WO2013039109A1 - Device and method for forming electro-conductive substance - Google Patents

Device and method for forming electro-conductive substance Download PDF

Info

Publication number
WO2013039109A1
WO2013039109A1 PCT/JP2012/073343 JP2012073343W WO2013039109A1 WO 2013039109 A1 WO2013039109 A1 WO 2013039109A1 JP 2012073343 W JP2012073343 W JP 2012073343W WO 2013039109 A1 WO2013039109 A1 WO 2013039109A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
substrate
reaction vessel
space
conductive material
Prior art date
Application number
PCT/JP2012/073343
Other languages
French (fr)
Japanese (ja)
Inventor
英一 近藤
正弘 松原
竹内 裕人
満洋 渡邉
山本 敏
直博 菊川
Original Assignee
国立大学法人山梨大学
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山梨大学, 株式会社フジクラ filed Critical 国立大学法人山梨大学
Priority to JP2013533689A priority Critical patent/JP5785264B2/en
Publication of WO2013039109A1 publication Critical patent/WO2013039109A1/en
Priority to US14/206,615 priority patent/US20140193573A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1619Apparatus for electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1685Process conditions with supercritical condition, e.g. chemical fluid deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate

Definitions

  • a supercritical fluid using CO 2 as a medium has an intermediate property between liquid and gas, has a surface tension of zero, and has a unique ability to dissolve other substances (solvent ability). Combines nature. Furthermore, it has the advantages of being chemically stable, inexpensive, harmless and low cost. In addition to these, there are many features that CO 2 itself and substances dissolved in the CO 2 fluid can be recycled by vaporization and reliquefaction.
  • the present invention has been devised in view of such a conventional situation, and the inside of a microscopic hole in which a conductive material can be uniformly and uniformly deposited in the microscopic hole provided in the substrate. It is a first object of the present invention to provide a conductive material forming apparatus. In addition, the present invention provides a method for forming a conductive material in a microscopic hole, in which the conductive material can be deposited uniformly and uniformly in the microscopic hole provided in the substrate. Second purpose.
  • the conductive material forming apparatus includes a first space into which a fluid formed by dissolving at least a metal complex in a supercritical fluid or a subcritical fluid is introduced, and a second space from which the fluid is derived.
  • a flat substrate having a first surface, a second surface, and fine holes, the reaction vessel being disposed in the fluid that continuously moves in a specific direction in the reaction vessel, and the first The fineness of the substrate is such that the second surface of the substrate is perpendicular to the specific direction in which the fluid introduced into the space moves and from the second surface of the substrate toward the first surface.
  • the method for forming a conductive material according to the second aspect of the present invention includes a first space into which a fluid formed by dissolving at least a metal complex in a supercritical fluid or a subcritical fluid is introduced, and a second space from which the fluid is derived.
  • a flat substrate having a first surface, a second surface, and a fine hole disposed in the fluid that continuously moves in a specific direction in the reaction vessel; and
  • a support member that supports the first surface, the second surface of the base body is perpendicular to a specific direction in which the fluid introduced into the first space moves, and The support member is arranged so that the fluid travels in the micropores of the substrate from the second surface of the substrate toward the first surface, and the fluid is transferred from the first space to the second space.
  • a quality To the inner wall of the micropores provided in the substrate To form a quality.
  • a reducing agent is dissolved in the fluid.
  • the conductive material forming apparatus includes a reaction vessel into which a fluid obtained by dissolving at least a metal complex in a supercritical fluid or a subcritical fluid is introduced, and a specific direction continuously in the reaction vessel. And a flat substrate having fine holes, and the substrate is arranged so that the fluid moves along both surfaces of the substrate.
  • the base is arranged so that both surfaces of the base are parallel to the specific direction.
  • the conductive material forming apparatus preferably includes a holding portion provided inside the reaction vessel, which holds an angle formed by both surfaces of the substrate with respect to the specific direction. .
  • a method for forming a conductive substance comprising: a reaction vessel into which a fluid formed by dissolving at least a metal complex in a supercritical fluid or a subcritical fluid is introduced; And a flat substrate disposed in the fluid moving in the direction, the fluid is moved along both surfaces of the substrate, and the conductive material is transferred to the inner walls of the micropores provided in the substrate.
  • a semiconductor substrate or a glass substrate is preferably used as the base.
  • it is preferable that a reducing agent is dissolved in the fluid.
  • the conductive material forming apparatus includes a first space into which a fluid formed by dissolving at least a metal complex in a supercritical fluid or a subcritical fluid is introduced, and a second space from which the fluid is derived.
  • a flat substrate having a first surface, a second surface, and fine holes, the reaction vessel being disposed in the fluid that continuously moves in a specific direction in the reaction vessel, and the first The fineness of the substrate is such that the second surface of the substrate is perpendicular to the specific direction in which the fluid introduced into the space moves and from the second surface of the substrate toward the first surface.
  • a support member that supports the first surface of the base so that the fluid travels in the hole.
  • the conductive substance forming apparatus has an inlet configured to protrude into the first space of the reaction vessel and to be positioned in the vicinity of the second surface of the base. It is preferable to provide an introduction part for introducing the fluid into the reaction vessel.
  • the conductive substance forming apparatus according to the fifth aspect of the present invention includes a plurality of inlets configured to protrude into the first space of the reaction vessel and to be positioned in the vicinity of the second surface of the substrate. It is preferable to have an introduction part for introducing the fluid into the reaction vessel.
  • the conductive material forming apparatus includes a first space into which a fluid formed by dissolving at least a metal complex in a supercritical fluid or a subcritical fluid is introduced, and a second space from which the fluid is derived.
  • a flat substrate having a first surface, a second surface, and fine holes, the reaction vessel being disposed in the fluid that continuously moves in a specific direction in the reaction vessel, and the first The second surface of the substrate is perpendicular to the specific direction in which the fluid introduced into the space moves and from the second surface of the substrate toward the first surface, the first surface of the substrate.
  • the conductive substance forming apparatus according to the sixth aspect of the present invention has an introduction port configured to protrude into the first space of the reaction vessel and to be positioned in the vicinity of the second surface of the base. It is preferable to provide an introduction part for introducing the fluid into the reaction vessel.
  • the conductive substance forming apparatus including a plurality of inlets configured to protrude into the first space of the reaction vessel and to be positioned in the vicinity of the second surface of the substrate. It is preferable to have an introduction part for introducing the fluid into the reaction vessel.
  • the fluid can be forcibly transported from both the first surface and the second surface of the substrate into the micropores. Therefore, according to the present invention, it is possible to provide a device for forming a conductive material in a microscopic hole, which can deposit a conductive material uniformly and uniformly in the microscopic hole provided in the substrate. it can.
  • the forming apparatus according to the first aspect of the present invention includes a support portion that supports the first surface of the substrate over the entire surface and has a fine communication hole through which the fluid passes into the second space. Since it is disposed, the differential pressure between the upper and lower surfaces of the substrate is increased, and it is possible to deposit the conductive material in the fine holes more reliably.
  • Examples of the configuration of the fluid introduction portion include a case where a pipe-like introduction portion is connected to the reaction vessel so as to communicate with the first space ⁇ of the reaction vessel, and a case where the fluid introduction portion protrudes into the first space ⁇ of the reaction vessel and the introduction thereof.
  • the mouth is configured to be positioned in the vicinity of the second surface of the substrate, and the plurality of inlet ports are positioned in the vicinity of the second surface of the substrate. The case where it is comprised is mentioned.
  • the fluid can be forcibly transported from both the first surface and the second surface side of the substrate into the micropores. Therefore, according to the present invention, it is possible to provide a method for forming a conductive material in a microscopic hole, which allows the conductive material to be uniformly and uniformly deposited in the microscopic hole provided in the substrate. it can.
  • a support portion that supports the first surface of the substrate over the entire surface and that has a fine communication hole through which the fluid passes to the second space is provided.
  • the forming method according to the present invention enables a stable operation state for a long time, and reduces the load on the substrate, while increasing the differential pressure, thereby reducing the length of the fine holes provided in the substrate. Even in the case of increasing the thickness, it contributes to further extending the distance in which the conductive material can be deposited uniformly and uniformly in the longitudinal direction of the micropores provided in the substrate.
  • the substrate is preferably a semiconductor substrate or a glass substrate.
  • the present invention applicable to a semiconductor substrate or a glass substrate, application to the above-described three-dimensional mounting (stacking) of LSIs, interposers, and the like can be expected.
  • the fluid is transported by both “flow” and “diffusion” toward the micropores. Therefore, it is considered that more fluid is transported into the micropores than in the case where only one side of the base body is exposed in the specific direction. Therefore, according to the present invention, it is possible to provide a conductive material forming apparatus capable of uniformly depositing a conductive material with a uniform thickness on a substrate. Examples of a configuration in which the substrate is arranged so that the fluid moves along both surfaces of the substrate include a case where the substrate is arranged so that both surfaces of the substrate are parallel to the specific direction, and And the case where the substrate is arranged so that both surfaces of the substrate are not parallel to a specific direction.
  • the holding unit In order to dispose the substrate in this way, it is preferable to provide a holding portion that holds an angle formed by both surfaces of the substrate with respect to the specific direction, inside the reaction vessel.
  • the holding unit When the holding unit is used in this way, when the fluid moves along both surfaces of the substrate, the angle formed by both surfaces of the substrate with respect to the specific direction is maintained without obstructing the direction of the fluid. It becomes possible.
  • the fluid is transported by both “flow” and “diffusion” toward the micropores. Therefore, compared with the case where both surfaces of the base are parallel to the specific direction, it is considered that more fluid is transported into the micropores. Therefore, according to the present invention, it is possible to provide a method for forming a conductive material capable of depositing a conductive material having a uniform thickness on a substrate.
  • the substrate is preferably a semiconductor substrate or a glass substrate.
  • the fluid can be forcibly transported into the micropores. Therefore, according to the present invention, it is possible to provide a device for forming a conductive material in a microscopic hole, which can deposit a conductive material uniformly and uniformly in the microscopic hole provided in the substrate. it can. Further, in the forming apparatus according to the sixth aspect of the present invention, since the support portion provided around the base is provided with a guide path through which the fluid passes to the second space, the load on the base is reduced. It is possible to plan. Therefore, the forming apparatus according to the sixth aspect of the present invention can prevent the base from being damaged, and can prevent the blockage of the piping and the failure of the equipment.
  • Examples of the configuration of the fluid introduction portion include a case where a pipe-like introduction portion is connected to the reaction vessel so as to communicate with the first space ⁇ of the reaction vessel, and a case where the fluid introduction portion protrudes into the first space ⁇ of the reaction vessel and the introduction thereof.
  • the mouth is configured to be positioned in the vicinity of the second surface of the substrate, and the plurality of inlet ports are positioned in the vicinity of the second surface of the substrate. The case where it is comprised is mentioned.
  • CO 2 at a constant pressure and flow rate is continuously supplied into the reaction vessel 13 in a supercritical state or a subcritical fluid, and a conductive material is formed on the inner wall of the fine holes provided in the substrate by the reducing agent H 2.
  • a conductive material is formed on the inner wall of the fine holes provided in the substrate by the reducing agent H 2.
  • Cu is deposited and deposited to form a through electrode.
  • the reaction vessel 13 is preferably composed of, for example, a pressure- and heat-resistant vessel made of stainless steel, but is not limited thereto.
  • This reaction vessel 13 can be produced, for example, by processing an autoclave (pressure defoaming device).
  • a preheat pipe 12 is provided in front of the reaction vessel 13, and a mantle heater 11 and a thermostatic layer 15 are provided in the preheat pipe 12 and the reaction vessel 13 to heat and hold the fluid at a predetermined temperature. And adjust the temperature.
  • a back pressure regulator (BPR) 14 is disposed downstream of the reaction vessel 13. After the reaction is completed in the reaction vessel 13, the supercritical fluid in the reaction vessel 13 is exhausted through the back pressure regulator 14.
  • FIG. 6B shows a case where both surfaces (upper and lower surfaces) of the base body 20 are arranged so as to be exposed to the flow F in parallel with the flow direction of the fluid F.
  • the substrate 20 may be arranged at a position off the center in the reaction vessel 13 [FIG. 6 (b) shows 1 from the inner wall of the reaction vessel 13 drawn on the upper side with respect to the diameter of the reaction vessel 13. / 3, a configuration example in which the position is 2/3 from the inner wall of the reaction vessel 13 drawn on the lower side].
  • the reaction vessel 13 is a vertical type as shown in FIGS. 2, 4 and 5 (in FIGS. To express). That is, in the apparatus shown in FIGS. 2, 4, and 5, in the first space ⁇ and the second space ⁇ of the reaction vessel 13, the direction in which the fluid flows (solid arrow) is the direction of gravity. Has been placed.
  • the first surface 20 b of the base 20 is supported over the entire surface, and fine communication holes are provided in the base support 31.
  • the load applied to the base body 20 can be reduced by using the guide path through which the fluid passes. Thereby, breakage of the base 20 can be prevented, and blockage of the piping and equipment failure can be prevented.
  • CO 2 is preferable from the viewpoints of safety, low environmental impact, cost, and solvent ability.
  • the critical point of CO 2 is easy to handle because it reaches a critical temperature of 31.1 ° C. and a critical pressure of 7.382 MPa, which is in a supercritical state at a lower temperature and lower pressure than other supercritical fluids.
  • CO 2 is a non-toxic and non-flammable substance that also exists in the atmosphere, and does not become an environmental burden when discharged as a gas after being used as a reaction solvent.
  • FIG. 7 is a diagram schematically illustrating a configuration example of an apparatus according to the second embodiment of the present invention.
  • This apparatus is a flow-type thin film deposition apparatus, and includes an H 2 cylinder 1, a CO 2 cylinder 2, a pressure regulator 3, a supply valve 4, a mixer 5, a liquid feed pump 6, a cooler 7, A raw material container 8, a raw material feed pump 9, a front valve 10, a mantle heater 11, a preheat pipe 12, a reaction container 13, a back pressure regulator (BPR) 14, and a constant temperature bath 15 are provided.
  • the apparatus of the fourth embodiment can be described by using the apparatus of FIG. 1 of the first embodiment and the apparatus having the same configuration as that of FIGS. 8, 10 and 11 of the third embodiment. Below, the characteristic part of 4th embodiment of this invention is demonstrated.
  • the cross section of the substrate obtained as described above was observed.
  • An optical microscope was used for observation.
  • the substrate was cut in half with a diamond cutter.
  • an adhesive was applied to one surface to be cut. This is to prevent debris from entering the fine holes during cross-sectional polishing.
  • the cross section was polished with a sandpaper (# 1500 to 10000) while observing with a microscope, and the cross section of the substrate was observed with an optical microscope.
  • the second surface side of the base is set to a pressure higher than that of the first surface of the base, and the fluid from the first space ⁇ to the second space ⁇ is provided on the base.

Abstract

This device for forming an electro-conductive substance is a device for forming an electro-conductive substance on the inside of a small hole. In the device, which introduces into a reaction container a fluid obtained by dissolving at least a metallic complex in a supercritical fluid or a subcritical fluid, a plate-shaped substrate is arranged in the fluid, which is continuously moved in a specific direction inside the reaction container, and an electro-conductive substance is formed on an inside wall of a small hole, which is provided on the substrate. The reaction container is provided with a first space into which the fluid is introduced, and a second space into which the fluid is introduced. A second face of the substrate is established perpendicularly with respect to the specific direction in which the fluid introduced into the first space moves, and a support member in which a small through hole is provided is arranged so that the fluid advances through the small hole in the substrate from the second face of the substrate toward a first face. The support member supports the first face of the substrate over the entirety thereof, and allows the fluid to pass into the second space.

