WO2013038978A1 - Signal transmission device and signal transmission method - Google Patents

Signal transmission device and signal transmission method Download PDF

Info

Publication number
WO2013038978A1
WO2013038978A1 PCT/JP2012/072697 JP2012072697W WO2013038978A1 WO 2013038978 A1 WO2013038978 A1 WO 2013038978A1 JP 2012072697 W JP2012072697 W JP 2012072697W WO 2013038978 A1 WO2013038978 A1 WO 2013038978A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
signal
reception
level
data
Prior art date
Application number
PCT/JP2012/072697
Other languages
French (fr)
Japanese (ja)
Inventor
進吾 野村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013038978A1 publication Critical patent/WO2013038978A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J7/00Multiplex systems in which the amplitudes or durations of the signals in individual channels are characteristic of those channels

Definitions

  • the present invention relates to a signal transmission device and a signal transmission method, and more particularly, to a signal transmission device and a signal transmission method suitable for transmitting a plurality of types of data.
  • LVDS Low Voltage Differential Signaling
  • a level shift circuit is provided in the input portion of the source driver, and the amplitude of data serially transmitted from the output buffer of the controller IC to the source driver is set to the level.
  • a display device that boosts voltage by a shift circuit is disclosed. According to such a configuration, since the amplitude of data to be transmitted from the controller IC to the source driver can be reduced, data transmission with low power consumption can be realized as in the case of the LVDS.
  • an object of the present invention is to provide a signal transmission device and a signal transmission method that can transmit a plurality of data while suppressing an increase in cost.
  • a first aspect of the present invention is a signal transmission device that serially transmits a plurality of types of data between a transmission unit and a reception unit through a single transmission line
  • the transmitter is To receive a first clock signal that periodically changes, a second clock signal obtained by multiplying the frequency of the first clock signal by N (N is an integer of 2 or more), and N transmission-side data signals to be transmitted from the outside.
  • the sending input terminal of The N transmission-side data signals are sequentially sampled in synchronization with the second clock signal every one cycle of the first clock signal, and the voltage levels of the sampled N transmission-side data signals are made different from each other.
  • a transmission side signal processing unit for generating a transmission signal by A transmission side output terminal for outputting the transmission signal to the transmission line
  • the receiver is A receiving-side input terminal for receiving the first clock signal, the second clock signal, and the transmission signal from the transmission path;
  • the transmission signal is sampled in synchronization with the second clock signal for each cycle of the first clock signal, and the voltage levels of the sampled transmission signal are set to the N transmission sides before the voltage level changes.
  • a receiving-side signal processing unit that generates N receiving-side data signals by changing to a voltage level corresponding to the data signal;
  • a reception side output terminal for outputting the N reception side data signals to the outside.
  • the transmission-side signal processing unit includes a transmission-side phase control unit that varies the phases of the N transmission-side data signals by a period corresponding to one cycle of the second clock signal in synchronization with the second clock signal. It is characterized by that.
  • the transmission-side signal processing unit samples the N transmission-side data signals in synchronization with the second clock signal every cycle of the first clock signal, and the voltage level of each transmission data signal is transmitted.
  • the voltage level of the transmission data signal By converting the voltage level of the transmission data signal into one or the other of any two voltage levels of the N + 1 predetermined voltage levels, respectively, It further includes a transmission signal converter that generates the transmission signal having N + 1 types of voltage levels.
  • the transmission signal converting unit further converts a transmission-side second level of a preceding transmission-side data signal out of two transmission-side data signals in which periods to be sampled in each cycle of the first clock signal are continuous.
  • the subsequent voltage level and the voltage level after the conversion of the transmission side first level of the subsequent transmission side data signal are made the same.
  • the transmission-side phase control unit and the transmission signal conversion unit are realized as one processing device.
  • the reception-side signal processing unit samples the transmission signal in synchronization with the second clock signal for each cycle of the first clock signal, and the transmission signal of the sampled voltage level of the transmission signal.
  • the voltage converted from the first level on the transmission side in the conversion unit is converted to the first level on the reception side corresponding to the first level on the transmission side, and the voltage level converted from the second level on the transmission side is converted to the transmission side.
  • a transmission signal inverse conversion unit that generates the N reception side data signals by converting the reception side second level corresponding to the second level is included.
  • a seventh aspect of the present invention is the sixth aspect of the present invention.
  • the reception-side signal processing unit further includes a reception-side phase control unit that synchronizes the N reception-side data signals with each other in synchronization with the second clock signal.
  • the transmission signal inverse conversion unit and the reception-side phase control unit are realized as one processing device.
  • the transmission unit further includes a level shift signal generation unit that generates N level shift signals having different voltage levels.
  • the transmission-side signal processing unit is characterized in that the voltage levels of the sampled N transmission-side data signals are different from each other based on the N level-shifted signals.
  • a tenth aspect of the present invention is a signal transmission method in a signal transmission device that performs serial transmission of a plurality of types of data through a single transmission path between a transmission unit and a reception unit, N transmissions to be transmitted in synchronization with a second clock signal obtained by multiplying the frequency of the first clock signal by N (N is an integer of 2 or more) for each period of the periodically changing first clock signal.
  • the transmitter unit sequentially samples the N transmission-side data signals based on the timings of the first clock signal and the second clock signal, and changes their voltage levels.
  • the generated transmission signal is generated and transmitted from the transmitting unit to the receiving unit via one transmission path.
  • N reception-side data signals respectively corresponding to the voltage levels of the portions corresponding to the N transmission-side data signals in the transmission signal are based on the first clock signal and the second clock signal.
  • the voltage levels of the portions corresponding to the N transmission-side data signals in the transmission signal are different from each other. Based on the difference in level, for example, transmission defects can be reduced.
  • N pieces of data are reliably transmitted using one transmission path.
  • a plurality of types of data can be transmitted while suppressing an increase in cost.
  • the amount of data transmission per transmission line is increased, data transmission can be performed more efficiently than in the past.
  • N transmission-side data signals in each cycle of the first clock signal can be sampled in order.
  • the voltage level of the transmission side data signal when the voltage level of the transmission side data signal is the transmission side first level or the transmission side second level, the voltage level of the transmission side data signal is N + 1 predetermined values.
  • the type of the voltage level of the transmission signal becomes N + 1.
  • the transmitting side of the preceding transmitting side data signal out of the two transmitting side data signals in which the period to be sampled in each cycle of the first clock signal continues.
  • the voltage level after the two-level conversion is the same as the voltage level after the conversion of the transmission-side first level of the subsequent transmission-side data signal.
  • both the transmitter first level and the transmitter second level of the transmitter data signal to be sampled first in each period of the first clock signal should be sampled last in each period of the first clock signal. It is assumed that the transmission side data signal is larger than both the transmission side first level and the transmission side second level.
  • a reception unit that can generate N reception-side data signals from transmission signals having N + 1 types of voltage levels is used to change the voltage level of the transmission signal.
  • the first period of the second clock signal in each period of the first clock signal can be determined, the synchronization shift can be eliminated.
  • the transmission-side phase control unit and the transmission signal conversion unit are realized as one processing device. For this reason, the scale of a transmission part can be reduced by sharing a common component with each other in a transmission side phase control part and a transmission signal conversion part.
  • each of the N transmission sides of the transmission signal in the first cycle to the Nth cycle of the second clock signal in each cycle of the first clock signal is sampled, and the voltage level of each of the N receiving data signals is determined based on the voltage level of the portion corresponding to the N transmitting data signals of the transmission signal.
  • the phases of N reception-side data signals can be aligned and output.
  • the transmission signal inverse conversion unit and the reception-side phase control unit are realized as one processing device. For this reason, it is possible to reduce the size of the reception unit by sharing the common components in the transmission signal inverse conversion unit and the reception-side phase control unit.
  • a ninth aspect of the present invention by generating a voltage level for generating a transmission signal from N transmission-side data signals using a level shift signal generation unit, Similar effects can be achieved.
  • the same effect as in the first aspect of the present invention can be achieved.
  • 1 is a block diagram illustrating a configuration of a signal transmission system according to a first embodiment of the present invention. It is a block diagram which shows the structure of the transmission part in the said 1st Embodiment. It is a block diagram which shows the structure of the transmission side level control processor in the said 1st Embodiment. It is a block diagram which shows the structure of the receiving part in the said 1st Embodiment. It is a block diagram which shows the structure of the receiving side level control processor in the said 1st Embodiment. It is a signal waveform diagram which shows the transmission side data signal before the transmission side phase control process in the said 1st Embodiment.
  • FIG. 1 is a block diagram showing the configuration of the signal transmission system according to the present embodiment.
  • This signal transmission system is used, for example, for transmission of image data from a display control circuit in a display device to a source driver.
  • the signal transmission system includes a host 1 and a signal transmission device 2.
  • the host 1 is typically a CPU, and provides the signal transmission apparatus 2 with a transmission side control signal CT and a reception side control signal CR.
  • the three types of transmission side data signals DTa to DTc are referred to as first to third transmission side data signals, respectively, and the three types of reception side data signals DRa to DRc are respectively referred to as first to third reception side data signals. That's it.
  • the first to third transmission side data signals DTa to DTc and the first to third reception side data signals DRa to DRc are composed of bit strings.
  • system period and “sampling period”, respectively, and are denoted by symbols TA and TB, respectively, in the subsequent signal waveform diagrams.
  • the X (X is an integer of 2 or more) sampling period is represented by “XTB”.
  • the first to third sampling periods in each system period are referred to as “first to third sampling periods”, respectively.
  • the signal transmission device 2 includes a transmission unit 3, a reception unit 4, and a single transmission path 5 for connecting the transmission unit 3 and the reception unit 4 to each other.
  • the transmission line 5 may be either a differential transmission line or a single-ended transmission line.
  • “One transmission line” means a pair of transmission lines in the case of differential transmission.
  • the transmission unit 3 and the reception unit 4 are supplied with a power supply voltage by means not shown.
  • the transmission unit 3 receives the first to third transmission side data signals DTa to DTc, the system clock SYS, the sampling clock SAM, and the power supply voltage, and generates a transmission signal TS based on these.
  • the transmission signal TS is transmitted from the transmission unit 3 to the reception unit 4 via the transmission path 5.
  • the receiving unit 4 receives the transmission signal TS, the system clock SYS, the sampling clock SAM, and the power supply voltage, and generates the first to third receiving side data signals DRa to DRc based on these. That is, in the signal transmission device 2, the three types of first to third transmission side data signals DTa to DTc received by the transmission unit 3 are respectively converted into three types of first to third reception side data signals DRa to DRc. Is transmitted.
  • FIG. 2 is a block diagram illustrating a configuration of the transmission unit 3 in the present embodiment.
  • the transmission unit 3 includes input terminals IT1, IT2, IT3a to IT3c, IT4a to IT4c, and IT5a to IT5c, an output terminal OT, a transmission side level shifter 30, and a transmission side level control processor 31.
  • the input terminals IT1, IT2, IT3a to IT3c correspond to transmission side input terminals.
  • the output terminal OT corresponds to the transmission side output terminal.
  • the input terminal IT1 is a terminal for receiving the system clock SYS.
  • the input terminal IT2 is a terminal for receiving the sampling clock SAM.
  • Input terminals IT3a to IT3c are terminals for receiving first to third transmission side data signals DTa to DTc, respectively.
  • Input terminals IT4a to IT4c are terminals for receiving first to third transmission side control signals CTa to CTc, respectively.
  • the input terminals IT5a to IT5c are terminals for receiving the transmission side first to third power supply voltages VHa to VHc as the power supply voltages, respectively.
  • the output terminal OT is a terminal for outputting the transmission signal TS.
  • the transmission-side first to third power supply voltages VHa to VHc have different voltage levels.
  • the voltage levels of the transmission-side first to third power supply voltages VHa to VHc may also be represented by VHa to VHc, respectively.
  • the magnitude relationship between the VHa to VHc levels is VHa> VHb> VHc.
  • the transmission side level shifter 30 receives the first to third transmission side control signals CTa to CTc and the transmission side first to third power supply voltages VHa to VHc, and sets the voltage levels of the first to third transmission side control signals CTa to CTc.
  • First to third transmission side level shift signals LSTa to LSTc which are signals shifted to VHa to VHc levels, are generated and output.
  • the voltage levels of the first to third transmission side control signals CTa to CTc are fixed when the signal transmission device 2 is in operation.
  • the voltage levels of the first to third transmission side control signals CTa to CTc may be different from each other or the same.
  • the voltage levels of the first to third transmission side control signals CTa to CTc are typically smaller than the VHa to VHc levels, respectively.
  • the transmission side level control processor 31 includes first to third transmission side data signals DTa to DTc, a system clock SYS, a sampling clock SAM, and first to third transmission side level shift signals LSTa output from the transmission side level shifter 30. LSTc is received, and based on these, a transmission signal TS is generated and output.
  • the transmission side signal processing unit is realized by the transmission side level shifter 30 and the transmission side level control processor 31.
  • FIG. 3 is a block diagram showing a configuration of the transmission side level control processor 31 in the present embodiment.
  • the transmission side level control processor 31 includes a transmission side input buffer 310, a transmission side delay circuit 311, a transmission side data discrimination circuit 312, a transmission signal conversion circuit 313 as a transmission signal conversion unit, and a transmission side output.
  • a buffer 314 is provided.
  • the transmission side input buffer 310 is a buffer for receiving the first to third transmission side data signals DTa to DTc.
  • the transmission side delay circuit 311 receives the first to third transmission side data signals DTa to DTc via the transmission side input buffer 310, and based on the timing of the sampling clock SAM, these first to third transmission side data signals DTa. .. DTc are output with different phases.
  • transmission side phase control process the process of making the phases of the first to third transmission side data signals DTa to DTc different from each other in this way is referred to as “transmission side phase control process”.
  • a transmission side phase control unit is realized by the transmission side delay circuit 311.
  • the transmission side data discriminating circuit 312 has the bit data (referred to as data indicating “1” or “0”) of the first to third transmission side data signals DTa to DTc after the transmission side phase control processing being “1”. Whether “0” is indicated is determined based on the timing of the sampling clock SAM, and first to third transmission side determination signals RTa to RTc are output as the determination results.
  • the voltage level of the bit data indicating “1” in each transmission side data signal corresponds to the first level on the transmission side
  • the voltage level of bit data indicating “0” corresponds to the second level on the transmission side.
  • the transmission signal conversion circuit 313 receives the first to third transmission side discrimination signals RTa to RTc, and based on the timings of the system clock SYS and the sampling clock SAM, the first to third transmission side discrimination signals RTa to RTc (that is, the first transmission side discrimination signals RTa to RTc). (Bit data of third transmission side data signals DTa to DTc) are sequentially sampled, and one transmission signal TS is generated and output by converting the voltage level of these data. Specifically, the transmission signal conversion circuit 313 is a voltage at which the first transmission side discrimination signal RTa (that is, the bit data of the first transmission side data signal DTa) sampled in the first sampling period indicates “1” or “0”.
  • the second transmission side discrimination signal RTb that is, bit data of the second transmission side data signal DTb sampled in the second sampling period is “1” or “0”.
  • the third transmission side discrimination signal RTc that is, the bit data of the third transmission side data signal DTc sampled in the third sampling period is “1” or “0”.
  • VHc level or GND level as a predetermined voltage level. Converted to le (ground level).
  • the transmission signal conversion circuit 313 arranges the first to third transmission side discrimination signals RTa to RTc in order for each system period, and also converts one transmission signal TS obtained by converting these voltage levels as described above. Generate and output.
  • portions of the transmission signal TS corresponding to the bit data of the first to third transmission side data signals DTa to DTc are referred to as “first to third transmission / reception data”, respectively, and are represented by symbols TR1 to TR3, respectively.
  • the transmission signal conversion circuit 313 may be provided with the function of the transmission side data determination circuit 312 and the transmission side data determination circuit 312 may not be provided.
  • the voltage level corresponding to “0” of the first transmission / reception data TR1 and the voltage level corresponding to “1” of the second transmission / reception data TR2 are the same VHb level.
  • the voltage level corresponding to “0” of the second transmission / reception data TR2 and the voltage level corresponding to “1” of the third transmission / reception data TR3 are the same VHc level. That is, the voltage level after conversion of “0” of the preceding transmission side data signal of the two transmission side data signals in which the period to be sampled in each system period is continuous, and “1” of the subsequent transmission side data signal.
  • the converted voltage levels are the same as each other.
  • the voltage level corresponding to “1” of the first transmission / reception data TR1 (bit data indicating “1” of the first transmission side data signal DTa sampled in the first sampling period which is the first sampling period of each system period) Is the VHa level, and the VHa level does not overlap with others.
  • the voltage level corresponding to “0” of the third transmission / reception data TR3 (the voltage level after conversion of the third transmission side data signal DTc sampled in the third sampling period which is the last sampling period of each system period) Is a GND level, and the GND level does not overlap with other.
  • the transmission side output buffer 314 is a buffer for serially outputting the transmission signal TS.
  • the transmission signal TS output from the transmission side output buffer 314 is transmitted to the receiving unit 4 via the transmission path 5.
  • FIG. 4 is a block diagram showing a configuration of the receiving unit 4 in the present embodiment.
  • the receiving unit 4 includes input terminals IR1 to IR5, output terminals ORa to ORc, a receiving side level shifter 40, and a receiving side level control processor 41.
  • the input terminals IR1 to IR3 correspond to receiving side input terminals.
  • the output terminals ORa to ORc correspond to reception side output terminals.
  • the input terminal IR1 is a terminal for receiving the system clock SYS.
  • the input terminal IR2 is a terminal for receiving the sampling clock SAM.
  • the input terminal IR3 is a terminal for receiving the transmission signal TS.
  • the input terminal IR4 is a signal for receiving the receiving side control signal CR.
  • the input terminal IR5 is a terminal for receiving the reception-side power supply voltage VH as the power supply voltage.
  • the voltage level of the reception-side power supply voltage VH may also be expressed as VH.
  • the output terminals ORa to ORc are terminals for outputting the first to third receiving side data signals DRa to DRc, respectively.
  • the reception-side level shifter 40 receives the reception-side control signal CR and the transmission-side power supply voltage VH, and generates and outputs a reception-side level shift signal LSR that is a signal obtained by shifting the voltage level of the reception-side control signal CR to the VH level.
  • the voltage level of the reception-side control signal CR is fixed when the signal transmission device 2 operates.
  • the voltage level of the reception side control signal CR is typically smaller than the VH level.
  • the receiving side level control processor 41 receives the transmission signal TS, the system clock SYS, the sampling clock SAM, and the receiving side level shift signal LSR outputted from the receiving side level shifter 40, and based on these, the first to third receiving side data Generate and output signals DRa to DRc.
  • the reception side signal processing unit is realized by the reception side level shifter 40 and the reception side level control processor 41.
  • FIG. 5 is a block diagram showing a configuration of the receiving side level control processor 41 in the present embodiment.
  • the reception-side level control processor 41 includes a reception-side input buffer 410, a reception-side data determination circuit 411, a transmission signal inverse conversion circuit 412 as a transmission signal inverse conversion unit, a reception-side delay circuit 413, and a reception side.
  • a side output buffer 414 is provided.
  • the receiving side input buffer 410 is a buffer for receiving the transmission signal TS serially.
  • the reception-side data determination circuit 411 determines whether the first to third transmission / reception data TR1 to TR3 of the transmission signal TS indicate VHa to VHc or the GND level based on the timing of the sampling clock SAM, and these determinations. As a result, the receiving side discrimination signal RR is output.
  • the transmission signal inverse conversion circuit 412 receives the reception side determination signal RR and samples the reception side determination signal RR (that is, the first to third transmission / reception data TR1 to TR3) based on the timings of the system clock SYS and the sampling clock SAM. At the same time, by converting the voltage levels of the first to third transmission / reception data TR1 to TR3, the first to third reception-side data signals DRa to DRc are generated and output, respectively. Specifically, the transmission signal inverse conversion circuit 412 indicates “1” if the reception side determination signal RR is at the VHa or VHb level when the reception side determination signal RR corresponding to the first transmission / reception data TR1 is sampled.
  • a first receiving side data signal DRa having a voltage level (here, assumed to be VH level) or a voltage level indicating “0” (here, assumed to be GND level) is generated. Further, the transmission signal inverse conversion circuit 412 sets “1” or “0” if the reception side determination signal RR is at the VHb or VHc level when the reception side determination signal RR corresponding to the second transmission / reception data TR2 is sampled. The second receiving side data signal DRb having the voltage level shown is generated. In addition, the transmission signal inverse conversion circuit 412 sets “1” or “0” if the reception side determination signal RR is VHc or GND level when the reception side determination signal RR corresponding to the third transmission / reception data TR3 is sampled.
  • the third receiving side data DRc having the voltage level shown is generated.
  • the voltage level indicating “1” of the first to third receiving side data signals DRa to DRc corresponds to the receiving side first level
  • the voltage level indicating “0” corresponds to the receiving side second level.
  • the first to third receiving side data signals DRa to DRc generated here have different phases.
  • the transmission signal inverse conversion circuit 412 may be provided with the function of the reception side data determination circuit 411 and the reception side data determination circuit 411 may not be provided.
  • the reception-side delay circuit 413 receives the first to third reception-side data signals DRa to DRc output from the transmission signal inverse conversion circuit 412, and based on the timing of the sampling clock SAM, these first to third reception-side data
  • the signals DRa to DRc are output with the same phase.
  • the process of making the phases of the first to third reception-side data signals DRa to DRc identical to each other is referred to as “reception-side phase control process”.
  • a reception-side phase control unit is realized by the reception-side delay circuit 413.
  • the reception-side output buffer 414 is a buffer for outputting the first to third reception-side data signals DRa to DRc that are in phase with each other by the reception-side phase control process. These first to third reception side data signals DRa to DRc are output to the outside via the reception side output buffer 414.
  • FIG. 6 is a signal waveform diagram showing the first to third transmission side data signals DTa to DTc before the transmission side phase control processing in this embodiment.
  • each of the first to third transmission side data signals DTa to DTc represents one piece of data in units of 8 bits.
  • 8-bit data of the first transmission-side data signal DTa is represented by A0 to A7
  • 8-bit data of the second transmission-side data signal DTb is represented by B0 to B7, respectively
  • 8 of the third transmission-side data signal DTc Bit data are represented by C0 to C7, respectively.
  • Each of the first to third reception side data signals DRa to DRc is also 8-bit data, and the 8-bit data of the first reception side data signal DRa is also represented by A0 to A7, respectively.
  • the 8-bit data is also represented by B0 to B7, respectively, and the 8-bit data of the third receiving side data signal DRc is also represented by C0 to C7, respectively.
  • a first transmission side data signal DTa first reception side data signal DRa
  • a second transmission side data signal DTb The second reception side data signal DRb
  • the third transmission side data signal DTc third reception side data signal DRc
  • bit data of each transmission-side data signal is blank in two sampling periods (2 TB) for each 2-bit data.
  • such blank data is referred to as “NULL data”, and in FIG. 6 and the subsequent drawings, the data is represented by “NULL”.
  • the bit data of each reception-side data signal changes at the timing when the voltage level of the sampling clock SAM rises every two sampling periods (2TB).
  • FIG. 7 is a signal waveform diagram for explaining the operation of the transmission side delay circuit 311 in this embodiment.
  • the transmission-side delay circuit 311 performs transmission-side phase control processing based on the timing of the sampling clock SAM on the first to third transmission-side data signals DTa to DTc.
  • the first transmission side data signal DTa is subjected to processing in which the second transmission side data signal DTb and the third transmission side data signal DTc are delayed by one sampling period and two sampling periods, respectively.
  • the first to third transmission side data signals DTa to DTc after such transmission side phase control processing are given to the transmission side data determination circuit 312 and then the first to third transmission side determination signals RTa to RTc described above. Is output as
  • FIG. 8 is a signal waveform diagram for explaining the operation of the transmission signal conversion circuit 313 in this embodiment.
  • the first to third transmission side data signals DTa to DTc shown in the figure are actually equivalent to the first to third transmission side discrimination signals RTa to RTc, respectively.
  • Explanation will be given as first to third transmission side data signals DTa to DTc (the same applies to FIG. 17 described later).
  • eight consecutive system periods TA are referred to as “0th to 7th system periods”, respectively, and are represented by symbols TA0 to TA7, respectively.
  • the first to third transmission side data signals DTa to DTc for 8 bits (that is, data for a total of 24 bits) in the 0th to seventh system periods TA0 to TA7.
  • a corresponding transmission signal TS is generated.
  • the first to third transmission side data signals DTa to DTc for 8 bits are “11101101”, “01100101”, and “10111001”, respectively. ". Note that NULL data is not considered as data.
  • the transmission signal conversion circuit 313 determines the voltage level of the transmission signal TS based on the bit data of the first to third transmission side data signals DTa to DTc.
  • the bit data A0 in which the first transmission side data signal DTa to be sampled is “1” indicates the first transmission / reception data TR1 of the transmission signal TS.
  • the voltage level becomes a VHa level corresponding to “1” of the first transmission side data DTa.
  • the second transmission side data signal DTb to be sampled indicates the bit data B0 which is “0”
  • the voltage level of the second transmission / reception data TR2 of the transmission signal TS is the second transmission side data signal. It becomes the VHc level corresponding to “0” of DTb.
  • the transmission signal TS for one system period indicates bit data for one bit of each transmission-side data signal (that is, bit data for a total of three bits).
  • bit data A1 in which the first transmission side data signal DTa to be sampled is “1” indicates the first transmission / reception data TR1 of the transmission signal TS.
  • the voltage level becomes a VHa level corresponding to “1” of the first transmission side data signal DTa.
  • bit data B1 in which the second transmission side data DTb to be sampled is “1” indicates the voltage level of the second transmission / reception data TR2 of the transmission signal TS is the second transmission side data signal DTb.
  • the third transmission side data signal DTc to be sampled indicates bit data C0 that is “0”, so the voltage level of the third transmission / reception data TR3 of the transmission signal TS is the third transmission side data signal. It becomes the GND level corresponding to “0” of DTc.
  • the transmission signal TS is determined in the transmission signal conversion circuit 313 by determining the voltage level of each transmission / reception data of the transmission signal TS by the same procedure. Is generated.
  • the transmission signal TS generated in this way is transmitted to the receiving unit 2 via the transmission side output buffer 314 and the transmission path 5.
  • FIG. 9 is a signal waveform diagram for explaining the operation of the transmission signal inverse conversion circuit 412 in this embodiment. Note that the first to third reception side data signals DRa to DRc shown in this figure are actually obtained based on the reception side determination signal RR generated based on the transmission signal TS. In the following description, these first to third receiving side data signals DRa to DRc will be described as being obtained directly from the transmission signal TS (the same applies to FIG. 18 described later).
  • the transmission signal inverse conversion circuit 412 in this embodiment in the 0th to 7th system periods TA0 to TA7, based on the transmission signal TS, 8-bit first to third receiving side data signals DRa to DRc (ie, A total of 24 bits of data) is generated. Since the 0th to 7th system periods TA0 to TA7 are names for convenience, the timings of the 0th to 7th system periods TA0 to TA7 on the transmitting side and the receiving side do not have to coincide with each other.
  • the transmission signal inverse conversion circuit 412 samples the first to third transmission / reception data TR1 to TR3 of the transmission signal TS, and the first to third transmission / reception data TR1.
  • Bit data of the first to third receiving data signals DRa to DRa are determined based on the voltage levels of .about.TR3, respectively.
  • bit data A0 of the first reception side data signal DRa becomes “1”.
  • bit data indicating “1” is realized by the VH level
  • bit data indicating “0” is realized by the GND level.
  • the bit data B0 of the second reception side data signal DRb is “0”.
  • the bit data C0 of the third reception-side data signal DRc is “1”. In this manner, 1-bit bit data of each reception-side data signal (that is, bit data for a total of 3 bits) is obtained from the transmission signal TS for one system period.
  • the bit data A1 of the first reception side data DRa becomes “1”.
  • the bit data B1 of the second reception side data signal DRb is “1”.
  • the bit data C1 of the third reception-side data signal DRc is “0”.
  • the bit data of the first to third reception side data signals DRa to DTa is determined by the same procedure, so that the reception side phase control is performed.
  • First to third receiving side data signals DRa to DRc before processing are generated.
  • the first to third receiving side data signals DRa to DRc indicate “11101101”, “01100101”, and “10111001”, respectively. That is, the first to third reception side data signals DRa to DRc indicate the same bit data as the first to third transmission side data signals DTa to DTc, respectively.
  • NULL data is not considered as described above.
  • the first to third reception-side data signals DRa to DRc before the reception-side phase control processing generated in this way are given to the reception-side delay circuit 413.
  • FIG. 10 is a signal waveform diagram showing the first to third reception side data signals DRa to DRc before the reception side phase control processing.
  • the bit data of each reception side data signal changes at the timing when the voltage level of the sampling clock SAM rises every three sampling periods (3TB).
  • the present invention is not limited to this, and for example, NULL data is inserted in the same manner as each transmission side data signal. May be.
  • FIG. 11 is a signal waveform diagram for explaining the operation of the reception side delay circuit 413.
  • the reception-side delay circuit 413 performs reception-side phase control processing based on the timing of the sampling clock SAM on the first to third reception-side data signals DRa to DRc.
  • the second receiving side data signal DRb and the first receiving side data signal DRa are subjected to processing for delaying the first receiving side data signal DRc and the first receiving side data signal DRa by 1 sampling period and 2 sampling periods, respectively.
  • the phases of the first to third receiving data signals DRa to DRc are the same.
  • the first to third reception side data signals DRa to DRc after such reception side phase control processing are output via the reception side output buffer 414.
  • the first to third transmission / reception data TR1 to TR3 are at different voltage levels as described above. Therefore, in each of the first to third sampling periods in each system period, there are two types of voltage levels of the transmission signal TS (specifically, the reception side determination signal RR) to be sampled by the transmission signal inverse conversion circuit 412. That is, there are two types of voltage levels of the transmission signal TS (first transmission / reception data TR1) to be sampled in the first sampling period, the VHa level and the VHb level, and the transmission signal TS (second transmission / reception data) to be sampled in the second sampling period.
  • the transmission signal TS first transmission / reception data TR1
  • the voltage level of the data TR2) is two types of VHb level and VHc level
  • the voltage level of the transmission signal TS (third transmission / reception data TR3) to be sampled in the third sampling period is two types of VHc level and GND level. .
  • the VHc level or the GND level can be corrected to a VHb level close to the VHc level or the GND level among the VHa level and the VHb level corresponding to the first transmission / reception data TR1. It is also considered that a transmission defect has occurred when the voltage level of the second transmission / reception data TR2 is the VHa level or the GND level.
  • the VHa level close to the VHb level corresponding to the second transmission / reception data TR2 can be corrected to the VHb level and corrected to the GND level close to the VHc level corresponding to the second transmission / reception data TR2. It is also considered that a transmission defect has occurred when the voltage level of the third transmission / reception data TR3 is the VHa level or the VHb level. In this case, the VHa level or VHb level can be corrected to a VHc level close to the VHa level or the VHb level among the VHc level and the GND level corresponding to the third transmission / reception data TR3.
  • the first transmission / reception data TR1 which are transmission signals TS to be sampled in the third sampling period and the first sampling period before and after the switching of each system period
  • the first transmission / reception data TR1 Both the corresponding VHa level and VHb level are larger than VHc, which is the larger of the two voltage levels corresponding to the third transmission / reception data TR3.
  • the voltage level corresponding to the second transmission / reception data TR2 is the same as or smaller than the voltage level corresponding to the first transmission / reception data TR1.
  • the voltage level corresponding to the third transmission / reception data TR3 is the same as or smaller than the voltage level corresponding to the second transmission / reception data TR2.
  • the voltage level of the transmission signal TS increases only when the third sampling period shifts to the first sampling period. For this reason, even if a synchronization shift occurs, the sampling period in which the voltage level of the transmission signal TS is larger than the immediately preceding sampling period can be determined as the first sampling period, and thus the synchronization shift can be eliminated.
  • the transmission unit 3 sequentially samples the first to third transmission side data signals DTa to DTc based on the timings of the system clock SYS and the sampling clock SAM, and changes their voltage levels.
  • a transmission signal TS is generated and transmitted from the transmission unit 3 to the reception unit 4 via one transmission path 5.
  • the receiving unit 4 based on the timings of the system clock SYS and the sampling clock SAM, the first to third reception-side data signals corresponding to the voltage levels of the first to third transmission / reception data TR1 to TR3 of the transmission signal TS, respectively.
  • DRa to DRc are generated.
  • the voltage level corresponding to “0” of the first transmission / reception data TR1 and the voltage level corresponding to “1” of the second transmission / reception data TR2 are the same VHb level.
  • the voltage level corresponding to “0” of the second transmission / reception data TR2 and the voltage level corresponding to “1” of the third transmission / reception data TR3 are the same VHc level.
  • the voltage level corresponding to “1” of the first transmission / reception data TR1 is the VHa level, and the VHa level does not overlap with the others.
  • the voltage level corresponding to “0” of the third transmission / reception data TR3 is the GND level, and the GND level is not duplicated.
  • N + 1 types (four types) of voltage levels for realizing the transmission signal TS there are N + 1 types (four types) of voltage levels for realizing the transmission signal TS in the present embodiment. For this reason, even if a synchronization shift occurs, the sampling period in which the voltage level of the transmission signal TS is larger than the immediately preceding sampling period can be determined as the first sampling period, and thus the synchronization shift can be eliminated. Thereby, a plurality of types of data transmission can be transmitted more reliably.
  • the voltage level for generating the transmission signal TS from the first to third transmission side data signals DTa to DTc, and the first to third reception side data signals DRa to DRc from the transmission signal TS. can be generated using the transmission-side level shifter 30 and the reception-side level shifter 40, respectively.
  • the transmission side level shifter 30 is used, so that a plurality of voltage levels are not supplied from the host 1 (that is, the first to third transmission side control signals CTa ⁇ ). Even if the voltage levels of CTc are the same, a plurality of different voltage levels can be generated.
  • the bit data “1” and “0” of the first transmission side data signal DTa correspond to the VHa level and VHb level, respectively
  • the bit of the second transmission side data signal DTb Data “1” and “0” correspond to the VHb level and VHc level, respectively
  • bit data “1” and “0” of the third transmission side data signal DTc correspond to the VHc level and GND level, respectively.
  • the present invention is not limited to this.
  • both of the voltage levels corresponding to “1” and “0” of the bit data of each transmission side data signal and the voltage levels corresponding to “1” and “0” of the bit data of other transmission side data signals By making the two different from each other, the transmission signal TS having N ⁇ 2 types (six types in the present embodiment) of voltage levels may be generated.
  • Second Embodiment> ⁇ 2.1 Overall configuration> Since the second embodiment of the present invention has the same configuration and the like as the first embodiment except for the transmission side level control processor 31 and the reception side level control processor 41, description of the common part is omitted. In addition, the same elements as those of the first embodiment among the components of the present embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • FIG. 12 is a block diagram showing a configuration of the transmission side level control processor 31 in the present embodiment. As shown in FIG. 12, the transmission side level control processor 31 is different from that in the first embodiment in that a transmission side delay circuit 311, a transmission side data discrimination circuit 312 and a transmission signal conversion circuit 313 are converted. A processor (processing device) 315 is provided.
  • the conversion processor 315 includes the functions of the transmission side delay circuit 311, the transmission side data determination circuit 312, and the transmission signal conversion circuit 313, and includes the transmission side delay circuit 311 and the transmission side data described in the first embodiment.
  • the operations of the determination circuit 312 and the transmission signal conversion circuit 313 are realized. That is, the conversion processor 315 receives the first to third transmission data signals DTa to DTc, the system clock SYS, the sampling clock SAM, and the first output from the transmission level shifter 30 that are input via the transmission input buffer 310.
  • the third transmission side level shift signals LSTa to LSTc are received, the transmission signal TS is generated based on these, and output to the transmission side output buffer 314.
  • the detailed operation of the conversion processor 315 is the same as the operation of the transmission side delay circuit 311, the transmission side data determination circuit 312, and the transmission signal conversion circuit 313 in the first embodiment, and a description thereof will be omitted. To do.
  • FIG. 13 is a block diagram showing a configuration of the receiving side level control processor 41 in the present embodiment. As shown in FIG. 13, the receiving side level control processor 41 is different from that in the first embodiment in place of the receiving side data discriminating circuit 411, the transmission signal inverse converting circuit 412, and the receiving side delay circuit 413. An inverse conversion processor (processing device) 415 is provided.
  • the inverse conversion processor 415 includes functions of a reception side data determination circuit 411, a transmission signal reverse conversion circuit 412, and a reception side delay circuit 413.
  • the detailed operation of the inverse conversion processor 415 is the same as the operation of the reception side data determination circuit 411, the transmission signal inverse conversion circuit 412, and the reception side delay circuit 413 in the first embodiment. Is omitted.
  • the transmission side delay circuit 311, the transmission side data determination circuit 312, and the transmission signal conversion circuit 313 are converted into the reception side data determination circuit 411, the transmission signal inverse conversion circuit 412, and the reception side delay by the conversion processor 315.
  • the circuits 413 are each realized as one component by the inverse conversion processor 415.
  • the transmission side delay circuit 311, the transmission side data discrimination circuit 312, and the transmission signal conversion circuit 313 share common components, and the reception side data discrimination circuit 411, the transmission signal inverse conversion circuit 412, and the reception side By sharing common components in the side delay circuit 413, the circuit scale of the transmission unit 3 and the reception unit 4 can be reduced.
  • Third Embodiment> ⁇ 3.1 Overall configuration> Since the third embodiment of the present invention has the same configuration and the like as the first embodiment except for the transmission side level control processor 31 and the reception side level control processor 41, description of the common part is omitted. In addition, among the components of the present embodiment, the same elements as those of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • FIG. 14 is a block diagram showing a configuration of the transmission side level control processor 31 in the present embodiment.
  • the transmission-side level control processor 31 is different from that in the first embodiment, and instead of the transmission-side delay circuit 311, three FIFO (First In First Out) memories 316 a to 316 c and transmission A side readout control circuit 317 is provided.
  • the three FIFO memories 316a to 316c are referred to as “first to third transmission side FIFO memories”, respectively.
  • the first to third transmission side FIFO memories 316a to 316c are memories that perform a buffer operation of reading data written first.
  • the first to third transmission side FIFO memories 316a to 316c store bit data of the first to third transmission side data signals DTa to DTc input via the transmission side input buffer 300, respectively.
  • the first to third transmission side data signals DTa to DTc input via the transmission side input buffer 300 have NULL data inserted every two bits as in the first embodiment. It may be a thing, and the thing in which NULL data is not inserted may be sufficient.
  • the transmission side read control circuit 317 controls the read timing of the bit data of the first to third transmission side data signals DTa to DTc written in the first to third transmission side FIFO memories 316a to 316c, respectively. Specifically, the transmission side read control circuit 317 indicates the first side based on the transmission side read control signal RCT and the sampling clock SAM given from the outside (for example, the host 1) indicating the transmission side FIFO memory to be the read source. Read bit data sequentially from the third transmission side FIFO memories 316a to 316c every sampling period. The read bit data of the first to third transmission side data signals DTa to DTc are supplied to the transmission side data discrimination circuit 312.
  • the bit data of the first to third transmission side data signals DTa to DTc are read from the first to third transmission side FIFO memories 316a to 316c in order every sampling period, so that the first The first to third transmission side data signals DTa to DTc subjected to the transmission side phase control process similar to the embodiment are given to the transmission side data discrimination circuit 302.
  • the transmission-side phase control unit is realized by the first to third transmission-side FIFO memories 316 a to 316 c and the transmission-side read control circuit 317.
  • the writing of bit data to the first to third transmission side FIFO memories 316a to 316c is continuously performed, while the reading of bit data from the first to third transmission side FIFO memories 316a to 316c is 3 It is performed in turn at a frequency of once. For this reason, it is desirable that the reading speed of the bit data from each transmission side FIFO memory is three times the writing speed of the bit data to the first to third transmission side FIFO memories 316a to 316c. Thereby, the writing speed of the bit data to the first to third transmitting side FIFO memories 316a to 316c and the reading speed of the bit data from the first to third transmitting side FIFO memories 316a to 316c can be made substantially equal. it can.
  • the bit data writing speed to the first to third transmission side FIFO memories 316a to 316c and the bit data reading speed from each transmission side FIFO memory may be equal to each other.
  • the third transmission side FIFO memories 316a to 316c may run out of space for storing bit data.
  • a memory for saving data is provided in the signal transmission system by means (not shown), and the first to third transmission side data to be stored in the first to third transmission side FIFO memories 316a to 316c, respectively. It is desirable to temporarily store bit data of signals DTa to DTc. As a result, it is possible to prevent the first to third transmission side FIFO memories 316a to 316c from becoming free for storing bit data.
  • the components other than the first to third transmission side FIFO memories 316a to 316c and the transmission side read control circuit 317 of the transmission side level control processor 31 in the present embodiment are the same as those in the first embodiment. Therefore, the description is omitted.
  • FIG. 15 is a block diagram showing the configuration of the receiving side level control processor 41 in the present embodiment.
  • the receiving side level control processor 41 differs from that in the first embodiment in that it has three FIFO memories 416a to 416c and a receiving side read control circuit 417 instead of the receiving side delay circuit 413. I have.
  • the three FIFO memories 416a to 416c are referred to as “first to third reception side FIFO memories”, respectively.
  • the first to third reception side FIFO memories 416a to 416c are memories that perform the same buffer operation as the first to third transmission side FIFO memories 316a to 316c.
  • the first to third reception side FIFO memories 416a to 416c store bit data of the first to third reception side data signals DRa to DRc output from the transmission signal inverse conversion circuit 412, respectively.
  • the reception side read control circuit 417 controls the read timing of the bit data of the first to third reception side data signals DRa to DRc written in the first to third reception side FIFO memories 416a to 416c, respectively.
  • the reception-side read control circuit 417 is configured to receive first to third reception-side FIFO memories 416a to 416a based on a reception-side read control signal RCR (which may be the system clock SYS) given from the outside (for example, the host 1).
  • RCR which may be the system clock SYS
  • the bit data of the first to third receiving side data signals DRa to DRc are read from 416c at the same timing.
  • the read first to third reception side data signals DRa to DRc are applied to the reception side output buffer 414.
  • the bit data of the first to third reception side data signals DRa to DRc are read from the first to third reception side FIFO memories 416a to 416c at the same timing, so that substantially the first embodiment described above.
  • the first to third reception side data signals DRa to DRc that have been subjected to the same reception side phase control processing as described above are applied to the reception side output buffer 414.
  • the reception-side phase control unit is realized by the first to third reception-side FIFO memories 416a to 416c and the reception-side read control circuit 417.
  • the reading speed of bit data from each receiving side FIFO memory is three times the writing speed of bit data to the first to third receiving side FIFO memories 416a to 416c. It is desirable to be. It is to be noted that a data saving memory similar to that on the transmission side is provided, and the writing speed of bit data to the first to third receiving side FIFO memories 416a to 416c and the reading speed of bit data from the receiving side FIFO memory are mutually set. It may be equal.
  • FIG. 16 is a signal waveform diagram for explaining the operation of the transmission side read control circuit 307 in the present embodiment.
  • the first to third transmission side FIFO memories 316a to 316c are first to each at the timing when the voltage level of the sampling clock SAM rises.
  • the bit data of the third transmission side data signals DTa to DTc are read.
  • the transmission-side FIFO memory serving as a reading source is switched every sampling period in the order of the first to third transmission-side FIFO memories 316a to 316c.
  • the second transmission-side data signal DTb and the third transmission-side data signal DTc are each one sampling period with respect to the first transmission-side data signal DTa. And a delay of 2 sampling periods.
  • the bit data of the first to third transmission side data signals DTa to DTc read out as described above are given to the transmission side data discrimination circuit 303. Since the operation of the transmission side data discrimination circuit 303 is the same as that in the first embodiment, description thereof is omitted.
  • FIG. 17 is a signal waveform diagram for explaining the operation of the transmission signal conversion circuit 313 in this embodiment. Also in this embodiment, as in the first embodiment, the transmission signal conversion circuit 313 uses the first to third transmission side data signals DTa to DTc for 8 bits (that is, data for a total of 24 bits). Thus, a transmission signal TS is generated. Note that details of the operation of the transmission signal conversion circuit 313 are as described in the first embodiment, and a description thereof will be omitted.
  • FIG. 18 is a signal waveform diagram for explaining the operation of the transmission signal inverse conversion circuit 412 in this embodiment. Also in this embodiment, the first to third reception side data signals DRa to DRc for 8 bits before the reception side phase control processing are performed based on the transmission signal TS by the transmission signal inverse conversion circuit 412 in the first embodiment. (That is, a total of 24 bits of data) is generated. The details of the operation of the transmission signal inverse conversion circuit 412 are as described in the first embodiment, and the description thereof is omitted.
  • the first to third reception side data signals DRa to DRc generated by the transmission signal inverse conversion circuit 412 are sequentially stored in the first to third reception side FIFO memories 416a to 416c, respectively.
  • FIG. 19 is a signal waveform diagram for explaining the operation of the receiving side read control circuit 417 in the present embodiment.
  • the reception-side read control circuit 417 starts from the first to third reception-side FIFO memories 416a to 416c at the timing when the voltage level of the reception-side read control signal RCR (which may be the system clock SYS) rises.
  • the bit data of the first to third receiving side data signals DRa to DRc are read simultaneously. For this reason, as in the reception-side phase control process of the first embodiment, the phases of the first to third reception-side data signals DRa to DRc are the same.
  • the first to third reception-side data signals DRa to DRc after such reception-side phase control processing are output via the reception-side output buffer 414.
  • the first to third transmission side FIFO memories 316a to 316c and the transmission side read control circuit 317 realize the transmission side phase control unit, and the first to third reception side FIFO memories 416a to 416c and the reception side.
  • the same effects as in the first embodiment can be obtained.
  • the bit data of each transmission side data signal is set to two sampling periods, and NULL data of two sampling periods is inserted every two bits.
  • the present invention is not limited to this. Absent.
  • the bit data of each transmission side data signal may be in units of 3 sampling periods, and NULL data may not be inserted. In this case, it is not necessary to perform transmission-side phase control processing on the first to third transmission-side data signals DTa to DTc, so that the transmission-side delay circuit 311 is not provided.
  • the bit data of each transmission side data signal may be set as one sampling period unit, and NULL data of two sampling periods may be inserted between the bit data.
  • the present invention is not limited to this.
  • the present invention can also be applied to the case of transmitting two data, or the case of transmitting four or more data.
  • the frequency of the sampling clock SAM is a value obtained by multiplying the frequency of the system clock SYS by the number of data.
  • the transmission signal conversion circuit 313 and the transmission signal inverse conversion circuit 412 each use the GND level that is the ground level, but other voltage levels may be used instead.
  • the present invention it is possible to provide a signal transmission device and a signal transmission method capable of transmitting a plurality of data while suppressing an increase in cost.
  • the present invention can be applied to a signal transmission apparatus and a signal transmission method for performing a plurality of types of data transmission.
  • Reception side input buffer (reception buffer unit) 411... Reception side data discrimination circuit 412... Transmission signal reverse conversion circuit (transmission signal reverse conversion unit) 413 ... Reception side delay circuit (reception side phase control unit) 414 ... Reception side output buffer 415 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)

Abstract

The purpose of the invention is to provide a signal transmission device capable of transmitting a plurality of data without an increase in cost. The signal transmission device (2) is provided with a transmitter (3), a receiver (4), and a data transmission path (5). The transmitter (3) samples, in sequence, bit data indicated by first to third transmission-side data signals (DTa to DTc) and converts the voltage level of the bit data, whereby a transmission signal (TS) is generated and outputted. The receiver (4) samples first to third transmission/reception data (TR1 to TR3; portions of the transmission signal (TS) that correspond to the bit data from the first to third transmission- side data signals (DTa to DTc)) on the basis of a system clock (SYS) and a sampling clock (SAM), and converts the voltage level of the first to third transmission/reception data (TR1 to TR3), whereby reception-side data signals (DRa to DRc) are generated and outputted.

