal synchronization signal. The video signal is directly output to the display control means, and at least one of the vertical sync signal and the horizontal sync signal is extracted from the input video signal, and the at least one sync signal is extracted. The video signal input / output means for output and the input of the at least one synchronization signal are input based on a comparison between a time when the output of the at least one synchronization signal is constant and a preset reference time The synchronization signal detection means for detecting that the synchronization signal is in a stable state, and the input of the video signal to the video signal input / output means is started. After that, when it is detected by the synchronization signal detection means that the synchronization signal is in a stable state, the display control means outputs an image display signal that causes the display control means to perform image display by the image display means. And an output unit.
 また、前記同期信号検知手段は、入力された前記同期信号の出力が前記基準時間の間一定となることがあらかじめ設定された所定回数連続したことを、前記同期信号が安定した状態であることとして検知してもよい。 Further, the synchronization signal detection means that the output of the input synchronization signal is constant during the reference time is a predetermined number of times set in advance, and that the synchronization signal is in a stable state. It may be detected.
 また、前記基準時間は、前記同期信号の走査周波数に基づいて設定される所定の幅を有する。 The reference time has a predetermined width that is set based on the scanning frequency of the synchronization signal.
 また、前記画像表示手段は、液晶ディスプレイと、前記液晶ディスプレイによる画像表示を行うための光源とを有し、前記表示制御手段は、前記液晶ディスプレイを制御する液晶制御部と、前記光源を制御する光源制御部と、を有し、前記画像表示信号出力手段は、前記液晶制御部に対して画像表示信号を出力することにより前記液晶ディスプレイに駆動を開始させ、前記液晶制御部に対して画像表示信号を出力してから所定時間経過後に、前記光源制御部に対して前記画像表示信号を出力することにより、前記光源に点灯開始させてもよい。 The image display means includes a liquid crystal display and a light source for displaying an image on the liquid crystal display, and the display control means controls the liquid crystal control unit that controls the liquid crystal display and the light source. A light source control unit, and the image display signal output means starts driving the liquid crystal display by outputting an image display signal to the liquid crystal control unit, and displays an image on the liquid crystal control unit. The light source may be turned on by outputting the image display signal to the light source control unit after a predetermined time has elapsed since the signal was output.
 また、画像表示信号出力手段は、前記画像表示信号を出力した後、同期信号検知手段により前記同期信号が安定した状態であることが検知されなくなった場合、前記表示制御手段に、前記画像表示手段による画像表示を中断させる信号を出力する。 The image display signal output means outputs the image display signal to the display control means when the synchronization signal detection means no longer detects that the synchronization signal is in a stable state after outputting the image display signal. A signal for interrupting the image display by is output.
 本開示の他の側面は、デジタル画像信号、垂直同期信号および水平同期信号を含む映像信号を、液晶ディスプレイを制御する手段に直接入力することで、前記液晶ディスプレイによる画像表示を行う画像表示方法であって、前記映像信号から前記垂直同期信号および前記水平同期信号のうち少なくとも一方の同期信号を抽出するステップと、前記同期信号の出力が一定となる時間とあらかじめ設定された基準時間との比較に基づき、前記検出するステップにより検出された前記同期信号が安定した状態であることを検知するステップと、前記検知するステップにより前記同期信号が安定した状態であることが検知されると、前記画像表示を実行するステップと、を含む画像表示方法ものである。 Another aspect of the present disclosure is an image display method for displaying an image on the liquid crystal display by directly inputting a video signal including a digital image signal, a vertical synchronization signal, and a horizontal synchronization signal to a means for controlling the liquid crystal display. A step of extracting at least one of the vertical synchronizing signal and the horizontal synchronizing signal from the video signal, and comparing a time at which the output of the synchronizing signal is constant with a preset reference time. Based on the step of detecting that the synchronization signal detected by the detecting step is in a stable state, and detecting that the synchronization signal is in a stable state by the detecting step, the image display And an image display method comprising:
 本開示によれば、スケーラ等の画像処理回路を用いることなく、映像信号の乱れに起因する表示画像の不具合を解消することができる。 According to the present disclosure, it is possible to solve the problem of the display image due to the disturbance of the video signal without using an image processing circuit such as a scaler.
HMDシステムの構成を示す図。The figure which shows the structure of a HMD system. HMDシステムの構成を示すブロック図。The block diagram which shows the structure of a HMD system. HMDシステムにおける表示画像の不具合についての説明図。Explanatory drawing about the malfunction of the display image in a HMD system. HMDシステムにおける画像表示シーケンスについての説明図。Explanatory drawing about the image display sequence in a HMD system. HMDシステムにおける画像表示シーケンスについてのフロー図。The flowchart about the image display sequence in a HMD system. HMDシステムにおけるLCDユニットの制御についての説明図。Explanatory drawing about control of the LCD unit in a HMD system. HMDシステムの適用例を示す図。The figure which shows the example of application of a HMD system.
 本開示は、LCD等の画像を表示するための構成を制御する表示制御部に対して画像表示を行うための映像信号が直接的に入力される構成を前提としている。映像信号が安定した状態であることが検知されてから映像信号を表示制御部に入力するような制御を行うことで、映像信号の乱れに起因する表示画像の不具合の解消を図る。 The present disclosure is premised on a configuration in which a video signal for displaying an image is directly input to a display control unit that controls a configuration for displaying an image such as an LCD. By performing control such that the video signal is input to the display control unit after it is detected that the video signal is in a stable state, the problem of the display image due to the disturbance of the video signal is solved.
 以下、本開示の実施の形態を説明する。以下に説明する本発明の実施の形態では、画像表示装置として、使用者の頭部に装着されるタイプの画像表示装置であるHMD(ヘッドマウントディスプレイ)を例に挙げて説明する。 Hereinafter, embodiments of the present disclosure will be described. In the embodiment of the present invention described below, an HMD (head mounted display) which is an image display device of the type worn on the user's head will be described as an example of the image display device.
 本実施形態に係るHMD1は、HMD1の使用者(以下単に「使用者」という。)の一方の眼に対して、映像信号に基づく映像を液晶ディスプレイ(LCD)により表示することにより、使用者に映像を視認させる。 The HMD 1 according to the present embodiment displays a video based on a video signal on one eye of a user of the HMD 1 (hereinafter simply referred to as “user”) by a liquid crystal display (LCD), thereby giving the user Make the video visible.
 図1および図2に示すように、本実施形態に係るHMD1は、中継器2とともに、HMDシステム50を構成する。つまり、HMDシステム50は、HMD1と中継器2とを備え、中継器2に対して外部から入力される映像信号に基づき、HMD1においてLCDによる画像表示を行う。HMD1と中継器2とは、ワイヤハーネスとしての専用ケーブル51により互いに接続される。 As shown in FIGS. 1 and 2, the HMD 1 according to this embodiment constitutes an HMD system 50 together with the repeater 2. That is, the HMD system 50 includes the HMD 1 and the repeater 2 and displays an image on the LCD in the HMD 1 based on a video signal input from the outside to the repeater 2. The HMD 1 and the repeater 2 are connected to each other by a dedicated cable 51 as a wire harness.
 中継器2に対して外部から入力される映像信号は、デジタル画像信号、垂直同期信号(V_SYNC)および水平同期信号(H_SYNC)を含む。中継器2に入力される映像信号は、例えば、PCやスマートフォン等の外部装置が有するHDMI(登録商標)(High-Definition Multimedia Interfase)端子やDVI-D(Digital Visual Interface-Digital)端子等の出力端子から出力される、例えば8ビット×3色のデジタルビデオデータを含む信号である。中継器2に入力された映像信号は、ケーブル51により、HMD1に送られる。ケーブル51は、例えば、中継器2とHMD1とに適合するよう構成された、専用のケーブルである。ただし、中継器2とHMD1とに適合する汎用のケーブルが用いられてもよい。 The video signal input from the outside to the repeater 2 includes a digital image signal, a vertical synchronization signal (V_SYNC), and a horizontal synchronization signal (H_SYNC). The video signal input to the repeater 2 is output from, for example, an HDMI (High-Definition Multimedia Interface) terminal or a DVI-D (Digital Visual Interface-Digital) terminal of an external device such as a PC or a smartphone. For example, it is a signal including digital video data of 8 bits × 3 colors output from a terminal. The video signal input to the repeater 2 is sent to the HMD 1 via the cable 51. The cable 51 is a dedicated cable configured to be compatible with the repeater 2 and the HMD 1, for example. However, a general-purpose cable compatible with the repeater 2 and the HMD 1 may be used.
 [HMDの構成]
 HMD1は、表示ユニット3と、表示ユニット3を支持するフレーム4とを備える。
[Configuration of HMD]
The HMD 1 includes a display unit 3 and a frame 4 that supports the display unit 3.
 まず、表示ユニット3の構成について説明する。図2に示すように、表示ユニット3は、液晶を用いた画像表示を行う画像表示部としてのLCDユニット5と、LCDユニット5を制御する制御部6とを備える。LCDユニット5および制御部6は、表示ユニット3が有するハウジング3aに収納される(図1参照)。 First, the configuration of the display unit 3 will be described. As shown in FIG. 2, the display unit 3 includes an LCD unit 5 as an image display unit that performs image display using liquid crystal, and a control unit 6 that controls the LCD unit 5. The LCD unit 5 and the control unit 6 are accommodated in a housing 3a included in the display unit 3 (see FIG. 1).
 図2に示すように、LCDユニット5は、LCD7と、バックライト8とを有する。LCD7は、液晶を含む液晶パネルや、液晶パネルに対して電気信号を供給するための駆動回路等を有する。バックライト8は、LCD7による画像表示を行うための光源である。本実施形態では、バックライト8は、LED(Light Emitting Diode)により構成される。ただし、バックライト8は、LEDに限られず、例えば冷陰極を使用した小型蛍光管等の冷陰極管であってもよい。 As shown in FIG. 2, the LCD unit 5 includes an LCD 7 and a backlight 8. The LCD 7 has a liquid crystal panel including liquid crystals, a drive circuit for supplying electric signals to the liquid crystal panel, and the like. The backlight 8 is a light source for displaying an image on the LCD 7. In this embodiment, the backlight 8 is comprised by LED (Light Emitting Diode). However, the backlight 8 is not limited to the LED, and may be a cold cathode tube such as a small fluorescent tube using a cold cathode.
 LCDユニット5は、制御部6による制御のもと、バックライト8からの光を用いて、LCD7による液晶表示を行う。LCD7は、例えば、バックライト8からの白色光を、画素ごとにR(赤)、G(緑)、B(青)の3色の成分光に分解するカラーフィルタを有し、液晶パネルによって各画素における光の透過度を制御し、画素ごとに成分光の透過度を制御する。本実施形態のHMD1においては、LCD7とバックライト8とを有するLCDユニット5が、画像表示を行う画像表示手段として機能する。 The LCD unit 5 performs liquid crystal display on the LCD 7 using light from the backlight 8 under the control of the control unit 6. The LCD 7 includes, for example, a color filter that decomposes white light from the backlight 8 into component light of three colors R (red), G (green), and B (blue) for each pixel. The transmittance of light in the pixel is controlled, and the transmittance of component light is controlled for each pixel. In the HMD 1 of the present embodiment, the LCD unit 5 having the LCD 7 and the backlight 8 functions as an image display unit that performs image display.
 制御部6は、CPU(Central Processing Unit)9と、HDMIレシーバ10と、LCDコントローラ11と、LEDバックライトドライブIC(Integrated Circuit)12と、電源IC13とを有する。 The control unit 6 includes a CPU (Central Processing Unit) 9, an HDMI receiver 10, an LCD controller 11, an LED backlight drive IC (Integrated Circuit) 12, and a power supply IC 13.
 CPU9は、表示ユニット3の動作を制御する主制御部である。CPU9は、HDMIレシーバ10、LCDコントローラ11、およびLEDバックライトドライブIC12に対して制御信号を出力する。CPU9は、HDMIレシーバ10やLCDコントローラ11等に対してデータ通信用のバスにより接続される。 The CPU 9 is a main control unit that controls the operation of the display unit 3. The CPU 9 outputs control signals to the HDMI receiver 10, the LCD controller 11, and the LED backlight drive IC 12. The CPU 9 is connected to the HDMI receiver 10, the LCD controller 11, and the like through a data communication bus.
 HDMIレシーバ10は、中継器2からケーブル51によって送られてきた映像信号の入力を受ける。また、HDMIレシーバ10は、入力された映像信号をLCDコントローラ11に直接出力する。つまり、HDMIレシーバ10は、LCDコントローラ11との間に映像信号を加工処理するスケーラ等の画像処理回路を介することなく、入力された映像信号をLCDコントローラ11に直接出力する。したがって、LCDコントローラ11には、HDMIレシーバ10から出力された映像信号が直接的に入力される。HDMIレシーバ10は、CPU9からの制御信号を受け取ることにより、CPU9によって制御される。 The HDMI receiver 10 receives an input of a video signal sent from the repeater 2 through the cable 51. The HDMI receiver 10 directly outputs the input video signal to the LCD controller 11. That is, the HDMI receiver 10 directly outputs the input video signal to the LCD controller 11 without passing through an image processing circuit such as a scaler that processes the video signal with the LCD controller 11. Therefore, the video signal output from the HDMI receiver 10 is directly input to the LCD controller 11. The HDMI receiver 10 is controlled by the CPU 9 by receiving a control signal from the CPU 9.
 LCDコントローラ11は、CPU9から入力された制御信号に基づき、LCDユニット5を構成するLCD7の動作を制御する。具体的には、LCDコントローラ11は、ドットクロックを生成するドットクロック生成回路、ビデオプロセッサ、フレームメモリ、LCDドライバとしてのLCD駆動回路等を有する。ドットクロック生成回路は、HDMIレシーバ10から送られてきた映像信号に含まれるデジタル画像信号の各画素をサンプリングするためのドットクロック信号を生成する。ドットクロック生成回路には、HDMIレシーバ10から出力される垂直同期信号と水平同期信号とが入力される。 The LCD controller 11 controls the operation of the LCD 7 constituting the LCD unit 5 based on the control signal input from the CPU 9. Specifically, the LCD controller 11 includes a dot clock generation circuit that generates a dot clock, a video processor, a frame memory, an LCD drive circuit as an LCD driver, and the like. The dot clock generation circuit generates a dot clock signal for sampling each pixel of the digital image signal included in the video signal sent from the HDMI receiver 10. The vertical synchronization signal and horizontal synchronization signal output from the HDMI receiver 10 are input to the dot clock generation circuit.
 LCDコントローラ11が有するビデオプロセッサは、フレームメモリへの画像の書込みや読出しの制御を行うマイクロプロセッサである。HDMIレシーバ10から送られてきたデジタル画像信号は、フレームメモリに一旦書き込まれ、ビデオプロセッサにより必要に応じてフレームメモリから読み出される。フレームメモリから読み出されたデジタル画像信号は、ビデオプロセッサからLCDコントローラ11が有するLCD駆動回路に供給される。フレームメモリへのデジタル画像信号の書き込み動作は、垂直同期信号および水平同期信号に同期して行われる。また、ビデオプロセッサによるフレームメモリからのデジタル画像信号の読み出し動作は、LCD駆動回路から出力される同期信号に同期して行われる。 The video processor included in the LCD controller 11 is a microprocessor that controls the writing and reading of images to and from the frame memory. The digital image signal sent from the HDMI receiver 10 is once written in the frame memory and read out from the frame memory as necessary by the video processor. The digital image signal read from the frame memory is supplied from the video processor to the LCD drive circuit included in the LCD controller 11. The digital image signal writing operation to the frame memory is performed in synchronization with the vertical synchronizing signal and the horizontal synchronizing signal. In addition, a digital image signal read operation from the frame memory by the video processor is performed in synchronization with a synchronization signal output from the LCD drive circuit.
