WO2013039016A1 - Rfid tag and automatic recognition system - Google Patents

Rfid tag and automatic recognition system Download PDF

Info

Publication number
WO2013039016A1
WO2013039016A1 PCT/JP2012/072972 JP2012072972W WO2013039016A1 WO 2013039016 A1 WO2013039016 A1 WO 2013039016A1 JP 2012072972 W JP2012072972 W JP 2012072972W WO 2013039016 A1 WO2013039016 A1 WO 2013039016A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
antenna
rfid tag
less
base material
Prior art date
Application number
PCT/JP2012/072972
Other languages
French (fr)
Japanese (ja)
Inventor
遠藤 俊博
裕宣 石坂
太田 雅彦
耕司 田崎
博之 細井
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201280044117.9A priority Critical patent/CN103797498B/en
Priority to JP2013533646A priority patent/JP5835336B2/en
Priority to US14/344,109 priority patent/US20140339308A1/en
Priority to KR1020147008638A priority patent/KR101624811B1/en
Publication of WO2013039016A1 publication Critical patent/WO2013039016A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07777Antenna details the antenna being of the inductive type
    • G06K19/07779Antenna details the antenna being of the inductive type the inductive antenna being a coil
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07745Mounting details of integrated circuit chips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07775Antenna details the antenna being on-chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/27Spiral antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to an RFID (Radio Frequency Identification) tag that can be used in contactless transmission and reception with a general-purpose reader or reader / writer, and an automatic recognition system using the RFID (Radio Frequency Identification) tag.
  • RFID Radio Frequency Identification
  • RFID tags For the purpose of product information, identification, management and anti-counterfeiting, many non-contact RFID tags (hereinafter simply referred to as “RFID tags”) equipped with IC chips are used for products, packaging, cards, documents and the like. Yes. Information such as the product name and price is written on the IC chip.
  • RFID tags When managing, selling, and using the reader, a reader or a reader / writer (hereinafter, the reader and the reader / writer may be collectively referred to as “reader”). )), The information of these IC chips can be read and used wirelessly. Some information such as the date of manufacture, the factory, and the balance can be written later by a reader / writer. In this way, the RFID tag brings great advantages such as improved convenience of product management, improved safety, and elimination of human error.
  • RFID tags are strongly required to be small and thin due to the nature of being attached to products or built into cards.
  • glasses, watches, medical samples, semiconductors, etc. hereinafter referred to as having such a complicated shape, size is vertical: several cm x horizontal: several cm x height: several cm (several cm 2 to 3 cm.
  • Small items of less than about are called “small multi-variety products.”) Management of products (samples), workers, date of manufacture, materials used, dimensions It is useful for managing characteristics, inventory quantity, etc., and can reduce the labor of management workers and prevent mistakes. In order to realize such a convenient management system, it is indispensable to make the RFID tag smaller and thinner.
  • an RFID tag 80 in which an antenna 20 is formed on a film substrate 1 and an IC chip 30 is mounted is disclosed as shown in FIG. ).
  • an RFID tag 3 after mounting an antenna pattern and an IC chip on a substrate, it is sealed and packaged (Patent Document 3), or in order to make it thinner and flat, without providing a substrate, An IC chip is mounted on an independent antenna pattern and then sealed and packaged (Patent Document 4).
  • Patent Documents 5 and 6 an RFID tag that is miniaturized to an IC chip size and in which an antenna 20 is directly formed on an IC chip 30 (on-chip antenna) is disclosed (Patent Documents 5 and 6).
  • the RFID tags of the cited documents 1 and 2 are relatively small and thin, and a general-purpose reader or the like has a communication distance of 200 mm or more.
  • the vertical or horizontal size is required to be about several centimeters, so the target to which the RFID tag is attached cannot be handled when the above-described small and multi-product is used. There are significant restrictions on the product and installation.
  • the RFID tags of the cited documents 3 and 4 are as small as several mm square (vertical: several mm ⁇ horizontal: several mm. Also, several millimeters represents 2 to 3 mm, the same applies hereinafter). It can also be used for small and wide variety products.
  • the RFID tag of the cited document 3 is provided with antennas in multiple layers, the substrate on which the antennas are provided requires a multilayer structure, which is costly and increases the overall thickness.
  • the RFID tag of the cited document 4 uses a lead frame-like member in which a large number of single antennas that are not supported by the base material are connected. Therefore, when the individual RFID tag is cut into individual packages after sealing, the cut surface of the antenna is outside the package.
  • RFID tags having a size of about several millimeters square as in the cited documents 3 and 4 generally have a communication distance of about 1 to 2 mm or less, which is not practically sufficient. Although it is possible to extend the communication distance by handling on the side of the reader or the like, there is a problem that usability is poor because a dedicated reader or the like is required and a general-purpose reader or the like cannot be used.
  • the RFIDs of Cited Documents 5 and 6 are the same size as IC chips (several hundreds of ⁇ m square), and are sufficiently compatible with small and wide variety products.
  • the communication distance is 1 mm or less or as short as the contact level, and there is a problem that work efficiency and flexibility are low in the actual use site.
  • it is necessary to increase the size of the IC chip itself, which increases the cost.
  • the RFID tag has a size of about 10 mm square or less and a communication distance of about several mm (2 to 3 mm) or more, the application range will be greatly expanded, including small multi-product products, Further, since it can be used with a general-purpose reader, the industrial utility value is very high. However, as described above, an RFID having a size of several mm square or less has a short communication distance and is practically inconvenient.
  • the applied product is an electronic component such as a semiconductor package or an injection molded product, it is exposed to heat during reflow, molding, or heat generation during use, so heat resistance of about several seconds is required at 250 to 300 ° C. There is a problem that such heat resistance is not taken into consideration.
  • the present invention has been made in view of the above problems, and even if it is small (1.7 to 13 mm square), it can secure a communication distance, has heat resistance and environmental resistance, and has a conventional structure.
  • An object of the present invention is to provide an RFID tag capable of reducing the cost compared to an on-chip antenna or a packaged one, and an automatic recognition system using the RFID tag.
  • the present invention relates to the following.
  • the resonance frequency f 0 of the electric circuit formed including is the operating frequency of the IC chip or the vicinity thereof, and the operating frequency of the IC chip is 13.56 MHz to 2.45 GHz, or 0.86 to 0.96 GHz.
  • the size of the RFID tag is 13 mm or less x 13 mm or less x 1.0 mm or less, or 4 mm or less x 4 mm or less x 0.4 mm in height.
  • the operating frequency of the IC chip is 0.86 to 0.96 GHz
  • the resonance frequency f 0 of the electric circuit formed including the inductance L of the antenna and the capacitance C of the IC chip is 0. 2 to 2 GHz
  • the operating frequency of the IC chip is 13.56 MHz
  • the resonance frequency f 0 is 13.56 to 29 MHz
  • the operating frequency of the IC chip is 2.45 GHz
  • An RFID tag in which the resonance frequency f 0 is 2 to 2.45 GHz.
  • a component of an adjacent antenna having a gap provides a capacitance, and a substantial capacitance of the entire configuration including an IC chip and an antenna disposed on the outer periphery is obtained.
  • An RFID tag that increases the capacitance of the IC chip alone.
  • Item 4 The RFID tag according to any one of items 1 to 3, wherein the IC chip is directly connected to the end of the antenna by wire bonding connection or flip chip connection.
  • Item 5 The RFID tag according to any one of items 1 to 4, wherein the antenna conductor wire width / inter-conductor wire distance is 0.2 mm / 0.2 mm to 0.05 mm / 0.05 mm.
  • Item 15 The RFID tag according to any one of Items 1 to 5, wherein the sealing material has a relative dielectric constant of 2.6 or more.
  • Item 7 The RFID tag according to any one of items 1 to 6, wherein the base material has a relative dielectric constant of 3.5 or more.
  • Item 8 The RFID tag according to any one of Items 1 to 7, wherein a polyimide or glass epoxy is used as a base material and a sealing material mainly composed of epoxy, carbon, and silica is used.
  • an antenna is formed only on one side of the base material, and the antenna, the IC chip, and the wire for wire bonding are collectively sealed using a sealing material, An RFID tag in which the antenna, IC chip, and wire are not exposed on the surface of the sealing material.
  • Item 9 An automatic recognition system including the RFID tag according to any one of items 1 to 9 and a reader or a reader / writer.
  • the present invention has been made in view of the above problems, and even if it is small (1.7 to 13 mm square), it can secure a communication distance, has heat resistance and environmental resistance, and has a conventional structure. As compared with an on-chip antenna or a packaged one, an RFID tag capable of reducing cost and an automatic recognition system using the RFID tag can be provided.
  • the substrate in the present invention supports an antenna and an IC chip.
  • a resin is used as the substrate.
  • a resin base material it has heat resistance and mechanical strength of about several seconds at 250 to 300 ° C, which are necessary when it is exposed to heat during reflow and molding, or heat during use, and has a low coefficient of thermal expansion. Materials are preferred, and as such, glass epoxy, phenol, polyimide, etc. can be used.
  • glass epoxy, phenol, polyimide, etc. can be used.
  • it is effective to form an antenna by etching using a base material with a metal foil in which a metal foil is bonded to one side of the base material.
  • a thin base material of about 10 to 50 ⁇ m for making the RFID tag thinner.
  • a polyimide base material with a copper foil in which a copper foil is bonded to one side of a polyimide base material (for example, product name: MCF-5000I, polyimide thickness 25 ⁇ m, copper foil thickness 18 ⁇ m, manufactured by Hitachi Chemical Co., Ltd.) Is available.
  • the relative dielectric constant is about 4.6 to 7.0 for paper phenol, about 4.4 to 5.2 for glass epoxy, and about 3.5 for polyimide, and all these substrates can be used. If the relative dielectric constant is high, the inductance increases, and the antenna can be downsized.
  • the relative dielectric constant is smaller than that of paper phenol or glass epoxy, but the substrate can be formed thin, heat resistant, strong physical strength, and good antenna formability. It is desirable to use materials.
  • the antenna of the present invention electromagnetically couples with a reader or the like, receives electric power, transmits it to the IC chip, and operates the IC chip.
  • the antenna may be a single layer and does not need to be multi-layered. Therefore, if it is formed using a copper foil with a copper foil and a copper foil bonded to one side of the base, a low cost and no variation It is desirable in that it can be formed.
  • IC chips are arranged at the center of the resin base material 1, and the antenna 20 is arranged on one side of the base material 1 on the outer periphery of the IC chip 30. Since the antenna 20 is arranged in a region where the length of the outer peripheral portion of the substrate 1 can be taken, the degree of freedom of the antenna shape is expanded and formed including the inductance L of the antenna 20 and the electrostatic capacitance C of the IC chip 30. It is easy to adjust the resonance frequency of an electric circuit (hereinafter, referred to as “LC resonance circuit”, where L is an inductance and C is a capacitance).
  • LC resonance circuit where L is an inductance and C is a capacitance
  • the antenna 20 is provided on the outer peripheral portion of the IC chip 30, in the case of a coil antenna, the diameter of the coil increases and the inductance increases, which is advantageous for securing a communication distance and reducing the size.
  • the antenna 20 is connected to the IC chip 30 to form an electrical closed circuit so as not to have an open end.
  • Specific examples of the antenna that is connected to the IC chip 30 to form an electrically closed circuit and does not have an open end include the loop antenna B of FIG. 3 (4) and the coil antenna of FIG. 3 (5). Therefore, even if the RFID tag is small in size, the antenna 20 can be easily designed as an LC circuit, and an inductance can be obtained efficiently in a small area, so it is advantageous to secure a communication distance.
  • the shape of the antenna 20 is such that the resonance frequency of the electric circuit (LC resonance circuit) formed including the inductance of the antenna 20 and the capacitance of the IC chip 30 is at or near the operating frequency of the IC chip 30. design.
  • the shape of the antenna 20 includes a meander line antenna (FIG. 3 (2)), a loop antenna (FIGS. 3 (1) and (4)), a coil antenna (FIG. 3 (5)), and a vortex antenna (FIG. 3 (3)). And the like widely used as antennas can be used. Among these, the coil antenna (FIG. 3 (5)) and the loop antenna B (FIG.
  • the antenna 20 including the adjacent component portion having a gap is formed by taking the shape of the antenna 20 and further contributing to the relative dielectric constant of the base material 1 and the sealing material 10. Are capacitively coupled and provide a capacitance between them.
  • the effective capacitance which is the substantial capacitance of the entire configuration including the IC chip 30 and the antenna disposed on the outer peripheral portion, is significantly increased as compared with the capacitance of the IC chip 30 alone.
  • the substantial capacitance is the capacitance provided by the IC chip 30 in the configuration in which the antenna is disposed on the outer periphery of the IC chip 30.
  • FIG. 3 also shows the IC chip 30 and the wire 40 that has been wire-bonded.
  • the antenna 20 is formed by etching the copper foil of polyimide with copper foil
  • the IC chip 30 is formed by leaving the copper foil of the portion where the IC chip 30 is mounted and forming a die pad (not shown). In connection, such as wire bonding, rigidity is maintained and yield is improved.
  • a die bond film (not shown) is placed on the copper foil where the IC chip 30 is mounted, and the IC chip 30 is fixed thereon.
  • the IC chip 30 may be read-only, it is preferable that information can be written because work history and the like can be written at any time.
  • the IC chip 30 and the antenna 20 are directly connected by wire bonding.