Description

信号伝送装置および信号伝送方法Signal transmission apparatus and signal transmission method
 本発明は、信号伝送装置および信号伝送方法に関し、特に、複数種類のデータの伝送に好適な信号伝送装置および信号伝送方法に関する。 The present invention relates to a signal transmission device and a signal transmission method, and more particularly, to a signal transmission device and a signal transmission method suitable for transmitting a plurality of types of data.
 近年、TIA/EIA-644規格で規定されているLVDS(Low Voltage Differential Signaling)を用いたシリアル伝送方式が普及している。LVDSでは、微小電圧の差動信号を用いることにより、低消費電力で比較的高速なデータ伝送が実現される。 In recent years, a serial transmission method using LVDS (Low Voltage Differential Signaling) defined in the TIA / EIA-644 standard has become widespread. In LVDS, relatively high-speed data transmission is realized with low power consumption by using a differential signal with a minute voltage.
 また、上記シリアル伝送方式に関連して、特許文献1には、ソースドライバの入力部分にレベルシフト回路を設けておき、コントローラICの出力バッファからソースドライバにシリアル伝送されるデータの振幅を当該レベルシフト回路により昇圧する表示装置が開示されている。このような構成によれば、コントローラICからソースドライバに伝送すべきデータの振幅を小さくできるので、上記LVDSと同様に低消費電力なデータ伝送が実現される。 Further, in relation to the serial transmission method, in Patent Document 1, a level shift circuit is provided in the input portion of the source driver, and the amplitude of data serially transmitted from the output buffer of the controller IC to the source driver is set to the level. A display device that boosts voltage by a shift circuit is disclosed. According to such a configuration, since the amplitude of data to be transmitted from the controller IC to the source driver can be reduced, data transmission with low power consumption can be realized as in the case of the LVDS.
日本の特開2004-46054号公報Japanese Unexamined Patent Publication No. 2004-46054
 しかし、上記LVDSによるシリアル伝送および上記特許文献1に開示されたシリアル伝送のいずれにおいても、複数のデータを伝送するためには当該データの数とそれぞれ同数の送信側インターフェース、受信側インターフェース、および伝送路が必要になる。このため、伝送するデータ数が多いほど回路規模が増大し、その結果として高コスト化を招く。 However, in both of the serial transmission based on the LVDS and the serial transmission disclosed in Patent Document 1, in order to transmit a plurality of data, the same number of transmission side interfaces, reception side interfaces, and transmissions as the number of the data respectively. A road is needed. For this reason, as the number of data to be transmitted increases, the circuit scale increases, resulting in higher costs.
 そこで、本発明は、コストの増大を抑えつつ複数のデータの伝送を可能とする信号伝送装置および信号伝送方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a signal transmission device and a signal transmission method that can transmit a plurality of data while suppressing an increase in cost.
 本発明の第1の局面は、送信部と受信部との間で1本の伝送路により複数種類のデータのシリアル伝送を行う信号伝送装置であって、
 前記送信部は、
  周期的に変化する第1クロック信号、当該第1クロック信号の周波数をN(Nは2以上の整数)逓倍した第2クロック信号、および伝送すべきN個の送信側データ信号を外部から受け取るための送信側入力端子と、
  前記第1クロック信号の1周期毎に前記第2クロック信号に同期して前記N個の送信側データ信号を順にサンプリングすると共に、サンプリングした当該N個の送信側データ信号の電圧レベルを互いに異ならせることにより伝送信号を生成する送信側信号処理部と、
  前記伝送信号を前記伝送路に出力するための送信側出力端子とを含み、
 前記受信部は、
  前記第1クロック信号、前記第2クロック信号、および前記伝送路から前記伝送信号を受け取るための受信側入力端子と、
  前記第1クロック信号の1周期毎に前記第2クロック信号に同期して前記伝送信号をサンプリングすると共に、サンプリングした当該伝送信号の電圧レベルを、電圧レベルが変化する前の前記N個の送信側データ信号に対応する電圧レベルに変化させることによりそれぞれN個の受信側データ信号を生成する受信側信号処理部と、
  前記N個の受信側データ信号を外部に出力するための受信側出力端子とを含むことを特徴とする。
A first aspect of the present invention is a signal transmission device that serially transmits a plurality of types of data between a transmission unit and a reception unit through a single transmission line,
The transmitter is
To receive a first clock signal that periodically changes, a second clock signal obtained by multiplying the frequency of the first clock signal by N (N is an integer of 2 or more), and N transmission-side data signals to be transmitted from the outside. The sending input terminal of
The N transmission-side data signals are sequentially sampled in synchronization with the second clock signal every one cycle of the first clock signal, and the voltage levels of the sampled N transmission-side data signals are made different from each other. A transmission side signal processing unit for generating a transmission signal by
A transmission side output terminal for outputting the transmission signal to the transmission line,
The receiver is
A receiving-side input terminal for receiving the first clock signal, the second clock signal, and the transmission signal from the transmission path;
The transmission signal is sampled in synchronization with the second clock signal for each cycle of the first clock signal, and the voltage levels of the sampled transmission signal are set to the N transmission sides before the voltage level changes. A receiving-side signal processing unit that generates N receiving-side data signals by changing to a voltage level corresponding to the data signal;
A reception side output terminal for outputting the N reception side data signals to the outside.
 本発明の第2の局面は、本発明の第1の局面において、
 前記送信側信号処理部は、前記第2クロック信号に同期して、前記N個の送信側データ信号の位相を前記第2クロック信号の1周期分の期間ずつ異ならせる送信側位相制御部を含むことを特徴とする。
According to a second aspect of the present invention, in the first aspect of the present invention,
The transmission-side signal processing unit includes a transmission-side phase control unit that varies the phases of the N transmission-side data signals by a period corresponding to one cycle of the second clock signal in synchronization with the second clock signal. It is characterized by that.
 本発明の第3の局面は、本発明の第2の局面において、
 前記送信側信号処理部は、前記第1クロック信号の1周期毎に前記第2クロック信号に同期して前記N個の送信側データ信号をそれぞれサンプリングすると共に、各送信データ信号の電圧レベルが送信側第1レベルまたは送信側第2レベルであるときには、当該送信データ信号の電圧レベルを、N+1個の所定の電圧レベルのうちのいずれか2つの電圧レベルの一方または他方にそれぞれ変換することにより、N+1種類の電圧レベルからなる前記伝送信号を生成する伝送信号変換部をさらに含むことを特徴とする。
According to a third aspect of the present invention, in the second aspect of the present invention,
The transmission-side signal processing unit samples the N transmission-side data signals in synchronization with the second clock signal every cycle of the first clock signal, and the voltage level of each transmission data signal is transmitted. By converting the voltage level of the transmission data signal into one or the other of any two voltage levels of the N + 1 predetermined voltage levels, respectively, It further includes a transmission signal converter that generates the transmission signal having N + 1 types of voltage levels.
 本発明の第4の局面は、本発明の第3の局面において、
 前記伝送信号変換部はさらに、前記第1クロック信号の各周期においてサンプリングされるべき期間が連続する2つの前記送信側データ信号のうちの、先行の送信側データ信号の送信側第2レベルの変換後の電圧レベルと、後続の送信側データ信号の送信側第1レベルの変換後の電圧レベルとを互いに同じにすることを特徴とする。
According to a fourth aspect of the present invention, in the third aspect of the present invention,
The transmission signal converting unit further converts a transmission-side second level of a preceding transmission-side data signal out of two transmission-side data signals in which periods to be sampled in each cycle of the first clock signal are continuous. The subsequent voltage level and the voltage level after the conversion of the transmission side first level of the subsequent transmission side data signal are made the same.
 本発明の第5の局面は、本発明の第3の局面または第4の局面において、
 前記送信側位相制御部および前記伝送信号変換部は、1つの処理装置として実現されていることを特徴とする。
According to a fifth aspect of the present invention, in the third aspect or the fourth aspect of the present invention,
The transmission-side phase control unit and the transmission signal conversion unit are realized as one processing device.
 本発明の第6の局面は、本発明の第3の局面から第5の局面までのいずれかにおいて、
 前記受信側信号処理部は、前記第1クロック信号の1周期毎に前記第2クロック信号に同期して前記伝送信号をサンプリングすると共に、サンプリングした当該伝送信号の電圧レベルのうちの、前記伝送信号変換部において前記送信側第1レベルから変換された電圧を、当該送信側第1レベルに対応する受信側第1レベルに変換し、前記送信側第2レベルから変換された電圧レベルを当該送信側第2レベルに対応する受信側第2レベルに変換することにより前記N個の受信側データ信号を生成する伝送信号逆変換部を含むことを特徴とする。
According to a sixth aspect of the present invention, in any one of the third to fifth aspects of the present invention,
The reception-side signal processing unit samples the transmission signal in synchronization with the second clock signal for each cycle of the first clock signal, and the transmission signal of the sampled voltage level of the transmission signal. The voltage converted from the first level on the transmission side in the conversion unit is converted to the first level on the reception side corresponding to the first level on the transmission side, and the voltage level converted from the second level on the transmission side is converted to the transmission side. A transmission signal inverse conversion unit that generates the N reception side data signals by converting the reception side second level corresponding to the second level is included.
 本発明の第7の局面は、本発明の第6の局面において、
 前記受信側信号処理部は、前記第2クロック信号に同期して、前記N個の受信側データ信号を互いに同位相にする受信側位相制御部をさらに含むことを特徴とする。
A seventh aspect of the present invention is the sixth aspect of the present invention,
The reception-side signal processing unit further includes a reception-side phase control unit that synchronizes the N reception-side data signals with each other in synchronization with the second clock signal.
 本発明の第8の局面は、本発明の第7の局面において、
 前記伝送信号逆変換部および前記受信側位相制御部は、1つの処理装置として実現されていることを特徴とする。
According to an eighth aspect of the present invention, in the seventh aspect of the present invention,
The transmission signal inverse conversion unit and the reception-side phase control unit are realized as one processing device.
 本発明の第9の局面は、本発明の第1の局面において、
 前記送信部は、互いに電圧レベルの異なるN個のレベルシフト信号を生成するレベルシフト信号生成部をさらに含み、
 前記送信側信号処理部は、サンプリングした前記N個の送信側データ信号の電圧レベルを前記N個のレベルシフト信号に基づいて互いに異ならせることを特徴とする。
According to a ninth aspect of the present invention, in the first aspect of the present invention,
The transmission unit further includes a level shift signal generation unit that generates N level shift signals having different voltage levels.
The transmission-side signal processing unit is characterized in that the voltage levels of the sampled N transmission-side data signals are different from each other based on the N level-shifted signals.
 本発明の第10の局面は、送信部と受信部との間で1本の伝送路により複数種類のデータのシリアル伝送を行う信号伝送装置における信号伝送方法であって、
 周期的に変化する第1クロック信号の1周期毎に、当該第1クロック信号の周波数をN(Nは2以上の整数)逓倍した第2クロック信号に同期して、伝送すべきN個の送信側データ信号を順にサンプリングすると共に、サンプリングした当該N個の送信側データ信号の電圧レベルを互いに異ならせることにより伝送信号を生成するステップと、
 前記伝送信号を、前記伝送路を介して前記送信部から前記受信部に伝送するステップと、
 前記第1クロック信号の1周期毎に前記第2クロック信号に同期して前記伝送信号をサンプリングすると共に、サンプリングした当該伝送信号の電圧レベルを、電圧レベルが変化する前の前記N個の送信側データ信号に対応する電圧レベルに変化させることによりそれぞれN個の受信側データ信号を生成し出力するステップとを備えることを特徴とする。
A tenth aspect of the present invention is a signal transmission method in a signal transmission device that performs serial transmission of a plurality of types of data through a single transmission path between a transmission unit and a reception unit,
N transmissions to be transmitted in synchronization with a second clock signal obtained by multiplying the frequency of the first clock signal by N (N is an integer of 2 or more) for each period of the periodically changing first clock signal. Sampling the side data signals in order, and generating a transmission signal by making the voltage levels of the sampled N transmission side data signals different from each other;
Transmitting the transmission signal from the transmitter to the receiver via the transmission path;
The transmission signal is sampled in synchronization with the second clock signal for each cycle of the first clock signal, and the voltage levels of the sampled transmission signal are set to the N transmission sides before the voltage level changes. And generating and outputting N receiving-side data signals by changing to a voltage level corresponding to the data signal.
 本発明の第1の局面によれば、送信部において、第1クロック信号および第2クロック信号のタイミングに基づいてN個の送信側データ信号を順にサンプリングすると共にこれらの電圧レベルを変化させることにより生成された伝送信号が生成され、当該送信部から受信部に1本の伝送路を介して伝送される。そして、受信部において、第1クロック信号および第2クロック信号に基づいて、伝送信号のうちのN個の送信側データ信号に対応する部分の電圧レベルにそれぞれ応じたN個の受信側データ信号が生成される。すなわち、第1クロック信号および第2クロック信号によって同期をとるのみならず、伝送信号のうちのN個の送信側データ信号に対応する部分の電圧レベルをそれぞれ異ならせているので、このような電圧レベルの相違に基づいて、例えば伝送欠陥を低減することができる。このため、N個のデータが1本の伝送路を用いて確実に伝送される。これにより、回路規模の増大を抑制できるので、コストの増大を抑えつつ複数種類のデータを伝送できる。また、換言すると、伝送路1本あたりのデータ伝送量が増加されるので、従来よりも効率的にデータ伝送を行うことができる。 According to the first aspect of the present invention, the transmitter unit sequentially samples the N transmission-side data signals based on the timings of the first clock signal and the second clock signal, and changes their voltage levels. The generated transmission signal is generated and transmitted from the transmitting unit to the receiving unit via one transmission path. Then, in the receiving unit, N reception-side data signals respectively corresponding to the voltage levels of the portions corresponding to the N transmission-side data signals in the transmission signal are based on the first clock signal and the second clock signal. Generated. That is, not only the first clock signal and the second clock signal are synchronized, but also the voltage levels of the portions corresponding to the N transmission-side data signals in the transmission signal are different from each other. Based on the difference in level, for example, transmission defects can be reduced. For this reason, N pieces of data are reliably transmitted using one transmission path. Thereby, since an increase in circuit scale can be suppressed, a plurality of types of data can be transmitted while suppressing an increase in cost. In other words, since the amount of data transmission per transmission line is increased, data transmission can be performed more efficiently than in the past.
 本発明の第2の局面によれば、N個の送信側データ信号の位相が第2クロック信号の1周期分の期間ずつずれるので、第1クロック信号の各周期においてN個の送信側データ信号を順にサンプリングできる。 According to the second aspect of the present invention, since the phases of the N transmission-side data signals are shifted by a period of one cycle of the second clock signal, N transmission-side data signals in each cycle of the first clock signal. Can be sampled in order.
 本発明の第3の局面によれば、送信側データ信号の電圧レベルが送信側第1レベルまたは送信側第2レベルであるときに、当該送信側データ信号の電圧レベルが、N+1個の所定の電圧レベルのうちのいずれか2つの電圧レベルの一方または他方にそれぞれ変換されることにより、伝送信号の電圧レベルの種類がN+1種類になる。このようなN+1種類の電圧レベルからなる伝送信号を用いることにより、伝送信号における電圧レベルの相違に基づいて、例えば伝送結果の低減および/または同期ずれを解消できる。 According to the third aspect of the present invention, when the voltage level of the transmission side data signal is the transmission side first level or the transmission side second level, the voltage level of the transmission side data signal is N + 1 predetermined values. By converting each of the two voltage levels to one or the other of the two voltage levels, the type of the voltage level of the transmission signal becomes N + 1. By using such a transmission signal composed of N + 1 types of voltage levels, for example, a reduction in transmission result and / or a synchronization shift can be eliminated based on the difference in voltage level in the transmission signal.
 本発明の第4の局面によれば、送信部において、第1クロック信号の各周期においてサンプリングされるべき期間が連続する2つの送信側データ信号のうちの先行の送信側データ信号の送信側第2レベルの変換後の電圧レベルと、後続の送信側データ信号の送信側第1レベルの変換後の電圧レベルとが互いに同じになる。例えば、第1クロック信号の各周期において最初にサンプリングされるべき送信側データ信号の送信側第1レベルおよび送信側第2レベルの双方が、第1クロック信号の各周期において最後にサンプリングされるべき送信側データ信号の送信側第1レベルおよび送信側第2レベルの双方よりも大きいとする。このような場合、同期ずれが生じたとしても、N+1種類の電圧レベルからなる伝送信号からN個の受信側データ信号を生成可能な受信部を用いることにより、伝送信号の電圧レベルの変化に基づいて、第1クロック信号の各周期における第2クロック信号の最初の周期を判別できるので、同期ずれを解消できる。 According to the fourth aspect of the present invention, in the transmitting unit, the transmitting side of the preceding transmitting side data signal out of the two transmitting side data signals in which the period to be sampled in each cycle of the first clock signal continues. The voltage level after the two-level conversion is the same as the voltage level after the conversion of the transmission-side first level of the subsequent transmission-side data signal. For example, both the transmitter first level and the transmitter second level of the transmitter data signal to be sampled first in each period of the first clock signal should be sampled last in each period of the first clock signal. It is assumed that the transmission side data signal is larger than both the transmission side first level and the transmission side second level. In such a case, even if a synchronization shift occurs, a reception unit that can generate N reception-side data signals from transmission signals having N + 1 types of voltage levels is used to change the voltage level of the transmission signal. Thus, since the first period of the second clock signal in each period of the first clock signal can be determined, the synchronization shift can be eliminated.
 本発明の第5の局面によれば、送信側位相制御部および伝送信号変換部が1つの処理装置として実現される。このため、送信側位相制御部および伝送信号変換部で互いに共通する構成要素を共有化することにより、送信部の規模を削減することができる。 According to the fifth aspect of the present invention, the transmission-side phase control unit and the transmission signal conversion unit are realized as one processing device. For this reason, the scale of a transmission part can be reduced by sharing a common component with each other in a transmission side phase control part and a transmission signal conversion part.
 本発明の第6の局面によれば、受信部において、第1クロック信号の各周期における第2クロック信号の第1の周期~第Nの周期でそれぞれ、伝送信号のうちのN個の送信側データ信号に対応する部分がサンプリングされると共に、当該伝送信号のうちのN個の送信側データ信号に対応する部分の電圧レベルに基づいてそれぞれN個の受信側データ信号の電圧レベルが決定される。このような受信部を用いることによって、本発明の第3の局面から第5の局面までのいずれかと同様の効果を奏することができる。 According to the sixth aspect of the present invention, in the receiving unit, each of the N transmission sides of the transmission signal in the first cycle to the Nth cycle of the second clock signal in each cycle of the first clock signal. The portion corresponding to the data signal is sampled, and the voltage level of each of the N receiving data signals is determined based on the voltage level of the portion corresponding to the N transmitting data signals of the transmission signal. . By using such a receiving unit, it is possible to achieve the same effect as any of the third to fifth aspects of the present invention.
 本発明の第7の局面によれば、受信側位相制御部を用いることにより、N個の受信側データ信号の位相をそろえて出力することができる。 According to the seventh aspect of the present invention, by using the reception-side phase control unit, the phases of N reception-side data signals can be aligned and output.
 本発明の第8の局面によれば、伝送信号逆変換部および受信側位相制御部が1つの処理装置として実現される。このため、伝送信号逆変換部および受信側位相制御部で互いに共通する構成要素を共有化することにより、受信部の規模を削減することができる。 According to the eighth aspect of the present invention, the transmission signal inverse conversion unit and the reception-side phase control unit are realized as one processing device. For this reason, it is possible to reduce the size of the reception unit by sharing the common components in the transmission signal inverse conversion unit and the reception-side phase control unit.
 本発明の第9の局面によれば、N個の送信側データ信号から伝送信号を生成するための電圧レベルをレベルシフト信号生成部を用いて生成することにより、本発明の第1の局面と同様の効果を奏することができる。 According to a ninth aspect of the present invention, by generating a voltage level for generating a transmission signal from N transmission-side data signals using a level shift signal generation unit, Similar effects can be achieved.
 本発明の第10の局面によれば、信号伝送方法において、本発明の第1の局面と同様の効果を奏することができる。 According to the tenth aspect of the present invention, in the signal transmission method, the same effect as in the first aspect of the present invention can be achieved.
本発明の第1の実施形態に係る信号伝送システムの構成を示すブロック図である。1 is a block diagram illustrating a configuration of a signal transmission system according to a first embodiment of the present invention. 上記第1の実施形態における送信部の構成を示すブロック図である。It is a block diagram which shows the structure of the transmission part in the said 1st Embodiment. 上記第1の実施形態における送信側レベルコントロールプロセッサの構成を示すブロック図である。It is a block diagram which shows the structure of the transmission side level control processor in the said 1st Embodiment. 上記第1の実施形態における受信部の構成を示すブロック図である。It is a block diagram which shows the structure of the receiving part in the said 1st Embodiment. 上記第1の実施形態における受信側レベルコントロールプロセッサの構成を示すブロック図である。It is a block diagram which shows the structure of the receiving side level control processor in the said 1st Embodiment. 上記第1の実施形態における送信側位相制御処理前の送信側データ信号を示す信号波形図である。It is a signal waveform diagram which shows the transmission side data signal before the transmission side phase control process in the said 1st Embodiment. 上記第1の実施形態における送信側遅延回路の動作を説明するための信号波形図である。It is a signal waveform diagram for demonstrating operation | movement of the transmission side delay circuit in the said 1st Embodiment. 上記第1の実施形態における伝送信号変換回路の動作を説明するための信号波形図である。It is a signal waveform diagram for demonstrating operation | movement of the transmission signal converter circuit in the said 1st Embodiment. 上記第1の実施形態における伝送信号逆変換回路の動作を説明するための信号波形図である。It is a signal waveform diagram for demonstrating operation | movement of the transmission signal reverse conversion circuit in the said 1st Embodiment. 上記第1の実施形態における受信側位相制御処理前の受信側データ信号を示す信号波形図である。It is a signal waveform diagram which shows the receiving side data signal before the receiving side phase control process in the said 1st Embodiment. 上記第1の実施形態における受信側遅延回路の動作を説明するための信号波形図である。It is a signal waveform diagram for demonstrating operation | movement of the receiving side delay circuit in the said 1st Embodiment. 本発明の第2の実施形態における送信側レベルコントロールプロセッサの構成を示すブロック図である。It is a block diagram which shows the structure of the transmission side level control processor in the 2nd Embodiment of this invention. 上記第2の実施形態における受信側レベルコントロールプロセッサの構成を示すブロック図である。It is a block diagram which shows the structure of the receiving side level control processor in the said 2nd Embodiment. 本発明の第3の実施形態における送信側レベルコントロールプロセッサの構成を示すブロック図である。It is a block diagram which shows the structure of the transmission side level control processor in the 3rd Embodiment of this invention. 上記第3の実施形態における受信側レベルコントロールプロセッサの構成を示すブロック図である。It is a block diagram which shows the structure of the receiving side level control processor in the said 3rd Embodiment. 上記第3の実施形態における送信側読み出し制御回路の動作ついて説明するための信号波形図である。It is a signal waveform diagram for demonstrating operation | movement of the transmission side read-out control circuit in the said 3rd Embodiment. 上記第3の実施形態における伝送信号変換回路の動作を説明するための信号波形図である。It is a signal waveform diagram for demonstrating operation | movement of the transmission signal converter circuit in the said 3rd Embodiment. 上記第3の実施形態における伝送信号逆変換回路の動作を説明するための信号波形図である。It is a signal waveform diagram for demonstrating operation | movement of the transmission signal reverse conversion circuit in the said 3rd Embodiment. 上記第3の実施形態における受信側読み出し制御回路の動作について説明するための信号波形図である。It is a signal waveform diagram for demonstrating operation | movement of the receiving side read-out control circuit in the said 3rd Embodiment.