Description

導電性物質の形成装置及びその形成方法Conductive substance forming apparatus and method for forming the same
 本発明は、超臨界流体又は亜臨界流体に金属錯体を溶解してなる流体を用いて、基体に設けられた微細孔内への導電性物質の形成装置及びその形成方法に関する。
 本願は、2011年9月13日に出願された特願2011-199678号、2011年9月30日に出願された特願2011-218300号、特願2011年9月30日に出願された特願2011-218301号、及び2011年9月30日に出願された特願2011-218302号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an apparatus for forming a conductive material in a micropore provided in a substrate using a fluid obtained by dissolving a metal complex in a supercritical fluid or a subcritical fluid, and a method for forming the same.
The present application includes Japanese Patent Application No. 2011-199678 filed on September 13, 2011, Japanese Patent Application No. 2011-218300 filed on September 30, 2011, and Japanese Patent Application No. 2011-218300 filed on September 30, 2011. Claim priority based on Japanese Patent Application No. 2011-218301 and Japanese Patent Application No. 2011-218302 filed on Sep. 30, 2011, the contents of which are incorporated herein by reference.
 近年、有機溶媒など環境負荷の大きな物質を用いずに物質合成を行う技術が必要となっている。従来、集積回路の製造などの超微細加工プロセスは、真空中又は希薄気体雰囲気中、あるいはプラズマ放電雰囲気中等の、ドライプロセス(真空プロセス)を多用している。 In recent years, a technology for synthesizing materials without using environmentally hazardous materials such as organic solvents is required. 2. Description of the Related Art Conventionally, ultra-fine processing processes such as the manufacture of integrated circuits frequently use dry processes (vacuum processes) such as in a vacuum, a rare gas atmosphere, or a plasma discharge atmosphere.
 ドライプロセスは、単独の原子や分子あるいはそのイオンを直接加工に利用できる点から、極めて有効な手段としてこれまで発展してきた。しかし、真空環境を維持するための設備が必要であることや、プラズマ発生装置が必要であること等が高コスト化の要因となっている。一方、メッキや洗浄など液体を使うウェットプロセスでは、大量の廃液が発生する。そのため、その廃液処理に要するコストが大きく、また環境に対する負荷も大きい、という問題がある。 The dry process has been developed as an extremely effective means since a single atom or molecule or its ion can be directly used for processing. However, the need for equipment for maintaining a vacuum environment and the need for a plasma generator are factors in increasing costs. On the other hand, in a wet process using a liquid such as plating or cleaning, a large amount of waste liquid is generated. Therefore, there is a problem that the cost required for the waste liquid treatment is large and the load on the environment is large.
 COを媒質とする超臨界流体は、液体と気体の中間の性質を有し、表面張力がゼロの状態であり、また、他の物質を溶解する能力(溶媒能)が高いなど、特異な性質を兼ね備えている。更に、化学的に安定、かつ安価、無害、低コストといった利点も兼ね備えている。これらに加え、気化・再液化により、COそのものの、及びCO流体中に溶解している物質のリサイクルも可能という多くの特徴がある。 A supercritical fluid using CO 2 as a medium has an intermediate property between liquid and gas, has a surface tension of zero, and has a unique ability to dissolve other substances (solvent ability). Combines nature. Furthermore, it has the advantages of being chemically stable, inexpensive, harmless and low cost. In addition to these, there are many features that CO 2 itself and substances dissolved in the CO 2 fluid can be recycled by vaporization and reliquefaction.
 集積回路製造プロセスにおけるウェハ洗浄工程を中心に、超臨界COを利用する研究・開発が進められている。例えば、洗浄工程では、超臨界COの溶媒能と安全性・リサイクル性に着目したプロセスが開発されている。また、超臨界CO中では、表面張力がゼロであることに着目し、ナノレベルの配線を形成する微細加工プロセスの研究開発が行われている(例えば、特許文献1)。 Research and development using supercritical CO 2 has been promoted, focusing on the wafer cleaning process in the integrated circuit manufacturing process. For example, in the cleaning process, a process focusing on the solvent ability and safety / recyclability of supercritical CO 2 has been developed. Further, focusing on the fact that the surface tension is zero in supercritical CO 2 , research and development of a microfabrication process for forming nano-level wiring has been performed (for example, Patent Document 1).
 超臨界流体は表面張力がゼロであり、拡散係数も大きいので、ナノレベルの微細孔であっても、その内部に極めてよく進入する。超臨界流体そのものを薄膜形成の反応場として用いることができれば、超微細な構造内に物質を形成・充填することが可能となり、さらにCVDやメッキに替わる、低コストのクリーンプロセスを構築できる。 ∙ Supercritical fluid has zero surface tension and a large diffusion coefficient, so even nano-scale micropores penetrate into the inside very well. If the supercritical fluid itself can be used as a reaction field for forming a thin film, it is possible to form and fill a material in an ultrafine structure, and to construct a low-cost clean process that replaces CVD and plating.
 近年、小型で高機能な電子機器の発展に伴いLSIの高い実装密度が必要とされており、現行の二次元的な実装技術では、限界が近いといわれている。そのためLSIチップを重ねて積層する三次元実装技術が必須となっており、半導体基板を貫通して縦方向(積層方向)を配線する貫通電極が実用化されている。 In recent years, with the development of small and highly functional electronic devices, high mounting density of LSI is required, and the current two-dimensional mounting technology is said to be close to the limit. For this reason, a three-dimensional mounting technique in which LSI chips are stacked and stacked is essential, and a through electrode that penetrates a semiconductor substrate in the vertical direction (stacking direction) has been put into practical use.
 貫通電極の用途としては、上記LSIチップの三次元積層の他、これらLSIを高密度で実装するための配線基板(インターポーザ)などにも利用される。貫通電極の代表的な形状としては、導電性物質を微細孔内部に完全に充填したものと、導電性物質を微細孔の内壁に薄膜状に堆積したものの二つがある。LSIの高性能化やパッケージの高密度化、高集積化に伴う配線の多ピン化により、貫通配線にも、より微細化、挟ピッチ化が求められるため、微細で高アスペクトな孔の内部に、如何に導電性物質を完全に充填するか、あるいは如何に厚さが均一で一様に導電性物質を堆積させるか、が課題である。 The through electrode is used for a wiring board (interposer) for mounting these LSIs at a high density in addition to the three-dimensional lamination of the LSI chips. There are two typical shapes of the through electrode, one in which the inside of the fine hole is completely filled with a conductive substance and one in which the conductive substance is deposited in a thin film on the inner wall of the fine hole. Due to the higher performance of LSIs, higher density of packages, and the increase in the number of pins associated with higher integration, more finer and narrower pitches are required for through-wires. The problem is how to completely fill the conductive material or how to deposit the conductive material uniformly and uniformly in thickness.
国際公開第2005/118910号International Publication No. 2005/118910
 本発明は、このような従来の実情に鑑みて考案されたものであり、基体に設けられた微細孔に、厚さが均一で一様に導電性物質を堆積させることが可能な微細孔内への導電性物質の形成装置を提供することを第一の目的とする。
 また、本発明は、基体に設けられた微細孔に、厚さが均一で一様に導電性物質を堆積させることが可能な微細孔内への導電性物質の形成方法を提供することを第二の目的とする。
The present invention has been devised in view of such a conventional situation, and the inside of a microscopic hole in which a conductive material can be uniformly and uniformly deposited in the microscopic hole provided in the substrate. It is a first object of the present invention to provide a conductive material forming apparatus.
In addition, the present invention provides a method for forming a conductive material in a microscopic hole, in which the conductive material can be deposited uniformly and uniformly in the microscopic hole provided in the substrate. Second purpose.
 本発明の第1態様の導電性物質の形成装置は、超臨界流体又は亜臨界流体に少なくとも金属錯体を溶解してなる流体が導入される第一空間と前記流体が導出される第二空間とを備える反応容器と、前記反応容器内において連続的に特定の方向へ移動する前記流体の中に配置され、第一面及び第二面と微細孔とを有する平板状の基体と、前記第一空間に導入された前記流体が移動する特定の方向に対して前記基体の前記第二面が垂直になるようにかつ前記基体の前記第二面から前記第一面に向けて前記基体の前記微細孔の中を前記流体が進行するように前記基体の前記第一面を全面に亘って支持し、前記第二空間へ前記流体が通過する微細な連通孔を有する支持部材と、を備えることを特徴とする導電性物質の形成装置。
本発明の第1態様の導電性物質の形成装置は、前記反応容器の前記第一空間内に突出し、前記基体の前記第二面の近傍に位置するように構成されている導入口を有し、前記反応容器に前記流体を導入する導入部を備えることが好ましい。
 本発明の第1態様の導電性物質の形成装置は、前記反応容器の前記第一空間内に突出し、前記基体の前記第二面の近傍に位置するように構成されている複数の導入口を有し、前記反応容器に前記流体を導入する導入部を備える。
The conductive material forming apparatus according to the first aspect of the present invention includes a first space into which a fluid formed by dissolving at least a metal complex in a supercritical fluid or a subcritical fluid is introduced, and a second space from which the fluid is derived. A flat substrate having a first surface, a second surface, and fine holes, the reaction vessel being disposed in the fluid that continuously moves in a specific direction in the reaction vessel, and the first The fineness of the substrate is such that the second surface of the substrate is perpendicular to the specific direction in which the fluid introduced into the space moves and from the second surface of the substrate toward the first surface. A support member having a fine communication hole for supporting the first surface of the base body over the entire surface so that the fluid proceeds in the hole and allowing the fluid to pass through the second space. An apparatus for forming a conductive material.
The conductive substance forming apparatus according to the first aspect of the present invention has an introduction port configured to protrude into the first space of the reaction vessel and to be positioned in the vicinity of the second surface of the substrate. It is preferable to provide an introduction part for introducing the fluid into the reaction vessel.
The conductive substance forming apparatus according to the first aspect of the present invention includes a plurality of inlets configured to protrude into the first space of the reaction vessel and to be positioned in the vicinity of the second surface of the base. And an introduction part for introducing the fluid into the reaction vessel.
 本発明の第2態様の導電性物質の形成方法は、超臨界流体又は亜臨界流体に少なくとも金属錯体を溶解してなる流体が導入される第一空間と前記流体が導出される第二空間とを備える反応容器と、前記反応容器内において連続的に特定の方向へ移動する前記流体の中に配置されて第一面及び第二面と微細孔とを有する平板状の基体と、前記基体の前記第一面を支持する支持部材とを準備し、前記第一空間に導入された前記流体が移動する特定の方向に対して前記基体の前記第二面が垂直になるように、かつ、前記基体の前記第二面から前記第一面に向けて前記基体の前記微細孔の中を前記流体が進行するように、前記支持部材を配置し、前記流体を前記第一空間から前記第二空間へ移動させ、前記基体に設けられた前記微細孔の内壁へ導電性物質を形成する。
 本発明の第2態様の導電性物質の形成方法は、前記基体として、半導体基板、又はガラス基板を用いることが好ましい。
 本発明の第2態様の導電性物質の形成方法は、前記流体に、還元剤が溶解されていることが好ましい。
The method for forming a conductive material according to the second aspect of the present invention includes a first space into which a fluid formed by dissolving at least a metal complex in a supercritical fluid or a subcritical fluid is introduced, and a second space from which the fluid is derived. A flat substrate having a first surface, a second surface, and a fine hole disposed in the fluid that continuously moves in a specific direction in the reaction vessel; and A support member that supports the first surface, the second surface of the base body is perpendicular to a specific direction in which the fluid introduced into the first space moves, and The support member is arranged so that the fluid travels in the micropores of the substrate from the second surface of the substrate toward the first surface, and the fluid is transferred from the first space to the second space. To the inner wall of the micropores provided in the substrate To form a quality.
In the method for forming a conductive substance according to the second aspect of the present invention, it is preferable to use a semiconductor substrate or a glass substrate as the base.
In the method for forming a conductive substance according to the second aspect of the present invention, it is preferable that a reducing agent is dissolved in the fluid.
 本発明の第3態様の導電性物質の形成装置は、超臨界流体又は亜臨界流体に少なくとも金属錯体を溶解してなる流体が導入される反応容器と、前記反応容器において連続的に特定の方向へ移動する前記流体の中に配置され、微細孔を有する平板状の基体と、を備え、前記基体の両面に沿って、前記流体が移動するように前記基体を配置した。
 本発明の第3態様の導電性物質の形成装置は、前記特定の方向に対して前記基体の両面が平行となるように前記基体を配置することが好ましい。
 本発明の第3態様の導電性物質の形成装置は、前記特定の方向に対して前記基体の両面が非平行となるように前記基体を配置することが好ましい。
 本発明の第3態様の導電性物質の形成装置は、前記特定の方向に対して前記基体の両面が成す角度を保持し、前記反応容器の内側に設けられた保持部を備えたことが好ましい。
The conductive material forming apparatus according to the third aspect of the present invention includes a reaction vessel into which a fluid obtained by dissolving at least a metal complex in a supercritical fluid or a subcritical fluid is introduced, and a specific direction continuously in the reaction vessel. And a flat substrate having fine holes, and the substrate is arranged so that the fluid moves along both surfaces of the substrate.
In the conductive material forming apparatus according to the third aspect of the present invention, it is preferable that the base is arranged so that both surfaces of the base are parallel to the specific direction.
In the conductive material forming apparatus according to the third aspect of the present invention, it is preferable to dispose the base body so that both surfaces of the base body are not parallel to the specific direction.
The conductive material forming apparatus according to the third aspect of the present invention preferably includes a holding portion provided inside the reaction vessel, which holds an angle formed by both surfaces of the substrate with respect to the specific direction. .
 本発明の第4態様の導電性物質の形成方法は、超臨界流体又は亜臨界流体に少なくとも金属錯体を溶解してなる流体が導入される反応容器と、前記反応容器内において連続的に特定の方向へ移動する前記流体の中に配置される平板状の基体とを準備し、前記基体の両面に沿って、前記流体を移動させ、前記基体に設けられた前記微細孔の内壁へ導電性物質を形成する。
 本発明の第4態様の導電性物質の形成方法は、前記基体として、半導体基板、又はガラス基板を用いることが好ましい。
 本発明の第4態様の導電性物質の形成方法は、前記流体に、還元剤が溶解されていることが好ましい。
According to a fourth aspect of the present invention, there is provided a method for forming a conductive substance comprising: a reaction vessel into which a fluid formed by dissolving at least a metal complex in a supercritical fluid or a subcritical fluid is introduced; And a flat substrate disposed in the fluid moving in the direction, the fluid is moved along both surfaces of the substrate, and the conductive material is transferred to the inner walls of the micropores provided in the substrate. Form.
In the method for forming a conductive substance according to the fourth aspect of the present invention, a semiconductor substrate or a glass substrate is preferably used as the base.
In the method for forming a conductive substance according to the fourth aspect of the present invention, it is preferable that a reducing agent is dissolved in the fluid.
 本発明の第5態様の導電性物質の形成装置は、超臨界流体又は亜臨界流体に少なくとも金属錯体を溶解してなる流体が導入される第一空間と前記流体が導出される第二空間とを備える反応容器と、前記反応容器内において連続的に特定の方向へ移動する前記流体の中に配置され、第一面及び第二面と微細孔とを有する平板状の基体と、前記第一空間に導入された前記流体が移動する特定の方向に対して前記基体の前記第二面が垂直となるようにかつ前記基体の前記第二面から前記第一面に向けて前記基体の前記微細孔の中を前記流体が進行するように前記基体の前記第一面を支持する支持部材と、を備える。
 本発明の第5態様の導電性物質の形成装置は、前記反応容器の前記第一空間内に突出し、前記基体の前記第二面の近傍に位置するように構成されている導入口を有し、前記反応容器に前記流体を導入する導入部を備えることが好ましい。
 本発明の第5態様の導電性物質の形成装置は、前記反応容器の前記第一空間内に突出し、前記基体の前記第二面の近傍に位置するように構成されている複数の導入口を有し、前記反応容器に前記流体を導入する導入部を備えることが好ましい。
The conductive material forming apparatus according to the fifth aspect of the present invention includes a first space into which a fluid formed by dissolving at least a metal complex in a supercritical fluid or a subcritical fluid is introduced, and a second space from which the fluid is derived. A flat substrate having a first surface, a second surface, and fine holes, the reaction vessel being disposed in the fluid that continuously moves in a specific direction in the reaction vessel, and the first The fineness of the substrate is such that the second surface of the substrate is perpendicular to the specific direction in which the fluid introduced into the space moves and from the second surface of the substrate toward the first surface. And a support member that supports the first surface of the base so that the fluid travels in the hole.
The conductive substance forming apparatus according to the fifth aspect of the present invention has an inlet configured to protrude into the first space of the reaction vessel and to be positioned in the vicinity of the second surface of the base. It is preferable to provide an introduction part for introducing the fluid into the reaction vessel.
The conductive substance forming apparatus according to the fifth aspect of the present invention includes a plurality of inlets configured to protrude into the first space of the reaction vessel and to be positioned in the vicinity of the second surface of the substrate. It is preferable to have an introduction part for introducing the fluid into the reaction vessel.
 本発明の第6態様の導電性物質の形成装置は、超臨界流体又は亜臨界流体に少なくとも金属錯体を溶解してなる流体が導入される第一空間と前記流体が導出される第二空間とを備える反応容器と、前記反応容器内において連続的に特定の方向へ移動する前記流体の中に配置され、第一面及び第二面と微細孔とを有する平板状の基体と、前記第一空間に導入された前記流体が移動する特定の方向に対して前記基体の前記第二面が垂直となるようにかつ前記基体の前記第二面から前記第一面に向けて、前記基体の前記微細孔の中を前記流体が進行するように前記基体の前記第一面を支持し、前記第二空間へ前記流体が通過するとともに前記基体の周囲に設けられた誘導路を有する支持部材と、を備える。
 本発明の第6態様の導電性物質の形成装置は、前記反応容器の前記第一空間内に突出し、前記基体の前記第二面の近傍に位置するように構成されている導入口を有し、前記反応容器に前記流体を導入する導入部を備えることが好ましい。
 本発明の第6態様の導電性物質の形成装置は、前記反応容器の前記第一空間内に突出し、前記基体の前記第二面の近傍に位置するように構成されている複数の導入口を有し、前記反応容器に前記流体を導入する導入部を備えることが好ましい。
The conductive material forming apparatus according to the sixth aspect of the present invention includes a first space into which a fluid formed by dissolving at least a metal complex in a supercritical fluid or a subcritical fluid is introduced, and a second space from which the fluid is derived. A flat substrate having a first surface, a second surface, and fine holes, the reaction vessel being disposed in the fluid that continuously moves in a specific direction in the reaction vessel, and the first The second surface of the substrate is perpendicular to the specific direction in which the fluid introduced into the space moves and from the second surface of the substrate toward the first surface, the first surface of the substrate. A support member that supports the first surface of the base body so that the fluid travels through the micropores, and has a guide path that is provided around the base body while the fluid passes through the second space; Is provided.
The conductive substance forming apparatus according to the sixth aspect of the present invention has an introduction port configured to protrude into the first space of the reaction vessel and to be positioned in the vicinity of the second surface of the base. It is preferable to provide an introduction part for introducing the fluid into the reaction vessel.
According to a sixth aspect of the present invention, there is provided the conductive substance forming apparatus including a plurality of inlets configured to protrude into the first space of the reaction vessel and to be positioned in the vicinity of the second surface of the substrate. It is preferable to have an introduction part for introducing the fluid into the reaction vessel.
 本発明の第1態様に係る導電性物質の形成装置においては、微細孔の内部に流体を、基体の第一面及び第二面側の両方から強制的に輸送させることができる。したがって、本発明によれば、基体に設けられた微細孔に厚さが均一で一様に導電性物質を堆積させることが可能な微細孔内への導電性物質の形成装置を提供することができる。
 特に、本発明の第1態様に係る形成装置は、前記基体の第一面を全面に亘って支持するとともに、前記第二空間へ該流体が通過する、微細な連通孔を内在する支持部を配置しているので、基体上下面での差圧が大きくなり、より確実に微細孔に導電性物質を堆積させることが可能である。また、基体にかかる負荷の軽減を図ることが可能である。これにより基体の破損を防止し、配管の閉塞や機器の故障を防止することができる。その結果、本発明に係る形成装置よれば、安定した稼働状態が可能であり、基体にかかる負荷の軽減を図りつつ、差圧の増大によって、基体に設けられた微細孔の長さが増えた場合でも、基体に設けられた微細孔の長手方向において、厚さが均一で一様に導電性物質を堆積できる距離をさらに延ばすことが可能となる。
 前記流体の導入部の構成例としては、反応容器の第一空間αに連通するように配管状の導入部を反応容器に接続する場合と、反応容器の第一空間α内に突出し、その導入口が前記基体の第二面の近傍に位置するように構成される場合と、前記反応容器の前記第一空間内に突出し、その導入口が複数、前記基体の第二面の近傍に位置するように構成される場合とが挙げられる。
In the conductive material forming apparatus according to the first aspect of the present invention, the fluid can be forcibly transported from both the first surface and the second surface of the substrate into the micropores. Therefore, according to the present invention, it is possible to provide a device for forming a conductive material in a microscopic hole, which can deposit a conductive material uniformly and uniformly in the microscopic hole provided in the substrate. it can.
In particular, the forming apparatus according to the first aspect of the present invention includes a support portion that supports the first surface of the substrate over the entire surface and has a fine communication hole through which the fluid passes into the second space. Since it is disposed, the differential pressure between the upper and lower surfaces of the substrate is increased, and it is possible to deposit the conductive material in the fine holes more reliably. In addition, it is possible to reduce the load on the substrate. As a result, breakage of the base body can be prevented, and blockage of the piping and equipment failure can be prevented. As a result, according to the forming apparatus according to the present invention, a stable operating state is possible, and the length of the fine holes provided in the base is increased by increasing the differential pressure while reducing the load on the base. Even in this case, it is possible to further extend the distance in which the conductive material can be uniformly deposited in the longitudinal direction of the micropores provided in the substrate.
Examples of the configuration of the fluid introduction portion include a case where a pipe-like introduction portion is connected to the reaction vessel so as to communicate with the first space α of the reaction vessel, and a case where the fluid introduction portion protrudes into the first space α of the reaction vessel and the introduction thereof. When the mouth is configured to be positioned in the vicinity of the second surface of the substrate, and the plurality of inlet ports are positioned in the vicinity of the second surface of the substrate. The case where it is comprised is mentioned.
 本発明の第2態様に係る導電性物質の形成方法においては、微細孔の内部に流体を、基体の第一面及び第二面側の両方から強制的に輸送させることができる。したがって、本発明によれば、基体に設けられた微細孔に厚さが均一で一様に導電性物質を堆積させることが可能な微細孔内への導電性物質の形成方法を提供することができる。
 特に、本発明の第2態様に係る形成方法では、前記基体の第一面を全面に亘って支持するとともに、前記第二空間へ該流体が通過する、微細な連通孔を内在する支持部を配置しているので、基体上下面での差圧が大きくなり、より確実に微細孔に導電性物質を堆積させることが可能である。また、基体にかかる負荷の軽減を図ることが可能である。これにより基体の破損を防止し、配管の閉塞や機器の故障を防止することができる。その結果、本発明に係る形成方法は、長時間に亘る安定した稼働状態が可能であり、基体にかかる負荷の軽減を図りつつ、差圧の増大によって、基体に設けられた微細孔の長さが増えた場合でも、基体に設けられた微細孔の長手方向において、厚さが均一で一様に導電性物質を堆積できる距離をさらに延ばすことに寄与する。
 本発明の第2態様の導電性物質の形成方法において、前記基体としては、半導体基板、又はガラス基板が好ましい。半導体基板、又はガラス基板に本発明を適用できるようにすることで、前述したLSIの三次元実装(積層)やインターポーザなどへの応用が期待できる。また、前記流体に、添加ガスとして、還元剤がさらに溶解されているものを用いることが望ましい。前記流体中に還元剤を溶解しておくことで、微細孔内部に原料と還元剤を同時に供給することができ、均一な薄膜形成が可能となる。
In the method for forming a conductive material according to the second aspect of the present invention, the fluid can be forcibly transported from both the first surface and the second surface side of the substrate into the micropores. Therefore, according to the present invention, it is possible to provide a method for forming a conductive material in a microscopic hole, which allows the conductive material to be uniformly and uniformly deposited in the microscopic hole provided in the substrate. it can.
In particular, in the forming method according to the second aspect of the present invention, a support portion that supports the first surface of the substrate over the entire surface and that has a fine communication hole through which the fluid passes to the second space is provided. Since it is disposed, the differential pressure between the upper and lower surfaces of the substrate is increased, and it is possible to deposit the conductive material in the fine holes more reliably. In addition, it is possible to reduce the load on the substrate. As a result, breakage of the base body can be prevented, and blockage of the piping and equipment failure can be prevented. As a result, the forming method according to the present invention enables a stable operation state for a long time, and reduces the load on the substrate, while increasing the differential pressure, thereby reducing the length of the fine holes provided in the substrate. Even in the case of increasing the thickness, it contributes to further extending the distance in which the conductive material can be deposited uniformly and uniformly in the longitudinal direction of the micropores provided in the substrate.
In the method for forming a conductive substance according to the second aspect of the present invention, the substrate is preferably a semiconductor substrate or a glass substrate. By making the present invention applicable to a semiconductor substrate or a glass substrate, application to the above-described three-dimensional mounting (stacking) of LSIs, interposers, and the like can be expected. Further, it is desirable to use a fluid in which a reducing agent is further dissolved as an additive gas. By dissolving the reducing agent in the fluid, the raw material and the reducing agent can be simultaneously supplied into the micropores, and a uniform thin film can be formed.
 本発明の第3態様の導電性物質の形成装置においては、流体は微細孔へ向けて「流れ」と「拡散」の両方によって輸送される。ゆえに、前記特定の方向に対して前記基体の片面のみ露呈させた場合に比べて、より流体が微細孔内へ向けて輸送されると考えられる。したがって、本発明によれば、基体に厚さが均一で一様に導電性物質を堆積させることが可能な導電性物質の形成装置を提供することができる。
 基体の両面に沿って、前記流体が移動するように前記基体を配置する構成例としては、前記特定の方向に対して前記基体の両面が平行となるように前記基体を配置する場合と、前記特定の方向に対して前記基体の両面が非平行となるように前記基体を配置する場合とが挙げられる。このように基体を配置するために、前記特定の方向に対して前記基体の両面が成す角度を保持する保持部を、前記反応容器の内側に備えることが好ましい。このように保持部を用いる場合、基体の両面に沿って、前記流体が移動する際に、流体の方向を阻害することなく、前記特定の方向に対して前記基体の両面が成す角度を保持することが可能となる。
In the conductive material forming apparatus of the third aspect of the present invention, the fluid is transported by both “flow” and “diffusion” toward the micropores. Therefore, it is considered that more fluid is transported into the micropores than in the case where only one side of the base body is exposed in the specific direction. Therefore, according to the present invention, it is possible to provide a conductive material forming apparatus capable of uniformly depositing a conductive material with a uniform thickness on a substrate.
Examples of a configuration in which the substrate is arranged so that the fluid moves along both surfaces of the substrate include a case where the substrate is arranged so that both surfaces of the substrate are parallel to the specific direction, and And the case where the substrate is arranged so that both surfaces of the substrate are not parallel to a specific direction. In order to dispose the substrate in this way, it is preferable to provide a holding portion that holds an angle formed by both surfaces of the substrate with respect to the specific direction, inside the reaction vessel. When the holding unit is used in this way, when the fluid moves along both surfaces of the substrate, the angle formed by both surfaces of the substrate with respect to the specific direction is maintained without obstructing the direction of the fluid. It becomes possible.
また、本発明の第4態様の導電性物質の形成方法においては、流体は微細孔へ向けて「流れ」と「拡散」の両方によって輸送される。ゆえに、前記特定の方向に対して前記基体の両面を平行とした場合に比べて、より流体が微細孔内へ向けて輸送されると考えられる。したがって、本発明によれば、基体に厚さが均一な導電性物質を堆積させることが可能な導電性物質の形成方法を提供することができる。
 本発明の第4態様の導電性物質の形成方法において、前記基体としては、半導体基板、又はガラス基板が好ましい。半導体基板、又はガラス基板に本発明を適用できるようにすることで、前述したLSIの三次元実装(積層)やインターポーザなどへの応用が期待できる。また、前記流体に、添加ガスとして、還元剤がさらに溶解されているものを用いることが望ましい。前記流体中に還元剤を溶解しておくことで、微細孔内部に原料と還元剤を同時に供給することができ、均一な薄膜形成が可能となる。
In the method for forming a conductive substance according to the fourth aspect of the present invention, the fluid is transported by both “flow” and “diffusion” toward the micropores. Therefore, compared with the case where both surfaces of the base are parallel to the specific direction, it is considered that more fluid is transported into the micropores. Therefore, according to the present invention, it is possible to provide a method for forming a conductive material capable of depositing a conductive material having a uniform thickness on a substrate.
In the method for forming a conductive substance according to the fourth aspect of the present invention, the substrate is preferably a semiconductor substrate or a glass substrate. By making the present invention applicable to a semiconductor substrate or a glass substrate, application to the above-described three-dimensional mounting (stacking) of LSIs, interposers, and the like can be expected. Further, it is desirable to use a fluid in which a reducing agent is further dissolved as an additive gas. By dissolving the reducing agent in the fluid, the raw material and the reducing agent can be simultaneously supplied into the micropores, and a uniform thin film can be formed.
 本発明の第5態様の導電性物質の形成装置においては、微細孔の内部に流体を強制的に輸送させることができる。したがって、本発明によれば、基体に設けられた微細孔に厚さが均一で一様に導電性物質を堆積させることが可能な微細孔内への導電性物質の形成装置を提供することができる。
 前記流体の導入部の構成例としては、反応容器の第一空間αに連通するように配管状の導入部を反応容器に接続する場合と、反応容器の第一空間α内に突出し、その導入口が前記基体の第二面の近傍に位置するように構成される場合と、前記反応容器の前記第一空間内に突出し、その導入口が複数、前記基体の第二面の近傍に位置するように構成される場合とが挙げられる。
In the conductive material forming apparatus of the fifth aspect of the present invention, the fluid can be forcibly transported into the micropores. Therefore, according to the present invention, it is possible to provide a device for forming a conductive material in a microscopic hole, which can deposit a conductive material uniformly and uniformly in the microscopic hole provided in the substrate. it can.
Examples of the configuration of the fluid introduction portion include a case where a pipe-like introduction portion is connected to the reaction vessel so as to communicate with the first space α of the reaction vessel, and a case where the fluid introduction portion protrudes into the first space α of the reaction vessel and the introduction thereof. When the mouth is configured to be positioned in the vicinity of the second surface of the substrate, and the plurality of inlet ports are positioned in the vicinity of the second surface of the substrate. The case where it is comprised is mentioned.
 本発明の第6態様の導電性物質の形成装置においては、微細孔の内部に流体を強制的に輸送させることができる。したがって、本発明によれば、基体に設けられた微細孔に厚さが均一で一様に導電性物質を堆積させることが可能な微細孔内への導電性物質の形成装置を提供することができる。
 また、本発明の第6態様に係る形成装置は、前記第二空間へ該流体が通過する誘導路を該基体の周囲に設けた支持部を配置しているので、基体にかかる負荷の軽減を図ることが可能である。したがって、本発明の第6態様の形成装置は、基体の破損を防止し、配管の閉塞や機器の故障を防止することもできる。
 前記流体の導入部の構成例としては、反応容器の第一空間αに連通するように配管状の導入部を反応容器に接続する場合と、反応容器の第一空間α内に突出し、その導入口が前記基体の第二面の近傍に位置するように構成される場合と、前記反応容器の前記第一空間内に突出し、その導入口が複数、前記基体の第二面の近傍に位置するように構成される場合とが挙げられる。
In the conductive material forming apparatus of the sixth aspect of the present invention, the fluid can be forcibly transported into the micropores. Therefore, according to the present invention, it is possible to provide a device for forming a conductive material in a microscopic hole, which can deposit a conductive material uniformly and uniformly in the microscopic hole provided in the substrate. it can.
Further, in the forming apparatus according to the sixth aspect of the present invention, since the support portion provided around the base is provided with a guide path through which the fluid passes to the second space, the load on the base is reduced. It is possible to plan. Therefore, the forming apparatus according to the sixth aspect of the present invention can prevent the base from being damaged, and can prevent the blockage of the piping and the failure of the equipment.
Examples of the configuration of the fluid introduction portion include a case where a pipe-like introduction portion is connected to the reaction vessel so as to communicate with the first space α of the reaction vessel, and a case where the fluid introduction portion protrudes into the first space α of the reaction vessel and the introduction thereof. When the mouth is configured to be positioned in the vicinity of the second surface of the substrate, and the plurality of inlet ports are positioned in the vicinity of the second surface of the substrate. The case where it is comprised is mentioned.