  • the coil antenna 20 of FIG. 3 (5) two antenna end portions are located with the antenna 20 in between, and the antenna 20 located between them is straddled by wire bonding wires 40, and the antenna end portions are located.
  • Multi-layer wiring using a double-sided copper foil base material allows flip-chip connection in all antennas, but due to reasons such as reduced mass productivity, increased costs, and the wiring exposed to the surface after sealing, It is desirable to use a material.
  • the diameter of the coil can be reduced, so the vertical and horizontal dimensions of the RFID tag can be reduced, and downsizing can be realized.
  • the height dimension is slightly increased.
  • disadvantages include a decrease in mass productivity, an increase in cost, and exposure of wiring to the surface after sealing. Therefore, it is desirable to form a single-layer coil antenna using a single-sided copper foil base material.
  • FIG. 4 is a cross-sectional view showing the RFID tag 80 after sealing.
  • the IC chip 30, the antenna 20, and the wire 40 mounted on the die pad 90 on the base material 1 are collectively sealed using the sealing material 10 to protect them. Since a thin substrate 1 is used and the antenna 20 is provided as a single layer only on one side of the substrate, the thickness after sealing can be set to, for example, about 0.2 to 1.0 mm. After sealing, all the metal wiring parts such as the IC chip 30, the antenna 20, and the wire 40 are sealed, so that the structure cannot be touched at all from the outside of the sealing material 10. Safety and reliability are also improved from the viewpoint.
  • the sealing material a sealing material usually used in a semiconductor can be used, and the relative dielectric constant is about 2.6 to 4.5.
  • the relative permittivity of the sealing material is low. However, if the relative permittivity is high, the inductance increases, so that the antenna can be downsized.
  • the RFID tag manufactured in this manner has a base material with a heat resistance of 180 ° C. or higher, a sealing material with a heat resistance of 150 ° C. or higher, and uses wire bonding. Therefore, an antenna is formed on conventional PET or the like. It has higher heat resistance than RFID tags, and operates normally even at high temperatures. For this reason, if the product is an electronic component such as a semiconductor package or an injection molded product, it is exposed to heat during reflow, molding, or heat generation during use, so heat resistance of about several seconds is required at 250 to 300 ° C. However, it can also be used for such applications.
  • the antenna design uses the resonance frequency determined by the shape of the antenna line, the thickness of the line, the length of the line, etc. as an index. By bringing this resonance frequency close to the operating frequency of the IC chip to be used, the antenna receives the power from the reader / writer and transmits it to the IC chip to operate the IC chip.
  • antenna design is performed using an electromagnetic field simulator (simulator software product name: HFSS manufactured by Ansys Japan Co., Ltd.), which can reduce time and cost.
  • the resonance frequency is obtained from the simulation result by inputting the shape and material of the antenna, the capacitance of the IC chip, and the like to the electromagnetic field simulator.
  • the resonance frequency f 0 of the electric circuit formed by including the antenna inductance L and the IC chip capacitance C obtained by the electromagnetic field simulator is at or near the operating frequency of the IC chip.
  • the resonance frequency in this case is a frequency at which the imaginary part of the impedance of the electrical closed circuit when the IC chip is connected to both ends of the antenna becomes zero.
  • FIG. 5 shows an electrical equivalent circuit of the coil antenna of FIG.
  • the resonance frequency f 0 in this case is expressed by the following equation using the inductance L of the coil 50 that is an equivalent circuit of the coil antenna and the capacitance C of the capacitor 60 that is an equivalent circuit of the IC chip 30.
  • the effective capacitance in the configuration in which the antenna 20 (coil 50) is arranged on the outer peripheral portion of the IC chip 30 is applied.
  • a capacitive component is generated between the constituent parts of the antenna 20 adjacent to each other with a gap, and the relative permittivity of the base material 1 and the sealing material 10 contributes to static electricity between them.
  • the effective capacitance which is the substantial capacitance of the entire configuration including the IC chip 30 and the antenna disposed on the outer peripheral portion, is remarkably increased as compared with the capacitance of the IC chip 30 alone. . Therefore, as is apparent from the above equation, the desired resonance frequency f 0 can be realized with a smaller inductance L. This makes it possible to reduce the size of the coil, for example, by reducing the diameter and the number of turns, and thus the entire RFID tag.
  • the resonance frequency (operating frequency) of the RFID tag (IC chip) is preferably in the range of 13.56 MHz to 2.45 GHz, which has a high commercial utility value in the radio wave law.
  • the wavelength of the radio wave is about 30 cm.
  • the size of the IC chip for the UHF band is usually 0. Since it is 6 mm square or less, it is difficult to form an antenna on which the IC chip operates normally on the IC chip in the on-chip antenna system. Further, even with an RFID tag having a size of about several mm square, an antenna using a conventional design method can only obtain a communication distance of about several mm.
  • the RFID tag of the present invention based on the design method using the electromagnetic field simulator, the RFID tag operates even with a single-layer antenna of several mm square without using a conventional antenna of several cm square. There is an excellent feature that can greatly extend the communication distance. Further, since an antenna having a size of several millimeters square and a conductor width / interconductor width of several tens of ⁇ m to several hundreds of ⁇ m may be used, it can be easily formed by etching a metal layer such as a copper foil. Furthermore, since a single-layer antenna may be used, it is not necessary to make multiple layers.
  • the RFID tag of the present invention can be used by being embedded in a semiconductor device or the like. Further, it can be used for management etc. by being attached to a product or sample like a label with a double-sided tape or the like, and can be easily removed when the product is sold. Furthermore, by combining the RFID tag of the present invention with a reader, etc., automatic recognition with a long communication distance and good workability is possible even for small and multi-product items such as glasses, watches, medical samples, semiconductors, etc.
  • the system can be configured. In this case, since the RFID tag of the present invention has a long communication distance, an automatic recognition system can be configured in combination with a general-purpose reader or the like.
  • Example 1 As a resin base material, a polyimide base material with copper foil (MCF-5000I, manufactured by Hitachi Chemical Co., Ltd., polyimide thickness 25 ⁇ m, copper foil thickness 18 ⁇ m) in which a copper foil was bonded to one side of a polyimide base material was prepared.
  • the coil antenna as shown in FIG. 3 (5) is within the range of 4 mm square, and the conductor wire width / interconductor wire width is 0.05 mm / 0.05 mm. , 0.1 mm / 0.1 mm, 0.2 mm / 0.2 mm.
  • a die pad (not shown) for mounting an IC chip was formed.
  • an IC chip having a size of about 0.5 mm ⁇ 0.5 mm ⁇ 0.1 mm, a capacitance of 0.77 pF, and an operating frequency of about 0.86 to 0.96 GHz was used.
  • This IC chip was mounted on a die pad using a die bonding material, and the antenna and the IC chip were directly connected by wire bonding.
  • the antenna, IC chip, and wire for wire bonding on one side of the substrate were sealed with a sealing material.
  • the RFID tag was manufactured by dicing to a required size.
  • Example 2 By etching the copper foil of the polyimide base material with copper foil, the loop antenna B as shown in FIG. 3 (4) is within the range of 4 mm square, and the conductor wire width / interconductor wire width is 0.05 mm / 0.05 mm. , 0.1 mm / 0.1 mm, 0.2 mm / 0.2 mm. Otherwise, an RFID tag was produced in the same manner as in Example 1.
  • the meander line antenna as shown in FIG. 3 (2) is within the range of 4 mm square, and the conductor wire width / interconductor wire width is 0.05 mm / 0.05 mm. , 0.1 mm / 0.1 mm, 0.2 mm / 0.2 mm. Otherwise, an RFID tag was produced in the same manner as in Example 1.
  • the loop antenna A as shown in FIG. 3 (1) is within the range of 4 mm square, and the conductor wire width / interconductor wire width is 0.05 mm / 0.05 mm. , 0.1 mm / 0.1 mm, 0.2 mm / 0.2 mm. Otherwise, an RFID tag was produced in the same manner as in Example 1.
  • the vortex antenna as shown in FIG. 3 (3) is within the range of 4 mm square, and the conductor width / interconductor width is 0.05 mm / 0.05 mm, They were formed at 0.1 mm / 0.1 mm and 0.2 mm / 0.2 mm. Otherwise, an RFID tag was produced in the same manner as in Example 1.
  • Example 3 By etching the copper foil of the polyimide base material with copper foil, the coil antenna as shown in FIG. 3 (5) is within the range of 2.5 mm square, and the conductor wire width / interconductor wire width is 0.1 mm / 0. Formed at 1 mm. Otherwise, an RFID tag was produced in the same manner as in Example 1.
  • the loop antenna B as shown in FIG. 3 (4) has a conductor width / inter-conductor width of 0.05 mm / 0 within a range of 2.5 mm square. .05 mm, 0.1 mm / 0.1 mm, and 0.2 mm / 0.2 mm. Otherwise, an RFID tag was produced in the same manner as in Example 1.
  • the meander line antenna as shown in FIG. 3 (2) is within the range of 2.5 mm square, and the conductor width / inter-conductor width is 0.05 mm / 0. .05 mm, 0.1 mm / 0.1 mm, and 0.2 mm / 0.2 mm. Otherwise, an RFID tag was produced in the same manner as in Example 1.
  • the loop antenna A as shown in FIG. 3 (1) is within the range of 2.5 mm square, and the conductor wire width / interconductor wire width is 0.05 mm / 0. .05 mm, 0.1 mm / 0.1 mm, and 0.2 mm / 0.2 mm. Otherwise, an RFID tag was produced in the same manner as in Example 1.
  • the vortex antenna as shown in FIG. 3 (3) is within the range of 2.5 mm square, and the conductor wire width / interconductor wire width is 0.05 mm / 0. They were formed at 05 mm, 0.1 mm / 0.1 mm, and 0.2 mm / 0.2 mm. Otherwise, an RFID tag was produced in the same manner as in Example 1.
  • Example 5 By etching the copper foil of the polyimide base material with copper foil, the coil antenna as shown in FIG. 3 (5) is within the range of 1.7 mm square, and the conductor wire width / interconductor wire width is 0.1 mm / 0.00 mm. Formed at 1 mm. Otherwise, an RFID tag was produced in the same manner as in Example 1.
  • Example 6 By etching the copper foil of the polyimide base material with copper foil, the coil antenna as shown in FIG. 3 (5) is within a range of 9 mm square, and the conductor width / inter-conductor width is 0.1 mm / 0.1 mm. Formed. An IC chip having a size of about 0.5 mm ⁇ 0.5 mm ⁇ 0.1 mm, a capacitance of 17 pF, and an operating frequency of 13.56 GHz was used. Otherwise, an RFID tag was produced in the same manner as in Example 1.
  • Example 7 By etching the copper foil of the polyimide base material with copper foil, the coil antenna as shown in FIG. 3 (5) is within a range of 13 mm square, and the conductor width / inter-conductor width is 0.1 mm / 0.1 mm. Formed. Otherwise, an RFID tag was produced in the same manner as in Example 6.
  • Example 8 By etching the copper foil of the polyimide base material with copper foil, the coil antenna as shown in FIG. 3 (5) is within the range of 2.5 mm square, and the conductor wire width / interconductor wire width is 0.2 mm / 0. Formed at 2 mm. Further, an IC chip having a size of about 0.5 mm ⁇ 0.5 mm ⁇ 0.1 mm, a capacitance of 0.7 pF, and an operating frequency of around 2.45 GHz was used. Otherwise, an RFID tag was produced in the same manner as in Example 1.
  • Example 9 By etching the copper foil of the polyimide base material with copper foil, the coil antenna as shown in FIG. 3 (5) is within the range of 2.5 mm square, and the conductor wire width / interconductor wire width is 0.1 mm / 0. Formed at 1 mm. Otherwise, an RFID tag was produced in the same manner as in Example 8.
  • Table 1 shows the simulation results and reading evaluation results for Examples 1 to 5 and Comparative Examples 1 to 6.
  • the size of the used IC chip is about 0.5 mm ⁇ 0.5 mm ⁇ 0.1 mm, the capacitance is 0.77 pF, and the operating frequency is about 0.86 to 0.96 GHz.
  • the coil antenna and loop antenna B which are connected to the IC chip to form an electrical closed circuit, have a resonance frequency of 0.2 to 2 GHz according to the electromagnetic field simulator, which is generally compared with other antennas.
  • the operating frequency of the IC chip is close to about 0.9 GHz.
  • the reading distance is a good reading result as compared with the meander line antenna, the loop antenna A, and the vortex antenna which do not form an electrical closed circuit.
  • Examples 1a, 1b, 2a, 2b, 3b, 4c, and 5b in which the resonance frequency by the electromagnetic field simulator was 0.5 to 1.5 GHz a communication distance of 5 mm or more was obtained.
  • Examples 1a, 2b, and 3b in which the resonance frequency was 1 to 1.1 GHz, which is close to the operating frequency of the IC chip of about 0.9 GHz a communication distance exceeding 20 mm was obtained.
  • Table 2 shows the simulation results and reading evaluation results of Examples 6 and 7.
  • the size of the used IC chip is about 0.5 mm ⁇ 0.5 mm ⁇ 0.1 mm, and the capacitance is 17 pF and the operating frequency is 13.56 MHz.
  • Example 6 in which the resonance frequency by the electromagnetic field simulator was 29 MHz, a communication distance of 12 mm was obtained.
  • Example 7 in which the resonance frequency by the electromagnetic field simulator was 14 MHz, a communication distance of 110 mm was obtained.
  • the HF band High Frequency Band
  • the frequency is lower than the UHF band, but by increasing the inductance of the coil antenna, the conductor width / inter-conductor distance is 0.1 mm / 0. In the case of 0.1 mm, it has been found that the size of the RFID tag can be reduced to about 13 mm square.
  • Table 3 shows the simulation results and reading evaluation results of Examples 8 and 9.
  • the size of the used IC chip is about 0.5 mm ⁇ 0.5 mm ⁇ 0.1 mm, the capacitance is 0.7 pF, and the operating frequency is 2.45 GHz.
  • Example 8 in which the resonance frequency by the electromagnetic field simulator was 2 GHz and Example 9 in which the resonance frequency by the electromagnetic field simulator was 2.1 GHz, a communication distance of 4 mm was obtained. Further, it was found that the size of the RFID tag can be reduced to about 1.7 mm square when the conductor width / inter-conductor distance is 0.1 mm / 0.1 mm.
  • the RFID tag of the present invention is a product, packaging, card, document, glasses, watch (especially a small watch or the like), semiconductor, medical use (sample collected from a patient, etc.), identification, information presentation, It can be used for information recording and anti-counterfeiting purposes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Credit Cards Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