 以下、添付図面を参照しながら、本発明の実施形態について説明する。
 <1.第1の実施形態>
 <1.1 全体構成>
 図1は、本実施形態に係る信号伝送システムの構成を示すブロック図である。本信号伝送システムは、例えば、表示装置における表示制御回路からソースドライバへの画像データの伝送に用いられる。図1に示すように、本信号伝送システムは、ホスト1および信号伝送装置2を備えている。ホスト1は、典型的にはCPUであり、信号伝送装置2に送信側制御信号CTおよび受信側制御信号CRを与える。送信側制御信号CTは、より詳細には、N(N=3)個の第1~第3送信側制御信号CTa~CTcからなっている。信号伝送装置2は、N(N=3)種類の送信側データ信号DTa~DTc、第1クロック信号としてのシステムクロックSYS、および第2クロック信号としてのサンプリングクロックSAMを受け取り、これらの信号と上記送信側制御信号CTおよび受信側制御信号CRとに基づいてN(N=3)種類の受信側データ信号DRa~DRcを出力する。なお、以下では、3種類の送信側データ信号DTa~DTcをそれぞれ第1~第3送信側データ信号といい、3種類の受信側データ信号DRa~DRcをそれぞれ第1~第3受信側データ信号という。第1~第3送信側データ信号DTa~DTcおよび第1~第3受信側データ信号DRa~DRcはビット列からなっている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
<1. First Embodiment>
<1.1 Overall configuration>
FIG. 1 is a block diagram showing the configuration of the signal transmission system according to the present embodiment. This signal transmission system is used, for example, for transmission of image data from a display control circuit in a display device to a source driver. As shown in FIG. 1, the signal transmission system includes a host 1 and a signal transmission device 2. The host 1 is typically a CPU, and provides the signal transmission apparatus 2 with a transmission side control signal CT and a reception side control signal CR. More specifically, the transmission side control signal CT includes N (N = 3) first to third transmission side control signals CTa to CTc. The signal transmission device 2 receives N (N = 3) types of transmission side data signals DTa to DTc, a system clock SYS as a first clock signal, and a sampling clock SAM as a second clock signal, and these signals and the above N (N = 3) types of reception side data signals DRa to DRc are output based on the transmission side control signal CT and the reception side control signal CR. In the following, the three types of transmission side data signals DTa to DTc are referred to as first to third transmission side data signals, respectively, and the three types of reception side data signals DRa to DRc are respectively referred to as first to third reception side data signals. That's it. The first to third transmission side data signals DTa to DTc and the first to third reception side data signals DRa to DRc are composed of bit strings.
 上記システムクロックSYSおよびサンプリングクロックSAMのそれぞれは周期的にハイレベルとローレベルとを繰り返す。サンプリングクロックSAMはシステムクロックSYSをN(N=3)逓倍した信号である。以下では、システムクロックSYSおよびサンプリングクロックSAMの1周期分の期間をそれぞれ「システム期間」および「サンプリング期間」といい、以降の信号波形図中ではそれぞれ符号TAおよびTBで表す。また、以降の信号波形図中では、X(Xは2以上の整数)サンプリング期間を「XTB」で表す。さらに、各システム期間における1番目~3番目のサンプリング期間をそれぞれ「第1~第3サンプリング期間」という。 Each of the system clock SYS and the sampling clock SAM periodically repeats a high level and a low level. The sampling clock SAM is a signal obtained by multiplying the system clock SYS by N (N = 3). In the following, periods of one cycle of the system clock SYS and the sampling clock SAM are referred to as “system period” and “sampling period”, respectively, and are denoted by symbols TA and TB, respectively, in the subsequent signal waveform diagrams. In the following signal waveform diagrams, the X (X is an integer of 2 or more) sampling period is represented by “XTB”. Further, the first to third sampling periods in each system period are referred to as “first to third sampling periods”, respectively.
 信号伝送装置2は、送信部3、受信部4、および送信部3と受信部4とを互いに接続するための1本の伝送路5を備えている。ここで、伝送路5は差動伝送用またはシングルエンド伝送用のいずれの伝送路でも良い。また、「1本の伝送路」とは、差動伝送用の場合には1対の伝送路をいう。送信部3および受信部4には、図示しない手段で電源電圧が与えられている。送信部3は、上記第1~第3送信側データ信号DTa~DTc、システムクロックSYS、サンプリングクロックSAM、および電源電圧を受け取り、これらに基づいて伝送信号TSを生成する。伝送信号TSは、伝送路5を介して、送信部3から受信部4に伝送される。受信部4は、伝送信号TS、システムクロックSYS、サンプリングクロックSAM、および電源電圧を受け取り、これらに基づいて上記第1~第3受信側データ信号DRa~DRcを生成する。すなわち、信号伝送装置2では、送信部3が受け取った3種類の第1~第3送信側データ信号DTa~DTcがそれぞれ3種類の第1~第3受信側データ信号DRa~DRcとして受信部4に伝送される。 The signal transmission device 2 includes a transmission unit 3, a reception unit 4, and a single transmission path 5 for connecting the transmission unit 3 and the reception unit 4 to each other. Here, the transmission line 5 may be either a differential transmission line or a single-ended transmission line. “One transmission line” means a pair of transmission lines in the case of differential transmission. The transmission unit 3 and the reception unit 4 are supplied with a power supply voltage by means not shown. The transmission unit 3 receives the first to third transmission side data signals DTa to DTc, the system clock SYS, the sampling clock SAM, and the power supply voltage, and generates a transmission signal TS based on these. The transmission signal TS is transmitted from the transmission unit 3 to the reception unit 4 via the transmission path 5. The receiving unit 4 receives the transmission signal TS, the system clock SYS, the sampling clock SAM, and the power supply voltage, and generates the first to third receiving side data signals DRa to DRc based on these. That is, in the signal transmission device 2, the three types of first to third transmission side data signals DTa to DTc received by the transmission unit 3 are respectively converted into three types of first to third reception side data signals DRa to DRc. Is transmitted.
 <1.1.1 送信部の構成>
 図2は、本実施形態における送信部3の構成を示すブロック図である。図2に示すように、送信部3は、入力端子IT1、IT2、IT3a~IT3c、IT4a~IT4c、およびIT5a~IT5cと、出力端子OTと、送信側レベルシフタ30と、送信側レベルコントロールプロセッサ31とを備えている。ここで、入力端子IT1、IT2、IT3a~IT3cは送信側入力端子に対応している。出力端子OTは送信側出力端子に対応している。
<1.1.1 Configuration of Transmitter>
FIG. 2 is a block diagram illustrating a configuration of the transmission unit 3 in the present embodiment. As shown in FIG. 2, the transmission unit 3 includes input terminals IT1, IT2, IT3a to IT3c, IT4a to IT4c, and IT5a to IT5c, an output terminal OT, a transmission side level shifter 30, and a transmission side level control processor 31. It has. Here, the input terminals IT1, IT2, IT3a to IT3c correspond to transmission side input terminals. The output terminal OT corresponds to the transmission side output terminal.
 入力端子IT1はシステムクロックSYSを受け取るための端子である。入力端子IT2はサンプリングクロックSAMを受け取るための端子である。入力端子IT3a~IT3cはそれぞれ第1~第3送信側データ信号DTa~DTcを受け取るための端子である。入力端子IT4a~IT4cはそれぞれ第1~第3送信側制御信号CTa~CTcを受け取るための端子である。入力端子IT5a~IT5cはそれぞれ上記電源電圧としての送信側第1~第3電源電圧VHa~VHcを受け取るための端子である。出力端子OTは伝送信号TSを出力するための端子である。送信側第1~第3電源電圧VHa~VHcは互いに電圧レベルが異なっている。以下では、送信側第1~第3電源電圧VHa~VHcの電圧レベルのことをもそれぞれVHa~VHcで表すことがある。ここで、VHa~VHcレベルの大小関係は、VHa>VHb>VHcである。 The input terminal IT1 is a terminal for receiving the system clock SYS. The input terminal IT2 is a terminal for receiving the sampling clock SAM. Input terminals IT3a to IT3c are terminals for receiving first to third transmission side data signals DTa to DTc, respectively. Input terminals IT4a to IT4c are terminals for receiving first to third transmission side control signals CTa to CTc, respectively. The input terminals IT5a to IT5c are terminals for receiving the transmission side first to third power supply voltages VHa to VHc as the power supply voltages, respectively. The output terminal OT is a terminal for outputting the transmission signal TS. The transmission-side first to third power supply voltages VHa to VHc have different voltage levels. Hereinafter, the voltage levels of the transmission-side first to third power supply voltages VHa to VHc may also be represented by VHa to VHc, respectively. Here, the magnitude relationship between the VHa to VHc levels is VHa> VHb> VHc.
 送信側レベルシフタ30は、第1~第3送信側制御信号CTa~CTcおよび送信側第1~第3電源電圧VHa~VHcを受け取り、第1~第3送信側制御信号CTa~CTcの電圧レベルをそれぞれVHa~VHcレベルにシフトさせた信号である第1~第3送信側レベルシフト信号LSTa~LSTcを生成し出力する。ここで、第1~第3送信側制御信号CTa~CTcの電圧レベルは、信号伝送装置2の動作時には固定されている。第1~第3送信側制御信号CTa~CTcの電圧レベルは互いに異なっていても良く、互いに同じであっても良い。ただし、第1~第3送信側制御信号CTa~CTcの電圧レベルは、典型的には、VHa~VHcレベルよりもそれぞれ小さい。 The transmission side level shifter 30 receives the first to third transmission side control signals CTa to CTc and the transmission side first to third power supply voltages VHa to VHc, and sets the voltage levels of the first to third transmission side control signals CTa to CTc. First to third transmission side level shift signals LSTa to LSTc, which are signals shifted to VHa to VHc levels, are generated and output. Here, the voltage levels of the first to third transmission side control signals CTa to CTc are fixed when the signal transmission device 2 is in operation. The voltage levels of the first to third transmission side control signals CTa to CTc may be different from each other or the same. However, the voltage levels of the first to third transmission side control signals CTa to CTc are typically smaller than the VHa to VHc levels, respectively.
 送信側レベルコントロールプロセッサ31は、第1~第3送信側データ信号DTa~DTc、システムクロックSYS、サンプリングクロックSAM、および送信側レベルシフタ30から出力された第1~第3送信側レベルシフト信号LSTa~LSTcを受け取り、これらに基づいて伝送信号TSを生成し出力する。 The transmission side level control processor 31 includes first to third transmission side data signals DTa to DTc, a system clock SYS, a sampling clock SAM, and first to third transmission side level shift signals LSTa output from the transmission side level shifter 30. LSTc is received, and based on these, a transmission signal TS is generated and output.
 本実施形態では、送信側レベルシフタ30および送信側レベルコントロールプロセッサ31により送信側信号処理部が実現されている。 In this embodiment, the transmission side signal processing unit is realized by the transmission side level shifter 30 and the transmission side level control processor 31.
 図3は、本実施形態における送信側レベルコントロールプロセッサ31の構成を示すブロック図である。図3に示すように、送信側レベルコントロールプロセッサ31は、送信側入力バッファ310、送信側遅延回路311、送信側データ判別回路312、伝送信号変換部としての伝送信号変換回路313、および送信側出力バッファ314を備えている。 FIG. 3 is a block diagram showing a configuration of the transmission side level control processor 31 in the present embodiment. As shown in FIG. 3, the transmission side level control processor 31 includes a transmission side input buffer 310, a transmission side delay circuit 311, a transmission side data discrimination circuit 312, a transmission signal conversion circuit 313 as a transmission signal conversion unit, and a transmission side output. A buffer 314 is provided.
 送信側入力バッファ310は、第1~第3送信側データ信号DTa~DTcを受け取るためのバッファである。 The transmission side input buffer 310 is a buffer for receiving the first to third transmission side data signals DTa to DTc.
 送信側遅延回路311は、第1~第3送信側データ信号DTa~DTcを送信側入力バッファ310を介して受け取り、サンプリングクロックSAMのタイミングに基づいてこれらの第1~第3送信側データ信号DTa~DTcの位相を互いに異ならせ出力する。以下では、このように第1~第3送信側データ信号DTa~DTcの位相を互いに異ならせる処理のことを「送信側位相制御処理」という。本実施形態では、送信側遅延回路311により送信側位相制御部が実現されている。 The transmission side delay circuit 311 receives the first to third transmission side data signals DTa to DTc via the transmission side input buffer 310, and based on the timing of the sampling clock SAM, these first to third transmission side data signals DTa. .. DTc are output with different phases. Hereinafter, the process of making the phases of the first to third transmission side data signals DTa to DTc different from each other in this way is referred to as “transmission side phase control process”. In the present embodiment, a transmission side phase control unit is realized by the transmission side delay circuit 311.
 送信側データ判別回路312は、送信側位相制御処理後の第1~第3送信側データ信号DTa~DTcのそれぞれのビットデータ(“1”または“0”を示すデータをいう)が“1”または“0”のいずれを示すかをサンプリングクロックSAMのタイミングに基づいて判別し、その判別結果としての第1~第3送信側判別信号RTa~RTcを出力する。ここで、各送信側データ信号の“1”を示すビットデータの電圧レベルは送信側第1レベルに相当し、“0”を示すビットデータの電圧レベルは送信側第2レベルに相当する。 The transmission side data discriminating circuit 312 has the bit data (referred to as data indicating “1” or “0”) of the first to third transmission side data signals DTa to DTc after the transmission side phase control processing being “1”. Whether “0” is indicated is determined based on the timing of the sampling clock SAM, and first to third transmission side determination signals RTa to RTc are output as the determination results. Here, the voltage level of the bit data indicating “1” in each transmission side data signal corresponds to the first level on the transmission side, and the voltage level of bit data indicating “0” corresponds to the second level on the transmission side.
 伝送信号変換回路313は、第1~第3送信側判別信号RTa~RTcを受け取り、システムクロックSYSおよびサンプリングクロックSAMのタイミングに基づいて第1~第3送信側判別信号RTa~RTc(すなわち第1~第3送信側データ信号DTa~DTcのビットデータ)を順にサンプリングすると共に、これらのデータの電圧レベルを変換することにより1つの伝送信号TSを生成し出力する。具体的には、伝送信号変換回路313は、第1サンプリング期間でサンプリングした第1送信側判別信号RTa(すなわち第1送信側データ信号DTaのビットデータ)が“1”または“0”を示す電圧レベルであればそれぞれVHaレベルまたはVHbレベルに変換し、第2サンプリング期間でサンプリングした第2送信側判別信号RTb(すなわち第2送信側データ信号DTbのビットデータ)が“1”または“0”を示す電圧レベルであればそれぞれVHbレベルまたはVHcレベルに変換し、第3サンプリング期間でサンプリングした第3送信側判別信号RTc(すなわち第3送信側データ信号DTcのビットデータ)が“1”または“0”を示す電圧レベルであればそれぞれVHcレベルまたは所定の電圧レベルとしてのGNDレベル(接地レベル)に変換する。このようにして、伝送信号変換回路313は、第1~第3送信側判別信号RTa~RTcを1システム期間毎に順に並べると共にこれらの電圧レベルを上述のように変換した1つの伝送信号TSを生成し出力する。以下では、伝送信号TSのうちの、第1~第3送信側データ信号DTa~DTcのビットデータに対応する部分をそれぞれ「第1~第3送受信データ」といい、それぞれ符号TR1~TR3で表す。なお、伝送信号変換回路313に送信側データ判別回路312の機能を設け、送信側データ判別回路312を設けない構成としても良い。 The transmission signal conversion circuit 313 receives the first to third transmission side discrimination signals RTa to RTc, and based on the timings of the system clock SYS and the sampling clock SAM, the first to third transmission side discrimination signals RTa to RTc (that is, the first transmission side discrimination signals RTa to RTc). (Bit data of third transmission side data signals DTa to DTc) are sequentially sampled, and one transmission signal TS is generated and output by converting the voltage level of these data. Specifically, the transmission signal conversion circuit 313 is a voltage at which the first transmission side discrimination signal RTa (that is, the bit data of the first transmission side data signal DTa) sampled in the first sampling period indicates “1” or “0”. If it is level, it is converted to VHa level or VHb level, respectively, and the second transmission side discrimination signal RTb (that is, bit data of the second transmission side data signal DTb) sampled in the second sampling period is “1” or “0”. If the voltage level shown in the figure is converted to the VHb level or the VHc level, the third transmission side discrimination signal RTc (that is, the bit data of the third transmission side data signal DTc) sampled in the third sampling period is “1” or “0”. "VHc level" or GND level as a predetermined voltage level. Converted to le (ground level). In this way, the transmission signal conversion circuit 313 arranges the first to third transmission side discrimination signals RTa to RTc in order for each system period, and also converts one transmission signal TS obtained by converting these voltage levels as described above. Generate and output. Hereinafter, portions of the transmission signal TS corresponding to the bit data of the first to third transmission side data signals DTa to DTc are referred to as “first to third transmission / reception data”, respectively, and are represented by symbols TR1 to TR3, respectively. . The transmission signal conversion circuit 313 may be provided with the function of the transmission side data determination circuit 312 and the transmission side data determination circuit 312 may not be provided.
 ここで、第1送受信データTR1の“0”に対応する電圧レベルおよび第2送受信データTR2の“1”に対応する電圧レベルは、互いに同じVHbレベルである。第2送受信データTR2の“0”に対応する電圧レベルおよび第3送受信データTR3の“1”に対応する電圧レベルは、互いに同じVHcレベルである。すなわち、各システム期間においてサンプリングされるべき期間が連続する2つの送信側データ信号のうちの先行の送信側データ信号の“0”の変換後の電圧レベルと、後続の送信側データ信号の“1”の変換後の電圧レベルとが互いに同じになっている。なお、第1送受信データTR1の“1”に対応する電圧レベル(各システム期間の最初のサンプリング期間である第1サンプリング期間にサンプリングされる第1送信側データ信号DTaの“1”を示すビットデータの変換後の電圧レベル)はVHaレベルであり、当該VHaレベルは他と重複していない。同様に、第3送受信データTR3の“0”に対応する電圧レベル(各システム期間の最後のサンプリング期間である第3サンプリング期間にサンプリングされる第3送信側データ信号DTcの変換後の電圧レベル)はGNDレベルであり、当該GNDレベルは他の重複していない。このようにして、本実施形態における伝送信号TSを実現する電圧レベルの種類は、N+1種類(4種類)になる。 Here, the voltage level corresponding to “0” of the first transmission / reception data TR1 and the voltage level corresponding to “1” of the second transmission / reception data TR2 are the same VHb level. The voltage level corresponding to “0” of the second transmission / reception data TR2 and the voltage level corresponding to “1” of the third transmission / reception data TR3 are the same VHc level. That is, the voltage level after conversion of “0” of the preceding transmission side data signal of the two transmission side data signals in which the period to be sampled in each system period is continuous, and “1” of the subsequent transmission side data signal. The converted voltage levels are the same as each other. The voltage level corresponding to “1” of the first transmission / reception data TR1 (bit data indicating “1” of the first transmission side data signal DTa sampled in the first sampling period which is the first sampling period of each system period) Is the VHa level, and the VHa level does not overlap with others. Similarly, the voltage level corresponding to “0” of the third transmission / reception data TR3 (the voltage level after conversion of the third transmission side data signal DTc sampled in the third sampling period which is the last sampling period of each system period) Is a GND level, and the GND level does not overlap with other. In this way, there are N + 1 types (four types) of voltage levels for realizing the transmission signal TS in the present embodiment.
 送信側出力バッファ314は、伝送信号TSをシリアルに出力するためのバッファである。送信側出力バッファ314から出力された伝送信号TSは、伝送路5を介して受信部4に伝送される。 The transmission side output buffer 314 is a buffer for serially outputting the transmission signal TS. The transmission signal TS output from the transmission side output buffer 314 is transmitted to the receiving unit 4 via the transmission path 5.
 <1.1.2 受信部の構成>
 図4は、本実施形態における受信部4の構成を示すブロック図である。図4に示すように、受信部4は、入力端子IR1~IR5と、出力端子ORa~ORcと、受信側レベルシフタ40と、受信側レベルコントロールプロセッサ41とを備えている。ここで、入力端子IR1~IR3は受信側入力端子に対応している。出力端子ORa~ORcは受信側出力端子に対応している。
<1.1.2 Configuration of receiving unit>
FIG. 4 is a block diagram showing a configuration of the receiving unit 4 in the present embodiment. As shown in FIG. 4, the receiving unit 4 includes input terminals IR1 to IR5, output terminals ORa to ORc, a receiving side level shifter 40, and a receiving side level control processor 41. Here, the input terminals IR1 to IR3 correspond to receiving side input terminals. The output terminals ORa to ORc correspond to reception side output terminals.
 入力端子IR1はシステムクロックSYSを受け取るための端子である。入力端子IR2はサンプリングクロックSAMを受け取るための端子である。入力端子IR3は伝送信号TSを受け取るための端子である。入力端子IR4は受信側制御信号CRを受け取るための信号である。入力端子IR5は上記電源電圧としての受信側電源電圧VHを受け取るための端子である。以下では、受信側電源電圧VHの電圧レベルのことをもVHで表すことがある。また、出力端子ORa~ORcはそれぞれ第1~第3受信側データ信号DRa~DRcを出力するための端子である。 The input terminal IR1 is a terminal for receiving the system clock SYS. The input terminal IR2 is a terminal for receiving the sampling clock SAM. The input terminal IR3 is a terminal for receiving the transmission signal TS. The input terminal IR4 is a signal for receiving the receiving side control signal CR. The input terminal IR5 is a terminal for receiving the reception-side power supply voltage VH as the power supply voltage. Hereinafter, the voltage level of the reception-side power supply voltage VH may also be expressed as VH. The output terminals ORa to ORc are terminals for outputting the first to third receiving side data signals DRa to DRc, respectively.
 受信側レベルシフタ40は、受信側制御信号CRおよび送信側電源電圧VHを受け取り、受信側制御信号CRの電圧レベルをVHレベルにシフトさせた信号である受信側レベルシフト信号LSRを生成し出力する。ここで、受信側制御信号CRの電圧レベルは、信号伝送装置2の動作時には固定されている。受信側制御信号CRの電圧レベルは、典型的には、VHレベルよりも小さい。 The reception-side level shifter 40 receives the reception-side control signal CR and the transmission-side power supply voltage VH, and generates and outputs a reception-side level shift signal LSR that is a signal obtained by shifting the voltage level of the reception-side control signal CR to the VH level. Here, the voltage level of the reception-side control signal CR is fixed when the signal transmission device 2 operates. The voltage level of the reception side control signal CR is typically smaller than the VH level.
 受信側レベルコントロールプロセッサ41は、伝送信号TS、システムクロックSYS、サンプリングクロックSAM、および受信側レベルシフタ40から出力された受信側レベルシフト信号LSRを受け取り、これらに基づいて第1~第3受信側データ信号DRa~DRcを生成し出力する。 The receiving side level control processor 41 receives the transmission signal TS, the system clock SYS, the sampling clock SAM, and the receiving side level shift signal LSR outputted from the receiving side level shifter 40, and based on these, the first to third receiving side data Generate and output signals DRa to DRc.
 本実施形態では、受信側レベルシフタ40および受信側レベルコントロールプロセッサ41により受信側信号処理部が実現されている。 In the present embodiment, the reception side signal processing unit is realized by the reception side level shifter 40 and the reception side level control processor 41.
 図5は、本実施形態における受信側レベルコントロールプロセッサ41の構成を示すブロック図である。図5に示すように、受信側レベルコントロールプロセッサ41は、受信側入力バッファ410、受信側データ判別回路411、伝送信号逆変換部としての伝送信号逆変換回路412、受信側遅延回路413、および受信側出力バッファ414を備えている。 FIG. 5 is a block diagram showing a configuration of the receiving side level control processor 41 in the present embodiment. As illustrated in FIG. 5, the reception-side level control processor 41 includes a reception-side input buffer 410, a reception-side data determination circuit 411, a transmission signal inverse conversion circuit 412 as a transmission signal inverse conversion unit, a reception-side delay circuit 413, and a reception side. A side output buffer 414 is provided.