本発明に係る装置の一構成例を模式的に示す図である。It is a figure which shows typically the example of 1 structure of the apparatus which concerns on this invention. 図1に示す装置において、反応容器の内部構成の一例を模式的に示す図である。In the apparatus shown in FIG. 1, it is a figure which shows typically an example of the internal structure of a reaction container. 図2の反応容器の基体支持具において、基体と微細な連通孔が内部に設けられた支持部材との位置関係を示す図である。FIG. 3 is a diagram showing a positional relationship between a substrate and a support member provided with a fine communication hole in the substrate support of the reaction container of FIG. 2. 図1に示す装置において、反応容器の内部構成の一例を模式的に示す図である。In the apparatus shown in FIG. 1, it is a figure which shows typically an example of the internal structure of a reaction container. 図1に示す装置において、反応容器の内部構成の一例を模式的に示す図である。In the apparatus shown in FIG. 1, it is a figure which shows typically an example of the internal structure of a reaction container. 微細孔を有する基体と、流体の流れ方向との位置関係を模式的に示す図である。It is a figure which shows typically the positional relationship of the base | substrate which has a micropore, and the flow direction of a fluid. 本発明に係る装置の一構成例を模式的に示す図である。It is a figure which shows typically the example of 1 structure of the apparatus which concerns on this invention. 図1に示す装置において、反応容器の内部構成の一例を模式的に示す図である。In the apparatus shown in FIG. 1, it is a figure which shows typically an example of the internal structure of a reaction container. 反応容器の基体支持具において、基体と支持部材(Oリング)との位置関係を示す図である。It is a figure which shows the positional relationship of a base | substrate and a supporting member (O-ring) in the base | substrate support tool of reaction container. 図1に示す装置において、反応容器の内部構成の一例を模式的に示す図である。In the apparatus shown in FIG. 1, it is a figure which shows typically an example of the internal structure of a reaction container. 図1に示す装置において、反応容器の内部構成の一例を模式的に示す図である。In the apparatus shown in FIG. 1, it is a figure which shows typically an example of the internal structure of a reaction container. 反応容器の基体支持具において、基体と支持部材(Oリング)との位置関係を示す図である。It is a figure which shows the positional relationship of a base | substrate and a supporting member (O-ring) in the base | substrate support tool of reaction container. 第一実施例で得られた基体断面の光学顕微鏡写真を示す図である。It is a figure which shows the optical micrograph of the base | substrate cross section obtained in the 1st Example. 第二実施例で得られた基体断面の光学顕微鏡写真を示す図である。It is a figure which shows the optical micrograph of the base | substrate cross section obtained in 2nd Example. 第三実施例により、導電性物質が形成された基体断面を模式的に示す図である。It is a figure which shows typically the base | substrate cross section in which the electroconductive substance was formed by 3rd Example. 第四実施例により、導電性物質が形成された基体断面を模式的に示す図である。It is a figure which shows typically the base | substrate cross section in which the electroconductive substance was formed by 4th Example. 第五実施例、及び第七実施例において用いた基体の構成を示す断面図である。It is sectional drawing which shows the structure of the base | substrate used in 5th Example and 7th Example. 第六実施例により、導電性物質が形成された基体断面を模式的に示す図である。It is a figure which shows typically the base | substrate cross section in which the electroconductive substance was formed by 6th Example.
[第一実施形態]
 以下、本発明の第一実施形態の装置及び方法について説明する。
 なお、本明細書で超臨界流体とは、COなどの気体をその臨界点以上に保つことにより、気液の差がなくなり液体でも気体でもない流体である状態をいう。
[First embodiment]
The apparatus and method according to the first embodiment of the present invention will be described below.
In this specification, the supercritical fluid refers to a state in which a gas such as CO 2 is kept above its critical point so that there is no difference between gas and liquid and the fluid is neither liquid nor gas.
 図1は、本発明に係る装置の一構成例を模式的に示す図である。
 この装置は、フロー式薄膜堆積装置であり、Hボンベ1と、COボンベ2と、圧力調整器3と、供給バルブ4と、ミキサ5と、送液ポンプ6と、冷却器7と、原料容器8と、原料送液ポンプ9と、手前バルブ10と、マントルヒーター11と、プリヒート配管12と、反応容器13と、背圧調整器(BPR)14と、恒温槽15を備える。
 この装置では、一定圧力・流量のCOを超臨界状態又は亜臨界流体で連続的に反応容器13内に供給し、還元剤Hにより、基体に設けられた微細孔の内壁に導電性物質(例えばCu)を析出・堆積させ、貫通電極を形成する。
FIG. 1 is a diagram schematically showing a configuration example of an apparatus according to the present invention.
This apparatus is a flow-type thin film deposition apparatus, and includes an H 2 cylinder 1, a CO 2 cylinder 2, a pressure regulator 3, a supply valve 4, a mixer 5, a liquid feed pump 6, a cooler 7, A raw material container 8, a raw material feed pump 9, a front valve 10, a mantle heater 11, a preheat pipe 12, a reaction container 13, a back pressure regulator (BPR) 14, and a constant temperature bath 15 are provided.
In this apparatus, CO 2 at a constant pressure and flow rate is continuously supplied into the reaction vessel 13 in a supercritical state or a subcritical fluid, and a conductive material is formed on the inner wall of the fine holes provided in the substrate by the reducing agent H 2. (For example, Cu) is deposited and deposited to form a through electrode.
 物質は温度や圧力により、気体、液体、固体と変化する。超臨界流体とは、温度・圧力が臨界点を超えたときの物質の状態である。この状態では高密度・低粘性、つまりそれぞれ液体と気体の性質を併せ持つ。また液体と気体の中間の拡散係数を持ち、表面張力は0(ゼロ)である。これらのことから、超臨界流体は液体並みの溶解力と気体並みの流動性を持つといえる。よって超臨界流体を反応溶媒として用いることでナノレベルの浸透性、高速反応が期待できる。また、条件によっては、超臨界流体に代えて亜臨界流体を用いても、同様の作用・効果が得られる場合がある。 Material changes into gas, liquid and solid depending on temperature and pressure. A supercritical fluid is a state of a substance when temperature and pressure exceed a critical point. In this state, it has high density and low viscosity, that is, both liquid and gas properties. It has a diffusion coefficient intermediate between liquid and gas and has a surface tension of 0 (zero). From these facts, it can be said that the supercritical fluid has the same dissolving power as liquid and fluidity like gas. Therefore, nano-level permeability and high-speed reaction can be expected by using a supercritical fluid as a reaction solvent. Depending on the conditions, the same action and effect may be obtained even if a subcritical fluid is used instead of the supercritical fluid.
 Hボンベ1には、還元剤であるHガスが入っており、Hガスは、圧力調整器3、供給バルブ4を通じてミキサ5へと導入される。
 COボンベ2には、超臨界流体の媒質であるCOガスが入っており、COガスはCOボンベ2から冷却器7で液化された後、送液ポンプ8で昇圧され、ミキサ5へと導入される。
 HガスとCOガスは、ミキサ5にて混合され、反応容器13に導入される。
The H 2 cylinder 1 contains H 2 gas as a reducing agent, and the H 2 gas is introduced into the mixer 5 through the pressure regulator 3 and the supply valve 4.
The CO 2 cylinder 2 contains CO 2 gas which is a medium of supercritical fluid. The CO 2 gas is liquefied from the CO 2 cylinder 2 by the cooler 7 and then pressurized by the liquid feed pump 8, and the mixer 5 Introduced into
H 2 gas and CO 2 gas are mixed by the mixer 5 and introduced into the reaction vessel 13.
 原料容器8は、原料となる導電性物質の金属錯体が入っている。本実施形態では、ビスイソブチリルメタナト銅(Cu(dibm))を用いた場合を例に挙げて説明しているが、これに限定されるものではない。
 金属錯体は原料送液ポンプ9を通じて反応容器13に導入される。原料の供給の制御は反応容器のガス供給口に近接して設けられている手前バルブ10により行われる。
The raw material container 8 contains a metal complex of a conductive material as a raw material. In this embodiment, the case where bisisobutyryl methanato copper (Cu (divm) 2 ) is used is described as an example, but the present invention is not limited to this.
The metal complex is introduced into the reaction vessel 13 through the raw material feed pump 9. The supply of the raw material is controlled by a front valve 10 provided close to the gas supply port of the reaction vessel.
 反応容器13は、例えばステンレス製の耐圧・耐熱容器から構成されることが好ましいが、これに限定されるものではない。この反応容器13は、例えばオートクレーブ(加圧脱泡装置)を加工することで作製できる。
 反応容器13の手前にはプリヒート配管12が設けられており、さらに、プリヒート配管12及び反応容器13にはマントルヒーター11、恒温層15が設けられ、これらにより流体を所定の温度に加熱・保持されるとともに、温度の調節ができる。
 反応容器13の下流には、背圧調整器(BPR)14が配されている。反応容器13内で反応が終了した後、反応容器13内の超臨界流体は、背圧調整器14を通じて排気される。
The reaction vessel 13 is preferably composed of, for example, a pressure- and heat-resistant vessel made of stainless steel, but is not limited thereto. This reaction vessel 13 can be produced, for example, by processing an autoclave (pressure defoaming device).
A preheat pipe 12 is provided in front of the reaction vessel 13, and a mantle heater 11 and a thermostatic layer 15 are provided in the preheat pipe 12 and the reaction vessel 13 to heat and hold the fluid at a predetermined temperature. And adjust the temperature.
A back pressure regulator (BPR) 14 is disposed downstream of the reaction vessel 13. After the reaction is completed in the reaction vessel 13, the supercritical fluid in the reaction vessel 13 is exhausted through the back pressure regulator 14.
 図2は、本発明の第一実施形態の装置において、反応容器13の内部構成を模式的に示す図である。
 反応容器13の内部には、基体支持具31が設けられており、この基体支持具31に基板20を設置する。
 基体20としては、例えばシリコンなどの半導体基板やガラス基板が用いられる。また、基体20には第二面から第一面に向けて貫通してなる微細孔21が設けられている。
FIG. 2 is a diagram schematically showing the internal configuration of the reaction vessel 13 in the apparatus according to the first embodiment of the present invention.
A substrate support 31 is provided inside the reaction vessel 13, and the substrate 20 is placed on the substrate support 31.
As the base body 20, for example, a semiconductor substrate such as silicon or a glass substrate is used. The base body 20 is provided with a fine hole 21 penetrating from the second surface toward the first surface.
 このような装置において、超臨界流体に金属錯体を溶解してなる流体を反応容器13へ導入し、該反応容器13内において連続的に特定の方向へ移動する該流体の中に、平板状の基体20を配して、該基体20に設けられた微細孔21の内壁へ導電性物質を形成する。 In such an apparatus, a fluid obtained by dissolving a metal complex in a supercritical fluid is introduced into the reaction vessel 13, and in the fluid that continuously moves in a specific direction in the reaction vessel 13, The substrate 20 is disposed, and a conductive material is formed on the inner wall of the micropore 21 provided in the substrate 20.
 そして本発明の第一実施形態の装置は、前記反応容器13は前記流体Fが導入される第一空間αと該流体が導出される第二空間βとを備えており、前記第一空間αに導入された前記流体Fが移動する特定の方向に対して前記基体20の第二面20aを垂直とし、かつ、該基体20の第二面20aに向けて、前記流体Fが進行するように、前記基体20の第一面20bを支持するとともに、前記第二空間βへ該流体Fが通過する誘導路34を該基体20の周囲に設けた基体支持具31(支持部)を配置したことを特徴とする。 In the apparatus of the first embodiment of the present invention, the reaction vessel 13 includes a first space α into which the fluid F is introduced and a second space β into which the fluid is derived, and the first space α. The second surface 20a of the base body 20 is perpendicular to a specific direction in which the fluid F introduced into the base body moves, and the fluid F advances toward the second surface 20a of the base body 20 And a base support 31 (support portion) provided to support the first surface 20b of the base body 20 and provide a guide path 34 around the base body 20 through which the fluid F passes to the second space β. It is characterized by.
 ここで、流体中の物質の輸送方法は、「流れ」と「拡散」の二つに分けられる。イメージとして流体を水にインクを垂らしたときのインクに例えると、「流れ」は、棒でかき混ぜたとき、「拡散」はかき混ぜることなく勝手にひろがっていくときの様子に似ている。 Here, the method of transporting substances in the fluid can be divided into “flow” and “diffusion”. If we compare the ink to the ink when the fluid is dropped into water as an image, the “flow” is similar to the state when the “diffusion” spreads without stirring when it is stirred with a stick.
 図6は、本発明の第一実施形態における、微細孔21を有する基体20と、反応容器13内の流体Fの流れ方向との位置関係を模式的に示す図である。以下では、反応容器13内において流体Fの流れ方向との関係を事前に考察した結果について述べる。 FIG. 6 is a diagram schematically showing a positional relationship between the base body 20 having the fine holes 21 and the flow direction of the fluid F in the reaction vessel 13 in the first embodiment of the present invention. Below, the result of having considered beforehand the relationship with the flow direction of the fluid F in the reaction container 13 is described.
 図6(a)は、基体20の第二面(上面)のみが流体Fの流れ方向と平行を成して流れFに曝され、第一面(下面)が反応容器13の内面に接して配置された場合である。この場合は、原料(流体F)は微細孔21へ拡散のみで輸送されると考えられる。 In FIG. 6A, only the second surface (upper surface) of the substrate 20 is exposed to the flow F in parallel with the flow direction of the fluid F, and the first surface (lower surface) is in contact with the inner surface of the reaction vessel 13. This is the case. In this case, it is considered that the raw material (fluid F) is transported to the micropores 21 only by diffusion.
 図6(b)は、基体20の両面(上下面)が流体Fの流れ方向と平行を成して流れFに曝されるように配置された場合である。この場合には、反応容器13内の中央から外れた位置に基体20を配置するとよい[図6(b)は、反応容器13の直径に対して、上側に描いた反応容器13の内壁から1/3、下側に描いた反応容器13の内壁から2/3の位置とした構成例である]。基体20を反応容器13内の中央から外れた位置に配置することにより、基体の両面を流れる流体の流れ方を変えることができる。反応容器13の内壁からの距離が狭い側では、微細孔に向けての「流れ」が活発になる。「流れ」は、反応容器13の内壁の影響を受けるので、内壁からの距離を基体の上下面で適宜調整することにより、基体の微細孔への流体の進入を制御することが可能となる。 FIG. 6B shows a case where both surfaces (upper and lower surfaces) of the base body 20 are arranged so as to be exposed to the flow F in parallel with the flow direction of the fluid F. In this case, the substrate 20 may be arranged at a position off the center in the reaction vessel 13 [FIG. 6 (b) shows 1 from the inner wall of the reaction vessel 13 drawn on the upper side with respect to the diameter of the reaction vessel 13. / 3, a configuration example in which the position is 2/3 from the inner wall of the reaction vessel 13 drawn on the lower side]. By disposing the substrate 20 at a position away from the center in the reaction vessel 13, the flow of fluid flowing on both surfaces of the substrate can be changed. On the side where the distance from the inner wall of the reaction vessel 13 is narrow, the “flow” toward the fine holes becomes active. Since “flow” is affected by the inner wall of the reaction vessel 13, it is possible to control the entry of fluid into the micropores of the substrate by appropriately adjusting the distance from the inner wall on the upper and lower surfaces of the substrate.
 図6(c)と図6(d)は、基体20の両面(上下面)が流体Fの流れ方向と非平行を成して流れFに曝されるように配置された場合であり、特に、図6(d)は流体Fの流れ方向と基体20の第二面(上面)が垂直を成す場合を示している。図6(b)~図6(d)の配置とした場合には何れも、原料(流体F)は微細孔21へ「流れ」と「拡散」、両方によって輸送され、前者よりもより原料が輸送されると考えられる。この場合には、流体Fの流れ方向と対面する側に位置する基体の第二面(上面)と、反対側に位置する基体の第一面(裏面)において、基体の両面を流れる流体の流れ方を変えることができる。流体Fの流れ方向と対面する側に位置する基体の第二面(上面)では、微細孔に向けての「流れ」が活発になる。流体Fの流れ方向と対面する側に位置する基体の第二面(上面)との成す角度を適宜調整することにより、基体の微細孔への流体の進入を制御することが可能となる。 6C and 6D show a case where both surfaces (upper and lower surfaces) of the base body 20 are arranged so as to be exposed to the flow F in a non-parallel manner with respect to the flow direction of the fluid F. FIG. 6D shows a case where the flow direction of the fluid F and the second surface (upper surface) of the base 20 are perpendicular to each other. In any of the arrangements shown in FIGS. 6B to 6D, the raw material (fluid F) is transported to the micropores 21 by both “flow” and “diffusion”, so that the raw material is more than the former. Expected to be transported. In this case, the flow of the fluid flowing on both surfaces of the substrate on the second surface (upper surface) of the substrate positioned on the side facing the flow direction of the fluid F and on the first surface (back surface) of the substrate positioned on the opposite side. You can change the way. On the second surface (upper surface) of the substrate located on the side facing the flow direction of the fluid F, “flow” toward the micropores becomes active. By appropriately adjusting the angle formed by the second surface (upper surface) of the substrate located on the side facing the flow direction of the fluid F, it becomes possible to control the entry of the fluid into the micropores of the substrate.
 上述した考察に基づき本発明の第一実施形態では、微細孔21に厚さが均一で一様に導電性物質を堆積させることが可能である装置として、図2、図4および図5に示す構成の装置を考案した。
 図2、図4および図5に示した装置は何れも、基体20と流れ方向が垂直、つまり微細孔21と流れ方向が平行に配置されている。これに加えて、該基体の第二面20aから第一面20bに向けて、該基体20の微細孔21の中を前記流体が進行するとともに、前記基体の第一面20bからも前記流体が進行し、かつ、前記基体の第一面20bを支持するように構成した。これにより、微細孔21の内部へ原料をより効率的に輸送することができる。
Based on the above consideration, the first embodiment of the present invention is shown in FIGS. 2, 4, and 5 as an apparatus capable of depositing a conductive material uniformly and uniformly in the micropores 21. A device with a configuration was devised.
All of the apparatuses shown in FIGS. 2, 4 and 5 are arranged such that the flow direction is perpendicular to the base body 20, that is, the fine holes 21 and the flow direction are parallel to each other. In addition, the fluid travels in the micro holes 21 of the base 20 from the second surface 20a to the first surface 20b of the base, and the fluid also flows from the first surface 20b of the base. It was configured to proceed and to support the first surface 20b of the substrate. Thereby, the raw material can be transported more efficiently into the micropores 21.
 また、図2の装置(反応容器の第一空間αに連通するように配管状の導入部を反応容器に接続する場合)に比べて、図4(反応容器の第一空間α内に突出し、その導入口が前記基体の第二面の近傍に位置するように構成する場合)や図5(前記反応容器の前記第一空間内に突出し、その導入口が複数、前記基体の第二面の近傍に位置するように構成する場合)の装置では、基体の第二面に対する流体の流れの方向が、より正確に基体20と流れ方向を垂直に、すなわち、より正確に微細孔21と流れ方向が平行となるように、流体を微細孔内部に誘導することが可能となる。図4に比べて図5に示すように、流体の導入口が複数配置されるならば、誘導効果がさらに向上するのでより好ましい。 Compared to the apparatus of FIG. 2 (when a pipe-shaped introduction part is connected to the reaction vessel so as to communicate with the first space α of the reaction vessel), FIG. 4 (projects into the first space α of the reaction vessel, When the introduction port is configured to be located in the vicinity of the second surface of the substrate, FIG. 5 (projects into the first space of the reaction vessel, and there are a plurality of introduction ports of the second surface of the substrate. In the case of the apparatus in the case of being arranged in the vicinity), the flow direction of the fluid with respect to the second surface of the base is more accurately perpendicular to the base 20 and the flow direction, that is, the fine holes 21 and the flow direction are more accurately. It becomes possible to guide the fluid to the inside of the micropore so that they are parallel to each other. As shown in FIG. 5 as compared to FIG. 4, it is more preferable that a plurality of fluid inlets be arranged because the induction effect is further improved.
 つまり、本発明の第一実施形態では、基体20の第二面20aに向けて、前記流体Fが進行するように前記基体20を配置するとともに、基体20が微細な連通孔が内部に設けられた支持部材40に載置されるように構成しているので、基体上部と基体下部の圧力差が大きくかつ均一になり、微細孔の内部に流体を強制的に輸送させることができる。これにより本発明では、基体20に設けられた微細孔に厚さが均一で一様に導電性物質を堆積させることが可能である。 That is, in the first embodiment of the present invention, the base body 20 is arranged so that the fluid F advances toward the second surface 20a of the base body 20, and the base body 20 is provided with a fine communication hole. Further, since the pressure difference between the upper part of the base and the lower part of the base becomes large and uniform, the fluid can be forcibly transported into the micropores. As a result, in the present invention, it is possible to deposit the conductive material uniformly and uniformly in the micropores provided in the substrate 20.
 図2、図4および図5に示した装置においては何れも、基体20は、流体の流れ方向(吹きつけ方向)に対して、第二面20aが垂直となるように、基体支持具31に取り付けられている。また、基体20の第一面20bは全面に亘って支持されている。このように配された基体20の第二面20aに向けて、流体Fをノズル33から供給し、基体20の第二面20aに吹きつけている。これにより、第一空間αから第二空間βに向かう流体を強制的に微細孔内を流通させ、原料輸送を促進させることができる。また、基体20を安定に支持するために、図2、図4および図5に示すように、反応容器13を縦型とした(図2、図4および図5において、紙面下方が重力方向を表す)。すなわち、図2、図4および図5に示した装置では、反応容器13の第一空間α及び第二空間βにおいて、流体が流れる方向(実線の矢印)が何れも、重力方向となるように配置されている。 In any of the apparatuses shown in FIGS. 2, 4 and 5, the base 20 is attached to the base support 31 so that the second surface 20a is perpendicular to the fluid flow direction (spraying direction). It is attached. Further, the first surface 20b of the base body 20 is supported over the entire surface. The fluid F is supplied from the nozzle 33 toward the second surface 20a of the base body 20 arranged in this manner, and sprayed onto the second surface 20a of the base body 20. Thereby, the fluid which goes to the 2nd space (beta) from 1st space (alpha) can be forced to distribute | circulate the inside of a micropore, and raw material transport can be accelerated | stimulated. Further, in order to stably support the substrate 20, the reaction vessel 13 is a vertical type as shown in FIGS. 2, 4 and 5 (in FIGS. To express). That is, in the apparatus shown in FIGS. 2, 4, and 5, in the first space α and the second space β of the reaction vessel 13, the direction in which the fluid flows (solid arrow) is the direction of gravity. Has been placed.
 上記のような強制輸送法では、基体20の上下での差圧が、被覆性を促進させたと考えられる。この差圧は基体上部と基体下部とでは流体Fの流速が異なるため生ずるものである。 In the forced transportation method as described above, it is considered that the pressure difference between the upper and lower surfaces of the substrate 20 promoted the covering property. This differential pressure is generated because the flow rate of the fluid F is different between the upper part of the base and the lower part of the base.
 図4は、反応容器13において、基体20の周辺を拡大して示す図である。反応容器内13で述べると、流入から基体20の上面(第二面20a)までが低流速領域であり、基体20の下面(第一面20b)から流出までが高流速領域である。その結果として基板20の上下面で差圧が生じ、流体が微細孔内を流通したと考えられる。 FIG. 4 is an enlarged view showing the periphery of the substrate 20 in the reaction vessel 13. Describing in the reaction vessel 13, the low flow rate region is from the inflow to the upper surface (second surface 20 a) of the substrate 20, and the high flow rate region is from the lower surface (first surface 20 b) of the substrate 20 to the outflow. As a result, a differential pressure is generated between the upper and lower surfaces of the substrate 20, and the fluid is considered to have circulated in the micropores.
 さらに、本発明の第一実施形態の装置では、基体支持具31(支持部)において、該流体Fが導出される第二空間βへ、該流体Fが通過する微細な連通孔を内在している。
 第一実施形態では、微細な連通孔を内在する支持体として、ガラスフィルターを用いているが、これに限定されるものではない。なお、ガラスフィルターとはガラス繊維(グラスファイバー)を原料とするろ過用フィルターを取付けた実験用器具である。GF/Aは、変性蛋白質のろ過に最も広く使用される、効率の高い一般目的用ろ紙であり、大気汚染分析にも使用される。
 基体20の支持体としてガラスフィルターを用いることで、基体20とジグの隙間が小さくなり基体上下面での差圧が大きくなると考えられる。その結果、被覆性促進効果が期待できる。
Furthermore, in the apparatus according to the first embodiment of the present invention, the base support 31 (support portion) has a fine communication hole through which the fluid F passes into the second space β from which the fluid F is led out. Yes.
In the first embodiment, a glass filter is used as a support body having fine communication holes. However, the present invention is not limited to this. The glass filter is a laboratory instrument equipped with a filter for filtration made of glass fiber (glass fiber). GF / A is the most efficient general purpose filter paper that is most widely used for filtration of denatured proteins, and is also used for air pollution analysis.
By using a glass filter as a support for the substrate 20, it is considered that the gap between the substrate 20 and the jig is reduced and the differential pressure between the upper and lower surfaces of the substrate is increased. As a result, a coating promoting effect can be expected.
 本発明の第一実施形態では、図2、図4および図5に示すように、前記基体20の第一面20bを全面に亘って支持するとともに、基体支持具31に微細な連通孔を内在させ、流体が通過する誘導路とすることで、基体20にかかる負荷の軽減を図ることが可能である。これにより基体20の破損を防止し、配管の閉塞や機器の故障を防止することができる。 In the first embodiment of the present invention, as shown in FIGS. 2, 4, and 5, the first surface 20 b of the base 20 is supported over the entire surface, and fine communication holes are provided in the base support 31. The load applied to the base body 20 can be reduced by using the guide path through which the fluid passes. Thereby, breakage of the base 20 can be prevented, and blockage of the piping and equipment failure can be prevented.
 超臨界流体の媒質はCOの他、Ar、H、Xeなどの不活性ガス類や、CF 、CHF 、CClなどのハロゲンガス類、NH 、CHOH、HOなどの極性ガスを用いることができる。 The medium of the supercritical fluid is CO 2 , inert gases such as Ar, H 2 , and Xe, halogen gases such as CF 4 , CHF 3 , and CCl 4 , NH 3 , CH 3 OH, H 2 O, and the like The polar gas can be used.
 しかし、特に超臨界媒質を反応物質として用いない場合には、安全性、低環境負荷性、コスト、および溶媒能を有する点から、COが好ましい。
 COの臨界点は、臨界温度31.1℃. 臨界圧力7.382MPaと、他の超臨界流体に比べて低温・低圧力で超臨界状態になるため扱いやすい。またCOは大気中にも存在する無毒・不燃性の物質であり、反応溶媒として使用後、気体として排出する際、環境面の負荷とならない。
 さらに、他の薄膜形成法(蒸着法・スパッタ・CVD等)に比べて高拡散・ゼロ表面張力という性質から微細孔21への形成に優れる。この技術を応用すると、環境に配慮した有機溶媒として超微細なCu配線を作ることが可能である。
However, particularly when a supercritical medium is not used as a reactant, CO 2 is preferable from the viewpoints of safety, low environmental impact, cost, and solvent ability.
The critical point of CO 2 is easy to handle because it reaches a critical temperature of 31.1 ° C. and a critical pressure of 7.382 MPa, which is in a supercritical state at a lower temperature and lower pressure than other supercritical fluids. In addition, CO 2 is a non-toxic and non-flammable substance that also exists in the atmosphere, and does not become an environmental burden when discharged as a gas after being used as a reaction solvent.
Furthermore, compared with other thin film formation methods (evaporation method, sputtering, CVD, etc.), it is excellent in formation in the fine holes 21 due to the properties of high diffusion and zero surface tension. By applying this technology, it is possible to make ultrafine Cu wiring as an environmentally friendly organic solvent.
 前記流体には、添加ガスとして、還元剤がさらに溶解されているものを用いることが望ましい。還元剤を溶解することにより、微細孔への流体の進入がさらに促進される。本発明では、還元剤としてHを用いているが、還元剤としては、H以外に、メタノール等が挙げられる。 For the fluid, it is desirable to use an additive gas in which a reducing agent is further dissolved. By dissolving the reducing agent, the entry of fluid into the micropores is further promoted. In the present invention, although with H 2 as the reducing agent, as the reducing agent, in addition to H 2, methanol, and the like.
 反応圧力としては、特に限定されるものではないが、媒質の臨界点以上(COの場合、7.4MPa以上)であればよく、原料を溶解する能力(溶媒能)があれば亜臨界状態でもかまわない。COの場合には溶媒能を発揮させるにはその圧力を6MPa以上とすることが好ましい。例えば10~15MPaとする。 The reaction pressure, is not particularly limited, (in the case of CO 2, more than 7.4 MPa) above the critical point of the medium may be a subcritical state if the ability to dissolve the starting material (ability solvent) But it doesn't matter. In the case of CO 2 , the pressure is preferably 6 MPa or more in order to exert the solvent ability. For example, 10 to 15 MPa.
 また、反応温度としては、原料である金属錯体や還元剤の種類によって最適化すればよく、特に限定されるものではないが、例えば原料である金属錯体の融点を下限とし、集積回路配線のプロセス許容温度400℃を上限とし、その範囲で決定する。温度上昇につれ、膜厚は厚くなるが、孔内への深さは減少し、不均一になる傾向がある。 The reaction temperature may be optimized according to the type of the metal complex or reducing agent as the raw material, and is not particularly limited. For example, the melting point of the metal complex as the raw material is the lower limit, and the integrated circuit wiring process The upper limit is an allowable temperature of 400 ° C., and the temperature is determined within that range. As the temperature rises, the film thickness increases, but the depth into the hole tends to decrease and become non-uniform.
 基板に向けて吹きつける流体の速度としては、特に限定されるものではないが、流速が遅すぎると、流体を確実に微細孔に送り込むことが難しい。一方、流速が高すぎると、基体に強い圧力がかかり、基体が損傷する虞がある。 The speed of the fluid sprayed toward the substrate is not particularly limited, but if the flow rate is too slow, it is difficult to reliably feed the fluid into the fine holes. On the other hand, if the flow rate is too high, a strong pressure is applied to the substrate, which may damage the substrate.
 特に、流体の媒質であるCOの流量は、1.0m1/min以上であることが好ましい。ポンプの圧力変動や、低圧のHガス添加時の圧力低下の影響を抑制するために最低でもCOの流量は、1.0m1/min必要である。
 特に、流体の媒質であるCOの流量は、線速度で換算して1cm/min以上であることが好ましい。ここで、線速度は、たとえばポンプ6で送る液体COの体積流量を反応容器の断面積で除して求めることができる。ポンプの圧力変動や、低圧のHガス添加時の圧力低下の影響を抑制するために、最低でもその値が必要である。
In particular, the flow rate of CO 2 that is a fluid medium is preferably 1.0 m1 / min or more. The flow rate of CO 2 needs to be 1.0 m 1 / min at a minimum in order to suppress the influence of the pressure fluctuation of the pump and the pressure drop when adding low-pressure H 2 gas.
In particular, the flow rate of CO 2 that is a fluid medium is preferably 1 cm / min or more in terms of linear velocity. Here, the linear velocity can be obtained, for example, by dividing the volume flow rate of the liquid CO 2 sent by the pump 6 by the cross-sectional area of the reaction vessel. In order to suppress the influence of the pressure fluctuation of the pump and the pressure drop at the time of adding the low-pressure H 2 gas, the value is required at the minimum.
 また、反応時間としては、特に限定されるものではなく、所望の膜厚になるように適宜決めればよい。 Further, the reaction time is not particularly limited, and may be appropriately determined so as to obtain a desired film thickness.
 図1に示した本発明の第一実施形態の装置を用いて、基体20に設けられた微細孔21の内壁へ導電性物質を堆積させる手順について説明する。
(1)まず、基体20を反応容器13に封入し、反応容器13を装置のラインに接続する。このとき、図2に示すように、流体Fの流れ方向に対して前記基体20の第二面20aを垂直とし、かつ、該基体20の第二面20aに向けて、前記流体Fが進行するように前記基体20の第一面20bを全面に亘って支持する基体支持具31に取り付ける。基体支持具31には、前記第二空間βへ該流体Fが、微細な連通孔が内在されている。
(2)次に、マントルヒーター11、恒温槽15以外の機器を起動させ、COボンベ2、Hボンベ2を開栓する状態で反応容器13からの漏れがないかを確認する(リークチェック)。
(3)恒温槽15、マントルヒーター11を起動させ、設定温度まで加熱する。
A procedure for depositing a conductive material on the inner wall of the fine hole 21 provided in the base 20 using the apparatus of the first embodiment of the present invention shown in FIG. 1 will be described.
(1) First, the substrate 20 is sealed in the reaction vessel 13, and the reaction vessel 13 is connected to the line of the apparatus. At this time, as shown in FIG. 2, the fluid F advances toward the second surface 20a of the base body 20 with the second surface 20a of the base body 20 perpendicular to the flow direction of the fluid F. As described above, the first surface 20b of the base body 20 is attached to the base body support tool 31 that supports the entire surface. The base support 31 has a fine communicating hole for the fluid F in the second space β.
(2) Next, devices other than the mantle heater 11 and the thermostat 15 are activated, and it is checked whether there is any leakage from the reaction vessel 13 with the CO 2 cylinder 2 and the H 2 cylinder 2 opened (leak check). ).
(3) The thermostat 15 and the mantle heater 11 are activated and heated to the set temperature.
(4)原料容器8において、導電性物質の原料(Cu(dibm))、アセトンを使用分計量し、混合する。
(5)設定温度で安定したら(4)を原料送液ポンプ9で流し、所定堆積時間の測定開始とする。流体は、ノズルから基体の第二面に向けて吹きつけられる。
(6)所定堆積時間の間、H圧力調整器3の圧力や原料が確実に送液されているかなど、各装置が正常に作動しているか定期的に確認する。
(4) In the raw material container 8, the conductive material (Cu (divm) 2 ) and acetone are weighed and mixed.
(5) When the temperature is stabilized at the set temperature, (4) is flowed by the raw material feed pump 9 to start measurement of the predetermined deposition time. The fluid is sprayed from the nozzle toward the second surface of the substrate.
(6) Periodically confirm whether each device is operating normally, such as whether the pressure of the H 2 pressure regulator 3 and the raw material are reliably fed during a predetermined deposition time.
(7)所定堆積時間に達したら、原料送液ポンプ9、還元剤H供給のシーケンサを停止し、Hボンベ1のコックを閉栓.CO送液ポンプ6は30分程度作動させる。
(8)恒温槽15、マントルヒーター11の加熱を停止し、50℃程度まで自然冷却する。
(9)COボンベ2を閉栓し、背圧調整器14で装置内のCOを排気する。
(10)反応容器13をラインから外し、全ての機器の電源を切る。
(11)最後に、反応容器13から基体20を取り出す。
(7) When the predetermined deposition time is reached, the raw material feed pump 9 and the reducing agent H 2 supply sequencer are stopped and the cock of the H 2 cylinder 1 is closed. The CO 2 liquid feed pump 6 is operated for about 30 minutes.
(8) Stop the heating of the thermostat 15 and the mantle heater 11 and naturally cool to about 50 ° C.
(9) The CO 2 cylinder 2 is closed, and the CO 2 in the apparatus is exhausted by the back pressure regulator 14.
(10) Remove the reaction vessel 13 from the line and turn off the power to all the devices.
(11) Finally, the substrate 20 is taken out from the reaction vessel 13.
 このように本発明の第一実施形態では、前記流体の流れ方向に対して前記基体20の第二面20aを垂直とし、かつ、該基体20の第二面20aに向けて、前記流体Fが進行するように前記基体20を配置することで、微細孔21の内部に流体を強制的に輸送させることができ、微細孔21に厚さが均一で一様に導電性物質を堆積させることが可能である。 Thus, in the first embodiment of the present invention, the second surface 20a of the base body 20 is perpendicular to the fluid flow direction, and the fluid F is directed toward the second surface 20a of the base body 20. By disposing the base body 20 so as to proceed, the fluid can be forcibly transported into the micropores 21 and the conductive material can be uniformly deposited in the micropores 21 with a uniform thickness. Is possible.
 さらに、本発明の第一実施形態では、基体支持具31において、前記第二空間βへ該流体が通過する、微細な連通孔が内在されているので、基体20のジグの隙間が小さくなり基体上下面での差圧が大きくなると考えられる。その結果、より確実に微細孔21に導電性物質を堆積させることが可能である。
 また、基体支持具31に微細な連通孔が内在されているとともに、基体20の第一面20bを全面に亘って支持することで、基体20にかかる負荷の軽減を図ることが可能である。これにより基体20の破損を防止し、配管の閉塞や機器の故障を防止することができる。
Furthermore, in the first embodiment of the present invention, the base support tool 31 has a minute communication hole through which the fluid passes into the second space β. It is considered that the differential pressure between the upper and lower surfaces increases. As a result, it is possible to deposit the conductive material in the fine holes 21 more reliably.
In addition, a fine communication hole is provided in the base support 31 and the first surface 20b of the base 20 is supported over the entire surface, whereby the load on the base 20 can be reduced. Thereby, breakage of the base 20 can be prevented, and blockage of the piping and equipment failure can be prevented.
 なお、上述した第一実施形態では、超臨界流体を流体の媒質として用いた場合を例に挙げて説明したが、本発明はこれに限定されるものではなく、亜臨界流体を流体の媒質として用いた場合にも、同様に適用可能である。 In the first embodiment described above, the case where the supercritical fluid is used as the fluid medium has been described as an example. However, the present invention is not limited to this, and the subcritical fluid is used as the fluid medium. The same applies when used.
[第二実施形態]
 以下、本発明の第二実施形態の装置及び方法の好適な一実施形態について説明する。
[Second Embodiment]
Hereinafter, a preferred embodiment of the apparatus and method of the second embodiment of the present invention will be described.
図7は、本発明の第二実施形態に係る装置の一構成例を模式的に示す図である。
 この装置は、フロー式薄膜堆積装置であり、Hボンベ1と、COボンベ2と、圧力調整器3と、供給バルブ4と、ミキサ5と、送液ポンプ6と、冷却器7と、原料容器8と、原料送液ポンプ9と、手前バルブ10と、マントルヒーター11と、プレヒート配管12と、反応容器13と、背圧調整器(BPR)14と、恒温槽15を備える。
 この装置では、一定圧力・流量のCOを超臨界状態又は亜臨界流体で連続的に反応容器13内に供給し、還元剤Hにより、基体に設けられた微細孔の内壁に導電性物質(例えばCu)を析出・堆積させ、貫通電極を形成する。
FIG. 7 is a diagram schematically illustrating a configuration example of an apparatus according to the second embodiment of the present invention.