Provided are: an RFID tag that is compact, is capable of ensuring a communication distance, has thermal resistance, and is lower in cost compared to conventional on-chip antennas and packaged tags; and an automatic recognition system using the same. An RFID tag having a resin substrate, an IC chip positioned in the center section on the substrate, a single-layer antenna for forming an electric closed circuit by connecting with the IC chip and positioned in the peripheral section of the IC chip, and a sealing material for sealing the IC chip and the antenna, wherein the antenna is a coil antenna or a loop antenna, the resonant frequency (f0) of the antenna is the operating frequency of the IC chip or thereabouts, the operating frequency of the IC chip is 13.56MHz-2.45GHz, or 0.86-0.96GHz, and the size of the RFID tag is 13mm or less in length, 13mm or less in width, and 1.0mm or less in height; and an automatic recognition system using the same.

Description

RFIDタグ及び自動認識システムRFID tag and automatic recognition system
 本発明は、汎用のリーダやリーダライタと共に用いて非接触で情報の送受信を行うことができるRFID(Radio Frequency Identification)タグ及びこれを用いた自動認識システムに関する。 The present invention relates to an RFID (Radio Frequency Identification) tag that can be used in contactless transmission and reception with a general-purpose reader or reader / writer, and an automatic recognition system using the RFID (Radio Frequency Identification) tag.
 製品の情報や識別、管理、偽造防止の目的で、商品、包装、カード、書類等にはICチップを搭載した非接触式RFIDタグ(以下、単に「RFIDタグ」という。)が多数利用されている。ICチップには商品の名称、価格等の情報が書き込まれており、管理、販売、使用する際には、リーダやリーダライタ(以下、リーダとリーダライタを合わせて「リーダ等」ということがある。)によって、これらのICチップの情報を無線で読み取り、利用できる。製造日や製造所、残金等の情報を、後でリーダライタによって書き込むことができるものもある。このようにしてRFIDタグは商品管理の利便性向上や安全性の向上、また人為的ミスをなくす等大きなメリットをもたらしている。 For the purpose of product information, identification, management and anti-counterfeiting, many non-contact RFID tags (hereinafter simply referred to as “RFID tags”) equipped with IC chips are used for products, packaging, cards, documents and the like. Yes. Information such as the product name and price is written on the IC chip. When managing, selling, and using the reader, a reader or a reader / writer (hereinafter, the reader and the reader / writer may be collectively referred to as “reader”). )), The information of these IC chips can be read and used wirelessly. Some information such as the date of manufacture, the factory, and the balance can be written later by a reader / writer. In this way, the RFID tag brings great advantages such as improved convenience of product management, improved safety, and elimination of human error.
 RFIDタグは、商品に取り付けたりカードに内蔵したりするという性格上、小型薄型化の要求も強い。特に、従来はロット番号を刻印・記入して管理したりあるいは管理そのものができていなかったものへの利用として近年着目されている。具体的には眼鏡や時計あるいは医療用サンプルや半導体等(以下、このような複雑な形状を有したり、サイズが縦:数cm×横:数cm×高さ:数cm(数cmとは、2~3cmを表す。以下、同様。)程度以下の小さい物品を「小型多品種品」という。)の管理であり、商品(サンプル)の製造所、作業者、製造日、使用材料、寸法、特性、在庫数管理等に役立ち、管理作業者の手間を減らしてかつミスを防ぐことができる。これらのような利便性のある管理システム実現のためには、RFIDタグの小型化・薄型化が必要不可欠となる。 RFID tags are strongly required to be small and thin due to the nature of being attached to products or built into cards. In particular, in recent years, it has been attracting attention as a use for things that have been conventionally managed by engraving and entering lot numbers, or where management itself has not been possible. Specifically, glasses, watches, medical samples, semiconductors, etc. (hereinafter referred to as having such a complicated shape, size is vertical: several cm x horizontal: several cm x height: several cm (several cm 2 to 3 cm. The same applies hereinafter.) Small items of less than about are called “small multi-variety products.”) Management of products (samples), workers, date of manufacture, materials used, dimensions It is useful for managing characteristics, inventory quantity, etc., and can reduce the labor of management workers and prevent mistakes. In order to realize such a convenient management system, it is indispensable to make the RFID tag smaller and thinner.
 比較的小型で薄型のRFIDタグとしては、図1に示すように、フィルム基材1上にアンテナ20を形成し、ICチップ30を搭載したRFIDタグ80が開示されている(特許文献1、2)。また、より小型のRFIDとして、基板上にアンテナパターンとICチップを取り付けた後、封止してパッケージ化したもの(特許文献3)や、より薄く平坦にするために、基板を設けずに、独立したアンテナパターン上にICチップを取付けた後、封止してパッケージ化したもの(特許文献4)が開示されている。さらに、図2に示すように、ICチップサイズまで小型化したRFIDタグとして、ICチップ30上に直接アンテナ20を形成したもの(オンチップアンテナ)が開示されている(特許文献5、6)。 As a relatively small and thin RFID tag, an RFID tag 80 in which an antenna 20 is formed on a film substrate 1 and an IC chip 30 is mounted is disclosed as shown in FIG. ). In addition, as a smaller RFID, after mounting an antenna pattern and an IC chip on a substrate, it is sealed and packaged (Patent Document 3), or in order to make it thinner and flat, without providing a substrate, An IC chip is mounted on an independent antenna pattern and then sealed and packaged (Patent Document 4). Further, as shown in FIG. 2, an RFID tag that is miniaturized to an IC chip size and in which an antenna 20 is directly formed on an IC chip 30 (on-chip antenna) is disclosed (Patent Documents 5 and 6).
特開2006-221211号公報JP 2006-222121 A 特開2011-103060号公報JP 2011-103060 A 特開2010-152449号公報JP 2010-152449 A 特開2001-052137号公報JP 2001-052137 A 国際公開第2005/024949号International Publication No. 2005/024949 特開2007-189499号公報JP 2007-189499 A
 引用文献1、2のRFIDタグは、比較的小型で薄型であり、汎用のリーダ等でも200mm以上の通信距離を有する。しかし、フィルム基材に設けるアンテナとして、縦または横が、数cm程度の大きさが必要なため、RFIDタグを取付ける対象が、上述した小型多品種品である場合には対応できず、対象となる製品や取付けについての制約が大きい。 The RFID tags of the cited documents 1 and 2 are relatively small and thin, and a general-purpose reader or the like has a communication distance of 200 mm or more. However, as the antenna provided on the film base, the vertical or horizontal size is required to be about several centimeters, so the target to which the RFID tag is attached cannot be handled when the above-described small and multi-product is used. There are significant restrictions on the product and installation.
 引用文献3、4のRFIDタグは、数mm角(縦:数mm×横:数mmを表す。また、数mmとは、2~3mmを表す、以下、同様。)程度と小型であり、小型多品種品にも対応できる。しかし、引用文献3のRFIDタグは、アンテナを多層に設けるため、アンテナを設ける基材も多層構造が必要となり、コストがかかる上、全体の厚みも増す問題がある。引用文献4のRFIDタグは、基材で支持されない単体のアンテナを、多数個繋げたリードフレーム状の部材を用いるので、封止後に個々のパッケージに切断すると、アンテナの切断面がパッケージの外部に露出し、環境劣化等による通信特性や信頼性への影響が懸念される。しかも、引用文献3、4のような、数mm角程度サイズのRFIDタグは、一般に、通信距離が1~2mm以下程度であり、実用的には十分とは言えない。リーダ等の側で対応することで、通信距離を伸ばすことは可能であるが、専用のリーダ等が必要になり、汎用のリーダ等が使えないため、使い勝手が悪い問題がある。 The RFID tags of the cited documents 3 and 4 are as small as several mm square (vertical: several mm × horizontal: several mm. Also, several millimeters represents 2 to 3 mm, the same applies hereinafter). It can also be used for small and wide variety products. However, since the RFID tag of the cited document 3 is provided with antennas in multiple layers, the substrate on which the antennas are provided requires a multilayer structure, which is costly and increases the overall thickness. The RFID tag of the cited document 4 uses a lead frame-like member in which a large number of single antennas that are not supported by the base material are connected. Therefore, when the individual RFID tag is cut into individual packages after sealing, the cut surface of the antenna is outside the package. There is concern about the impact on communication characteristics and reliability due to exposure and environmental degradation. Moreover, RFID tags having a size of about several millimeters square as in the cited documents 3 and 4 generally have a communication distance of about 1 to 2 mm or less, which is not practically sufficient. Although it is possible to extend the communication distance by handling on the side of the reader or the like, there is a problem that usability is poor because a dedicated reader or the like is required and a general-purpose reader or the like cannot be used.
 引用文献5、6のRFIDは、サイズはICチップと同等(数100μm角程度)であり、小型多品種品に十分対応できる。しかし、通信距離が1mm以下または接触レベルと短く、実際に使用する現場においては、作業の効率や自由度が低い問題がある。一方、通信距離を長くしようとすると、ICチップ自体のサイズを拡大する必要があるため、コスト高になる問題があった。 The RFIDs of Cited Documents 5 and 6 are the same size as IC chips (several hundreds of μm square), and are sufficiently compatible with small and wide variety products. However, the communication distance is 1 mm or less or as short as the contact level, and there is a problem that work efficiency and flexibility are low in the actual use site. On the other hand, when trying to increase the communication distance, it is necessary to increase the size of the IC chip itself, which increases the cost.
 サイズが10数mm角程度以下で、かつ通信距離が、数mm(2~3mm)程度以上であるようなRFIDタグであれば、小型多品種品を始めとして、適用範囲は大幅に拡大し、また汎用のリーダ等でも対応可能であるため、産業上利用価値が非常に高い。しかしながら、上述したように、サイズが数mm角オーダー以下のRFIDは、通信距離が短く、実用上は、使い勝手の悪いものであった。また、適用製品が、半導体パッケージ等の電子部品や射出成形品等の場合、リフローや成形時の加熱、あるいは使用時の発熱に晒されるため、250~300℃で数秒程度の耐熱性を要するが、このような耐熱性は考慮されていない問題がある。 If the RFID tag has a size of about 10 mm square or less and a communication distance of about several mm (2 to 3 mm) or more, the application range will be greatly expanded, including small multi-product products, Further, since it can be used with a general-purpose reader, the industrial utility value is very high. However, as described above, an RFID having a size of several mm square or less has a short communication distance and is practically inconvenient. In addition, when the applied product is an electronic component such as a semiconductor package or an injection molded product, it is exposed to heat during reflow, molding, or heat generation during use, so heat resistance of about several seconds is required at 250 to 300 ° C. There is a problem that such heat resistance is not taken into consideration.
 本発明は、上記問題点に鑑みてなされたものであり、小型(1.7~13mm角)であっても、通信距離を確保可能で、耐熱性や耐環境性を有し、しかも従来のオンチップアンテナやパッケージ化したものに比べて、コストを低減可能なRFIDタグ及びこれを用いた自動認識システムを提供することを目的とする。 The present invention has been made in view of the above problems, and even if it is small (1.7 to 13 mm square), it can secure a communication distance, has heat resistance and environmental resistance, and has a conventional structure. An object of the present invention is to provide an RFID tag capable of reducing the cost compared to an on-chip antenna or a packaged one, and an automatic recognition system using the RFID tag.
 本発明は、以下のものに関する。 The present invention relates to the following.
1. 樹脂製の基材と、この基材上の中央部に配置されたICチップと、このICチップの外周部に配置され、前記ICチップと接続されて電気的閉回路を形成する単層のアンテナと、前記ICチップ及びアンテナを封止する封止材とを有するRFIDタグであって、前記アンテナが、コイルアンテナまたはループアンテナであり、前記アンテナのインダクタンスLとICチップの静電容量Cとを含めて形成される電気回路の共振周波数fが、ICチップの動作周波数またはその付近であり、前記ICチップの動作周波数が、13.56MHz~2.45GHz、または0.86~0.96GHzであり、前記RFIDタグのサイズが、縦13mm以下×横13mm以下×高さ1.0mm以下、または縦4mm以下×横4mm以下×高さ0.4mm以下、または縦2.5mm以下×横2.5mm以下×高さ0.3mm以下、または縦1.7mm以下×横1.7mm以下×高さ0.3mm以下であるRFIDタグ。 1. Resin base material, IC chip disposed at the center of the base material, single-layer antenna disposed on the outer periphery of the IC chip and connected to the IC chip to form an electrical closed circuit And a sealing material for sealing the IC chip and the antenna, wherein the antenna is a coil antenna or a loop antenna, and an inductance L of the antenna and a capacitance C of the IC chip The resonance frequency f 0 of the electric circuit formed including is the operating frequency of the IC chip or the vicinity thereof, and the operating frequency of the IC chip is 13.56 MHz to 2.45 GHz, or 0.86 to 0.96 GHz. Yes, the size of the RFID tag is 13 mm or less x 13 mm or less x 1.0 mm or less, or 4 mm or less x 4 mm or less x 0.4 mm in height. Lower or vertical 2.5mm or less × width 2.5mm or less × height 0.3mm or less, or vertically 1.7mm or less × width 1.7mm or less × height 0.3mm or less RFID tags.
2. 項1において、ICチップの動作周波数が0.86~0.96GHzであり、アンテナのインダクタンスLとICチップの静電容量Cとを含めて形成される電気回路の共振周波数fが、0.2~2GHzであるか、または、ICチップの動作周波数が13.56MHzであり、前記共振周波数fが13.56~29MHzであるか、または、ICチップの動作周波数が2.45GHzであり、前記共振周波数fが2~2.45GHzであるRFIDタグ。 2. In item 1, the operating frequency of the IC chip is 0.86 to 0.96 GHz, and the resonance frequency f 0 of the electric circuit formed including the inductance L of the antenna and the capacitance C of the IC chip is 0. 2 to 2 GHz, or the operating frequency of the IC chip is 13.56 MHz, and the resonance frequency f 0 is 13.56 to 29 MHz, or the operating frequency of the IC chip is 2.45 GHz, An RFID tag in which the resonance frequency f 0 is 2 to 2.45 GHz.
3. 項1または2において、間隙を有して隣接するアンテナの構成部分が静電容量を提供し、ICチップとこの外周部に配置されるアンテナとを有する構成全体の実質的な静電容量を、前記ICチップ単体の静電容量よりも増加させるRFIDタグ。 3. In item 1 or 2, a component of an adjacent antenna having a gap provides a capacitance, and a substantial capacitance of the entire configuration including an IC chip and an antenna disposed on the outer periphery is obtained. An RFID tag that increases the capacitance of the IC chip alone.
4. 項1から3の何れかにおいて、ICチップが、アンテナの端部と、ワイヤボンディング接続またはフリップチップ接続で、直接接続されているRFIDタグ。 4). Item 4. The RFID tag according to any one of items 1 to 3, wherein the IC chip is directly connected to the end of the antenna by wire bonding connection or flip chip connection.
5. 項1から4の何れかにおいて、アンテナの導線幅/導線間距離が、0.2mm/0.2mm~0.05mm/0.05mmであるRFIDタグ。 5. Item 5. The RFID tag according to any one of items 1 to 4, wherein the antenna conductor wire width / inter-conductor wire distance is 0.2 mm / 0.2 mm to 0.05 mm / 0.05 mm.
6. 項1から5の何れかにおいて、封止材の比誘電率が2.6以上であるRFIDタグ。 6). Item 15. The RFID tag according to any one of Items 1 to 5, wherein the sealing material has a relative dielectric constant of 2.6 or more.