 受信側入力バッファ410は、伝送信号TSをシリアルに受信するためのバッファである。 The receiving side input buffer 410 is a buffer for receiving the transmission signal TS serially.
 受信側データ判別回路411は、伝送信号TSの第1~第3送受信データTR1~TR3が、VHa~VHcまたはGNDレベルのいずれを示すかをサンプリングクロックSAMのタイミングに基づいて判別し、これらの判別結果としての受信側判別信号RRを出力する。 The reception-side data determination circuit 411 determines whether the first to third transmission / reception data TR1 to TR3 of the transmission signal TS indicate VHa to VHc or the GND level based on the timing of the sampling clock SAM, and these determinations. As a result, the receiving side discrimination signal RR is output.
 伝送信号逆変換回路412は、受信側判別信号RRを受け取り、システムクロックSYSおよびサンプリングクロックSAMのタイミングに基づいて、受信側判別信号RR(すなわち第1~第3送受信データTR1~TR3)をサンプリングすると共に、第1~第3送受信データTR1~TR3の電圧レベルを変換することによりそれぞれ第1~第3受信側データ信号DRa~DRcを生成し出力する。具体的には、伝送信号逆変換回路412は、第1送受信データTR1に対応する受信側判別信号RRのサンプリング時に、受信側判別信号RRがVHaまたはVHbレベルであれば、それぞれ“1”を示す電圧レベル(ここではVHレベルであるものとする)または“0”を示す電圧レベル(ここではGNDレベルであるものとする)の第1受信側データ信号DRaを生成する。また、伝送信号逆変換回路412は、第2送受信データTR2に対応する受信側判別信号RRのサンプリング時に、受信側判別信号RRがVHbまたはVHcレベルであれば、それぞれ“1”または“0”を示す電圧レベルの第2受信側データ信号DRbを生成する。また、伝送信号逆変換回路412は、第3送受信データTR3に対応する受信側判別信号RRのサンプリング時に、受信側判別信号RRがVHcまたはGNDレベルであれば、それぞれ“1”または“0”を示す電圧レベルの第3受信側データDRcを生成する。ここで、第1~第3受信側データ信号DRa~DRcの“1”を示す電圧レベルは受信側第1レベルに相当し、“0”を示す電圧レベルは受信側第2レベルに相当する。ここで生成される第1~第3受信側データ信号DRa~DRcは、互いに位相が異なっている。なお、伝送信号逆変換回路412に受信側データ判別回路411の機能を設け、受信側データ判別回路411を設けない構成としても良い。 The transmission signal inverse conversion circuit 412 receives the reception side determination signal RR and samples the reception side determination signal RR (that is, the first to third transmission / reception data TR1 to TR3) based on the timings of the system clock SYS and the sampling clock SAM. At the same time, by converting the voltage levels of the first to third transmission / reception data TR1 to TR3, the first to third reception-side data signals DRa to DRc are generated and output, respectively. Specifically, the transmission signal inverse conversion circuit 412 indicates “1” if the reception side determination signal RR is at the VHa or VHb level when the reception side determination signal RR corresponding to the first transmission / reception data TR1 is sampled. A first receiving side data signal DRa having a voltage level (here, assumed to be VH level) or a voltage level indicating “0” (here, assumed to be GND level) is generated. Further, the transmission signal inverse conversion circuit 412 sets “1” or “0” if the reception side determination signal RR is at the VHb or VHc level when the reception side determination signal RR corresponding to the second transmission / reception data TR2 is sampled. The second receiving side data signal DRb having the voltage level shown is generated. In addition, the transmission signal inverse conversion circuit 412 sets “1” or “0” if the reception side determination signal RR is VHc or GND level when the reception side determination signal RR corresponding to the third transmission / reception data TR3 is sampled. The third receiving side data DRc having the voltage level shown is generated. Here, the voltage level indicating “1” of the first to third receiving side data signals DRa to DRc corresponds to the receiving side first level, and the voltage level indicating “0” corresponds to the receiving side second level. The first to third receiving side data signals DRa to DRc generated here have different phases. The transmission signal inverse conversion circuit 412 may be provided with the function of the reception side data determination circuit 411 and the reception side data determination circuit 411 may not be provided.
 受信側遅延回路413は、伝送信号逆変換回路412から出力された第1~第3受信側データ信号DRa~DRcを受け取り、サンプリングクロックSAMのタイミングに基づいてこれらの第1~第3受信側データ信号DRa~DRcの位相を互いに同一にし出力する。以下では、このように第1~第3受信側データ信号DRa~DRcの位相を互いに同一にする処理のことを「受信側位相制御処理」という。本実施形態では、受信側遅延回路413により受信側位相制御部が実現されている。 The reception-side delay circuit 413 receives the first to third reception-side data signals DRa to DRc output from the transmission signal inverse conversion circuit 412, and based on the timing of the sampling clock SAM, these first to third reception-side data The signals DRa to DRc are output with the same phase. Hereinafter, the process of making the phases of the first to third reception-side data signals DRa to DRc identical to each other is referred to as “reception-side phase control process”. In the present embodiment, a reception-side phase control unit is realized by the reception-side delay circuit 413.
 受信側出力バッファ414は、受信側位相制御処理により互いに同位相になった第1~第3受信側データ信号DRa~DRcを出力するためのバッファである。これらの第1~第3受信側データ信号DRa~DRcは、受信側出力バッファ414を介して外部に出力される。 The reception-side output buffer 414 is a buffer for outputting the first to third reception-side data signals DRa to DRc that are in phase with each other by the reception-side phase control process. These first to third reception side data signals DRa to DRc are output to the outside via the reception side output buffer 414.
 <1.2 動作>
 以上に示した構成により実現される本実施形態に係る信号伝送システムの動作について、送信側と受信側とに分けて説明する。
<1.2 Operation>
The operation of the signal transmission system according to the present embodiment realized by the configuration described above will be described separately for the transmission side and the reception side.
 <1.2.1 送信側の動作>
 図6は、本実施形態における送信側位相制御処理前の第1~第3送信側データ信号DTa~DTcを示す信号波形図である。本明細書では、第1~第3送信側データ信号DTa~DTcのそれぞれが8ビットデータ単位で1つのデータを表すものとする。ここで、第1送信側データ信号DTaの8ビットデータをそれぞれA0~A7で表し、第2送信側データ信号DTbの8ビットデータをそれぞれB0~B7で表し、第3送信側データ信号DTcの8ビットデータをそれぞれC0~C7で表す。なお、第1~第3受信側データ信号DRa~DRcのそれぞれも8ビットデータであり、第1受信側データ信号DRaの8ビットデータもそれぞれA0~A7で表し、第2受信側データ信号DRbの8ビットデータもそれぞれB0~B7で表し、第3受信側データ信号DRcの8ビットデータもそれぞれC0~C7で表す。本信号伝送システムが表示装置における表示制御回路からソースドライバへの画像データの伝送に用いられる場合、第1送信側データ信号DTa(第1受信側データ信号DRa)、第2送信側データ信号DTb(第2受信側データ信号DRb)、および第3送信側データ信号DTc(第3受信側データ信号DRc)は例えばそれぞれR用、G用、およびB用の8ビットの画像データに対応する。
<1.2.1 Operation on transmitting side>
FIG. 6 is a signal waveform diagram showing the first to third transmission side data signals DTa to DTc before the transmission side phase control processing in this embodiment. In this specification, it is assumed that each of the first to third transmission side data signals DTa to DTc represents one piece of data in units of 8 bits. Here, 8-bit data of the first transmission-side data signal DTa is represented by A0 to A7, 8-bit data of the second transmission-side data signal DTb is represented by B0 to B7, respectively, and 8 of the third transmission-side data signal DTc. Bit data are represented by C0 to C7, respectively. Each of the first to third reception side data signals DRa to DRc is also 8-bit data, and the 8-bit data of the first reception side data signal DRa is also represented by A0 to A7, respectively. The 8-bit data is also represented by B0 to B7, respectively, and the 8-bit data of the third receiving side data signal DRc is also represented by C0 to C7, respectively. When this signal transmission system is used for transmission of image data from a display control circuit to a source driver in a display device, a first transmission side data signal DTa (first reception side data signal DRa), a second transmission side data signal DTb ( The second reception side data signal DRb) and the third transmission side data signal DTc (third reception side data signal DRc) correspond to, for example, 8-bit image data for R, G, and B, respectively.
 図6に示すように、各送信側データ信号のビットデータは、2ビットデータ毎の2サンプリング期間(2TB)において空白になっている。以下では、このように空白となっているデータを「NULLデータ」といい、図6および以降の図では符号「NULL」で表している。また、各受信側データ信号のビットデータは、2サンプリング期間(2TB)毎に、サンプリングクロックSAMの電圧レベルが立ち上がるタイミングで変化する。 As shown in FIG. 6, the bit data of each transmission-side data signal is blank in two sampling periods (2 TB) for each 2-bit data. Hereinafter, such blank data is referred to as “NULL data”, and in FIG. 6 and the subsequent drawings, the data is represented by “NULL”. In addition, the bit data of each reception-side data signal changes at the timing when the voltage level of the sampling clock SAM rises every two sampling periods (2TB).
 図7は、本実施形態における送信側遅延回路311の動作を説明するための信号波形図である。図7に示すように、送信側遅延回路311は、第1~第3送信側データ信号DTa~DTcに対してサンプリングクロックSAMのタイミングに基づいた送信側位相制御処理を施す。具体的には、第1送信側データ信号DTaに対して、第2送信側データ信号DTbおよび第3送信側データ信号DTcがそれぞれ1サンプリング期間および2サンプリング期間遅延する処理を施す。このような送信側位相制御処理後の第1~第3送信側データ信号DTa~DTcは、送信側データ判別回路312に与えられた後、上述の第1~第3送信側判別信号RTa~RTcとして出力される。 FIG. 7 is a signal waveform diagram for explaining the operation of the transmission side delay circuit 311 in this embodiment. As shown in FIG. 7, the transmission-side delay circuit 311 performs transmission-side phase control processing based on the timing of the sampling clock SAM on the first to third transmission-side data signals DTa to DTc. Specifically, the first transmission side data signal DTa is subjected to processing in which the second transmission side data signal DTb and the third transmission side data signal DTc are delayed by one sampling period and two sampling periods, respectively. The first to third transmission side data signals DTa to DTc after such transmission side phase control processing are given to the transmission side data determination circuit 312 and then the first to third transmission side determination signals RTa to RTc described above. Is output as
 図8は、本実施形態における伝送信号変換回路313の動作を説明するための信号波形図である。なお、本図で示される第1~第3送信側データ信号DTa~DTcは実際にはそれぞれ第1~第3送信側判別信号RTa~RTcに相当するものであるが、便宜上、以下ではこれらを第1~第3送信側データ信号DTa~DTcとして説明する(後述の図17でも同様である)。また、以下では、連続する8つのシステム期間TAをそれぞれ「第0~第7システム期間」といい、それぞれ符号TA0~TA7で表す。 FIG. 8 is a signal waveform diagram for explaining the operation of the transmission signal conversion circuit 313 in this embodiment. Note that the first to third transmission side data signals DTa to DTc shown in the figure are actually equivalent to the first to third transmission side discrimination signals RTa to RTc, respectively. Explanation will be given as first to third transmission side data signals DTa to DTc (the same applies to FIG. 17 described later). In the following, eight consecutive system periods TA are referred to as “0th to 7th system periods”, respectively, and are represented by symbols TA0 to TA7, respectively.
 本実施形態における伝送信号生成回路313では、第0~第7システム期間TA0~TA7において、8ビット分の第1~第3送信側データ信号DTa~DTc(すなわち、合計24ビット分のデータ)に相当する伝送信号TSが生成される。なお、本実施形態および後述の第3の実施形態では図8に示すように、8ビット分の第1~第3送信側データ信号DTa~DTcはそれぞれ「11101101」、「01100101」、および「10111001」を示すものとする。なお、NULLデータはデータとして考慮されない。 In the transmission signal generation circuit 313 according to the present embodiment, the first to third transmission side data signals DTa to DTc for 8 bits (that is, data for a total of 24 bits) in the 0th to seventh system periods TA0 to TA7. A corresponding transmission signal TS is generated. In this embodiment and the third embodiment to be described later, as shown in FIG. 8, the first to third transmission side data signals DTa to DTc for 8 bits are “11101101”, “01100101”, and “10111001”, respectively. ". Note that NULL data is not considered as data.
 各システム期間における第1~第3サンプリング期間では、伝送信号変換回路313によって、第1~第3送信側データ信号DTa~DTcのビットデータにそれぞれ基づいて伝送信号TSの電圧レベルが決定される。 In the first to third sampling periods in each system period, the transmission signal conversion circuit 313 determines the voltage level of the transmission signal TS based on the bit data of the first to third transmission side data signals DTa to DTc.
 まず、第0システム期間TA0において、第1サンプリング期間では、サンプリングすべき第1送信側データ信号DTaが“1”であるビットデータA0を示しているので、伝送信号TSの第1送受信データTR1の電圧レベルは第1送信側データDTaの“1”に対応するVHaレベルになる。第2サンプリング期間では、サンプリングすべき第2送信側データ信号DTbが“0”であるビットデータB0を示しているので、伝送信号TSの第2送受信データTR2の電圧レベルは第2送信側データ信号DTbの“0”に対応するVHcレベルになる。第3サンプリング期間では、サンプリングすべき第3送信側データ信号DTcが“1”であるビットデータC0を示しているので、伝送信号TSの第3送受信データTR3の電圧レベルは第3送信側データDTcの“1”に対応するVHcレベルになる。このようにして、1システム期間分の伝送信号TSは、各送信側データ信号の1ビット分のビットデータ(すなわち、合計3ビット分のビットデータ)を示すことになる。 First, in the 0th system period TA0, in the first sampling period, the bit data A0 in which the first transmission side data signal DTa to be sampled is “1” indicates the first transmission / reception data TR1 of the transmission signal TS. The voltage level becomes a VHa level corresponding to “1” of the first transmission side data DTa. In the second sampling period, since the second transmission side data signal DTb to be sampled indicates the bit data B0 which is “0”, the voltage level of the second transmission / reception data TR2 of the transmission signal TS is the second transmission side data signal. It becomes the VHc level corresponding to “0” of DTb. In the third sampling period, since the third transmission side data signal DTc to be sampled indicates the bit data C0 of “1”, the voltage level of the third transmission / reception data TR3 of the transmission signal TS is the third transmission side data DTc. VHc level corresponding to “1”. In this way, the transmission signal TS for one system period indicates bit data for one bit of each transmission-side data signal (that is, bit data for a total of three bits).
 次に、第1システム期間TA1において、第1サンプリング期間では、サンプリングすべき第1送信側データ信号DTaが“1”であるビットデータA1を示しているので、伝送信号TSの第1送受信データTR1の電圧レベルは第1送信側データ信号DTaの“1”に対応するVHaレベルになる。第2サンプリング期間では、サンプリングすべき第2送信側データDTbが“1”であるビットデータB1を示しているので、伝送信号TSの第2送受信データTR2の電圧レベルは第2送信側データ信号DTbの“1”に対応するVHbレベルになる。第3サンプリング期間では、サンプリングすべき第3送信側データ信号DTcが“0”であるビットデータC0を示しているので、伝送信号TSの第3送受信データTR3の電圧レベルは第3送信側データ信号DTcの“0”に対応するGNDレベルになる。 Next, in the first system period TA1, in the first sampling period, the bit data A1 in which the first transmission side data signal DTa to be sampled is “1” indicates the first transmission / reception data TR1 of the transmission signal TS. The voltage level becomes a VHa level corresponding to “1” of the first transmission side data signal DTa. In the second sampling period, bit data B1 in which the second transmission side data DTb to be sampled is “1” indicates the voltage level of the second transmission / reception data TR2 of the transmission signal TS is the second transmission side data signal DTb. VHb level corresponding to “1”. In the third sampling period, the third transmission side data signal DTc to be sampled indicates bit data C0 that is “0”, so the voltage level of the third transmission / reception data TR3 of the transmission signal TS is the third transmission side data signal. It becomes the GND level corresponding to “0” of DTc.
 第2システム期間TA2~第7システム期間TA7、および後続の各システム期間においても同様の手順により伝送信号TSの各送受信データの電圧レベルが決定されることにより、伝送信号変換回路313において伝送信号TSが生成される。このようにして生成された伝送信号TSは、送信側出力バッファ314および伝送路5を介して受信部2に伝送される。 In the second system period TA2 to the seventh system period TA7 and each subsequent system period, the transmission signal TS is determined in the transmission signal conversion circuit 313 by determining the voltage level of each transmission / reception data of the transmission signal TS by the same procedure. Is generated. The transmission signal TS generated in this way is transmitted to the receiving unit 2 via the transmission side output buffer 314 and the transmission path 5.
 <1.2.2 受信側の動作>
 図9は、本実施形態における伝送信号逆変換回路412の動作を説明するための信号波形図である。なお、本図で示される第1~第3受信側データ信号DRa~DRcは実際には、伝送信号TSに基づいて生成された受信側判別信号RRに基づいて得られるものであるが、便宜上、以下の説明では、これらの第1~第3受信側データ信号DRa~DRcが伝送信号TSから直接得られるものとして説明する(後述の図18でも同様である)。
<1.2.2 Operation on receiving side>
FIG. 9 is a signal waveform diagram for explaining the operation of the transmission signal inverse conversion circuit 412 in this embodiment. Note that the first to third reception side data signals DRa to DRc shown in this figure are actually obtained based on the reception side determination signal RR generated based on the transmission signal TS. In the following description, these first to third receiving side data signals DRa to DRc will be described as being obtained directly from the transmission signal TS (the same applies to FIG. 18 described later).
 本実施形態における伝送信号逆変換回路412では、第0~第7システム期間TA0~TA7において、伝送信号TSに基づいて、8ビット分の第1~第3受信側データ信号DRa~DRc(すなわち、合計24ビット分のデータ)が生成される。なお、第0~第7システム期間TA0~TA7は便宜上の名称であるので、送信側と受信側との第0~第7システム期間TA0~TA7のタイミングは互いに一致する必要はない。 In the transmission signal inverse conversion circuit 412 in this embodiment, in the 0th to 7th system periods TA0 to TA7, based on the transmission signal TS, 8-bit first to third receiving side data signals DRa to DRc (ie, A total of 24 bits of data) is generated. Since the 0th to 7th system periods TA0 to TA7 are names for convenience, the timings of the 0th to 7th system periods TA0 to TA7 on the transmitting side and the receiving side do not have to coincide with each other.
 各システム期間における第1~第3サンプリング期間ではそれぞれ、伝送信号逆変換回路412によって、伝送信号TSの第1~第3送受信データTR1~TR3がサンプリングされると共に、第1~第3送受信データTR1~TR3の電圧レベルに基づいてそれぞれ第1~第3受信側データ信号DRa~DRaのビットデータが決定される。 In the first to third sampling periods in each system period, the transmission signal inverse conversion circuit 412 samples the first to third transmission / reception data TR1 to TR3 of the transmission signal TS, and the first to third transmission / reception data TR1. Bit data of the first to third receiving data signals DRa to DRa are determined based on the voltage levels of .about.TR3, respectively.
 まず、第0システム期間TA0において、第1サンプリング期間では伝送信号TSの第1送受信データTR1の電圧レベルがVHaレベルであるので、第1受信側データ信号DRaのビットデータA0は“1”になる。なお、受信側では、“1”を示すビットデータはVHレベルにより、“0”を示すビットデータはGNDレベルにより実現される。第2サンプリング期間では伝送信号TSの第2送受信データTR2の電圧レベルがVHcレベルであるので、第2受信側データ信号DRbのビットデータB0は“0”になる。第3サンプリング期間では伝送信号TSの第3送受信データTR3の電圧レベルがVHcレベルであるので、第3受信側データ信号DRcのビットデータC0は“1”になる。このようにして、1システム期間分の伝送信号TSにより、各受信側データ信号の1ビット分のビットデータ(すなわち、合計3ビット分のビットデータ)が得られる。 First, in the 0th system period TA0, since the voltage level of the first transmission / reception data TR1 of the transmission signal TS is the VHa level in the first sampling period, the bit data A0 of the first reception side data signal DRa becomes “1”. . On the receiving side, bit data indicating “1” is realized by the VH level, and bit data indicating “0” is realized by the GND level. In the second sampling period, since the voltage level of the second transmission / reception data TR2 of the transmission signal TS is the VHc level, the bit data B0 of the second reception side data signal DRb is “0”. In the third sampling period, since the voltage level of the third transmission / reception data TR3 of the transmission signal TS is the VHc level, the bit data C0 of the third reception-side data signal DRc is “1”. In this manner, 1-bit bit data of each reception-side data signal (that is, bit data for a total of 3 bits) is obtained from the transmission signal TS for one system period.
 次に、第1システム期間TA1において、第1サンプリング期間では伝送信号TSの第1送受信データTR1の電圧レベルがVHaレベルであるので、第1受信側データDRaのビットデータA1は“1”になる。第2サンプリング期間では伝送信号TSの第2送受信データTR2の電圧レベルがVHbであるので、第2受信側データ信号DRbのビットデータB1は“1”になる。第3サンプリング期間では伝送信号TSの第3送受信データTR3の電圧レベルがGNDレベルであるので、第3受信側データ信号DRcのビットデータC1は“0”になる。 Next, in the first system period TA1, since the voltage level of the first transmission / reception data TR1 of the transmission signal TS is the VHa level in the first sampling period, the bit data A1 of the first reception side data DRa becomes “1”. . In the second sampling period, since the voltage level of the second transmission / reception data TR2 of the transmission signal TS is VHb, the bit data B1 of the second reception side data signal DRb is “1”. In the third sampling period, since the voltage level of the third transmission / reception data TR3 of the transmission signal TS is the GND level, the bit data C1 of the third reception-side data signal DRc is “0”.
 第2システム期間TA2~第7システム期間TA7、および後続の各システム期間においても同様の手順により第1~第3受信側データ信号DRa~DTaのビットデータが決定されることにより、受信側位相制御処理前の第1~第3受信側データ信号DRa~DRcが生成される。図9に示すように、第1~第3受信側データ信号DRa~DRcはそれぞれ、「11101101」、「01100101」、および「10111001」を示している。すなわち、第1~第3受信側データ信号DRa~DRcはそれぞれ第1~第3送信側データ信号DTa~DTcと同じビットデータを示している。なお、上述のようにNULLデータは考慮されない。このようにして生成された受信側位相制御処理前の第1~第3受信側データ信号DRa~DRcは、受信側遅延回路413に与えられる。 In the second system period TA2 to the seventh system period TA7 and each subsequent system period, the bit data of the first to third reception side data signals DRa to DTa is determined by the same procedure, so that the reception side phase control is performed. First to third receiving side data signals DRa to DRc before processing are generated. As shown in FIG. 9, the first to third receiving side data signals DRa to DRc indicate “11101101”, “01100101”, and “10111001”, respectively. That is, the first to third reception side data signals DRa to DRc indicate the same bit data as the first to third transmission side data signals DTa to DTc, respectively. Note that NULL data is not considered as described above. The first to third reception-side data signals DRa to DRc before the reception-side phase control processing generated in this way are given to the reception-side delay circuit 413.
 図10は、受信側位相制御処理前の第1~第3受信側データ信号DRa~DRcを示す信号波形図である。図10に示すように、各受信側データ信号のビットデータは、3サンプリング期間(3TB)毎に、サンプリングクロックSAMの電圧レベルが立ち上がるタイミングで変化する。なお、本実施形態では各受信側データ信号にはNULLデータが含まれないものとしているが、本発明はこれに限定されるものではなく、例えば各送信側データ信号と同様にNULLデータが挿入されていても良い。 FIG. 10 is a signal waveform diagram showing the first to third reception side data signals DRa to DRc before the reception side phase control processing. As shown in FIG. 10, the bit data of each reception side data signal changes at the timing when the voltage level of the sampling clock SAM rises every three sampling periods (3TB). In this embodiment, it is assumed that NULL data is not included in each reception side data signal. However, the present invention is not limited to this, and for example, NULL data is inserted in the same manner as each transmission side data signal. May be.