This apparatus is a flow-type thin film deposition apparatus, and includes an H 2 cylinder 1, a CO 2 cylinder 2, a pressure regulator 3, a supply valve 4, a mixer 5, a liquid feed pump 6, a cooler 7, A raw material container 8, a raw material feed pump 9, a front valve 10, a mantle heater 11, a preheat pipe 12, a reaction container 13, a back pressure regulator (BPR) 14, and a constant temperature bath 15 are provided.
In this apparatus, CO 2 at a constant pressure and flow rate is continuously supplied into the reaction vessel 13 in a supercritical state or a subcritical fluid, and a conductive material is formed on the inner wall of the fine holes provided in the substrate by the reducing agent H 2. (For example, Cu) is deposited and deposited to form a through electrode.
 本発明の第二実施形態においては、Hボンベ1には、還元剤であるHガスが入っており、Hガスは、圧力調整器3、供給バルブ4を通じてミキサ5へと導入される。
 COボンベ2には、超臨界流体の媒質であるCOガスが入っており、COガスはCOボンベ2から冷却器7で液化された後、送液ポンプ8で昇圧され、ミキサ5へと導入される。
 HガスとCOガスは、ミキサ5にて混合され、反応容器13に導入される。
In the second embodiment of the present invention, the H 2 cylinder 1 contains H 2 gas as a reducing agent, and the H 2 gas is introduced into the mixer 5 through the pressure regulator 3 and the supply valve 4. .
The CO 2 cylinder 2 contains CO 2 gas which is a medium of supercritical fluid. The CO 2 gas is liquefied from the CO 2 cylinder 2 by the cooler 7 and then pressurized by the liquid feed pump 8, and the mixer 5 Introduced into
H 2 gas and CO 2 gas are mixed by the mixer 5 and introduced into the reaction vessel 13.
 本発明の第二実施形態においては、原料容器8は、原料となる導電性物質の金属錯体が入っている。第二実施形態では、ビスイソブチリルメタナト銅(Cu(dibm))を用いた場合を例に挙げて説明しているが、これに限定されるものではない。
 金属錯体は原料送液ポンプ9を通じて反応容器13に導入される。原料の供給の制御は反応容器のガス供給口に近接して設けられている手前バルブ10により行われる。
In the second embodiment of the present invention, the raw material container 8 contains a metal complex of a conductive material as a raw material. In the second embodiment, the case of using bisisobutyryl methanato copper (Cu (divm) 2 ) is described as an example, but the present invention is not limited to this.
The metal complex is introduced into the reaction vessel 13 through the raw material feed pump 9. The supply of the raw material is controlled by a front valve 10 provided close to the gas supply port of the reaction vessel.
 反応容器13は、例えばステンレス製の耐圧・耐熱容器から構成されることが好ましいが、これに限定されるものではない。この反応容器13は、例えばオートクレーブ(加圧脱泡装置)を加工することで作製できる。
 反応容器13の手前にはプレヒート配管12が必要に応じて設けられており、さらに、プレヒート配管12及び反応容器13にはマントルヒーター11、恒温層15が設けられ、これらにより流体を所定の温度に加熱・保持されるとともに、温度の調節ができる。
 反応容器13の下流には、背圧調整器(BPR)14が配されている。反応容器13内で反応が終了した後、反応容器13内の超臨界流体は、背圧調整器14を通じて排気される。
The reaction vessel 13 is preferably composed of, for example, a pressure- and heat-resistant vessel made of stainless steel, but is not limited thereto. This reaction vessel 13 can be produced, for example, by processing an autoclave (pressure defoaming device).
A preheat pipe 12 is provided in front of the reaction vessel 13 as necessary. Further, a mantle heater 11 and a thermostatic layer 15 are provided in the preheat pipe 12 and the reaction vessel 13 so that the fluid is brought to a predetermined temperature. The temperature can be adjusted while being heated and held.
A back pressure regulator (BPR) 14 is disposed downstream of the reaction vessel 13. After the reaction is completed in the reaction vessel 13, the supercritical fluid in the reaction vessel 13 is exhausted through the back pressure regulator 14.
 反応容器13の内部には、基板支持具が設けられ、この基板支持具に基板を設置する。
 基体20としては、例えばシリコンなどの半導体基板やガラス基板が用いられる。また、基体20には微細孔21が設けられている。
A substrate support is provided inside the reaction vessel 13, and the substrate is placed on the substrate support.
As the base body 20, for example, a semiconductor substrate such as silicon or a glass substrate is used. The base body 20 is provided with fine holes 21.
 このような第二実施形態の装置において、超臨界流体に金属錯体を溶解してなる流体を反応容器13へ導入し、該反応容器13内において連続的に特定の方向へ移動する該流体の中に、平板状の基体20を配して、該基体20に設けられた微細孔21の内壁へ導電性物質を形成する。
 そして本発明の第二実施形態の装置は、前記特定の方向に対して前記基体20の両面を非平行とし、かつ、該基体20の両面に沿って、前記流体が移動するように前記基体20を配置したことを特徴とする。
In the apparatus according to the second embodiment, a fluid obtained by dissolving a metal complex in a supercritical fluid is introduced into the reaction vessel 13, and the fluid continuously moving in a specific direction in the reaction vessel 13. In addition, a flat substrate 20 is disposed, and a conductive substance is formed on the inner wall of the fine hole 21 provided in the substrate 20.
In the apparatus according to the second embodiment of the present invention, both sides of the base 20 are made non-parallel to the specific direction, and the base 20 is moved so that the fluid moves along both sides of the base 20. It is characterized by arranging.
 第二実施形態においても、第一実施形態と同様に図6を用いて、微細孔21を有する基体20と、反応容器13内の流体Fの流れ方向との位置関係を模式的に示すことができる。第一実施形態の説明と重複するため、以下省略する。 Also in the second embodiment, similarly to the first embodiment, the positional relationship between the base body 20 having the fine holes 21 and the flow direction of the fluid F in the reaction vessel 13 is schematically shown using FIG. it can. Since it overlaps with description of 1st embodiment, it abbreviate | omits below.
 本発明の第二実施形態においては、微細孔21に厚さが均一で一様に導電性物質を堆積させることが可能である。特に、基体20と流れ方向が垂直、つまり微細孔21と流れ方向が平行であることが好ましい。これにより、微細孔21の内部へ原料をより効率的に輸送することができる。
 また、基体20の両面に沿って、前記流体が移動するように基体20を配置することで、微細孔21が貫通孔の場合、微細孔21の両側から原料を輸送することができ、微細孔21の内部へ導電性物質をより効率的に堆積させることができる。
In the second embodiment of the present invention, it is possible to deposit the conductive material uniformly in the fine holes 21 with a uniform thickness. In particular, it is preferable that the flow direction is perpendicular to the base body 20, that is, the micro holes 21 are parallel to the flow direction. Thereby, the raw material can be transported more efficiently into the micropores 21.
In addition, by arranging the base body 20 so that the fluid moves along both surfaces of the base body 20, when the microhole 21 is a through hole, the raw material can be transported from both sides of the microhole 21. The conductive material can be deposited more efficiently in the inside of 21.
 第二実施形態においても、超臨界流体の媒質はCOの他、Ar、H、Xeなどの不活性ガス類や、CF 、CHF 、CClなどのハロゲンガス類、NH 、CHOH、HOなどの極性ガスを用いることができる。 Also in the second embodiment, the medium of the supercritical fluid is CO 2 , inert gases such as Ar, H 2 , and Xe, halogen gases such as CF 4 , CHF 3 , and CCl 4 , NH 3 , CH Polar gases such as 3 OH and H 2 O can be used.
 しかし、特に超臨界媒質を反応物質として用いない場合には、安全性、低環境負荷性、コスト、および溶媒能を有する点から、COが好ましい。
 COの臨界点は、臨界温度31.1℃. 臨界圧力7.382MPaと、他の超臨界流体に比べて低温・低圧力で超臨界状態になるため扱いやすい。またCOは大気中にも存在する無毒・不燃性の物質であり、反応溶媒として使用後、気体として排出する際、環境面の負荷とならない。
 さらに、他の薄膜形成法(蒸着法・スパッタ・CVD等)に比べて高拡散・ゼロ表面張力という性質から微細孔21への形成に優れる。この技術を応用すると、環境に配慮した有機溶媒として超微細なCu配線を作ることが可能である。
However, particularly when a supercritical medium is not used as a reactant, CO 2 is preferable from the viewpoints of safety, low environmental impact, cost, and solvent ability.
The critical point of CO 2 is easy to handle because it reaches a critical temperature of 31.1 ° C. and a critical pressure of 7.382 MPa, which is in a supercritical state at a lower temperature and lower pressure than other supercritical fluids. In addition, CO 2 is a non-toxic and non-flammable substance that also exists in the atmosphere, and does not become an environmental burden when discharged as a gas after being used as a reaction solvent.
Furthermore, compared with other thin film formation methods (evaporation method, sputtering, CVD, etc.), it is excellent in formation in the fine holes 21 due to the properties of high diffusion and zero surface tension. By applying this technology, it is possible to make ultrafine Cu wiring as an environmentally friendly organic solvent.
 前記流体には、添加ガスとして、還元剤がさらに溶解されているものを用いることが望ましい。還元剤を溶解することにより、微細孔への流体の進入がさらに促進される。 It is desirable to use a fluid in which a reducing agent is further dissolved as the additive gas. By dissolving the reducing agent, the entry of fluid into the micropores is further promoted.
 反応圧力としては、特に限定されるものではないが、媒質の臨界点以上(COの場合、7.4MPa以上)であればよく、原料を溶解する能力(溶媒能)があれば亜臨界状態でもかまわない。COの場合には溶媒能を発揮させるにはその圧力を6MPa以上とすることが好ましい。例えば10~15MPaとする。 The reaction pressure, is not particularly limited, (in the case of CO 2, more than 7.4 MPa) above the critical point of the medium may be a subcritical state if the ability to dissolve the starting material (ability solvent) But it doesn't matter. In the case of CO 2 , the pressure is preferably 6 MPa or more in order to exert the solvent ability. For example, 10 to 15 MPa.
 また、反応温度としては、原料である金属錯体や還元剤の種類によって最適化すればよく、特に限定されるものではないが、例えば原料である金属錯体の融点を下限とし、集積回路配線のプロセス許容温度400℃を上限とし、その範囲で決定する。温度上昇につれ、膜厚は厚くなるが、孔内への深さは減少し、不均一になる傾向がある。 The reaction temperature may be optimized according to the type of the metal complex or reducing agent as the raw material, and is not particularly limited. For example, the melting point of the metal complex as the raw material is the lower limit, and the integrated circuit wiring process The upper limit is an allowable temperature of 400 ° C., and the temperature is determined within that range. As the temperature rises, the film thickness increases, but the depth into the hole tends to decrease and become non-uniform.
 また、反応時間は、特に限定されるものではなく、所望の膜厚になるように適宜決めればよい。 Further, the reaction time is not particularly limited, and may be appropriately determined so as to obtain a desired film thickness.
 図7に示した装置を用いて、基体20に設けられた微細孔21の内壁へ導電性物質を堆積させる手順について説明する。
(1)まず、基体20を反応容器13に封入し、反応容器13を装置のラインに接続する。このとき、流体の流れ方向に対して基体20の両面を非平行とし、かつ、該基体20の両面に沿って、流体が移動するように前記基体20を配置する。
(2)次に、マントルヒーター11、恒温槽15以外の機器を起動させ、COボンベ2、Hボンベ2を開栓する状態で反応容器13からの漏れがないかを確認する(リークチェック)。
(3)恒温槽15、マントルヒーター11を起動させ、設定温度まで加熱する。
A procedure for depositing a conductive substance on the inner wall of the fine hole 21 provided in the substrate 20 will be described using the apparatus shown in FIG.
(1) First, the substrate 20 is sealed in the reaction vessel 13, and the reaction vessel 13 is connected to the line of the apparatus. At this time, the base body 20 is disposed so that both surfaces of the base body 20 are not parallel to the fluid flow direction and the fluid moves along both surfaces of the base body 20.
(2) Next, devices other than the mantle heater 11 and the thermostat 15 are activated, and it is checked whether there is any leakage from the reaction vessel 13 with the CO 2 cylinder 2 and the H 2 cylinder 2 opened (leak check). ).
(3) The thermostat 15 and the mantle heater 11 are activated and heated to the set temperature.
(4)原料容器8において、導電性物質の原料(Cu(dibm))、アセトンを使用分計量し、混合する。
(5)設定温度に安定した後、(4)を原料送液ポンプ9で流し、所定堆積時間の測定開始とする。
(6)所定堆積時間の間、H圧力調整器3の圧力や原料が確実に送液されているかなど、各装置が正常に作動しているか定期的に確認する。
(4) In the raw material container 8, the conductive material (Cu (divm) 2 ) and acetone are weighed and mixed.
(5) After stabilizing at the set temperature, (4) is flowed by the raw material feed pump 9 to start measurement of a predetermined deposition time.
(6) Periodically confirm whether each device is operating normally, such as whether the pressure of the H 2 pressure regulator 3 and the raw material are reliably fed during a predetermined deposition time.
(7)所定堆積時間に達したら、原料送液ポンプ9、還元剤H供給のシーケンサを停止し、Hボンベ1のコックを閉栓.CO送液ポンプ6は30分程度作動させた。
(8)恒温槽15、マントルヒーター11の加熱を停止し、50℃程度まで自然冷却する。
(9)COボンベ2を閉栓し、背圧調整器14で装置内のCOを排気する。
(10)反応容器13をラインから外し、全ての機器の電源を切る。
(11)最後に、反応容器13から基体20を取り出す。
(7) When the predetermined deposition time is reached, the raw material feed pump 9 and the reducing agent H 2 supply sequencer are stopped and the cock of the H 2 cylinder 1 is closed. The CO 2 liquid feed pump 6 was operated for about 30 minutes.
(8) Stop the heating of the thermostat 15 and the mantle heater 11 and naturally cool to about 50 ° C.
(9) The CO 2 cylinder 2 is closed, and the CO 2 in the apparatus is exhausted by the back pressure regulator 14.
(10) Remove the reaction vessel 13 from the line and turn off the power to all the devices.
(11) Finally, the substrate 20 is taken out from the reaction vessel 13.
 このように第二実施形態の発明では、流体の流れ方向に対して基体20の両面を非平行に配置することで、微細孔21に厚さが均一で一様に導電性物質を堆積させることが可能である。特に、基体20と流れ方向が垂直、つまり微細孔21と流れ方向が平行であることが好ましい。これにより、微細孔21の内部へ原料をより効率的に輸送することができる。 As described above, in the invention of the second embodiment, the conductive material is deposited uniformly and uniformly in the micropores 21 by disposing both surfaces of the base body 20 non-parallel to the fluid flow direction. Is possible. In particular, the base 20 and the flow direction are preferably perpendicular, that is, the micro holes 21 and the flow direction are parallel. Thereby, the raw material can be transported more efficiently into the micropores 21.
 なお、上述した第二実施形態では、超臨界流体を流体の媒質として用いた場合を例に挙げて説明したが、本発明はこれに限定されるものではなく、亜臨界流体を流体の媒質として用いた場合にも、同様に適用可能である。 In the second embodiment described above, the case where a supercritical fluid is used as a fluid medium has been described as an example. However, the present invention is not limited to this, and a subcritical fluid is used as a fluid medium. The same applies when used.
 [第三実施形態]
以下、本発明の第三実施形態の装置及び方法について説明する。
[Third embodiment]
The apparatus and method according to the third embodiment of the present invention will be described below.
 第三実施形態の装置は、第一実施形態の図1の装置と同様の構成のものを用いて説明できる。以下では、本発明の第三実施形態の特徴的な部分について説明する。 The apparatus of the third embodiment can be described using the same configuration as the apparatus of FIG. 1 of the first embodiment. Below, the characteristic part of 3rd embodiment of this invention is demonstrated.
 図8は、第三実施形態における、反応容器13の内部構成を模式的に示す図である。
 反応容器13の内部には、基体支持具31が設けられており、この基体支持具31に基板20を設置する。
 基体20としては、例えばシリコンなどの半導体基板やガラス基板が用いられる。また、基体20には第二面から第一面に向けて貫通してなる微細孔21が設けられている。
FIG. 8 is a diagram schematically showing the internal configuration of the reaction vessel 13 in the third embodiment.
A substrate support 31 is provided inside the reaction vessel 13, and the substrate 20 is placed on the substrate support 31.
As the base body 20, for example, a semiconductor substrate such as silicon or a glass substrate is used. The base body 20 is provided with a fine hole 21 penetrating from the second surface toward the first surface.
 第三実施形態施形態の装置においては、超臨界流体に金属錯体を溶解してなる流体を反応容器13へ導入し、該反応容器13内において連続的に特定の方向へ移動する該流体の中に、平板状の基体20を配して、該基体20に設けられた微細孔21の内壁へ導電性物質を形成する。
 そして第三実施形態の装置は、反応容器13が前記流体が導入される第一空間αと該流体が導出される第二空間βとを備えており、前記第一空間に導入された前記流体が移動する特定の方向に対して前記基体20の第二面20aを垂直とし、かつ、該基体の第二面20aから第一面20bに向けて、該基体20の微細孔21の中を前記流体が進行するように、前記基体の第一面20bを支持したことを特徴とする。
In the apparatus of the third embodiment, a fluid obtained by dissolving a metal complex in a supercritical fluid is introduced into the reaction vessel 13, and the fluid that continuously moves in a specific direction in the reaction vessel 13 is contained in the fluid. In addition, a flat substrate 20 is disposed, and a conductive substance is formed on the inner wall of the fine hole 21 provided in the substrate 20.
In the apparatus of the third embodiment, the reaction vessel 13 includes a first space α into which the fluid is introduced and a second space β into which the fluid is derived, and the fluid introduced into the first space. The second surface 20a of the substrate 20 is perpendicular to the specific direction in which the substrate 20 moves, and the second surface 20a of the substrate 20 is directed from the second surface 20a toward the first surface 20b in the fine holes 21 of the substrate 20. The first surface 20b of the base is supported so that the fluid proceeds.
第三実施形態においても、第一実施形態と同様に図6を用いて、微細孔21を有する基体20と、反応容器13内の流体Fの流れ方向との位置関係を模式的に示すことができる。第一実施形態の説明と重複するため、以下省略する。 In the third embodiment as well, the positional relationship between the base 20 having the fine holes 21 and the flow direction of the fluid F in the reaction vessel 13 can be schematically shown using FIG. 6 as in the first embodiment. it can. Since it overlaps with description of 1st embodiment, it abbreviate | omits below.
 第三実施形態では、微細孔21に厚さが均一で一様に導電性物質を堆積させることが可能である装置として、図8、図10および図11に示す構成の装置を考案した。
 図8、図10および図11に示した装置は何れも、基体20と流れ方向が垂直、つまり微細孔21と流れ方向が平行に配置されている。これに加えて、該基体の第二面20aから第一面20bに向けて、該基体20の微細孔21の中を前記流体が進行するように、前記基体の第一面20bを支持するように構成した。これにより、微細孔21の内部へ原料をより効率的に輸送することができる。
In the third embodiment, an apparatus having the configuration shown in FIGS. 8, 10, and 11 has been devised as an apparatus capable of depositing a conductive material uniformly and uniformly in the micro holes 21. FIG.
8, 10, and 11 are all arranged so that the flow direction is perpendicular to the base body 20, that is, the fine holes 21 are parallel to the flow direction. In addition, the first surface 20b of the substrate is supported so that the fluid travels through the micro holes 21 of the substrate 20 from the second surface 20a of the substrate toward the first surface 20b. Configured. Thereby, the raw material can be transported more efficiently into the micropores 21.
 また、図8の装置(反応容器の第一空間αに連通するように配管状の導入部を反応容器に接続する場合)に比べて、図10(反応容器の第一空間α内に突出し、その導入口が前記基体の第二面の近傍に位置するように構成する場合)や図11(前記反応容器の前記第一空間内に突出し、その導入口が複数、前記基体の第二面の近傍に位置するように構成する場合)の装置では、基体の第二面に対する流体の流れの方向が、より正確に基体20と流れ方向を垂直に、すなわち、より正確に微細孔21と流れ方向が平行となるように、流体を微細孔内部に誘導することが可能となる。図10に比べて図11に示すように、流体の導入口が複数配置されるならば、誘導効果がさらに向上するのでより好ましい。さらに、図11に示した装置では、該基体の面積が大きく、微細孔が該基体上に多数分布している場合であっても、これら複数の微細孔内部に均一に流体を導入する際にも効果的である。 Compared with the apparatus of FIG. 8 (when a pipe-shaped introduction part is connected to the reaction vessel so as to communicate with the first space α of the reaction vessel), FIG. 10 (projects into the first space α of the reaction vessel, When the introduction port is configured to be located in the vicinity of the second surface of the substrate, FIG. 11 (projects into the first space of the reaction vessel, and there are a plurality of introduction ports of the second surface of the substrate. In the case of the apparatus in the case of being arranged in the vicinity), the flow direction of the fluid with respect to the second surface of the base is more accurately perpendicular to the base 20 and the flow direction, that is, the fine holes 21 and the flow direction are more accurately. It becomes possible to guide the fluid to the inside of the micropore so that they are parallel to each other. As shown in FIG. 11 as compared with FIG. 10, it is more preferable that a plurality of fluid inlets be arranged because the induction effect is further improved. Furthermore, in the apparatus shown in FIG. 11, even when the area of the base is large and a large number of micropores are distributed on the base, the fluid is introduced uniformly into the plurality of micropores. Is also effective.
 つまり、本発明の第三実施形態では、基体20の第二面20aに向けて、前記流体Fが進行するように前記基体20を配置しているので、微細孔の内部に流体を強制的に輸送させることができる。これにより本発明の第三実施形態では、基体20に設けられた微細孔に厚さが均一で一様に導電性物質を堆積させることが可能である。 That is, in the third embodiment of the present invention, the base body 20 is arranged so that the fluid F advances toward the second surface 20a of the base body 20, so that the fluid is forcibly forced into the fine holes. Can be transported. As a result, in the third embodiment of the present invention, it is possible to deposit the conductive material uniformly and uniformly in the fine holes provided in the substrate 20.
 図8、図10および図11に示した装置においては何れも、基体20は、流体の流れ方向(吹きつけ方向)に対して、第二面20aが垂直となるように、基体支持具31に取り付けられている。また、基体20の第一面20bはOリングからなる支持部材32を用いてシールされている。このように配された基体20の第二面20aに向けて、流体Fをノズル33から供給し、基体20の第二面20aに吹きつけている。これにより、第一空間αから第二空間βに向かう流体を強制的に微細孔内を流通させ、原料輸送を促進させることができる。
また、基体20を安定に支持するために、図8、図10および図11に示すように、反応容器13を縦型とした(図8、図10および図11において、紙面下方が重力方向を表す)。すなわち、図8、図10および図11に示した装置では、反応容器13の第一空間α及び第二空間βにおいて、流体が流れる方向(実線の矢印)が何れも、重力方向となるように配置されている。
In any of the apparatuses shown in FIGS. 8, 10, and 11, the base body 20 is attached to the base body support 31 so that the second surface 20a is perpendicular to the fluid flow direction (the spraying direction). It is attached. The first surface 20b of the base body 20 is sealed using a support member 32 made of an O-ring. The fluid F is supplied from the nozzle 33 toward the second surface 20a of the base body 20 arranged in this manner and sprayed onto the second surface 20a of the base body 20. Thereby, the fluid which goes to the 2nd space (beta) from the 1st space (alpha) can be forced to distribute | circulate the inside of a micropore, and raw material transport can be accelerated | stimulated.
Further, in order to stably support the substrate 20, the reaction vessel 13 is a vertical type as shown in FIGS. 8, 10, and 11 (in FIGS. To express). That is, in the apparatus shown in FIG. 8, FIG. 10, and FIG. 11, in the first space α and the second space β of the reaction vessel 13, the direction in which the fluid flows (solid arrow) is the direction of gravity. Has been placed.
 超臨界流体の媒質はCOの他、Ar、H、Xeなどの不活性ガス類や、CF 、CHF 、CClなどのハロゲンガス類、NH 、CHOH、HOなどの極性ガスを用いることができる。 The medium of the supercritical fluid is CO 2 , inert gases such as Ar, H 2 , and Xe, halogen gases such as CF 4 , CHF 3 , and CCl 4 , NH 3 , CH 3 OH, H 2 O, and the like The polar gas can be used.
 しかし、特に超臨界媒質を反応物質として用いない場合には、安全性、低環境負荷性、コスト、および溶媒能を有する点から、COが好ましい。
 COの臨界点は、臨界温度31.1℃. 臨界圧力7.382MPaと、他の超臨界流体に比べて低温・低圧力で超臨界状態になるため扱いやすい。またCOは大気中にも存在する無毒・不燃性の物質であり、反応溶媒として使用後、気体として排出する際、環境面の負荷とならない。
 さらに、他の薄膜形成法(蒸着法・スパッタ・CVD等)に比べて高拡散・ゼロ表面張力という性質から微細孔21への形成に優れる。この技術を応用すると、環境に配慮した有機溶媒として超微細なCu配線を作ることが可能である。
However, particularly when a supercritical medium is not used as a reactant, CO 2 is preferable from the viewpoints of safety, low environmental impact, cost, and solvent ability.
The critical point of CO 2 is easy to handle because it reaches a critical temperature of 31.1 ° C. and a critical pressure of 7.382 MPa, which is in a supercritical state at a lower temperature and lower pressure than other supercritical fluids. In addition, CO 2 is a non-toxic and non-flammable substance that also exists in the atmosphere, and does not become an environmental burden when discharged as a gas after being used as a reaction solvent.
Furthermore, compared with other thin film formation methods (evaporation method, sputtering, CVD, etc.), it is excellent in formation in the fine holes 21 due to the properties of high diffusion and zero surface tension. By applying this technology, it is possible to make ultrafine Cu wiring as an environmentally friendly organic solvent.
 前記流体には、添加ガスとして、還元剤がさらに溶解されているものを用いることが望ましい。還元剤を溶解することにより、微細孔への流体の進入がさらに促進される。本発明では、還元剤としてHを用いているが、還元剤としては、H以外に、メタノール等が挙げられる。 For the fluid, it is desirable to use an additive gas in which a reducing agent is further dissolved. By dissolving the reducing agent, the entry of fluid into the micropores is further promoted. In the present invention, although with H 2 as the reducing agent, as the reducing agent, in addition to H 2, methanol, and the like.
 反応圧力としては、特に限定されるものではないが、媒質の臨界点以上(COの場合、7.4MPa以上)であればよく、原料を溶解する能力(溶媒能)があれば亜臨界状態でもかまわない。COの場合には溶媒能を発揮させるにはその圧力を6MPa以上とすることが好ましい。例えば10~15MPaとする。 The reaction pressure, is not particularly limited, (in the case of CO 2, more than 7.4 MPa) above the critical point of the medium may be a subcritical state if the ability to dissolve the starting material (ability solvent) But it doesn't matter. In the case of CO 2 , the pressure is preferably 6 MPa or more in order to exert the solvent ability. For example, 10 to 15 MPa.
 また、反応温度としては、原料である金属錯体や還元剤の種類によって最適化すればよく、特に限定されるものではないが、例えば原料である金属錯体の融点を下限とし、集積回路配線のプロセス許容温度400℃を上限とし、その範囲で決定する。温度上昇につれ、膜厚は厚くなるが、孔内への深さは減少し、不均一になる傾向がある。 The reaction temperature may be optimized according to the type of the metal complex or reducing agent as the raw material, and is not particularly limited. For example, the melting point of the metal complex as the raw material is the lower limit, and the integrated circuit wiring process The upper limit is an allowable temperature of 400 ° C., and the temperature is determined within that range. As the temperature rises, the film thickness increases, but the depth into the hole tends to decrease and become non-uniform.
 基板に向けて吹きつける流体の速度としては、特に限定されるものではないが、流速が遅すぎると、流体を確実に微細孔に送り込むことが難しい。一方、流速が高すぎると、基体に強い圧力がかかり、基体が損傷する虞がある。 The speed of the fluid sprayed toward the substrate is not particularly limited, but if the flow rate is too slow, it is difficult to reliably feed the fluid into the fine holes. On the other hand, if the flow rate is too high, a strong pressure is applied to the substrate, which may damage the substrate.
 特に、流体の媒質であるCOの流量は、1.0m1/min以上であることが好ましい。ポンプの圧力変動や、低圧のHガス添加時の圧力低下の影響を抑制するために最低でもCOの流量は、1.0m1/min必要である。
 特に、流体の媒質であるCOの流量は、線速度で換算して1cm/min以上であることが好ましい。ここで、線速度は、たとえばポンプ6で送る液体COの体積流量を反応容器の断面積で除して求めることができる。ポンプの圧力変動や、低圧のHガス添加時の圧力低下の影響を抑制するために、最低でもその値が必要である。
In particular, the flow rate of CO 2 that is a fluid medium is preferably 1.0 m1 / min or more. The flow rate of CO 2 needs to be 1.0 m 1 / min at a minimum in order to suppress the influence of the pressure fluctuation of the pump and the pressure drop when adding low-pressure H 2 gas.
In particular, the flow rate of CO 2 that is a fluid medium is preferably 1 cm / min or more in terms of linear velocity. Here, the linear velocity can be obtained, for example, by dividing the volume flow rate of the liquid CO 2 sent by the pump 6 by the cross-sectional area of the reaction vessel. In order to suppress the influence of the pressure fluctuation of the pump and the pressure drop at the time of adding the low-pressure H 2 gas, the value is required at the minimum.
 また、反応時間としては、特に限定されるものではなく、所望の膜厚になるように適宜決めればよい。 Further, the reaction time is not particularly limited, and may be appropriately determined so as to obtain a desired film thickness.
 本発明の第三実施形態における基体20に設けられた微細孔21の内壁へ導電性物質を堆積させる手順については、第一実施形態と同様であるため、説明は省略する。 Since the procedure for depositing the conductive material on the inner wall of the fine hole 21 provided in the substrate 20 in the third embodiment of the present invention is the same as that in the first embodiment, the description thereof is omitted.
 本発明の第三実施形態では、前記流体の流れ方向に対して前記基体20の第二面20aを垂直とし、かつ、該基体20の第二面20aに向けて、前記流体Fが進行するように前記基体20を配置することで、微細孔21の内部に流体を強制的に輸送させることができ、微細孔21に厚さが均一で一様に導電性物質を堆積させることが可能である。 In the third embodiment of the present invention, the second surface 20a of the base body 20 is perpendicular to the fluid flow direction, and the fluid F proceeds toward the second surface 20a of the base body 20. By disposing the base body 20 in this manner, the fluid can be forcibly transported into the micropores 21 and the conductive material can be uniformly deposited in the micropores 21 with a uniform thickness. .
 なお、上述した第三実施形態では、超臨界流体を流体の媒質として用いた場合を例に挙げて説明したが、本発明はこれに限定されるものではなく、亜臨界流体を流体の媒質として用いた場合にも、同様に適用可能である。 In the third embodiment described above, the case where a supercritical fluid is used as a fluid medium has been described as an example. However, the present invention is not limited to this, and a subcritical fluid is used as a fluid medium. The same applies when used.
[第四実施形態]
 以下、本発明の第四実施形態の装置及び方法について説明する。
[Fourth embodiment]
The apparatus and method according to the fourth embodiment of the present invention will be described below.
 第四実施形態の装置は、第一実施形態の図1の装置、並びに第三実施形態の図8、図10及び図11と同様の構成のものを用いて説明できる。以下では、本発明の第四実施形態の特徴的な部分について説明する。 The apparatus of the fourth embodiment can be described by using the apparatus of FIG. 1 of the first embodiment and the apparatus having the same configuration as that of FIGS. 8, 10 and 11 of the third embodiment. Below, the characteristic part of 4th embodiment of this invention is demonstrated.
 図8は、本発明の装置において、反応容器13の内部構成を模式的に示す図である。
 反応容器13の内部には、基体支持具31が設けられており、この基体支持具31に基板20を設置する。
 基体20としては、例えばシリコンなどの半導体基板やガラス基板が用いられる。また、基体20には第二面から第一面に向けて貫通してなる微細孔21が設けられている。
FIG. 8 is a diagram schematically showing the internal configuration of the reaction vessel 13 in the apparatus of the present invention.
A substrate support 31 is provided inside the reaction vessel 13, and the substrate 20 is placed on the substrate support 31.
As the base body 20, for example, a semiconductor substrate such as silicon or a glass substrate is used. The base body 20 is provided with a fine hole 21 penetrating from the second surface toward the first surface.
 このような装置において、超臨界流体に金属錯体を溶解してなる流体を反応容器13へ導入し、該反応容器13内において連続的に特定の方向へ移動する該流体の中に、平板状の基体20を配して、該基体20に設けられた微細孔21の内壁へ導電性物質を形成する。 In such an apparatus, a fluid obtained by dissolving a metal complex in a supercritical fluid is introduced into the reaction vessel 13, and in the fluid that continuously moves in a specific direction in the reaction vessel 13, The substrate 20 is disposed, and a conductive material is formed on the inner wall of the micropore 21 provided in the substrate 20.
 そして本発明の第四実施形態の装置は、前記反応容器13は前記流体Fが導入される第一空間αと該流体が導出される第二空間βとを備えており、前記第一空間αに導入された前記流体Fが移動する特定の方向に対して前記基体20の第二面20aを垂直とし、かつ、該基体20の第二面20aに向けて、前記流体Fが進行するように、前記基体20の第一面20bを支持するとともに、前記第二空間βへ該流体Fが通過する誘導路34を該基体20の周囲に設けた基体支持具31(支持部)を配置したことを特徴とする。 In the apparatus of the fourth embodiment of the present invention, the reaction vessel 13 includes a first space α into which the fluid F is introduced and a second space β into which the fluid is led out, and the first space α. The second surface 20a of the base body 20 is perpendicular to a specific direction in which the fluid F introduced into the base body moves, and the fluid F advances toward the second surface 20a of the base body 20 And a base support 31 (support portion) provided to support the first surface 20b of the base body 20 and provide a guide path 34 around the base body 20 through which the fluid F passes to the second space β. It is characterized by.
第四実施形態においても、第一実施形態と同様に図6を用いて、微細孔21を有する基体20と、反応容器13内の流体Fの流れ方向との位置関係を模式的に示すことができる。第一実施形態の説明と重複するため、以下省略する。 In the fourth embodiment as well, the positional relationship between the base body 20 having the fine holes 21 and the flow direction of the fluid F in the reaction vessel 13 is schematically shown using FIG. 6 as in the first embodiment. it can. Since it overlaps with description of 1st embodiment, it abbreviate | omits below.
 本発明の第四実施形態では、微細孔21に厚さが均一で一様に導電性物質を堆積させることが可能である装置として、図12に示す構成の装置を考案した。
 なお、本発明の第四実施形態においても、第三実施形態と同様に、図8、10及び11を用いて以下に説明する。
 図8、図10および図11に示した装置は何れも、基体20と流れ方向が垂直、つまり微細孔21と流れ方向が平行に配置されている。これに加えて、該基体の第二面20aから第一面20bに向けて、該基体20の微細孔21の中を前記流体が進行するように、前記基体の第一面20bを支持するとうに構成した。これにより、微細孔21の内部へ原料をより効率的に輸送することができる。
In the fourth embodiment of the present invention, an apparatus having the configuration shown in FIG. 12 has been devised as an apparatus capable of depositing a conductive material uniformly and uniformly in the micro holes 21.
Note that the fourth embodiment of the present invention will be described below with reference to FIGS. 8, 10 and 11 as in the third embodiment.
8, 10, and 11 are all arranged so that the flow direction is perpendicular to the base body 20, that is, the fine holes 21 are parallel to the flow direction. In addition to this, the first surface 20b of the substrate is supported so that the fluid travels in the micro holes 21 of the substrate 20 from the second surface 20a of the substrate toward the first surface 20b. Configured. Thereby, the raw material can be transported more efficiently into the micropores 21.
 また、図8の装置(反応容器の第一空間αに連通するように配管状の導入部を反応容器に接続する場合)に比べて、図10(反応容器の第一空間α内に突出し、その導入口が前記基体の第二面の近傍に位置するように構成する場合)や図11(前記反応容器の前記第一空間内に突出し、その導入口が複数、前記基体の第二面の近傍に位置するように構成する場合)の装置では、基体の第二面に対する流体の流れの方向が、より正確に基体20と流れ方向を垂直に、すなわち、より正確に微細孔21と流れ方向が平行となるように、流体を微細孔内部に誘導することが可能となる。図10に比べて図11に示すように、流体の導入口が複数配置されるならば、誘導効果がさらに向上するのでより好ましい。 Compared with the apparatus of FIG. 8 (when a pipe-shaped introduction part is connected to the reaction vessel so as to communicate with the first space α of the reaction vessel), FIG. 10 (projects into the first space α of the reaction vessel, When the introduction port is configured to be located in the vicinity of the second surface of the substrate, FIG. 11 (projects into the first space of the reaction vessel, and there are a plurality of introduction ports of the second surface of the substrate. In the case of the apparatus in the case of being arranged in the vicinity), the flow direction of the fluid with respect to the second surface of the base is more accurately perpendicular to the base 20 and the flow direction, that is, the fine holes 21 and the flow direction are more accurately. It becomes possible to guide the fluid to the inside of the micropore so that they are parallel to each other. As shown in FIG. 11 as compared with FIG. 10, it is more preferable that a plurality of fluid inlets be arranged because the induction effect is further improved.