7. 項1から6の何れかにおいて、基材の比誘電率が3.5以上であるRFIDタグ。 7). Item 7. The RFID tag according to any one of items 1 to 6, wherein the base material has a relative dielectric constant of 3.5 or more.
8. 項1から7の何れかにおいて、基材にポリイミドまたはガラスエポキシを用い、かつエポキシと炭素とシリカを主成分とした封止材を用いるRFIDタグ。 8). Item 8. The RFID tag according to any one of Items 1 to 7, wherein a polyimide or glass epoxy is used as a base material and a sealing material mainly composed of epoxy, carbon, and silica is used.
9. 項1から8の何れかにおいて、基材の片面のみにアンテナが形成されており、前記アンテナとICチップとワイヤボンディングのワイヤとを、封止材を用いて一括して封止することで、前記アンテナ、ICチップ、およびワイヤが、前記封止材の表面に露出していないRFIDタグ。 9. In any one of Items 1 to 8, an antenna is formed only on one side of the base material, and the antenna, the IC chip, and the wire for wire bonding are collectively sealed using a sealing material, An RFID tag in which the antenna, IC chip, and wire are not exposed on the surface of the sealing material.
10. 項1から9の何れかのRFIDタグと、リーダまたはリーダライタとを有する自動認識システム。 10. Item 9. An automatic recognition system including the RFID tag according to any one of items 1 to 9 and a reader or a reader / writer.
 本発明は、上記問題点に鑑みてなされたものであり、小型(1.7~13mm角)であっても、通信距離を確保可能で、耐熱性や耐環境性を有し、しかも従来のオンチップアンテナやパッケージ化したものに比べて、コストを低減可能なRFIDタグ及びこれを用いた自動認識システムを提供することができる。 The present invention has been made in view of the above problems, and even if it is small (1.7 to 13 mm square), it can secure a communication distance, has heat resistance and environmental resistance, and has a conventional structure. As compared with an on-chip antenna or a packaged one, an RFID tag capable of reducing cost and an automatic recognition system using the RFID tag can be provided.
従来のRFIDタグの概略図である。It is the schematic of the conventional RFID tag. 従来のRFIDタグの概略図である。It is the schematic of the conventional RFID tag. 本実施形態のRFIDタグのアンテナの形状を示す図である。It is a figure which shows the shape of the antenna of the RFID tag of this embodiment. 本実施形態のRFIDタグの概略図である。It is the schematic of the RFID tag of this embodiment. ICチップを接続したコイルアンテナの電気的等価回路を示す図である。It is a figure which shows the electrical equivalent circuit of the coil antenna which connected IC chip.
 本発明における基材は、アンテナやICチップを支持するものである。基材としては、樹脂製のものを使用する。樹脂製の基材としては、リフローや成形時の加熱、あるいは使用時の発熱に晒される時に必要な、250~300℃で数秒程度の耐熱性と機械的強度を有し、熱膨張係数が小さい材料が好適であり、このようなものとして、ガラスエポキシ、フェノール、ポリイミド等が利用できる。アンテナを低コストでばらつきなく形成するためには、基材の片面に金属箔が貼り合わされた金属箔付き基材を用いて、エッチングによりアンテナを形成することが効果的である。さらにRFIDタグの薄型化のためには10~50μm程度の薄い基材を用いることが有効である。前記条件を満たす基材として、ポリイミド基材の片面に銅箔が貼り合わされた銅箔付きポリイミド基材(例えば日立化成工業株式会社製 製品名:MCF-5000I、ポリイミド厚み25μm、銅箔厚み18μm)が利用できる。なお、比誘電率は、紙フェノールが4.6~7.0程度、ガラスエポキシが4.4~5.2程度、ポリイミドが3.5程度であり、これらの基材は全て利用できるが、比誘電率が高ければ、インダクタンスが増加するため、アンテナを小型化できる。なお、比誘電率は、紙フェノールやガラスエポキシより小さいが、基材が薄く形成可能で、耐熱性があり、物理的強度が強く、アンテナの形成性も良好な点で、銅箔付きポリイミド基材を用いるのが望ましい。 The substrate in the present invention supports an antenna and an IC chip. As the substrate, a resin is used. As a resin base material, it has heat resistance and mechanical strength of about several seconds at 250 to 300 ° C, which are necessary when it is exposed to heat during reflow and molding, or heat during use, and has a low coefficient of thermal expansion. Materials are preferred, and as such, glass epoxy, phenol, polyimide, etc. can be used. In order to form an antenna at low cost and without variation, it is effective to form an antenna by etching using a base material with a metal foil in which a metal foil is bonded to one side of the base material. Furthermore, it is effective to use a thin base material of about 10 to 50 μm for making the RFID tag thinner. As a base material satisfying the above conditions, a polyimide base material with a copper foil in which a copper foil is bonded to one side of a polyimide base material (for example, product name: MCF-5000I, polyimide thickness 25 μm, copper foil thickness 18 μm, manufactured by Hitachi Chemical Co., Ltd.) Is available. The relative dielectric constant is about 4.6 to 7.0 for paper phenol, about 4.4 to 5.2 for glass epoxy, and about 3.5 for polyimide, and all these substrates can be used. If the relative dielectric constant is high, the inductance increases, and the antenna can be downsized. The relative dielectric constant is smaller than that of paper phenol or glass epoxy, but the substrate can be formed thin, heat resistant, strong physical strength, and good antenna formability. It is desirable to use materials.
 本発明のアンテナは、リーダ等と電磁結合して電力を受け取り、ICチップに伝えて、ICチップを動作させるものである。アンテナは単層でよく、多層化する必要がないので、基材の片面に金属層として銅箔を貼り合せた、銅箔付きポリイミド基材の銅箔を用いて形成すると、低コストでばらつきなく形成することができる点で望ましい。 The antenna of the present invention electromagnetically couples with a reader or the like, receives electric power, transmits it to the IC chip, and operates the IC chip. The antenna may be a single layer and does not need to be multi-layered. Therefore, if it is formed using a copper foil with a copper foil and a copper foil bonded to one side of the base, a low cost and no variation It is desirable in that it can be formed.
 図3に示すように、樹脂製の基材1上の中央部にICチップを30配置し、このICチップ30の外周部の基材1の片面にアンテナ20を配置する。アンテナ20は、基材1の外周部の長さのとれる領域に配置されるので、アンテナ形状の自由度が拡大し、アンテナ20のインダクタンスLとICチップ30の静電容量Cとを含めて形成される電気回路(以下、「LC共振回路」ということがある。ここで、Lはインダクタンス、Cは静電容量を示す。)の共振周波数の調整が容易となる。また、アンテナ20は、ICチップ30の外周部に設けられるので、コイルアンテナの場合、コイルの直径が大きくなり、インダクタンスが増加して、通信距離の確保と小型化に有利となる。また、アンテナ20は、ICチップ30と接続されて電気的閉回路を形成し、開放端を有しないようにする。ICチップ30と接続されて電気的閉回路を形成し、開放端を有しないアンテナの具体例としては、図3(4)のループアンテナBや図3(5)のコイルアンテナが挙げられ、これにより、RFIDタグのサイズが小型でも、LC回路としてアンテナ20を容易に設計でき、かつ小面積で効率的にインダクタンスを得ることができるため、通信距離を確保するのが有利となる。 As shown in FIG. 3, 30 IC chips are arranged at the center of the resin base material 1, and the antenna 20 is arranged on one side of the base material 1 on the outer periphery of the IC chip 30. Since the antenna 20 is arranged in a region where the length of the outer peripheral portion of the substrate 1 can be taken, the degree of freedom of the antenna shape is expanded and formed including the inductance L of the antenna 20 and the electrostatic capacitance C of the IC chip 30. It is easy to adjust the resonance frequency of an electric circuit (hereinafter, referred to as “LC resonance circuit”, where L is an inductance and C is a capacitance). In addition, since the antenna 20 is provided on the outer peripheral portion of the IC chip 30, in the case of a coil antenna, the diameter of the coil increases and the inductance increases, which is advantageous for securing a communication distance and reducing the size. The antenna 20 is connected to the IC chip 30 to form an electrical closed circuit so as not to have an open end. Specific examples of the antenna that is connected to the IC chip 30 to form an electrically closed circuit and does not have an open end include the loop antenna B of FIG. 3 (4) and the coil antenna of FIG. 3 (5). Therefore, even if the RFID tag is small in size, the antenna 20 can be easily designed as an LC circuit, and an inductance can be obtained efficiently in a small area, so it is advantageous to secure a communication distance.
 アンテナの形状の代表的な例を、図3(1)~(5)に示す。アンテナ20の形状は、アンテナ20のインダクタンスとICチップ30の静電容量とを含めて形成される電気回路(LC共振回路)の共振周波数が、ICチップ30の動作周波数またはその付近となるように設計する。アンテナ20の形状としては、メアンダラインアンテナ(図3(2))、ループアンテナ(図3(1)、(4))、コイルアンテナ(図3(5))、渦アンテナ(図3(3))等のアンテナとして広く用いられているものが利用できる。これらの中でも、ICチップ30と接続されて電気的閉回路を形成するコイルアンテナ(図3(5))やループアンテナB(図3(4))は、電気回路をLC共振回路として容易に設計することができ、かつ小面積で効率的にインダクタンスを得ることができるため、小型化することが可能となる点で望ましく、特にコイルアンテナ(図3(5))が望ましい。アンテナ20の設計手法については後述する。またコイルアンテナの場合、巻線コイルを接着剤等で搭載することも可能だが、巻線コイルよりもエッチングで作製するコイルのほうがインダクタンス等の性能が安定しており、また、導線幅/導線間距離が、0.2mm/0.2mm~0.05mm/0.05mm程度の微細な配線を形成することができるため小型化に有利であり、量産性にも優れているため、エッチング製法のほうが産業上有効である。また、このようなアンテナ20の形状をとり、さらに基材1と封止材10の比誘電率が寄与することにより、間隙を有して隣接する構成部分を含むアンテナ20は、隣接する構成部分が容量的に結合し、これらの間に静電容量を提供する。これにより、ICチップ30とこの外周部に配置されるアンテナとを有する構成全体の実質的な静電容量である実効静電容量は、ICチップ30単体の静電容量よりも著しく増加することになる。ここで、実質的な静電容量とは、ICチップ30の外周部にアンテナを配置した構成におけるICチップ30が提供する静電容量である。 Representative examples of antenna shapes are shown in Figs. 3 (1) to (5). The shape of the antenna 20 is such that the resonance frequency of the electric circuit (LC resonance circuit) formed including the inductance of the antenna 20 and the capacitance of the IC chip 30 is at or near the operating frequency of the IC chip 30. design. The shape of the antenna 20 includes a meander line antenna (FIG. 3 (2)), a loop antenna (FIGS. 3 (1) and (4)), a coil antenna (FIG. 3 (5)), and a vortex antenna (FIG. 3 (3)). And the like widely used as antennas can be used. Among these, the coil antenna (FIG. 3 (5)) and the loop antenna B (FIG. 3 (4)) that are connected to the IC chip 30 to form an electrical closed circuit are easily designed as LC resonance circuits. In addition, since it is possible to obtain inductance efficiently in a small area, it is desirable in that it can be downsized, and a coil antenna (FIG. 3 (5)) is particularly desirable. A design method of the antenna 20 will be described later. In the case of a coil antenna, it is possible to mount the winding coil with an adhesive or the like, but the coil produced by etching is more stable in performance than the winding coil, and the conductor width / between the conductors Since it is possible to form a fine wiring having a distance of about 0.2 mm / 0.2 mm to 0.05 mm / 0.05 mm, it is advantageous for downsizing and is excellent in mass productivity. Industrially effective. Further, the antenna 20 including the adjacent component portion having a gap is formed by taking the shape of the antenna 20 and further contributing to the relative dielectric constant of the base material 1 and the sealing material 10. Are capacitively coupled and provide a capacitance between them. As a result, the effective capacitance, which is the substantial capacitance of the entire configuration including the IC chip 30 and the antenna disposed on the outer peripheral portion, is significantly increased as compared with the capacitance of the IC chip 30 alone. Become. Here, the substantial capacitance is the capacitance provided by the IC chip 30 in the configuration in which the antenna is disposed on the outer periphery of the IC chip 30.
 また、図3には、ICチップ30及びワイヤボンディングしたワイヤ40も図示している。銅箔付きポリイミドの銅箔をエッチングしてアンテナ20を形成するとき、ICチップ30を搭載する部分の銅箔も残しておき、ダイパッド(図示しない。)を形成しておくことで、ICチップ30のワイヤボンディング等の接続の際に剛性を保ち歩留まりが向上する。 FIG. 3 also shows the IC chip 30 and the wire 40 that has been wire-bonded. When the antenna 20 is formed by etching the copper foil of polyimide with copper foil, the IC chip 30 is formed by leaving the copper foil of the portion where the IC chip 30 is mounted and forming a die pad (not shown). In connection, such as wire bonding, rigidity is maintained and yield is improved.
 ICチップ30を搭載する部分の銅箔の上にダイボンドフィルム(図示しない。)を配置し、その上にICチップ30を固定する。ICチップ30は読み取り専用のものでもよいが、情報を書き込めるもののほうが、作業履歴等を随時書き込めるため好適である。その後、ワイヤボンディングによってICチップ30とアンテナ20を直接接続する。図3(5)のコイルアンテナ20では、2箇所のアンテナ端部が、アンテナ20を間に挟んで位置するが、この間に位置するアンテナ20を、ワイヤボンディングのワイヤ40で跨いで、アンテナ端部とICチップ30とを直接接続することによって、ジャンパー線を設けたり、多層化してスルーホールを介して接続する必要がないため、低コスト化を図ることができる。 A die bond film (not shown) is placed on the copper foil where the IC chip 30 is mounted, and the IC chip 30 is fixed thereon. Although the IC chip 30 may be read-only, it is preferable that information can be written because work history and the like can be written at any time. Thereafter, the IC chip 30 and the antenna 20 are directly connected by wire bonding. In the coil antenna 20 of FIG. 3 (5), two antenna end portions are located with the antenna 20 in between, and the antenna 20 located between them is straddled by wire bonding wires 40, and the antenna end portions are located. By directly connecting the IC chip 30 and the IC chip 30, it is not necessary to provide jumper wires or to connect them via a through-hole in multiple layers, so that the cost can be reduced.
 ほとんど全てのアンテナは配線場所を調整することでフリップチップ接続により、アンテナとICチップとを直接接続することも可能である。両面銅箔基材等を用いて多層配線すれば全てのアンテナにおいてフリップチップ接続ができるが、量産性減少、コスト上昇及び配線が封止後に表面に露出してしまう等の理由から片面銅箔基材を用いることが望ましい。 Almost all antennas can be directly connected to the IC chip by flip chip connection by adjusting the wiring location. Multi-layer wiring using a double-sided copper foil base material allows flip-chip connection in all antennas, but due to reasons such as reduced mass productivity, increased costs, and the wiring exposed to the surface after sealing, It is desirable to use a material.
 両面銅箔基材等を用いて多層配線することで、特にコイルアンテナではコイルの直径を小さくすることができるためRFIDタグの縦および横の寸法を減らし、小型化を実現できる。但し、この場合は、高さの寸法が若干増加する。また、デメリットとしては量産性減少、コスト上昇及び配線が封止後に表面に露出してしまう等があるため、やはり片面銅箔基材を用いて、単層のコイルアンテナを形成することが望ましい。 By multilayer wiring using a double-sided copper foil base material or the like, especially in a coil antenna, the diameter of the coil can be reduced, so the vertical and horizontal dimensions of the RFID tag can be reduced, and downsizing can be realized. In this case, however, the height dimension is slightly increased. Further, disadvantages include a decrease in mass productivity, an increase in cost, and exposure of wiring to the surface after sealing. Therefore, it is desirable to form a single-layer coil antenna using a single-sided copper foil base material.