 LCDコントローラ11が有するLCD駆動回路は、LCDコントローラ11において、ビデオプロセッサから出力されたデジタル画像信号に応じて、LCD7に対する画像信号を生成する。LCD駆動回路により生成された画像信号がLCD7に入力されることで、LCD7による画像表示が行われる。 The LCD drive circuit included in the LCD controller 11 generates an image signal for the LCD 7 in the LCD controller 11 in accordance with the digital image signal output from the video processor. When the image signal generated by the LCD drive circuit is input to the LCD 7, the image display by the LCD 7 is performed.
 LEDバックライトドライブIC12は、CPU9から入力された制御信号に基づき、LCDユニット5を構成するバックライト8の動作を制御する。具体的には、LEDバックライトドライブIC12は、LEDであるバックライト8に流れる駆動電流を制御し、バックライト8のオン/オフ、明るさ設定等、バックライト8の駆動を制御する。LEDバックライトドライブIC12から出力された駆動電流がバックライト8に供給されることにより、バックライト8が発光する。 The LED backlight drive IC 12 controls the operation of the backlight 8 constituting the LCD unit 5 based on the control signal input from the CPU 9. Specifically, the LED backlight drive IC 12 controls the drive current that flows through the backlight 8 that is an LED, and controls the drive of the backlight 8 such as on / off of the backlight 8 and brightness setting. When the drive current output from the LED backlight drive IC 12 is supplied to the backlight 8, the backlight 8 emits light.
 LCDコントローラ11およびLEDバックライトドライブIC12は、制御部6において、LCD7およびバックライト8を有するLCDユニット5を制御する表示制御部14を構成する。本実施形態のHMD1においては、LCDコントローラ11とLEDバックライトドライブIC12とを含む表示制御部14が、LCD7とバックライト8とを有するLCDユニット5を制御する表示制御手段として機能する。そして、LCD7を制御するLCDコントローラ11が、液晶制御部として機能し、バックライト8を制御するLEDバックライトドライブIC12が、光源制御部として機能する。 The LCD controller 11 and the LED backlight drive IC 12 constitute a display control unit 14 that controls the LCD unit 5 having the LCD 7 and the backlight 8 in the control unit 6. In the HMD 1 of the present embodiment, the display control unit 14 including the LCD controller 11 and the LED backlight drive IC 12 functions as display control means for controlling the LCD unit 5 having the LCD 7 and the backlight 8. The LCD controller 11 that controls the LCD 7 functions as a liquid crystal control unit, and the LED backlight drive IC 12 that controls the backlight 8 functions as a light source control unit.
 LCDコントローラ11およびLEDバックライトドライブIC12は、CPU9からの制御信号を受け取ることにより、CPU9によって制御される。つまり、CPU9は、LCDコントローラ11およびLEDバックライトドライブIC12に制御信号を送ることで、LCDコントローラ11およびLEDバックライトドライブIC12に、LCDユニット5の動作を制御させる。そして、CPU9は、LCDコントローラ11に対する画像表示命令を実行した後、LEDバックライトドライブIC12に制御信号を送ることでバックライト8を点灯させ、LCDユニット5による画像表示を行わせる。 The LCD controller 11 and the LED backlight drive IC 12 are controlled by the CPU 9 by receiving a control signal from the CPU 9. That is, the CPU 9 sends a control signal to the LCD controller 11 and the LED backlight drive IC 12 to cause the LCD controller 11 and the LED backlight drive IC 12 to control the operation of the LCD unit 5. Then, after executing an image display command for the LCD controller 11, the CPU 9 sends a control signal to the LED backlight drive IC 12 to turn on the backlight 8 and cause the LCD unit 5 to display an image.
 電源IC13は、HMD1の制御部6において、中継器2からケーブル51によって供給された電力の供給を受ける電源部を構成する。この電源部の電力は、制御部6のCPU9やLCDコントローラ11等の、HMD1を構成する各部の駆動に用いられる。また、制御部6においては、制御プログラム等をあらかじめ記憶する記憶部が設けられる。この記憶部は、CPU9に対してデータ通信用のバスにより接続される。 The power supply IC 13 constitutes a power supply unit that receives the supply of power supplied from the repeater 2 via the cable 51 in the control unit 6 of the HMD 1. The electric power of this power supply unit is used to drive each unit constituting the HMD 1 such as the CPU 9 and the LCD controller 11 of the control unit 6. In addition, the control unit 6 is provided with a storage unit that stores a control program and the like in advance. This storage unit is connected to the CPU 9 by a data communication bus.
 図1に示すように、表示ユニット3は、使用者に映像を認識させるためのハーフミラー15を有する。ハーフミラー15は、表示ユニット3のハウジング3aの一端側に設けられるミラーホルダ3bに回動可能に支持された状態で、使用者の左眼の前方に位置するように設けられる。表示ユニット3は、ハーフミラー15により、LCDユニット5によって表示した映像を使用者に認識させる。また、ハーフミラー15は、外光を透過させて使用者の眼に入射させる。したがって、使用者は、外光により認識される背景に、表示ユニット3により表示される映像を重ねて視認することができる。 As shown in FIG. 1, the display unit 3 has a half mirror 15 for allowing the user to recognize the video. The half mirror 15 is provided so as to be positioned in front of the left eye of the user while being rotatably supported by a mirror holder 3b provided on one end side of the housing 3a of the display unit 3. The display unit 3 causes the user to recognize the video displayed by the LCD unit 5 by the half mirror 15. Further, the half mirror 15 transmits external light and makes it enter the user's eyes. Therefore, the user can visually recognize the video displayed by the display unit 3 on the background recognized by the external light.
 このように、本実施形態のHMD1は、外光を透過させるとともに、表示ユニット3により表示する映像を使用者に対して表示するシースルー型の映像表示装置である。なお、本発明に係るHMDは、シースルー型である必要はない。 As described above, the HMD 1 of the present embodiment is a see-through video display device that transmits external light and displays a video displayed by the display unit 3 to the user. Note that the HMD according to the present invention need not be a see-through type.
 次に、フレーム4の構成について説明する。図1に示すように、フレーム4は、眼鏡型のフレームであり、表示ユニット3を支持するとともに使用者の頭部に装着される装着部である。フレーム4は、使用者の頭部に装着された状態で、上述したような表示ユニット3による使用者への映像の表示ができるように、表示ユニット3を支持する。 Next, the configuration of the frame 4 will be described. As shown in FIG. 1, the frame 4 is a spectacle-type frame, and is a mounting portion that supports the display unit 3 and is mounted on the user's head. The frame 4 supports the display unit 3 so that the display unit 3 can display an image to the user as described above while being mounted on the user's head.
 本実施形態のHMD1では、表示ユニット3は、フレーム4に対して、フレーム4を頭部に装着した状態の使用者の左側に取り付けられる。したがって、本実施形態のHMD1は、使用者の左側の眼に対して映像を表示することにより、使用者に映像を視認させる。 In the HMD 1 of the present embodiment, the display unit 3 is attached to the left side of the user with the frame 4 mounted on the head with respect to the frame 4. Therefore, the HMD 1 of the present embodiment causes the user to visually recognize the video by displaying the video with respect to the left eye of the user.
 上記のとおり眼鏡型のフレーム4は、使用者の顔の前に位置するフロント部41と、フロント部41の左右両端部から後方に延びるヨロイ部42と、各ヨロイ部42に回動可能に連結されるテンプル部43とを有する。フロント部41は、一対のテンプル部43が連結されるヨロイ部42が設けられる側を左右両端側とする。フロント部41は、その中央部分がテンプル部43の延びる側と反対側(前側)に凸となるように緩やかに湾曲した形状を有する。 As described above, the spectacle-shaped frame 4 is connected to the front part 41 located in front of the user's face, the armor part 42 extending rearward from the left and right ends of the front part 41, and the armor parts 42 to be rotatable. The temple part 43 is provided. The front part 41 has the left and right end sides on the side where the armor part 42 to which the pair of temple parts 43 are connected is provided. The front portion 41 has a shape that is gently curved so that the central portion thereof is convex on the side (front side) opposite to the side on which the temple portion 43 extends.
 ヨロイ部42は、フロント部41の左右両端側に設けられ、フロント部41からテンプル部43が延びる方向に沿って突出する部分である。各ヨロイ部42の後端部に、テンプル部43が回動可能に取り付けられる。一対のテンプル部43は、使用者の顔を左右両側から挟む。テンプル部43は、前側から後側にかけて内側に向かう後半部分において、使用者の耳にかかる部分となるセル部43aを有する。 The armored portion 42 is a portion that is provided on the left and right ends of the front portion 41 and protrudes along the direction in which the temple portion 43 extends from the front portion 41. A temple portion 43 is rotatably attached to the rear end portion of each armor portion 42. The pair of temple portions 43 sandwich the user's face from both the left and right sides. The temple portion 43 has a cell portion 43a that becomes a portion that covers the user's ear in the latter half portion that faces inward from the front side to the rear side.
 ヨロイ部42とテンプル部43とは、ヨロイ部42の後端部に設けられるヒンジ部44にて、ネジ等が用いられて連結される。テンプル部43は、ヒンジ部44において、フロント部41及びヨロイ部42を含む構成に対して折りたたむことができるように、上下方向を回動軸方向として回動可能に連結される。 The armor part 42 and the temple part 43 are connected by a screw or the like at a hinge part 44 provided at the rear end part of the armor part 42. The temple part 43 is connected to the hinge part 44 so that the temple part 43 can be folded with respect to the configuration including the front part 41 and the armored part 42 with the vertical direction as the rotational axis direction.
 また、フレーム4においては、フロント部41の下側に、使用者の眼を保護するためのカバーシート45が装着される。カバーシート45は、使用者の左右の各眼に対応して設けられる2枚のシート部材46と、これらのシート部材46をフレーム4に対して保持する保持体47とを有する。 In the frame 4, a cover sheet 45 for protecting the user's eyes is attached to the lower side of the front portion 41. The cover sheet 45 includes two sheet members 46 provided corresponding to the left and right eyes of the user, and a holding body 47 that holds the sheet members 46 against the frame 4.
 シート部材46は、使用者の左右の各眼を覆う透過性を有するシート状又は板状の部材である。シート部材46は、眼鏡型のフレーム4において、一般的な眼鏡におけるレンズのような態様で設けられる。シート部材46は、例えば透明なプラスチック等の合成樹脂材料からなる板状の部材である。上記のとおりシースルー型であるHMD1の使用者は、表示ユニット3による表示を認識するとともに、透明なシート部材46を透過する外光によって視界を得る。 The sheet member 46 is a sheet-like or plate-like member having transparency that covers the left and right eyes of the user. The sheet member 46 is provided in the spectacle-type frame 4 in a manner like a lens in general spectacles. The sheet member 46 is a plate-like member made of a synthetic resin material such as transparent plastic. As described above, the user of the see-through type HMD 1 recognizes the display by the display unit 3 and obtains the field of view by the external light transmitted through the transparent sheet member 46.
 保持体47は、2枚のシート部材46を保持する一対の保持部47aと、これら保持部47aを連結する連結部47bとを有する。各保持部47aは、下側が開放するように形成された枠状の部分であり、シート部材46の上側の略半分の部分の外縁に対応した形状を有する。したがって、各シート部材46は、保持体47の保持部47aによって上側の略半分の部分の外縁が囲まれた状態で保持される。連結部47bは、左右両側においてシート部材46を保持する一対の保持部47aを、左右中央部において連結する部分である。 The holding body 47 includes a pair of holding portions 47a that hold the two sheet members 46, and a connecting portion 47b that connects these holding portions 47a. Each holding portion 47 a is a frame-like portion formed so that the lower side is open, and has a shape corresponding to the outer edge of the substantially half portion on the upper side of the sheet member 46. Accordingly, each sheet member 46 is held in a state in which the outer edge of the upper half portion is surrounded by the holding portion 47 a of the holding body 47. The connecting portion 47b is a portion that connects a pair of holding portions 47a that hold the sheet member 46 on both the left and right sides at the left and right central portions.
 また、カバーシート45においては、保持体47の連結部47bに、使用者の鼻に接触する鼻当て部48が設けられている。鼻当て部48は、フレーム4の装着状態において使用者の鼻筋に対して左右両側から接触する一対のパッドを有する。カバーシート45は、保持体47の部分がフレーム4のフロント部41に装着されることで、フレーム4に取り付けられる。 Also, in the cover sheet 45, a nose pad portion 48 that contacts the user's nose is provided in the connecting portion 47b of the holding body 47. The nose pad portion 48 has a pair of pads that come into contact with the nose of the user from both the left and right sides when the frame 4 is attached. The cover sheet 45 is attached to the frame 4 by attaching the portion of the holding body 47 to the front portion 41 of the frame 4.
 フレーム4は、取付部材49により、表示ユニット3を支持する。取付部材49は、表示ユニット3のハウジング3aの内側部分に固定される。取付部材49は、左側のテンプル部43のヒンジ部44の位置よりも使用者の前方に延長された延長部分を貫通させた状態で、左側のテンプル部43に取り付けられることで、表示ユニット3をフレーム4に支持する。つまり、テンプル部43の前端部分である、ヒンジ部44よりも前側の延長部分が、取付部材49が有する孔部に挿入された状態で、取付部材49が固定される表示ユニット3が、フレーム4に支持される。なお、取付部材49によるフレーム4に対する表示ユニット3の支持部分は、例えば、表示ユニット3をフレーム4に対して前後方向に位置調整可能となるように構成される。 The frame 4 supports the display unit 3 by the mounting member 49. The attachment member 49 is fixed to an inner portion of the housing 3a of the display unit 3. The attachment member 49 is attached to the left temple part 43 in a state in which the extension part extending forward of the user from the position of the hinge part 44 of the left temple part 43 is penetrated, whereby the display unit 3 is attached. The frame 4 is supported. In other words, the display unit 3 to which the attachment member 49 is fixed is attached to the frame 4 in a state in which the extension portion on the front side of the hinge portion 44 that is the front end portion of the temple portion 43 is inserted into the hole of the attachment member 49. Supported by In addition, the support part of the display unit 3 with respect to the frame 4 by the attachment member 49 is configured so that the position of the display unit 3 can be adjusted in the front-rear direction with respect to the frame 4, for example.
 以上のような構成を有するフレーム4は、一対のテンプル部43によって使用者の両耳にかかるとともに、前側は2個のパッドを有する鼻当て部48によって使用者の鼻筋に支持されることで、4箇所で支持される。そして、この眼鏡型のフレーム4に表示ユニット3が支持されることで、表示ユニット3が、使用者の頭部の左前側に配置される。なお、本実施形態では、HMD1は、使用者の左側の眼に映像を表示する左眼用の構成であるが、本発明に係るHMDは、使用者の右側の眼に映像を表示する右眼用の構成であったり、左右両眼用の構成であったりしてもよい。 The frame 4 having the above-described configuration is applied to both ears of the user by the pair of temple parts 43, and the front side is supported by the user's nose muscles by the nose pad part 48 having two pads. Supported at four locations. The display unit 3 is supported by the glasses-type frame 4 so that the display unit 3 is disposed on the left front side of the user's head. In the present embodiment, the HMD 1 is configured for the left eye that displays an image on the left eye of the user, but the HMD according to the present invention has a right eye that displays an image on the right eye of the user. Or a configuration for left and right eyes.
 [中継器の構成]
 図1に示すように、中継器2は、外部から入力される映像信号の入力を受ける映像信号入力用端子21と、外部からの電力の供給を受ける給電用入力端子22とを有する。映像信号入力用端子21は、上述したようにPC等の外部装置が有するHDMI端子やDVI-D端子等の出力端子から出力される映像信号の入力を受けるための端子である。このため、映像信号入力用端子21には、HDMIケーブルやHDMI-DVI-D変換ケーブル等が接続される。給電用入力端子22には、例えば、USB接続の外付けバッテリのUSBケーブルやACアダプタ等が接続される。なお、中継器2は、バッテリを内蔵する構成であってもよい。
[Configuration of repeater]
As shown in FIG. 1, the repeater 2 includes a video signal input terminal 21 that receives a video signal input from the outside, and a power supply input terminal 22 that receives a supply of power from the outside. As described above, the video signal input terminal 21 is a terminal for receiving an input of a video signal output from an output terminal such as an HDMI terminal or a DVI-D terminal included in an external device such as a PC. Therefore, an HDMI cable, an HDMI-DVI-D conversion cable, or the like is connected to the video signal input terminal 21. For example, a USB cable or an AC adapter of an external battery connected via USB is connected to the power supply input terminal 22. The repeater 2 may be configured to incorporate a battery.