 つまり、本発明の第四実施形態では、基体20の第二面20aに向けて、前記流体Fが進行するように前記基体20を配置しているので、微細孔の内部に流体を強制的に輸送させることができる。これにより本発明では、基体20に設けられた微細孔に厚さが均一で一様に導電性物質を堆積させることが可能である。 That is, in the fourth embodiment of the present invention, the base body 20 is arranged so that the fluid F proceeds toward the second surface 20a of the base body 20, so that the fluid is forcibly forced into the micro holes. Can be transported. As a result, in the present invention, it is possible to deposit the conductive material uniformly and uniformly in the micropores provided in the substrate 20.
 図8、図10および図11に示した本発明の第四実施形態の装置においては何れも、基体20は、流体の流れ方向(吹きつけ方向)に対して、第二面20aが垂直となるように、基体支持具31に取り付けられている。また、基体20の第一面20bはOリングからなる支持部材32を用いてシールされている。このように配された基体20の第二面20aに向けて、流体Fをノズル33から供給し、基体20の第二面20aに吹きつけている。これにより、第一空間αから第二空間βに向かう流体を強制的に微細孔内に流通させ、原料輸送を促進させることができる。
また、基体20を安定に支持するために、図8、図10および図11に示すように、反応容器13を縦型とした(図8、図10および図11において、紙面下方が重力方向を表す)。すなわち、図8、図10および図11に示した装置では、反応容器13の第一空間α及び第二空間βにおいて、流体が流れる方向(実線の矢印)が何れも、重力方向となるように配置されている。
In any of the devices according to the fourth embodiment of the present invention shown in FIGS. 8, 10, and 11, the base 20 has the second surface 20a perpendicular to the fluid flow direction (spraying direction). Thus, it is attached to the substrate support 31. The first surface 20b of the base body 20 is sealed using a support member 32 made of an O-ring. The fluid F is supplied from the nozzle 33 toward the second surface 20a of the base body 20 arranged in this manner and sprayed onto the second surface 20a of the base body 20. Thereby, the fluid which goes to the 2nd space (beta) from the 1st space (alpha) can be forced to distribute | circulate in a micropore, and raw material transport can be accelerated | stimulated.
Further, in order to stably support the substrate 20, the reaction vessel 13 is a vertical type as shown in FIGS. 8, 10, and 11 (in FIGS. To express). That is, in the apparatus shown in FIG. 8, FIG. 10, and FIG. 11, in the first space α and the second space β of the reaction vessel 13, the direction in which the fluid flows (solid arrow) is the direction of gravity. Has been placed.
 さらに、本発明の第四実施形態の装置では、基体支持具31(支持部)において、該流体Fが導出される第二空間βへ、該流体が通過する誘導路が該基体20の周囲に設けられている。
 基体20を流体Fの流れ方向に対して垂直となるように、基体支持具31に取り付けた際に、基体20の裏面内に納まる大きさのOリング32を用い、微細孔21の内部のみ流体が強制的に輸送させるように構成した場合、基体20の支持箇所に負荷がかかり、基体20が破損してしまう虞がある。砕けたガラスがライン内に流れると配管の閉塞、また機器の故障を引き起こす可能性もある。
 そこで本発明の第四実施形態では、図8、図10および図11に示すように、基体20の裏面を支持しつつ、図12に示すように裏面より大き目のOリング32を用いた。これにより、基体20とOリング32との間に隙間を設け、流体が通過する誘導路34とすることで、基体20にかかる負荷の軽減を図った。その結果、基体20の破損を防止し、配管の閉塞や機器の故障を防止することができる。
Furthermore, in the apparatus according to the fourth embodiment of the present invention, in the base support 31 (support), a guide path through which the fluid passes is provided around the base 20 to the second space β from which the fluid F is led out. Is provided.
When the base body 20 is attached to the base body support 31 so as to be perpendicular to the flow direction of the fluid F, an O-ring 32 having a size that fits in the back surface of the base body 20 is used, and the fluid is only inside the fine holes 21. Is configured to forcibly transport the substrate 20, a load is applied to the support portion of the base 20, and the base 20 may be damaged. If broken glass flows in the line, it may cause blockage of the pipes and failure of the equipment.
Therefore, in the fourth embodiment of the present invention, as shown in FIGS. 8, 10 and 11, while supporting the back surface of the base 20, an O-ring 32 larger than the back surface is used as shown in FIG. As a result, a clearance is provided between the base body 20 and the O-ring 32 to provide a guide path 34 through which the fluid passes, thereby reducing the load on the base body 20. As a result, it is possible to prevent the base body 20 from being damaged and to prevent the blockage of the piping and the failure of the equipment.
 超臨界流体の媒質はCOの他、Ar、H、Xeなどの不活性ガス類や、CF 、CHF 、CClなどのハロゲンガス類、NH 、CHOH、HOなどの極性ガスを用いることができる。 The medium of the supercritical fluid is CO 2 , inert gases such as Ar, H 2 , and Xe, halogen gases such as CF 4 , CHF 3 , and CCl 4 , NH 3 , CH 3 OH, H 2 O, and the like The polar gas can be used.
 しかし、特に超臨界媒質を反応物質として用いない場合には、安全性、低環境負荷性、コスト、および溶媒能を有する点から、COが好ましい。
 COの臨界点は、臨界温度31.1℃. 臨界圧力7.382MPaと、他の超臨界流体に比べて低温・低圧力で超臨界状態になるため扱いやすい。またCOは大気中にも存在する無毒・不燃性の物質であり、反応溶媒として使用後、気体として排出する際、環境面の負荷とならない。
 さらに、他の薄膜形成法(蒸着法・スパッタ・CVD等)に比べて高拡散・ゼロ表面張力という性質から微細孔21への形成に優れる。この技術を応用すると、環境に配慮した有機溶媒として超微細なCu配線を作ることが可能である。
However, particularly when a supercritical medium is not used as a reactant, CO 2 is preferable from the viewpoints of safety, low environmental impact, cost, and solvent ability.
The critical point of CO 2 is easy to handle because it reaches a critical temperature of 31.1 ° C. and a critical pressure of 7.382 MPa, which is in a supercritical state at a lower temperature and lower pressure than other supercritical fluids. In addition, CO 2 is a non-toxic and non-flammable substance that also exists in the atmosphere, and does not become an environmental burden when discharged as a gas after being used as a reaction solvent.
Furthermore, compared with other thin film formation methods (evaporation method, sputtering, CVD, etc.), it is excellent in formation in the fine holes 21 due to the properties of high diffusion and zero surface tension. By applying this technology, it is possible to make ultrafine Cu wiring as an environmentally friendly organic solvent.
 前記流体には、添加ガスとして、還元剤がさらに溶解されているものを用いることが望ましい。還元剤を溶解することにより、微細孔への流体の進入がさらに促進される。本発明では、還元剤としてHを用いているが、還元剤としては、H以外に、メタノール等が挙げられる。 For the fluid, it is desirable to use an additive gas in which a reducing agent is further dissolved. By dissolving the reducing agent, the entry of fluid into the micropores is further promoted. In the present invention, although with H 2 as the reducing agent, as the reducing agent, in addition to H 2, methanol, and the like.
 反応圧力としては、特に限定されるものではないが、媒質の臨界点以上(COの場合、7.4MPa以上)であればよく、原料を溶解する能力(溶媒能)があれば亜臨界状態でもかまわない。COの場合には溶媒能を発揮させるにはその圧力を6Mpa以上とすることが好ましい。例えば10~15MPaとする。 The reaction pressure, is not particularly limited, (in the case of CO 2, more than 7.4 MPa) above the critical point of the medium may be a subcritical state if the ability to dissolve the starting material (ability solvent) But it doesn't matter. In the case of CO 2 , the pressure is preferably 6 Mpa or more in order to exert the solvent ability. For example, 10 to 15 MPa.
 また、反応温度としては、原料である金属錯体や還元剤の種類によって最適化すればよく、特に限定されるものではないが、例えば原料である金属錯体の融点を下限とし、集積回路配線のプロセス許容温度400℃を上限とし、その範囲で決定する。温度上昇につれ、膜厚は厚くなるが、孔内への深さは減少し、不均一になる傾向がある。 The reaction temperature may be optimized according to the type of the metal complex or reducing agent as the raw material, and is not particularly limited. For example, the melting point of the metal complex as the raw material is the lower limit, and the integrated circuit wiring process The upper limit is an allowable temperature of 400 ° C., and the temperature is determined within that range. As the temperature rises, the film thickness increases, but the depth into the hole tends to decrease and become non-uniform.
 基板に向けて吹きつける流体の速度としては、特に限定されるものではないが、流速が遅すぎると、流体を確実に微細孔に送り込むことが難しい。一方、流速が高すぎると、基体に強い圧力がかかり、基体が損傷する虞がある。 The speed of the fluid sprayed toward the substrate is not particularly limited, but if the flow rate is too slow, it is difficult to reliably feed the fluid into the fine holes. On the other hand, if the flow rate is too high, a strong pressure is applied to the substrate, which may damage the substrate.
 特に、流体の媒質であるCOの流量は、1.0m1/min以上であることが好ましい。ポンプの圧力変動や、低圧のHガス添加時の圧力低下の影響を抑制するために最低でもCOの流量は、1.0m1/min必要である。
 特に、流体の媒質であるCOの流量は、線速度で換算して1cm/min以上であることが好ましい。ここで、線速度は、たとえばポンプ6で送る液体COの体積流量を反応容器の断面積で除して求めることができる。ポンプの圧力変動や、低圧のHガス添加時の圧力低下の影響を抑制するために、最低でもその値が必要である。
In particular, the flow rate of CO 2 that is a fluid medium is preferably 1.0 m1 / min or more. The flow rate of CO 2 needs to be 1.0 m 1 / min at a minimum in order to suppress the influence of the pressure fluctuation of the pump and the pressure drop when adding low-pressure H 2 gas.
In particular, the flow rate of CO 2 that is a fluid medium is preferably 1 cm / min or more in terms of linear velocity. Here, the linear velocity can be obtained, for example, by dividing the volume flow rate of the liquid CO 2 sent by the pump 6 by the cross-sectional area of the reaction vessel. In order to suppress the influence of the pressure fluctuation of the pump and the pressure drop at the time of adding the low-pressure H 2 gas, the value is required at the minimum.
 また、反応時間としては、特に限定されるものではなく、所望の膜厚になるように適宜決めればよい。 Further, the reaction time is not particularly limited, and may be appropriately determined so as to obtain a desired film thickness.
 本発明の第四実施形態における基体20に設けられた微細孔21の内壁へ導電性物質を堆積させる手順については、第一実施形態と同様であるため、説明は省略する。 Since the procedure for depositing the conductive material on the inner wall of the fine hole 21 provided in the substrate 20 in the fourth embodiment of the present invention is the same as that in the first embodiment, the description thereof is omitted.
 本発明の第四実施形態では、前記流体の流れ方向に対して前記基体20の第二面20aを垂直とし、かつ、該基体20の第二面20aに向けて、前記流体Fが進行するように前記基体20を配置することで、微細孔21の内部に流体を強制的に輸送させることができ、微細孔21に厚さが均一で一様に導電性物質を堆積させることが可能である。
 さらに、本発明の第四実施形態では、基体支持具31において、第二空間βへ該流体が通過する誘導路34を基体20の周囲に設けているので、基体20にかかる負荷の軽減を図ることが可能である。これにより基体20の破損を防止し、配管の閉塞や機器の故障を防止することができる。
In the fourth embodiment of the present invention, the second surface 20a of the base body 20 is perpendicular to the fluid flow direction, and the fluid F advances toward the second surface 20a of the base body 20. By disposing the base body 20 in this manner, the fluid can be forcibly transported into the micropores 21, and the conductive material can be uniformly deposited in the micropores 21 with a uniform thickness. .
Furthermore, in the fourth embodiment of the present invention, in the base support 31, the guide path 34 through which the fluid passes to the second space β is provided around the base 20, so that the load on the base 20 is reduced. It is possible. Thereby, breakage of the base 20 can be prevented, and blockage of the piping and equipment failure can be prevented.
 なお、上述した第四実施形態では、超臨界流体を流体の媒質として用いた場合を例に挙げて説明したが、本発明はこれに限定されるものではなく、亜臨界流体を流体の媒質として用いた場合にも、同様に適用可能である。 In the fourth embodiment described above, the case where a supercritical fluid is used as a fluid medium has been described as an example. However, the present invention is not limited to this, and a subcritical fluid is used as a fluid medium. The same applies when used.
 以下、本発明の第二実施形態の効果を確認するために行った実施例について説明する。
なお、本実施例では、本発明の第二実施形態の装置の構成を用いた。
 図7に示した装置を用いて、基体に設けられた微細孔の内壁へ導電性物質を堆積させた。具体的には、超臨界流体に金属錯体を溶解してなる流体を反応容器へ導入し、該反応容器内において連続的に特定の方向へ移動する該流体の中に、平板状の基体を配して、該基体に設けられた微細孔の内壁へ導電性物質を形成した。
Examples performed to confirm the effects of the second embodiment of the present invention will be described below.
In this example, the configuration of the apparatus according to the second embodiment of the present invention was used.
Using the apparatus shown in FIG. 7, a conductive material was deposited on the inner walls of the micropores provided in the substrate. Specifically, a fluid obtained by dissolving a metal complex in a supercritical fluid is introduced into a reaction vessel, and a flat substrate is arranged in the fluid that continuously moves in a specific direction in the reaction vessel. Then, a conductive substance was formed on the inner wall of the fine hole provided in the substrate.
 前記流体としては、COの超臨界流体を媒質とし、導電性物質の原料となる金属錯体としてCu(dibm)、還元剤としてHガスを溶解してなる流体を用いた。流体中の濃度は、Cu(dibm)が2.92×10-2mol%(273K)、Hガスが1.53mol%(273K)であった。
 基体は、中央部に微細孔を有するガラス基板(SiO)を用いた。微細孔の径は30μm、深さは310μmである。
As the fluid, a fluid in which a supercritical fluid of CO 2 is used as a medium, Cu (divm) 2 as a metal complex as a raw material of the conductive material, and H 2 gas as a reducing agent is dissolved is used. Concentrations in the fluid were 2.92 × 10 −2 mol% (273 K) for Cu (divm) 2 and 1.53 mol% (273 K) for H 2 gas.
As the substrate, a glass substrate (SiO 2 ) having a fine hole at the center was used. The diameter of the micropore is 30 μm and the depth is 310 μm.
(第一実施例)
 反応容器中において、基体20の両面(上下面)が流体Fの流れ方向と非平行を成して流れFに曝されるように配置して、微細孔の内壁へ導電性物質を堆積させた。ここでは、流体の流れ方向に対して略垂直になるように基体を配した[図6(d)の配置]。なお、反応圧力は10MPa、反応温度は240℃、反応時間は600minとした。
(First Example)
In the reaction vessel, both surfaces (upper and lower surfaces) of the substrate 20 are arranged so as to be exposed to the flow F in a direction not parallel to the flow direction of the fluid F, and a conductive substance is deposited on the inner wall of the micropore. . Here, the substrate is disposed so as to be substantially perpendicular to the fluid flow direction [arrangement of FIG. 6 (d)]. The reaction pressure was 10 MPa, the reaction temperature was 240 ° C., and the reaction time was 600 min.
(第二実施例)
 本実施例においても、本発明の第二実施形態の装置の構成を用いた。
 反応容器中において、基体20の両面(上下面)が流体Fの流れ方向と平行を成して流れFに曝されるように配置して、微細孔の内壁へ導電性物質を堆積させた。ここでは、流体の流れ方向に対して略垂直になるように基体を配した[図6(b)の配置]。なお、反応圧力は10MPa、反応温度は280℃、反応時間は240minとした。
(Second embodiment)
Also in this example, the configuration of the apparatus according to the second embodiment of the present invention was used.
In the reaction vessel, both surfaces (upper and lower surfaces) of the substrate 20 were arranged so as to be exposed to the flow F in parallel with the flow direction of the fluid F, and the conductive material was deposited on the inner walls of the micropores. Here, the substrate is disposed so as to be substantially perpendicular to the fluid flow direction [arrangement of FIG. 6B]. The reaction pressure was 10 MPa, the reaction temperature was 280 ° C., and the reaction time was 240 min.
 (第一比較例)
 本比較例には、本発明の第二実施形態の装置の構成を用いた。
 反応容器中において、基体20の第二面(上面)のみが流体Fの流れ方向と平行を成して流れFに曝され、第一面(下面)が反応容器13の内面に接するように配置して、微細孔の内壁へ導電性物質を堆積させた。なお、反応圧力は10MPa、反応温度は280℃、反応時間は240minとした[図6(a)の配置]。
(First comparative example)
In this comparative example, the configuration of the apparatus according to the second embodiment of the present invention was used.
In the reaction vessel, only the second surface (upper surface) of the substrate 20 is exposed to the flow F in parallel with the flow direction of the fluid F, and the first surface (lower surface) is disposed in contact with the inner surface of the reaction vessel 13. Then, a conductive substance was deposited on the inner wall of the micropore. The reaction pressure was 10 MPa, the reaction temperature was 280 ° C., and the reaction time was 240 min [arrangement of FIG. 6A].
 以上のようにして得られた基体の断面を観察した。また、堆積された導電性物質の膜厚測定を行った。
 膜厚計測にはマイクロメータ、観察には光学顕微鏡を用いた。
 基体をダイヤモンドカッターで半分に切断した。このとき、切断する片方の表面に接着剤を塗布した。これは断面研磨時に屑が微細孔へ入り込まないようにするためである。接着剤が乾燥した後、光学顕微鏡で観察しながら、紙やすり(#1500~#10000)を用いて断面を研磨し、基体の断面を光学顕微鏡で観察した。
The cross section of the substrate obtained as described above was observed. In addition, the film thickness of the deposited conductive material was measured.
A micrometer was used for film thickness measurement, and an optical microscope was used for observation.
The substrate was cut in half with a diamond cutter. At this time, an adhesive was applied to one surface to be cut. This is to prevent debris from entering the fine holes during cross-sectional polishing. After the adhesive was dried, the cross section was polished with sandpaper (# 1500 to # 10000) while observing with an optical microscope, and the cross section of the substrate was observed with an optical microscope.
 第一実施例の基体断面の光学顕微鏡写真を図13に、第二実施例の基体断面の光学顕微鏡写真を図14に、それぞれ示す。なお、ここでは、Cu膜が形成された深さを微細孔の直径(30μm)で除した値を、アスペクト比と呼ぶ。 FIG. 13 shows an optical micrograph of the cross section of the substrate of the first example, and FIG. 14 shows an optical micrograph of the cross section of the substrate of the second example. Here, a value obtained by dividing the depth at which the Cu film is formed by the diameter (30 μm) of the fine holes is referred to as an aspect ratio.
 比較例の試料においては、基体の第二面(上面)側からのみ、微細孔の孔内にCu膜が形成されるが、その微細孔の入り口からCu膜が形成された深さは、微細孔の直径と同程度(約30μm)であった。ゆえに、比較例の場合は、アスペクト比がおよそ1であった。 In the sample of the comparative example, the Cu film is formed in the hole of the microhole only from the second surface (upper surface) side of the substrate, but the depth of the Cu film formed from the entrance of the microhole is fine. It was about the same as the diameter of the hole (about 30 μm). Therefore, in the case of the comparative example, the aspect ratio was about 1.
 これに対し、図13に示す第一実施例では、堆積時間60分と短い時間で、孔の中央部まで均一にCu膜が形成されていることがわかる。膜厚も2.1μmと孔の中央部まで十分な厚さにCu膜が形成されていることがわかる。第一実施例の場合は、アスペクト比はおよそ10(=310/30)であった。 On the other hand, in the first embodiment shown in FIG. 13, it can be seen that the Cu film is uniformly formed up to the center of the hole in a short deposition time of 60 minutes. It can be seen that the Cu film is formed to a sufficient thickness up to the central part of the hole with a film thickness of 2.1 μm. In the case of the first embodiment, the aspect ratio was approximately 10 (= 310/30).
 また、図14に示す第二実施例では、孔の中央部にいくにつれて徐々にCu膜が薄くなっているが、基体の両面からCu膜が135μm程度まで形成されたことがわかる。これは奥にいくにしたがって、原料濃度が低下し十分に堆積がされなかったためだと考えられる。
 膜厚も基板表面では5.6μm、孔の中央部では1.4μmと均一ではなかったが、第一比較例に比べると十分に微細孔内にCu膜を形成できることがわかる。第二実施例の場合は、アスペクト比はおよそ4~5(=135/30)であった。
Further, in the second embodiment shown in FIG. 14, the Cu film gradually becomes thinner toward the center of the hole, but it can be seen that the Cu film was formed to about 135 μm from both sides of the substrate. This is thought to be because the raw material concentration decreased as it went further and was not fully deposited.
Although the film thickness was not uniform at 5.6 μm on the substrate surface and 1.4 μm at the center of the hole, it can be seen that the Cu film can be sufficiently formed in the fine holes as compared with the first comparative example. In the case of the second embodiment, the aspect ratio was about 4 to 5 (= 135/30).
 以上の結果から、基体20の両面(上下面)が流体Fの流れ方向と平行あるいは非平行を成して流れFに曝されるように配置することにより、微細孔の内部まで導電性物質を堆積させることが可能であることが明らかとなった。特に、流体の流れ方向に対して非平行になるように基体を配することで、微細孔の内部まで厚さが均一で一様に導電性物質を堆積させることが可能であることが確認された。
 これは、流体が微細孔へ「流れ」と「拡散」の両方によって輸送され、微細孔の内部へ原料をより効率的に輸送することができたためと考えられる。
 また、基体の両面に沿って、前記流体が移動するように基体を配置することで、微細孔の両側から原料を輸送することができ、微細孔の内部へ導電性物質をより効率的に堆積させることができた。
From the above results, by disposing the both surfaces (upper and lower surfaces) of the base body 20 so as to be exposed to the flow F in parallel or non-parallel to the flow direction of the fluid F, the conductive substance can reach the inside of the micropores. It became clear that it could be deposited. In particular, it has been confirmed that by arranging the base so as to be non-parallel to the fluid flow direction, it is possible to deposit the conductive material uniformly and uniformly to the inside of the micropores. It was.
This is probably because the fluid was transported to the micropores by both “flow” and “diffusion”, and the raw material could be transported more efficiently into the micropores.
In addition, by arranging the base so that the fluid moves along both sides of the base, the raw material can be transported from both sides of the micropore, and the conductive material is deposited more efficiently inside the micropore. I was able to.
(第三実施例)
 本実施例においては、本発明の第三実施形態の装置の構成を用いた。
 図1に示した装置を用いて、基体に設けられた微細孔の内壁へ導電性物質を堆積させた。具体的には、超臨界流体に金属錯体を溶解してなる流体を反応容器へ導入し、該反応容器内において連続的に特定の方向へ移動する該流体の中に、平板状の基体を配して、該基体に設けられた微細孔の内壁へ導電性物質を形成した。
(Third embodiment)
In this example, the configuration of the apparatus according to the third embodiment of the present invention was used.
Using the apparatus shown in FIG. 1, a conductive material was deposited on the inner walls of the micropores provided in the substrate. Specifically, a fluid obtained by dissolving a metal complex in a supercritical fluid is introduced into a reaction vessel, and a flat substrate is arranged in the fluid that continuously moves in a specific direction in the reaction vessel. Then, a conductive substance was formed on the inner wall of the fine hole provided in the substrate.
 前記流体としては、COの超臨界流体を媒質とし、導電性物質の原料となる金属錯体として(Cu(dibm))、還元剤としてHガスを溶解してなる流体を用いた。なお、金属錯体はアセトンを補助溶媒として、500/25の割合で溶解されている。
 流体中の濃度は、(Cu(dibm))が2.92×10-2mol%(273K)、Hガスが1.53mol%(273K)であった。
 基体としては、図15に示すように、その中央部に、基板の両主面間を垂直に貫通する微細孔を有し、板厚が0.75mm(750μm)のガラス基板(SiO)を用いた。微細孔の径は25μmである。
As the fluid, a supercritical fluid of CO 2 was used as a medium, a metal complex (Cu (divm) 2 ) serving as a raw material for the conductive material, and a fluid obtained by dissolving H 2 gas as a reducing agent were used. The metal complex is dissolved at a ratio of 500/25 using acetone as an auxiliary solvent.
Concentrations in the fluid were 2.92 × 10 −2 mol% (273 K) for (Cu (divm) 2 ) and 1.53 mol% (273 K) for H 2 gas.
As shown in FIG. 15, a glass substrate (SiO 2 ) having a fine hole vertically penetrating between both main surfaces of the substrate and having a plate thickness of 0.75 mm (750 μm) is used as the substrate. Using. The diameter of the micropore is 25 μm.
 反応容器中において、流体の流れ方向に対して垂直になるように基体を配するとともに、基体の下面をOリングからなる支持部材を用いてシールした。そして、流体をノズルから基体の第二面に向けて吹きつけることにより、微細孔の内壁へ導電性物質を堆積させた。
 なお、反応圧力は全圧が10MPa(うち、Hガス圧が1MPa)、反応温度は280℃、CO流量は7.0m1/min、反応時間は60minとした。
In the reaction vessel, the substrate was disposed so as to be perpendicular to the fluid flow direction, and the lower surface of the substrate was sealed using a support member made of an O-ring. A fluid was sprayed from the nozzle toward the second surface of the substrate to deposit a conductive substance on the inner wall of the fine hole.
The total reaction pressure was 10 MPa (of which H 2 gas pressure was 1 MPa), the reaction temperature was 280 ° C., the CO 2 flow rate was 7.0 m 1 / min, and the reaction time was 60 min.
(第二比較例) 
本比較例においては、本発明の第三実施形態の装置の構成を用いた。
 反応容器の仕様と基体の仕様を以下に通り変更し、微細孔の内壁へ導電性物質を堆積させた。
 反応容器としては、図8に示すものを用いた。
 反応容器中において、基体20の両面(上下面)が流体Fの流れ方向と非平行を成して流れFに曝されるように配置して、微細孔の内壁へ導電性物質を堆積させた。ここでは、流体の流れ方向に対して略垂直になるように基体を配した[図6(d)の配置]。なお、反応圧力は10MPa、反応温度は240℃、反応時間は600minとした。
 基体は、その中央部に、基板の両主面間を垂直に貫通する微細孔を有し、板厚が0.30mm(300μm)のガラス基板(SiO)を用いた。微細孔の径は30μmである。
(Second comparative example)
In this comparative example, the configuration of the apparatus according to the third embodiment of the present invention was used.
The specification of the reaction vessel and the specification of the substrate were changed as follows, and a conductive substance was deposited on the inner wall of the fine hole.
As the reaction vessel, the one shown in FIG. 8 was used.
In the reaction vessel, both surfaces (upper and lower surfaces) of the substrate 20 are arranged so as to be exposed to the flow F in a direction not parallel to the flow direction of the fluid F, and a conductive substance is deposited on the inner wall of the micropore. . Here, the substrate is disposed so as to be substantially perpendicular to the fluid flow direction [arrangement of FIG. 6 (d)]. The reaction pressure was 10 MPa, the reaction temperature was 240 ° C., and the reaction time was 600 min.
The substrate used was a glass substrate (SiO 2 ) having a fine hole penetrating perpendicularly between both main surfaces of the substrate at the center and having a plate thickness of 0.30 mm (300 μm). The diameter of the micropore is 30 μm.
 以上のようにして得られた基体の断面を観察した。観察には光学顕微鏡を用いた。
 基体をダイヤモンドカッターで半分に切断した。このとき、切断する片方の表面に接着剤を塗布した。これは断面研磨時に屑が微細孔へ入り込まないようにするためである。接着剤が乾燥した後、顕微鏡で観察しながら紙やすり(#1500~10000)を用いて断面を研磨し、基体の断面を光学顕微鏡で観察した。
The cross section of the substrate obtained as described above was observed. An optical microscope was used for observation.
The substrate was cut in half with a diamond cutter. At this time, an adhesive was applied to one surface to be cut. This is to prevent debris from entering the fine holes during cross-sectional polishing. After the adhesive was dried, the cross section was polished with a sandpaper (# 1500 to 10000) while observing with a microscope, and the cross section of the substrate was observed with an optical microscope.
 図15は第三実施例により微細孔内に導電性物質を堆積させた状態を示す基体の断面図である。図15において、上方が基体の第二面(流体の入口側)、下方が基体の第一面(流体の出口側)である。図15から明らかなように、孔径が25μmの微細孔の内壁に対して、入口側から見て80%の深さまでほぼ均一に導電性物質が均一な厚さに堆積していた。残りの20%は出口側に向けて厚さが次第に薄くなる傾向が見られた。この結果から、アスペクト比(孔の深さ(全長)/孔径)が30の微細孔に対して、全長の80%を被覆することに成功した。 FIG. 15 is a cross-sectional view of the substrate showing a state in which a conductive material is deposited in the fine holes according to the third embodiment. In FIG. 15, the upper side is the second surface of the substrate (fluid inlet side), and the lower side is the first surface of the substrate (fluid outlet side). As is clear from FIG. 15, the conductive material was deposited almost uniformly on the inner wall of the fine hole having a pore diameter of 25 μm up to a depth of 80% when viewed from the inlet side. The remaining 20% tended to become thinner toward the outlet side. From this result, it was succeeded in covering 80% of the total length with respect to the fine holes having an aspect ratio (hole depth (full length) / hole diameter) of 30.
 第二比較例の条件では、微細孔の長手方向の全域に亘って、厚さが均一で一様に導電性物質が堆積されていることが分かった。板厚が0.30mm(300μm)のガラス基板(SiO)に、微細孔の径を30μmとした場合には、本発明に係る導電性物質の形成装置(図8、10、11)を用いなくても、確実に導電性物質を微細孔の内壁に形成できることが確認された。 Under the conditions of the second comparative example, it was found that the conductive material was uniformly deposited with a uniform thickness over the entire length direction of the fine holes. When the plate thickness is 0.30 mm (300 μm) on a glass substrate (SiO 2 ) and the micropore diameter is 30 μm, the conductive material forming apparatus according to the present invention (FIGS. 8, 10 and 11) is used. Even without this, it was confirmed that the conductive material could be reliably formed on the inner wall of the micropore.
 本発明の第三実施形態の装置の構成において、上述した実施例と比較例より、以下の点が明らかとなった。
(1)微細孔の孔径が25~30μm程度の場合は、流体の流れ方向に対して垂直になるように基体を配することで、微細孔の内部まで厚さが均一で一様に導電性物質を堆積させることが可能である。
(2)基体の微細孔に対して、流体の入口側に位置する第一空間αが、流体の出口側に位置する第二空間βより、高圧となるような装置構成(図8、10、11)を採用することにより、アスペクトが30という微細孔を有する基体においても、微細孔の内部まで厚さが均一で一様に導電性物質を堆積させることが可能である。
(3)図8、10、11に示す装置構成ならば、孔径が10μmという微細孔においても、基体の第二面から垂直に延びる微細孔であれば、その全域に亘って厚さが均一で一様に導電性物質を堆積させることができる。
In the configuration of the apparatus according to the third embodiment of the present invention, the following points were clarified from the above-described examples and comparative examples.
(1) When the pore diameter is about 25-30 μm, the substrate is arranged so as to be perpendicular to the fluid flow direction, so that the inside of the micropore is uniform and uniformly conductive. It is possible to deposit material.
(2) Device configuration in which the first space α located on the fluid inlet side is higher than the second space β located on the fluid outlet side with respect to the micropores of the substrate (FIGS. 8, 10, By adopting 11), even in a substrate having a fine hole with an aspect of 30, it is possible to deposit a conductive material uniformly and uniformly to the inside of the fine hole.
(3) With the apparatus configuration shown in FIGS. 8, 10 and 11, even in the case of a fine hole having a hole diameter of 10 μm, if the fine hole extends perpendicularly from the second surface of the substrate, the thickness is uniform over the entire region. The conductive material can be uniformly deposited.
 以上の結果から、本発明の第三実施形態によれば、前記第一空間に導入された前記流体が移動する特定の方向に対して前記基体の第二面を垂直とし、かつ、該基体の第二面から第一面に向けて、該基体の微細孔の中を前記流体が進行するように、前記基体の第一面を支持したことにより、アスペクト比が30の微細孔において、その内部まで厚さが均一で一様に導電性物質を堆積させることが可能であることが確認された。
 基体の第二面側を、基体の第一面側より高圧になるような装置構成を採用したことにより、微細孔の内部に流体を強制的に輸送させる効果が向上し、アスペクト比の高い微細孔の内部へ導電性物質を効率的に堆積させることができた。
From the above results, according to the third embodiment of the present invention, the second surface of the base body is perpendicular to the specific direction in which the fluid introduced into the first space moves, and By supporting the first surface of the substrate so that the fluid proceeds in the micropores of the substrate from the second surface to the first surface, the inside of the micropores with an aspect ratio of 30 It was confirmed that the conductive material can be uniformly deposited with a uniform thickness.
By adopting a device configuration in which the second surface side of the substrate has a higher pressure than the first surface side of the substrate, the effect of forcibly transporting the fluid into the micropores is improved, and the fineness of the aspect ratio is high. Conductive material could be deposited efficiently inside the hole.
 なお、前記流体の導入部として、前記反応容器の前記第一空間内に突出し、その導入口が前記基体の第二面の近傍に位置するように構成や、前記反応容器の前記第一空間内に突出し、その導入口が複数、前記基体の第二面の近傍に位置するように構成を採用することにより、上述した作用・効果はさらに高まる。たとえば、前者の構成とした場合には、微細孔の入口を狙った位置に流体の導入部を配置すれば、微細孔の内部に流体が強制的に輸送させる流入量を増加できるので好ましい。一方、後者の構成は、基体が大面積化して、複数の微細孔を備えた基体に適用する際に有効である。基体の形状や面積に応じて、複数の微細孔に対して均等に、各微細孔の内部に流体を強制的に輸送させることが可能となる。 The fluid introduction part protrudes into the first space of the reaction vessel, and the introduction port is located in the vicinity of the second surface of the base, or in the first space of the reaction vessel. By adopting the configuration so that the plurality of inlets are positioned in the vicinity of the second surface of the base body, the above-described functions and effects are further enhanced. For example, in the case of the former configuration, it is preferable to dispose the fluid introduction portion at a position aimed at the entrance of the micropore because the amount of inflow that the fluid is forced to transport into the micropore can be increased. On the other hand, the latter configuration is effective when the substrate is applied to a substrate having a large area and a plurality of fine holes. According to the shape and area of the substrate, the fluid can be forcibly transported into each micropore evenly with respect to the plurality of micropores.
 以上、本発明の第三実施形態の装置及び方法について説明してきたが、本発明はこれに限定されるものではなく、発明の趣旨を逸脱しない範囲で、適宜変更が可能である。また、本発明の第三実施形態はその目的を、「基体に設けられた微細孔に、厚さが均一で一様に導電性物質を堆積させることが可能な微細孔内への導電性物質の形成装置および形成方法の提供」としているが、微細孔内への導電性物質の堆積とともに、基体表面にも該導電性物質を堆積しても構わない。 As mentioned above, although the apparatus and method of 3rd embodiment of this invention were demonstrated, this invention is not limited to this, In the range which does not deviate from the meaning of invention, it can change suitably. In addition, the third embodiment of the present invention has the purpose of “a conductive material into a micropore in which a conductive material can be deposited uniformly and uniformly in a micropore provided in a substrate. However, the conductive material may be deposited on the surface of the substrate as well as the conductive material is deposited in the micropores.
(第四実施例)
 本実施例においては、本発明の第四実施形態の装置の構成を用いた。
 図1に示した装置を用いて、基体に設けられた微細孔の内壁へ導電性物質を堆積させた。具体的には、超臨界流体に金属錯体を溶解してなる流体を反応容器へ導入し、該反応容器内において連続的に特定の方向へ移動する該流体の中に、平板状の基体を配して、該基体に設けられた微細孔の内壁へ導電性物質を形成した。これにより、第一空間αから第二空間βに向かう流体が、基体に設けられた微細孔内を通過するとともに、基体とOリングからなる支持部材との間に設けた隙間(誘導路)も通過する構成とした。
(Fourth embodiment)
In this example, the configuration of the apparatus according to the fourth embodiment of the present invention was used.
Using the apparatus shown in FIG. 1, a conductive material was deposited on the inner walls of the micropores provided in the substrate. Specifically, a fluid obtained by dissolving a metal complex in a supercritical fluid is introduced into a reaction vessel, and a flat substrate is arranged in the fluid that continuously moves in a specific direction in the reaction vessel. Then, a conductive substance was formed on the inner wall of the fine hole provided in the substrate. As a result, the fluid traveling from the first space α to the second space β passes through the microscopic holes provided in the base body, and a gap (guide path) provided between the base body and the support member made of the O-ring is also provided. It was configured to pass.
 前記流体としては、COの超臨界流体を媒質とし、導電性物質の原料となる金属錯体として(Cu(dibm))、還元剤としてHガスを溶解してなる流体を用いた。なお、金属錯体はアセトンを補助溶媒として、500/25の割合で溶解されている。
 流体中の濃度は、(Cu(dibm))が2.92×10-2mol%(273K)、Hガスが1.53mol%(273K)であった。
 基体としては、図7に示すように、その中央部に、基板の両主面間を垂直に貫通する微細孔を有し、板厚が1.0mm(1000μm)のガラス基板(SiO)を用いた。微細孔の径は20μmである。