 図4は、封止後のRFIDタグ80を示す断面図である。基材1上にてダイパッド90上に搭載されたICチップ30、アンテナ20、ワイヤ40を、封止材10を用いて一括して封止することで、それらを保護する。基材1として薄いものを用い、アンテナ20を基材の片面のみに単層で設けているので、封止後の厚みは、例えば0.2~1.0mm程度にすることができる。封止後、ICチップ30やアンテナ20やワイヤ40等の金属配線部分は全て封入されるため、封止材10の外部からは、まったく触れられない構造となり、環境劣化の観点からも偽造防止の観点からも安全性・信頼性が向上する。 FIG. 4 is a cross-sectional view showing the RFID tag 80 after sealing. The IC chip 30, the antenna 20, and the wire 40 mounted on the die pad 90 on the base material 1 are collectively sealed using the sealing material 10 to protect them. Since a thin substrate 1 is used and the antenna 20 is provided as a single layer only on one side of the substrate, the thickness after sealing can be set to, for example, about 0.2 to 1.0 mm. After sealing, all the metal wiring parts such as the IC chip 30, the antenna 20, and the wire 40 are sealed, so that the structure cannot be touched at all from the outside of the sealing material 10. Safety and reliability are also improved from the viewpoint.
 封止材としては、通常半導体で使用されている封止材を使用することができ、比誘電率は2.6~4.5程度である。RDIDタグ自体の性能を高めるためには、封止材の比誘電率は低いほうが好ましいが、比誘電率が高ければインダクタンスが増加するためアンテナを小型化することができる。 As the sealing material, a sealing material usually used in a semiconductor can be used, and the relative dielectric constant is about 2.6 to 4.5. In order to improve the performance of the RDID tag itself, it is preferable that the relative permittivity of the sealing material is low. However, if the relative permittivity is high, the inductance increases, so that the antenna can be downsized.
 このようにして作製されたRFIDタグは、基材が耐熱性180℃以上、封止材が耐熱性150℃以上であり、ワイヤボンディングを使用しているため、従来のPET等にアンテナを形成しているRFIDタグに比べて耐熱性が高く、高温でも正常に動作する。このため、適用製品が、半導体パッケージ等の電子部品や射出成形品等の場合、リフローや成形時の加熱、あるいは使用時の発熱に晒されるので、250~300℃で数秒程度の耐熱性を要するが、このような用途にも対応可能である。 The RFID tag manufactured in this manner has a base material with a heat resistance of 180 ° C. or higher, a sealing material with a heat resistance of 150 ° C. or higher, and uses wire bonding. Therefore, an antenna is formed on conventional PET or the like. It has higher heat resistance than RFID tags, and operates normally even at high temperatures. For this reason, if the product is an electronic component such as a semiconductor package or an injection molded product, it is exposed to heat during reflow, molding, or heat generation during use, so heat resistance of about several seconds is required at 250 to 300 ° C. However, it can also be used for such applications.
 以下、アンテナの設計手法について説明する。アンテナの設計は、アンテナ線の形状、線の太さ、線の長さ、等によって決まる共振周波数を指標とする。この共振周波数を、使用するICチップの動作周波数に近づけることによって、リーダライタからの電力をアンテナが受け取り、ICチップに伝えて、ICチップが動作する。 The following describes the antenna design method. The antenna design uses the resonance frequency determined by the shape of the antenna line, the thickness of the line, the length of the line, etc. as an index. By bringing this resonance frequency close to the operating frequency of the IC chip to be used, the antenna receives the power from the reader / writer and transmits it to the IC chip to operate the IC chip.
 共振周波数をアンテナの図面から解析的に導出することは一般的に難しい。実際にはアンテナを試作して実験的に測定する方法が採られることが多い。しかし、本発明のRFIDタグは小型なので、アンテナの試作を手作業で正確に行うことは不可能であり、一方でエッチングマスク作製からエッチングまで行ってアンテナを作製するのは時間もコストもかかってしまう。このため、本発明では、電磁界シミュレータ(アンシス・ジャパン株式会社製シミュレータソフト 製品名:HFSS)を用いてアンテナ設計を行なうが、これにより、時間およびコストを削減することができる。電磁界シミュレータに、アンテナの形状、材質、およびICチップの静電容量等を入力することにより、シミュレーション結果から共振周波数を得る。そして、電磁界シミュレータにより求められる、アンテナのインダクタンスLとICチップの静電容量Cとを含めて形成される電気回路の共振周波数fが、ICチップの動作周波数またはその付近であるように、アンテナを設計する。なお、この場合の共振周波数とは、アンテナの両端にICチップを接続した場合の電気的閉回路のインピーダンスの虚数部がゼロとなる周波数のことである。 It is generally difficult to analytically derive the resonance frequency from the antenna drawing. In practice, a method is often employed in which an antenna is prototyped and experimentally measured. However, since the RFID tag of the present invention is small, it is impossible to accurately prototype the antenna manually. On the other hand, it takes time and cost to fabricate the antenna from etching mask fabrication to etching. End up. For this reason, in the present invention, antenna design is performed using an electromagnetic field simulator (simulator software product name: HFSS manufactured by Ansys Japan Co., Ltd.), which can reduce time and cost. The resonance frequency is obtained from the simulation result by inputting the shape and material of the antenna, the capacitance of the IC chip, and the like to the electromagnetic field simulator. Then, the resonance frequency f 0 of the electric circuit formed by including the antenna inductance L and the IC chip capacitance C obtained by the electromagnetic field simulator is at or near the operating frequency of the IC chip. Design the antenna. Note that the resonance frequency in this case is a frequency at which the imaginary part of the impedance of the electrical closed circuit when the IC chip is connected to both ends of the antenna becomes zero.
 設計の原理を理解しやすいのはコイルアンテナの両端にICチップを接続した場合の電気的閉回路を考えることであり、単純なLC共振回路と見立てることができる。図3(5)のコイルアンテナの電気的等価回路を、図5に示す。この場合の共振周波数fは、コイルアンテナの等価回路であるコイル50のインダクタンスL、ICチップ30の等価回路であるコンデンサ60の静電容量Cを用いて、次式で表される。 It is easy to understand the design principle by considering an electric closed circuit when an IC chip is connected to both ends of a coil antenna, and can be considered as a simple LC resonance circuit. FIG. 5 shows an electrical equivalent circuit of the coil antenna of FIG. The resonance frequency f 0 in this case is expressed by the following equation using the inductance L of the coil 50 that is an equivalent circuit of the coil antenna and the capacitance C of the capacitor 60 that is an equivalent circuit of the IC chip 30.
 [式] (2πf=1/(L・C)
 Cは使用するICチップ30の選定によって変えられ、Lはコイルアンテナの形状(特にコイルアンテナの直径と巻数)によって調整することができ、その結果、目的の共振周波数fを実現することができる。特にLの調整は有効で、コイルアンテナの直径を大きくしたり、巻数を増やすことでLが増加し、その結果fは減少する。
[Formula] (2πf 0 ) 2 = 1 / (L · C)
C is changed depending on the selection of the IC chip 30 to be used, and L can be adjusted by the shape of the coil antenna (particularly the diameter and the number of turns of the coil antenna). As a result, the target resonance frequency f 0 can be realized. . Adjustment of L is particularly effective, and L is increased by increasing the diameter of the coil antenna or increasing the number of turns. As a result, f 0 is decreased.
 上記式において、ICチップ30の静電容量Cとしては、ICチップ30の外周部にアンテナ20(コイル50)を配置した構成における実効静電容量が適用される。本実施の形態では、間隙を有して隣接するアンテナ20の構成部分の間に容量成分が生じ、さらに基材1と封止材10の比誘電率が寄与することにより、これらの間に静電容量を提供する。これにより、ICチップ30とこの外周部に配置されるアンテナとを有する構成全体の実質的な静電容量である実効静電容量は、ICチップ30単体の静電容量よりも著しく増加している。したがって、上記式から明らかなように、所望の共振周波数fは、より小さなインダクタンスLによって実現できるようになる。このことによって、直径と巻数を低減するなどしてコイルの寸法を小型化し、ひいてはRFIDタグ全体を小型化することが可能になる。 In the above formula, as the capacitance C of the IC chip 30, the effective capacitance in the configuration in which the antenna 20 (coil 50) is arranged on the outer peripheral portion of the IC chip 30 is applied. In the present embodiment, a capacitive component is generated between the constituent parts of the antenna 20 adjacent to each other with a gap, and the relative permittivity of the base material 1 and the sealing material 10 contributes to static electricity between them. Provides capacity. As a result, the effective capacitance, which is the substantial capacitance of the entire configuration including the IC chip 30 and the antenna disposed on the outer peripheral portion, is remarkably increased as compared with the capacitance of the IC chip 30 alone. . Therefore, as is apparent from the above equation, the desired resonance frequency f 0 can be realized with a smaller inductance L. This makes it possible to reduce the size of the coil, for example, by reducing the diameter and the number of turns, and thus the entire RFID tag.
 RFIDタグ(ICチップ)の共振周波数(動作周波数)は、電波法上特に商業的に利用価値が高い13.56MHz~2.45GHzの範囲とすることが好ましい。UHF帯(Ultra High Frequency Band)の動作周波数0.86~0.96GHz付近のRFIDの場合、電波の波長は30cm程度であるが、一方で、UHF帯用のICチップの大きさは、通常0.6mm角以下であるため、オンチップアンテナ方式では、ICチップが正常に動作するようなアンテナを、ICチップ上に形成することは困難である。また、数mm角程度サイズのRFIDタグにおいても、従来の設計手法を用いたアンテナでは、数mm程度の通信距離しか得られなかった。しかし、上記の電磁界シミュレータを用いた設計手法による本発明のRFIDタグによれば、従来の数cm角のアンテナを用いずとも、数mm角の単層のアンテナでも、RFIDタグが動作するための通信距離を大幅に拡大できるという優れた特長がある。また、大きさが数mm角で、導線幅/導線間幅が数10μm~数100μmのアンテナでよいため、銅箔等の金属層をエッチングすること等により容易に形成できる。さらに、単層のアンテナでよいため、多層化する必要がないので、基材の片面に金属層として銅箔を貼り合せた、銅箔付きポリイミド基材の銅箔を用いて形成することができる。このため、低コストの汎用の材料を用い、汎用のプロセスで形成することができる。 The resonance frequency (operating frequency) of the RFID tag (IC chip) is preferably in the range of 13.56 MHz to 2.45 GHz, which has a high commercial utility value in the radio wave law. In the case of RFID near the operating frequency of 0.86 to 0.96 GHz in the UHF band (Ultra High Frequency Band), the wavelength of the radio wave is about 30 cm. On the other hand, the size of the IC chip for the UHF band is usually 0. Since it is 6 mm square or less, it is difficult to form an antenna on which the IC chip operates normally on the IC chip in the on-chip antenna system. Further, even with an RFID tag having a size of about several mm square, an antenna using a conventional design method can only obtain a communication distance of about several mm. However, according to the RFID tag of the present invention based on the design method using the electromagnetic field simulator, the RFID tag operates even with a single-layer antenna of several mm square without using a conventional antenna of several cm square. There is an excellent feature that can greatly extend the communication distance. Further, since an antenna having a size of several millimeters square and a conductor width / interconductor width of several tens of μm to several hundreds of μm may be used, it can be easily formed by etching a metal layer such as a copper foil. Furthermore, since a single-layer antenna may be used, it is not necessary to make multiple layers. Therefore, it can be formed using a copper foil of a polyimide base material with a copper foil in which a copper foil is bonded to one side of the base material as a metal layer. . For this reason, it can be formed by a general-purpose process using a low-cost general-purpose material.
 本発明のRFIDタグは、半導体装置内等に埋め込んで使用することができる。また、両面テープ等でラベルのように商品やサンプルに貼り付けて管理等に利用することができ、商品を販売する際等に容易に取り外すことも可能である。さらに、本発明のRFIDタグと、リーダ等とを組み合わせることにより、眼鏡や時計あるいは医療用サンプルや半導体等のような小型多品種品であっても、通信距離が長く、作業性のよい自動認識システムを構成することができる。この場合、本発明のRFIDタグであれば、通信距離が長いので、汎用のリーダ等と組み合わせて自動認識システムを構成することも可能である。 The RFID tag of the present invention can be used by being embedded in a semiconductor device or the like. Further, it can be used for management etc. by being attached to a product or sample like a label with a double-sided tape or the like, and can be easily removed when the product is sold. Furthermore, by combining the RFID tag of the present invention with a reader, etc., automatic recognition with a long communication distance and good workability is possible even for small and multi-product items such as glasses, watches, medical samples, semiconductors, etc. The system can be configured. In this case, since the RFID tag of the present invention has a long communication distance, an automatic recognition system can be configured in combination with a general-purpose reader or the like.
(実施例1)
 樹脂基材として、ポリイミド基材の片面に銅箔を貼り合せた、銅箔付きポリイミド基材(日立化成工業株式会社製 MCF-5000I、ポリイミド厚み25μm、銅箔厚み18μm)を準備した。この銅箔付きポリイミド基材の銅箔をエッチングすることにより、図3(5)に示すようなコイルアンテナを、4mm角の範囲内に、導線幅/導線間幅が0.05mm/0.05mm、0.1mm/0.1mm、0.2mm/0.2mmで形成した。また、同時にICチップを搭載するダイパッド(図示しない。)を形成した。
Example 1
As a resin base material, a polyimide base material with copper foil (MCF-5000I, manufactured by Hitachi Chemical Co., Ltd., polyimide thickness 25 μm, copper foil thickness 18 μm) in which a copper foil was bonded to one side of a polyimide base material was prepared. By etching the copper foil of the polyimide base material with copper foil, the coil antenna as shown in FIG. 3 (5) is within the range of 4 mm square, and the conductor wire width / interconductor wire width is 0.05 mm / 0.05 mm. , 0.1 mm / 0.1 mm, 0.2 mm / 0.2 mm. At the same time, a die pad (not shown) for mounting an IC chip was formed.
 次に、ICチップとして、大きさが0.5mm×0.5mm×0.1mm程度、静電容量が0.77pF、動作周波数が0.86~0.96GHz付近のものを用いた。このICチップを、ダイパッド上に、ダイボンディング材を用いて搭載し、ワイヤボンディングにより、アンテナとICチップとを直接接続した。次に、基材の片面上のアンテナとICチップ、ワイヤボンディングのワイヤを含めて、封止材で封止した。最後に、必要なサイズにダイシング加工し、RFIDタグを作製した。 Next, an IC chip having a size of about 0.5 mm × 0.5 mm × 0.1 mm, a capacitance of 0.77 pF, and an operating frequency of about 0.86 to 0.96 GHz was used. This IC chip was mounted on a die pad using a die bonding material, and the antenna and the IC chip were directly connected by wire bonding. Next, the antenna, IC chip, and wire for wire bonding on one side of the substrate were sealed with a sealing material. Finally, the RFID tag was manufactured by dicing to a required size.
(実施例2)
 銅箔付きポリイミド基材の銅箔をエッチングすることにより、図3(4)に示すようなループアンテナBを、4mm角の範囲内に、導線幅/導線間幅が0.05mm/0.05mm、0.1mm/0.1mm、0.2mm/0.2mmで形成した。それ以外は、実施例1と同様にしてRFIDタグを作製した。
(Example 2)
By etching the copper foil of the polyimide base material with copper foil, the loop antenna B as shown in FIG. 3 (4) is within the range of 4 mm square, and the conductor wire width / interconductor wire width is 0.05 mm / 0.05 mm. , 0.1 mm / 0.1 mm, 0.2 mm / 0.2 mm. Otherwise, an RFID tag was produced in the same manner as in Example 1.
(比較例1)
 銅箔付きポリイミド基材の銅箔をエッチングすることにより、図3(2)に示すようなメアンダラインアンテナを、4mm角の範囲内に、導線幅/導線間幅が0.05mm/0.05mm、0.1mm/0.1mm、0.2mm/0.2mmで形成した。それ以外は、実施例1と同様にしてRFIDタグを作製した。
(Comparative Example 1)