 図2に示すように、中継器2は、CPU23と、電源IC24とを有する。CPU23は、中継器2の動作を制御する制御部である。CPU23は、映像信号入力用端子21からの映像信号の入力を受け、出力する。CPU23から出力された映像信号は、ケーブル51により、HMD1の表示ユニット3に送られる。ケーブル51により表示ユニット3に送られた映像信号は、制御部6のHDMIレシーバ10により受け取られる。 As shown in FIG. 2, the repeater 2 has a CPU 23 and a power supply IC 24. The CPU 23 is a control unit that controls the operation of the repeater 2. The CPU 23 receives and outputs a video signal from the video signal input terminal 21. The video signal output from the CPU 23 is sent to the display unit 3 of the HMD 1 through the cable 51. The video signal sent to the display unit 3 by the cable 51 is received by the HDMI receiver 10 of the control unit 6.
 また、中継器2は、使用者により操作される操作部25を有する。操作部25は、例えばディップスイッチ等のスイッチやボタン等により構成される。操作部25の操作により生じた操作信号は、CPU23に入力される。本実施形態では、中継器2の操作部25において、例えば、LCDユニット5による表示画像の明るさ調整、同表示画像の画面回転による右眼用・左眼用の切替え、同表示画像のオン/オフの切替え等が行われる。 Moreover, the repeater 2 has the operation part 25 operated by the user. The operation unit 25 includes, for example, a switch such as a dip switch, a button, and the like. An operation signal generated by the operation of the operation unit 25 is input to the CPU 23. In the present embodiment, in the operation unit 25 of the repeater 2, for example, brightness adjustment of the display image by the LCD unit 5, switching between right eye and left eye by rotating the display image, turning on / off the display image Switching off or the like is performed.
 電源IC24は、中継器2において、給電用入力端子22によって外部から供給された電力の供給を受ける電源部を構成する。この電源部の電力は、CPU23等の駆動に用いられる。電源IC24を含む電源部に供給される電力としては、例えば、上述したようなUSB接続の外付けバッテリやACアダプタ、あるいは電池による電力が用いられる。電源IC24は、給電用入力端子22から供給される交流電圧を、安定した直流電圧へと変換する。 The power supply IC 24 constitutes a power supply unit that receives supply of power supplied from the outside by the power supply input terminal 22 in the repeater 2. The power of this power supply unit is used to drive the CPU 23 and the like. As the power supplied to the power supply unit including the power supply IC 24, for example, the above-described USB-connected external battery, AC adapter, or battery power is used. The power supply IC 24 converts the AC voltage supplied from the power supply input terminal 22 into a stable DC voltage.
 以上のような構成を備えるHMDシステム50において、HMD1では、例えば装置の起動時等、HDMIレシーバ10からLCDコントローラ11に入力される映像信号(以下「コントローラ入力映像信号」という。)が不安定な状態となることがある。また、上述したように、HMD1の制御部6においては、HDMIレシーバ10から出力された映像信号は、LCDコントローラ11に対して直接的に入力される。このため、本実施形態のHMD1においては、コントローラ入力映像信号が不安定な状態となった場合、その不安定な状態の映像信号が、そのままLCDコントローラ11に入力される。また、使用者により中継器2の電源が入れられた後、映像信号入力用端子21にケーブルを介して接続されるPC等から中継器2への映像信号の出力操作が行われると、中継器2の操作部25において表示画像オンの設定となっていた場合、中継器2からHMD1に対する映像信号の入力よりも、HMD1においてCPU9からLCDコントローラ11への画像表示命令が先に実行されることになる。 In the HMD system 50 having the above-described configuration, in the HMD 1, a video signal (hereinafter referred to as “controller input video signal”) input from the HDMI receiver 10 to the LCD controller 11 is unstable, for example, when the apparatus is activated. It may become a state. Further, as described above, in the control unit 6 of the HMD 1, the video signal output from the HDMI receiver 10 is directly input to the LCD controller 11. Therefore, in the HMD 1 of the present embodiment, when the controller input video signal is in an unstable state, the unstable video signal is input to the LCD controller 11 as it is. Further, after the user turns on the power of the repeater 2, when an operation of outputting a video signal from the PC or the like connected to the video signal input terminal 21 via a cable to the repeater 2 is performed, the repeater When the display image ON is set in the operation unit 25, the image display command from the CPU 9 to the LCD controller 11 is executed in the HMD 1 before the video signal is input from the repeater 2 to the HMD 1. Become.
 そして、例えば装置の起動時において、コントローラ入力映像信号が安定する前に、つまりコントローラ入力映像信号が不安定な状態で、CPU9からLCDコントローラ11に対する画像表示命令が実行されると、LCDユニット5による表示画像に不具合が生じる場合がある。この場合、LCDユニット5による表示画像に生じる不具合としては、例えば、表示画像に縦縞が入るとことがある。 For example, when an image display command from the CPU 9 to the LCD controller 11 is executed before the controller input video signal is stabilized, that is, in a state where the controller input video signal is unstable, at the time of starting the apparatus, the LCD unit 5 There may be a problem with the display image. In this case, as a problem that occurs in the display image by the LCD unit 5, for example, vertical stripes may appear in the display image.
 図3に、正常画像と縦縞が入った画像の一例を示す。図3(a)は、正常画像の模式図を示す。これに対し、図3(b)は、LCDユニット5による表示画像に不具合が生じた場合の一例として、縦縞が入った画像の模式図を示す。すなわち、図3(b)に示すように表示画像に縦縞が入る現象は、上記のとおりコントローラ入力映像信号が安定する前に、CPU9からLCDコントローラ11に対する画像表示命令が実行されることにより生じる。 Fig. 3 shows an example of a normal image and an image with vertical stripes. FIG. 3A shows a schematic diagram of a normal image. On the other hand, FIG. 3B shows a schematic diagram of an image including vertical stripes as an example of a case where a defect occurs in the display image by the LCD unit 5. That is, the phenomenon that vertical stripes appear in the display image as shown in FIG. 3B occurs when the CPU 9 executes an image display command to the LCD controller 11 before the controller input video signal is stabilized as described above.
 このようにコントローラ入力映像信号が安定する前に画像表示命令が実行されることにより生じる、縦縞が入る現象については、その原因の一つに、LCDコントローラ11の仕様が挙げられることが判明している。特に、縦縞が入る現象がLCDコントローラ11の仕様に起因する場合、表示画面に生じた縦縞は、コントローラ入力映像信号が安定した後も消えずに維持されるときがある。 As described above, it has been found that the specification of the LCD controller 11 can be cited as one of the causes of the phenomenon of vertical stripes caused by the image display command being executed before the controller input video signal is stabilized. Yes. In particular, when the phenomenon of vertical stripes is caused by the specifications of the LCD controller 11, the vertical stripes generated on the display screen may be maintained without disappearing even after the controller input video signal is stabilized.
 このような表示画像に生じる不具合を回避するため、HMD1の制御部6において、スケーラ等の画像処理回路を実装することが考えられる。この画像処理回路を実装する場合、本実施形態のHMD1では、画像処理回路は、コントローラ入力映像信号を加工処理するように設けられる。したがって、この場合の画像処理回路は、図2において符号11aで示すように、HDMIレシーバ10から出力されるコントローラ入力映像信号の入力を受ける位置に実装される。このように画像処理回路11aを実装する構成が採用された場合、HDMIレシーバ10から出力されるコントローラ入力映像信号が不安定な状態となっても、画像処理回路11aによってあらかじめ正常な状態に加工処理され、LCDコントローラ11には常に正常な状態の映像信号が入力されることになる。 In order to avoid such a problem that occurs in the display image, it is conceivable to mount an image processing circuit such as a scaler in the control unit 6 of the HMD 1. When this image processing circuit is mounted, in the HMD 1 of this embodiment, the image processing circuit is provided so as to process the controller input video signal. Accordingly, the image processing circuit in this case is mounted at a position for receiving the controller input video signal output from the HDMI receiver 10 as indicated by reference numeral 11a in FIG. When the configuration in which the image processing circuit 11a is mounted in this manner is adopted, even if the controller input video signal output from the HDMI receiver 10 is in an unstable state, the image processing circuit 11a performs a processing process in advance to a normal state. Accordingly, a normal video signal is always input to the LCD controller 11.
 しかしながら、本実施形態のHMD1は、上述したように使用者の頭部に装着されて用いられる比較的小型で移動性が要求される画像表示装置である。このため、本実施形態のHMD1においては、低消費電力・小型化の観点から、上述したようなスケーラ等の画像処理回路を実装することは困難である。特に、画像処理回路における信号の加工処理には多くの電力が必要であり、CPU9の消費電力も大きくなるため、画像処理回路を実装する構成は、HMD1のような省電力の構成への適用は困難である。 However, the HMD 1 according to the present embodiment is a relatively small image display device that is used by being mounted on the user's head as described above. For this reason, in the HMD 1 of this embodiment, it is difficult to mount an image processing circuit such as a scaler as described above from the viewpoint of low power consumption and miniaturization. In particular, since a large amount of power is required for signal processing in the image processing circuit and the power consumption of the CPU 9 also increases, the configuration in which the image processing circuit is mounted is not applicable to a power saving configuration such as the HMD1. Have difficulty.
 そこで、本実施形態のHMD1においては、以下に説明するような、画像表示に際しての制御シーケンス(以下「画像表示シーケンス」という。)が行われる。この画像表示シーケンスが行われることにより、本実施形態のHMD1のように、HDMIレシーバ10からのコントローラ入力映像信号がLCDコントローラ11に直接入力される構成においても、上述した縦縞が入る現象のような、コントローラ入力映像信号が不安定な状態となることによる表示画像の不具合を解消することができる。 Therefore, in the HMD 1 of the present embodiment, a control sequence (hereinafter referred to as “image display sequence”) at the time of image display as described below is performed. When this image display sequence is performed, the above-described vertical stripes appear even in the configuration in which the controller input video signal from the HDMI receiver 10 is directly input to the LCD controller 11 as in the HMD 1 of the present embodiment. The problem of the display image due to the controller input video signal becoming unstable can be solved.
 ここで、HDMIレシーバ10が入力を受けた映像信号について、その映像信号を表示制御部14(のLCDコントローラ11)に「直接出力する」とは、HDMIレシーバ10が、LCDコントローラ11に対するコントローラ入力映像信号の出力経路において、画像処理回路11a(図2参照)等の映像信号に何らかの処理を加えるための構成を有しないことを意味する。言い換えると、HDMIレシーバ10から出力されたコントローラ入力映像信号が、加工処理されることなくLCDコントローラ11に入力されることを意味する。以下、本実施形態のHMD1における画像表示シーケンスについて説明する。 Here, regarding the video signal input by the HDMI receiver 10, “directly output” the video signal to the display control unit 14 (the LCD controller 11 thereof) means that the HDMI receiver 10 inputs the controller input video to the LCD controller 11. This means that the signal output path does not have a configuration for applying some processing to the video signal such as the image processing circuit 11a (see FIG. 2). In other words, it means that the controller input video signal output from the HDMI receiver 10 is input to the LCD controller 11 without being processed. Hereinafter, an image display sequence in the HMD 1 of the present embodiment will be described.
 [画像表示シーケンス]
 本実施形態のHMD1における画像表示シーケンスでは、所定の条件のもとでコントローラ入力映像信号が安定した状態であること(以下「映像信号安定状態」という。)が検知され、映像信号安定状態が検知されると、CPU9からLCDコントローラ11に対する画像表示命令が実行される。すなわち、CPU9からLCDコントローラ11への画像表示命令の実行に際しては、装置の起動時等においてコントローラ入力映像信号が不安定な状態の場合、その映像信号が安定した状態となるまで、画像表示命令の実行が待機状態となる。これにより、CPU9からLCDコントローラ11への画像表示命令が、コントローラ入力映像信号が安定した状態で実行されることが確保される。
[Image display sequence]
In the image display sequence in the HMD 1 of the present embodiment, it is detected that the controller input video signal is in a stable state under a predetermined condition (hereinafter referred to as “video signal stable state”), and the video signal stable state is detected. Then, an image display command for the LCD controller 11 is executed from the CPU 9. That is, when the image display command from the CPU 9 to the LCD controller 11 is executed, if the controller input video signal is in an unstable state at the time of starting the apparatus, the image display command is output until the video signal becomes stable. Execution enters a standby state. This ensures that the image display command from the CPU 9 to the LCD controller 11 is executed in a state where the controller input video signal is stable.
 本実施形態のHMD1において、映像信号安定状態は、コントローラ入力映像信号に含まれる同期信号の状態に基づいて検知される。特に、本実施形態のHMD1では、コントローラ入力映像信号の乱れが垂直同期信号(V_SYNC)に反映されることから、同期信号のうち垂直同期信号に基づいて映像信号安定状態が検知される。 In the HMD 1 of the present embodiment, the video signal stable state is detected based on the state of the synchronization signal included in the controller input video signal. In particular, in the HMD 1 of the present embodiment, since the disturbance of the controller input video signal is reflected in the vertical synchronization signal (V_SYNC), the video signal stable state is detected based on the vertical synchronization signal among the synchronization signals.
 このため、本実施形態のHMD1では、HDMIレシーバ10から出力されるコントローラ入力映像信号から、垂直同期信号が抽出される。コントローラ入力映像信号からの垂直同期信号の抽出は、例えば、HDMIレシーバ10の内部のインターフェース部分等に設けられる同期分離回路によって映像信号から垂直同期信号が分離されることで行われる。 For this reason, in the HMD 1 of this embodiment, a vertical synchronization signal is extracted from the controller input video signal output from the HDMI receiver 10. The vertical synchronization signal is extracted from the controller input video signal by, for example, separating the vertical synchronization signal from the video signal by a synchronization separation circuit provided in an interface portion or the like inside the HDMI receiver 10.
 このように、本実施形態のHMD1においては、HDMIレシーバ10が、中継器2から出力される映像信号の入力を受け、入力された映像信号を表示制御部14(のLCDコントローラ11)に直接出力し、入力された映像信号から垂直同期信号(V_SYNC)を抽出し、抽出された垂直同期信号を出力する映像信号入出力手段として機能する。 As described above, in the HMD 1 of the present embodiment, the HDMI receiver 10 receives the input of the video signal output from the repeater 2, and directly outputs the input video signal to the display control unit 14 (the LCD controller 11 thereof). Then, a vertical synchronization signal (V_SYNC) is extracted from the input video signal, and functions as video signal input / output means for outputting the extracted vertical synchronization signal.
 図2に示すように、HDMIレシーバ10から出力されるコントローラ入力映像信号から抽出された垂直同期信号は、CPU9に入力される。CPU9は、映像信号安定状態として、入力された垂直同期信号が安定した状態であること(以下「同期信号安定状態」という。)を検知する。 As shown in FIG. 2, the vertical synchronization signal extracted from the controller input video signal output from the HDMI receiver 10 is input to the CPU 9. The CPU 9 detects that the input vertical synchronization signal is in a stable state (hereinafter referred to as “synchronization signal stable state”) as the video signal stable state.