 図11は、受信側遅延回路413の動作を説明するための信号波形図である。図11に示すように、受信側遅延回路413は、第1~第3受信側データ信号DRa~DRcに対してサンプリングクロックSAMのタイミングに基づいた受信側位相制御処理を施す。具体的には、第3受信側データ信号DRcに対して、第2受信側データ信号DRbおよび第1受信側データ信号DRaがそれぞれ1サンプリング期間および2サンプリング期間遅延する処理を施す。これにより、第1~第3受信側データ信号DRa~DRcの位相が互いに同一になる。このような受信側位相制御処理後の第1~第3受信側データ信号DRa~DRcは、受信側出力バッファ414を介して出力される。 FIG. 11 is a signal waveform diagram for explaining the operation of the reception side delay circuit 413. As shown in FIG. 11, the reception-side delay circuit 413 performs reception-side phase control processing based on the timing of the sampling clock SAM on the first to third reception-side data signals DRa to DRc. Specifically, the second receiving side data signal DRb and the first receiving side data signal DRa are subjected to processing for delaying the first receiving side data signal DRc and the first receiving side data signal DRa by 1 sampling period and 2 sampling periods, respectively. As a result, the phases of the first to third receiving data signals DRa to DRc are the same. The first to third reception side data signals DRa to DRc after such reception side phase control processing are output via the reception side output buffer 414.
 以上のようにして、本実施形態に係る信号伝送システムの動作が実現される。 As described above, the operation of the signal transmission system according to the present embodiment is realized.
 ところで、ビットデータ“1”および“0”について、上述のように第1~第3送受信データTR1~TR3は互いに異なる電圧レベルになっている。このため、各システム期間における第1~第3サンプリング期間のそれぞれにおいて、伝送信号逆変換回路412でサンプリングすべき伝送信号TS(詳細には受信側判別信号RR)の電圧レベルは2種類となる。すなわち、第1サンプリング期間においてサンプリングすべき伝送信号TS(第1送受信データTR1)の電圧レベルはVHaレベルおよびVHbレベルの2種類であり、第2サンプリング期間においてサンプリングすべき伝送信号TS(第2送受信データTR2)の電圧レベルはVHbレベルおよびVHcレベルの2種類であり、第3サンプリング期間においてサンプリングすべき伝送信号TS(第3送受信データTR3)の電圧レベルはVHcレベルおよびGNDレベルの2種類である。 Incidentally, for the bit data “1” and “0”, the first to third transmission / reception data TR1 to TR3 are at different voltage levels as described above. Therefore, in each of the first to third sampling periods in each system period, there are two types of voltage levels of the transmission signal TS (specifically, the reception side determination signal RR) to be sampled by the transmission signal inverse conversion circuit 412. That is, there are two types of voltage levels of the transmission signal TS (first transmission / reception data TR1) to be sampled in the first sampling period, the VHa level and the VHb level, and the transmission signal TS (second transmission / reception data) to be sampled in the second sampling period. The voltage level of the data TR2) is two types of VHb level and VHc level, and the voltage level of the transmission signal TS (third transmission / reception data TR3) to be sampled in the third sampling period is two types of VHc level and GND level. .
 このような設定において、例えば、第1送受信データTR1の電圧レベルがVHcレベルまたはGNDレベルであるときには伝送欠陥が生じていると考えられる。この場合、VHcレベルまたはGNDレベルを、第1送受信データTR1に対応するVHaレベルおよびVHbレベルのうち、VHcレベルまたはGNDレベルに近いVHbレベルに訂正することができる。また、第2送受信データTR2の電圧レベルがVHaレベルまたはGNDレベルであるときにも伝送欠陥が生じていると考えられる。この場合、第2送受信データTR2に対応するVHbレベルに近いVHaレベルはVHbレベルに訂正し、第2送受信データTR2に対応するVHcレベルに近いGNDレベルに訂正することができる。また、第3送受信データTR3の電圧レベルがVHaレベルまたはVHbレベルであるときにも伝送欠陥が生じていると考えられる。この場合、VHaレベルまたはVHbレベルを、第3送受信データTR3に対応するVHcレベルおよびGNDレベルのうち、VHaレベルまたはVHbレベルに近いVHcレベルに訂正することができる。 In such a setting, for example, when the voltage level of the first transmission / reception data TR1 is the VHc level or the GND level, it is considered that a transmission defect has occurred. In this case, the VHc level or the GND level can be corrected to a VHb level close to the VHc level or the GND level among the VHa level and the VHb level corresponding to the first transmission / reception data TR1. It is also considered that a transmission defect has occurred when the voltage level of the second transmission / reception data TR2 is the VHa level or the GND level. In this case, the VHa level close to the VHb level corresponding to the second transmission / reception data TR2 can be corrected to the VHb level and corrected to the GND level close to the VHc level corresponding to the second transmission / reception data TR2. It is also considered that a transmission defect has occurred when the voltage level of the third transmission / reception data TR3 is the VHa level or the VHb level. In this case, the VHa level or VHb level can be corrected to a VHc level close to the VHa level or the VHb level among the VHc level and the GND level corresponding to the third transmission / reception data TR3.
 また、各システム期間の切り替わり前後である第3サンプリング期間および第1サンプリング期間にそれぞれサンプリングすべき伝送信号TSである第3送受信データTR3および第1送受信データTR1に着目すると、第1送受信データTR1に対応するVHaレベルおよびVHbレベルのいずれも、第3送受信データTR3に対応する2つの電圧レベルのうちの大きい方であるVHcよりも大きい。一方で、第1送受信データTR1および第2送受信データTR2に着目すると、第2送受信データTR2に対応する電圧レベルは第1送受信データTR1に対応する電圧レベルと同じであるか、または小さい。同様に、第2送受信データTR2および第3送受信データTR3に着目すると、第3送受信データTR3に対応する電圧レベルは第2送受信データTR2に対応する電圧レベルと同じであるか、または小さい。このように、第3サンプリング期間から第1サンプリング期間に移行するときにのみ、伝送信号TSの電圧レベルが大きくなる。このため、同期ずれが生じたとしても、伝送信号TSの電圧レベルが直前のサンプリング期間よりも大きくなったサンプリング期間を第1サンプリング期間であると判別できるので、同期ずれを解消できる。 Further, when attention is paid to the third transmission / reception data TR3 and the first transmission / reception data TR1 which are transmission signals TS to be sampled in the third sampling period and the first sampling period before and after the switching of each system period, the first transmission / reception data TR1 Both the corresponding VHa level and VHb level are larger than VHc, which is the larger of the two voltage levels corresponding to the third transmission / reception data TR3. On the other hand, focusing on the first transmission / reception data TR1 and the second transmission / reception data TR2, the voltage level corresponding to the second transmission / reception data TR2 is the same as or smaller than the voltage level corresponding to the first transmission / reception data TR1. Similarly, paying attention to the second transmission / reception data TR2 and the third transmission / reception data TR3, the voltage level corresponding to the third transmission / reception data TR3 is the same as or smaller than the voltage level corresponding to the second transmission / reception data TR2. Thus, the voltage level of the transmission signal TS increases only when the third sampling period shifts to the first sampling period. For this reason, even if a synchronization shift occurs, the sampling period in which the voltage level of the transmission signal TS is larger than the immediately preceding sampling period can be determined as the first sampling period, and thus the synchronization shift can be eliminated.
 <1.3 効果>
 本実施形態によれば、送信部3において、システムクロックSYSおよびサンプリングクロックSAMのタイミングに基づいて第1~第3送信側データ信号DTa~DTcを順にサンプリングすると共にこれらの電圧レベルを変化させることにより伝送信号TSが生成され、当該送信部3から受信部4に1本の伝送路5を介して伝送される。そして、受信部4において、システムクロックSYSおよびサンプリングクロックSAMのタイミングに基づいて、伝送信号TSの第1~第3送受信データTR1~TR3の電圧レベルにそれぞれ応じた第1~第3受信側データ信号DRa~DRcが生成される。また、システムクロックSYSおよびサンプリングクロックSAMによって同期をとるのみならず、第1~第3送受信データTR1~TR3の電圧レベルを互いに異ならせているので、このような電圧レベルの相違に基づいて、例えば伝送欠陥を低減することができる。このため、複数のデータが1本の伝送路5を用いて確実に伝送される。これにより、回路規模の増大を抑制できるので、コストの増大を抑えつつ複数種類のデータを伝送できる。また、換言すると、伝送路1本あたりのデータ伝送量が増加されるので、従来よりも効率的にデータ伝送を行うことができる。なお、本実施形態では、LVDSのような微小電圧を用いる必要がないので、一般的に高価なLVDS用の回路が必要とされない。その結果、さらなる低コスト化を図ることができる。
<1.3 Effect>
According to the present embodiment, the transmission unit 3 sequentially samples the first to third transmission side data signals DTa to DTc based on the timings of the system clock SYS and the sampling clock SAM, and changes their voltage levels. A transmission signal TS is generated and transmitted from the transmission unit 3 to the reception unit 4 via one transmission path 5. Then, in the receiving unit 4, based on the timings of the system clock SYS and the sampling clock SAM, the first to third reception-side data signals corresponding to the voltage levels of the first to third transmission / reception data TR1 to TR3 of the transmission signal TS, respectively. DRa to DRc are generated. Further, not only synchronization is achieved by the system clock SYS and the sampling clock SAM, but the voltage levels of the first to third transmission / reception data TR1 to TR3 are different from each other. Transmission defects can be reduced. For this reason, a plurality of data are reliably transmitted using one transmission path 5. Thereby, since an increase in circuit scale can be suppressed, a plurality of types of data can be transmitted while suppressing an increase in cost. In other words, since the amount of data transmission per transmission line is increased, data transmission can be performed more efficiently than in the past. In this embodiment, since it is not necessary to use a minute voltage like LVDS, generally an expensive circuit for LVDS is not required. As a result, further cost reduction can be achieved.
 また、本実施形態によれば、第1送受信データTR1の“0”に対応する電圧レベルおよび第2送受信データTR2の“1”に対応する電圧レベルは、互いに同じVHbレベルである。第2送受信データTR2の“0”に対応する電圧レベルおよび第3送受信データTR3の“1”に対応する電圧レベルは、互いに同じVHcレベルである。そして、第1送受信データTR1の“1”に対応する電圧レベルはVHaレベルであり、当該VHaレベルは他と重複していない。同様に、第3送受信データTR3の“0”に対応する電圧レベルはGNDレベルであり、当該GNDレベルは他の重複していない。このように、本実施形態における伝送信号TSを実現する電圧レベルの種類は、N+1種類(4種類)になっている。このため、同期ずれが生じたとしても、伝送信号TSの電圧レベルが直前のサンプリング期間よりも大きくなったサンプリング期間を第1サンプリング期間であると判別できるので、同期ずれを解消できる。これにより、より確実に複数種類のデータ伝送を伝送することができる。 Further, according to the present embodiment, the voltage level corresponding to “0” of the first transmission / reception data TR1 and the voltage level corresponding to “1” of the second transmission / reception data TR2 are the same VHb level. The voltage level corresponding to “0” of the second transmission / reception data TR2 and the voltage level corresponding to “1” of the third transmission / reception data TR3 are the same VHc level. The voltage level corresponding to “1” of the first transmission / reception data TR1 is the VHa level, and the VHa level does not overlap with the others. Similarly, the voltage level corresponding to “0” of the third transmission / reception data TR3 is the GND level, and the GND level is not duplicated. Thus, there are N + 1 types (four types) of voltage levels for realizing the transmission signal TS in the present embodiment. For this reason, even if a synchronization shift occurs, the sampling period in which the voltage level of the transmission signal TS is larger than the immediately preceding sampling period can be determined as the first sampling period, and thus the synchronization shift can be eliminated. Thereby, a plurality of types of data transmission can be transmitted more reliably.
 また、本実施形態によれば、第1~第3送信側データ信号DTa~DTcから伝送信号TSを生成するための電圧レベル、および伝送信号TSから第1~第3受信側データ信号DRa~DRcを生成するための電圧レベルをそれぞれ送信側レベルシフタ30および受信側レベルシフタ40を用いて生成することができる。特に、互いに異なる複数の電圧レベルが必要な送信側では、送信側レベルシフタ30を用いることにより、ホスト1から複数の電圧レベルを供給せずとも(すなわち、第1~第3送信側制御信号CTa~CTcの電圧レベルが互いに同一でも)、互いに異なる複数の電圧レベルを生成することができる。 Further, according to the present embodiment, the voltage level for generating the transmission signal TS from the first to third transmission side data signals DTa to DTc, and the first to third reception side data signals DRa to DRc from the transmission signal TS. Can be generated using the transmission-side level shifter 30 and the reception-side level shifter 40, respectively. In particular, on the transmission side that requires a plurality of different voltage levels, the transmission side level shifter 30 is used, so that a plurality of voltage levels are not supplied from the host 1 (that is, the first to third transmission side control signals CTa˜). Even if the voltage levels of CTc are the same, a plurality of different voltage levels can be generated.
 ところで、本実施形態では、伝送信号TSにおいて、第1送信側データ信号DTaのビットデータの“1”および“0”をそれぞれVHaレベルおよびVHbレベルに対応させ、第2送信側データ信号DTbのビットデータの“1”および“0”をそれぞれVHbレベルおよびVHcレベルに対応させ、第3送信側データ信号DTcのビットデータの“1”および“0”をそれぞれVHcレベルおよびGNDレベルに対応させている。すなわち、各送信側データ信号のビットデータの“1”および/または“0”に対応する電圧レベルと、他の送信側データ信号のビットデータの“0”および/または“1”に対応する電圧レベルとを重複させているが、本発明はこれに限定されるものではない。例えば、各送信側データ信号のビットデータの“1”および“0”に対応する電圧レベルの双方と、他の送信側データ信号のビットデータの“1”および“0”に対応する電圧レベルの双方とを互いに異ならせることにより、N×2種類(本実施形態では6種類)の電圧レベルからなる伝送信号TSを生成するようにしても良い。この場合、必要となる電圧レベルの数が増えはするが、例えば同期ずれが生じた場合でも、受信側データ信号間のビットデータの混同を確実に防止されるので、より確実に複数種類のデータを伝送することができる。 By the way, in the present embodiment, in the transmission signal TS, the bit data “1” and “0” of the first transmission side data signal DTa correspond to the VHa level and VHb level, respectively, and the bit of the second transmission side data signal DTb Data “1” and “0” correspond to the VHb level and VHc level, respectively, and bit data “1” and “0” of the third transmission side data signal DTc correspond to the VHc level and GND level, respectively. . That is, the voltage level corresponding to “1” and / or “0” of the bit data of each transmission side data signal and the voltage corresponding to “0” and / or “1” of the bit data of the other transmission side data signal Although the level is overlapped, the present invention is not limited to this. For example, both of the voltage levels corresponding to “1” and “0” of the bit data of each transmission side data signal and the voltage levels corresponding to “1” and “0” of the bit data of other transmission side data signals By making the two different from each other, the transmission signal TS having N × 2 types (six types in the present embodiment) of voltage levels may be generated. In this case, although the number of required voltage levels increases, for example, even if a synchronization error occurs, it is possible to reliably prevent the bit data from being confused between the receiving side data signals, so that more types of data can be more reliably obtained. Can be transmitted.
 <2.第2の実施形態>
 <2.1 全体構成>
 本発明の第2の実施形態は、送信側レベルコントロールプロセッサ31および受信側レベルコントロールプロセッサ41を除き上記第1の実施形態と構成等が共通するので、当該共通部分についての説明を省略する。また、本実施形態の構成要素のうちの第1の実施形態と同一の要素については、同一の参照符号を付して適宜説明を省略する。
<2. Second Embodiment>
<2.1 Overall configuration>
Since the second embodiment of the present invention has the same configuration and the like as the first embodiment except for the transmission side level control processor 31 and the reception side level control processor 41, description of the common part is omitted. In addition, the same elements as those of the first embodiment among the components of the present embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
 <2.1.1 送信側レベルコントロールプロセッサの構成>
 図12は、本実施形態における送信側レベルコントロールプロセッサ31の構成を示すブロック図である。図12に示すように、この送信側レベルコントロールプロセッサ31は上記第1の実施形態におけるものと異なり、送信側遅延回路311、送信側データ判別回路312、および伝送信号変換回路313に代えて、変換プロセッサ(処理装置)315を備えている。
<2.1.1 Configuration of transmitting side level control processor>
FIG. 12 is a block diagram showing a configuration of the transmission side level control processor 31 in the present embodiment. As shown in FIG. 12, the transmission side level control processor 31 is different from that in the first embodiment in that a transmission side delay circuit 311, a transmission side data discrimination circuit 312 and a transmission signal conversion circuit 313 are converted. A processor (processing device) 315 is provided.
 変換プロセッサ315は、送信側遅延回路311、送信側データ判別回路312、および伝送信号変換回路313の機能を備えるものであり、上記第1の実施形態で示した送信側遅延回路311、送信側データ判別回路312、および伝送信号変換回路313の動作を実現する。すなわち、変換プロセッサ315は、送信側入力バッファ310を介して入力された第1~第3送信側データ信号DTa~DTc、システムクロックSYS、サンプリングクロックSAM、および送信側レベルシフタ30から出力された第1~第3送信側レベルシフト信号LSTa~LSTcを受け取り、これらに基づいて伝送信号TSを生成し、送信側出力バッファ314に出力する。なお、変換プロセッサ315の詳細な動作については、上記第1の実施形態における送信側遅延回路311、送信側データ判別回路312、および伝送信号変換回路313の動作と同様であるので、その説明を省略する。 The conversion processor 315 includes the functions of the transmission side delay circuit 311, the transmission side data determination circuit 312, and the transmission signal conversion circuit 313, and includes the transmission side delay circuit 311 and the transmission side data described in the first embodiment. The operations of the determination circuit 312 and the transmission signal conversion circuit 313 are realized. That is, the conversion processor 315 receives the first to third transmission data signals DTa to DTc, the system clock SYS, the sampling clock SAM, and the first output from the transmission level shifter 30 that are input via the transmission input buffer 310. The third transmission side level shift signals LSTa to LSTc are received, the transmission signal TS is generated based on these, and output to the transmission side output buffer 314. The detailed operation of the conversion processor 315 is the same as the operation of the transmission side delay circuit 311, the transmission side data determination circuit 312, and the transmission signal conversion circuit 313 in the first embodiment, and a description thereof will be omitted. To do.
 <2.1.2 受信側レベルコントロールプロセッサの構成>
 図13は、本実施形態における受信側レベルコントロールプロセッサ41の構成を示すブロック図である。図13に示すように、この受信側レベルコントロールプロセッサ41は上記第1の実施形態におけるものと異なり、受信側データ判別回路411、伝送信号逆変換回路412、および受信側遅延回路413に代えて、逆変換プロセッサ(処理装置)415を備えている。
<2.1.2 Configuration of receiving side level control processor>
FIG. 13 is a block diagram showing a configuration of the receiving side level control processor 41 in the present embodiment. As shown in FIG. 13, the receiving side level control processor 41 is different from that in the first embodiment in place of the receiving side data discriminating circuit 411, the transmission signal inverse converting circuit 412, and the receiving side delay circuit 413. An inverse conversion processor (processing device) 415 is provided.
 逆変換プロセッサ415は、受信側データ判別回路411、伝送信号逆変換回路412、および受信側遅延回路413の機能を備えるものであり、上記第1の実施形態で示した受信側データ判別回路411、伝送信号逆変換回路412、および受信側遅延回路413の動作を実現する。すなわち、逆変換プロセッサ415は、受信側入力バッファ410を介して入力された伝送信号TS、システムクロックSYS、サンプリングクロックSAM、および受信側レベルシフタ40から出力された受信側レベルシフト信号LSRを受け取り、これらに基づいて第1~第3受信側データ信号DRa~DRcを生成し、受信側出力バッファ414に出力する。なお、逆変換プロセッサ415の詳細な動作については、上記第1の実施形態における受信側データ判別回路411、伝送信号逆変換回路412、および受信側遅延回路413の動作と同様であるので、その説明を省略する。 The inverse conversion processor 415 includes functions of a reception side data determination circuit 411, a transmission signal reverse conversion circuit 412, and a reception side delay circuit 413. The reception side data determination circuit 411 described in the first embodiment, The operations of the transmission signal inverse conversion circuit 412 and the reception side delay circuit 413 are realized. That is, the inverse conversion processor 415 receives the transmission signal TS, the system clock SYS, the sampling clock SAM, and the reception-side level shift signal LSR output from the reception-side level shifter 40, which are input via the reception-side input buffer 410. Based on the first to third receiving side data signals DRa to DRc, and outputs them to the receiving side output buffer 414. The detailed operation of the inverse conversion processor 415 is the same as the operation of the reception side data determination circuit 411, the transmission signal inverse conversion circuit 412, and the reception side delay circuit 413 in the first embodiment. Is omitted.
 <2.2 効果>
 本実施形態によれば、送信側遅延回路311、送信側データ判別回路312、および伝送信号変換回路313が変換プロセッサ315により、受信側データ判別回路411、伝送信号逆変換回路412、および受信側遅延回路413が逆変換プロセッサ415によりそれぞれ1つの構成要素として実現される。このため、送信側遅延回路311、送信側データ判別回路312、および伝送信号変換回路313で互いに共通する構成要素を共有化し、また、受信側データ判別回路411、伝送信号逆変換回路412、および受信側遅延回路413で互いに共通する構成要素を共有化することにより、送信部3および受信部4の回路規模を削減することができる。
<2.2 Effect>
According to the present embodiment, the transmission side delay circuit 311, the transmission side data determination circuit 312, and the transmission signal conversion circuit 313 are converted into the reception side data determination circuit 411, the transmission signal inverse conversion circuit 412, and the reception side delay by the conversion processor 315. The circuits 413 are each realized as one component by the inverse conversion processor 415. For this reason, the transmission side delay circuit 311, the transmission side data discrimination circuit 312, and the transmission signal conversion circuit 313 share common components, and the reception side data discrimination circuit 411, the transmission signal inverse conversion circuit 412, and the reception side By sharing common components in the side delay circuit 413, the circuit scale of the transmission unit 3 and the reception unit 4 can be reduced.
 <3.第3の実施形態>
 <3.1 全体構成>
 本発明の第3の実施形態は、送信側レベルコントロールプロセッサ31および受信側レベルコントロールプロセッサ41を除き上記第1の実施形態と構成等が共通するので、当該共通部分についての説明を省略する。また、また、本実施形態の構成要素のうちの第1の実施形態と同一の要素については、同一の参照符号を付して適宜説明を省略する。
<3. Third Embodiment>
<3.1 Overall configuration>
Since the third embodiment of the present invention has the same configuration and the like as the first embodiment except for the transmission side level control processor 31 and the reception side level control processor 41, description of the common part is omitted. In addition, among the components of the present embodiment, the same elements as those of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 <3.1.1 送信側レベルコントロールプロセッサの構成>
 図14は、本実施形態における送信側レベルコントロールプロセッサ31の構成を示すブロック図である。図14に示すように、この送信側レベルコントロールプロセッサ31は上記第1の実施形態におけるものと異なり、送信側遅延回路311に代えて、3つのFIFO(First In First Out)メモリ316a~316cおよび送信側読み出し制御回路317を備えている。以下では、3つのFIFOメモリ316a~316cをそれぞれ「第1~第3送信側FIFOメモリ」という。
<3.1.1 Configuration of Transmission Level Control Processor>
FIG. 14 is a block diagram showing a configuration of the transmission side level control processor 31 in the present embodiment. As shown in FIG. 14, the transmission-side level control processor 31 is different from that in the first embodiment, and instead of the transmission-side delay circuit 311, three FIFO (First In First Out) memories 316 a to 316 c and transmission A side readout control circuit 317 is provided. Hereinafter, the three FIFO memories 316a to 316c are referred to as “first to third transmission side FIFO memories”, respectively.