By etching the copper foil of the polyimide base material with copper foil, the meander line antenna as shown in FIG. 3 (2) is within the range of 4 mm square, and the conductor wire width / interconductor wire width is 0.05 mm / 0.05 mm. , 0.1 mm / 0.1 mm, 0.2 mm / 0.2 mm. Otherwise, an RFID tag was produced in the same manner as in Example 1.
(比較例2)
 銅箔付きポリイミド基材の銅箔をエッチングすることにより、図3(1)に示すようなループアンテナAを、4mm角の範囲内に、導線幅/導線間幅が0.05mm/0.05mm、0.1mm/0.1mm、0.2mm/0.2mmで形成した。それ以外は、実施例1と同様にしてRFIDタグを作製した。
(Comparative Example 2)
By etching the copper foil of the polyimide base material with copper foil, the loop antenna A as shown in FIG. 3 (1) is within the range of 4 mm square, and the conductor wire width / interconductor wire width is 0.05 mm / 0.05 mm. , 0.1 mm / 0.1 mm, 0.2 mm / 0.2 mm. Otherwise, an RFID tag was produced in the same manner as in Example 1.
(比較例3)
 銅箔付きポリイミド基材の銅箔をエッチングすることにより、図3(3)に示すような渦アンテナを、4mm角の範囲内に、導線幅/導線間幅が0.05mm/0.05mm、0.1mm/0.1mm、0.2mm/0.2mmで形成した。それ以外は、実施例1と同様にしてRFIDタグを作製した。
(Comparative Example 3)
By etching the copper foil of the polyimide base material with copper foil, the vortex antenna as shown in FIG. 3 (3) is within the range of 4 mm square, and the conductor width / interconductor width is 0.05 mm / 0.05 mm, They were formed at 0.1 mm / 0.1 mm and 0.2 mm / 0.2 mm. Otherwise, an RFID tag was produced in the same manner as in Example 1.
(実施例3)
 銅箔付きポリイミド基材の銅箔をエッチングすることにより、図3(5)に示すようなコイルアンテナを、2.5mm角の範囲内に、導線幅/導線間幅が0.1mm/0.1mmで形成した。それ以外は、実施例1と同様にしてRFIDタグを作製した。
(Example 3)
By etching the copper foil of the polyimide base material with copper foil, the coil antenna as shown in FIG. 3 (5) is within the range of 2.5 mm square, and the conductor wire width / interconductor wire width is 0.1 mm / 0. Formed at 1 mm. Otherwise, an RFID tag was produced in the same manner as in Example 1.
(実施例4)
 銅箔付きポリイミド基材の銅箔をエッチングすることにより、図3(4)に示すようなループアンテナBを、2.5mm角の範囲内に、導線幅/導線間幅が0.05mm/0.05mm、0.1mm/0.1mm、0.2mm/0.2mmで形成した。それ以外は、実施例1と同様にしてRFIDタグを作製した。
(Example 4)
By etching the copper foil of the polyimide base material with the copper foil, the loop antenna B as shown in FIG. 3 (4) has a conductor width / inter-conductor width of 0.05 mm / 0 within a range of 2.5 mm square. .05 mm, 0.1 mm / 0.1 mm, and 0.2 mm / 0.2 mm. Otherwise, an RFID tag was produced in the same manner as in Example 1.
(比較例4)
 銅箔付きポリイミド基材の銅箔をエッチングすることにより、図3(2)に示すようなメアンダラインアンテナを、2.5mm角の範囲内に、導線幅/導線間幅が0.05mm/0.05mm、0.1mm/0.1mm、0.2mm/0.2mmで形成した。それ以外は、実施例1と同様にしてRFIDタグを作製した。
(Comparative Example 4)
By etching the copper foil of the polyimide base material with copper foil, the meander line antenna as shown in FIG. 3 (2) is within the range of 2.5 mm square, and the conductor width / inter-conductor width is 0.05 mm / 0. .05 mm, 0.1 mm / 0.1 mm, and 0.2 mm / 0.2 mm. Otherwise, an RFID tag was produced in the same manner as in Example 1.
(比較例5)
 銅箔付きポリイミド基材の銅箔をエッチングすることにより、図3(1)に示すようなループアンテナAを、2.5mm角の範囲内に、導線幅/導線間幅が0.05mm/0.05mm、0.1mm/0.1mm、0.2mm/0.2mmで形成した。それ以外は、実施例1と同様にしてRFIDタグを作製した。
(Comparative Example 5)
By etching the copper foil of the polyimide base material with copper foil, the loop antenna A as shown in FIG. 3 (1) is within the range of 2.5 mm square, and the conductor wire width / interconductor wire width is 0.05 mm / 0. .05 mm, 0.1 mm / 0.1 mm, and 0.2 mm / 0.2 mm. Otherwise, an RFID tag was produced in the same manner as in Example 1.
(比較例6)
 銅箔付きポリイミド基材の銅箔をエッチングすることにより、図3(3)に示すような渦アンテナを、2.5mm角の範囲内に、導線幅/導線間幅が0.05mm/0.05mm、0.1mm/0.1mm、0.2mm/0.2mmで形成した。それ以外は、実施例1と同様にしてRFIDタグを作製した。
(Comparative Example 6)
By etching the copper foil of the polyimide base material with copper foil, the vortex antenna as shown in FIG. 3 (3) is within the range of 2.5 mm square, and the conductor wire width / interconductor wire width is 0.05 mm / 0. They were formed at 05 mm, 0.1 mm / 0.1 mm, and 0.2 mm / 0.2 mm. Otherwise, an RFID tag was produced in the same manner as in Example 1.
(実施例5)
 銅箔付きポリイミド基材の銅箔をエッチングすることにより、図3(5)に示すようなコイルアンテナを、1.7mm角の範囲内に、導線幅/導線間幅が0.1mm/0.1mmで形成した。それ以外は、実施例1と同様にしてRFIDタグを作製した。
(Example 5)
By etching the copper foil of the polyimide base material with copper foil, the coil antenna as shown in FIG. 3 (5) is within the range of 1.7 mm square, and the conductor wire width / interconductor wire width is 0.1 mm / 0.00 mm. Formed at 1 mm. Otherwise, an RFID tag was produced in the same manner as in Example 1.
(実施例6)
 銅箔付きポリイミド基材の銅箔をエッチングすることにより、図3(5)に示すようなコイルアンテナを、9mm角の範囲内に、導線幅/導線間幅が0.1mm/0.1mmで形成した。また、ICチップとして、大きさが0.5mm×0.5mm×0.1mm程度、静電容量が17pF、動作周波数が13.56GHz付近のものを用いた。それ以外は、実施例1と同様にしてRFIDタグを作製した。
(Example 6)
By etching the copper foil of the polyimide base material with copper foil, the coil antenna as shown in FIG. 3 (5) is within a range of 9 mm square, and the conductor width / inter-conductor width is 0.1 mm / 0.1 mm. Formed. An IC chip having a size of about 0.5 mm × 0.5 mm × 0.1 mm, a capacitance of 17 pF, and an operating frequency of 13.56 GHz was used. Otherwise, an RFID tag was produced in the same manner as in Example 1.
(実施例7)
 銅箔付きポリイミド基材の銅箔をエッチングすることにより、図3(5)に示すようなコイルアンテナを、13mm角の範囲内に、導線幅/導線間幅が0.1mm/0.1mmで形成した。それ以外は、実施例6と同様にしてRFIDタグを作製した。
(Example 7)
By etching the copper foil of the polyimide base material with copper foil, the coil antenna as shown in FIG. 3 (5) is within a range of 13 mm square, and the conductor width / inter-conductor width is 0.1 mm / 0.1 mm. Formed. Otherwise, an RFID tag was produced in the same manner as in Example 6.
(実施例8)
 銅箔付きポリイミド基材の銅箔をエッチングすることにより、図3(5)に示すようなコイルアンテナを、2.5mm角の範囲内に、導線幅/導線間幅が0.2mm/0.2mmで形成した。また、ICチップとして、大きさが0.5mm×0.5mm×0.1mm程度、静電容量が0.7pF、動作周波数が2.45GHz付近のものを用いた。それ以外は、実施例1と同様にしてRFIDタグを作製した。
(Example 8)
By etching the copper foil of the polyimide base material with copper foil, the coil antenna as shown in FIG. 3 (5) is within the range of 2.5 mm square, and the conductor wire width / interconductor wire width is 0.2 mm / 0. Formed at 2 mm. Further, an IC chip having a size of about 0.5 mm × 0.5 mm × 0.1 mm, a capacitance of 0.7 pF, and an operating frequency of around 2.45 GHz was used. Otherwise, an RFID tag was produced in the same manner as in Example 1.
(実施例9)
 銅箔付きポリイミド基材の銅箔をエッチングすることにより、図3(5)に示すようなコイルアンテナを、2.5mm角の範囲内に、導線幅/導線間幅が0.1mm/0.1mmで形成した。それ以外は、実施例8と同様にしてRFIDタグを作製した。
Example 9
By etching the copper foil of the polyimide base material with copper foil, the coil antenna as shown in FIG. 3 (5) is within the range of 2.5 mm square, and the conductor wire width / interconductor wire width is 0.1 mm / 0. Formed at 1 mm. Otherwise, an RFID tag was produced in the same manner as in Example 8.
 以下、読取り評価の方法と実験結果について説明する。リーダライタはLS産電株式会社製 製品名:UI-9061(出力1W)を用いた。リーダライタの読取り部を中心として、周囲25cm四方に障害物がない状態で、RFIDタグ80の読取り評価を行った。リーダライタでRFIDを読取れる時の、リーダライタ読取り部からRFIDタグ80までの最大距離を測定した。 Hereinafter, the method of reading evaluation and the experimental results will be described. As the reader / writer, product name: UI-9061 (output 1 W) manufactured by LS Sangyo Co., Ltd. was used. The reading evaluation of the RFID tag 80 was performed in a state where there is no obstacle in a 25 cm square around the reading part of the reader / writer. The maximum distance from the reader / writer reading unit to the RFID tag 80 when the RFID could be read by the reader / writer was measured.
 実施例1~5及び比較例1~6についての、シミュレーション結果および読み取り評価の結果を、表1に示す。使用したICチップの大きさは0.5mm×0.5mm×0.1mm程度、静電容量は0.77pF、動作周波数は0.86~0.96GHz付近である。 この表1から、ICチップと接続されて電気的閉回路を形成する、コイルアンテナ及びループアンテナBでは、電磁界シミュレータによる共振周波数が、0.2~2GHzであり、概ね、他のアンテナに比べて、ICチップの動作周波数0.9GHz程度に近い。また、読み取り距離も、電気的閉回路を形成しない、メアンダラインアンテナ、ループアンテナA、渦アンテナに比べて、読取り良好な結果となっている。また、電磁界シミュレータによる共振周波数が、0.5~1.5GHzとなった、実施例1a、1b、2a、2b、3b、4c、5bでは、5mm以上の通信距離が得られた。特に、ICチップの動作周波数0.9GHz程度に近い、共振周波数1~1.1GHzとなった、実施例1a、2b、3bでは、20mmを超える通信距離が得られた。 Table 1 shows the simulation results and reading evaluation results for Examples 1 to 5 and Comparative Examples 1 to 6. The size of the used IC chip is about 0.5 mm × 0.5 mm × 0.1 mm, the capacitance is 0.77 pF, and the operating frequency is about 0.86 to 0.96 GHz. From Table 1, the coil antenna and loop antenna B, which are connected to the IC chip to form an electrical closed circuit, have a resonance frequency of 0.2 to 2 GHz according to the electromagnetic field simulator, which is generally compared with other antennas. Thus, the operating frequency of the IC chip is close to about 0.9 GHz. Further, the reading distance is a good reading result as compared with the meander line antenna, the loop antenna A, and the vortex antenna which do not form an electrical closed circuit. Further, in Examples 1a, 1b, 2a, 2b, 3b, 4c, and 5b in which the resonance frequency by the electromagnetic field simulator was 0.5 to 1.5 GHz, a communication distance of 5 mm or more was obtained. In particular, in Examples 1a, 2b, and 3b in which the resonance frequency was 1 to 1.1 GHz, which is close to the operating frequency of the IC chip of about 0.9 GHz, a communication distance exceeding 20 mm was obtained.
Figure JPOXMLDOC01-appb-T000001
※ 表1中の「読取り距離」欄の「×」は、RFIDタグをリーダライタに接触させても、読取りできなかったことを表す。
Figure JPOXMLDOC01-appb-T000001
* In Table 1, “X” in the “Reading distance” column indicates that reading was not possible even when the RFID tag was brought into contact with the reader / writer.
 エッチングによってアンテナを形成するにあたり、導線幅および導線間距離は太いほうが歩留まりよく安定して量産することが可能である。そこで、プロセス上の制約から導線幅/導線間距離が決められた場合、10mm程度の読み取り距離を確保しつつ、どれだけ小型化できるかを考察した。その結果、導線幅/導線間距離が0.2mm/0.2mmの場合は、RFIDタグのサイズを4mm角程度まで小さくできることが判明した。また導線幅/導線間距離が0.1mm/0.1mmの場合は、RFIDタグのサイズを2.5mm角程度まで小さくできることが判明した。また導線幅/導線間距離が0.05mm/0.05mmの場合はRFIDタグのサイズを1.7mm角程度まで小さくできることが判明した。 When forming an antenna by etching, a thicker conductor width and distance between conductors can be stably mass-produced with a higher yield. Therefore, when the conductor width / inter-conductor distance was determined due to process restrictions, the inventors considered how much the size could be reduced while securing a reading distance of about 10 mm. As a result, it was found that when the conductor width / inter-conductor distance is 0.2 mm / 0.2 mm, the size of the RFID tag can be reduced to about 4 mm square. It has also been found that when the conductor width / inter-conductor distance is 0.1 mm / 0.1 mm, the size of the RFID tag can be reduced to about 2.5 mm square. It was also found that the RFID tag size can be reduced to about 1.7 mm square when the conductor width / inter-conductor distance is 0.05 mm / 0.05 mm.
 実施例6及び7のシミュレーション結果および読み取り評価結果を、表2に示す。使用したICチップの大きさは0.5mm×0.5mm×0.1mm程度、静電容量17pF動作周波数13.56MHzである。電磁界シミュレータによる共振周波数が29MHzとなった実施例6では、12mmの通信距離が得られ、特に、電磁界シミュレータによる共振周波数が14MHzとなった実施例7では、110mmの通信距離が得られた。また、HF帯(High Frequency Band)の動作周波数13.56MHzにおいては、周波数がUHF帯よりも低くなるが、コイルアンテナのインダクタンスを大きくすることにより、導線幅/導線間距離が0.1mm/0.1mmの場合は、RFIDタグのサイズを13mm角程度まで小さくできることが判明した。 Table 2 shows the simulation results and reading evaluation results of Examples 6 and 7. The size of the used IC chip is about 0.5 mm × 0.5 mm × 0.1 mm, and the capacitance is 17 pF and the operating frequency is 13.56 MHz. In Example 6 in which the resonance frequency by the electromagnetic field simulator was 29 MHz, a communication distance of 12 mm was obtained. In particular, in Example 7 in which the resonance frequency by the electromagnetic field simulator was 14 MHz, a communication distance of 110 mm was obtained. . Further, in the HF band (High Frequency Band) operating frequency of 13.56 MHz, the frequency is lower than the UHF band, but by increasing the inductance of the coil antenna, the conductor width / inter-conductor distance is 0.1 mm / 0. In the case of 0.1 mm, it has been found that the size of the RFID tag can be reduced to about 13 mm square.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例8及び9のシミュレーション結果および読み取り評価結果を、表3に示す。使用したICチップの大きさは0.5mm×0.5mm×0.1mm程度、静電容量0.7pF、動作周波数2.45GHzである。電磁界シミュレータによる共振周波数が2GHzとなった実施例8及び電磁界シミュレータによる共振周波数が2.1GHzとなった実施例9では、4mmの通信距離が得られた。また、導線幅/導線間距離が0.1mm/0.1mmの場合はRFIDタグのサイズを1.7mm角程度まで小さくできることが判明した。 Table 3 shows the simulation results and reading evaluation results of Examples 8 and 9. The size of the used IC chip is about 0.5 mm × 0.5 mm × 0.1 mm, the capacitance is 0.7 pF, and the operating frequency is 2.45 GHz. In Example 8 in which the resonance frequency by the electromagnetic field simulator was 2 GHz and Example 9 in which the resonance frequency by the electromagnetic field simulator was 2.1 GHz, a communication distance of 4 mm was obtained. Further, it was found that the size of the RFID tag can be reduced to about 1.7 mm square when the conductor width / inter-conductor distance is 0.1 mm / 0.1 mm.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明のRFIDタグは、商品、包装、カード、書類、眼鏡、時計(特に腕時計等小型のもの)、半導体、医療用途(患者から採取したサンプル等)等の製品の管理、識別、情報提示、情報記録、偽造防止の目的として使用することができる。 The RFID tag of the present invention is a product, packaging, card, document, glasses, watch (especially a small watch or the like), semiconductor, medical use (sample collected from a patient, etc.), identification, information presentation, It can be used for information recording and anti-counterfeiting purposes.
1  基材
10 封止材
20 アンテナ
30 ICチップ
40 ワイヤボンディングのワイヤ
50 コイル(アンテナ)
60 コンデンサ(ICチップ)
70 シミュレーション時に入力するポート
80 RFIDタグ
90 ダイパッド
DESCRIPTION OF SYMBOLS 1 Base material 10 Sealing material 20 Antenna 30 IC chip 40 Wire 50 of wire bonding Coil (antenna)
60 Capacitor (IC chip)
70 Port 80 input during simulation RFID tag 90 Die pad