 具体的には、図4に示すように、垂直同期信号(V_SYNC)は、ハイレベル(以下「Hレベル」とする。)とロウレベル(以下「Lレベル」とする。)とを周期的に繰り返すパルス信号である。垂直同期信号の出力レベルについて、Hレベルを第1の値とした場合、Lレベルは第1の値とは異なる第2の値といえる。CPU9は、垂直同期信号について、HレベルとLレベルとの間での信号レベルの遷移状態から、同期信号安定状態を検知する。CPU9は、例えば、垂直同期信号の入力を受ける入力ポートを有し、この入力ポートにおいて、垂直同期信号のオン/オフ、つまりHレベル/Lレベルを検知する。 Specifically, as shown in FIG. 4, the vertical synchronization signal (V_SYNC) periodically repeats a high level (hereinafter referred to as “H level”) and a low level (hereinafter referred to as “L level”). It is a pulse signal. Regarding the output level of the vertical synchronizing signal, when the H level is the first value, the L level can be said to be a second value different from the first value. For the vertical synchronization signal, the CPU 9 detects the synchronization signal stable state from the transition state of the signal level between the H level and the L level. For example, the CPU 9 has an input port that receives an input of a vertical synchronizing signal, and detects on / off of the vertical synchronizing signal, that is, an H level / L level at this input port.
 図4に示すように、映像信号が安定した状態においては、垂直同期信号(V_SYNC)について、Hレベルの状態が期間ΔXの間継続することが、規則的に繰り返される。つまり、期間ΔXの間Hレベルが連続する状態が、インターバル期間ΔYを隔てて安定的に繰り返される。なお、インターバル期間ΔYは、期間ΔXよりも短い期間であって垂直同期信号がLレベルの状態となる期間である。一方、映像信号が不安定な状態においては、垂直同期信号について、例えば、Hレベルの連続時間が不均一であったり、Hレベルの連続時間が安定状態における期間ΔXよりも短かったりする。 As shown in FIG. 4, in a state where the video signal is stable, it is regularly repeated that the state of the H level continues for the period ΔX with respect to the vertical synchronization signal (V_SYNC). That is, the state in which the H level continues during the period ΔX is stably repeated with the interval period ΔY. Note that the interval period ΔY is a period shorter than the period ΔX and the vertical synchronization signal is in the L level. On the other hand, in a state where the video signal is unstable, for example, the continuous time of the H level is not uniform for the vertical synchronization signal, or the continuous time of the H level is shorter than the period ΔX in the stable state.
 図4に示すような垂直同期信号(V_SYNC)の遷移態様において、期間ΔXは、垂直同期信号の走査周波数(以下「垂直走査周波数」という。)によって決まる期間である。例えば、垂直走査周波数が60[Hz]の場合、一度垂直方向に走査するのに必要な期間、換言すれば1フレームの画像を描画する期間は、(1/60)×1000≒16.5[ms]となる。なお、インターバル期間ΔYは、コントローラ入力映像信号の安定状態の影響を受けない、もしくは影響が小さい期間である。インターバル期間ΔYは、例えば0.1[ms]である。本実施形態では、ΔY=0.1[ms]として説明する。そして、期間ΔXは、1フレームの描画期間である16.5[ms]からΔY(=0.1[ms])を差し引いて、ΔX=16.4[ms]と設定される。 4, in the transition mode of the vertical synchronization signal (V_SYNC), the period ΔX is a period determined by the scanning frequency of the vertical synchronization signal (hereinafter referred to as “vertical scanning frequency”). For example, when the vertical scanning frequency is 60 [Hz], the period required to scan once in the vertical direction, in other words, the period for drawing an image of one frame is (1/60) × 1000≈16.5 [ ms]. The interval period ΔY is a period that is not affected by the stable state of the controller input video signal or has a small effect. The interval period ΔY is, for example, 0.1 [ms]. In the present embodiment, description will be made assuming that ΔY = 0.1 [ms]. The period ΔX is set to ΔX = 16.4 [ms] by subtracting ΔY (= 0.1 [ms]) from 16.5 [ms], which is a drawing period of one frame.
 CPU9は、入力された垂直同期信号から、垂直同期信号の出力がHレベルの状態を保つ連続時間、つまり垂直同期信号の出力レベルがLレベルからHレベルになった時点から、HレベルからLレベルになった時点までの時間(以下「連続Hレベル時間」という。)についてあらかじめ設定された基準時間に基づき、同期信号安定状態を検知する。具体的には、CPU9は、入力された垂直同期信号について、連続Hレベル時間を計測する。CPU9は、連続Hレベル時間の計測時間と、あらかじめ設定された基準時間とを比較することで、同期信号安定状態を検知する。 From the input vertical synchronization signal, the CPU 9 continues from the H level to the L level from the time when the output of the vertical synchronization signal is kept at the H level, that is, from the time when the output level of the vertical synchronization signal changes from the L level to the H level. The synchronous signal stable state is detected based on a preset reference time with respect to the time until the point of time (hereinafter referred to as “continuous H level time”). Specifically, the CPU 9 measures the continuous H level time for the input vertical synchronization signal. The CPU 9 detects the synchronization signal stable state by comparing the measurement time of the continuous H level time with a preset reference time.
 CPU9は、例えば、連続Hレベル時間の計測時間が、あらかじめ設定された基準時間と一致する場合に、同期信号安定状態を検知する。この場合、あらかじめ設定される基準時間は、上述したような走査周波数が60[Hz]のときの例にならうと、期間ΔXと同じ16.4[ms]に設定される。つまり、この場合、CPU9による連続Hレベル時間の計測時間が、映像信号が安定した状態における期間ΔXと同じ16.4[ms]であるときに、同期信号安定状態が検知される。なお、連続Hレベル時間の計測時間に対する比較対象となる基準時間は、制御部6が有する記憶部等においてあらかじめ設定され記憶される。 CPU9 detects a synchronous signal stable state, for example, when the measurement time of continuous H level time corresponds with the preset reference time. In this case, the reference time set in advance is set to 16.4 [ms], which is the same as the period ΔX, according to the example when the scanning frequency is 60 [Hz] as described above. That is, in this case, the synchronization signal stable state is detected when the measurement time of the continuous H level time by the CPU 9 is 16.4 [ms] which is the same as the period ΔX in the state where the video signal is stable. The reference time to be compared with the measurement time of the continuous H level time is set and stored in advance in a storage unit or the like included in the control unit 6.
 CPU9は、入力された垂直同期信号から基準時間に基づいて同期信号安定状態を検知すると、表示制御部14に対して、LCDユニット5による画像表示を実行させる画像表示信号を出力する。ここで、CPU9から表示制御部14に送られる画像表示信号には、CPU9からLCDコントローラ11に対する画像表示命令の信号と、CPU9からLEDバックライトドライブIC12に対する制御信号とが含まれる。 CPU9 will output the image display signal which performs the image display by the LCD unit 5 with respect to the display control part 14, if a synchronous signal stable state is detected based on reference | standard time from the input vertical synchronizing signal. Here, the image display signal sent from the CPU 9 to the display control unit 14 includes an image display command signal from the CPU 9 to the LCD controller 11 and a control signal from the CPU 9 to the LED backlight drive IC 12.
 具体的には、CPU9から表示制御部14に送られる画像表示信号のうち、CPU9からLCDコントローラ11に対する画像表示命令の信号は、LCDコントローラ11が有する表示レジスタをオンし、LCDコントローラ11に、LCD7に対する駆動制御を開始させるための信号である。また、CPU9から表示制御部14に送られる画像表示信号のうち、CPU9からLEDバックライトドライブIC12に対する制御信号は、LEDバックライトドライブIC12にバックライト8を点灯させるための信号である。 Specifically, among the image display signals sent from the CPU 9 to the display control unit 14, an image display command signal from the CPU 9 to the LCD controller 11 turns on the display register of the LCD controller 11, and sends the LCD 7 to the LCD controller 11. This is a signal for starting the drive control for. Of the image display signals sent from the CPU 9 to the display control unit 14, the control signal from the CPU 9 to the LED backlight drive IC 12 is a signal for causing the LED backlight drive IC 12 to turn on the backlight 8.
 また、CPU9から表示制御部14に送られる制御信号には、LCDユニット5による画像表示を停止させる画像非表示信号がある。CPU9から表示制御部14に送られる画像非表示信号には、CPU9からLCDコントローラ11に対する画像非表示命令の信号と、CPU9からLEDバックライトドライブIC12に対する制御信号とが含まれる。 Further, the control signal sent from the CPU 9 to the display control unit 14 includes an image non-display signal for stopping the image display by the LCD unit 5. The image non-display signal sent from the CPU 9 to the display control unit 14 includes an image non-display command signal from the CPU 9 to the LCD controller 11 and a control signal from the CPU 9 to the LED backlight drive IC 12.
 具体的には、CPU9から表示制御部14に送られる画像非表示信号のうち、CPU9からLCDコントローラ11に対する画像非表示命令の信号は、LCDコントローラ11が有する表示レジスタをオフし、LCDコントローラ11によるLCD7に対する駆動制御を停止させるための信号である。また、CPU9から表示制御部14に送られる画像非表示信号のうち、CPU9からLEDバックライトドライブIC12に対する制御信号は、LEDバックライトドライブIC12にバックライト8を消灯させるための信号である。 Specifically, among the image non-display signals sent from the CPU 9 to the display control unit 14, an image non-display command signal from the CPU 9 to the LCD controller 11 turns off the display register of the LCD controller 11, and the LCD controller 11 This is a signal for stopping drive control for the LCD 7. Of the image non-display signals sent from the CPU 9 to the display control unit 14, the control signal from the CPU 9 to the LED backlight drive IC 12 is a signal for causing the LED backlight drive IC 12 to turn off the backlight 8.
 このような画像表示シーケンスが行われる本実施形態のHMD1においては、CPU9は、同期信号検知手段として機能する。すなわち、本実施形態では、CPU9は、HDMIレシーバ10から出力された垂直同期信号の入力を受け、垂直同期信号の出力が一定となる時間、つまり連続Hレベル時間についてあらかじめ設定された基準時間に基づき、入力された垂直同期信号が安定した状態であること(同期信号安定状態)を検知する。 In the HMD 1 of this embodiment in which such an image display sequence is performed, the CPU 9 functions as a synchronization signal detection unit. That is, in the present embodiment, the CPU 9 receives the vertical synchronization signal output from the HDMI receiver 10 and is based on a reference time set in advance for a time during which the output of the vertical synchronization signal is constant, that is, a continuous H level time. , It is detected that the input vertical synchronization signal is in a stable state (synchronization signal stable state).
 また、CPU9は、画像表示信号出力手段として機能する。すなわち、本実施形態では、CPU9は、HDMIレシーバ10への映像信号の入力が開始された後に、同期信号安定状態を検知すると、表示制御部14に、LCDユニット5による画像表示を実行させる画像表示信号を出力する。ここで、HDMIレシーバ10への映像信号の入力が開始された後とは、例えばHMD1の電源投入時等、画像表示が行われていない状態からのHDMIレシーバ10への映像信号の入力開始直後である。また、CPU9から表示制御部14に送られる画像表示信号には、上記のとおり、LCDコントローラ11に対する画像表示命令の信号と、LEDバックライトドライブIC12に対する制御信号とが含まれる。 Further, the CPU 9 functions as an image display signal output unit. That is, in this embodiment, when the CPU 9 detects the synchronization signal stable state after the input of the video signal to the HDMI receiver 10 is started, the CPU 9 causes the display control unit 14 to perform image display by the LCD unit 5. Output a signal. Here, after the input of the video signal to the HDMI receiver 10 is started, for example, immediately after the input of the video signal to the HDMI receiver 10 from a state in which no image display is performed, such as when the HMD 1 is turned on. is there. Further, the image display signal sent from the CPU 9 to the display control unit 14 includes the image display command signal for the LCD controller 11 and the control signal for the LED backlight drive IC 12 as described above.
 本実施形態における画像表示シーケンスの一例について、図4、および図5に示すフロー図を用いて説明する。本実施形態における画像表示シーケンスの実行に際しては、使用者により、中継器2の電源が入れられる。中継器2の電源を入れる操作は、例えば中継器2が有する電源スイッチの操作であったり、中継器2の給電用入力端子22に外付けバッテリが接続される場合はその外付けバッテリの電源を入れる操作であったりする。 An example of the image display sequence in the present embodiment will be described with reference to the flowcharts shown in FIG. 4 and FIG. When the image display sequence in the present embodiment is executed, the relay 2 is turned on by the user. The operation of turning on the power of the repeater 2 is, for example, an operation of a power switch of the repeater 2, or when an external battery is connected to the power supply input terminal 22 of the repeater 2, the power of the external battery is turned on. It is an operation to insert.
 中継器2の電源が入れられることで、ケーブル51によるHMD1に対する給電が開始され、HMD1の電源が入り、HMD1における処理が開始される。本実施形態のHMD1における画像表示シーケンスは、中継器2から入力される映像信号を、LCD7を制御する手段であるLCDコントローラ11に直接入力することで、LCD7による画像表示を行う画像表示方法として実行される。 When the power of the repeater 2 is turned on, power supply to the HMD 1 by the cable 51 is started, the power of the HMD 1 is turned on, and processing in the HMD 1 is started. The image display sequence in the HMD 1 of the present embodiment is executed as an image display method for displaying an image on the LCD 7 by directly inputting the video signal input from the repeater 2 to the LCD controller 11 which is a means for controlling the LCD 7. Is done.
 図5に示すように、HMD1における処理が開始された状態では、画像表示フラグはオフになっている(S10)。つまり、LCDコントローラ11が有する表示レジスタがオフの状態となっている。 As shown in FIG. 5, the image display flag is turned off in the state where the processing in the HMD 1 is started (S10). That is, the display register of the LCD controller 11 is in an off state.
 そして、本実施形態の画像表示シーケンスでは、画像表示操作か画像非表示操作かの判断が行われる(S20)。ここで、画像表示操作か画像非表示操作かの判断は、中継器2の操作部25の状態によって判断される。具体的には、操作部25として、画像表示と画像非表示とを切り替えるオン/オフの切替えスイッチが設けられる。そして、その切替えスイッチのオン/オフの状態により、画像表示操作か画像非表示操作かの判断が行われる。つまり、操作部25の切替えスイッチがオン状態の場合は、画像表示操作と判断され、切替えスイッチがオフ状態の場合は、画像非表示操作と判断される。 Then, in the image display sequence of this embodiment, it is determined whether the operation is an image display operation or an image non-display operation (S20). Here, whether the image display operation or the image non-display operation is determined is determined by the state of the operation unit 25 of the repeater 2. Specifically, an on / off switch for switching between image display and image non-display is provided as the operation unit 25. Then, depending on the on / off state of the changeover switch, it is determined whether the image display operation or the image non-display operation. That is, when the changeover switch of the operation unit 25 is in the on state, it is determined as an image display operation, and when the changeover switch is in the off state, it is determined as an image non-display operation.
 先に、ステップS20において画像表示操作と判断された場合について、図4を加えて説明する。図4において、矢印T1で示すタイミングは、例えば、HMD1における処理が開始されてから、使用者によって操作部25の画像表示/画像非表示の切替えスイッチがオン操作されたタイミングに相当する。 First, the case where the image display operation is determined in step S20 will be described with reference to FIG. In FIG. 4, for example, the timing indicated by the arrow T <b> 1 corresponds to the timing when the user switches on the image display / image non-display switch of the operation unit 25 after the processing in the HMD 1 is started.
 使用者による画像表示操作、つまり操作部25の切替えスイッチのオン操作が行われると、次に、映像信号の入力が行われる。映像信号は、PC等の外部装置から、中継器2の映像信号入力用端子21に接続されるHDMIケーブルやHDMI-DVI-D変換ケーブル等を介して、中継器2に入力される。中継器2に入力された映像信号は、ケーブル51によってHMD1に入力される。HMD1において、中継器2からの映像信号は、HDMIレシーバ10により受け取られる。図4において、HMD1に映像信号が入力されたタイミングは、矢印T2で示すタイミングに相当する。 When the image display operation by the user, that is, when the changeover switch of the operation unit 25 is turned on, the video signal is input next. The video signal is input to the repeater 2 from an external device such as a PC via an HDMI cable or an HDMI-DVI-D conversion cable connected to the video signal input terminal 21 of the repeater 2. The video signal input to the repeater 2 is input to the HMD 1 through the cable 51. In the HMD 1, the video signal from the repeater 2 is received by the HDMI receiver 10. In FIG. 4, the timing when the video signal is input to the HMD 1 corresponds to the timing indicated by the arrow T2.
 映像信号の入力が開始された後、画像表示フラグがオフであるか否かの判定が行われる(S30)。このステップS30では、すでにLCDユニット5による画像表示が行われているか否かが判定される。つまり、ステップS20における画像表示操作との判断が、例えば、中継器2の電源が入れられてHMD1の処理が開始され、使用者によって操作部25の切替えスイッチのオン操作が行われてから初回の判断であるか否かが判定される。 After the input of the video signal is started, it is determined whether or not the image display flag is off (S30). In this step S30, it is determined whether or not image display by the LCD unit 5 has already been performed. That is, the determination of the image display operation in step S20 is, for example, the first time after the repeater 2 is turned on and the processing of the HMD 1 is started, and the switch on the operation unit 25 is turned on by the user. It is determined whether it is a determination.
 したがって、ステップS30において、画像表示フラグがオフの場合(S30、Yes)は、まだ画像表示が行われていない状態であり、HMD1の処理が開始されてからステップS20の画像表示操作の判断が初回の場合である。一方、ステップS30において、画像表示フラグがオフでない場合(S30、No)、つまり画像表示フラグがオンの場合は、すでに画像表示が行われている状態である。 Therefore, when the image display flag is off in step S30 (S30, Yes), the image display is not yet performed, and the determination of the image display operation in step S20 is the first time after the processing of HMD1 is started. This is the case. On the other hand, if the image display flag is not off in step S30 (S30, No), that is, if the image display flag is on, the image is already being displayed.
 ステップS30において、画像表示フラグがオフであると判定された場合(S30、Yes)、映像信号が安定しているか否かが判定される(S40)。ここでの映像信号が安定しているか否かの判定は、上述したようなCPU9による映像信号安定状態の検知、つまり同期信号安定状態の検知によって行われる。具体的には、CPU9により、コントローラ入力映像信号から抽出された垂直同期信号が検出される。CPU9は、検出した垂直同期信号についての連続Hレベル時間の計測時間と、あらかじめ設定された基準時間とから、同期信号安定状態を検知する。 In Step S30, when it is determined that the image display flag is off (S30, Yes), it is determined whether or not the video signal is stable (S40). The determination as to whether or not the video signal is stable here is performed by the detection of the video signal stable state by the CPU 9 as described above, that is, the detection of the synchronous signal stable state. Specifically, the CPU 9 detects a vertical synchronization signal extracted from the controller input video signal. The CPU 9 detects the synchronization signal stable state from the measurement time of the continuous H level time for the detected vertical synchronization signal and the preset reference time.
 ステップS40において、CPU9により、同期信号安定状態が検知されると、映像信号が安定していると判定されたことになる(S40、Yes)。ステップS40における処理は、映像信号が安定していると判定されるまで繰り返し継続して行われる。つまり、ステップS40において、映像信号が安定していないと判定された場合(S40、No)、再度映像信号が安定しているか否かの判定が行われる。したがって、ステップS40によれば、HMD1に入力された映像信号が安定するまで待機することが行われる。 In step S40, when the CPU 9 detects the synchronization signal stable state, it is determined that the video signal is stable (S40, Yes). The process in step S40 is repeatedly performed until it is determined that the video signal is stable. That is, if it is determined in step S40 that the video signal is not stable (No in S40), it is determined again whether the video signal is stable. Therefore, according to step S40, waiting is performed until the video signal input to the HMD 1 is stabilized.
 このように、ステップS40においては、CPU9により、コントローラ入力映像信号から垂直同期信号(V_SYNC)を検出するステップと、垂直同期信号の出力が一定となる時間(連続Hレベル時間)についてあらかじめ設定された基準時間に基づき、検出するステップにより検出した垂直同期信号が安定した状態であることを検知するステップとが行われる。 As described above, in step S40, the CPU 9 presets the step of detecting the vertical synchronization signal (V_SYNC) from the controller input video signal and the time (continuous H level time) during which the output of the vertical synchronization signal is constant. Based on the reference time, a step of detecting that the vertical synchronization signal detected by the detecting step is in a stable state is performed.
 ステップS40において、映像信号が安定していると判定されると(S40、Yes)、画像表示命令が実行され(S50)、バックライト8の点灯が行われる(S60)。ステップS50では、CPU9からLCDコントローラ11に対する画像表示命令の信号が送られ、LCDコントローラ11によってLCD7の駆動が開始される。ステップS60では、CPU9からLEDバックライトドライブIC12に、設定された明るさでバックライト8を点灯させるための信号が送られる。 If it is determined in step S40 that the video signal is stable (S40, Yes), an image display command is executed (S50), and the backlight 8 is turned on (S60). In step S50, the CPU 9 sends an image display command signal to the LCD controller 11, and the LCD controller 11 starts driving the LCD 7. In step S60, a signal for turning on the backlight 8 with the set brightness is sent from the CPU 9 to the LED backlight drive IC 12.
 ステップS50およびステップS60は、CPU9により同期信号安定状態が検知されたことにより行われるステップであり、LCDユニット5のLCD7による画像表示を実行するステップに相当する。 Step S50 and Step S60 are steps performed when the synchronization signal stable state is detected by the CPU 9, and correspond to a step of executing image display by the LCD 7 of the LCD unit 5.
 ステップS60においてバックライト8の点灯が行われると、画像表示フラグがオンされる(S70)。つまり、LCDコントローラ11が有する表示レジスタがオンの状態とされる。なお、ステップS30において画像表示フラグがオフでないと判定された場合(S30、No)については後述する。 When the backlight 8 is turned on in step S60, the image display flag is turned on (S70). That is, the display register included in the LCD controller 11 is turned on. The case where it is determined in step S30 that the image display flag is not off (S30, No) will be described later.
 次に、ステップS20において画像非表示操作と判断された場合について説明する。ステップS20において画像非表示操作と判断されると、画像表示フラグがオフであるか否かの判定が行われる(S80)。このステップS80では、上述したステップS30と同様に、すでにLCDユニット5による画像表示が行われているか否かが判定される。 Next, the case where the image non-display operation is determined in step S20 will be described. If it is determined in step S20 that the image is not displayed, it is determined whether or not the image display flag is off (S80). In step S80, as in step S30 described above, it is determined whether or not image display by the LCD unit 5 has already been performed.
 したがって、ステップS80において、画像表示フラグがオフの場合(S80、Yes)は、まだ画像表示が行われていない状態であり、HMD1の処理が開始されてからステップS20の画像非表示操作の判断が初回の場合である。一方、ステップS80において、画像表示フラグがオフでない場合(S80、No)、つまり画像表示フラグがオンの場合は、すでに画像表示が行われている状態である。 Therefore, if the image display flag is off in step S80 (S80, Yes), the image display is not yet performed, and the determination of the image non-display operation in step S20 is made after the processing of HMD1 is started. This is the first time. On the other hand, if the image display flag is not off in step S80 (S80, No), that is, if the image display flag is on, the image is already being displayed.
 したがって、ステップS80において、画像表示フラグがオフでないと判定された場合(S80、No)、画像非表示命令が実行され(S90)、バックライト8の消灯が行われる(S100)。ステップS90では、CPU9からLCDコントローラ11に対する画像非表示命令の信号が送られ、LCDコントローラ11によってLCD7の駆動が停止される。ステップ100では、CPU9からLEDバックライトドライブIC12に、バックライト8を消灯させるための信号が送られる。 Therefore, if it is determined in step S80 that the image display flag is not off (S80, No), an image non-display command is executed (S90), and the backlight 8 is turned off (S100). In step S <b> 90, an image non-display command signal is sent from the CPU 9 to the LCD controller 11, and the LCD controller 11 stops driving the LCD 7. In step 100, a signal for turning off the backlight 8 is sent from the CPU 9 to the LED backlight drive IC 12.
 ステップS100においてバックライト8の消灯が行われると、画像表示フラグがオフされる(S110)。つまり、LCDコントローラ11が有する表示レジスタがオフの状態とされる。 When the backlight 8 is turned off in step S100, the image display flag is turned off (S110). That is, the display register included in the LCD controller 11 is turned off.
 一方、ステップS80において、画像表示フラグがオフであると判定された場合(S80、Yes)、処理はステップS20へと移行する。つまりこの場合、まだ画像表示が行われていない状態であるので、画像非表示命令によるバックライト8の消灯は行われない。 On the other hand, if it is determined in step S80 that the image display flag is OFF (S80, Yes), the process proceeds to step S20. That is, in this case, since the image display is not yet performed, the backlight 8 is not turned off by the image non-display command.
 本実施形態のHMD1においては、上述したような画像表示操作および画像非表示操作の各操作にともなう処理が、ステップS20における画像表示操作/画像非表示操作の切替えにともなって行われる。そして、図5に示す処理フローにおいて、画像表示操作が行われた場合の処理(S30~S70)、および画像非表示操作が行われた場合の処理(S80~S110)の各処理は、CPU9が制御部6の記憶部等に記憶された所定の制御プログラムを読み出して実行することにより行われる。 In the HMD 1 of the present embodiment, the processing associated with the image display operation and the image non-display operation as described above is performed in accordance with the switching of the image display operation / image non-display operation in step S20. Then, in the processing flow shown in FIG. 5, the CPU 9 performs each of the processing when the image display operation is performed (S30 to S70) and the processing when the image non-display operation is performed (S80 to S110). This is performed by reading and executing a predetermined control program stored in the storage unit or the like of the control unit 6.
 以上のような画像表示シーケンスが行われる本実施形態のHMD1によれば、スケーラ等の画像処理回路を用いることなく、映像信号の乱れに起因する表示画像の不具合を解消することができる。具体的には、本実施形態のHMD1においては、上述した処理フローにおいて、コントローラ入力映像信号が安定するまで待機することが行われてから(S40)、LCDコントローラ11に対する画像表示命令が実行される(S50)。これにより、表示画像に縦縞が入る等の不具合を回避することができる。 According to the HMD 1 of the present embodiment in which the image display sequence as described above is performed, it is possible to eliminate the problem of the display image caused by the disturbance of the video signal without using an image processing circuit such as a scaler. Specifically, in the HMD 1 of the present embodiment, after waiting for the controller input video signal to become stable in the processing flow described above (S40), an image display command for the LCD controller 11 is executed. (S50). Thereby, problems such as vertical stripes appearing in the display image can be avoided.
 仮に、コントローラ入力映像信号が不安定な状態で、LCDコントローラ11に対する画像表示命令が実行された場合、例えば表示画像に縦縞が入る現象(図3(b)参照)等が生じることがある。そこで、本実施形態のHMD1における画像表示シーケンスのように、コントローラ入力映像信号が安定した状態となってから、LCDコントローラ11に対する画像表示命令が実行されることにより、縦縞現象等の表示画像の不具合が生じることなく、正常な画像表示(図3(a)参照)を確保することができる。このような画像表示シーケンスは、本実施形態のHMD1のように、HDMIレシーバ10とLCDコントローラ11との間にスケーラ等の画像処理回路11a(図2参照)が存在せずに、コントローラ入力映像信号がHDMIレシーバ10からLCDコントローラ11に直接入力される構成において有効である。 If an image display command for the LCD controller 11 is executed while the controller input video signal is unstable, for example, a phenomenon that vertical stripes appear in the display image (see FIG. 3B) may occur. Therefore, as in the image display sequence in the HMD 1 of the present embodiment, when the controller input video signal is in a stable state, an image display command to the LCD controller 11 is executed, thereby causing a display image defect such as a vertical stripe phenomenon. Therefore, normal image display (see FIG. 3A) can be ensured. In such an image display sequence, unlike the HMD 1 of the present embodiment, an image processing circuit 11a such as a scaler (see FIG. 2) does not exist between the HDMI receiver 10 and the LCD controller 11, and the controller input video signal Is effective in a configuration in which is input directly from the HDMI receiver 10 to the LCD controller 11.
 以下では、本実施形態のHMD1における好ましい態様としての画像表示シーケンスの詳細について説明する。 Hereinafter, details of an image display sequence as a preferable aspect in the HMD 1 of the present embodiment will be described.
 図4に示すように、映像信号が不安定な状態においては、垂直同期信号(V_SYNC)は、連続Hレベル時間が不均一であったり、連続Hレベル時間が垂直走査周波数から導かれる時間(期間ΔX)よりも短かったりする。これに対し、映像信号が安定した状態においては、期間ΔXの長さの連続Hレベル時間が、出力レベルがLレベルとなるインターバル期間ΔYとともに繰り返される。 As shown in FIG. 4, when the video signal is unstable, the vertical synchronizing signal (V_SYNC) has a non-uniform continuous H level time or a time (period) in which the continuous H level time is derived from the vertical scanning frequency. Or shorter than [Delta] X). On the other hand, in a state where the video signal is stable, the continuous H level time of the length of the period ΔX is repeated together with the interval period ΔY in which the output level becomes the L level.
 そこで、本実施形態の画像表示シーケンスでは、同期信号安定状態の検知処理において、連続Hレベル時間が基準時間の間一定となることが所定回数連続したことが、同期信号安定状態として検知される。したがって、基準時間として期間ΔXと同じ長さの時間が設定された場合、連続Hレベル時間が所定回数連続して期間ΔXとなったことが、同期信号安定状態として検知される。 Therefore, in the image display sequence of the present embodiment, it is detected as the synchronization signal stable state that the continuous H level time is constant for the reference time for a predetermined number of times in the synchronization signal stable state detection process. Therefore, when a time having the same length as the period ΔX is set as the reference time, it is detected as the synchronization signal stable state that the continuous H level time has become the period ΔX continuously for a predetermined number of times.
 ここで、上記所定回数が3回として設定され、期間ΔXが16.4[ms]であり、基準時間が期間ΔXと同じ16.4[ms]として設定された場合を例に説明する。この場合、図5に示す処理フローにおけるステップS20において、CPU9は、計測した連続Hレベル時間が3回連続して16.4[ms]であったときに、同期信号安定状態を検知する。 Here, a case will be described as an example where the predetermined number of times is set to 3 times, the period ΔX is 16.4 [ms], and the reference time is set to 16.4 [ms] which is the same as the period ΔX. In this case, in step S20 in the processing flow shown in FIG. 5, the CPU 9 detects the synchronization signal stable state when the measured continuous H level time is 16.4 [ms] for three consecutive times.
 図4に示す垂直同期信号(V_SYNC)の例では、矢印T3で示すタイミングが、3回連続して期間ΔXの連続Hレベル時間が生じたタイミングに相当する。すなわち、図4において矢印T3で示すタイミングで、CPU9によって同期信号安定状態が検知され、これにより、画像表示命令が実行され、バックライト8の点灯処理が行われる。本例の場合、例えば、CPU9によって連続的に計測される連続Hレベル時間が、1回目16.4[ms]、2回目16.4[ms]、3回目14[ms]であったときには、再度1回目から連続Hレベル時間の計測が行われる。 In the example of the vertical synchronizing signal (V_SYNC) shown in FIG. 4, the timing indicated by the arrow T3 corresponds to the timing at which the continuous H level time of the period ΔX is generated three times in succession. That is, the synchronization signal stable state is detected by the CPU 9 at the timing indicated by the arrow T3 in FIG. 4, whereby the image display command is executed and the backlight 8 is turned on. In the case of this example, for example, when the continuous H level time continuously measured by the CPU 9 is the first 16.4 [ms], the second 16.4 [ms], and the third 14 [ms] The continuous H level time is measured again from the first time.