 第1~第3送信側FIFOメモリ316a~316cは、先に書き込んだデータを先に読み出すバッファ動作をするメモリである。第1~第3送信側FIFOメモリ316a~316cは、送信側入力バッファ300を介して入力された第1~第3送信側データ信号DTa~DTcのビットデータをそれぞれ記憶する。なお、本実施形態において送信側入力バッファ300を介して入力される第1~第3送信側データ信号DTa~DTcは、上記第1の実施形態のように2ビット毎にNULLデータが挿入されたものでも良く、NULLデータが挿入されていないものでも良い。 The first to third transmission side FIFO memories 316a to 316c are memories that perform a buffer operation of reading data written first. The first to third transmission side FIFO memories 316a to 316c store bit data of the first to third transmission side data signals DTa to DTc input via the transmission side input buffer 300, respectively. In the present embodiment, the first to third transmission side data signals DTa to DTc input via the transmission side input buffer 300 have NULL data inserted every two bits as in the first embodiment. It may be a thing, and the thing in which NULL data is not inserted may be sufficient.
 送信側読み出し制御回路317は、第1~第3送信側FIFOメモリ316a~316cにそれぞれ書き込まれた第1~第3送信側データ信号DTa~DTcのビットデータの読み出しタイミングを制御する。具体的には、送信側読み出し制御回路317は、読み出し元になるべき送信側FIFOメモリを示す、外部(例えばホスト1)から与えられる送信側読み出し制御信号RCTおよびサンプリングクロックSAMに基づいて、第1~第3送信側FIFOメモリ316a~316cから1サンプリング期間毎に順にビットデータを読み出す。読み出された第1~第3送信側データ信号DTa~DTcのビットデータは送信側データ判別回路312に与えられる。このため、第1~第3送信側FIFOメモリ316a~316cから1サンプリング期間毎に順に第1~第3送信側データ信号DTa~DTcのビットデータが読み出されることにより、実質的に上記第1の実施形態と同様の送信側位相制御処理が施された第1~第3送信側データ信号DTa~DTcが送信側データ判別回路302に与えられることになる。このように本実施形態では、第1~第3送信側FIFOメモリ316a~316cおよび送信側読み出し制御回路317により送信側位相制御部が実現されている。 The transmission side read control circuit 317 controls the read timing of the bit data of the first to third transmission side data signals DTa to DTc written in the first to third transmission side FIFO memories 316a to 316c, respectively. Specifically, the transmission side read control circuit 317 indicates the first side based on the transmission side read control signal RCT and the sampling clock SAM given from the outside (for example, the host 1) indicating the transmission side FIFO memory to be the read source. Read bit data sequentially from the third transmission side FIFO memories 316a to 316c every sampling period. The read bit data of the first to third transmission side data signals DTa to DTc are supplied to the transmission side data discrimination circuit 312. Therefore, the bit data of the first to third transmission side data signals DTa to DTc are read from the first to third transmission side FIFO memories 316a to 316c in order every sampling period, so that the first The first to third transmission side data signals DTa to DTc subjected to the transmission side phase control process similar to the embodiment are given to the transmission side data discrimination circuit 302. As described above, in this embodiment, the transmission-side phase control unit is realized by the first to third transmission-side FIFO memories 316 a to 316 c and the transmission-side read control circuit 317.
 ここで、第1~第3送信側FIFOメモリ316a~316cへのビットデータの書き込みは連続して行われる一方で、第1~第3送信側FIFOメモリ316a~316cからのビットデータの読み出しは3回に1回の頻度で順番に行われる。このため、各送信側FIFOメモリからのビットデータの読み出し速度は、第1~第3送信側FIFOメモリ316a~316cへのビットデータの書き込み速度の3倍であることが望ましい。これにより、第1~第3送信側FIFOメモリ316a~316cへのビットデータの書き込み速度と第1~第3送信側FIFOメモリ316a~316cからのビットデータの読み出し速度を実質的に等しくすることができる。なお、第1~第3送信側FIFOメモリ316a~316cへのビットデータの書き込み速度と各送信側FIFOメモリからのビットデータの読み出し速度とを互いに等しくしても良いが、この場合、第1~第3送信側FIFOメモリ316a~316cにビットデータを記憶するための空きがなくなるおそれがある。この場合は、本信号伝送システムに図示しない手段によりデータ退避用のメモリを設け、当該メモリに、第1~第3送信側FIFOメモリ316a~316cにそれぞれ格納すべき第1~第3送信側データ信号DTa~DTcのビットデータを一時的に格納するようにすることが望ましい。これにより、第1~第3送信側FIFOメモリ316a~316cにビットデータを記憶するための空きがなくなることを防止できる。 Here, the writing of bit data to the first to third transmission side FIFO memories 316a to 316c is continuously performed, while the reading of bit data from the first to third transmission side FIFO memories 316a to 316c is 3 It is performed in turn at a frequency of once. For this reason, it is desirable that the reading speed of the bit data from each transmission side FIFO memory is three times the writing speed of the bit data to the first to third transmission side FIFO memories 316a to 316c. Thereby, the writing speed of the bit data to the first to third transmitting side FIFO memories 316a to 316c and the reading speed of the bit data from the first to third transmitting side FIFO memories 316a to 316c can be made substantially equal. it can. The bit data writing speed to the first to third transmission side FIFO memories 316a to 316c and the bit data reading speed from each transmission side FIFO memory may be equal to each other. There is a possibility that the third transmission side FIFO memories 316a to 316c may run out of space for storing bit data. In this case, a memory for saving data is provided in the signal transmission system by means (not shown), and the first to third transmission side data to be stored in the first to third transmission side FIFO memories 316a to 316c, respectively. It is desirable to temporarily store bit data of signals DTa to DTc. As a result, it is possible to prevent the first to third transmission side FIFO memories 316a to 316c from becoming free for storing bit data.
 なお、本実施形態における送信側レベルコントロールプロセッサ31の第1~第3送信側FIFOメモリ316a~316cおよび送信側読み出し制御回路317以外の構成要素については上記第1の実施形態におけるものと同様であるので、その説明を省略する。 The components other than the first to third transmission side FIFO memories 316a to 316c and the transmission side read control circuit 317 of the transmission side level control processor 31 in the present embodiment are the same as those in the first embodiment. Therefore, the description is omitted.
 <3.1.2 受信側レベルコントロールプロセッサの構成>
 図15は、本実施形態における受信側レベルコントロールプロセッサ41の構成を示すブロック図である。図15に示すように、この受信側レベルコントロールプロセッサ41は上記第1の実施形態におけるものと異なり、受信側遅延回路413に代えて、3つのFIFOメモリ416a~416cおよび受信側読み出し制御回路417を備えている。以下では、3つのFIFOメモリ416a~416cをそれぞれ「第1~第3受信側FIFOメモリ」という。
<3.1.2 Configuration of Receiver Level Control Processor>
FIG. 15 is a block diagram showing the configuration of the receiving side level control processor 41 in the present embodiment. As shown in FIG. 15, the receiving side level control processor 41 differs from that in the first embodiment in that it has three FIFO memories 416a to 416c and a receiving side read control circuit 417 instead of the receiving side delay circuit 413. I have. Hereinafter, the three FIFO memories 416a to 416c are referred to as “first to third reception side FIFO memories”, respectively.
 第1~第3受信側FIFOメモリ416a~416cは、上記第1~第3送信側FIFOメモリ316a~316cと同様のバッファ動作をするメモリである。第1~第3受信側FIFOメモリ416a~416cは、伝送信号逆変換回路412から出力された第1~第3受信側データ信号DRa~DRcのビットデータをそれぞれ記憶する。 The first to third reception side FIFO memories 416a to 416c are memories that perform the same buffer operation as the first to third transmission side FIFO memories 316a to 316c. The first to third reception side FIFO memories 416a to 416c store bit data of the first to third reception side data signals DRa to DRc output from the transmission signal inverse conversion circuit 412, respectively.
 受信側読み出し制御回路417は、第1~第3受信側FIFOメモリ416a~416cにそれぞれ書き込まれた第1~第3受信側データ信号DRa~DRcのビットデータの読み出しタイミングを制御する。具体的には、受信側読み出し制御回路417は、外部(例えばホスト1)から与えられる受信側読み出し制御信号RCR(システムクロックSYSでも良い)に基づいて、第1~第3受信側FIFOメモリ416a~416cから第1~第3受信側データ信号DRa~DRcのビットデータを互いに同じタイミングで読み出す。読み出された第1~第3受信側データ信号DRa~DRcは受信側出力バッファ414に与えられる。このため、第1~第3受信側FIFOメモリ416a~416cから第1~第3受信側データ信号DRa~DRcのビットデータを互いに同じタイミングで読み出されることにより、実質的に上記第1の実施形態と同様の受信側位相制御処理が施された第1~第3受信側データ信号DRa~DRcが受信側出力バッファ414に与えられることになる。このように本実施形態では、第1~第3受信側FIFOメモリ416a~416cおよび受信側読み出し制御回路417により受信側位相制御部が実現されている。 The reception side read control circuit 417 controls the read timing of the bit data of the first to third reception side data signals DRa to DRc written in the first to third reception side FIFO memories 416a to 416c, respectively. Specifically, the reception-side read control circuit 417 is configured to receive first to third reception-side FIFO memories 416a to 416a based on a reception-side read control signal RCR (which may be the system clock SYS) given from the outside (for example, the host 1). The bit data of the first to third receiving side data signals DRa to DRc are read from 416c at the same timing. The read first to third reception side data signals DRa to DRc are applied to the reception side output buffer 414. For this reason, the bit data of the first to third reception side data signals DRa to DRc are read from the first to third reception side FIFO memories 416a to 416c at the same timing, so that substantially the first embodiment described above. The first to third reception side data signals DRa to DRc that have been subjected to the same reception side phase control processing as described above are applied to the reception side output buffer 414. As described above, in this embodiment, the reception-side phase control unit is realized by the first to third reception-side FIFO memories 416a to 416c and the reception-side read control circuit 417.
 ここで、受信側では、送信側と同様に、各受信側FIFOメモリからのビットデータの読み出し速度は、第1~第3受信側FIFOメモリ416a~416cへのビットデータの書き込み速度の3倍であることが望ましい。なお、送信側と同様のデータ退避用のメモリを設けて、第1~第3受信側FIFOメモリ416a~416cへのビットデータの書き込み速度と受信側FIFOメモリからのビットデータの読み出し速度とを互いに等しくしても良い。 Here, on the receiving side, similarly to the transmitting side, the reading speed of bit data from each receiving side FIFO memory is three times the writing speed of bit data to the first to third receiving side FIFO memories 416a to 416c. It is desirable to be. It is to be noted that a data saving memory similar to that on the transmission side is provided, and the writing speed of bit data to the first to third receiving side FIFO memories 416a to 416c and the reading speed of bit data from the receiving side FIFO memory are mutually set. It may be equal.
 <3.2 動作>
 以上に示した構成により実現される本実施形態に係る信号伝送システムの動作について、送信側と受信側とに分けて説明する。なお、上記第1の実施形態と共通する部分については上述のように適宜説明を省略する。
<3.2 Operation>
The operation of the signal transmission system according to the present embodiment realized by the configuration described above will be described separately for the transmission side and the reception side. Note that description of parts common to the first embodiment is appropriately omitted as described above.
 <3.2.1 送信側の動作>
 図16は、本実施形態における送信側読み出し制御回路307の動作について説明するための信号波形図である。図16において、送信側読み出し制御信号RCTで符号A~Cが付された1サンプリング期間では、サンプリングクロックSAMの電圧レベルが立ち上がるタイミングで第1~第3送信側FIFOメモリ316a~316cからそれぞれ第1~第3送信側データ信号DTa~DTcのビットデータが読み出される。送信側読み出し制御信号RCTによって、読み出し元になる送信側FIFOメモリは、第1~第3送信側FIFOメモリ316a~316cの順に1サンプリング期間毎に切り替わる。このため、上記第1の実施形態の送信側位相制御処理と同様に、第1送信側データ信号DTaに対して、第2送信側データ信号DTbおよび第3送信側データ信号DTcがそれぞれ1サンプリング期間および2サンプリング期間遅延することになる。
<3.2.1 Operation on transmitting side>
FIG. 16 is a signal waveform diagram for explaining the operation of the transmission side read control circuit 307 in the present embodiment. In FIG. 16, in one sampling period indicated by reference signs A to C in the transmission side read control signal RCT, the first to third transmission side FIFO memories 316a to 316c are first to each at the timing when the voltage level of the sampling clock SAM rises. The bit data of the third transmission side data signals DTa to DTc are read. In accordance with the transmission-side read control signal RCT, the transmission-side FIFO memory serving as a reading source is switched every sampling period in the order of the first to third transmission-side FIFO memories 316a to 316c. For this reason, similarly to the transmission-side phase control processing of the first embodiment, the second transmission-side data signal DTb and the third transmission-side data signal DTc are each one sampling period with respect to the first transmission-side data signal DTa. And a delay of 2 sampling periods.
 本実施形態では、図16に示すように、各サンプリング期間TBにおいて第1~第3送信側データ信号DTa~DTcのビットデータのうちのいずれか1つのみが読み出され、残りの2つは読み出されない(NULLデータとなる)ようになっている。このため、送信側読み出し制御回路307と送信側データ判別回路302との間の伝送は実質的に1本の伝送路により実現することができるので、回路規模を削減することができる。ただし、本発明はこれに限定されるものではなく、第1~第3送信側データ信号DTa~DTcのビットデータが互いに1サンプリング期間毎にずれると共に平行して読み出される(すなわち、NULLデータがない)ようにしても良い。以上のようにして読み出された第1~第3送信側データ信号DTa~DTcのビットデータは送信側データ判別回路303に与えられる。なお、送信側データ判別回路303の動作は上記第1の実施形態におけるものと同様であるので、その説明を省略する。 In this embodiment, as shown in FIG. 16, only one of the bit data of the first to third transmitting side data signals DTa to DTc is read in each sampling period TB, and the remaining two are It is not read (becomes NULL data). For this reason, transmission between the transmission-side read control circuit 307 and the transmission-side data discrimination circuit 302 can be realized substantially by a single transmission line, so that the circuit scale can be reduced. However, the present invention is not limited to this, and the bit data of the first to third transmission side data signals DTa to DTc are shifted from each other every sampling period and read in parallel (that is, there is no NULL data). You may do it. The bit data of the first to third transmission side data signals DTa to DTc read out as described above are given to the transmission side data discrimination circuit 303. Since the operation of the transmission side data discrimination circuit 303 is the same as that in the first embodiment, description thereof is omitted.
 図17は、本実施形態における伝送信号変換回路313の動作を説明するための信号波形図である。本実施形態においても上記第1の実施形態と同様に、伝送信号変換回路313によって、8ビット分の第1~第3送信側データ信号DTa~DTc(すなわち、合計24ビット分のデータ)に基づいて伝送信号TSが生成される。なお、伝送信号変換回路313の動作の詳細は上記第1の実施形態において述べた通りなので、その説明を省略する。 FIG. 17 is a signal waveform diagram for explaining the operation of the transmission signal conversion circuit 313 in this embodiment. Also in this embodiment, as in the first embodiment, the transmission signal conversion circuit 313 uses the first to third transmission side data signals DTa to DTc for 8 bits (that is, data for a total of 24 bits). Thus, a transmission signal TS is generated. Note that details of the operation of the transmission signal conversion circuit 313 are as described in the first embodiment, and a description thereof will be omitted.
 <3.2.2 受信側の動作>
 図18は、本実施形態における伝送信号逆変換回路412の動作を説明するための信号波形図である。本実施形態においても上記第1の実施形態に、伝送信号逆変換回路412によって、伝送信号TSに基づいて受信側位相制御処理前の8ビット分の第1~第3受信側データ信号DRa~DRc(すなわち、合計24ビット分のデータ)が生成される。なお、伝送信号逆変換回路412の動作の詳細は上記第1の実施形態において述べた通りなので、その説明を省略する。
<3.2.2 Receiving side operation>
FIG. 18 is a signal waveform diagram for explaining the operation of the transmission signal inverse conversion circuit 412 in this embodiment. Also in this embodiment, the first to third reception side data signals DRa to DRc for 8 bits before the reception side phase control processing are performed based on the transmission signal TS by the transmission signal inverse conversion circuit 412 in the first embodiment. (That is, a total of 24 bits of data) is generated. The details of the operation of the transmission signal inverse conversion circuit 412 are as described in the first embodiment, and the description thereof is omitted.
 伝送信号逆変換回路412によって生成された第1~第3受信側データ信号DRa~DRcはそれぞれ、第1~第3受信側FIFOメモリ416a~416cに順次記憶される。 The first to third reception side data signals DRa to DRc generated by the transmission signal inverse conversion circuit 412 are sequentially stored in the first to third reception side FIFO memories 416a to 416c, respectively.
 図19は、本実施形態における受信側読み出し制御回路417の動作について説明するための信号波形図である。図19に示すように、受信側読み出し制御回路417は、受信側読み出し制御信号RCR(システムクロックSYSでも良い)の電圧レベルが立ち上がるタイミングで、第1~第3受信側FIFOメモリ416a~416cから第1~第3受信側データ信号DRa~DRcのビットデータを同時に読み出す。このため、上記第1の実施形態の受信側位相制御処理と同様に、第1~第3受信側データ信号DRa~DRcの位相が互いに同一になる。このような受信側位相制御処理後の第1~第3受信側データ信号DRa~DRcは、受信側出力バッファ414を介して出力される。 FIG. 19 is a signal waveform diagram for explaining the operation of the receiving side read control circuit 417 in the present embodiment. As shown in FIG. 19, the reception-side read control circuit 417 starts from the first to third reception-side FIFO memories 416a to 416c at the timing when the voltage level of the reception-side read control signal RCR (which may be the system clock SYS) rises. The bit data of the first to third receiving side data signals DRa to DRc are read simultaneously. For this reason, as in the reception-side phase control process of the first embodiment, the phases of the first to third reception-side data signals DRa to DRc are the same. The first to third reception-side data signals DRa to DRc after such reception-side phase control processing are output via the reception-side output buffer 414.
 以上のようにして、本実施形態に係る信号伝送システムの動作が実現される。 As described above, the operation of the signal transmission system according to the present embodiment is realized.
 <3.3 効果>
 本実施形態によれば、第1~第3送信側FIFOメモリ316a~316cおよび送信側読み出し制御回路317により送信側位相制御部を実現し、第1~第3受信側FIFOメモリ416a~416cおよび受信側読み出し制御回路417により受信側位相制御部を実現することにより、上記第1の実施形態と同様の効果を奏することができる。
<3.3 Effects>
According to this embodiment, the first to third transmission side FIFO memories 316a to 316c and the transmission side read control circuit 317 realize the transmission side phase control unit, and the first to third reception side FIFO memories 416a to 416c and the reception side. By realizing the reception-side phase control unit by the side readout control circuit 417, the same effects as in the first embodiment can be obtained.
 <4.その他>
 上記第1の実施形態では各送信側データ信号のビットデータを2サンプリング期間単位にし、2ビット毎に2サンプリング期間単位のNULLデータを挿入しているが、本発明はこれに限定されるものではない。例えば、各送信側データ信号のビットデータを3サンプリング期間単位にし、NULLデータを挿入しないようにしても良い。この場合、第1~第3送信側データ信号DTa~DTcに送信側位相制御処理を施す必要はないので、送信側遅延回路311は設けられない。また、各送信側データ信号のビットデータを1サンプリング期間単位とし、ビットデータ間に2サンプリング期間単位のNULLデータを挿入しても良い。
<4. Other>
In the first embodiment, the bit data of each transmission side data signal is set to two sampling periods, and NULL data of two sampling periods is inserted every two bits. However, the present invention is not limited to this. Absent. For example, the bit data of each transmission side data signal may be in units of 3 sampling periods, and NULL data may not be inserted. In this case, it is not necessary to perform transmission-side phase control processing on the first to third transmission-side data signals DTa to DTc, so that the transmission-side delay circuit 311 is not provided. Further, the bit data of each transmission side data signal may be set as one sampling period unit, and NULL data of two sampling periods may be inserted between the bit data.
 上記各実施形態において、3つのデータを伝送する例を挙げて説明したが、本発明はこれに限定されるものではない。2つのデータを伝送する場合、または4つ以上のデータを伝送する場合にも本発明を適用することができる。この場合、サンプリングクロックSAMの周波数は、システムクロックSYSの周波数をデータ数分だけ逓倍した値になる。 In each of the above embodiments, an example of transmitting three data has been described, but the present invention is not limited to this. The present invention can also be applied to the case of transmitting two data, or the case of transmitting four or more data. In this case, the frequency of the sampling clock SAM is a value obtained by multiplying the frequency of the system clock SYS by the number of data.
 上記各実施形態において、伝送信号変換回路313および伝送信号逆変換回路412のそれぞれで、接地レベルであるGNDレベルを用いていたが、これに代えて他の電圧レベルを用いても良い。 In each of the above embodiments, the transmission signal conversion circuit 313 and the transmission signal inverse conversion circuit 412 each use the GND level that is the ground level, but other voltage levels may be used instead.
 その他、本発明の趣旨を逸脱しない範囲で上記各実施形態を種々変形して実施することができる。 In addition, the above embodiments can be variously modified and implemented without departing from the spirit of the present invention.
 以上により、本発明によれば、コストの増大を抑えつつ複数のデータの伝送を可能とする信号伝送装置および信号伝送方法を提供することができる。 As described above, according to the present invention, it is possible to provide a signal transmission device and a signal transmission method capable of transmitting a plurality of data while suppressing an increase in cost.
 本発明は、複数種類のデータ伝送を行う信号伝送装置および信号伝送方法に適用することができる。 The present invention can be applied to a signal transmission apparatus and a signal transmission method for performing a plurality of types of data transmission.
1…ホスト
2…信号伝送装置
3…送信部
4…受信部
5…伝送路
30…送信側レベルシフタ(レベルシフト信号生成部)
31…送信側レベルコントロールプロセッサ
40…受信側レベルシフタ
41…受信側レベルコントロールプロセッサ
310…送信側入力バッファ
311…送信側遅延回路(送信側位相制御部)
312…送信側データ判別回路
313…伝送信号変換回路(伝送信号変換部)
314…送信側出力バッファ(送信バッファ部)
315…変換プロセッサ
316a~316c…第1~第3送信側FIFOメモリ
317…送信側読み出し制御回路
410…受信側入力バッファ(受信バッファ部)
411…受信側データ判別回路
412…伝送信号逆変換回路(伝送信号逆変換部)
413…受信側遅延回路(受信側位相制御部)
414…受信側出力バッファ
415…逆変換プロセッサ
416a~416c…第1~第3受信側FIFOメモリ
DTa~DTc…第1~第3送信側データ信号
DRa~DRc…第1~第3受信側データ信号
SYS…システムクロック(第1クロック信号)
SAM…サンプリングクロック(第2クロック信号)
TS…伝送信号
LSTa~LSTc…第1~第3送信側レベルシフト信号
LSR…受信側レベルシフト信号
DESCRIPTION OF SYMBOLS 1 ... Host 2 ... Signal transmission apparatus 3 ... Transmission part 4 ... Reception part 5 ... Transmission path 30 ... Transmission side level shifter (level shift signal generation part)
31 ... Transmission side level control processor 40 ... Reception side level shifter 41 ... Reception side level control processor 310 ... Transmission side input buffer 311 ... Transmission side delay circuit (transmission side phase control unit)
312 ... Transmission side data discrimination circuit 313 ... Transmission signal conversion circuit (transmission signal conversion unit)
314: Transmission side output buffer (transmission buffer unit)
315: Conversion processors 316a to 316c ... First to third transmission side FIFO memories 317 ... Transmission side read control circuit 410 ... Reception side input buffer (reception buffer unit)
411... Reception side data discrimination circuit 412... Transmission signal reverse conversion circuit (transmission signal reverse conversion unit)
413 ... Reception side delay circuit (reception side phase control unit)
414 ... Reception side output buffer 415 ... Inverse conversion processors 416a to 416c ... First to third reception side FIFO memories DTa to DTc ... First to third transmission side data signals DRa to DRc ... First to third reception side data signals SYS: System clock (first clock signal)
SAM: Sampling clock (second clock signal)
TS ... Transmission signals LSTa to LSTc ... First to third transmission side level shift signal LSR ... Reception side level shift signal