Claims (10)

  1.  樹脂製の基材と、この基材上の中央部に配置されたICチップと、このICチップの外周部に配置され、前記ICチップと接続されて電気的閉回路を形成する単層のアンテナと、前記ICチップ及びアンテナを封止する封止材とを有するRFIDタグであって、
     前記アンテナが、コイルアンテナまたはループアンテナであり、
     前記アンテナのインダクタンスLとICチップの静電容量Cとを含めて形成される電気回路の共振周波数fが、ICチップの動作周波数またはその付近であり、
     前記ICチップの動作周波数が、13.56MHz~2.45GHz、または0.86~0.96GHzであり、
     前記RFIDタグのサイズが、縦13mm以下×横13mm以下×高さ1.0mm以下、または縦4mm以下×横4mm以下×高さ0.4mm以下、または縦2.5mm以下×横2.5mm以下×高さ0.3mm以下、または縦1.7mm以下×横1.7mm以下×高さ0.3mm以下であるRFIDタグ。
    Resin base material, IC chip disposed at the center of the base material, single-layer antenna disposed on the outer periphery of the IC chip and connected to the IC chip to form an electrical closed circuit And an RFID tag having a sealing material for sealing the IC chip and the antenna,
    The antenna is a coil antenna or a loop antenna;
    The resonance frequency f 0 of the electric circuit formed including the inductance L of the antenna and the capacitance C of the IC chip is at or near the operating frequency of the IC chip,
    The operating frequency of the IC chip is 13.56 MHz to 2.45 GHz, or 0.86 to 0.96 GHz,
    The size of the RFID tag is 13 mm or less x 13 mm or less x 1.0 mm or less, or 4 mm or less x 4 mm or less x 0.4 mm or less, or 2.5 mm or less x 2.5 mm or less. An RFID tag having a height of 0.3 mm or less, or a length of 1.7 mm or less, a width of 1.7 mm or less, and a height of 0.3 mm or less.
  2.  請求項1において、
     ICチップの動作周波数が0.86~0.96GHzであり、アンテナのインダクタンスLとICチップの静電容量Cとを含めて形成される電気回路の共振周波数fが、0.2~2GHzであるか、
     または、ICチップの動作周波数が13.56MHzであり、前記共振周波数fが13.56~29MHzであるか、
     または、ICチップの動作周波数が2.45GHzであり、前記共振周波数fが2~2.45GHzであるRFIDタグ。
    In claim 1,
    The operating frequency of the IC chip is 0.86 to 0.96 GHz, and the resonance frequency f 0 of the electric circuit formed including the inductance L of the antenna and the capacitance C of the IC chip is 0.2 to 2 GHz. Is there
    Or, the operating frequency of the IC chip is 13.56 MHz, and the resonance frequency f 0 is 13.56 to 29 MHz,
    Alternatively, an RFID tag in which the operating frequency of the IC chip is 2.45 GHz and the resonance frequency f 0 is 2 to 2.45 GHz.
  3.  請求項1または2において、間隙を有して隣接するアンテナの構成部分が静電容量を提供し、ICチップとこの外周部に配置されるアンテナとを有する構成全体の実質的な静電容量を、前記ICチップ単体の静電容量よりも増加させるRFIDタグ。 3. The structure according to claim 1, wherein a component part of an adjacent antenna having a gap provides a capacitance, and a substantial capacitance of the entire configuration having an IC chip and an antenna disposed on the outer peripheral portion is provided. An RFID tag that increases the capacitance of the IC chip alone.
  4.  請求項1から3の何れかにおいて、ICチップが、アンテナの端部と、ワイヤボンディング接続またはフリップチップ接続で、直接接続されているRFIDタグ。 4. The RFID tag according to claim 1, wherein the IC chip is directly connected to the end portion of the antenna by wire bonding connection or flip chip connection.
  5.  請求項1から4の何れかにおいて、アンテナの導線幅/導線間距離が、0.2mm/0.2mm~0.05mm/0.05mmであるRFIDタグ。 The RFID tag according to any one of claims 1 to 4, wherein the antenna conductor wire width / inter-conductor wire distance is 0.2 mm / 0.2 mm to 0.05 mm / 0.05 mm.
  6.  請求項1から5の何れかにおいて、封止材の比誘電率が2.6以上であるRFIDタグ。 The RFID tag according to any one of claims 1 to 5, wherein the relative permittivity of the sealing material is 2.6 or more.
  7.  請求項1から6の何れかにおいて、基材の比誘電率が3.5以上であるRFIDタグ。 The RFID tag according to any one of claims 1 to 6, wherein the base material has a relative dielectric constant of 3.5 or more.
  8.  請求項1から7の何れかにおいて、基材にポリイミドまたはガラスエポキシを用い、かつエポキシと炭素とシリカを主成分とした封止材を用いるRFIDタグ。 The RFID tag according to any one of claims 1 to 7, wherein a polyimide or glass epoxy is used as a base material and a sealing material mainly composed of epoxy, carbon, and silica is used.
  9.  請求項1から8の何れかにおいて、基材の片面のみにアンテナが形成されており、前記アンテナとICチップとワイヤボンディングのワイヤとを、封止材を用いて一括して封止することで、前記アンテナ、ICチップ、およびワイヤが、前記封止材の表面に露出していないRFIDタグ。 In any one of Claims 1-8, the antenna is formed only in the single side | surface of a base material, and the said antenna, IC chip, and the wire of wire bonding are sealed collectively using a sealing material. The RFID tag in which the antenna, the IC chip, and the wire are not exposed on the surface of the sealing material.
  10.  請求項1から9の何れかのRFIDタグと、リーダまたはリーダライタとを有する自動認識システム。 An automatic recognition system comprising the RFID tag according to claim 1 and a reader or a reader / writer.
PCT/JP2012/072972 2011-09-12 2012-09-07 Rfid tag and automatic recognition system WO2013039016A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280044117.9A CN103797498B (en) 2011-09-12 2012-09-07 RFID label tag and automatic recognition system
JP2013533646A JP5835336B2 (en) 2011-09-12 2012-09-07 RFID tag and automatic recognition system
US14/344,109 US20140339308A1 (en) 2011-09-12 2012-09-07 Rfid tag and automatic recognition system
KR1020147008638A KR101624811B1 (en) 2011-09-12 2012-09-07 Rfid tag and automatic recognition system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-198228 2011-09-12
JP2011198228 2011-09-12