 以上のように、本実施形態のHMD1においては、同期信号検知手段として機能するCPU9は、入力された垂直同期信号の出力が基準時間の間一定となることがあらかじめ設定された所定回数連続したことを、同期信号安定状態として検知する、これにより、映像信号安定状態に相当する同期信号安定状態を、精度良く検知することができる。結果として、映像信号の乱れに起因する表示画像の不具合を効果的に解消することができる。 As described above, in the HMD 1 of the present embodiment, the CPU 9 functioning as the synchronization signal detection means that the output of the input vertical synchronization signal is constant for a reference time and continues for a predetermined number of times. Is detected as a synchronization signal stable state, whereby the synchronization signal stable state corresponding to the video signal stable state can be accurately detected. As a result, it is possible to effectively eliminate the display image defect caused by the disturbance of the video signal.
 なお、基準時間の連続Hレベル時間が連続する所定回数は、制御部6が有する記憶部等においてあらかじめ設定され記憶される。また、基準時間の連続Hレベル時間が連続する所定回数は、特に限定されるものではなく、垂直同期信号(V_SYNC)の遷移態様やLCDコントローラ11の仕様等によって適宜設定される。 Note that the predetermined number of times that the continuous H level time of the reference time continues is preset and stored in a storage unit or the like included in the control unit 6. Further, the predetermined number of times that the continuous H level time of the reference time continues is not particularly limited, and is appropriately set according to the transition mode of the vertical synchronization signal (V_SYNC), the specification of the LCD controller 11, and the like.
 次に、基準時間の好ましい態様について説明する。同期信号安定状態の検知処理において用いられる基準時間は、垂直走査周波数に基づいて設定される所定の幅を有することが好ましい。つまり、同期信号安定状態の検知処理に用いられる基準時間は、所定の数値範囲により規定される時間であることが好ましい。 Next, a preferable aspect of the reference time will be described. It is preferable that the reference time used in the sync signal stable state detection process has a predetermined width set based on the vertical scanning frequency. In other words, the reference time used for the synchronization signal stable state detection process is preferably a time defined by a predetermined numerical range.
 このように、同期信号安定状態の検知処理に用いられる基準時間が所定の幅を有する数値範囲として規定される場合、CPU9により計測された連続Hレベル時間がその数値範囲内の値であれば、その連続Hレベル時間の信号は、上述したように所定回数連続することが必要とされる回数の1回としてカウントされる。 Thus, when the reference time used for the detection process of the synchronization signal stable state is defined as a numerical range having a predetermined width, if the continuous H level time measured by the CPU 9 is a value within the numerical range, The signal of the continuous H level time is counted as one of the number of times required to continue for a predetermined number of times as described above.
 具体的には、例えば、基準時間が15.0~18.0[ms]として設定された場合、CPU9により計測された連続Hレベル時間が15.0~18.0[ms]の範囲内の値であれば、その連続Hレベル時間の信号は所定回数連続することが必要とされる回数の1回としてカウントされる。そして、本例の場合、例えば、CPU9によって連続的に計測される連続Hレベル時間が、1回目15.5[ms]、2回目17.0[ms]、3回目16.5[ms]であったときには、垂直同期信号の出力が基準時間の間一定となること、つまり連続Hレベル時間が基準時間となることが3回連続したことになる。 Specifically, for example, when the reference time is set as 15.0 to 18.0 [ms], the continuous H level time measured by the CPU 9 is within the range of 15.0 to 18.0 [ms]. If it is a value, the signal of the continuous H level time is counted as one of the number of times required to continue for a predetermined number of times. In this example, for example, the continuous H level time continuously measured by the CPU 9 is 15.5 [ms] for the first time, 17.0 [ms] for the second time, and 16.5 [ms] for the third time. If there is, the output of the vertical synchronizing signal becomes constant for the reference time, that is, the continuous H level time becomes the reference time for three consecutive times.
 このように同期信号安定状態の検知処理に用いられる基準時間の幅(数値範囲)は、垂直走査周波数に基づいて設定される。例えば、垂直走査周波数が60[Hz]の場合、上記のとおり垂直同期信号における期間ΔXは16.4[ms]となる。そこで、垂直走査周波数が60[Hz]の場合、基準時間は、例えば、16.4ms±数msとして設定される。この場合、具体的には、基準時間は、例えば15.0~18.0[ms]として設定される。 The width (numerical range) of the reference time used for the sync signal stable state detection process is set based on the vertical scanning frequency. For example, when the vertical scanning frequency is 60 [Hz], the period ΔX in the vertical synchronization signal is 16.4 [ms] as described above. Therefore, when the vertical scanning frequency is 60 [Hz], the reference time is set as 16.4 ms ± several ms, for example. In this case, specifically, the reference time is set as 15.0 to 18.0 [ms], for example.
 また、例えば、垂直走査周波数が上述した60[Hz]の場合よりも大きい70[Hz]の場合、1フレームの描画期間は、(1/70)×1000≒14.3[ms]となることから、期間ΔXは、ΔX=14.3-ΔY(=0.1[ms])=14.2[ms]となる。この場合、基準時間は、例えば14.2ms±数msとして設定され、具体的には、例えば13.0~16.0[ms]として設定される。また、例えば、HMD1において画像解像度の調整にともなって垂直走査周波数が60[Hz]と70[Hz]とで切り替わる場合、基準時間としては、各垂直走査周波数において期間ΔXとなる16.4[ms]および14.2[ms]を含む数値範囲が設定される。したがって、この場合の基準時間は、例えば13.0~18.0[ms]として設定される。 For example, when the vertical scanning frequency is 70 [Hz], which is larger than the above-described 60 [Hz], the drawing period of one frame is (1/70) × 1000≈14.3 [ms]. Therefore, the period ΔX is ΔX = 14.3−ΔY (= 0.1 [ms]) = 14.2 [ms]. In this case, the reference time is set as, for example, 14.2 ms ± several ms, and specifically, set as, for example, 13.0 to 16.0 [ms]. Further, for example, when the vertical scanning frequency is switched between 60 [Hz] and 70 [Hz] in accordance with the adjustment of the image resolution in the HMD 1, the reference time is 16.4 [ms that is the period ΔX at each vertical scanning frequency. ] And 14.2 [ms] are set. Accordingly, the reference time in this case is set as 13.0 to 18.0 [ms], for example.
 以上のように、同期信号安定状態の検知処理において用いられる基準時間は、垂直走査周波数に基づいて設定される所定の幅を有する数値範囲として設定されることにより、同期信号安定状態の検知処理において、映像信号が安定した状態における垂直同期信号についての期間ΔXの誤差が許容される。これにより、映像信号が安定した状態であるにもかかわらず、垂直同期信号の期間ΔXのわずかな変動によって同期信号安定状態が検知されないといった状況を回避することができる。結果として、同期信号安定状態を精度良く検知することが可能となる。 As described above, the reference time used in the sync signal stable state detection process is set as a numerical range having a predetermined width set based on the vertical scanning frequency, so that the sync signal stable state detection process is performed. The error of the period ΔX with respect to the vertical synchronization signal when the video signal is stable is allowed. As a result, it is possible to avoid a situation in which the synchronization signal stable state is not detected due to a slight change in the period ΔX of the vertical synchronization signal, although the video signal is in a stable state. As a result, it is possible to accurately detect the synchronization signal stable state.
 続いて、CPU9から表示制御部14への制御信号の出力タイミングの好ましい態様について説明する。本実施形態のHMD1は、上述したように、画像表示を行うLCDユニット5において、LCD7とバックライト8とを有し、LCDユニット5を制御する表示制御部14において、LCD7を制御するLCDコントローラ11と、バックライト8を制御するLEDバックライトドライブIC12とを有する。 Subsequently, a preferable aspect of the output timing of the control signal from the CPU 9 to the display control unit 14 will be described. As described above, the HMD 1 of the present embodiment includes the LCD 7 and the backlight 8 in the LCD unit 5 that performs image display, and the LCD controller 11 that controls the LCD 7 in the display control unit 14 that controls the LCD unit 5. And an LED backlight drive IC 12 that controls the backlight 8.
 そして、本実施形態のHMD1は、CPU9から出力された画像表示信号に基づいてLCDユニット5に画像表示を実行させるに際し、LCDコントローラ11によりLCD7に対する制御を開始した後、所定時間経過後に、LEDバックライトドライブIC12によりバックライト8に対する制御を開始する。つまり、LCDユニット5による画像表示に際し、CPU9からLCDコントローラ11に対する制御信号の出力タイミングと、CPU9からLEDバックライトドライブIC12に対する制御信号の出力タイミングとの間に、所定の時間差が設けられている。 The HMD 1 of the present embodiment, when causing the LCD unit 5 to perform image display based on the image display signal output from the CPU 9, starts control of the LCD 7 by the LCD controller 11, and then performs LED back-up after a predetermined time has elapsed. Control of the backlight 8 is started by the write drive IC 12. That is, when the LCD unit 5 displays an image, a predetermined time difference is provided between the output timing of the control signal from the CPU 9 to the LCD controller 11 and the output timing of the control signal from the CPU 9 to the LED backlight drive IC 12.
 具体的には、上述した画像表示シーケンスにおいては、映像信号が安定していると判定されると、CPU9からLCDコントローラ11に対する画像表示命令の信号が送られ、LCDコントローラ11によってLCD7の駆動が開始され(S50)、CPU9からLEDバックライトドライブIC12に、バックライト8を点灯させるための信号が送られる(S60)。このLCDコントローラ11に対する画像表示命令、およびバックライト8の点灯の流れにおいて、LCDコントローラ11に対する画像表示命令が実行されたタイミングから、所定時間経過後に、バックライト8が点灯される。つまり、CPU9は、LCDコントローラ11に対して画像表示命令の信号を出力してから、所定時間経過後に、LEDバックライトドライブIC12に対する制御信号を出力する。 Specifically, in the image display sequence described above, when it is determined that the video signal is stable, the CPU 9 sends an image display command signal to the LCD controller 11 and the LCD controller 11 starts driving the LCD 7. Then, a signal for turning on the backlight 8 is sent from the CPU 9 to the LED backlight drive IC 12 (S60). In the flow of the image display command to the LCD controller 11 and the lighting of the backlight 8, the backlight 8 is turned on after a predetermined time has elapsed from the timing at which the image display command to the LCD controller 11 is executed. That is, the CPU 9 outputs a control signal to the LED backlight drive IC 12 after a predetermined time has elapsed after outputting the image display command signal to the LCD controller 11.
 ここで、CPU9による画像表示命令の信号の出力タイミングから、バックライト8点灯のための制御信号の出力のタイミングまでの所定時間(以下「ライト点灯待機時間」という。)は、例えば、数10~数100msの範囲内の時間として設定される。ライト点灯待機時間は、LCDコントローラ11において、CPU9からの画像表示命令を受けてから実行される表示オンシーケンスが完了するまでの時間に基づいて設定される。 Here, the predetermined time (hereinafter referred to as “light lighting standby time”) from the output timing of the image display command signal by the CPU 9 to the output timing of the control signal for lighting the backlight 8 is, for example, several 10 to It is set as a time within a range of several hundred ms. The light turn-on standby time is set based on the time from when the LCD controller 11 receives the image display command from the CPU 9 until the display on sequence executed is completed.
 ライト点灯待機時間について、図6を用いて説明する。図6に示すように、LCDコントローラ11においては、CPU9からの画像表示命令の信号が入力され、タイミングt1に画像表示命令がオンされると、それを契機に表示オンシーケンスの実行が開始される。LCDコントローラ11における表示オンシーケンスとしては、例えば、内蔵電源の立上げ等が行われる。表示オンシーケンスが完了することで、LCD7は、画像表示が可能な状態となる。このLCD7が画像表示可能な状態で、バックライト8が点灯されることにより、LCD7による画像表示が行われる。 The light lighting standby time will be described with reference to FIG. As shown in FIG. 6, in the LCD controller 11, when an image display command signal from the CPU 9 is input and the image display command is turned on at timing t1, execution of the display on sequence is started. . As a display on sequence in the LCD controller 11, for example, a built-in power supply is started up. When the display on sequence is completed, the LCD 7 is ready for image display. When the LCD 7 is capable of displaying an image, the backlight 8 is turned on to display the image on the LCD 7.
 このようなLCDコントローラ11における一連の動作の中で、CPU9におけるライト点灯待機時間は、LCDコントローラ11が画像表示命令を受けてから表示オンシーケンスが完了するまでの時間よりも長い時間に設定される。図6に示すように、ライト点灯待機時間は、LCDコントローラ11において画像表示命令がオンされたタイミングt1から、バックライト8がオンされるタイミングt2までの時間ΔZである。そこで、ライト点灯待機時間(時間ΔZ)は、画像表示命令がオンされたタイミングt1から、表示オンシーケンスが完了するタイミングt3までの時間よりも長い時間として設定される。 In such a series of operations in the LCD controller 11, the light lighting standby time in the CPU 9 is set to a time longer than the time from when the LCD controller 11 receives the image display command until the display on sequence is completed. . As shown in FIG. 6, the light lighting standby time is a time ΔZ from the timing t1 when the image display command is turned on in the LCD controller 11 to the timing t2 when the backlight 8 is turned on. Therefore, the light lighting standby time (time ΔZ) is set as a time longer than the time from the timing t1 when the image display command is turned on to the timing t3 when the display on sequence is completed.
 ライト点灯待機時間によれば、LCDコントローラ11において表示オンシーケンスが完了したタイミングt3から、バックライト8がオンされるタイミングt2までの間に、若干のタイムラグが存在する。本実施形態のHMD1の場合、ライト点灯待機時間(時間ΔZ)は、例えば100msに設定される。ただし、ライト点灯待機時間は、LCDコントローラ11の仕様等によって適宜設定される。なお、ライト点灯待機時間は、制御部6が有する記憶部等においてあらかじめ設定され記憶される。 According to the light lighting standby time, there is a slight time lag between the timing t3 when the display on sequence is completed in the LCD controller 11 and the timing t2 when the backlight 8 is turned on. In the case of the HMD 1 of the present embodiment, the light lighting standby time (time ΔZ) is set to 100 ms, for example. However, the light lighting standby time is appropriately set according to the specifications of the LCD controller 11 and the like. The light lighting standby time is set and stored in advance in a storage unit or the like included in the control unit 6.
 以上のように、CPU9による画像表示命令がLCDコントローラ11においてオンされてから、所定時間経過後に、バックライト8の点灯制御が行われることにより、LCDユニット5による表示画像について正常な画像を確保することができる。仮に、LCDコントローラ11において表示オンシーケンスが完了する前に、バックライト8が点灯されると、LCDコントローラ11の仕様等によっては、正常な画像が表示されない場合がある。そこで、上述したように、CPU9によるLCDユニット5の制御においてライト点灯待機時間を設けることにより、バックライト8が点灯されるに際し、LCDコントローラ11における表示オンシーケンスの完了状態が得られるので、LCDユニット5による正常な画像表示を確保することができる。 As described above, after the image display command by the CPU 9 is turned on in the LCD controller 11, the lighting control of the backlight 8 is performed after a predetermined time has elapsed, thereby ensuring a normal image for the display image by the LCD unit 5. be able to. If the backlight 8 is turned on before the display on sequence is completed in the LCD controller 11, a normal image may not be displayed depending on the specifications of the LCD controller 11. Therefore, as described above, by providing a light turn-on standby time in the control of the LCD unit 5 by the CPU 9, when the backlight 8 is turned on, the completion state of the display on sequence in the LCD controller 11 is obtained. Normal image display according to 5 can be ensured.
 次に、上述した画像表示シーケンスのもと、LCDユニット5による画像表示が行われている状態で実行される制御について説明する。ここで説明する制御は、CPU9によって所定の制御プログラムに基づいて行われる画像表示中断制御である。CPU9は、LCDユニット5に対して画像表示信号を出力した後、同期信号安定状態が検知されなくなった場合、表示制御部14に、LCDユニット5による画像表示を中断させる信号、つまり上述した画像非表示信号を出力する。 Next, control executed in a state where image display by the LCD unit 5 is performed based on the above-described image display sequence will be described. The control described here is image display interruption control performed by the CPU 9 based on a predetermined control program. After outputting the image display signal to the LCD unit 5, the CPU 9 causes the display control unit 14 to interrupt the image display by the LCD unit 5 when the synchronization signal stable state is not detected, that is, the image non-display described above. Output the display signal.
 ここで説明する画像表示中断制御は、上記のとおり画像表示が行われている状態で実行される。このため、画像表示中断制御は、図5に示す処理フローにおいて、ステップS30で画像表示フラグがオフでないと判定された場合(S30、No)、つまり画像表示フラグがオンの場合に処理を実行する制御である。 The image display interruption control described here is executed in a state where image display is performed as described above. Therefore, the image display interruption control is executed when it is determined in step S30 that the image display flag is not OFF (No in S30), that is, when the image display flag is ON in the processing flow shown in FIG. Control.
 具体的には次のとおりである。まず、例えばHMD1の処理が開始されてからステップS20の画像表示操作の判断が初回の場合、まだ画像表示が行われていない状態であるから、ステップS20で画像表示操作と判断されると、ステップS30にて、表示フラグはオフと判定される(S30、Yes)。 Specifically, it is as follows. First, for example, when the determination of the image display operation in step S20 is the first time after the processing of the HMD1 is started, the image display is not yet performed. In S30, it is determined that the display flag is off (S30, Yes).
 そして、ステップS40で、同期信号安定状態が検知され、映像信号が安定していると判定されると(S40、Yes)、画像表示命令が実行され(S50)、バックライト8の点灯が行われ(S60)、画像表示フラグがオンされて(S70)、LCDユニット5による画像表示が行われる。このように、ステップS20にて画像表示操作と判断された場合において、ステップS30にて画像表示フラグがオフと判定されたときに行われるステップS40における映像信号についての判定は、上記のとおりHDMIレシーバ10への映像信号の入力開始直後に行われる。 In step S40, when the synchronization signal stable state is detected and it is determined that the video signal is stable (S40, Yes), an image display command is executed (S50), and the backlight 8 is turned on. (S60) The image display flag is turned on (S70), and image display by the LCD unit 5 is performed. As described above, when the image display operation is determined in step S20, the determination on the video signal in step S40 performed when the image display flag is determined OFF in step S30 is as described above. This is performed immediately after the start of the input of the video signal to 10.
 これに対し、画像表示中断制御においては、ステップS50~S70によって画像表示が一旦開始された後、ステップS20にて画像表示操作と判断された場合、ステップS30では、画像表示フラグはオフでない(オンである)と判定され(ステップS30、No)、映像信号が安定しているか否かが判定される(S120)。ステップS120における、映像信号が安定しているか否かの判定は、上述したステップS40と同様の手法により行われる。 On the other hand, in the image display interruption control, when image display is once started in steps S50 to S70 and then it is determined in step S20 that the image display operation is performed, in step S30, the image display flag is not turned off (ON (Step S30, No), it is determined whether or not the video signal is stable (S120). Whether or not the video signal is stable in step S120 is determined by the same method as in step S40 described above.
 ステップS120において、映像信号が安定していると判定された場合(S120、Yes)、そのまま画像表示が継続され、処理はステップS20に移行する。一方、ステップS120において、映像信号が安定していないと判定された場合(S120、No)、画像表示中にステップS20にて画像非表示操作と判断された場合(S80、No)と同様の画像非表示処理(S90~S110)が行われる。 If it is determined in step S120 that the video signal is stable (S120, Yes), the image display is continued as it is, and the process proceeds to step S20. On the other hand, when it is determined in step S120 that the video signal is not stable (S120, No), an image similar to that when the image non-display operation is determined in step S20 during image display (S80, No). Non-display processing (S90 to S110) is performed.
 このように、映像信号が安定し、LCDユニット5による画像表示が一旦開始された状態において、CPU9により、ステップS40と同様に、映像信号が安定しているか否かの判定処理が継続される。そして、映像信号が安定してないと判定された場合、つまりCPU9により同期信号安定状態が検知されなくなった場合、CPU9から表示制御部14に対して画像非表示信号が出力される。すなわち、図5に示す処理フローにおけるステップS90~S110の処理と同様に、画像非表示命令が実行され、バックライト8の消灯が行われることで、LCDユニット5による画像表示が中断される。 As described above, in a state where the video signal is stabilized and the image display by the LCD unit 5 is once started, the CPU 9 continues the determination process as to whether or not the video signal is stable, similarly to step S40. When it is determined that the video signal is not stable, that is, when the synchronization signal stable state is no longer detected by the CPU 9, an image non-display signal is output from the CPU 9 to the display control unit 14. That is, similar to the processing of steps S90 to S110 in the processing flow shown in FIG. 5, the image non-display command is executed and the backlight 8 is turned off, so that the image display by the LCD unit 5 is interrupted.
 以上のような画像表示中断制御が行われることにより、HMD1の動作中に映像信号が乱れた場合、LCDユニット5による画像表示を停止させることができる。これにより、映像信号の乱れによって乱れた画像が使用者に対して表示されることを回避することができ、使用者が画像の乱れによって不快感を覚えることを防止することができる。 By performing the image display interruption control as described above, when the video signal is disturbed during the operation of the HMD 1, the image display by the LCD unit 5 can be stopped. Thereby, it is possible to prevent the image disturbed by the disturbance of the video signal from being displayed to the user, and it is possible to prevent the user from feeling uncomfortable due to the disturbance of the image.
 以上説明した本開示の実施の形態では、映像信号安定状態の検知に際し、映像信号に含まれる同期信号として、垂直同期信号(V_SYNC)が採用されているが、これに限定されない。つまり、映像信号安定状態の検知に際して用いられる同期信号は、水平同期信号(H_SYNC)であってもよく、垂直同期信号(V_SYNC)および水平同期信号(H_SYNC)の両方であってもよい。したがって、HDMIレシーバ10より検出され出力され、CPU9により受け取られる同期信号は、垂直同期信号(V_SYNC)および水平同期信号(H_SYNC)のうち少なくともいずれか一方の同期信号であればよい。 In the embodiment of the present disclosure described above, the vertical synchronization signal (V_SYNC) is employed as the synchronization signal included in the video signal when detecting the stable state of the video signal, but is not limited thereto. That is, the synchronization signal used for detecting the video signal stable state may be a horizontal synchronization signal (H_SYNC) or both a vertical synchronization signal (V_SYNC) and a horizontal synchronization signal (H_SYNC). Therefore, the synchronization signal detected and output from the HDMI receiver 10 and received by the CPU 9 may be at least one of the vertical synchronization signal (V_SYNC) and the horizontal synchronization signal (H_SYNC).
 また、上述した本開示の実施の形態では、HMD1が備える表示ユニット3は、LCD7を用いた表示方式を採用するものであるが、これに限定されない。HMD1としては、例えば、走査したレーザ光を使用者の網膜上に投影する網膜走査型の画像表示装置であったり、CRT(Cathode-ray tube;陰極線管)や有機EL(Electro Luminescence)素子等を用いた画像表示装置であったりしてもよい。つまり、本発明は、垂直同期信号や水平同期信号といった同期信号を扱う表示装置全般に適用可能である。 In the embodiment of the present disclosure described above, the display unit 3 included in the HMD 1 employs a display method using the LCD 7, but is not limited thereto. The HMD 1 is, for example, a retinal scanning type image display device that projects scanned laser light onto a user's retina, a CRT (Cathode-ray tube), an organic EL (Electro Luminescence) element, or the like. The image display device used may be used. That is, the present invention can be applied to all display devices that handle synchronization signals such as vertical synchronization signals and horizontal synchronization signals.
 また、上述した本開示の実施の形態では、中継器2は、HMD1に対してケーブル51で接続される外部装置である。しかし、中継器2の機能を有する構成をHMD1内に組み込むことで、中継器2がHMD1に内蔵された構成態様も実現可能である。 In the above-described embodiment of the present disclosure, the repeater 2 is an external device connected to the HMD 1 with the cable 51. However, a configuration in which the repeater 2 is built in the HMD 1 can be realized by incorporating the configuration having the function of the repeater 2 in the HMD 1.
 また、上述した本開示の実施の形態では、中継器2からHMD1に入力される映像信号は、中継器2に対してPC等の外部装置から入力されるが、HMD1に入力される映像信号は、中継器2において格納されているものであってもよい。この場合、中継器2における映像信号の格納部分としては、例えばRAM等の内蔵記憶デバイスのほか、SDカード、USBフラッシュメモリ、CD(Compact Disk)、FD(Flexible Disk )、MO(Magneto-Optical Disk)、DVD(Digital Versatile Disk)、HD(Hard Disk)等の記憶デバイスが適宜用いられる。 In the embodiment of the present disclosure described above, the video signal input from the repeater 2 to the HMD 1 is input from the external device such as a PC to the repeater 2, but the video signal input to the HMD 1 is It may be stored in the repeater 2. In this case, the video signal storage portion in the repeater 2 includes, for example, an internal storage device such as a RAM, an SD card, a USB flash memory, a CD (Compact Disk), an FD (Flexible Disk), and an MO (Magneto-Optical Disk). ), A storage device such as a DVD (Digital Versatile Disk), HD (Hard Disk), or the like is used as appropriate.
 [適用例]
 以下では、上述した実施形態に係るHMD1を含むHMDシステム50の適用例について説明する。
[Application example]
Below, the application example of the HMD system 50 containing HMD1 which concerns on embodiment mentioned above is demonstrated.
 図7に示すように、本適用例のHMDシステム50Aは、スマートフォン71からの映像をHMD1に表示するシステムである。本適用例では、中継器2の映像信号入力用端子21には、スマートフォン71に接続されるDock-HDMI変換アダプタ75を介して、HDMIケーブル72が接続される。また、中継器2の給電用入力端子22には、給電用のUSBケーブル74によってUSB接続の外付けバッテリ73が接続される。また、本適用例では、Dock-HDMI変換アダプタ75を介して、Dock-USB変換ケーブル76により、外付けバッテリ73とスマートフォン71とが接続される。これにより、外付けバッテリ73からスマートフォン71への給電が行われる。なお、外付けバッテリ73とスマートフォン71との間にDock-USB変換ケーブル76が接続されていない場合は、スマートフォン71への給電は行われないが、本システムの動作には影響しない。 As shown in FIG. 7, the HMD system 50 </ b> A of this application example is a system that displays an image from the smartphone 71 on the HMD 1. In this application example, the HDMI cable 72 is connected to the video signal input terminal 21 of the repeater 2 via the Dock-HDMI conversion adapter 75 connected to the smartphone 71. An external battery 73 connected by USB is connected to the power supply input terminal 22 of the repeater 2 by a power supply USB cable 74. In this application example, the external battery 73 and the smartphone 71 are connected by the Dock-USB conversion cable 76 via the Dock-HDMI conversion adapter 75. As a result, power is supplied from the external battery 73 to the smartphone 71. If the Dock-USB conversion cable 76 is not connected between the external battery 73 and the smartphone 71, power is not supplied to the smartphone 71, but the operation of this system is not affected.
 本適用例のHMDシステム50Aにおいては、スマートフォン71の仕様によって、画像の表示側、つまり中継器2の電源が入っていない状態では、スマートフォン71からの映像信号の出力が行われない。このため、本適用例のHMDシステム50Aにおいては、必然的に、中継器2の電源が入れられてから、スマートフォン71から中継器2への映像信号の出力操作が行われる。 In the HMD system 50A of the application example, according to the specifications of the smartphone 71, the video signal is not output from the smartphone 71 on the image display side, that is, in a state where the power of the repeater 2 is not turned on. For this reason, in the HMD system 50A of this application example, the output operation of the video signal from the smartphone 71 to the repeater 2 is necessarily performed after the repeater 2 is turned on.
 したがって、本適用例のHMDシステム50Aにおいては、仮に、上述したような本実施形態の画像表示シーケンスが実行されない場合、適用例1と同様に、コントローラ入力映像信号の出力が不安定な状態で、LCDコントローラ11への画像表示命令が実行されている状況が生じ、表示画像に縦縞が入る等の不具合が生じる。そこで、本適用例のHMDシステム50Aにおいても、本実施形態の画像表示シーケンスが実行されることで、コントローラ入力映像信号の出力が安定するまで、LCDコントローラ11への画像表示命令が待機されることになる。これにより、LCDユニット5による表示画像について正常な画像が確保される。 Therefore, in the HMD system 50A of the present application example, if the image display sequence of the present embodiment as described above is not executed, the output of the controller input video signal is unstable as in Application Example 1, There is a situation in which an image display command to the LCD controller 11 is being executed, causing problems such as vertical stripes appearing in the display image. Therefore, also in the HMD system 50A of this application example, an image display command to the LCD controller 11 is waited until the output of the controller input video signal is stabilized by executing the image display sequence of the present embodiment. become. Thereby, a normal image is secured for the display image by the LCD unit 5.
 以上説明したように、本実施形態に係るHMD1および画像表示方法によれば、以下の効果が期待できる。 As described above, according to the HMD 1 and the image display method according to the present embodiment, the following effects can be expected.
 (1)本実施形態のHMD1は、画像表示を行うLCDユニット5と、LCDユニット5を制御する表示制御部14と、デジタル画像信号、垂直同期信号および水平同期信号を含む映像信号の入力を受け、入力された映像信号を表示制御部14に直接出力するとともに、入力された映像信号から垂直同期信号を検出して出力するHDMIレシーバ10と、HDMIレシーバ10から出力された垂直同期信号の入力を受け、垂直同期信号の出力が一定となる時間についてあらかじめ設定された基準時間に基づき、入力された垂直同期信号が安定した状態であることを検知する同期信号検知手段、およびHDMIレシーバ10への映像信号の入力が開始された後に、この同期信号検知手段により垂直同期信号が安定した状態であることが検知されると、表示制御部14に、LCDユニット5による画像表示を実行させる画像表示信号を出力する画像表示信号出力手段の各手段として機能するCPU9とを備える。これにより、スケーラ等の画像処理回路を用いることなく、映像信号の乱れに起因する表示画像の不具合を解消することができる。 (1) The HMD 1 of the present embodiment receives an input of an LCD unit 5 that performs image display, a display control unit 14 that controls the LCD unit 5, and a video signal including a digital image signal, a vertical synchronization signal, and a horizontal synchronization signal. In addition to directly outputting the input video signal to the display control unit 14, the HDMI receiver 10 that detects and outputs the vertical synchronization signal from the input video signal, and the input of the vertical synchronization signal output from the HDMI receiver 10. And a synchronization signal detecting means for detecting that the input vertical synchronization signal is in a stable state based on a reference time set in advance for a time when the output of the vertical synchronization signal is constant, and an image to the HDMI receiver 10 After the signal input is started, the synchronization signal detection means detects that the vertical synchronization signal is in a stable state. If that, the display control unit 14, and a CPU9 to function as each means of the image display signal output means for outputting an image display signal to perform image display by LCD unit 5. Thereby, the malfunction of the display image resulting from disturbance of a video signal can be eliminated, without using image processing circuits, such as a scaler.
 (2)本実施形態のHMD1においては、同期信号検知手段としてのCPU9は、入力された垂直同期信号の出力が基準時間の間一定となることがあらかじめ設定された所定回数連続したことを、垂直同期信号が安定した状態であることとして検知する。これにより、映像信号安定状態に相当する同期信号安定状態を、精度良く検知することができる。結果として、映像信号の乱れに起因する表示画像の不具合を効果的に解消することができる。 (2) In the HMD 1 of the present embodiment, the CPU 9 as the synchronization signal detecting means indicates that the output of the input vertical synchronization signal is constant for a reference time, and that the predetermined number of times has been consecutively set. It is detected that the synchronization signal is in a stable state. As a result, the synchronization signal stable state corresponding to the video signal stable state can be accurately detected. As a result, it is possible to effectively eliminate the display image defect caused by the disturbance of the video signal.
 (3)本実施形態のHMD1においては、基準時間は、垂直走査周波数に基づいて設定される所定の幅を有する。これにより、同期信号安定状態の検知処理において、映像信号が安定した状態における垂直同期信号についての期間ΔXの誤差が許容される。これにより、映像信号が安定した状態であるにもかかわらず、垂直同期信号の期間ΔXのわずかな変動によって同期信号安定状態が検知されないといった状況を回避することができる。結果として、同期信号安定状態を精度良く検知することが可能となる。 (3) In the HMD 1 of the present embodiment, the reference time has a predetermined width set based on the vertical scanning frequency. Thereby, in the detection process of the synchronization signal stable state, an error of the period ΔX with respect to the vertical synchronization signal when the video signal is stable is allowed. As a result, it is possible to avoid a situation in which the synchronization signal stable state is not detected due to a slight change in the period ΔX of the vertical synchronization signal, although the video signal is in a stable state. As a result, it is possible to accurately detect the synchronization signal stable state.
 (4)本実施形態のHMD1においては、LCDユニット5は、LCD7と、LCD7による画像表示を行うためのバックライト8とを有し、表示制御部14は、LCD7を制御するLCDコントローラ11と、バックライト8を制御するLEDバックライトドライブIC12とを有する。そして、HMD1は、画像表示信号出力手段としてのCPU9から出力された画像表示信号に基づいてLCDユニット5に画像表示を実行させるに際し、LCDコントローラ11によりLCD7に対する制御を開始した後、所定時間(ライト点灯待機時間)経過後に、LEDバックライトドライブIC12によりバックライト8に対する制御を開始する。これにより、LCDユニット5による表示画像について正常な画像を確保することができる。 (4) In the HMD 1 of the present embodiment, the LCD unit 5 includes the LCD 7 and the backlight 8 for performing image display by the LCD 7, and the display control unit 14 includes the LCD controller 11 that controls the LCD 7, And an LED backlight drive IC 12 that controls the backlight 8. Then, when the HMD 1 causes the LCD unit 5 to perform image display based on the image display signal output from the CPU 9 serving as the image display signal output means, the LCD controller 11 starts controlling the LCD 7 and then performs a predetermined time (write After the lighting standby time) elapses, control of the backlight 8 is started by the LED backlight drive IC 12. Thereby, a normal image can be ensured for the display image by the LCD unit 5.
 (5)本実施形態のHMD1においては、画像表示信号出力手段として機能するCPU9は、画像表示信号を出力した後、同期信号安定状態が検知されなくなった場合、表示制御部14に、LCDユニット5による画像表示を中断させる信号(画像非表示信号)を出力する。これにより、映像信号の乱れによって乱れた画像が使用者に対して表示されることを回避することができ、使用者が画像の乱れによって不快感を覚えることを防止することができる。 (5) In the HMD 1 of the present embodiment, the CPU 9 functioning as the image display signal output means outputs the image display signal, and when the synchronization signal stable state is no longer detected, the display control unit 14 displays the LCD unit 5. A signal (image non-display signal) for interrupting the image display by is output. Thereby, it is possible to prevent the image disturbed by the disturbance of the video signal from being displayed to the user, and it is possible to prevent the user from feeling uncomfortable due to the disturbance of the image.
 (6)本実施形態の画像処理方法は、デジタル画像信号、垂直同期信号および水平同期信号を含む映像信号を、LCD7を制御するLCDコントローラ11に直接入力することで、LCD7による画像表示を行う画像表示方法であって、映像信号から垂直同期信号を検出するステップと、垂直同期信号の出力が一定となる時間についてあらかじめ設定された基準時間に基づき、検出するステップにより検出された垂直同期信号が安定した状態であることを検知するステップと、検知するステップにより垂直同期信号が安定した状態であることが検知されると、画像表示を実行するステップとを含む。これにより、スケーラ等の画像処理回路を用いることなく、映像信号の乱れに起因する表示画像の不具合を解消することができる。 (6) In the image processing method of the present embodiment, an image for displaying an image on the LCD 7 by directly inputting a video signal including a digital image signal, a vertical synchronization signal, and a horizontal synchronization signal to the LCD controller 11 that controls the LCD 7. A method of display, in which a vertical synchronization signal detected by a step of detecting a vertical synchronization signal from a video signal and a detection time based on a reference time set in advance for a time when the output of the vertical synchronization signal is constant is stable. And a step of displaying an image when the vertical synchronization signal is detected to be stable by the detecting step. Thereby, the malfunction of the display image resulting from disturbance of a video signal can be eliminated, without using image processing circuits, such as a scaler.
 1  HMD(画像表示装置)
 2  中継器
 5  LCDユニット(画像表示手段)
 7  LCD(液晶ディスプレイ)
 8  バックライト(光源)
 9  CPU(同期信号検知手段、画像表示信号出力手段)
 10 HDMIレシーバ(映像信号入出力手段)
 11 LCDコントローラ(液晶制御部)
 12 LEDバックライトドライブIC(光源制御部)
 14 表示制御部(表示制御手段)
 50 HMDシステム
1 HMD (image display device)
2 Repeater 5 LCD unit (image display means)
7 LCD (Liquid Crystal Display)
8 Backlight (light source)
9 CPU (synchronization signal detection means, image display signal output means)
10 HDMI receiver (video signal input / output means)
11 LCD controller (liquid crystal controller)
12 LED backlight drive IC (light source controller)
14 Display control unit (display control means)
50 HMD system

Claims (6)

  1.  画像表示を行う画像表示手段と、
     前記画像表示手段を制御する表示制御手段と、
     デジタル画像信号、垂直同期信号および水平同期信号を含む映像信号の入力を受け、入力された前記映像信号を前記表示制御手段に直接出力し、入力された前記映像信号から前記垂直同期信号および前記水平同期信号のうち少なくとも一方の同期信号を抽出し、前記少なくとも一方の同期信号を出力する映像信号入出力手段と、
     前記少なくとも一方の同期信号の入力を受け、前記少なくとも一方の同期信号の出力が一定となる時間とあらかじめ設定された基準時間との比較に基づき、入力された前記同期信号が安定した状態であることを検知する同期信号検知手段と、
     前記映像信号入出力手段への前記映像信号の入力が開始された後に、前記同期信号検知手段により前記同期信号が安定した状態であることが検知されると、前記表示制御手段に、前記画像表示手段による画像表示を実行させる画像表示信号を出力する画像表示信号出力手段と、を備える、
     画像表示装置。
    Image display means for displaying an image;
    Display control means for controlling the image display means;
    A video signal including a digital image signal, a vertical synchronization signal, and a horizontal synchronization signal is input, the input video signal is directly output to the display control means, and the vertical synchronization signal and the horizontal signal are input from the input video signal. Video signal input / output means for extracting at least one of the synchronization signals and outputting the at least one synchronization signal;
    The input synchronization signal is in a stable state based on a comparison between a time when the at least one synchronization signal is input and the output of the at least one synchronization signal is constant and a preset reference time. Synchronization signal detecting means for detecting
    After the input of the video signal to the video signal input / output unit is started, when the synchronization signal detection unit detects that the synchronization signal is in a stable state, the display control unit displays the image display Image display signal output means for outputting an image display signal for executing image display by the means,
    Image display device.
  2.  前記同期信号検知手段は、入力された前記同期信号の出力が前記基準時間の間一定となることがあらかじめ設定された所定回数連続したことを、前記同期信号が安定した状態であることとして検知する、
     請求項1に記載の画像表示装置。
    The synchronization signal detecting means detects that the output of the input synchronization signal is constant during the reference time for a predetermined number of preset times as a state where the synchronization signal is stable. ,
    The image display device according to claim 1.
  3.  前記基準時間は、前記同期信号の走査周波数に基づいて設定される所定の幅を有する、
     請求項1または請求項2に記載の画像表示装置。
    The reference time has a predetermined width set based on the scanning frequency of the synchronization signal,
    The image display device according to claim 1.
  4.  前記画像表示手段は、液晶ディスプレイと、前記液晶ディスプレイによる画像表示を行うための光源とを有し、
     前記表示制御手段は、前記液晶ディスプレイを制御する液晶制御部と、前記光源を制御する光源制御部と、を有し、
     前記画像表示信号出力手段は、
     前記液晶制御部に対して画像表示信号を出力することにより前記液晶ディスプレイに駆動を開始させ、
     前記液晶制御部に対して画像表示信号を出力してから所定時間経過後に、前記光源制御部に対して前記画像表示信号を出力することにより、前記光源に点灯開始させる、
     請求項1~3のいずれか1項に記載の画像表示装置。
    The image display means includes a liquid crystal display and a light source for displaying an image on the liquid crystal display,
    The display control means includes a liquid crystal control unit that controls the liquid crystal display, and a light source control unit that controls the light source,
    The image display signal output means includes
    By causing the liquid crystal display to start driving by outputting an image display signal to the liquid crystal control unit,
    The light source is turned on by outputting the image display signal to the light source controller after a predetermined time has elapsed since the image display signal was output to the liquid crystal controller.
    The image display device according to any one of claims 1 to 3.
  5.  画像表示信号出力手段は、前記画像表示信号を出力した後、同期信号検知手段により前記同期信号が安定した状態であることが検知されなくなった場合、前記表示制御手段に、前記画像表示手段による画像表示を中断させる信号を出力する、
     請求項1~4のいずれか1項に記載の画像表示装置。
    The image display signal output means outputs the image by the image display means to the display control means when the synchronization signal detection means no longer detects that the synchronization signal is in a stable state after outputting the image display signal. Outputs a signal to interrupt the display,
    The image display device according to any one of claims 1 to 4.
  6.  デジタル画像信号、垂直同期信号および水平同期信号を含む映像信号を、液晶ディスプレイを制御する手段に直接入力することで、前記液晶ディスプレイによる画像表示を行う画像表示方法であって、
     前記映像信号から前記垂直同期信号および前記水平同期信号のうち少なくとも一方の同期信号を抽出するステップと、
     前記同期信号の出力が一定となる時間とあらかじめ設定された基準時間との比較に基づき、前記検出するステップにより検出された前記同期信号が安定した状態であることを検知するステップと、
     前記検知するステップにより前記同期信号が安定した状態であることが検知されると、前記画像表示を実行するステップと、を含む、
     画像表示方法。
    An image display method for displaying an image on the liquid crystal display by directly inputting a video signal including a digital image signal, a vertical synchronization signal and a horizontal synchronization signal to a means for controlling the liquid crystal display,
    Extracting at least one of the vertical synchronization signal and the horizontal synchronization signal from the video signal;
    Detecting that the synchronization signal detected by the detecting step is in a stable state based on a comparison between a time at which the output of the synchronization signal is constant and a preset reference time;
    When the detecting step detects that the synchronization signal is in a stable state, the image display is performed.
    Image display method.
PCT/JP2012/073427 2011-09-14 2012-09-13 Image display device and image display method WO2013039136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-200388 2011-09-14
JP2011200388A JP2013061521A (en) 2011-09-14 2011-09-14 Image display apparatus and image display method

Publications (1)

Publication Number Publication Date
WO2013039136A1 true WO2013039136A1 (en) 2013-03-21

Family

ID=47883355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073427 WO2013039136A1 (en) 2011-09-14 2012-09-13 Image display device and image display method

Country Status (2)

Country Link
JP (1) JP2013061521A (en)
WO (1) WO2013039136A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20155830A1 (en) * 2015-11-23 2017-05-23 R A W Srl "NAVIGATION, TRACKING AND GUIDE SYSTEM FOR THE POSITIONING OF OPERATOR INSTRUMENTS"
CN110352597A (en) * 2016-10-05 2019-10-18 Cj 4Dplex 有限公司 System and method for playing back virtual reality 4D content
CN114390155A (en) * 2021-12-28 2022-04-22 北京德为智慧科技有限公司 Signal backup display method and device, electronic equipment and storage medium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6539012B2 (en) * 2013-10-08 2019-07-03 株式会社三共 Gaming machine
JP2016063275A (en) * 2014-09-12 2016-04-25 ブラザー工業株式会社 Head-mounted display, display control device, display program, and display method
US10171866B2 (en) 2016-03-29 2019-01-01 Seiko Epson Corporation Display system, display device, head-mounted display device, display control method, control method for display device, and computer program
JP6869853B2 (en) * 2017-08-30 2021-05-12 株式会社日立エルジーデータストレージ Image display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06149181A (en) * 1992-11-02 1994-05-27 Nippondenso Co Ltd Video displaying device
JP2000214826A (en) * 1999-01-21 2000-08-04 Seiko Epson Corp Liquid crystal display and driving method thereof
JP2001202069A (en) * 2000-01-20 2001-07-27 Fujitsu Ltd Video processing system and video storage device
JP2006235151A (en) * 2005-02-24 2006-09-07 Fujitsu Hitachi Plasma Display Ltd Display control device of display panel and display device having same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06149181A (en) * 1992-11-02 1994-05-27 Nippondenso Co Ltd Video displaying device
JP2000214826A (en) * 1999-01-21 2000-08-04 Seiko Epson Corp Liquid crystal display and driving method thereof
JP2001202069A (en) * 2000-01-20 2001-07-27 Fujitsu Ltd Video processing system and video storage device
JP2006235151A (en) * 2005-02-24 2006-09-07 Fujitsu Hitachi Plasma Display Ltd Display control device of display panel and display device having same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20155830A1 (en) * 2015-11-23 2017-05-23 R A W Srl "NAVIGATION, TRACKING AND GUIDE SYSTEM FOR THE POSITIONING OF OPERATOR INSTRUMENTS"
CN110352597A (en) * 2016-10-05 2019-10-18 Cj 4Dplex 有限公司 System and method for playing back virtual reality 4D content
CN114390155A (en) * 2021-12-28 2022-04-22 北京德为智慧科技有限公司 Signal backup display method and device, electronic equipment and storage medium
CN114390155B (en) * 2021-12-28 2023-08-29 北京德为智慧科技有限公司 Method, device, electronic equipment and storage medium for signal backup display

Also Published As

Publication number Publication date
JP2013061521A (en) 2013-04-04

Similar Documents

Publication Publication Date Title
WO2013039136A1 (en) Image display device and image display method
US10009602B2 (en) Head-mounted display device and control method for the head-mounted display device
TWI591601B (en) Low-power display device
KR101082259B1 (en) System, method, and computer-readable recording medium for controlling stereo glasses shutters
US8896500B2 (en) Head-mounted display device and control method for the head-mounted display device
WO2012133021A1 (en) Head-mounted display
US9318077B2 (en) Head-mount type display device and method of controlling head-mount type display device
US9898097B2 (en) Information processing apparatus and control method of information processing apparatus
JP5919624B2 (en) Head-mounted display device and method for controlling head-mounted display device
JP2008006115A (en) Visual target presenting device
WO2012133020A1 (en) Head-mounted display
US20120133884A1 (en) Electronic glasses
JP2012168221A (en) Head mounted type display device and control method of the same
JP2002189464A (en) Image display device and image display system
KR20120014875A (en) System, method, and computer program product for activating a backlight of a display device displaying stereoscopic display content
US20240046852A1 (en) Image processing method and display device
JP2005072867A (en) Head-attached display device
JP2011150135A (en) Image display element
JP4288494B2 (en) Monitor device
JP2009020180A (en) Video display device
JP6747476B2 (en) Head-mounted display device
TW201246165A (en) Liquid crystal display and backlight adjusting method thereof
JP6406305B2 (en) Head-mounted display device and method for controlling head-mounted display device
JP2008134520A (en) Image projection device and system
US20150185490A1 (en) Three-dimensional liquid crystal display device, and shutter glass and control method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831403

Country of ref document: EP

Kind code of ref document: A1