Claims (10)

  1.  送信部と受信部との間で1本の伝送路により複数種類のデータのシリアル伝送を行う信号伝送装置であって、
     前記送信部は、
      周期的に変化する第1クロック信号、当該第1クロック信号の周波数をN(Nは2以上の整数)逓倍した第2クロック信号、および伝送すべきN個の送信側データ信号を外部から受け取るための送信側入力端子と、
      前記第1クロック信号の1周期毎に前記第2クロック信号に同期して前記N個の送信側データ信号を順にサンプリングすると共に、サンプリングした当該N個の送信側データ信号の電圧レベルを互いに異ならせることにより伝送信号を生成する送信側信号処理部と、
      前記伝送信号を前記伝送路に出力するための送信側出力端子とを含み、
     前記受信部は、
      前記第1クロック信号、前記第2クロック信号、および前記伝送路から前記伝送信号を受け取るための受信側入力端子と、
      前記第1クロック信号の1周期毎に前記第2クロック信号に同期して前記伝送信号をサンプリングすると共に、サンプリングした当該伝送信号の電圧レベルを、電圧レベルが変化する前の前記N個の送信側データ信号に対応する電圧レベルに変化させることによりそれぞれN個の受信側データ信号を生成する受信側信号処理部と、
      前記N個の受信側データ信号を外部に出力するための受信側出力端子とを含むことを特徴とする、信号伝送装置。
    A signal transmission device for serially transmitting a plurality of types of data through a single transmission path between a transmission unit and a reception unit,
    The transmitter is
    To receive a first clock signal that periodically changes, a second clock signal obtained by multiplying the frequency of the first clock signal by N (N is an integer of 2 or more), and N transmission-side data signals to be transmitted from the outside. The sending input terminal of
    The N transmission-side data signals are sequentially sampled in synchronization with the second clock signal every one cycle of the first clock signal, and the voltage levels of the sampled N transmission-side data signals are made different from each other. A transmission side signal processing unit for generating a transmission signal by
    A transmission side output terminal for outputting the transmission signal to the transmission line,
    The receiver is
    A receiving-side input terminal for receiving the first clock signal, the second clock signal, and the transmission signal from the transmission path;
    The transmission signal is sampled in synchronization with the second clock signal for each cycle of the first clock signal, and the voltage levels of the sampled transmission signal are set to the N transmission sides before the voltage level changes. A receiving-side signal processing unit that generates N receiving-side data signals by changing to a voltage level corresponding to the data signal;
    A signal transmission apparatus comprising: a reception-side output terminal for outputting the N reception-side data signals to the outside.
  2.  前記送信側信号処理部は、前記第2クロック信号に同期して、前記N個の送信側データ信号の位相を前記第2クロック信号の1周期分の期間ずつ異ならせる送信側位相制御部を含むことを特徴とする、請求項1に記載の信号伝送装置。 The transmission-side signal processing unit includes a transmission-side phase control unit that varies the phases of the N transmission-side data signals by a period corresponding to one cycle of the second clock signal in synchronization with the second clock signal. The signal transmission device according to claim 1, wherein:
  3.  前記送信側信号処理部は、前記第1クロック信号の1周期毎に前記第2クロック信号に同期して前記N個の送信側データ信号をそれぞれサンプリングすると共に、各送信データ信号の電圧レベルが送信側第1レベルまたは送信側第2レベルであるときには、当該送信データ信号の電圧レベルを、N+1個の所定の電圧レベルのうちのいずれか2つの電圧レベルの一方または他方にそれぞれ変換することにより、N+1種類の電圧レベルからなる前記伝送信号を生成する伝送信号変換部をさらに含むことを特徴とする、請求項2に記載の信号伝送装置。 The transmission-side signal processing unit samples the N transmission-side data signals in synchronization with the second clock signal every cycle of the first clock signal, and the voltage level of each transmission data signal is transmitted. By converting the voltage level of the transmission data signal to one or the other of any two voltage levels of the N + 1 predetermined voltage levels, respectively, when the transmission side first level or the transmission side second level is obtained, The signal transmission apparatus according to claim 2, further comprising a transmission signal conversion unit that generates the transmission signal having N + 1 types of voltage levels.
  4.  前記伝送信号変換部はさらに、前記第1クロック信号の各周期においてサンプリングされるべき期間が連続する2つの前記送信側データ信号のうちの、先行の送信側データ信号の送信側第2レベルの変換後の電圧レベルと、後続の送信側データ信号の送信側第1レベルの変換後の電圧レベルとを互いに同じにすることを特徴とする、請求項3に記載の信号伝送装置。 The transmission signal converting unit further converts a transmission-side second level of a preceding transmission-side data signal out of two transmission-side data signals in which periods to be sampled in each cycle of the first clock signal are continuous. 4. The signal transmission device according to claim 3, wherein the subsequent voltage level and the voltage level after conversion of the first transmission level of the subsequent transmission data signal are made the same.
  5.  前記送信側位相制御部および前記伝送信号変換部は、1つの処理装置として実現されていることを特徴とする、請求項3または4に記載の信号伝送装置。 The signal transmission device according to claim 3 or 4, wherein the transmission-side phase control unit and the transmission signal conversion unit are realized as one processing device.
  6.  前記受信側信号処理部は、前記第1クロック信号の1周期毎に前記第2クロック信号に同期して前記伝送信号をサンプリングすると共に、サンプリングした当該伝送信号の電圧レベルのうちの、前記伝送信号変換部において前記送信側第1レベルから変換された電圧を、当該送信側第1レベルに対応する受信側第1レベルに変換し、前記送信側第2レベルから変換された電圧レベルを当該送信側第2レベルに対応する受信側第2レベルに変換することにより前記N個の受信側データ信号を生成する伝送信号逆変換部を含むことを特徴とする、請求項3から5までのいずれか1項に記載の信号伝送装置。 The reception-side signal processing unit samples the transmission signal in synchronization with the second clock signal for each cycle of the first clock signal, and the transmission signal of the sampled voltage level of the transmission signal. The voltage converted from the first level on the transmission side in the conversion unit is converted to the first level on the reception side corresponding to the first level on the transmission side, and the voltage level converted from the second level on the transmission side is converted to the transmission side. 6. The transmission signal inverse conversion unit for generating the N reception-side data signals by converting to a reception-side second level corresponding to the second level. The signal transmission device according to item.
  7.  前記受信側信号処理部は、前記第2クロック信号に同期して、前記N個の受信側データ信号を互いに同位相にする受信側位相制御部をさらに含むことを特徴とする、請求項6に記載の信号伝送装置。 The reception side signal processing unit further includes a reception side phase control unit that synchronizes the N reception side data signals with each other in synchronization with the second clock signal. The signal transmission device described.
  8.  前記伝送信号逆変換部および前記受信側位相制御部は、1つの処理装置として実現されていることを特徴とする、請求項7に記載の信号伝送装置。 The signal transmission device according to claim 7, wherein the transmission signal inverse conversion unit and the reception-side phase control unit are realized as one processing device.
  9.  前記送信部は、互いに電圧レベルの異なるN個のレベルシフト信号を生成するレベルシフト信号生成部をさらに含み、
     前記送信側信号処理部は、サンプリングした前記N個の送信側データ信号の電圧レベルを前記N個のレベルシフト信号に基づいて互いに異ならせることを特徴とする、請求項1に記載の信号伝送装置。
    The transmission unit further includes a level shift signal generation unit that generates N level shift signals having different voltage levels.
    2. The signal transmission device according to claim 1, wherein the transmission-side signal processing unit varies the voltage levels of the sampled N transmission-side data signals based on the N level-shifted signals. .
  10.  送信部と受信部との間で1本の伝送路により複数種類のデータのシリアル伝送を行う信号伝送装置における信号伝送方法であって、
     周期的に変化する第1クロック信号の1周期毎に、当該第1クロック信号の周波数をN(Nは2以上の整数)逓倍した第2クロック信号に同期して、伝送すべきN個の送信側データ信号を順にサンプリングすると共に、サンプリングした当該N個の送信側データ信号の電圧レベルを互いに異ならせることにより伝送信号を生成するステップと、
     前記伝送信号を、前記伝送路を介して前記送信部から前記受信部に伝送するステップと、
     前記第1クロック信号の1周期毎に前記第2クロック信号に同期して前記伝送信号をサンプリングすると共に、サンプリングした当該伝送信号の電圧レベルを、電圧レベルが変化する前の前記N個の送信側データ信号に対応する電圧レベルに変化させることによりそれぞれN個の受信側データ信号を生成し出力するステップとを備えることを特徴とする、信号伝送方法。
    A signal transmission method in a signal transmission apparatus for serially transmitting a plurality of types of data through a single transmission path between a transmission unit and a reception unit,
    N transmissions to be transmitted in synchronization with a second clock signal obtained by multiplying the frequency of the first clock signal by N (N is an integer of 2 or more) for each period of the periodically changing first clock signal. Sampling the side data signals in order, and generating a transmission signal by making the voltage levels of the sampled N transmission side data signals different from each other;
    Transmitting the transmission signal from the transmitter to the receiver via the transmission path;
    The transmission signal is sampled in synchronization with the second clock signal for each cycle of the first clock signal, and the voltage levels of the sampled transmission signal are set to the N transmission sides before the voltage level changes. And a step of generating and outputting N reception-side data signals by changing to a voltage level corresponding to the data signal, respectively.
PCT/JP2012/072697 2011-09-13 2012-09-06 Signal transmission device and signal transmission method WO2013038978A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-199285 2011-09-13
JP2011199285 2011-09-13