As the fluid, a supercritical fluid of CO 2 was used as a medium, a metal complex (Cu (divm) 2 ) serving as a raw material for the conductive material, and a fluid obtained by dissolving H 2 gas as a reducing agent were used. The metal complex is dissolved at a ratio of 500/25 using acetone as an auxiliary solvent.
Concentrations in the fluid were 2.92 × 10 −2 mol% (273 K) for (Cu (divm) 2 ) and 1.53 mol% (273 K) for H 2 gas.
As shown in FIG. 7, a glass substrate (SiO 2 ) having a fine hole penetrating vertically between both main surfaces of the substrate and having a plate thickness of 1.0 mm (1000 μm) is used as the substrate. Using. The diameter of the micropore is 20 μm.
 反応容器中において、流体の流れ方向に対して垂直になるように基体を配するとともに、基体の下面をOリングからなる支持部材を用いてシールした。そして、流体をノズルから基体の第二面に向けて吹きつけることにより、微細孔の内壁へ導電性物質を堆積させた。
 なお、反応圧力は全圧が10MPa(うち、Hガス圧が1MPa)、反応温度は200℃、CO流量は2.0m1/min、反応時間は60minとした。
In the reaction vessel, the substrate was disposed so as to be perpendicular to the fluid flow direction, and the lower surface of the substrate was sealed using a support member made of an O-ring. A fluid was sprayed from the nozzle toward the second surface of the substrate to deposit a conductive substance on the inner wall of the fine hole.
The reaction pressure was 10 MPa (of which the H 2 gas pressure was 1 MPa), the reaction temperature was 200 ° C., the CO 2 flow rate was 2.0 m 1 / min, and the reaction time was 60 minutes.
(第五実施例)
 本実施例においては、本発明の第四実施形態の装置の構成を用いた。
 基体を以下に述べる仕様に変更した以外は、第四実施例と同様の作製条件により、微細孔の内壁へ導電性物質を堆積させた。
 本例では、基体として、図17に示すように基板内部で屈曲して設けられた微細孔を複数本(符号a~g)有する、板厚が0.30mm(300μm)のガラス基板(SiO)を用いた。微細孔の径は10μmである。各微細孔は、基体の両主面から垂直に延びる2つの部分と、この2つの部分に繋がり、基板の両主面と平行に延びる部分から構成され、後者の長さは1.7mmである。すなわち、この微細孔は2つの屈曲部(クランク)を有する。
(Fifth embodiment)
In this example, the configuration of the apparatus according to the fourth embodiment of the present invention was used.
A conductive material was deposited on the inner walls of the micropores under the same production conditions as in the fourth example except that the substrate was changed to the specifications described below.
In this example, as a substrate, a glass substrate (SiO 2 ) having a plurality of fine holes (reference symbols a to g) bent inside the substrate as shown in FIG. 17 and having a plate thickness of 0.30 mm (300 μm). ) Was used. The diameter of the micropore is 10 μm. Each micropore is composed of two parts extending perpendicularly from both main surfaces of the substrate and a part connected to the two parts and extending in parallel with both main surfaces of the substrate, and the length of the latter is 1.7 mm. . In other words, this fine hole has two bent portions (cranks).
(第三比較例) 
 本比較例においては、本発明の第四実施形態の装置の構成を用いた。
 反応容器の仕様を以下に通り変更し、微細孔の内壁へ導電性物質を堆積させた。
 反応容器としては、図12に示す構成において、基板よりも小さなOリングを用いた以外は、第四実施例と同様のものを用いた。基体は、第四実施例と同じものを用いた。
すなわち、基体20の第一面20b側をOリング32で支持する構成とすることにより、第一空間αから第二空間βに向かう流体が、基体に設けられた微細孔内のみを通過する構成とした。
(Third comparative example)
In this comparative example, the configuration of the apparatus according to the fourth embodiment of the present invention was used.
The specification of the reaction vessel was changed as follows, and a conductive substance was deposited on the inner wall of the micropore.
As the reaction vessel, the same reaction vessel as in the fourth example was used except that an O-ring smaller than the substrate was used in the configuration shown in FIG. The same substrate as in the fourth example was used.
That is, by configuring the first surface 20b side of the base body 20 to be supported by the O-ring 32, the fluid that travels from the first space α to the second space β passes only through the micro holes provided in the base body. It was.
(第四比較例)
本比較例においては、本発明の第四実施形態の装置の構成を用いた。
 反応容器の仕様と基体の仕様を以下に通り変更し、微細孔の内壁へ導電性物質を堆積させた。
 反応容器としては、図12に示す構成において、基板よりも小さなOリングを用いた以外は、第四実施例と同様のものを用いた。すなわち、基体20の第一面20b側をOリング32で支持する構成とすることにより、第一空間αから第二空間βに向かう流体が、基体に設けられた微細孔内のみを通過する構成とした。
 基体としては、第五実施例と同様のものを用いた。すなわち、図17に示すように基板内部で屈曲して設けられた微細孔を複数本(符号a~g)有する、板厚が0.30mm(300μm)のガラス基板(SiO)を用いた。
(Fourth comparative example)
In this comparative example, the configuration of the apparatus according to the fourth embodiment of the present invention was used.
The specification of the reaction vessel and the specification of the substrate were changed as follows, and a conductive substance was deposited on the inner wall of the fine hole.
As the reaction vessel, the same reaction vessel as in the fourth example was used except that an O-ring smaller than the substrate was used in the configuration shown in FIG. That is, by configuring the first surface 20b side of the base body 20 to be supported by the O-ring 32, the fluid traveling from the first space α to the second space β passes only through the micro holes provided in the base body. It was.
As the substrate, the same one as in the fifth example was used. That is, as shown in FIG. 17, a glass substrate (SiO 2 ) having a plurality of fine holes (reference symbols a to g) provided inside the substrate and having a plate thickness of 0.30 mm (300 μm) was used.
 以上のようにして得られた基体の断面を観察した。観察には光学顕微鏡を用いた。
 基体をダイヤモンドカッターで半分に切断した。このとき、切断する片方の表面に接着剤を塗布した。これは断面研磨時に屑が微細孔へ入り込まないようにするためである。接着剤が乾燥した後、顕微鏡で観察しながら紙やすり(#1500~10000)を用いて断面を研磨し、基体の断面を光学顕微鏡で観察した。
The cross section of the substrate obtained as described above was observed. An optical microscope was used for observation.
The substrate was cut in half with a diamond cutter. At this time, an adhesive was applied to one surface to be cut. This is to prevent debris from entering the fine holes during cross-sectional polishing. After the adhesive was dried, the cross section was polished with a sandpaper (# 1500 to 10000) while observing with a microscope, and the cross section of the substrate was observed with an optical microscope.
 図16は第四実施例により微細孔内に導電性物質を堆積させた状態を示す基体の断面図である。図16において、上方が基体の第二面(流体の入口側)、下方が基体の第一面(流体の出口側)である。図16から明らかなように、孔径が20μmの微細孔の内壁に対して、入口側から見て80%の深さまでほぼ均一に導電性物質が均一な厚さに堆積していた。残りの20%は出口側に向けて厚さが次第に薄くなる傾向が見られた。この結果から、アスペクト比(孔の深さ(全長)/孔径)が50の微細孔に対して、全長の80%程度を被覆することに成功した。 FIG. 16 is a cross-sectional view of the substrate showing a state in which a conductive substance is deposited in the fine holes according to the fourth embodiment. In FIG. 16, the upper side is the second surface (fluid inlet side) of the substrate, and the lower side is the first surface (fluid outlet side) of the substrate. As is clear from FIG. 16, the conductive material was deposited in a uniform thickness almost uniformly up to a depth of 80% when viewed from the inlet side with respect to the inner wall of the fine hole having a hole diameter of 20 μm. The remaining 20% tended to become thinner toward the outlet side. From this result, it succeeded in covering about 80% of the total length with respect to the fine hole having the aspect ratio (hole depth (full length) / hole diameter) of 50.
 第五実施例において、図17に示した基体については、基体の第二面(流体の入口側)から垂直に延びる微細孔の部分には導電性物質がほぼ均一に堆積された。さらに、垂直に延びる微細孔の部分の先に位置する(すなわち、1つ目の屈曲部(クランク部)を越えた)、基板の両主面と平行に延びる部分についても全域に亘って導電性物質がほぼ均一に堆積された。しかしながら、基体の他方の面(流体の出口側)に位置する(2つ目の屈曲部(クランク部)を越えた位置にある、)垂直に延びる微細孔の部分には導電性物質が僅かに付着した状態であることが確認された。 In the fifth example, with respect to the substrate shown in FIG. 17, the conductive material was deposited almost uniformly on the micropores extending vertically from the second surface (fluid inlet side) of the substrate. Furthermore, the portion extending in parallel with both main surfaces of the substrate located at the tip of the vertically extending fine hole portion (that is, beyond the first bent portion (crank portion)) is electrically conductive over the entire area. The material was deposited almost uniformly. However, there is a slight amount of conductive material in the vertically extending micropores located on the other surface (fluid outlet side) of the substrate (beyond the second bend (crank)). It was confirmed that it was in an attached state.
 第三比較例の条件では、微細孔の入口から見て、半分程度の深さの位置までしか、導電性物質を堆積することができなかった。 Under the conditions of the third comparative example, the conductive material could be deposited only up to about half the depth when viewed from the entrance of the micropore.
 第四比較例の条件では、微細孔の入口付近、すなわち孔径と同レベルの深さまでしか、導電性物質を堆積することができなかった。 Under the conditions of the fourth comparative example, the conductive material could be deposited only near the entrance of the micropores, that is, to the same depth as the pore diameter.
 上述した本発明の第四実施形態の装置を用いた、実施例と比較例との結果より、以下の点が明らかとなった。
(1)微細孔の孔径が20μm程度の場合は、流体の流れ方向に対して垂直になるように基体を配するとともに、基体の微細孔に対して、流体の入口側に位置する第一空間αが、流体の出口側に位置する第二空間βより、高圧となるような装置構成(図8、10、11)を採用することにより、アスペクトが50という微細孔を有する基体においても、微細孔の内部まで厚さが均一で一様に導電性物質を堆積させることが可能である。
(2)基体内部において、長手方向を変えるような微細孔に対しては、屈曲部(クランク部)が1つであれば、その屈曲部(クランク部)を越えた先の領域まで、微細孔内に流体を流し込むことができる。屈曲部(クランク部)が2つ以上になると、本発明に係る手法だけでは限界がある。
(3)図8、10、11に示す装置構成ならば、孔径が10μmという微細孔においても、基体の第二面から垂直に延びる微細孔ならば、その全域に亘って厚さが均一で一様に導電性物質を堆積させることができる。さらに、図8、10、11に示す装置構成は、孔径が10μmという微細孔であっても、この垂直に延びる微細孔に続く屈曲部(クランク部)を越えた先の領域まで、厚さが均一で一様に導電性物質を堆積させる能力を備えている。
The following points were clarified from the results of the examples and the comparative examples using the apparatus of the fourth embodiment of the present invention described above.
(1) When the hole diameter of the micropore is about 20 μm, the base is arranged so as to be perpendicular to the fluid flow direction, and the first space located on the fluid inlet side with respect to the micropore of the base By adopting an apparatus configuration in which α is higher than the second space β located on the fluid outlet side (FIGS. 8, 10, and 11), even in a substrate having a fine hole with an aspect of 50, It is possible to deposit the conductive material uniformly and uniformly to the inside of the hole.
(2) In the case of a fine hole that changes the longitudinal direction inside the substrate, if there is only one bent part (crank part), the fine hole extends to the area beyond the bent part (crank part). Fluid can be poured into the interior. If there are two or more bent portions (crank portions), the method according to the present invention has a limit.
(3) With the apparatus configuration shown in FIGS. 8, 10, and 11, even in the case of a fine hole having a hole diameter of 10 μm, if the fine hole extends perpendicularly from the second surface of the substrate, the thickness is uniform over the entire region. In this way, a conductive material can be deposited. Further, the device configuration shown in FIGS. 8, 10 and 11 has a thickness of up to a region beyond the bent portion (crank portion) following the vertically extending micro hole, even if the hole diameter is 10 μm. It has the ability to deposit a conductive material uniformly and uniformly.
 以上の結果から、本発明の第四実施形態によれば、前記第一空間に導入された前記流体が移動する特定の方向に対して前記基体の第二面を垂直とし、かつ、該基体の第二面から第一面に向けて、該基体の微細孔の中を前記流体が進行するように、前記基体の第一面を支持したことにより、アスペクト比が50の微細孔において、その内部まで厚さが均一で一様に導電性物質を堆積させることが可能であることが確認された。また、微細孔内に屈曲部(クランク部)が存在しても、この屈曲部(クランク部)を越えた先の領域まで、導電性物質を堆積させることができることが分かった。
 また、本発明の第四実施形態によれば、基体の第二面側を、基体の第一面側より高圧にして、第一空間αから第二空間βに向かう流体が、基体に設けられた微細孔内を通過するとともに、基体とOリングからなる支持部材との間に設けた隙間(誘導路)も通過する構成を採用したことにより、基体の支持箇所に負荷がかかり、基体が破損し、砕けた基体がライン内に流れて配管が閉塞したり、あるいは機器が故障してしまう問題も解消された。
From the above results, according to the fourth embodiment of the present invention, the second surface of the base body is perpendicular to the specific direction in which the fluid introduced into the first space moves, and By supporting the first surface of the substrate so that the fluid proceeds in the micropores of the substrate from the second surface to the first surface, the inside of the micropores having an aspect ratio of 50 It was confirmed that the conductive material can be uniformly deposited with a uniform thickness. Further, it has been found that even when a bent portion (crank portion) exists in the fine hole, the conductive material can be deposited up to a region beyond the bent portion (crank portion).
In addition, according to the fourth embodiment of the present invention, the second surface side of the base is set to a pressure higher than that of the first surface of the base, and the fluid from the first space α to the second space β is provided on the base. By adopting a configuration that passes through the fine holes and also passes through the gap (guide path) provided between the base and the support member consisting of the O-ring, the base is supported and the base is damaged. In addition, the problem that the broken base body flows into the line and the piping is blocked or the equipment breaks down has been solved.
 なお、前記流体の導入部として、前記反応容器の前記第一空間内に突出し、その導入口が前記基体の第二面の近傍に位置するように構成や、前記反応容器の前記第一空間内に突出し、その導入口が複数、前記基体の第二面の近傍に位置するように構成を採用することにより、上述した作用・効果はさらに高まる。たとえば、前者の構成とした場合には、微細孔の入口を狙った位置に流体の導入部を配置すれば、微細孔の内部に流体が強制的に輸送させる流入量を増加できるので好ましい。一方、後者の構成は、基体が大面積化して、複数の微細孔を備えた基体に適用する際に有効である。基体の形状や面積に応じて、複数の微細孔に対して均等に、各微細孔の内部に流体を強制的に輸送させることが可能となる。 The fluid introduction part protrudes into the first space of the reaction vessel, and the introduction port is located in the vicinity of the second surface of the base, or in the first space of the reaction vessel. By adopting the configuration so that the plurality of inlets are positioned in the vicinity of the second surface of the base body, the above-described functions and effects are further enhanced. For example, in the case of the former configuration, it is preferable to dispose the fluid introduction portion at a position aimed at the entrance of the micropore because the amount of inflow that the fluid is forced to transport into the micropore can be increased. On the other hand, the latter configuration is effective when the substrate is applied to a substrate having a large area and a plurality of fine holes. According to the shape and area of the substrate, the fluid can be forcibly transported into each micropore evenly with respect to the plurality of micropores.
 以下、本発明の第一実施形態の効果を確認するために行った実施例について説明する。
 以下の実施例においては、本発明の第一実施形態の装置の構成を用いた。
<第六実施例>
 本実施例においては、本発明の第一実施形態の装置の構成を用いた。
図1及び図2に示した装置を用いて、基体に設けられた微細孔の内壁へ導電性物質を堆積させた。具体的には、超臨界流体に金属錯体を溶解してなる流体を反応容器へ導入し、該反応容器内において連続的に特定の方向へ移動する該流体の中に、平板状の基体を配して、該基体に設けられた微細孔の内壁へ導電性物質を形成した。これにより、第一空間αから第二空間βに向かう流体が、基体の第二面側から基体に設けられた微細孔内を通過するとともに、基体を載置する支持部材に内在された微細な連通孔を通して基体の第一面側からも微細孔内へ供給される構成とした。
Examples performed to confirm the effects of the first embodiment of the present invention will be described below.
In the following examples, the configuration of the apparatus according to the first embodiment of the present invention was used.
<Sixth embodiment>
In this example, the configuration of the apparatus according to the first embodiment of the present invention was used.
Using the apparatus shown in FIGS. 1 and 2, a conductive substance was deposited on the inner walls of the micropores provided in the substrate. Specifically, a fluid obtained by dissolving a metal complex in a supercritical fluid is introduced into a reaction vessel, and a flat substrate is arranged in the fluid that continuously moves in a specific direction in the reaction vessel. Then, a conductive substance was formed on the inner wall of the fine hole provided in the substrate. As a result, the fluid traveling from the first space α to the second space β passes through the micro holes provided in the base body from the second surface side of the base body, and is finely contained in the support member on which the base body is placed. It was set as the structure supplied to the inside of a fine hole also from the 1st surface side of a base | substrate through a communicating hole.
 前記流体としては、COの超臨界流体を媒質とし、導電性物質の原料となる金属錯体として(Cu(dibm))、還元剤としてHガスを溶解してなる流体を用いた。なお、金属錯体はアセトンを補助溶媒として、500/25の割合で溶解されている。
 流体中の濃度は、(Cu(dibm))が2.92×10-2mol%(273K)、Hガスが1.53mol%(273K)であった。
 基体としては、図18に示すように、その中央部に、基板の両主面間を垂直に貫通する微細孔を有し、板厚が1.0mm(1000μm)のガラス基板(SiO)を用いた。微細孔の径は20μmである。
As the fluid, a supercritical fluid of CO 2 was used as a medium, a metal complex (Cu (divm) 2 ) serving as a raw material for the conductive material, and a fluid obtained by dissolving H 2 gas as a reducing agent were used. The metal complex is dissolved at a ratio of 500/25 using acetone as an auxiliary solvent.
Concentrations in the fluid were 2.92 × 10 −2 mol% (273 K) for (Cu (divm) 2 ) and 1.53 mol% (273 K) for H 2 gas.
As shown in FIG. 18, a glass substrate (SiO 2 ) having a fine hole penetrating perpendicularly between both main surfaces of the substrate and having a plate thickness of 1.0 mm (1000 μm) is used as the substrate. Using. The diameter of the micropore is 20 μm.
 反応容器中において、流体の流れ方向に対して垂直になるように基体を配するとともに、基体の下面を全面に亘って、基体を保持する基体保持具(支持部材)40を配置してシールした。
 基体を保持する基体保持具(支持部材)40として、連通孔41を内在するガラスフィルター(GF/A)を用いた。GF/Aは、変性蛋白質のろ過に最も広く使用される、効率の高い一般目的用ろ紙であり、大気汚染分析にも使用される。GF/Aの大きさは4.7cm、粒子保持能は1.6μm、荷重は強、ろ過速度(速坪量)は53g/mである。
 そして、流体をノズルから基体の第二面に向けて吹きつけることにより、微細孔の内壁へ導電性物質を堆積させた。なお、反応圧力は全圧が10MPa(うち、Hガス圧が1MPa)、反応温度は200℃、CO流量は2.0ml/min、反応時間は60minとした。
In the reaction vessel, the substrate is arranged so as to be perpendicular to the fluid flow direction, and a substrate holder (support member) 40 for holding the substrate is disposed and sealed over the entire lower surface of the substrate. .
As a substrate holder (support member) 40 for holding the substrate, a glass filter (GF / A) having a communication hole 41 was used. GF / A is the most efficient general purpose filter paper that is most widely used for filtration of denatured proteins, and is also used for air pollution analysis. The size of GF / A is 4.7 cm, the particle retention capacity is 1.6 μm, the load is strong, and the filtration rate (fast basis weight) is 53 g / m 2 .
A fluid was sprayed from the nozzle toward the second surface of the substrate to deposit a conductive substance on the inner wall of the fine hole. The reaction pressure was 10 MPa (of which the H 2 gas pressure was 1 MPa), the reaction temperature was 200 ° C., the CO 2 flow rate was 2.0 ml / min, and the reaction time was 60 min.
<第七実施例> 
 本実施例においては、本発明の第一実施形態の装置の構成を用いた。
基体を以下に述べる仕様に変更した以外は、第六実施例と同様の作製条件により、微細孔の内壁へ導電性物質を堆積させた。
 本例では、基体として、図17に示すように基板内部で屈曲して設けられた微細孔を複数本(符号a~g)有する、板厚が0.30mm(300μm)のガラス基板(SiO)を用いた。微細孔の径は10μmである。各微細孔は、基体の両主面から垂直に延びる2つの部分と、この2つの部分に繋がり、基板の両主面と平行に延びる部分から構成され、後者の長さは1.7mmである。すなわち、この微細孔は2つの屈曲部(クランク)を有する。
<Seventh embodiment>
In this example, the configuration of the apparatus according to the first embodiment of the present invention was used.
A conductive substance was deposited on the inner wall of the fine hole under the same production conditions as in the sixth example except that the substrate was changed to the specification described below.
In this example, as a substrate, a glass substrate (SiO 2 ) having a plurality of fine holes (reference symbols a to g) bent inside the substrate as shown in FIG. 17 and having a plate thickness of 0.30 mm (300 μm). ) Was used. The diameter of the micropore is 10 μm. Each micropore is composed of two parts extending perpendicularly from both main surfaces of the substrate and a part connected to the two parts and extending in parallel with both main surfaces of the substrate, and the length of the latter is 1.7 mm. . In other words, this fine hole has two bent portions (cranks).
(第五比較例)
 本比較例には、本発明の第一実施形態の装置の構成を用いた。
 反応容器の仕様を第三比較例と同様に、以下に通り変更し、微細孔の内壁へ導電性物質を堆積させた。
 反応容器としては、図12に示す構成において、基板よりも小さなOリングを用いた以外は、第六実施例と同様のものを用いた。基体は、第六実施例と同じものを用いた。すなわち、基体20の第一面20b側をOリング32で支持する構成とすることにより、第一空間αから第二空間βに向かう流体が、基体に設けられた微細孔内のみを通過する構成とした。
(Fifth comparative example)
In this comparative example, the configuration of the apparatus according to the first embodiment of the present invention was used.
Similar to the third comparative example, the specification of the reaction vessel was changed as follows, and a conductive substance was deposited on the inner wall of the micropore.
As the reaction vessel, the same reaction vessel as in the sixth example was used except that an O-ring smaller than the substrate was used in the configuration shown in FIG. The same substrate as in the sixth example was used. That is, by configuring the first surface 20b side of the base body 20 to be supported by the O-ring 32, the fluid traveling from the first space α to the second space β passes only through the micro holes provided in the base body. It was.
(第六比較例)
 本比較例には、本発明の第一実施形態の装置の構成を用いた。
 反応容器の仕様と基体の仕様を第四比較例と同様に、以下に通り変更し、微細孔の内壁へ導電性物質を堆積させた。
 反応容器としては、図12に示す構成において、基板よりも小さなOリングを用いた以外は、第四実施例と同様のものを用いた。すなわち、基体20の第一面20b側をOリング32で支持する構成とすることにより、第一空間αから第二空間βに向かう流体が、基体に設けられた微細孔内のみを通過する構成とした。
 基体としては、第五実施例と同様のものを用いた。すなわち、図17に示すように基板内部で屈曲して設けられた微細孔を複数本(符号a~g)有する、板厚が0.30mm(300μm)のガラス基板(SiO)を用いた。
(Sixth comparative example)
In this comparative example, the configuration of the apparatus according to the first embodiment of the present invention was used.
As in the fourth comparative example, the specification of the reaction vessel and the specification of the substrate were changed as follows, and a conductive substance was deposited on the inner wall of the micropore.
As the reaction vessel, the same reaction vessel as in the fourth example was used except that an O-ring smaller than the substrate was used in the configuration shown in FIG. That is, by configuring the first surface 20b side of the base body 20 to be supported by the O-ring 32, the fluid traveling from the first space α to the second space β passes only through the micro holes provided in the base body. It was.
As the substrate, the same one as in the fifth example was used. That is, as shown in FIG. 17, a glass substrate (SiO 2 ) having a plurality of fine holes (reference symbols a to g) provided inside the substrate and having a plate thickness of 0.30 mm (300 μm) was used.
 以上のようにして得られた基体の断面を観察した。観察には光学顕微鏡を用いた。
 基体をダイヤモンドカッターで半分に切断した。このとき、切断する片方の表面に接着剤を塗布した。これは断面研磨時に屑が微細孔へ入り込まないようにするためである。接着剤が乾燥した後、顕微鏡で観察しながら紙やすり(#1500~10000)を用いて断面を研磨し、基体の断面を光学顕微鏡で観察した。
The cross section of the substrate obtained as described above was observed. An optical microscope was used for observation.
The substrate was cut in half with a diamond cutter. At this time, an adhesive was applied to one surface to be cut. This is to prevent debris from entering the fine holes during cross-sectional polishing. After the adhesive was dried, the cross section was polished with a sandpaper (# 1500 to 10000) while observing with a microscope, and the cross section of the substrate was observed with an optical microscope.
 図18は第六実施例により微細孔内に導電性物質を堆積させた状態を示す基体の断面図である。図18において、上方が基体の第二面(流体の入口側)、下方が基体の第一面(流体の出口側)である。図18から明らかなように、孔径が15μmの微細孔の内壁に対して、入口側から見て85%の深さまでほぼ均一に導電性物質が均一な厚さに堆積していた。残りの20%は出口側に向けて厚さが次第に薄くなる傾向が見られた。この結果から、アスペクト比(孔の深さ(全長)/孔径)が100の微細孔に対して、全長の85%程度を被覆することに成功した。 FIG. 18 is a cross-sectional view of the substrate showing a state in which a conductive substance is deposited in the fine holes according to the sixth embodiment. In FIG. 18, the upper side is the second surface (fluid inlet side) of the substrate, and the lower side is the first surface (fluid outlet side) of the substrate. As is clear from FIG. 18, the conductive material was deposited almost uniformly on the inner wall of the fine hole having a hole diameter of 15 μm to a depth of 85% when viewed from the inlet side. The remaining 20% tended to become thinner toward the outlet side. From this result, it has succeeded in covering about 85% of the total length with respect to the fine holes having an aspect ratio (hole depth (full length) / hole diameter) of 100.
 第七実施例において、図17に示した基体については、基体の第二面(流体の入口側)から垂直に延びる微細孔の部分には導電性物質がほぼ均一に堆積された。さらに、垂直に延びる微細孔の部分の先に位置する(すなわち、1つ目の屈曲部(クランク部)を越えた)、基板の両主面と平行に延びる部分についても全域に亘って導電性物質がほぼ均一に堆積された。これに加えて、基体の他方の面(流体の出口側)に位置する(2つ目の屈曲部(クランク部)を越えた位置にある、)垂直に延びる微細孔の部分にも導電性物質がほぼ均一に堆積されることが確認された。 In the seventh example, with respect to the substrate shown in FIG. 17, the conductive material was deposited almost uniformly on the micropores extending vertically from the second surface (fluid inlet side) of the substrate. Furthermore, the portion extending in parallel with both main surfaces of the substrate located at the tip of the vertically extending fine hole portion (that is, beyond the first bent portion (crank portion)) is electrically conductive over the entire area. The material was deposited almost uniformly. In addition to this, the conductive material is also applied to the portion of the fine hole extending vertically (located beyond the second bent portion (crank portion)) located on the other surface (fluid outlet side) of the substrate. Was confirmed to be deposited almost uniformly.
 第五比較例の条件では、微細孔の入口から見て、半分程度の深さの位置までしか、導電性物質を堆積することができなかった。 In the condition of the fifth comparative example, the conductive material could be deposited only up to about half the depth when viewed from the entrance of the micropore.
 第六比較例の条件では、微細孔の入口付近、すなわち孔径と同レベルの深さまでしか、導電性物質を堆積することができなかった。 Under the conditions of the sixth comparative example, the conductive material could be deposited only near the entrance of the micropores, that is, up to the same depth as the pore diameter.
 上述した本発明の第一実施形態の装置の構成を用いた、実施例と比較例との比較より、以下の点が明らかとなった。
(1)微細孔の孔径が15μm程度の場合は、流体の流れ方向に対して垂直になるように基体を配するとともに、基体の微細孔に対して、流体の入口側に位置する第一空間αが、流体の出口側に位置する第二空間βより、高圧となるような装置構成(図2、4、5)を採用することにより、アスペクトが100という微細孔を有する基体においても、微細孔の内部まで厚さが均一で一様に導電性物質を堆積させることが可能である。
(2)基体内部において、長手方向を変えるような微細孔に対しては、屈曲部(クランク部)が1つであれば、その屈曲部(クランク部)を越えた先の領域まで、微細孔内に流体を流し込むことができる。屈曲部(クランク部)が2つ以上存在しても、本発明に係る手法によれば、微細孔の長手方向の全域に亘って流体を進行させることが可能である。
(3)図2、4、5に示す装置構成ならば、孔径が10μmという微細孔においても、基体の第二面から垂直に延びる微細孔に限定されることなく、この垂直に延びる微細孔に続く屈曲部(クランク部)を越えた先の領域まで、さらには基体の第一面側に至る領域まで、厚さが均一で一様に導電性物質を堆積させる能力を備えている。
From the comparison between the example and the comparative example using the configuration of the apparatus of the first embodiment of the present invention described above, the following points became clear.
(1) When the hole diameter of the micropore is about 15 μm, the base is arranged so as to be perpendicular to the fluid flow direction, and the first space located on the fluid inlet side with respect to the micropore of the base By adopting an apparatus configuration in which α is higher than the second space β located on the fluid outlet side (FIGS. 2, 4, and 5), even in a substrate having a fine hole with an aspect of 100, It is possible to deposit the conductive material uniformly and uniformly to the inside of the hole.
(2) In the case of a fine hole that changes the longitudinal direction inside the substrate, if there is only one bent part (crank part), the fine hole extends to the area beyond the bent part (crank part). Fluid can be poured into the interior. Even if there are two or more bent portions (crank portions), according to the method according to the present invention, it is possible to cause the fluid to travel over the entire region in the longitudinal direction of the fine holes.
(3) With the device configuration shown in FIGS. 2, 4 and 5, even in the case of a fine hole having a hole diameter of 10 μm, the fine hole extending vertically is not limited to the fine hole extending vertically from the second surface of the substrate. It has the ability to deposit a conductive material uniformly and uniformly to a region beyond the subsequent bent portion (crank portion) and further to a region reaching the first surface side of the substrate.
 以上の結果から、本発明の第一実施形態によれば、前記第一空間に導入された前記流体が移動する特定の方向に対して前記基体の第二面を垂直とし、かつ、該基体の第二面から第一面に向けて、該基体の微細孔の中を前記流体が進行するように、前記基体の第一面を支持したことにより、アスペクト比が100の微細孔において、その内部まで厚さが均一で一様に導電性物質を堆積させることが可能であることが確認された。また、微細孔内に屈曲部(クランク部)が存在しても、この屈曲部(クランク部)を越えた先の領域まで、さらには基体の第一面側に至る領域まで、導電性物質を堆積させることができることが分かった。
 また、本発明の第一実施形態によれば、基体の第二面側を、基体の第一面側より高圧にして、第一空間αから第二空間βに向かう流体が、基体に設けられた微細孔内を通過するとともに、基体を載置する支持部材に内在された微細な連通孔を通して基体の第一面側からも微細孔内へ供給される構成を採用したことにより、基体の支持箇所に負荷がかかり、基体が破損し、砕けた基体がライン内に流れて配管が閉塞したり、あるいは機器が故障してしまう問題も解消された。
From the above results, according to the first embodiment of the present invention, the second surface of the base body is perpendicular to the specific direction in which the fluid introduced into the first space moves, and By supporting the first surface of the substrate so that the fluid proceeds in the micropores of the substrate from the second surface toward the first surface, the inside of the micropores having an aspect ratio of 100 It was confirmed that the conductive material can be uniformly deposited with a uniform thickness. In addition, even if a bent portion (crank portion) exists in the minute hole, the conductive material is applied to the region beyond the bent portion (crank portion) and further to the region reaching the first surface side of the substrate. It has been found that it can be deposited.
Further, according to the first embodiment of the present invention, the base is provided with a fluid from the first space α to the second space β with the second surface side of the base being at a higher pressure than the first surface side of the base. The substrate is supported by adopting a structure that passes through the minute holes and is also supplied from the first surface side of the substrate through the minute communication holes incorporated in the support member on which the substrate is placed. The problem that the load was applied to the location, the base was damaged, the broken base flowed into the line and the piping was blocked, or the equipment failed was also solved.
 なお、前記流体の導入部として、前記反応容器の前記第一空間内に突出し、その導入口が前記基体の第二面の近傍に位置するように構成や、前記反応容器の前記第一空間内に突出し、その導入口が複数、前記基体の第二面の近傍に位置するように構成を採用することにより、上述した作用・効果はさらに高まる。たとえば、前者の構成とした場合には、微細孔の入口を狙った位置に流体の導入部を配置すれば、微細孔の内部に流体が強制的に輸送させる流入量を増加できるので好ましい。一方、後者の構成は、基体が大面積化して、複数の微細孔を備えた基体に適用する際に有効である。基体の形状や面積に応じて、複数の微細孔に対して均等に、各微細孔の内部に流体を強制的に輸送させることが可能となる。 The fluid introduction part protrudes into the first space of the reaction vessel, and the introduction port is located in the vicinity of the second surface of the base, or in the first space of the reaction vessel. By adopting the configuration so that the plurality of inlets are positioned in the vicinity of the second surface of the base body, the above-described functions and effects are further enhanced. For example, in the case of the former configuration, it is preferable to dispose the fluid introduction portion at a position aimed at the entrance of the micropore because the amount of inflow that the fluid is forced to transport into the micropore can be increased. On the other hand, the latter configuration is effective when the substrate is applied to a substrate having a large area and a plurality of fine holes. According to the shape and area of the substrate, the fluid can be forcibly transported into each micropore evenly with respect to the plurality of micropores.
 以上、本発明の装置及び方法について説明してきたが、本発明はこれに限定されるものではなく、発明の趣旨を逸脱しない範囲で、適宜変更が可能である。 The apparatus and method of the present invention have been described above, but the present invention is not limited to this and can be appropriately changed without departing from the spirit of the invention.
 本発明は、超臨界流体に金属錯体を溶解してなる流体を用いて、基体に設けられた微細孔の内壁へ導電性物質を形成する装置及び方法に広く適用可能である。なお、本発明の手法を用いて微細孔に形成した導電性物質を、貫通配線として利用できる。 The present invention can be widely applied to an apparatus and a method for forming a conductive material on the inner wall of a fine hole provided in a substrate using a fluid obtained by dissolving a metal complex in a supercritical fluid. In addition, the conductive substance formed in the fine hole using the method of the present invention can be used as the through wiring.
 1 H ボンベ、2 COボンベ、3 圧力調整器、4 供給バルブ、5 ミキサ、6 送液ポンプ、7 冷却器、8 原料容器、9 原料送液ポンプ、10 手前バルブ、11 マントルヒーター、12 プレヒート配管、13 反応容器、14 背圧調整器(BPR)、15 恒温槽、20 基体、21 微細孔、31 基体支持具(支持部)、32 Oリング(支持部材)、33 ノズル(流体の導入部)、34 誘導路、40 基板支持具(支持部材)、41 連通孔、α 第一空間、β 第二空間。 1 H 2 cylinder, 2 CO 2 cylinder, 3 pressure regulator, 4 supply valve, 5 mixer, 6 feed pump, 7 cooler, 8 feed container, 9 feed pump, 10 front valve, 11 mantle heater, 12 Preheat piping, 13 reaction vessel, 14 back pressure regulator (BPR), 15 thermostatic bath, 20 substrate, 21 micropores, 31 substrate support (support), 32 O-ring (support member), 33 nozzle (introduction of fluid) Part), 34 guide path, 40 substrate support (support member), 41 communicating hole, α first space, β second space.

Claims (19)

  1.  導電性物質の形成装置であって、
     超臨界流体又は亜臨界流体に少なくとも金属錯体を溶解してなる流体が導入される第一空間と前記流体が導出される第二空間とを備える反応容器と、
     前記反応容器内において連続的に特定の方向へ移動する前記流体の中に配置され、第一面及び第二面と微細孔とを有する平板状の基体と、
     前記第一空間に導入された前記流体が移動する特定の方向に対して前記基体の前記第二面が垂直になるようにかつ前記基体の前記第二面から前記第一面に向けて前記基体の前記微細孔の中を前記流体が進行するように前記基体の前記第一面を全面に亘って支持し、前記第二空間へ前記流体が通過する微細な連通孔を有する支持部材と、
     を備えることを特徴とする導電性物質の形成装置。
    A conductive material forming apparatus comprising:
    A reaction vessel comprising a first space into which a fluid formed by dissolving at least a metal complex in a supercritical fluid or a subcritical fluid is introduced, and a second space from which the fluid is derived;
    A flat substrate disposed in the fluid that continuously moves in a specific direction in the reaction vessel and having a first surface, a second surface, and micropores;
    The substrate so that the second surface of the substrate is perpendicular to the specific direction in which the fluid introduced into the first space moves and from the second surface of the substrate toward the first surface A support member having a fine communication hole that supports the first surface of the substrate over the entire surface so that the fluid travels in the fine holes, and the fluid passes through the second space;
    An apparatus for forming a conductive substance, comprising:
  2.  前記反応容器の前記第一空間内に突出し、前記基体の前記第二面の近傍に位置するように構成されている導入口を有し、前記反応容器に前記流体を導入する導入部を備えることを特徴とする請求項1に記載の導電性物質の形成装置。 Providing an inlet for projecting into the first space of the reaction vessel and configured to be located in the vicinity of the second surface of the substrate, and for introducing the fluid into the reaction vessel. The apparatus for forming a conductive material according to claim 1.
  3.  前記反応容器の前記第一空間内に突出し、前記基体の前記第二面の近傍に位置するように構成されている複数の導入口を有し、前記反応容器に前記流体を導入する導入部を備えることを特徴とする請求項1に記載の導電性物質の形成装置。 A plurality of inlets configured to project into the first space of the reaction vessel and to be positioned in the vicinity of the second surface of the substrate, and to introduce an introduction portion for introducing the fluid into the reaction vessel The conductive material forming apparatus according to claim 1, further comprising:
  4.  導電性物質を形成する方法であって、
     超臨界流体又は亜臨界流体に少なくとも金属錯体を溶解してなる流体が導入される第一空間と前記流体が導出される第二空間とを備える反応容器と、前記反応容器内において連続的に特定の方向へ移動する前記流体の中に配置されて第一面及び第二面と微細孔とを有する平板状の基体と、前記基体の前記第一面を支持する支持部材とを準備し、
     前記第一空間に導入された前記流体が移動する特定の方向に対して前記基体の前記第二面が垂直になるように、かつ、前記基体の前記第二面から前記第一面に向けて前記基体の前記微細孔の中を前記流体が進行するように、前記支持部材を配置し、
     前記流体を前記第一空間から前記第二空間へ移動させ、
     前記基体に設けられた前記微細孔の内壁へ導電性物質を形成する
     ことを特徴とする導電性物質の形成方法。
    A method of forming a conductive material, comprising:
    A reaction vessel comprising a first space into which a fluid formed by dissolving at least a metal complex in a supercritical fluid or a subcritical fluid is introduced, and a second space from which the fluid is led out, and continuous identification in the reaction vessel Preparing a flat substrate having a first surface and a second surface and a fine hole disposed in the fluid moving in the direction of, and a support member for supporting the first surface of the substrate;
    The second surface of the substrate is perpendicular to the specific direction in which the fluid introduced into the first space moves, and from the second surface of the substrate toward the first surface. The support member is arranged so that the fluid travels in the micropores of the base;
    Moving the fluid from the first space to the second space;
    A method for forming a conductive material, comprising: forming a conductive material on an inner wall of the fine hole provided in the base.
  5.  前記基体として、半導体基板、又はガラス基板を用いること、を特徴とする請求項4に記載の導電性物質の形成方法。 The method for forming a conductive substance according to claim 4, wherein a semiconductor substrate or a glass substrate is used as the substrate.
  6.  前記流体に、還元剤が溶解されていること、を特徴とする請求項4又は5に記載の導電性物質の形成方法。 6. The method for forming a conductive substance according to claim 4, wherein a reducing agent is dissolved in the fluid.
  7.  導電性物質の形成装置であって、
     超臨界流体又は亜臨界流体に少なくとも金属錯体を溶解してなる流体が導入される反応容器と、
     前記反応容器において連続的に特定の方向へ移動する前記流体の中に配置され、微細孔を有する平板状の基体と、
     を備え、
     前記基体の両面に沿って、前記流体が移動するように前記基体を配置したことを特徴とする導電性物質の形成装置。
    A conductive material forming apparatus comprising:
    A reaction vessel into which a fluid obtained by dissolving at least a metal complex in a supercritical fluid or a subcritical fluid is introduced;
    A flat substrate disposed in the fluid that continuously moves in a specific direction in the reaction vessel and having micropores;
    With
    An apparatus for forming a conductive substance, wherein the substrate is arranged so that the fluid moves along both surfaces of the substrate.
  8.  前記特定の方向に対して前記基体の両面が平行となるように前記基体を配置したことを特徴とする請求項7に記載の導電性物質の形成装置。 8. The conductive substance forming apparatus according to claim 7, wherein the base is disposed so that both surfaces of the base are parallel to the specific direction.
  9.  前記特定の方向に対して前記基体の両面が非平行となるように前記基体を配置したことを特徴とする請求項7に記載の導電性物質の形成装置。 8. The conductive substance forming apparatus according to claim 7, wherein the base is disposed so that both surfaces of the base are non-parallel to the specific direction.
  10.  前記特定の方向に対して前記基体の両面が成す角度を保持し、前記反応容器の内側に設けられた保持部を備えたことを特徴とする請求項7乃至9のいずれか一項に記載の導電性物質の形成装置。 10. The apparatus according to claim 7, further comprising: a holding unit that holds an angle formed by both surfaces of the base with respect to the specific direction and is provided inside the reaction vessel. Conductive substance forming device.
  11.  導電性物質の形成方法であって、
     超臨界流体又は亜臨界流体に少なくとも金属錯体を溶解してなる流体が導入される反応容器と、前記反応容器内において連続的に特定の方向へ移動する前記流体の中に配置される平板状の基体とを準備し、
     前記基体の両面に沿って、前記流体を移動させ、
     前記基体に設けられた前記微細孔の内壁へ導電性物質を形成する
     ことを特徴とする導電性物質の形成方法。
    A method for forming a conductive material, comprising:
    A reaction vessel into which a fluid formed by dissolving at least a metal complex in a supercritical fluid or a subcritical fluid is introduced; and a flat plate disposed in the fluid that continuously moves in a specific direction in the reaction vessel. Prepare the substrate and
    Moving the fluid along both sides of the substrate;
    A method for forming a conductive material, comprising: forming a conductive material on an inner wall of the fine hole provided in the base.
  12.  前記基体として、半導体基板、又はガラス基板を用いること、を特徴とする請求項11に記載の導電性物質の形成方法。 The method for forming a conductive substance according to claim 11, wherein a semiconductor substrate or a glass substrate is used as the substrate.
  13.  前記流体に、還元剤が溶解されていること、を特徴とする請求項11又は12に記載の導電性物質の形成方法。 The method for forming a conductive substance according to claim 11 or 12, wherein a reducing agent is dissolved in the fluid.
  14.  導電性物質の形成装置であって、
     超臨界流体又は亜臨界流体に少なくとも金属錯体を溶解してなる流体が導入される第一空間と前記流体が導出される第二空間とを備える反応容器と、
     前記反応容器内において連続的に特定の方向へ移動する前記流体の中に配置され、第一面及び第二面と微細孔とを有する平板状の基体と、
     前記第一空間に導入された前記流体が移動する特定の方向に対して前記基体の前記第二面が垂直となるようにかつ前記基体の前記第二面から前記第一面に向けて前記基体の前記微細孔の中を前記流体が進行するように前記基体の前記第一面を支持する支持部材と、
     を備えることを特徴とする導電性物質の形成装置。
    A conductive material forming apparatus comprising:
    A reaction vessel comprising a first space into which a fluid formed by dissolving at least a metal complex in a supercritical fluid or a subcritical fluid is introduced, and a second space from which the fluid is derived;
    A flat substrate disposed in the fluid that continuously moves in a specific direction in the reaction vessel and having a first surface, a second surface, and micropores;
    The substrate so that the second surface of the substrate is perpendicular to the specific direction in which the fluid introduced into the first space moves and from the second surface of the substrate toward the first surface A support member for supporting the first surface of the base so that the fluid travels in the micropores of
    An apparatus for forming a conductive substance, comprising:
  15.  前記反応容器の前記第一空間内に突出し、前記基体の前記第二面の近傍に位置するように構成されている導入口を有し、前記反応容器に前記流体を導入する導入部を備えることを特徴とする請求項14に記載の導電性物質の形成装置。 Providing an inlet for projecting into the first space of the reaction vessel and configured to be located in the vicinity of the second surface of the substrate, and for introducing the fluid into the reaction vessel. The apparatus for forming a conductive material according to claim 14.
  16.  前記反応容器の前記第一空間内に突出し、前記基体の前記第二面の近傍に位置するように構成されている複数の導入口を有し、前記反応容器に前記流体を導入する導入部を備えることを特徴とする請求項14に記載の導電性物質の形成装置。 A plurality of inlets configured to project into the first space of the reaction vessel and to be positioned in the vicinity of the second surface of the substrate, and to introduce an introduction portion for introducing the fluid into the reaction vessel 15. The conductive material forming apparatus according to claim 14, further comprising:
  17.  導電性物質の形成装置であって、
     超臨界流体又は亜臨界流体に少なくとも金属錯体を溶解してなる流体が導入される第一空間と前記流体が導出される第二空間とを備える反応容器と、
     前記反応容器内において連続的に特定の方向へ移動する前記流体の中に配置され、第一面及び第二面と微細孔とを有する平板状の基体と、
     前記第一空間に導入された前記流体が移動する特定の方向に対して前記基体の前記第二面が垂直となるようにかつ前記基体の前記第二面から前記第一面に向けて、前記基体の前記微細孔の中を前記流体が進行するように前記基体の前記第一面を支持し、前記第二空間へ前記流体が通過するとともに前記基体の周囲に設けられた誘導路を有する支持部材と、
     を備えることを特徴とする導電性物質の形成装置。
    A conductive material forming apparatus comprising:
    A reaction vessel comprising a first space into which a fluid formed by dissolving at least a metal complex in a supercritical fluid or a subcritical fluid is introduced, and a second space from which the fluid is derived;
    A flat substrate disposed in the fluid that continuously moves in a specific direction in the reaction vessel and having a first surface, a second surface, and micropores;
    The second surface of the substrate is perpendicular to the specific direction in which the fluid introduced into the first space moves, and from the second surface of the substrate toward the first surface, Supporting the first surface of the base so that the fluid travels in the micropores of the base, and passing the fluid to the second space and having a guide path provided around the base A member,
    An apparatus for forming a conductive substance, comprising:
  18.  前記反応容器の前記第一空間内に突出し、前記基体の前記第二面の近傍に位置するように構成されている導入口を有し、前記反応容器に前記流体を導入する導入部を備えることを特徴とする請求項17に記載の導電性物質の形成装置。 Providing an inlet for projecting into the first space of the reaction vessel and configured to be located in the vicinity of the second surface of the substrate, and for introducing the fluid into the reaction vessel. The conductive material forming apparatus according to claim 17.
  19.  前記反応容器の前記第一空間内に突出し、前記基体の前記第二面の近傍に位置するように構成されている複数の導入口を有し、前記反応容器に前記流体を導入する導入部を備えることを特徴とする請求項17に記載の導電性物質の形成装置。 A plurality of inlets configured to project into the first space of the reaction vessel and to be positioned in the vicinity of the second surface of the substrate, and to introduce an introduction portion for introducing the fluid into the reaction vessel The conductive material forming apparatus according to claim 17, further comprising:
PCT/JP2012/073343 2011-09-13 2012-09-12 Device and method for forming electro-conductive substance WO2013039109A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013533689A JP5785264B2 (en) 2011-09-13 2012-09-12 Conductive substance forming apparatus and method for forming the same
US14/206,615 US20140193573A1 (en) 2011-09-13 2014-03-12 Apparatus of forming electroconductive substance and method of forming the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011199678 2011-09-13
JP2011-199678 2011-09-13
JP2011218301 2011-09-30
JP2011-218301 2011-09-30
JP2011218300 2011-09-30
JP2011-218302 2011-09-30
JP2011218302 2011-09-30
JP2011-218300 2011-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/206,615 Continuation US20140193573A1 (en) 2011-09-13 2014-03-12 Apparatus of forming electroconductive substance and method of forming the same

Publications (1)

Publication Number Publication Date
WO2013039109A1 true WO2013039109A1 (en) 2013-03-21

Family

ID=47883334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073343 WO2013039109A1 (en) 2011-09-13 2012-09-12 Device and method for forming electro-conductive substance

Country Status (3)

Country Link
US (1) US20140193573A1 (en)
JP (1) JP5785264B2 (en)
WO (1) WO2013039109A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150146198A1 (en) * 2012-07-12 2015-05-28 Snecma Device for spraying a dye penetration inspection liquid into a workpiece
JP2015147969A (en) * 2014-02-05 2015-08-20 住友電気工業株式会社 Substrate, and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100934A (en) * 2008-09-24 2010-05-06 Du Pont Toray Co Ltd Conductive high tenacity fiber yarn and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348401C (en) * 2002-05-22 2007-11-14 日立麦克赛尔株式会社 Forming part, injection moulding method and device
FR2885542B1 (en) * 2005-05-13 2007-08-10 Snecma Propulsion Solide Sa METHOD OF FORMING A SOLID DEPOSITION ON A SURFACE OF A SUBSTRATE OR WITHIN A POROUS SUBSTRATE

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100934A (en) * 2008-09-24 2010-05-06 Du Pont Toray Co Ltd Conductive high tenacity fiber yarn and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150146198A1 (en) * 2012-07-12 2015-05-28 Snecma Device for spraying a dye penetration inspection liquid into a workpiece
US9804100B2 (en) * 2012-07-12 2017-10-31 Snecma Device for spraying a dye penetration inspection liquid into a workpiece
JP2015147969A (en) * 2014-02-05 2015-08-20 住友電気工業株式会社 Substrate, and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2013039109A1 (en) 2015-03-26
JP5785264B2 (en) 2015-09-24
US20140193573A1 (en) 2014-07-10

Similar Documents

Publication Publication Date Title
KR101063088B1 (en) Method for manufacturing semiconductor device, semiconductor manufacturing device, and storage medium
US20210265181A1 (en) Substrate treatment apparatus and substrate treatment method
CN110114859B (en) Substrate processing apparatus and substrate processing method
JP4956624B2 (en) Method and apparatus for confined chemical surface treatment
KR102263906B1 (en) Nozzle and work polishing apparatus
US10814455B2 (en) Slurry feed system and method of providing slurry to chemical mechanical planarization station
JP2008080230A (en) Apparatus and method of treating substrate
US20140096715A1 (en) Apparatus for filtration and gas-vapor mixing in thin film deposition
JP5785264B2 (en) Conductive substance forming apparatus and method for forming the same
KR101900114B1 (en) High-pressure container, substrate processing apparatus, and method for manufacturing high-pressure container
CN109698142A (en) Substrate board treatment, substrate processing method using same and storage medium
JP6066297B2 (en) Conductive substance forming device
JP2010192549A (en) Substrate processing apparatus and method
JP6066298B2 (en) Conductive substance forming device
KR19980064363A (en) Particle Management Method in Chemical-Mechanical Silicon Polishing Slurry
US20190318943A1 (en) Wafer cutting device and method
WO2007055207A1 (en) Process and equipment for charging ethylene carbonate containing material
JP2022073307A (en) Device and method for substrate processing
JP2010172877A (en) Coating applicator and waiting method of nozzle
WO2013073339A1 (en) Treatment method and template for substrate
US20240055276A1 (en) Chemical liquid supply unit and substrate processing apparatus including the same
KR102074221B1 (en) Wafer cleaning system using nanobubble
WO2021015045A1 (en) Substrate treatment apparatus and substrate treatment method
JP7454986B2 (en) Substrate processing method and substrate processing apparatus
RU2305621C1 (en) Chemical - mechanical polishing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533689

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832648

Country of ref document: EP

Kind code of ref document: A1