Publications (1)

Publication Number Publication Date
WO2013039016A1 true WO2013039016A1 (en) 2013-03-21

Family

ID=47883247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072972 WO2013039016A1 (en) 2011-09-12 2012-09-07 Rfid tag and automatic recognition system

Country Status (6)

Country Link
US (1) US20140339308A1 (en)
JP (1) JP5835336B2 (en)
KR (1) KR101624811B1 (en)
CN (1) CN103797498B (en)
TW (1) TWI541728B (en)
WO (1) WO2013039016A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508969A (en) * 2014-12-12 2018-03-29 ブンデスドルケライ ゲーエムベーハー LED module
CN112119402A (en) * 2018-05-18 2020-12-22 京瓷株式会社 RFID tag

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017096234A1 (en) * 2015-12-02 2017-06-08 Power Fingerprinting Inc. Methods and apparatuses for identifying anomaly within sealed packages using power signature analysis counterfeits
GB2553093B (en) 2016-08-17 2019-05-15 Drayson Tech Europe Ltd RF energy harvesting dual loop antenna with gaps and bridges
GB2561917B (en) * 2017-04-28 2019-12-04 Drayson Tech Europe Ltd RF Meander Line Antenna
US11291919B2 (en) * 2017-05-07 2022-04-05 Interlake Research, Llc Development of virtual character in a learning game
US10282654B2 (en) * 2017-07-09 2019-05-07 Interlake Research, Llc Tag assembly methods
CN109086841A (en) * 2018-07-17 2018-12-25 成都普什信息自动化有限公司 Based on RFID characteristic parameter anti-counterfeiting technology
JP7157970B2 (en) * 2019-07-19 2022-10-21 大王製紙株式会社 RFID tag and antenna
CN110399965B (en) * 2019-07-31 2023-05-30 永道射频技术股份有限公司 RFID label structure for heating or processing in microwave oven
CN112701444B (en) * 2019-10-22 2022-06-28 华为技术有限公司 Antenna, antenna packaging method and terminal
US11907790B2 (en) * 2020-03-06 2024-02-20 Hutchinson Technology Incorporated Component identification
CN114680653B (en) * 2020-12-31 2024-06-21 广东美的厨房电器制造有限公司 Cooking utensil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024087A (en) * 2004-07-09 2006-01-26 Nec Corp Radio device, its manufacturing method, its inspecting method and inspecting device, radio apparatus, and its manufacturing method
JP2011159324A (en) * 2011-05-09 2011-08-18 Dainippon Printing Co Ltd Ic module both for contact and non-contact, and ic card

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6951596B2 (en) * 2002-01-18 2005-10-04 Avery Dennison Corporation RFID label technique
JP3979873B2 (en) * 2001-12-28 2007-09-19 大日本印刷株式会社 Non-contact data carrier manufacturing method
EP2306588B1 (en) * 2008-06-26 2012-10-17 Fujitsu Limited Rfid tag
WO2010022250A1 (en) * 2008-08-20 2010-02-25 Omni-Id Limited One and two-part printable em tags
KR20100056159A (en) * 2008-11-19 2010-05-27 삼성전자주식회사 Radio frequency identification apparatus for applying a plurality of radio frequency identification schemes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024087A (en) * 2004-07-09 2006-01-26 Nec Corp Radio device, its manufacturing method, its inspecting method and inspecting device, radio apparatus, and its manufacturing method
JP2011159324A (en) * 2011-05-09 2011-08-18 Dainippon Printing Co Ltd Ic module both for contact and non-contact, and ic card

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508969A (en) * 2014-12-12 2018-03-29 ブンデスドルケライ ゲーエムベーハー LED module
CN112119402A (en) * 2018-05-18 2020-12-22 京瓷株式会社 RFID tag
CN112119402B (en) * 2018-05-18 2023-10-31 京瓷株式会社 RFID tag

Also Published As

Publication number Publication date
CN103797498B (en) 2016-10-12
JP5835336B2 (en) 2015-12-24
CN103797498A (en) 2014-05-14
TWI541728B (en) 2016-07-11
US20140339308A1 (en) 2014-11-20
KR101624811B1 (en) 2016-05-26
TW201324369A (en) 2013-06-16
KR20140067085A (en) 2014-06-03
JPWO2013039016A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
JP5835336B2 (en) RFID tag and automatic recognition system
JP5776780B2 (en) RFID tag
JP6414614B2 (en) Article
JP5867777B2 (en) RFID tag and automatic recognition system
JP6016013B2 (en) RFID tag and automatic recognition system
JP5737448B2 (en) Wireless communication device
CN208141425U (en) Component built-in device and RFID tag
US20160275391A1 (en) Miniature rfid tag with coil on ic package
US10380478B2 (en) Wireless communication device and wireless communication module manufacturing method
JP2015064651A (en) Rfid tag and automatic recognition system
JP2014067234A (en) Rfid tag and automatic recognition system
US9336475B2 (en) Radio IC device and radio communication terminal
JP5904356B2 (en) RFID tag and automatic recognition system
JP2013152600A (en) Rfid tag system and rfid package
JP5896594B2 (en) Wireless IC device
JP2019082797A (en) Rfid module and rfid tag and manufacturing method thereof
CN219591642U (en) Integrated antenna
KR20050078157A (en) Radio frequency identification tag and method for manufacturing it
JP2017156929A (en) Method for manufacturing antenna sheet, antenna sheet and non-contact information medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533646

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14344109

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147008638

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12832220

Country of ref document: EP

Kind code of ref document: A1