Publications (1)

Publication Number Publication Date
WO2013038978A1 true WO2013038978A1 (en) 2013-03-21

Family

ID=47883209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072697 WO2013038978A1 (en) 2011-09-13 2012-09-06 Signal transmission device and signal transmission method

Country Status (1)

Country Link
WO (1) WO2013038978A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004046054A (en) * 2001-10-03 2004-02-12 Nec Corp Displaying device and semiconductor device
WO2006038660A1 (en) * 2004-10-06 2006-04-13 Matsushita Electric Industrial Co., Ltd. Data communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004046054A (en) * 2001-10-03 2004-02-12 Nec Corp Displaying device and semiconductor device
WO2006038660A1 (en) * 2004-10-06 2006-04-13 Matsushita Electric Industrial Co., Ltd. Data communication system

Similar Documents

Publication Publication Date Title
TWI320166B (en) Display, timing controller and column driver integrated circuit using clock embedded multi-level signaling
US7599459B2 (en) Receiving apparatus, data transmission system and receiving method
US20140013179A1 (en) Transmission delay difference correction method, communication device, and communication system
US20080107160A1 (en) Asynchronous serial communication method and asynchronous serial communication device
JP2009188489A (en) Transmission circuit and reception circuit for transmitting and receiving signals of plural channels
JP5365132B2 (en) Serial signal receiver, serial transmission system, serial transmission method, serial signal transmitter
CN101673524A (en) Data de-skew block device and method of de-skewing transmitted data
US20120020436A1 (en) Method and device for multi-channel data alignment in transmission system
JP2008071151A (en) Asynchronous data holding circuit
US7796063B2 (en) Data transmission circuits and data transceiver systems
JP4917901B2 (en) Receiver
US10237053B2 (en) Semiconductor device and data synchronization method
EP1946475B1 (en) Data interface and method of seeking synchronization
JP6120798B2 (en) Transmission device, reception device, and transmission / reception system
JP3846871B2 (en) Parallel / serial conversion circuit, serial data generation circuit, synchronization signal generation circuit, clock signal generation circuit, serial data transmission device, serial data reception device, and serial data transmission system
US7650523B2 (en) Interface apparatus and method for synchronization of data
WO2013038978A1 (en) Signal transmission device and signal transmission method
US9654114B2 (en) Transmission circuit, integrated circuit, and parallel-to-serial conversion method
JPWO2008035582A1 (en) Signal transmitter
KR20070038898A (en) Serial data input system
JP5915105B2 (en) Data transfer system, receiving circuit, and receiving method
JP2005078523A (en) Serial transfer device
US8106798B2 (en) Circuit and method for parallel to serial conversion
JPH10222464A (en) Synchronous serial data transfer device
JP2010021665A (en) Data receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP