WO2013038968A1 - Method for producing composite film, and composite film - Google Patents
Method for producing composite film, and composite film Download PDFInfo
- Publication number
- WO2013038968A1 WO2013038968A1 PCT/JP2012/072579 JP2012072579W WO2013038968A1 WO 2013038968 A1 WO2013038968 A1 WO 2013038968A1 JP 2012072579 W JP2012072579 W JP 2012072579W WO 2013038968 A1 WO2013038968 A1 WO 2013038968A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composite film
- elongation
- mixture
- break
- stretched
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
- C08F290/067—Polyurethanes; Polyureas
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
Definitions
- the present invention relates to a method for producing a composite film containing a urethane polymer and an acrylic polymer, and a composite film.
- a composite film of an acrylic polymer and a urethane polymer is, for example, Japanese Patent Application Laid-Open No. 2003-96140, Japanese Patent Application Laid-Open No. 2003-171411, Japanese Patent Application Laid-Open No. 2004-10661, and Japanese Patent Application Laid-Open No. 2004-10661. It is disclosed in Japanese Patent Application Publication No. 2004-1062.
- This composite film has tough physical properties such as high strength and high elongation as a film.
- the mechanical properties of such a composite film can be controlled by adjusting the type and copolymer composition of the acrylic polymer, the composition of the urethane polymer, the ratio of the acrylic polymer to the urethane polymer, and the like.
- measures such as using an acrylic polymer having a low glass transition temperature (Tg) or a high molecular weight urethane polymer can be employed.
- the present invention has been made to solve the above-mentioned problems, and the present invention reduces the stress generated when the composite film is stretched by 20% without significantly changing the breaking strength when the composite film is stretched.
- Another object of the present invention is to provide a method for producing a composite film capable of improving easily stretchability such as an increase in elongation when it is stretched and broken, and a composite film obtained by this production method.
- the present invention is a method for producing a composite film containing a urethane polymer and an acrylic polymer, A reference mixture preparation step for preparing a reference mixture comprising the urethane polymer and at least one acrylic monomer; An additive mixture preparation step of adding 0.01 parts by weight or more and 5 parts by weight or less of a chain transfer agent to 100 parts by weight of the reference mixture; A composite film forming step of curing the additive mixture to form a composite film,
- the elongation breaking strength S2 of the composite film P2 obtained by curing the additive mixture is a value of 85% to 115% of the elongation breaking strength S1 of the composite film P1 obtained by curing the reference mixture, and the composite film
- the stress M2 when the P2 is stretched by 20% is 90% or less of the stress M1 when the composite film P1 is stretched by 20%, or when the composite film P2 is stretched and broken.
- the elongation at break E2 is 120% or more of the elongation at break E1 when the composite film P1
- the elongation rate of the composite film (ie, the elongation at break) E2 when the composite film is stretched and broken is added.
- it is difficult to control both of them because of the positive correlation between the breaking strength at elongation and the stress at 20% elongation or the elongation at break, that is, when one is increased, the other is increased.
- breaking strength at elongation when the stress at 20% elongation is lowered, the breaking strength at elongation is also lowered and the required breaking strength at elongation cannot be achieved, and conversely, when the elongation at break is increased, the breaking strength at elongation is also increased. It will become. It should be noted that the improvement in breaking strength at the time of expansion is not always required, and in some cases, excessive performance (so-called over spec) is obtained, or when easy breakability is required, it acts in the direction of inhibiting breakage. .
- the urethane polymer preferably contains an acryloyl group-terminated urethane polymer.
- the urethane polymer can be provided with copolymerizability with an acrylic monomer, the cohesive force of the whole polymer is improved, the elongation breaking strength is maintained, the stress at 20% elongation is reduced or the elongation at break is increased. It is possible to more easily achieve the increase.
- the urethane polymer is preferably formed by a reaction between a polyol and an isocyanate in the presence of at least one acrylic monomer.
- the range of types of monomers used as a raw material can be widened, and the additive mixture can be easily formed into a film.
- the radiation-curable additive mixture is applied onto a substrate to form a coating film, and the coating film is irradiated with radiation to be cured to form a composite film. preferable.
- the present invention includes a composite film obtained by the method for producing the composite film.
- the elongation break strength of the composite film is maintained without changing the composition of each of the urethane polymer and the acrylic polymer, the composition ratio of the both, and the like, and the decrease in stress at 20% elongation and the elongation at break It is possible to easily produce a composite film having improved easy stretchability, such as an increase in.
- the present invention relates to a method for producing a composite film containing a urethane polymer and an acrylic polymer, a reference mixture preparation step for preparing a reference mixture containing the urethane polymer and at least one acrylic monomer, and 100 wt% of the reference mixture.
- the elongation breaking strength S2 of the composite film P2 obtained by curing the additive mixture is a value of 85% to 115% of the elongation breaking strength S1 of the composite film P1 obtained by curing the reference mixture, and the above
- the stress M2 when the composite film P2 is stretched by 20% is that the composite film P1 is stretched by 20%.
- Is a value of 90% or less of the stress M1 at the time of breaking, or the elongation at break E2 when the composite film P2 is stretched and broken is the breakage when the composite film P1 is stretched and broken It is a value of 120% or more of the time expansion rate E1.
- an acrylic monomer alone or in a mixture of two or more, a polyol and a diisocyanate are reacted to form a urethane polymer, and a mixture containing the urethane polymer and the acrylic monomer is subjected to, for example, a peeling treatment. It is applied onto a polyethylene terephthalate film and cured by irradiation with radiation to produce a composite film.
- a polyethylene terephthalate film subjected to the release treatment an appropriate base material can be used, or an adhesive layer is provided on the release substrate such as the polyethylene terephthalate film subjected to the release treatment.
- a composite film may be formed thereon.
- the adhesive layer produced separately may be laminated
- Reference mixture preparation process In the reference mixture preparation step, a reference mixture including a urethane polymer and at least one acrylic monomer is prepared.
- the urethane polymer is obtained by reacting a polyol and diisocyanate.
- a catalyst may be used for the reaction between the hydroxyl group of the polyol and the isocyanate.
- a catalyst generally used in urethane reaction such as dibutyltin dilaurate, tin octoate, 1,4-diazabicyclo (2,2,2) octane can be used.
- Polyols are polyether polyols obtained by addition polymerization of ethylene oxide, propylene oxide, tetrahydrofuran, etc., or dihydric alcohols (for example, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexamethylene glycol, etc.) and adipic acid.
- polyester polyols composed of a polycondensation product with a divalent basic acid such as azelaic acid and cepatic acid, acrylic polyols, carbonate polyols, epoxy polyols and caprolactone polyols.
- polyether polyols such as polyoxytetramethylene glycol (PTMG) and polyoxypropylene glycol (PPG), non-crystalline polyester polyols, non-crystalline polycarbonate polyols and the like are preferably used. These polyols can be used alone or in combination.
- the number average molecular weight of the polyol component is not particularly limited, and may be set in consideration of the characteristics of the intended composite film. Among these, from the viewpoint of stably preparing the reference mixture, for example, 400 to 2000 is preferable, and 600 to 1000 is more preferable.
- the measuring method of a number average molecular weight can be measured with the following method. A sample is dissolved in THF at 0.1 wt%, and the number average molecular weight is measured by polystyrene conversion using GPC (gel permeation chromatography). Detailed measurement conditions are as follows.
- GPC device Tosoh HLC-8120GPC Column: manufactured by Tosoh Corporation, (GMHHR-H) + (GMHHR-H) + (G2000HHR) Flow rate: 0.8ml / min Concentration: 0.1 wt% Injection volume: 100 ⁇ l Column temperature: 40 ° C Eluent: THF
- diisocyanate examples include aromatic, aliphatic, and alicyclic diisocyanates.
- Aromatic, aliphatic, and alicyclic diisocyanates include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, 1,5-naphthylene diisocyanate.
- diisocyanates can be used alone or in combination. From the viewpoint of urethane reactivity, compatibility with acrylic, and the like, the type and combination of polyisocyanates can be appropriately selected.
- the usage amount of the polyol component and the diisocyanate component for forming the urethane polymer is not particularly limited.
- the usage amount of the polyol component is NCO / OH (equivalent ratio) with respect to the diisocyanate component. ) Is preferably 1.0 or more, and more preferably 2.0 or less.
- NCO / OH is less than 1.0, the terminal functional group of the urethane molecular chain becomes a hydroxyl group, and the strength of the film tends to decrease.
- NCO / OH is 2.0 or less, elongation and flexibility can be ensured.
- a hydroxyl group-containing acrylic monomer may be added to the urethane polymer.
- an acryloyl group can be introduced into the molecule (particularly the terminal) of the urethane polymer, and copolymerization with an acrylic monomer can be imparted.
- the cohesive force of the whole polymer can be improved, and both the maintenance of the elongation break strength and the reduction of the stress at 20% elongation or the increase of the elongation at break can be more easily achieved.
- hydroxyl group-containing acrylic monomer hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxyhexyl (meth) acrylate, or the like is used.
- the amount of the hydroxyl group-containing acrylic monomer used is preferably 0.1 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the urethane polymer.
- acrylic monomers contained in the reference mixture include ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, t -Butyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate, dodecyl (meth) acrylate, n-octadecyl (meth) acrylate, acrylic Carboxyl group-containing monomers such as acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, and crotonic acid; (meth)
- amide monomers such as N-substituted (meth) acrylamide such as (meth) acrylamide and N-methylolacrylamide, N- (meth) acryloyloxymethylene succinimide, N- (meth) acryloyl-6-oxyhexamethylene succinimide, Succinimide monomers such as N- (meth) acryloyl-8-oxyoctamethylenesuccinimide, vinyl monomers such as vinyl acetate, N-vinylpyrrolidone, N-vinylcarboxylic acid amides, N-vinylcaprolactam; acrylonitrile, methacrylonitrile Cyanoacrylate monomers such as glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate Acrylic ester monomers such as fluorine, (meth)
- acrylic monomers are appropriately determined in terms of type, combination, amount of use and the like in consideration of compatibility with urethane, polymerizability upon photocuring such as radiation, and characteristics of the high molecular weight obtained.
- the acrylic monomer includes not only a monomer having a structure derived from acrylic acid but also a monomer having a structure derived from methacrylic acid.
- Polyfunctional monomers can be added within a range that does not impair the characteristics.
- Polyfunctional monomers include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and pentaerythritol. Examples include tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, urethane acrylate, epoxy acrylate, and polyester acrylate.
- the content of the polyfunctional monomer is preferably 1 part by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the acrylic monomer. If the content of the polyfunctional monomer is 1 part by weight or more, sufficient cohesive force can be obtained in the resulting composite film, and the tensile strength at break can be secured. If the content is 5 parts by weight or less, the elastic modulus is high. Without being too much, the stress at 20% elongation can be reduced or the elongation at break can be increased.
- the reference mixture may be prepared by reacting a polyol and diisocyanate to separately form a urethane polymer, and mixing the urethane polymer and an acrylic monomer at a predetermined ratio. At least one acrylic monomer may be mixed.
- the urethane polymer may be formed by a reaction between a polyol and an isocyanate. Since the range of types of monomers used as a raw material can be widened and the additive mixture can be easily formed into a film, the urethane polymer can be reacted with a polyol and an isocyanate in the presence of at least one acrylic monomer. Is preferably formed.
- the diisocyanate and the like are added and reacted with the polyol to adjust the viscosity.
- the acrylic monomer may be added all at once during the synthesis of the urethane polymer, or may be added in several divided portions.
- the polyol may be reacted after the diisocyanate is dissolved in the acrylic monomer.
- the molecular weight is not limited and a high molecular weight polyurethane can be produced, so that the molecular weight of the finally obtained urethane can be designed to an arbitrary size.
- the urethane polymer can be formed by mixing the polyol and the diisocyanate and, if necessary, a catalyst and reacting at 60 to 90 ° C. for 2 to 24 hours. Furthermore, a predetermined amount of a hydroxyl group-containing acrylic monomer may be added and reacted at 60 to 90 ° C. for 1 to 12 hours in order to impart copolymerizability with an acrylic polymer. Thereby, a reference mixture can be prepared.
- the acrylic monomer As a compounding ratio of the urethane polymer and the acrylic monomer, the acrylic monomer with respect to a total of 100 parts by weight of the components constituting the urethane polymer (polyol, diisocyanate, and other optional components (such as a hydroxyl group-containing acrylic monomer)). Is preferably added in an amount of 70 to 130 parts by weight, more preferably 80 to 120 parts by weight.
- the standard mixture contains, as necessary, commonly used additives such as ultraviolet absorbers, anti-aging agents, fillers, pigments, colorants, flame retardants, antistatic agents and the like that do not impair the effects of the present invention. Can be added within. These additives are used in normal amounts depending on the type. These additives may be added in advance before the polymerization reaction between the polyol and the diisocyanate, or may be added after the formation of the urethane polymer and before the polymerization of the acrylic monomer.
- additives such as ultraviolet absorbers, anti-aging agents, fillers, pigments, colorants, flame retardants, antistatic agents and the like that do not impair the effects of the present invention. Can be added within. These additives are used in normal amounts depending on the type. These additives may be added in advance before the polymerization reaction between the polyol and the diisocyanate, or may be added after the formation of the urethane polymer and before the polymerization of the acrylic monomer.
- a small amount of solvent may be added to the reference mixture in order to adjust the viscosity when the additive mixture described below is applied.
- the solvent can be appropriately selected from commonly used solvents, and examples thereof include ethyl acetate, toluene, chloroform, dimethylformamide and the like.
- a solvent may be added at a reference
- additive mixture preparation process In the additive mixture preparation step, 0.01 to 5 parts by weight of the chain transfer agent is added to 100 parts by weight of the reference mixture to prepare an additive mixture.
- Chain transfer agent examples include linear or branched alkyl mercaptans such as n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan or t-dodecyl mercaptan, mercaptoacetic acid (thioglycolic acid), tri Sulfur compounds containing mercapto groups such as methylolpropane tris (3-mercaptopropionate) and pentaerythritol tetrakis (3-mercaptopropionate), halogenated hydrocarbons such as carbon tetrabromide, ethanol, isopropanol, ethyl acetate And the like. These chain transfer agents can be used alone or in combination.
- the amount of the chain transfer agent used is 0.01 parts by weight or more and 5 parts by weight or less, and 0.01 parts by weight or more and 1 part by weight with respect to 100 parts by weight of a urethane polymer and an acrylic monomer alone or a mixture of two or more. Part or less. If the amount of chain transfer agent used is less than 0.01 parts by weight, the stress generated when the composite film is stretched by 20% is less likely to decrease, or the elongation when the composite film is stretched and broken is difficult to increase. Or On the other hand, when the amount of chain transfer agent used is 5 parts by weight or more, there is a problem that the gel fraction of the composite film is excessively lowered and the solvent resistance and the like are lowered as a film.
- Photopolymerization initiator When imparting radiation curability to the additive mixture, a photopolymerization initiator may be added. When a photopolymerization initiator is added to impart radiation curability to the additive mixture, a composite film can be formed only by undergoing radiation curing of the coating film of the additive mixture, and productivity can be improved.
- photopolymerization initiator examples include benzoin ethers such as benzoin methyl ether, benzoin isopropyl ether, and 2,2-dimethoxy-1,2-diphenylethane-1-one; substituted benzoin ethers such as anisole methyl ether; Substituted acetophenones such as diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxy-cyclohexyl-phenyl ketone; substituted alpha-ketols such as 2-methyl-2-hydroxypropiophenone; 2-naphthalenesulfonyl chloride, etc.
- benzoin ethers such as benzoin methyl ether, benzoin isopropyl ether, and 2,2-dimethoxy-1,2-diphenylethane-1-one
- substituted benzoin ethers such as anisole methyl ether
- Substituted acetophenones such as diethoxyacetophenone,
- Aromatic sulfonyl chlorides such as 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) -oxime; 2,4,6-trimethylbenzoyl-diphenyl-thiol Scan fins oxide, bis (2,4,6-trimethylbenzoyl) - such as acylphosphine oxide, such as triphenylphosphine oxide.
- the photopolymerization initiator is added in the additive mixture preparation step, but the photopolymerization initiator is not limited to this and may be added in the reference mixture preparation step.
- the addition amount of the photopolymerization initiator is not particularly limited, but is selected from the range of 0.01 to 3 parts by weight (preferably 0.1 to 1 part by weight) with respect to 100 parts by weight of the reference mixture (excluding the solvent). can do.
- An addition mixture can be prepared by adding a chain transfer agent and, if necessary, a photopolymerization initiator to the above reference mixture, and mixing at room temperature (about 25 ° C.) or under heating (eg, 40 to 70 ° C.). it can.
- the additive mixture is cured to form a composite film.
- the process of forming the composite film is not particularly limited, in the present embodiment, the additive mixture that has been made radiation curable is applied onto the substrate to form a coating film, and the coating film is irradiated with radiation to be cured. It is preferable to form a film.
- polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), polyethylene (PE), and polypropylene (PP).
- PET polyethylene terephthalate
- PBT polybutylene terephthalate
- PE polyethylene
- PP polypropylene
- Polyolefin resin such as high density polyethylene, biaxially oriented polypropylene, polyimide (PI), polyether ether ketone (PEEK), polyvinyl chloride (PVC), polyvinylidene chloride resin, polyamide resin, polyurethane resin, polystyrene Thermosetting resins and the like are used in addition to thermoplastic resins such as resin, acrylic resin, fluorine resin, cellulose resin, and polycarbonate resin.
- PET is preferably used because it has an appropriate hardness when used for processing precision parts, and is advantageous in terms of variety and cost.
- the material of the film is preferably determined as appropriate depending on the application and the type of pressure-sensitive adhesive layer provided as necessary. For example, when a UV-curable pressure-sensitive adhesive is provided, a substrate having a high UV transmittance is used. preferable.
- Formation of the coating film of the additive mixture can be performed by a conventionally known method, and examples thereof include roll coating, screen coating, and gravure coating. What is necessary is just to determine the thickness of a coating film in consideration of the thickness of the target composite film.
- the additive mixture is applied onto a release-treated substrate to form a coating film, and ⁇ -rays, ⁇ -rays, ⁇ -rays, neutron rays, electron beams, etc., depending on the type of photopolymerization initiator.
- ionizing radiation radiation such as ultraviolet rays, visible light or the like
- the coating film can be cured to form a composite film.
- the release-treated sheet may be placed on the coating film formed on the substrate to block oxygen, or filled with an inert gas.
- a release liner may be placed in the container to reduce the oxygen concentration.
- the type of radiation and the like and the type of lamp used for irradiation can be selected as appropriate, such as low-pressure lamps such as fluorescent chemical lamps, black lights, and sterilization lamps, metal halide lamps, high-pressure mercury lamps, and the like.
- low-pressure lamps such as fluorescent chemical lamps, black lights, and sterilization lamps
- metal halide lamps such as metal halide lamps, high-pressure mercury lamps, and the like.
- a high pressure lamp or the like can be used.
- Irradiation amounts such as ultraviolet rays can be arbitrarily set according to required film characteristics.
- the dose of ultraviolet rays 50 ⁇ 5000mJ / cm 2, preferably 100 ⁇ 4000mJ / cm 2, more preferably 100 ⁇ 3000mJ / cm 2.
- the dose of ultraviolet ray is less than 50 mJ / cm 2, may not sufficient polymerization rate can be obtained, when it is more than 5000 mJ / cm 2, which may cause deterioration.
- the temperature at the time of ultraviolet irradiation is not particularly limited and can be arbitrarily set. However, if the temperature is too high, a termination reaction due to the heat of polymerization is likely to occur, which tends to cause deterioration of characteristics. Is 70 ° C. or lower, preferably 50 ° C. or lower, more preferably 30 ° C. or lower.
- the acrylic monomer is polymerized to become an acrylic polymer, and a composite film cured as a whole can be obtained.
- a drying step may be provided after radiation curing.
- the drying temperature may be set according to the type of solvent, and is, for example, about 80 to 160 ° C.
- the urethane polymer has an acryloyl group at the terminal, crosslinking between the urethane polymer and the acrylic polymer occurs, and this can be used to control the mechanical properties or chemical properties of the composite film.
- a photopolymerization initiator is added to the reference mixture without adding a chain transfer agent, and this mixture is irradiated with radiation in the same procedure as described above to cause a curing reaction. Just do it.
- the elongation breaking strength S2 of the composite film P2 obtained by curing the additive mixture is a value of 85% to 115% of the elongation breaking strength S1 of the composite film P1 obtained by curing the reference mixture, preferably The value is 90% or more and 110% or less.
- the stress M2 when the composite film P2 is stretched by 20% is 90% or less, preferably 80% or less of the stress M1 when the composite film P1 is stretched by 20%. .
- the lower limit of the 20% elongation stress M2 is preferably as low as possible. However, if it is too low, the elongation breaking strength S2 may be less than 85% of the elongation breaking strength S1, and therefore it is preferably 10% or more. Alternatively, the elongation at break E2 when the composite film P2 is stretched and broken at the same time as satisfying the stretch breaking strength is equal to the elongation at break E1 when the composite film P1 is stretched and broken.
- the value is 120% or more, preferably 140% or more.
- the upper limit of the elongation at break E2 is preferably as high as possible, but is preferably 1000% or less from the balance between required characteristics and productivity.
- the thickness of the composite film of the present embodiment can be appropriately selected according to the purpose and the like, but is generally about 5 to 500 ⁇ m, preferably about 50 to 200 ⁇ m.
- the composite film of this embodiment can be used as it is, but it can also be used as an adhesive sheet by forming an adhesive layer on one or both sides. It does not specifically limit as an adhesive composition, A general thing, such as an acryl type and a rubber type, can be used.
- the method of forming the pressure-sensitive adhesive is not particularly limited, and a method of directly applying a solvent-based or emulsion-based pressure-sensitive adhesive to a composite film and drying it, applying these pressure-sensitive adhesives to a release paper, and pre-adhesive layer And a method of sticking the pressure-sensitive adhesive layer to the composite film can be applied.
- a method can also be applied in which a radiation curable pressure-sensitive adhesive is applied to a composite film, and both the pressure-sensitive adhesive layer and the film are irradiated with radiation to simultaneously cure and form the composite film and the pressure-sensitive adhesive layer.
- the pressure-sensitive adhesive layer and the composite film layer can be applied so as to have a multilayer structure.
- the thickness of the pressure-sensitive adhesive layer is not particularly limited and can be arbitrarily set. Usually, it is preferably 3 to 100 ⁇ m, more preferably 10 to 50 ⁇ m, particularly about 10 to 30 ⁇ m. It is preferable that
- the composite film in the present embodiment can be laminated with another film on one side or both sides.
- materials for forming other films include polyester resins such as polyethylene terephthalate (PET), polyolefin resins such as polyethylene (PE) and polypropylene (PP), polyimide (PI), and polyetheretherketone (PEEK).
- PET polyethylene terephthalate
- PP polypropylene
- PI polyimide
- PEEK polyetheretherketone
- thermoplastic resins such as polyvinyl chloride (PVC), polyvinylidene chloride resins, polyamide resins, polyurethane resins, polystyrene resins, acrylic resins, fluorine resins, cellulose resins, polycarbonate resins, etc., thermosetting Resin etc. are mentioned.
- the other film may have a single layer structure, but may be a film having a multilayer structure composed of a plurality of layers made of the same or different materials.
- the use of the composite film of the present embodiment is not particularly limited, and can be used as a film substrate or a protective film that can be applied to various uses such as home use, medical use, agricultural use, and industrial use.
- the reference mixture A ′ was applied onto a 38 ⁇ m-thick polyethylene terephthalate (PET) subjected to a release treatment so that the thickness after curing was 100 ⁇ m to form a coating film.
- the coated PET film was overlaid on the coating film, and then the coated PET film surface was irradiated with ultraviolet rays (illuminance 9 mW / cm 2 , light amount 1200 mJ / cm 2 ) using a black light and a metal halide lamp. And cured to form a urethane-acrylic composite film on the PET film.
- Example 1 To 100 parts by weight of the reference mixture A, as a photopolymerization initiator, Irg. Addition mixture A was obtained by adding 0.15 part of 651 and 0.1 part of thioglycolic acid (hereinafter abbreviated as “TGA”) as a chain transfer agent. In the same manner as in the Reference Example, a coating film was formed with the additive mixture A and radiation curing was performed to form a urethane-acrylic composite film.
- TGA thioglycolic acid
- Example 2 To 100 parts by weight of the reference mixture A, as a photopolymerization initiator, Irg. Addition mixture B was obtained by adding 0.15 part of 651 and 0.5 part of TGA as a chain transfer agent. In the same manner as in the Reference Example, a coating film was formed with the additive mixture B and radiation curing was performed to form a urethane-acrylic composite film.
- Example 3 To 100 parts by weight of the reference mixture A, as a photopolymerization initiator, Irg. Addition mixture C was obtained by adding 0.15 part of 651 as a chain transfer agent and 1.0 part of TGA. In the same manner as in the Reference Example, a coating film was formed with the additive mixture C and radiation curing was performed to form a urethane-acrylic composite film.
- TMPTA trimethylolpropane triacrylate
- the acryloyl group-terminated urethane polymer-acrylic system was the same as in the reference example.
- a reference mixture ⁇ which is a monomer mixture, was obtained.
- the reference mixture ⁇ Into 100 parts by weight of the reference mixture ⁇ , as a photopolymerization initiator, Irg.
- the reference mixture ⁇ ' was obtained by adding 0.15 part of 651.
- a coating film was formed with the reference mixture ⁇ 'and radiation curing was performed to form a urethane-acrylic composite film.
- rate of change (each measured value of Examples and Comparative Examples / each measured value of Reference Example) ⁇ 100 (%)
- the stress when the composite film breaks is obtained to obtain the elongation break strength, and the elongation rate when it is subsequently broken (the chuck at break relative to the initial distance between chucks) The ratio of the distance between them was defined as the elongation at break.
- PTMG poly (oxytetramethylene) glycol having a number average molecular weight of 650
- PPG720 poly (oxypropylene) glycol having a number average molecular weight of 700
- HXDI hydrogenated xylylene diisocyanate
- HEA hydroxyethyl acrylate
- IBXA isobornyl acrylate
- BA n-butyl Acrylate
- AA Acrylic acid
- TMPTA Trimethylolpropane triacrylate
- Irg. 650 2,2-dimethoxy-1,2-diphenylethane-1-one
- TGA thioglycolic acid
- the tensile strength at break of the urethane-acrylic composite film to which the chain transfer agent TGA was added was 89.8 to 105.0% of the tensile strength at break of the reference example. It was almost the same value.
- the stress at 20% elongation was 87.2 to 31.2% of the stress at 20% elongation of the reference example, which was lower than that of the reference example.
- Comparative Example 1 in which the acrylic composition was changed the tensile strength at break showed the same value as 105.5% of the reference example, but the stress at 20% elongation was 142.0% higher than that of the reference example. showed that.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Laminated Bodies (AREA)
Abstract
The purpose is to provide a method for producing a composite film having improved stretching ease, and having a small amount of change in breaking strength when stretched. This method for producing a composite film involves: a step for preparing a standard mixture containing the urethane polymer and one or more types of acrylic monomers; a step for preparing an additive-containing mixture by adding a chain transfer agent in the amount of 0.01-5 parts by weight, inclusive, to 100 parts by weight of the standard mixture; and a step for forming the composite film by hardening this additive-containing mixture. Therein, the tensile strength of break (S2) of a composite film (P2) obtained by hardening the additive-containing mixture is 85-115%, inclusive, of the tensile strength of break (S1) of a composite film (P1) obtained by hardening the standard mixture, and the stress (M2) when the composite film (P2) is stretched by 20% is 90% or less of the stress (M1) when the composite film (P1) is stretched by 20%, or the stretch percentage at break (E2) when the composite film (P2) is stretched and broken is 120% or more of the stretch percentage at break (E1) when the composite film (P1) is stretched and broken.
Description
本発明は、ウレタンポリマー及びアクリル系ポリマーを含む複合フィルムの製造方法、並びに複合フィルムに関する。
The present invention relates to a method for producing a composite film containing a urethane polymer and an acrylic polymer, and a composite film.
アクリル系ポリマーとウレタンポリマーの複合フィルムは、高強度と高破断伸びを両立できるフィルムとして、例えば、特開2003-96140号公報、特開2003-171411号公報、特開2004-10661号、特開2004-10662号公報等に開示されている。この複合フィルムは、フィルムとして高強度、高伸張等の強靭な物性を有している。
A composite film of an acrylic polymer and a urethane polymer is, for example, Japanese Patent Application Laid-Open No. 2003-96140, Japanese Patent Application Laid-Open No. 2003-171411, Japanese Patent Application Laid-Open No. 2004-10661, and Japanese Patent Application Laid-Open No. 2004-10661. It is disclosed in Japanese Patent Application Publication No. 2004-1062. This composite film has tough physical properties such as high strength and high elongation as a film.
このような複合フィルムの力学的物性は、アクリル系ポリマーの種類や共重合組成、ウレタンポリマーの組成、アクリル系ポリマーとウレタンポリマーとの比率等を調整することで制御することができる。例えば、低弾性率の複合フィルムを作製するためには、ガラス転移温度(Tg)の低いアクリル系ポリマーを用いたり、高分子量のウレタンポリマーを用いたりする等の方策を採用することができる。
The mechanical properties of such a composite film can be controlled by adjusting the type and copolymer composition of the acrylic polymer, the composition of the urethane polymer, the ratio of the acrylic polymer to the urethane polymer, and the like. For example, in order to produce a composite film having a low elastic modulus, measures such as using an acrylic polymer having a low glass transition temperature (Tg) or a high molecular weight urethane polymer can be employed.
しかしながら、複合フィルムの目的とする力学的物性を変化させるために、上述のようなアクリル系ポリマーやウレタンポリマーの組成を変化させる方法を採用すると、目的とする力学的物性以外の他の力学的物性までも変化してしまい、結果的に複合フィルム全体として狙いとする力学的物性が得られない場合がある。特に、作業性向上や高機能化のために、複合フィルムの伸張破断強度は維持しつつ、複合フィルムを伸張させる際の応力の低下や複合フィルムを伸張させて破断した際の伸び率の増加といった易伸張性の向上が望まれているものの、従来の手法では困難となっている。
However, if the method of changing the composition of the acrylic polymer or urethane polymer as described above is adopted to change the target mechanical properties of the composite film, other mechanical properties other than the target mechanical properties are adopted. As a result, there may be a case where the desired mechanical properties of the composite film as a whole cannot be obtained. In particular, in order to improve workability and increase the functionality, while maintaining the stretch breaking strength of the composite film, such as a decrease in stress when stretching the composite film and an increase in elongation when the composite film is stretched and broken Although improvement of easy stretchability is desired, it is difficult with the conventional method.
本発明は上記問題点を解決するためになされたものであり、本発明は、複合フィルムを伸張させたときの破断強度をあまり変化させることなく、20%伸張させた際に発生する応力の低下や伸張させて破断した際の伸び率の増加といった易伸張性の向上が可能な複合フィルムの製造方法及びこの製造方法により得られる複合フィルムを提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and the present invention reduces the stress generated when the composite film is stretched by 20% without significantly changing the breaking strength when the composite film is stretched. Another object of the present invention is to provide a method for producing a composite film capable of improving easily stretchability such as an increase in elongation when it is stretched and broken, and a composite film obtained by this production method.
すなわち、本発明は、ウレタンポリマー及びアクリル系ポリマーを含む複合フィルムの製造方法であって、
上記ウレタンポリマー及び少なくとも1種のアクリル系モノマーを含む基準混合物を調製する基準混合物調製工程と、
上記基準混合物100重量部に対し、連鎖移動剤を0.01重量部以上5重量部以下添加して添加混合物を調製する添加混合物調製工程と、
上記添加混合物を硬化させて複合フィルムを形成する複合フィルム形成工程と
を含み、
上記添加混合物の硬化により得られる複合フィルムP2の伸張破断強度S2は、上記基準混合物の硬化により得られる複合フィルムP1の伸張破断強度S1の85%以上115%以下の値であり、かつ
上記複合フィルムP2を20%伸張させた際の応力M2は、上記複合フィルムP1を20%伸張させた際の応力M1の90%以下の値であるか、又は上記複合フィルムP2を伸張して破断させた際の破断時伸張率E2は、上記複合フィルムP1を伸張して破断させた際の破断時伸張率E1の120%以上の値である。 That is, the present invention is a method for producing a composite film containing a urethane polymer and an acrylic polymer,
A reference mixture preparation step for preparing a reference mixture comprising the urethane polymer and at least one acrylic monomer;
An additive mixture preparation step of adding 0.01 parts by weight or more and 5 parts by weight or less of a chain transfer agent to 100 parts by weight of the reference mixture;
A composite film forming step of curing the additive mixture to form a composite film,
The elongation breaking strength S2 of the composite film P2 obtained by curing the additive mixture is a value of 85% to 115% of the elongation breaking strength S1 of the composite film P1 obtained by curing the reference mixture, and the composite film The stress M2 when the P2 is stretched by 20% is 90% or less of the stress M1 when the composite film P1 is stretched by 20%, or when the composite film P2 is stretched and broken. The elongation at break E2 is 120% or more of the elongation at break E1 when the composite film P1 is stretched and broken.
上記ウレタンポリマー及び少なくとも1種のアクリル系モノマーを含む基準混合物を調製する基準混合物調製工程と、
上記基準混合物100重量部に対し、連鎖移動剤を0.01重量部以上5重量部以下添加して添加混合物を調製する添加混合物調製工程と、
上記添加混合物を硬化させて複合フィルムを形成する複合フィルム形成工程と
を含み、
上記添加混合物の硬化により得られる複合フィルムP2の伸張破断強度S2は、上記基準混合物の硬化により得られる複合フィルムP1の伸張破断強度S1の85%以上115%以下の値であり、かつ
上記複合フィルムP2を20%伸張させた際の応力M2は、上記複合フィルムP1を20%伸張させた際の応力M1の90%以下の値であるか、又は上記複合フィルムP2を伸張して破断させた際の破断時伸張率E2は、上記複合フィルムP1を伸張して破断させた際の破断時伸張率E1の120%以上の値である。 That is, the present invention is a method for producing a composite film containing a urethane polymer and an acrylic polymer,
A reference mixture preparation step for preparing a reference mixture comprising the urethane polymer and at least one acrylic monomer;
An additive mixture preparation step of adding 0.01 parts by weight or more and 5 parts by weight or less of a chain transfer agent to 100 parts by weight of the reference mixture;
A composite film forming step of curing the additive mixture to form a composite film,
The elongation breaking strength S2 of the composite film P2 obtained by curing the additive mixture is a value of 85% to 115% of the elongation breaking strength S1 of the composite film P1 obtained by curing the reference mixture, and the composite film The stress M2 when the P2 is stretched by 20% is 90% or less of the stress M1 when the composite film P1 is stretched by 20%, or when the composite film P2 is stretched and broken. The elongation at break E2 is 120% or more of the elongation at break E1 when the composite film P1 is stretched and broken.
当該製造方法では、ウレタンポリマー及びアクリル系ポリマーを含む複合フィルムの製造の際に、ウレタンポリマー及び少なくとも1種のアクリル系モノマーを含む基準混合物100重量部に対し、連鎖移動剤を0.01重量部以上5重量部以下添加しているので、得られる複合フィルムを伸張して破断させた際の破断強度(すなわち、伸張破断強度)を連鎖移動剤の添加前の複合フィルムの伸張破断強度の85%以上115%以下の値に維持しつつ、複合フィルムを20%伸張させた際に複合フィルムに働く応力(以下、「20%伸張時応力」と称する場合がある。)M2を添加前の90%以下の値に低下させることができ、あるいは、複合フィルムを伸張して破断させた際の複合フィルムの伸び率(すなわち、破断時伸張率)E2を添加前の120%以上の値に増加させることができ、複合フィルムの易伸張性を向上させることができる。従来の手法では、伸張時破断強度と20%伸張時応力又は破断時伸張率とが正の相関関係、すなわち一方を高めると他方も高くなるという関係のために両者の制御が困難であった。例えば、20%伸張時応力を低下させると伸張時破断強度も低下して要求される伸張時破断強度を達成することができなかったり、反対に破断時伸張率を高めると伸張時破断強度も高くなったりしてしまう。なお、伸張時破断強度の向上は常に求められるわけではなく、場合によっては過剰な性能(いわゆるオーバースペック)となったり、易破断性が要求される場合は破断を阻害する方向に作用したりする。これに対し、当該製造方法では、連鎖移動剤の添加により、従来では困難であった伸張破断強度の維持と、20%伸張時応力の低下ないし破断時伸張率の増加とを容易に両立させることができる。このメカニズムは明らかではないが、連鎖移動剤の添加により複合フィルムの伸張破断強度に関与するウレタンポリマーの組成ないし構造はほとんど影響を与えずに、20%伸張時応力ないし破断時伸張率に関与するアクリル系ポリマーの重合度が低下し、複合フィルム全体での適度な応力緩和が生じたことに起因すると推定される。ただし、本発明の作用効果が得られる限り、該メカニズムに限定されるものではない。
In the production method, when producing a composite film containing a urethane polymer and an acrylic polymer, 0.01 parts by weight of a chain transfer agent is used with respect to 100 parts by weight of a reference mixture containing the urethane polymer and at least one acrylic monomer. Since 5 parts by weight or less is added, the breaking strength when the resulting composite film is stretched and broken (that is, the elongation breaking strength) is 85% of the elongation breaking strength of the composite film before the addition of the chain transfer agent. While maintaining the above value of 115% or less, the stress acting on the composite film when the composite film is stretched by 20% (hereinafter sometimes referred to as “stress at 20% stretch”) M2 is 90% before addition. It can be reduced to the following values, or the elongation rate of the composite film (ie, the elongation at break) E2 when the composite film is stretched and broken is added. Can be increased to 120% or more of the value before, it is possible to improve the easy extensibility of the composite film. In the conventional method, it is difficult to control both of them because of the positive correlation between the breaking strength at elongation and the stress at 20% elongation or the elongation at break, that is, when one is increased, the other is increased. For example, when the stress at 20% elongation is lowered, the breaking strength at elongation is also lowered and the required breaking strength at elongation cannot be achieved, and conversely, when the elongation at break is increased, the breaking strength at elongation is also increased. It will become. It should be noted that the improvement in breaking strength at the time of expansion is not always required, and in some cases, excessive performance (so-called over spec) is obtained, or when easy breakability is required, it acts in the direction of inhibiting breakage. . On the other hand, in the production method, by adding a chain transfer agent, it is possible to easily achieve both maintenance of the elongation fracture strength, which has been difficult in the past, and decrease the stress at 20% elongation or increase the elongation at break. Can do. Although this mechanism is not clear, the composition or structure of the urethane polymer that contributes to the tensile strength at break of the composite film by the addition of a chain transfer agent has little effect on the stress at 20% elongation or the elongation at break. It is presumed that the degree of polymerization of the acrylic polymer was lowered and moderate stress relaxation occurred in the entire composite film. However, the mechanism is not limited as long as the effects of the present invention can be obtained.
当該製造方法では、上記ウレタンポリマーはアクリロイル基末端ウレタンポリマーを含むことが好ましい。これにより、ウレタンポリマーにアクリル系モノマーとの共重合性を付与することができ、ポリマー全体の凝集力を向上させて伸張破断強度の維持と、20%伸張時応力の低下ないし破断時伸張率の増加との両立をより容易に図ることができる。
In the production method, the urethane polymer preferably contains an acryloyl group-terminated urethane polymer. As a result, the urethane polymer can be provided with copolymerizability with an acrylic monomer, the cohesive force of the whole polymer is improved, the elongation breaking strength is maintained, the stress at 20% elongation is reduced or the elongation at break is increased. It is possible to more easily achieve the increase.
当該製造方法において、上記基準混合物調製工程では、少なくとも1種のアクリル系モノマーの存在下、ポリオールとイソシアネートとの反応により上記ウレタンポリマーを形成することが好ましい。このような工程を踏むことで、原料として用いるモノマーの種類の幅を広げることができ、添加混合物をフィルム状とすることが容易となる。この場合、上記複合フィルム形成工程では、放射線硬化性とした上記添加混合物を基材上に塗布して塗膜を形成し、該塗膜に放射線を照射し硬化させて複合フィルムを形成することが好ましい。
In the production method, in the reference mixture preparation step, the urethane polymer is preferably formed by a reaction between a polyol and an isocyanate in the presence of at least one acrylic monomer. By taking such a step, the range of types of monomers used as a raw material can be widened, and the additive mixture can be easily formed into a film. In this case, in the composite film forming step, the radiation-curable additive mixture is applied onto a substrate to form a coating film, and the coating film is irradiated with radiation to be cured to form a composite film. preferable.
本発明には、当該複合フィルムの製造方法により得られる複合フィルムも含まれる。
The present invention includes a composite film obtained by the method for producing the composite film.
本発明によれば、ウレタンポリマーおよびアクリル系ポリマーのそれぞれの組成や両者の組成比等を変えることなく、複合フィルムの伸長破断強度を維持し、かつ20%伸張時応力の低下や破断時伸張率の増加といった易伸張性が向上した複合フィルムを容易に製造することができる。
According to the present invention, the elongation break strength of the composite film is maintained without changing the composition of each of the urethane polymer and the acrylic polymer, the composition ratio of the both, and the like, and the decrease in stress at 20% elongation and the elongation at break It is possible to easily produce a composite film having improved easy stretchability, such as an increase in.
本発明は、ウレタンポリマー及びアクリル系ポリマーを含む複合フィルムの製造方法であって、上記ウレタンポリマー及び少なくとも1種のアクリル系モノマーを含む基準混合物を調製する基準混合物調製工程と、上記基準混合物100重量部に対し、連鎖移動剤を0.01重量部以上5重量部以下添加して添加混合物を調製する添加混合物調製工程と、上記添加混合物を硬化させて複合フィルムを形成する複合フィルム形成工程とを含み、上記添加混合物の硬化により得られる複合フィルムP2の伸張破断強度S2は、上記基準混合物の硬化により得られる複合フィルムP1の伸張破断強度S1の85%以上115%以下の値であり、かつ上記複合フィルムP2を20%伸張させた際の応力M2は、上記複合フィルムP1を20%伸張させた際の応力M1の90%以下の値であるか、又は上記複合フィルムP2を伸張して破断させた際の破断時伸張率E2は、上記複合フィルムP1を伸張して破断させた際の破断時伸張率E1の120%以上の値である。
The present invention relates to a method for producing a composite film containing a urethane polymer and an acrylic polymer, a reference mixture preparation step for preparing a reference mixture containing the urethane polymer and at least one acrylic monomer, and 100 wt% of the reference mixture. An addition mixture preparation step of adding 0.01 parts by weight or more and 5 parts by weight or less of a chain transfer agent, and a composite film formation step of curing the addition mixture to form a composite film. In addition, the elongation breaking strength S2 of the composite film P2 obtained by curing the additive mixture is a value of 85% to 115% of the elongation breaking strength S1 of the composite film P1 obtained by curing the reference mixture, and the above The stress M2 when the composite film P2 is stretched by 20% is that the composite film P1 is stretched by 20%. Is a value of 90% or less of the stress M1 at the time of breaking, or the elongation at break E2 when the composite film P2 is stretched and broken is the breakage when the composite film P1 is stretched and broken It is a value of 120% or more of the time expansion rate E1.
以下、本発明の一実施形態について説明する。本実施形態では、アクリル系モノマー単独又は2種以上の混合物中で、ポリオールとジイソシアネートとを反応させてウレタンポリマーを形成し、ウレタンポリマーとアクリル系モノマーとを含む混合物を、例えば、剥離処理されたポリエチレンテレフタレートフィルム上に塗布し、放射線を照射して硬化させて複合フィルムを作製する。なお、剥離処理されたポリエチレンテレフタレートフィルムの代わりに、適当な基材を使用することもできるし、あるいは、剥離処理されたポリエチレンテレフタレートフィルム等の剥離基材上に、粘着剤層を設けて、その上に複合フィルムを形成してもよい。また、複合フィルムを形成した後に、別途作製した粘着剤層を積層して、粘着剤層/複合フィルムの積層シートを作製してもよい。
Hereinafter, an embodiment of the present invention will be described. In this embodiment, an acrylic monomer alone or in a mixture of two or more, a polyol and a diisocyanate are reacted to form a urethane polymer, and a mixture containing the urethane polymer and the acrylic monomer is subjected to, for example, a peeling treatment. It is applied onto a polyethylene terephthalate film and cured by irradiation with radiation to produce a composite film. In addition, instead of the polyethylene terephthalate film subjected to the release treatment, an appropriate base material can be used, or an adhesive layer is provided on the release substrate such as the polyethylene terephthalate film subjected to the release treatment. A composite film may be formed thereon. Moreover, after forming a composite film, the adhesive layer produced separately may be laminated | stacked and the laminated sheet of an adhesive layer / composite film may be produced.
[基準混合物調製工程]
基準混合物調製工程では、ウレタンポリマー及び少なくとも1種のアクリル系モノマーを含む基準混合物を調製する。 [Standard mixture preparation process]
In the reference mixture preparation step, a reference mixture including a urethane polymer and at least one acrylic monomer is prepared.
基準混合物調製工程では、ウレタンポリマー及び少なくとも1種のアクリル系モノマーを含む基準混合物を調製する。 [Standard mixture preparation process]
In the reference mixture preparation step, a reference mixture including a urethane polymer and at least one acrylic monomer is prepared.
(ウレタンポリマー)
ウレタンポリマーは、ポリオールとジイソシアネートとを反応させて得られる。ポリオールの水酸基とイソシアネートとの反応には、触媒を用いてもよい。例えば、ジブチル錫ジラウレート、オクトエ酸錫、1,4-ジアザビシクロ(2,2,2)オクタン等の、ウレタン反応において一般的に使用される触媒を用いることができる。 (Urethane polymer)
The urethane polymer is obtained by reacting a polyol and diisocyanate. A catalyst may be used for the reaction between the hydroxyl group of the polyol and the isocyanate. For example, a catalyst generally used in urethane reaction such as dibutyltin dilaurate, tin octoate, 1,4-diazabicyclo (2,2,2) octane can be used.
ウレタンポリマーは、ポリオールとジイソシアネートとを反応させて得られる。ポリオールの水酸基とイソシアネートとの反応には、触媒を用いてもよい。例えば、ジブチル錫ジラウレート、オクトエ酸錫、1,4-ジアザビシクロ(2,2,2)オクタン等の、ウレタン反応において一般的に使用される触媒を用いることができる。 (Urethane polymer)
The urethane polymer is obtained by reacting a polyol and diisocyanate. A catalyst may be used for the reaction between the hydroxyl group of the polyol and the isocyanate. For example, a catalyst generally used in urethane reaction such as dibutyltin dilaurate, tin octoate, 1,4-diazabicyclo (2,2,2) octane can be used.
ポリオールとしては、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等を付加重合して得られるポリエーテルポリオール、あるいは2価のアルコール(例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブチレングリコール、ヘキサメチレングリコール等)とアジピン酸、アゼライン酸、セパチン酸等の2価の塩基酸との重縮合物からなるポリエステルポリオールや、アクリルポリオール、カーボネートポリオール、エポキシポリオール、カプロラクトンポリオール等が挙げられる。これらの中では、例えば、ポリオキシテトラメチレングリコール(PTMG)、ポリオキシプロピレングリコール(PPG)等のポリエーテルポリオール、非結晶性のポリエステルポリオール、非結晶性のポリカーボネートポリオール等が好ましく使用される。これらのポリオール類は単独あるいは併用して使用することができる。
Polyols are polyether polyols obtained by addition polymerization of ethylene oxide, propylene oxide, tetrahydrofuran, etc., or dihydric alcohols (for example, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexamethylene glycol, etc.) and adipic acid. And polyester polyols composed of a polycondensation product with a divalent basic acid such as azelaic acid and cepatic acid, acrylic polyols, carbonate polyols, epoxy polyols and caprolactone polyols. Among these, for example, polyether polyols such as polyoxytetramethylene glycol (PTMG) and polyoxypropylene glycol (PPG), non-crystalline polyester polyols, non-crystalline polycarbonate polyols and the like are preferably used. These polyols can be used alone or in combination.
ポリオール成分の数平均分子量は特に限定されず、目的とする複合フィルムの特性を考慮して設定すればよい。中でも、基準混合物を安定に調製する観点からは、例えば400~2000が好ましく、600~1000がより好ましい。なお、数平均分子量の測定方法は、以下の方法で測定することができる。試料をTHFに0.1wt%で溶解させて、GPC(ゲルパーミエーションクロマトグラフィー)を用いてポリスチレン換算により数平均分子量を測定する。詳しい測定条件は以下の通りである。
GPC装置:東ソー製、HLC-8120GPC
カラム:東ソー製、(GMHHR-H)+(GMHHR-H)+(G2000HHR)
流量:0.8ml/min
濃度:0.1wt%
注入量:100μl
カラム温度:40℃
溶離液:THF The number average molecular weight of the polyol component is not particularly limited, and may be set in consideration of the characteristics of the intended composite film. Among these, from the viewpoint of stably preparing the reference mixture, for example, 400 to 2000 is preferable, and 600 to 1000 is more preferable. In addition, the measuring method of a number average molecular weight can be measured with the following method. A sample is dissolved in THF at 0.1 wt%, and the number average molecular weight is measured by polystyrene conversion using GPC (gel permeation chromatography). Detailed measurement conditions are as follows.
GPC device: Tosoh HLC-8120GPC
Column: manufactured by Tosoh Corporation, (GMHHR-H) + (GMHHR-H) + (G2000HHR)
Flow rate: 0.8ml / min
Concentration: 0.1 wt%
Injection volume: 100 μl
Column temperature: 40 ° C
Eluent: THF
GPC装置:東ソー製、HLC-8120GPC
カラム:東ソー製、(GMHHR-H)+(GMHHR-H)+(G2000HHR)
流量:0.8ml/min
濃度:0.1wt%
注入量:100μl
カラム温度:40℃
溶離液:THF The number average molecular weight of the polyol component is not particularly limited, and may be set in consideration of the characteristics of the intended composite film. Among these, from the viewpoint of stably preparing the reference mixture, for example, 400 to 2000 is preferable, and 600 to 1000 is more preferable. In addition, the measuring method of a number average molecular weight can be measured with the following method. A sample is dissolved in THF at 0.1 wt%, and the number average molecular weight is measured by polystyrene conversion using GPC (gel permeation chromatography). Detailed measurement conditions are as follows.
GPC device: Tosoh HLC-8120GPC
Column: manufactured by Tosoh Corporation, (GMHHR-H) + (GMHHR-H) + (G2000HHR)
Flow rate: 0.8ml / min
Concentration: 0.1 wt%
Injection volume: 100 μl
Column temperature: 40 ° C
Eluent: THF
ジイソシアネートとしては、芳香族、脂肪族、脂環族のジイソシアネートなどが挙げられる。芳香族、脂肪族、脂環族のジイソシアネートとしては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート、イソホロンジイソシアネート、水添ジフェニルメタンジイソシアネート、1,5-ナフチレンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、ブタン-1,4-ジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、ジシクロヘキシルメタン-4,4-ジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート、m-テトラメチルキシリレンジイソシアネートなどが挙げられる。これらのジイソシアネートは単独あるいは併用で使用することができる。ウレタン反応性、アクリルとの相溶性などの観点から、ポリイソシアネートの種類、組合せ等を適宜選択することができる。
Examples of the diisocyanate include aromatic, aliphatic, and alicyclic diisocyanates. Aromatic, aliphatic, and alicyclic diisocyanates include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, 1,5-naphthylene diisocyanate. 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, butane-1,4-diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, cyclohexane-1,4 -Diisocyanate, dicyclohexylmethane-4,4-diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, methyl Cyclohexane diisocyanate, m- tetramethylxylylene diisocyanate. These diisocyanates can be used alone or in combination. From the viewpoint of urethane reactivity, compatibility with acrylic, and the like, the type and combination of polyisocyanates can be appropriately selected.
本実施形態において、ウレタンポリマーを形成するためのポリオール成分とジイソシアネート成分の使用量は特に限定されるものではないが、例えば、ポリオール成分の使用量は、ジイソシアネート成分に対し、NCO/OH(当量比)が1.0以上であることが好ましく、2.0以下であることがさらに好ましい。NCO/OHが1.0未満では、ウレタン分子鎖の末端官能基が水酸基となり、フィルムの強度が低下しやすい。また、NCO/OHが2.0以下であれば、伸びと柔軟性を確保することができる。
In the present embodiment, the usage amount of the polyol component and the diisocyanate component for forming the urethane polymer is not particularly limited. For example, the usage amount of the polyol component is NCO / OH (equivalent ratio) with respect to the diisocyanate component. ) Is preferably 1.0 or more, and more preferably 2.0 or less. When NCO / OH is less than 1.0, the terminal functional group of the urethane molecular chain becomes a hydroxyl group, and the strength of the film tends to decrease. Moreover, if NCO / OH is 2.0 or less, elongation and flexibility can be ensured.
上記ウレタンポリマーに対し、水酸基含有アクリルモノマーを添加してもよい。水酸基含有アクリルポリマーを添加することにより、ウレタンポリマーの分子内(特に、末端)にアクリロイル基を導入することができ、アクリルモノマーとの共重合性を付与することができる。その結果、ポリマー全体の凝集力を向上させて伸張破断強度の維持と20%伸張時応力の低下又は破断時伸張率の増加との両立をより容易に図ることができる。水酸基含有アクリルモノマーとしては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート等が用いられる。水酸基含有アクリルモノマーの使用量は、ウレタンポリマー100重量部に対して、0.1~10重量部であることが好ましく、さらに好ましくは0.1~5重量部である。
A hydroxyl group-containing acrylic monomer may be added to the urethane polymer. By adding a hydroxyl group-containing acrylic polymer, an acryloyl group can be introduced into the molecule (particularly the terminal) of the urethane polymer, and copolymerization with an acrylic monomer can be imparted. As a result, the cohesive force of the whole polymer can be improved, and both the maintenance of the elongation break strength and the reduction of the stress at 20% elongation or the increase of the elongation at break can be more easily achieved. As the hydroxyl group-containing acrylic monomer, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxyhexyl (meth) acrylate, or the like is used. The amount of the hydroxyl group-containing acrylic monomer used is preferably 0.1 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the urethane polymer.
(アクリル系モノマー)
基準混合物に含まれるアクリル系モノマーとしては、例えば、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、ドデシル(メタ)アクリレート、n-オクタデシル(メタ)アクリレート、アクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、クロトン酸等のカルボキシル基含有モノマー;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)-メチルアクリレート等のヒドロキシル基含有モノマー;シクロへキシル(メタ)アクリレート、イソボルニルアクリレート等の脂環式構造を有するモノマー;無水マレイン酸、無水イタコン酸等の酸無水物モノマー;2-アクリルアミド-2-メチルプロパンスルホン酸、スルホプロピルアクリレート等のスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェート等の燐酸含有モノマーなどがあげられる。また、(メタ)アクリルアミド、N-メチロールアクリルアミド等のN-置換(メタ)アクリルアミド等のアミド系モノマー、N-(メタ)アクリロイルオキシメチレンスクシンイミド、N-(メタ)アクリロイル-6-オキシヘキサメチレンスクシンイミド、N-(メタ)アクリロイル-8-オキシオクタメチレンスクシンイミド等のスクシンイミド系モノマー、酢酸ビニル、N-ビニルピロリドン、N-ビニルカルボン酸アミド類、N-ビニルカプロラクタム等のビニル系モノマー;アクリロニトリル、メタクリロニトリル等のシアノアクリレート系モノマー、(メタ)アクリル酸グリシジル、テトラヒドロフルフリル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、フッ素(メタ)アクリレート、シリコーン(メタ)アクリレート、2-メトキシエチルアクリレート等のアクリル酸エステル系モノマー;メチル(メタ)アクリレートやオクタデシル(メタ)アクリレート等のモノマーを1種または2種以上を用いることができる。これらのアクリル系モノマーは、ウレタンとの相溶性、放射線等の光硬化時の重合性や、得られる高分子量体の特性を考慮して、種類、組合せ、使用量等が適宜決定される。なお、アクリル系モノマーには、上記例示からも明らかなように、アクリル酸由来の構造を有するモノマーだけでなく、メタクリル酸由来の構造を有するモノマーも含まれる。 (Acrylic monomer)
Examples of acrylic monomers contained in the reference mixture include ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, t -Butyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate, dodecyl (meth) acrylate, n-octadecyl (meth) acrylate, acrylic Carboxyl group-containing monomers such as acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, and crotonic acid; (meth) acrylic acid 2-hydroxyethyl, (meth) acrylic acid 2-hydroxypropyl phosphate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, (meth) Hydroxyl group-containing monomers such as 12-hydroxylauryl acrylate and (4-hydroxymethylcyclohexyl) -methyl acrylate; Monomers having an alicyclic structure such as cyclohexyl (meth) acrylate and isobornyl acrylate; maleic anhydride, And acid anhydride monomers such as itaconic anhydride; sulfonic acid group-containing monomers such as 2-acrylamido-2-methylpropanesulfonic acid and sulfopropyl acrylate; and phosphoric acid-containing monomers such as 2-hydroxyethylacryloyl phosphate. In addition, amide monomers such as N-substituted (meth) acrylamide such as (meth) acrylamide and N-methylolacrylamide, N- (meth) acryloyloxymethylene succinimide, N- (meth) acryloyl-6-oxyhexamethylene succinimide, Succinimide monomers such as N- (meth) acryloyl-8-oxyoctamethylenesuccinimide, vinyl monomers such as vinyl acetate, N-vinylpyrrolidone, N-vinylcarboxylic acid amides, N-vinylcaprolactam; acrylonitrile, methacrylonitrile Cyanoacrylate monomers such as glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate Acrylic ester monomers such as fluorine, (meth) acrylate, silicone (meth) acrylate and 2-methoxyethyl acrylate; one or more monomers such as methyl (meth) acrylate and octadecyl (meth) acrylate are used be able to. These acrylic monomers are appropriately determined in terms of type, combination, amount of use and the like in consideration of compatibility with urethane, polymerizability upon photocuring such as radiation, and characteristics of the high molecular weight obtained. As is clear from the above examples, the acrylic monomer includes not only a monomer having a structure derived from acrylic acid but also a monomer having a structure derived from methacrylic acid.
基準混合物に含まれるアクリル系モノマーとしては、例えば、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、ドデシル(メタ)アクリレート、n-オクタデシル(メタ)アクリレート、アクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、クロトン酸等のカルボキシル基含有モノマー;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)-メチルアクリレート等のヒドロキシル基含有モノマー;シクロへキシル(メタ)アクリレート、イソボルニルアクリレート等の脂環式構造を有するモノマー;無水マレイン酸、無水イタコン酸等の酸無水物モノマー;2-アクリルアミド-2-メチルプロパンスルホン酸、スルホプロピルアクリレート等のスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェート等の燐酸含有モノマーなどがあげられる。また、(メタ)アクリルアミド、N-メチロールアクリルアミド等のN-置換(メタ)アクリルアミド等のアミド系モノマー、N-(メタ)アクリロイルオキシメチレンスクシンイミド、N-(メタ)アクリロイル-6-オキシヘキサメチレンスクシンイミド、N-(メタ)アクリロイル-8-オキシオクタメチレンスクシンイミド等のスクシンイミド系モノマー、酢酸ビニル、N-ビニルピロリドン、N-ビニルカルボン酸アミド類、N-ビニルカプロラクタム等のビニル系モノマー;アクリロニトリル、メタクリロニトリル等のシアノアクリレート系モノマー、(メタ)アクリル酸グリシジル、テトラヒドロフルフリル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、フッ素(メタ)アクリレート、シリコーン(メタ)アクリレート、2-メトキシエチルアクリレート等のアクリル酸エステル系モノマー;メチル(メタ)アクリレートやオクタデシル(メタ)アクリレート等のモノマーを1種または2種以上を用いることができる。これらのアクリル系モノマーは、ウレタンとの相溶性、放射線等の光硬化時の重合性や、得られる高分子量体の特性を考慮して、種類、組合せ、使用量等が適宜決定される。なお、アクリル系モノマーには、上記例示からも明らかなように、アクリル酸由来の構造を有するモノマーだけでなく、メタクリル酸由来の構造を有するモノマーも含まれる。 (Acrylic monomer)
Examples of acrylic monomers contained in the reference mixture include ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, t -Butyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate, dodecyl (meth) acrylate, n-octadecyl (meth) acrylate, acrylic Carboxyl group-containing monomers such as acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, and crotonic acid; (meth) acrylic acid 2-hydroxyethyl, (meth) acrylic acid 2-hydroxypropyl phosphate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, (meth) Hydroxyl group-containing monomers such as 12-hydroxylauryl acrylate and (4-hydroxymethylcyclohexyl) -methyl acrylate; Monomers having an alicyclic structure such as cyclohexyl (meth) acrylate and isobornyl acrylate; maleic anhydride, And acid anhydride monomers such as itaconic anhydride; sulfonic acid group-containing monomers such as 2-acrylamido-2-methylpropanesulfonic acid and sulfopropyl acrylate; and phosphoric acid-containing monomers such as 2-hydroxyethylacryloyl phosphate. In addition, amide monomers such as N-substituted (meth) acrylamide such as (meth) acrylamide and N-methylolacrylamide, N- (meth) acryloyloxymethylene succinimide, N- (meth) acryloyl-6-oxyhexamethylene succinimide, Succinimide monomers such as N- (meth) acryloyl-8-oxyoctamethylenesuccinimide, vinyl monomers such as vinyl acetate, N-vinylpyrrolidone, N-vinylcarboxylic acid amides, N-vinylcaprolactam; acrylonitrile, methacrylonitrile Cyanoacrylate monomers such as glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate Acrylic ester monomers such as fluorine, (meth) acrylate, silicone (meth) acrylate and 2-methoxyethyl acrylate; one or more monomers such as methyl (meth) acrylate and octadecyl (meth) acrylate are used be able to. These acrylic monomers are appropriately determined in terms of type, combination, amount of use and the like in consideration of compatibility with urethane, polymerizability upon photocuring such as radiation, and characteristics of the high molecular weight obtained. As is clear from the above examples, the acrylic monomer includes not only a monomer having a structure derived from acrylic acid but also a monomer having a structure derived from methacrylic acid.
また、特性を損なわない範囲内で他の多官能モノマーを添加することもできる。多官能モノマーとしては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ウレタンアクリレート、エポキシアクリレート、ポリエステルアクリレート等を挙げることができる。
Also, other polyfunctional monomers can be added within a range that does not impair the characteristics. Polyfunctional monomers include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and pentaerythritol. Examples include tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, urethane acrylate, epoxy acrylate, and polyester acrylate.
多官能モノマーの含有量は、アクリル系モノマー100重量部に対して、1重量部以上5重量部以下であることが好ましい。多官能モノマーの含有量が1重量部以上であれば、得られる複合フィルムにおいて十分な凝集力が得られ、伸張破断強度を確保することができ、5重量部以下であれば、弾性率が高くなりすぎることがなく、20%伸張時応力の低下又は破断時伸張率の増加が可能となる。
The content of the polyfunctional monomer is preferably 1 part by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the acrylic monomer. If the content of the polyfunctional monomer is 1 part by weight or more, sufficient cohesive force can be obtained in the resulting composite film, and the tensile strength at break can be secured. If the content is 5 parts by weight or less, the elastic modulus is high. Without being too much, the stress at 20% elongation can be reduced or the elongation at break can be increased.
(基準混合物の調製)
基準混合物は、ポリオールとジイソシアネートとを反応させて別途ウレタンポリマーを形成しておき、このウレタンポリマーとアクリル系モノマーとを所定割合で混合して調製してもよく、少なくとも1種のアクリル系モノマーの存在下、ポリオールとイソシアネートとの反応により上記ウレタンポリマーを形成して調製してもよい。原料として用いるモノマーの種類の幅を広げることができ、添加混合物をフィルム状とすることが容易であることから、少なくとも1種のアクリル系モノマーの存在下、ポリオールとイソシアネートとの反応により上記ウレタンポリマーを形成することが好ましい。 (Preparation of reference mixture)
The reference mixture may be prepared by reacting a polyol and diisocyanate to separately form a urethane polymer, and mixing the urethane polymer and an acrylic monomer at a predetermined ratio. At least one acrylic monomer may be mixed. In the presence, the urethane polymer may be formed by a reaction between a polyol and an isocyanate. Since the range of types of monomers used as a raw material can be widened and the additive mixture can be easily formed into a film, the urethane polymer can be reacted with a polyol and an isocyanate in the presence of at least one acrylic monomer. Is preferably formed.
基準混合物は、ポリオールとジイソシアネートとを反応させて別途ウレタンポリマーを形成しておき、このウレタンポリマーとアクリル系モノマーとを所定割合で混合して調製してもよく、少なくとも1種のアクリル系モノマーの存在下、ポリオールとイソシアネートとの反応により上記ウレタンポリマーを形成して調製してもよい。原料として用いるモノマーの種類の幅を広げることができ、添加混合物をフィルム状とすることが容易であることから、少なくとも1種のアクリル系モノマーの存在下、ポリオールとイソシアネートとの反応により上記ウレタンポリマーを形成することが好ましい。 (Preparation of reference mixture)
The reference mixture may be prepared by reacting a polyol and diisocyanate to separately form a urethane polymer, and mixing the urethane polymer and an acrylic monomer at a predetermined ratio. At least one acrylic monomer may be mixed. In the presence, the urethane polymer may be formed by a reaction between a polyol and an isocyanate. Since the range of types of monomers used as a raw material can be widened and the additive mixture can be easily formed into a film, the urethane polymer can be reacted with a polyol and an isocyanate in the presence of at least one acrylic monomer. Is preferably formed.
具体的には、ポリオールをアクリル系モノマーに溶解させた後、ジイソシアネート等を添加してポリオールと反応させて粘度調整を行い、これを基材等に塗工した後、低圧水銀ランプ等を用いて硬化させることにより、複合フィルムを得るという手順を採用することができる。この方法では、アクリル系モノマーをウレタンポリマー合成中に一度に添加してもよいし、何回かに分割して添加してもよい。また、ジイソシアネートをアクリル系モノマーに溶解させた後、ポリオールを反応させてもよい。この方法によれば、分子量が限定されるということはなく、高分子量のポリウレタンを生成することもできるので、最終的に得られるウレタンの分子量を任意の大きさに設計することができる。
Specifically, after dissolving the polyol in the acrylic monomer, the diisocyanate and the like are added and reacted with the polyol to adjust the viscosity. After coating this on the base material, etc., using a low-pressure mercury lamp or the like By curing, a procedure of obtaining a composite film can be employed. In this method, the acrylic monomer may be added all at once during the synthesis of the urethane polymer, or may be added in several divided portions. Alternatively, the polyol may be reacted after the diisocyanate is dissolved in the acrylic monomer. According to this method, the molecular weight is not limited and a high molecular weight polyurethane can be produced, so that the molecular weight of the finally obtained urethane can be designed to an arbitrary size.
いずれの場合であっても、ウレタンポリマーの形成は、上記ポリオールと上記ジイソシアネートと必要に応じて触媒とを混合し、60~90℃で2~24時間反応させることにより行うことができる。さらに、アクリル系ポリマーとの共重合性の付与のために、水酸基含有アクリルモノマーを所定量添加し、60~90℃で1~12時間反応させてもよい。これにより基準混合物を調製することができる。
In any case, the urethane polymer can be formed by mixing the polyol and the diisocyanate and, if necessary, a catalyst and reacting at 60 to 90 ° C. for 2 to 24 hours. Furthermore, a predetermined amount of a hydroxyl group-containing acrylic monomer may be added and reacted at 60 to 90 ° C. for 1 to 12 hours in order to impart copolymerizability with an acrylic polymer. Thereby, a reference mixture can be prepared.
ウレタンポリマーとアクリル系モノマーとの配合比としては、ウレタンポリマーを組成する成分(ポリオール、ジイソシアネート、及び他の任意の成分(水酸基含有アクリルモノマーなど))の合計100重量部に対して、アクリル系モノマーを好ましくは70~130重量部、より好ましくは80~120重量部となるように配合すればよい。
As a compounding ratio of the urethane polymer and the acrylic monomer, the acrylic monomer with respect to a total of 100 parts by weight of the components constituting the urethane polymer (polyol, diisocyanate, and other optional components (such as a hydroxyl group-containing acrylic monomer)). Is preferably added in an amount of 70 to 130 parts by weight, more preferably 80 to 120 parts by weight.
基準混合物には、必要に応じて、通常使用される添加剤、例えば紫外線吸収剤、老化防止剤、充填剤、顔料、着色剤、難燃剤、帯電防止剤などを本発明の効果を阻害しない範囲内で添加することができる。これらの添加剤は、その種類に応じて通常の量で用いられる。これらの添加剤は、ポリオールとジイソシアネートとの重合反応前に予め加えておいてもよいし、ウレタンポリマーの形成後アクリル系モノマーの重合前に添加してもよい。
The standard mixture contains, as necessary, commonly used additives such as ultraviolet absorbers, anti-aging agents, fillers, pigments, colorants, flame retardants, antistatic agents and the like that do not impair the effects of the present invention. Can be added within. These additives are used in normal amounts depending on the type. These additives may be added in advance before the polymerization reaction between the polyol and the diisocyanate, or may be added after the formation of the urethane polymer and before the polymerization of the acrylic monomer.
また、後述の添加混合物の塗工の際の粘度調整のため、基準混合物には少量の溶剤を加えてもよい。溶剤としては、通常使用される溶剤の中から適宜選択することができ、例えば、酢酸エチル、トルエン、クロロホルム、ジメチルホルムアミド等が挙げられる。なお、溶剤は基準混合物調製工程で添加してもよく、添加混合物調製工程で添加してもよい。
In addition, a small amount of solvent may be added to the reference mixture in order to adjust the viscosity when the additive mixture described below is applied. The solvent can be appropriately selected from commonly used solvents, and examples thereof include ethyl acetate, toluene, chloroform, dimethylformamide and the like. In addition, a solvent may be added at a reference | standard mixture preparation process, and may be added at an addition mixture preparation process.
[添加混合物調製工程]
添加混合物調製工程では、上記基準混合物100重量部に対し、連鎖移動剤を0.01重量部以上5重量部以下添加して添加混合物を調製する。 [Additive mixture preparation process]
In the additive mixture preparation step, 0.01 to 5 parts by weight of the chain transfer agent is added to 100 parts by weight of the reference mixture to prepare an additive mixture.
添加混合物調製工程では、上記基準混合物100重量部に対し、連鎖移動剤を0.01重量部以上5重量部以下添加して添加混合物を調製する。 [Additive mixture preparation process]
In the additive mixture preparation step, 0.01 to 5 parts by weight of the chain transfer agent is added to 100 parts by weight of the reference mixture to prepare an additive mixture.
(連鎖移動剤)
連鎖移動剤としては、例えばn-ブチルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタン又はt-ドデシルメルカプタンのような直鎖状又は分枝鎖状のアルキルメルカプタン、メルカプト酢酸(チオグリコール酸)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)などのメルカプト基を含有する硫黄化合物、四臭化炭素などのハロゲン化炭化水素、エタノール、イソプロパノール、エチルアセテートなどの溶媒などが挙げられる。これらの連鎖移動剤類は単独あるいは併用して使用することができる。 (Chain transfer agent)
Examples of chain transfer agents include linear or branched alkyl mercaptans such as n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan or t-dodecyl mercaptan, mercaptoacetic acid (thioglycolic acid), tri Sulfur compounds containing mercapto groups such as methylolpropane tris (3-mercaptopropionate) and pentaerythritol tetrakis (3-mercaptopropionate), halogenated hydrocarbons such as carbon tetrabromide, ethanol, isopropanol, ethyl acetate And the like. These chain transfer agents can be used alone or in combination.
連鎖移動剤としては、例えばn-ブチルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタン又はt-ドデシルメルカプタンのような直鎖状又は分枝鎖状のアルキルメルカプタン、メルカプト酢酸(チオグリコール酸)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)などのメルカプト基を含有する硫黄化合物、四臭化炭素などのハロゲン化炭化水素、エタノール、イソプロパノール、エチルアセテートなどの溶媒などが挙げられる。これらの連鎖移動剤類は単独あるいは併用して使用することができる。 (Chain transfer agent)
Examples of chain transfer agents include linear or branched alkyl mercaptans such as n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan or t-dodecyl mercaptan, mercaptoacetic acid (thioglycolic acid), tri Sulfur compounds containing mercapto groups such as methylolpropane tris (3-mercaptopropionate) and pentaerythritol tetrakis (3-mercaptopropionate), halogenated hydrocarbons such as carbon tetrabromide, ethanol, isopropanol, ethyl acetate And the like. These chain transfer agents can be used alone or in combination.
連鎖移動剤の使用量は、ウレタンポリマーとアクリル系モノマー単独あるいは2種以上からなる混合物100重量部に対して、0.01重量部以上5重量部以下であり、0.01重量部以上1重量部以下であることが好ましい。連鎖移動剤使用量が0.01重量部未満では、複合フィルムを20%伸張した時に発生する応力が低下しにくくなったり、複合フィルムを伸張して破断させた時の伸び率を増加させにくくなったりする。一方、連鎖移動剤使用量が5重量部以上では、複合フィルムのゲル分率が低下し過ぎてフィルムとして耐溶剤性などが低下する問題が生じる。
The amount of the chain transfer agent used is 0.01 parts by weight or more and 5 parts by weight or less, and 0.01 parts by weight or more and 1 part by weight with respect to 100 parts by weight of a urethane polymer and an acrylic monomer alone or a mixture of two or more. Part or less. If the amount of chain transfer agent used is less than 0.01 parts by weight, the stress generated when the composite film is stretched by 20% is less likely to decrease, or the elongation when the composite film is stretched and broken is difficult to increase. Or On the other hand, when the amount of chain transfer agent used is 5 parts by weight or more, there is a problem that the gel fraction of the composite film is excessively lowered and the solvent resistance and the like are lowered as a film.
(光重合開始剤)
添加混合物に放射線硬化性を付与する場合は、光重合開始剤を添加すればよい。光重合開始剤を添加し添加混合物に放射線硬化性を付与すると、該添加混合物の塗膜の放射線硬化を経るだけで複合フィルムを形成することができ、生産性を向上させることができる。光重合開始剤としては、例えばベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンなどのベンゾインエーテル;アニソールメチルエーテルなどの置換ベンゾインエーテル;2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシ-シクロヘキシル-フェニルケトンなどの置換アセトフェノン;2-メチル-2-ヒドロキシプロピオフェノンなどの置換アルファーケトール;2-ナフタレンスルフォニルクロライドなどの芳香族スルフォニルクロライド;1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)-オキシムなどの光活性オキシム;2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドなどのアシルフォスフィンオキサイドなどが挙げられる。なお、本実施形態では光重合開始剤を添加混合物調製工程で添加しているが、これに限らず基準混合物調製工程で添加してもよい。 (Photopolymerization initiator)
When imparting radiation curability to the additive mixture, a photopolymerization initiator may be added. When a photopolymerization initiator is added to impart radiation curability to the additive mixture, a composite film can be formed only by undergoing radiation curing of the coating film of the additive mixture, and productivity can be improved. Examples of the photopolymerization initiator include benzoin ethers such as benzoin methyl ether, benzoin isopropyl ether, and 2,2-dimethoxy-1,2-diphenylethane-1-one; substituted benzoin ethers such as anisole methyl ether; Substituted acetophenones such as diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxy-cyclohexyl-phenyl ketone; substituted alpha-ketols such as 2-methyl-2-hydroxypropiophenone; 2-naphthalenesulfonyl chloride, etc. Aromatic sulfonyl chlorides; photoactive oximes such as 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) -oxime; 2,4,6-trimethylbenzoyl-diphenyl-thiol Scan fins oxide, bis (2,4,6-trimethylbenzoyl) - such as acylphosphine oxide, such as triphenylphosphine oxide. In this embodiment, the photopolymerization initiator is added in the additive mixture preparation step, but the photopolymerization initiator is not limited to this and may be added in the reference mixture preparation step.
添加混合物に放射線硬化性を付与する場合は、光重合開始剤を添加すればよい。光重合開始剤を添加し添加混合物に放射線硬化性を付与すると、該添加混合物の塗膜の放射線硬化を経るだけで複合フィルムを形成することができ、生産性を向上させることができる。光重合開始剤としては、例えばベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンなどのベンゾインエーテル;アニソールメチルエーテルなどの置換ベンゾインエーテル;2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシ-シクロヘキシル-フェニルケトンなどの置換アセトフェノン;2-メチル-2-ヒドロキシプロピオフェノンなどの置換アルファーケトール;2-ナフタレンスルフォニルクロライドなどの芳香族スルフォニルクロライド;1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)-オキシムなどの光活性オキシム;2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドなどのアシルフォスフィンオキサイドなどが挙げられる。なお、本実施形態では光重合開始剤を添加混合物調製工程で添加しているが、これに限らず基準混合物調製工程で添加してもよい。 (Photopolymerization initiator)
When imparting radiation curability to the additive mixture, a photopolymerization initiator may be added. When a photopolymerization initiator is added to impart radiation curability to the additive mixture, a composite film can be formed only by undergoing radiation curing of the coating film of the additive mixture, and productivity can be improved. Examples of the photopolymerization initiator include benzoin ethers such as benzoin methyl ether, benzoin isopropyl ether, and 2,2-dimethoxy-1,2-diphenylethane-1-one; substituted benzoin ethers such as anisole methyl ether; Substituted acetophenones such as diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxy-cyclohexyl-phenyl ketone; substituted alpha-ketols such as 2-methyl-2-hydroxypropiophenone; 2-naphthalenesulfonyl chloride, etc. Aromatic sulfonyl chlorides; photoactive oximes such as 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) -oxime; 2,4,6-trimethylbenzoyl-diphenyl-thiol Scan fins oxide, bis (2,4,6-trimethylbenzoyl) - such as acylphosphine oxide, such as triphenylphosphine oxide. In this embodiment, the photopolymerization initiator is added in the additive mixture preparation step, but the photopolymerization initiator is not limited to this and may be added in the reference mixture preparation step.
光重合開始剤の添加量としては特に制限されないが、例えば、基準混合物(溶剤除く)100重量部に対して0.01~3重量部(好ましくは0.1~1重量部)の範囲から選択することができる。
The addition amount of the photopolymerization initiator is not particularly limited, but is selected from the range of 0.01 to 3 parts by weight (preferably 0.1 to 1 part by weight) with respect to 100 parts by weight of the reference mixture (excluding the solvent). can do.
(添加混合物の調製)
上記基準混合物に、連鎖移動剤及び必要に応じて光重合開始剤を添加し、常温(約25℃)又は加熱下(例えば、40~70℃)で混合することで添加混合物を調製することができる。 (Preparation of additive mixture)
An addition mixture can be prepared by adding a chain transfer agent and, if necessary, a photopolymerization initiator to the above reference mixture, and mixing at room temperature (about 25 ° C.) or under heating (eg, 40 to 70 ° C.). it can.
上記基準混合物に、連鎖移動剤及び必要に応じて光重合開始剤を添加し、常温(約25℃)又は加熱下(例えば、40~70℃)で混合することで添加混合物を調製することができる。 (Preparation of additive mixture)
An addition mixture can be prepared by adding a chain transfer agent and, if necessary, a photopolymerization initiator to the above reference mixture, and mixing at room temperature (about 25 ° C.) or under heating (eg, 40 to 70 ° C.). it can.
[複合フィルム形成工程]
複合フィルム形成工程では、上記添加混合物を硬化させて複合フィルムを形成する。複合フィルム形成の過程は特に限定されないものの、本実施形態では、放射線硬化性とした上記添加混合物を基材上に塗布して塗膜を形成し、該塗膜に放射線を照射し硬化させて複合フィルムを形成することが好ましい。 [Composite film forming process]
In the composite film forming step, the additive mixture is cured to form a composite film. Although the process of forming the composite film is not particularly limited, in the present embodiment, the additive mixture that has been made radiation curable is applied onto the substrate to form a coating film, and the coating film is irradiated with radiation to be cured. It is preferable to form a film.
複合フィルム形成工程では、上記添加混合物を硬化させて複合フィルムを形成する。複合フィルム形成の過程は特に限定されないものの、本実施形態では、放射線硬化性とした上記添加混合物を基材上に塗布して塗膜を形成し、該塗膜に放射線を照射し硬化させて複合フィルムを形成することが好ましい。 [Composite film forming process]
In the composite film forming step, the additive mixture is cured to form a composite film. Although the process of forming the composite film is not particularly limited, in the present embodiment, the additive mixture that has been made radiation curable is applied onto the substrate to form a coating film, and the coating film is irradiated with radiation to be cured. It is preferable to form a film.
本実施形態に用いられる基材(必要に応じて剥離処理されている)としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル樹脂、ポリエチレン(PE)、ポリプロピレン(PP)、高密度ポリエチレン、2軸延伸ポリプロピレン等のポリオレフィン系樹脂、ポリイミド(PI)、ポリエーテルエーテルケトン(PEEK)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、ポリスチレン系樹脂、アクリル系樹脂、フッ素系樹脂、セルロース系樹脂、ポリカーボネート系樹脂等の熱可塑性樹脂のほか、熱硬化性樹脂等が使用される。中でもPETは、精密部品の加工に使用する場合には適度な硬さを有している点や、品種の豊富さやコスト面からも有利であるので、好ましく使用される。フィルムの材料は、用途や必要に応じて設けられる粘着剤層の種類等に応じて、適宜決定することが好ましく、例えば紫外線硬化型粘着剤を設ける場合には、紫外線透過率の高い基材が好ましい。
Examples of the base material used in the present embodiment (exfoliated if necessary) include polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), polyethylene (PE), and polypropylene (PP). , Polyolefin resin such as high density polyethylene, biaxially oriented polypropylene, polyimide (PI), polyether ether ketone (PEEK), polyvinyl chloride (PVC), polyvinylidene chloride resin, polyamide resin, polyurethane resin, polystyrene Thermosetting resins and the like are used in addition to thermoplastic resins such as resin, acrylic resin, fluorine resin, cellulose resin, and polycarbonate resin. Among these, PET is preferably used because it has an appropriate hardness when used for processing precision parts, and is advantageous in terms of variety and cost. The material of the film is preferably determined as appropriate depending on the application and the type of pressure-sensitive adhesive layer provided as necessary. For example, when a UV-curable pressure-sensitive adhesive is provided, a substrate having a high UV transmittance is used. preferable.
添加混合物の塗膜の形成は従来公知の手法により行うことができ、例えば、ロール塗工、スクリーン塗工、グラビア塗工等が挙げられる。塗膜の厚みは目的とする複合フィルムの厚みを考慮して決定すればよい。
Formation of the coating film of the additive mixture can be performed by a conventionally known method, and examples thereof include roll coating, screen coating, and gravure coating. What is necessary is just to determine the thickness of a coating film in consideration of the thickness of the target composite film.
本実施形態では、添加混合物を剥離処理した基材上に塗布して塗膜を形成し、光重合開始剤の種類等に応じてα線、β線、γ線、中性子線、電子線等の電離性放射線や紫外線等の放射線、可視光等を照射することにより、該塗膜を硬化させて複合フィルムを形成することができる。
In the present embodiment, the additive mixture is applied onto a release-treated substrate to form a coating film, and α-rays, β-rays, γ-rays, neutron rays, electron beams, etc., depending on the type of photopolymerization initiator. By irradiating with ionizing radiation, radiation such as ultraviolet rays, visible light or the like, the coating film can be cured to form a composite film.
この際、酸素によるアクリル系モノマーの重合阻害を避けるために、基材上に形成した塗膜上に、剥離処理したシートをのせて、酸素を遮断してもよいし、不活性ガスを充填した容器内に剥離ライナーを入れて、酸素濃度を下げてもよい。
At this time, in order to avoid polymerization inhibition of the acrylic monomer due to oxygen, the release-treated sheet may be placed on the coating film formed on the substrate to block oxygen, or filled with an inert gas. A release liner may be placed in the container to reduce the oxygen concentration.
本実施形態において、放射線等の種類や照射に使用されるランプの種類等は適宜選択することができ、蛍光ケミカルランプ、ブラックライト、殺菌ランプ等の低圧ランプや、メタルハライドランプ、高圧水銀ランプ等の高圧ランプなどを用いることができる。
In this embodiment, the type of radiation and the like and the type of lamp used for irradiation can be selected as appropriate, such as low-pressure lamps such as fluorescent chemical lamps, black lights, and sterilization lamps, metal halide lamps, high-pressure mercury lamps, and the like. A high pressure lamp or the like can be used.
紫外線などの照射量は、要求されるフィルムの特性に応じて、任意に設定することができる。一般的には、紫外線の照射量は、50~5000mJ/cm2、好ましくは100~4000mJ/cm2、更に好ましくは100~3000mJ/cm2である。紫外線の照射量が50mJ/cm2より少ないと、十分な重合率が得られないことがあり、5000mJ/cm2より多いと、劣化の原因となることがある。
Irradiation amounts such as ultraviolet rays can be arbitrarily set according to required film characteristics. Generally, the dose of ultraviolet rays, 50 ~ 5000mJ / cm 2, preferably 100 ~ 4000mJ / cm 2, more preferably 100 ~ 3000mJ / cm 2. When the dose of ultraviolet ray is less than 50 mJ / cm 2, may not sufficient polymerization rate can be obtained, when it is more than 5000 mJ / cm 2, which may cause deterioration.
また、紫外線照射する際の温度については特に限定があるわけではなく任意に設定することができるが、温度が高すぎると重合熱による停止反応が起こり易くなり、特性低下の原因となりやすいので、通常は70℃以下であり、好ましくは50℃以下であり、更に好ましくは30℃以下である。
In addition, the temperature at the time of ultraviolet irradiation is not particularly limited and can be arbitrarily set. However, if the temperature is too high, a termination reaction due to the heat of polymerization is likely to occur, which tends to cause deterioration of characteristics. Is 70 ° C. or lower, preferably 50 ° C. or lower, more preferably 30 ° C. or lower.
以上の手順により、アクリル系モノマーが重合してアクリル系ポリマーとなり、全体として硬化した複合フィルムを得ることができる。なお、添加混合物に溶剤を添加している場合は、放射線硬化後に乾燥工程を設けてもよい。乾燥温度としては、溶剤の種類等に応じて設定すればよく、例えば80~160℃程度である。また、ウレタンポリマーが末端にアクリロイル基を有する場合は、ウレタンポリマーとアクリル系ポリマーとの架橋が生じるので、これを利用して複合フィルムの機械的物性又は化学的物性を制御することができる。
By the above procedure, the acrylic monomer is polymerized to become an acrylic polymer, and a composite film cured as a whole can be obtained. When a solvent is added to the additive mixture, a drying step may be provided after radiation curing. The drying temperature may be set according to the type of solvent, and is, for example, about 80 to 160 ° C. Further, when the urethane polymer has an acryloyl group at the terminal, crosslinking between the urethane polymer and the acrylic polymer occurs, and this can be used to control the mechanical properties or chemical properties of the composite film.
なお、基準混合物の硬化により複合フィルムを形成する場合は、基準混合物に連鎖移動剤を添加せずに光重合開始剤を添加し、この混合物に上記と同様の手順で放射線照射して硬化反応を行えばよい。
When a composite film is formed by curing the reference mixture, a photopolymerization initiator is added to the reference mixture without adding a chain transfer agent, and this mixture is irradiated with radiation in the same procedure as described above to cause a curing reaction. Just do it.
(複合フィルム)
複合フィルムの物性に関しては以下の関係が成り立つ。すなわち、上記添加混合物の硬化により得られる複合フィルムP2の伸張破断強度S2は、上記基準混合物の硬化により得られる複合フィルムP1の伸張破断強度S1の85%以上115%以下の値であり、好ましくは90%以上110%以下の値である。同時に、上記複合フィルムP2を20%伸張させた際の応力M2は、上記複合フィルムP1を20%伸張させた際の応力M1の90%以下の値であり、好ましくは80%以下の値である。本実施形態の複合フィルムはこのような関係を満たしているので、従来手法では困難であった伸張破断強度の維持と20%伸張時応力の低下とを両立させることができる。なお、20%伸張時応力M2の下限は低いほど好ましいが、低すぎると伸張破断強度S2が伸張破断強度S1の85%未満になるおそれがあるため、10%以上とすることが好ましい。あるいは、上記伸張破断強度を満たすと同時に、上記複合フィルムP2を伸張して破断させた際の破断時伸張率E2は、上記複合フィルムP1を伸張して破断させた際の破断時伸張率E1の120%以上の値であり、好ましくは140%以上の値である。本実施形態の複合フィルムはこのような関係を満たしているので、従来手法では困難であった伸張破断強度の維持と破断時伸張率の増加とを両立させることができる。なお、破断時伸張率E2の上限は高いほど好ましいが、要求特性と生産性とのバランスから、1000%以下であることが好ましい。 (Composite film)
The following relationship holds regarding the physical properties of the composite film. That is, the elongation breaking strength S2 of the composite film P2 obtained by curing the additive mixture is a value of 85% to 115% of the elongation breaking strength S1 of the composite film P1 obtained by curing the reference mixture, preferably The value is 90% or more and 110% or less. At the same time, the stress M2 when the composite film P2 is stretched by 20% is 90% or less, preferably 80% or less of the stress M1 when the composite film P1 is stretched by 20%. . Since the composite film according to the present embodiment satisfies such a relationship, it is possible to achieve both maintenance of the tensile strength at break and reduction of the stress at 20% elongation, both of which are difficult with the conventional method. The lower limit of the 20% elongation stress M2 is preferably as low as possible. However, if it is too low, the elongation breaking strength S2 may be less than 85% of the elongation breaking strength S1, and therefore it is preferably 10% or more. Alternatively, the elongation at break E2 when the composite film P2 is stretched and broken at the same time as satisfying the stretch breaking strength is equal to the elongation at break E1 when the composite film P1 is stretched and broken. The value is 120% or more, preferably 140% or more. Since the composite film of the present embodiment satisfies such a relationship, it is possible to achieve both maintenance of the elongation at break strength and increase in the elongation at break, which were difficult with the conventional method. The upper limit of the elongation at break E2 is preferably as high as possible, but is preferably 1000% or less from the balance between required characteristics and productivity.
複合フィルムの物性に関しては以下の関係が成り立つ。すなわち、上記添加混合物の硬化により得られる複合フィルムP2の伸張破断強度S2は、上記基準混合物の硬化により得られる複合フィルムP1の伸張破断強度S1の85%以上115%以下の値であり、好ましくは90%以上110%以下の値である。同時に、上記複合フィルムP2を20%伸張させた際の応力M2は、上記複合フィルムP1を20%伸張させた際の応力M1の90%以下の値であり、好ましくは80%以下の値である。本実施形態の複合フィルムはこのような関係を満たしているので、従来手法では困難であった伸張破断強度の維持と20%伸張時応力の低下とを両立させることができる。なお、20%伸張時応力M2の下限は低いほど好ましいが、低すぎると伸張破断強度S2が伸張破断強度S1の85%未満になるおそれがあるため、10%以上とすることが好ましい。あるいは、上記伸張破断強度を満たすと同時に、上記複合フィルムP2を伸張して破断させた際の破断時伸張率E2は、上記複合フィルムP1を伸張して破断させた際の破断時伸張率E1の120%以上の値であり、好ましくは140%以上の値である。本実施形態の複合フィルムはこのような関係を満たしているので、従来手法では困難であった伸張破断強度の維持と破断時伸張率の増加とを両立させることができる。なお、破断時伸張率E2の上限は高いほど好ましいが、要求特性と生産性とのバランスから、1000%以下であることが好ましい。 (Composite film)
The following relationship holds regarding the physical properties of the composite film. That is, the elongation breaking strength S2 of the composite film P2 obtained by curing the additive mixture is a value of 85% to 115% of the elongation breaking strength S1 of the composite film P1 obtained by curing the reference mixture, preferably The value is 90% or more and 110% or less. At the same time, the stress M2 when the composite film P2 is stretched by 20% is 90% or less, preferably 80% or less of the stress M1 when the composite film P1 is stretched by 20%. . Since the composite film according to the present embodiment satisfies such a relationship, it is possible to achieve both maintenance of the tensile strength at break and reduction of the stress at 20% elongation, both of which are difficult with the conventional method. The lower limit of the 20% elongation stress M2 is preferably as low as possible. However, if it is too low, the elongation breaking strength S2 may be less than 85% of the elongation breaking strength S1, and therefore it is preferably 10% or more. Alternatively, the elongation at break E2 when the composite film P2 is stretched and broken at the same time as satisfying the stretch breaking strength is equal to the elongation at break E1 when the composite film P1 is stretched and broken. The value is 120% or more, preferably 140% or more. Since the composite film of the present embodiment satisfies such a relationship, it is possible to achieve both maintenance of the elongation at break strength and increase in the elongation at break, which were difficult with the conventional method. The upper limit of the elongation at break E2 is preferably as high as possible, but is preferably 1000% or less from the balance between required characteristics and productivity.
本実施形態の複合フィルムの厚みは、目的等に応じて適宜選択することができるが、一般的には5~500μm、好ましくは50~200μm程度である。
The thickness of the composite film of the present embodiment can be appropriately selected according to the purpose and the like, but is generally about 5 to 500 μm, preferably about 50 to 200 μm.
本実施形態の複合フィルムは、そのままでも使用することができるが、片面または両面に粘着剤層を形成して粘着シートとすることもできる。粘着剤組成としては特に限定されず、アクリル系、ゴム系等、一般的なものを使用することができる。粘着剤の形成方法も特に限定されるものではなく、複合フィルムに、溶剤系、エマルジョン系の粘着剤を直接塗布し、乾燥する方法、これらの粘着剤を剥離紙に塗布し、予め粘着剤層を形成しておき、この粘着剤層を複合フィルムに貼り合わせる方法等を適用することができる。放射線硬化型粘着剤を複合フィルムに塗布し、粘着剤層と、フィルムの両方に放射線を照射することにより、複合フィルムと粘着剤層を同時に硬化させて、形成する方法も適用することができる。なお、この場合には、粘着剤層と複合フィルム層は、多層構成となるように塗布することもできる。
The composite film of this embodiment can be used as it is, but it can also be used as an adhesive sheet by forming an adhesive layer on one or both sides. It does not specifically limit as an adhesive composition, A general thing, such as an acryl type and a rubber type, can be used. The method of forming the pressure-sensitive adhesive is not particularly limited, and a method of directly applying a solvent-based or emulsion-based pressure-sensitive adhesive to a composite film and drying it, applying these pressure-sensitive adhesives to a release paper, and pre-adhesive layer And a method of sticking the pressure-sensitive adhesive layer to the composite film can be applied. A method can also be applied in which a radiation curable pressure-sensitive adhesive is applied to a composite film, and both the pressure-sensitive adhesive layer and the film are irradiated with radiation to simultaneously cure and form the composite film and the pressure-sensitive adhesive layer. In this case, the pressure-sensitive adhesive layer and the composite film layer can be applied so as to have a multilayer structure.
粘着剤層の厚みについては、特に限定があるわけではなく任意に設定することができるが、通常は3~100μmであることが好ましく、10~50μmであることがさらに好ましく、特に10~30μm程度であることが好ましい。
The thickness of the pressure-sensitive adhesive layer is not particularly limited and can be arbitrarily set. Usually, it is preferably 3 to 100 μm, more preferably 10 to 50 μm, particularly about 10 to 30 μm. It is preferable that
本実施形態における複合フィルムは、その片面または両面に他のフィルムを積層することができる。他のフィルムを形成する材料としては、例えば、ポリエチレンテレフタレート(PET)等のポリエステル系樹脂、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂、ポリイミド(PI)、ポリエーテルエーテルケトン(PEEK)ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、ポリスチレン系樹脂、アクリル系樹脂、フッ素系樹脂、セルロース系樹脂、ポリカーボネート系樹脂等の熱可塑性樹脂のほか、熱硬化性樹脂等が挙げられる。なお、他のフィルムは単層構成でもよいが、同種の、又は異種の材料からなる複数の層による多層構造のフィルムでもよい。
The composite film in the present embodiment can be laminated with another film on one side or both sides. Examples of materials for forming other films include polyester resins such as polyethylene terephthalate (PET), polyolefin resins such as polyethylene (PE) and polypropylene (PP), polyimide (PI), and polyetheretherketone (PEEK). In addition to thermoplastic resins such as polyvinyl chloride (PVC), polyvinylidene chloride resins, polyamide resins, polyurethane resins, polystyrene resins, acrylic resins, fluorine resins, cellulose resins, polycarbonate resins, etc., thermosetting Resin etc. are mentioned. The other film may have a single layer structure, but may be a film having a multilayer structure composed of a plurality of layers made of the same or different materials.
本実施形態の複合フィルムの用途は特に限定されず、家庭用、医療用、農業用、工業用等の各種用途に適応しうるフィルム基材や保護フィルムとして用いることができる。
The use of the composite film of the present embodiment is not particularly limited, and can be used as a film substrate or a protective film that can be applied to various uses such as home use, medical use, agricultural use, and industrial use.
次に本発明を実施例に基づき更に詳細に説明する。なお本発明はこれらの例によってなんら限定されるものではない。なお、以下の実施例において、特にことわりがない限り、部は重量部を意味し、%は重量%を意味する。
Next, the present invention will be described in more detail based on examples. The present invention is not limited to these examples. In the following examples, unless otherwise specified, parts mean parts by weight and% means% by weight.
(参考例-基準混合物の硬化による複合フィルムの形成)
冷却管、温度計、および攪拌装置を備えた反応容器に、アクリル系モノマーとして、イソボルニルアクリレート(以下、「IBXA」と略す)を40部、n-ブチルアクリレート(以下、「BA」と略す)を10部、ポリオールとして、数平均分子量650のポリ(オキシテトラメチレン)グリコール(以下、「PTMG」と略す;三菱化学株式会社製)を34.2部、触媒としてジラウリン酸ジブチルスズ(以下、「DBTL」と略す)0.025部を投入し、攪拌しながら、水添キシリレンジイソシアネート(以下、「HXDI」と略す;三井化学ポリウレタン株式会社製)を12.8部滴下し、65℃で5時間反応させウレタンポリマーを合成し、ウレタンポリマー-アクリル系モノマー混合物を得た。その後、さらにヒドロキシエチルアクリレート(以下、「HEA」と略す)3.0重量部を投入し、65℃で1時間反応することでアクリロイル基末端ウレタンポリマー-アクリル系モノマー混合物である基準混合物Aを得た。なお、ジイソシアネート成分とポリオール成分の使用量は、NCO/OH(当量比)=1.25であった。 (Reference Example-Formation of Composite Film by Curing Standard Mixture)
In a reaction vessel equipped with a condenser, a thermometer, and a stirrer, 40 parts of isobornyl acrylate (hereinafter abbreviated as “IBXA”) as an acrylic monomer and n-butyl acrylate (hereinafter abbreviated as “BA”) ) As a polyol, 34.2 parts poly (oxytetramethylene) glycol (hereinafter abbreviated as “PTMG”; manufactured by Mitsubishi Chemical Corporation) having a number average molecular weight of 650, and dibutyltin dilaurate (hereinafter, “ 12.5 parts of hydrogenated xylylene diisocyanate (hereinafter abbreviated as “HXDI”; manufactured by Mitsui Chemicals Polyurethane Co., Ltd.) was added dropwise and stirred at 65 ° C. The urethane polymer was synthesized by reacting for a time to obtain a urethane polymer-acrylic monomer mixture. Thereafter, 3.0 parts by weight of hydroxyethyl acrylate (hereinafter abbreviated as “HEA”) is added, and the mixture is reacted at 65 ° C. for 1 hour to obtain a reference mixture A which is an acryloyl group-terminated urethane polymer-acrylic monomer mixture. It was. In addition, the usage-amount of the diisocyanate component and the polyol component was NCO / OH (equivalent ratio) = 1.25.
冷却管、温度計、および攪拌装置を備えた反応容器に、アクリル系モノマーとして、イソボルニルアクリレート(以下、「IBXA」と略す)を40部、n-ブチルアクリレート(以下、「BA」と略す)を10部、ポリオールとして、数平均分子量650のポリ(オキシテトラメチレン)グリコール(以下、「PTMG」と略す;三菱化学株式会社製)を34.2部、触媒としてジラウリン酸ジブチルスズ(以下、「DBTL」と略す)0.025部を投入し、攪拌しながら、水添キシリレンジイソシアネート(以下、「HXDI」と略す;三井化学ポリウレタン株式会社製)を12.8部滴下し、65℃で5時間反応させウレタンポリマーを合成し、ウレタンポリマー-アクリル系モノマー混合物を得た。その後、さらにヒドロキシエチルアクリレート(以下、「HEA」と略す)3.0重量部を投入し、65℃で1時間反応することでアクリロイル基末端ウレタンポリマー-アクリル系モノマー混合物である基準混合物Aを得た。なお、ジイソシアネート成分とポリオール成分の使用量は、NCO/OH(当量比)=1.25であった。 (Reference Example-Formation of Composite Film by Curing Standard Mixture)
In a reaction vessel equipped with a condenser, a thermometer, and a stirrer, 40 parts of isobornyl acrylate (hereinafter abbreviated as “IBXA”) as an acrylic monomer and n-butyl acrylate (hereinafter abbreviated as “BA”) ) As a polyol, 34.2 parts poly (oxytetramethylene) glycol (hereinafter abbreviated as “PTMG”; manufactured by Mitsubishi Chemical Corporation) having a number average molecular weight of 650, and dibutyltin dilaurate (hereinafter, “ 12.5 parts of hydrogenated xylylene diisocyanate (hereinafter abbreviated as “HXDI”; manufactured by Mitsui Chemicals Polyurethane Co., Ltd.) was added dropwise and stirred at 65 ° C. The urethane polymer was synthesized by reacting for a time to obtain a urethane polymer-acrylic monomer mixture. Thereafter, 3.0 parts by weight of hydroxyethyl acrylate (hereinafter abbreviated as “HEA”) is added, and the mixture is reacted at 65 ° C. for 1 hour to obtain a reference mixture A which is an acryloyl group-terminated urethane polymer-acrylic monomer mixture. It was. In addition, the usage-amount of the diisocyanate component and the polyol component was NCO / OH (equivalent ratio) = 1.25.
100重量部の基準混合物Aに、光重合開始剤として、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(チバスペシャリティーケミカル社製、商品名「イルガキュア651」(以下、「Irg.651」と略す))を0.15部加えることで基準混合物A’を得た。
To 100 parts by weight of the reference mixture A, 2,2-dimethoxy-1,2-diphenylethane-1-one (trade name “Irgacure 651” manufactured by Ciba Specialty Chemical Co., Ltd.) (hereinafter “Irg”) was used as a photopolymerization initiator. .651 "))) was added to give 0.15 parts of the reference mixture A '.
基準混合物A’を、厚さ38μmの剥離処理したポリエチレンテレフタレート(PET)上に、硬化後の厚みが100μmとなるように塗布し塗膜を形成した。この塗膜上に、剥離処理したPETフィルムを重ねて被覆した後、この被覆したPETフィルム面にブラックライトおよびメタルハライドランプを用いて紫外線(照度9mW/cm2、光量1200mJ/cm2)を照射して硬化させて、PETフィルム上にウレタン-アクリル複合フィルムを形成した。
The reference mixture A ′ was applied onto a 38 μm-thick polyethylene terephthalate (PET) subjected to a release treatment so that the thickness after curing was 100 μm to form a coating film. The coated PET film was overlaid on the coating film, and then the coated PET film surface was irradiated with ultraviolet rays (illuminance 9 mW / cm 2 , light amount 1200 mJ / cm 2 ) using a black light and a metal halide lamp. And cured to form a urethane-acrylic composite film on the PET film.
(実施例1)
100重量部の基準混合物Aに、光重合開始剤として、Irg.651を0.15部、連鎖移動剤として、チオグリコール酸(以下、「TGA」と略す)を0.1部加えることで添加混合物Aを得た。参考例と同様にして添加混合物Aによる塗膜形成及び放射線硬化を行い、ウレタン-アクリル複合フィルムを形成した。 Example 1
To 100 parts by weight of the reference mixture A, as a photopolymerization initiator, Irg. Addition mixture A was obtained by adding 0.15 part of 651 and 0.1 part of thioglycolic acid (hereinafter abbreviated as “TGA”) as a chain transfer agent. In the same manner as in the Reference Example, a coating film was formed with the additive mixture A and radiation curing was performed to form a urethane-acrylic composite film.
100重量部の基準混合物Aに、光重合開始剤として、Irg.651を0.15部、連鎖移動剤として、チオグリコール酸(以下、「TGA」と略す)を0.1部加えることで添加混合物Aを得た。参考例と同様にして添加混合物Aによる塗膜形成及び放射線硬化を行い、ウレタン-アクリル複合フィルムを形成した。 Example 1
To 100 parts by weight of the reference mixture A, as a photopolymerization initiator, Irg. Addition mixture A was obtained by adding 0.15 part of 651 and 0.1 part of thioglycolic acid (hereinafter abbreviated as “TGA”) as a chain transfer agent. In the same manner as in the Reference Example, a coating film was formed with the additive mixture A and radiation curing was performed to form a urethane-acrylic composite film.
(実施例2)
100重量部の基準混合物Aに、光重合開始剤として、Irg.651を0.15部、連鎖移動剤として、TGAを0.5部加えることで添加混合物Bを得た。参考例と同様にして添加混合物Bによる塗膜形成及び放射線硬化を行い、ウレタン-アクリル複合フィルムを形成した。 (Example 2)
To 100 parts by weight of the reference mixture A, as a photopolymerization initiator, Irg. Addition mixture B was obtained by adding 0.15 part of 651 and 0.5 part of TGA as a chain transfer agent. In the same manner as in the Reference Example, a coating film was formed with the additive mixture B and radiation curing was performed to form a urethane-acrylic composite film.
100重量部の基準混合物Aに、光重合開始剤として、Irg.651を0.15部、連鎖移動剤として、TGAを0.5部加えることで添加混合物Bを得た。参考例と同様にして添加混合物Bによる塗膜形成及び放射線硬化を行い、ウレタン-アクリル複合フィルムを形成した。 (Example 2)
To 100 parts by weight of the reference mixture A, as a photopolymerization initiator, Irg. Addition mixture B was obtained by adding 0.15 part of 651 and 0.5 part of TGA as a chain transfer agent. In the same manner as in the Reference Example, a coating film was formed with the additive mixture B and radiation curing was performed to form a urethane-acrylic composite film.
(実施例3)
100重量部の基準混合物Aに、光重合開始剤として、Irg.651を0.15部、連鎖移動剤として、TGAを1.0部加えることで添加混合物Cを得た。参考例と同様にして添加混合物Cによる塗膜形成及び放射線硬化を行い、ウレタン-アクリル複合フィルムを形成した。 (Example 3)
To 100 parts by weight of the reference mixture A, as a photopolymerization initiator, Irg. Addition mixture C was obtained by adding 0.15 part of 651 as a chain transfer agent and 1.0 part of TGA. In the same manner as in the Reference Example, a coating film was formed with the additive mixture C and radiation curing was performed to form a urethane-acrylic composite film.
100重量部の基準混合物Aに、光重合開始剤として、Irg.651を0.15部、連鎖移動剤として、TGAを1.0部加えることで添加混合物Cを得た。参考例と同様にして添加混合物Cによる塗膜形成及び放射線硬化を行い、ウレタン-アクリル複合フィルムを形成した。 (Example 3)
To 100 parts by weight of the reference mixture A, as a photopolymerization initiator, Irg. Addition mixture C was obtained by adding 0.15 part of 651 as a chain transfer agent and 1.0 part of TGA. In the same manner as in the Reference Example, a coating film was formed with the additive mixture C and radiation curing was performed to form a urethane-acrylic composite film.
(比較例1)
(Comparative Example 1)
100重量部の基準混合物Aに、アクリル系モノマーとして、トリメチロールプロパントリアクリレート(以下、「TMPTA」と略す)を5部、光重合開始剤として、Irg.651を0.165部加えることで、アクリル系モノマーの組成を変化させた基準混合物αを得た。参考例と同様にして基準混合物αによる塗膜形成及び放射線硬化を行い、ウレタン-アクリル複合フィルムを形成した。
100 parts by weight of the reference mixture A, 5 parts of trimethylolpropane triacrylate (hereinafter abbreviated as “TMPTA”) as an acrylic monomer, and Irg. By adding 0.165 parts of 651, a reference mixture α in which the composition of the acrylic monomer was changed was obtained. In the same manner as in the reference example, a coating film was formed with the reference mixture α and radiation curing was performed to form a urethane-acrylic composite film.
(比較例2)
ポリオールとして、数平均分子量700のポリ(オキシプロピレン)グリコール(以下、PPG720と略す;旭硝子ウレタン株式会社製、商品名「エクセノール720」)を35.0重量部、HXDIを12.2重量部滴下し、65℃で5時間反応させウレタンポリマーを合成し、ウレタンポリマー-アクリル系モノマー混合物を得た。その後、さらにHEAを2.9重量部投入し、65℃で1時間反応させて、ウレタンポリマーの組成を変化させたこと以外は、参考例と同様の操作方法でアクリロイル基末端ウレタンポリマー-アクリル系モノマー混合物である基準混合物βを得た。なお、ジイソシアネート成分とポリオール成分の使用量は、NCO/OH(当量比)=1.25であった。 (Comparative Example 2)
As the polyol, 35.0 parts by weight of poly (oxypropylene) glycol having a number average molecular weight of 700 (hereinafter abbreviated as PPG720; manufactured by Asahi Glass Urethane Co., Ltd., trade name “Exenol 720”) and 12.2 parts by weight of HXDI were dropped. The urethane polymer was synthesized by reacting at 65 ° C. for 5 hours to obtain a urethane polymer-acrylic monomer mixture. Thereafter, 2.9 parts by weight of HEA was further added and reacted at 65 ° C. for 1 hour to change the composition of the urethane polymer. The acryloyl group-terminated urethane polymer-acrylic system was the same as in the reference example. A reference mixture β, which is a monomer mixture, was obtained. In addition, the usage-amount of the diisocyanate component and the polyol component was NCO / OH (equivalent ratio) = 1.25.
ポリオールとして、数平均分子量700のポリ(オキシプロピレン)グリコール(以下、PPG720と略す;旭硝子ウレタン株式会社製、商品名「エクセノール720」)を35.0重量部、HXDIを12.2重量部滴下し、65℃で5時間反応させウレタンポリマーを合成し、ウレタンポリマー-アクリル系モノマー混合物を得た。その後、さらにHEAを2.9重量部投入し、65℃で1時間反応させて、ウレタンポリマーの組成を変化させたこと以外は、参考例と同様の操作方法でアクリロイル基末端ウレタンポリマー-アクリル系モノマー混合物である基準混合物βを得た。なお、ジイソシアネート成分とポリオール成分の使用量は、NCO/OH(当量比)=1.25であった。 (Comparative Example 2)
As the polyol, 35.0 parts by weight of poly (oxypropylene) glycol having a number average molecular weight of 700 (hereinafter abbreviated as PPG720; manufactured by Asahi Glass Urethane Co., Ltd., trade name “Exenol 720”) and 12.2 parts by weight of HXDI were dropped. The urethane polymer was synthesized by reacting at 65 ° C. for 5 hours to obtain a urethane polymer-acrylic monomer mixture. Thereafter, 2.9 parts by weight of HEA was further added and reacted at 65 ° C. for 1 hour to change the composition of the urethane polymer. The acryloyl group-terminated urethane polymer-acrylic system was the same as in the reference example. A reference mixture β, which is a monomer mixture, was obtained. In addition, the usage-amount of the diisocyanate component and the polyol component was NCO / OH (equivalent ratio) = 1.25.
100重量部の基準混合物βに、光重合開始剤として、Irg.651を0.15部加えることで基準混合物β’を得た。参考例と同様にして基準混合物β’による塗膜形成及び放射線硬化を行い、ウレタン-アクリル複合フィルムを形成した。
Into 100 parts by weight of the reference mixture β, as a photopolymerization initiator, Irg. The reference mixture β 'was obtained by adding 0.15 part of 651. In the same manner as in the reference example, a coating film was formed with the reference mixture β 'and radiation curing was performed to form a urethane-acrylic composite film.
<評価試験>
(力学物性の評価)
得られた複合フィルムについて、力学物性の評価として、下記評価方法に基づき、伸張破断強度、20%伸張時応力及び破断時伸張率の測定を行った。 <Evaluation test>
(Evaluation of mechanical properties)
With respect to the obtained composite film, as an evaluation of mechanical properties, the tensile strength at break, the stress at 20% elongation, and the elongation at break were measured based on the following evaluation methods.
(力学物性の評価)
得られた複合フィルムについて、力学物性の評価として、下記評価方法に基づき、伸張破断強度、20%伸張時応力及び破断時伸張率の測定を行った。 <Evaluation test>
(Evaluation of mechanical properties)
With respect to the obtained composite film, as an evaluation of mechanical properties, the tensile strength at break, the stress at 20% elongation, and the elongation at break were measured based on the following evaluation methods.
すなわち、得られた複合フィルムを幅10mm×長さ130mmに切断した後、セパレータを除去し、引張試験機として「オートグラフ-1kNG」(島津製作所株式会社製)を用い、試験サンプルに対し、引張速度200mm/min、チャック間距離50mm、室温(23℃)で引張試験を行い、応力-歪み曲線を求めた。複合フィルムが破断したときの応力を求めて伸張破断強度とし、フィルムの20%伸張時(当初のチャック間距離に対してチャック間距離が20%伸びた時点)における単位面積あたりの応力を20%伸張時応力とした。また、実施例および比較例の測定値の参考例の測定値に対する変化率(%)について、参考例の伸張破断強度と20%伸張時応力の値を100%とし、下の式を用いて算出した。
変化率=(実施例および比較例の各測定値/参考例の各測定値)×100(%) That is, after the obtained composite film was cut into a width of 10 mm and a length of 130 mm, the separator was removed, and “Autograph-1kNG” (manufactured by Shimadzu Corporation) was used as a tensile tester to A tensile test was performed at a speed of 200 mm / min, a distance between chucks of 50 mm, and room temperature (23 ° C.) to obtain a stress-strain curve. The stress at the time when the composite film breaks is obtained to obtain the elongation breaking strength, and the stress per unit area when the film is stretched by 20% (when the distance between chucks is extended by 20% with respect to the initial distance between chucks) is 20%. It was set as the stress at the time of extension. Further, the rate of change (%) of the measured values of the example and the comparative example with respect to the measured value of the reference example is calculated by using the following formula, assuming that the value of the tensile fracture strength of the reference example and the stress at 20% elongation is 100%. did.
Rate of change = (each measured value of Examples and Comparative Examples / each measured value of Reference Example) × 100 (%)
変化率=(実施例および比較例の各測定値/参考例の各測定値)×100(%) That is, after the obtained composite film was cut into a width of 10 mm and a length of 130 mm, the separator was removed, and “Autograph-1kNG” (manufactured by Shimadzu Corporation) was used as a tensile tester to A tensile test was performed at a speed of 200 mm / min, a distance between chucks of 50 mm, and room temperature (23 ° C.) to obtain a stress-strain curve. The stress at the time when the composite film breaks is obtained to obtain the elongation breaking strength, and the stress per unit area when the film is stretched by 20% (when the distance between chucks is extended by 20% with respect to the initial distance between chucks) is 20%. It was set as the stress at the time of extension. Further, the rate of change (%) of the measured values of the example and the comparative example with respect to the measured value of the reference example is calculated by using the following formula, assuming that the value of the tensile fracture strength of the reference example and the stress at 20% elongation is 100%. did.
Rate of change = (each measured value of Examples and Comparative Examples / each measured value of Reference Example) × 100 (%)
また、上記と同様に応力-歪み曲線を求めた後、複合フィルムが破断したときの応力を求めて伸張破断強度とし、続いて破断したときの伸び率(当初のチャック間距離に対する破断時のチャック間距離の割合)を破断時伸張率とした。また、実施例および比較例の測定値の参考例の測定値に対する変化率(%)について、参考例の伸張破断強度と破断時伸張率の値を100%とし、下の式を用いて算出した。
変化率=(実施例および比較例の各測定値/参考例の各測定値)×100(%) In addition, after obtaining a stress-strain curve in the same manner as described above, the stress when the composite film breaks is obtained to obtain the elongation break strength, and the elongation rate when it is subsequently broken (the chuck at break relative to the initial distance between chucks) The ratio of the distance between them was defined as the elongation at break. Further, the rate of change (%) of the measured values of the example and the comparative example with respect to the measured value of the reference example was calculated using the following formula, assuming that the value of the elongation at break and the elongation at break of the reference example was 100%. .
Rate of change = (each measured value of Examples and Comparative Examples / each measured value of Reference Example) × 100 (%)
変化率=(実施例および比較例の各測定値/参考例の各測定値)×100(%) In addition, after obtaining a stress-strain curve in the same manner as described above, the stress when the composite film breaks is obtained to obtain the elongation break strength, and the elongation rate when it is subsequently broken (the chuck at break relative to the initial distance between chucks) The ratio of the distance between them was defined as the elongation at break. Further, the rate of change (%) of the measured values of the example and the comparative example with respect to the measured value of the reference example was calculated using the following formula, assuming that the value of the elongation at break and the elongation at break of the reference example was 100%. .
Rate of change = (each measured value of Examples and Comparative Examples / each measured value of Reference Example) × 100 (%)
なお、表中の略号は以下のとおりである。
PTMG:数平均分子量650のポリ(オキシテトラメチレン)グリコール
PPG720:数平均分子量700のポリ(オキシプロピレン)グリコール
HXDI:水添キシリレンジイソシアネート
HEA:ヒドロキシエチルアクリレート
IBXA:イソボルニルアクリレート
BA:n-ブチルアクリレート
AA:アクリル酸
TMPTA:トリメチロールプロパントリアクリレート
Irg.650:2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン
TGA:チオグリコール酸 The abbreviations in the table are as follows.
PTMG: poly (oxytetramethylene) glycol having a number average molecular weight of 650 PPG720: poly (oxypropylene) glycol having a number average molecular weight of 700 HXDI: hydrogenated xylylene diisocyanate HEA: hydroxyethyl acrylate IBXA: isobornyl acrylate BA: n-butyl Acrylate AA: Acrylic acid TMPTA: Trimethylolpropane triacrylate Irg. 650: 2,2-dimethoxy-1,2-diphenylethane-1-one TGA: thioglycolic acid
PTMG:数平均分子量650のポリ(オキシテトラメチレン)グリコール
PPG720:数平均分子量700のポリ(オキシプロピレン)グリコール
HXDI:水添キシリレンジイソシアネート
HEA:ヒドロキシエチルアクリレート
IBXA:イソボルニルアクリレート
BA:n-ブチルアクリレート
AA:アクリル酸
TMPTA:トリメチロールプロパントリアクリレート
Irg.650:2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン
TGA:チオグリコール酸 The abbreviations in the table are as follows.
PTMG: poly (oxytetramethylene) glycol having a number average molecular weight of 650 PPG720: poly (oxypropylene) glycol having a number average molecular weight of 700 HXDI: hydrogenated xylylene diisocyanate HEA: hydroxyethyl acrylate IBXA: isobornyl acrylate BA: n-butyl Acrylate AA: Acrylic acid TMPTA: Trimethylolpropane triacrylate Irg. 650: 2,2-dimethoxy-1,2-diphenylethane-1-one TGA: thioglycolic acid
実施例1~3に示すように、連鎖移動剤であるTGAを添加したウレタン-アクリル複合フィルムの伸張破断強度は、参考例の伸張破断強度の89.8~105.0%であり、参考例とほぼ同等の値を示した。また、20%伸張時応力は、参考例の20%伸張時応力の87.2~31.2%であり、参考例よりも低い値を示した。一方、アクリル組成を変化させた比較例1では、伸張破断強度は参考例の105.5%と同等の値を示したが、20%伸張時応力は参考例よりも高い142.0%という値を示した。また、ウレタン組成を変化させた比較例2では、20%伸張時応力は参考例よりも低い88.8%という値を示したが、伸張破断強度は参考例の43.9%となり、参考例の伸張破断強度よりも値が大きく変化した。一方、破断時伸張率は、参考例の破断時伸張率の140.7~260.3%であり、参考例よりも高い値を示した。一方、アクリル組成を変化させた比較例1では、伸張破断強度は参考例の105.5%と同等の値を示したが、破断時伸張率は参考例に対して79.8%と低い値を示した。また、ウレタン組成を変化させた比較例2では、破断時伸張率は参考例よりも117.9%と高い値を示したが、伸張破断強度は参考例の43.9%となり、参考例の伸張破断強度よりも値が大きく変化した。
As shown in Examples 1 to 3, the tensile strength at break of the urethane-acrylic composite film to which the chain transfer agent TGA was added was 89.8 to 105.0% of the tensile strength at break of the reference example. It was almost the same value. The stress at 20% elongation was 87.2 to 31.2% of the stress at 20% elongation of the reference example, which was lower than that of the reference example. On the other hand, in Comparative Example 1 in which the acrylic composition was changed, the tensile strength at break showed the same value as 105.5% of the reference example, but the stress at 20% elongation was 142.0% higher than that of the reference example. showed that. In Comparative Example 2 in which the urethane composition was changed, the stress at 20% elongation was 88.8%, which was lower than that of the reference example, but the tensile strength at break was 43.9% of the reference example. The value changed more greatly than the tensile strength at break. On the other hand, the elongation at break was 140.7 to 260.3% of the elongation at break of the reference example, which was higher than that of the reference example. On the other hand, in Comparative Example 1 in which the acrylic composition was changed, the tensile strength at break showed a value equivalent to 105.5% of the reference example, but the elongation at break was a low value of 79.8% relative to the reference example. showed that. Further, in Comparative Example 2 in which the urethane composition was changed, the elongation at break was 117.9% higher than that of the reference example, but the tensile strength at break was 43.9% of the reference example. The value changed more greatly than the tensile strength at break.
Claims (5)
- ウレタンポリマー及びアクリル系ポリマーを含む複合フィルムの製造方法であって、
上記ウレタンポリマー及び少なくとも1種のアクリル系モノマーを含む基準混合物を調製する基準混合物調製工程と、
上記基準混合物100重量部に対し、連鎖移動剤を0.01重量部以上5重量部以下添加して添加混合物を調製する添加混合物調製工程と、
上記添加混合物を硬化させて複合フィルムを形成する複合フィルム形成工程と
を含み、
上記添加混合物の硬化により得られる複合フィルムP2の伸張破断強度S2は、上記基準混合物の硬化により得られる複合フィルムP1の伸張破断強度S1の85%以上115%以下の値であり、かつ
上記複合フィルムP2を20%伸張させた際の応力M2は、上記複合フィルムP1を20%伸張させた際の応力M1の90%以下の値であるか、又は上記複合フィルムP2を伸張して破断させた際の破断時伸張率E2は、上記複合フィルムP1を伸張して破断させた際の破断時伸張率E1の120%以上の値である複合フィルムの製造方法。 A method for producing a composite film comprising a urethane polymer and an acrylic polymer,
A reference mixture preparation step for preparing a reference mixture comprising the urethane polymer and at least one acrylic monomer;
An additive mixture preparation step of adding 0.01 parts by weight or more and 5 parts by weight or less of a chain transfer agent to 100 parts by weight of the reference mixture;
A composite film forming step of curing the additive mixture to form a composite film,
The elongation breaking strength S2 of the composite film P2 obtained by curing the additive mixture is a value of 85% to 115% of the elongation breaking strength S1 of the composite film P1 obtained by curing the reference mixture, and the composite film The stress M2 when the P2 is stretched by 20% is 90% or less of the stress M1 when the composite film P1 is stretched by 20%, or when the composite film P2 is stretched and broken. The elongation at break E2 is a method for producing a composite film having a value of 120% or more of the elongation at break E1 when the composite film P1 is stretched and broken. - 上記ウレタンポリマーはアクリロイル基末端ウレタンポリマーを含む請求項1に記載の複合フィルムの製造方法。 The method for producing a composite film according to claim 1, wherein the urethane polymer contains an acryloyl group-terminated urethane polymer.
- 上記基準混合物調製工程では、上記少なくとも1種のアクリル系モノマーの存在下、ポリオールとイソシアネートとの反応により上記ウレタンポリマーを形成する請求項1又は2に記載の複合フィルムの製造方法。 The method for producing a composite film according to claim 1 or 2, wherein, in the reference mixture preparation step, the urethane polymer is formed by a reaction between a polyol and an isocyanate in the presence of the at least one acrylic monomer.
- 上記複合フィルム形成工程では、放射線硬化性とした上記添加混合物を基材上に塗布して塗膜を形成し、該塗膜に放射線を照射し硬化させて複合フィルムを形成する請求項1~3のいずれか1項に記載の複合フィルムの製造方法。 In the composite film forming step, the radiation-curable additive mixture is applied onto a substrate to form a coating film, and the coating film is irradiated with radiation to be cured to form a composite film. The manufacturing method of the composite film of any one of these.
- 請求項1~4のいずれか1項に記載の複合フィルムの製造方法により得られる複合フィルム。 A composite film obtained by the method for producing a composite film according to any one of claims 1 to 4.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011200802A JP2013060547A (en) | 2011-09-14 | 2011-09-14 | Method for manufacturing composite film, and composite film |
JP2011-200802 | 2011-09-14 | ||
JP2011-200799 | 2011-09-14 | ||
JP2011200799A JP2013060546A (en) | 2011-09-14 | 2011-09-14 | Method for manufacturing composite film, and composite film |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013038968A1 true WO2013038968A1 (en) | 2013-03-21 |
Family
ID=47883199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/072579 WO2013038968A1 (en) | 2011-09-14 | 2012-09-05 | Method for producing composite film, and composite film |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013038968A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010083137A (en) * | 2008-09-02 | 2010-04-15 | Nitto Denko Corp | Composite film |
JP2010254853A (en) * | 2009-04-27 | 2010-11-11 | Bridgestone Corp | Energy ray curing type elastomer composition |
JP2011068727A (en) * | 2009-09-24 | 2011-04-07 | Lintec Corp | Sheet and adhesive sheet |
-
2012
- 2012-09-05 WO PCT/JP2012/072579 patent/WO2013038968A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010083137A (en) * | 2008-09-02 | 2010-04-15 | Nitto Denko Corp | Composite film |
JP2010254853A (en) * | 2009-04-27 | 2010-11-11 | Bridgestone Corp | Energy ray curing type elastomer composition |
JP2011068727A (en) * | 2009-09-24 | 2011-04-07 | Lintec Corp | Sheet and adhesive sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5232736B2 (en) | Composite film | |
JP5399625B2 (en) | Composite film | |
JP7076217B2 (en) | Adhesive sheet and its manufacturing method, and manufacturing method of image display device | |
US9534151B2 (en) | Sheet and adhesive sheet | |
CN107207920B (en) | Adhesive sheet for semiconductor processing | |
JP5406456B2 (en) | Ionizing radiation curable adhesive composition for re-peeling and use thereof | |
US11319470B2 (en) | Pressure sensitive adhesive, curable pressure sensitive adhesive composition, pressure sensitive adhesive sheet and method for manufacturing thereof | |
JP6528259B2 (en) | Surface protection film | |
CN110093111B (en) | Adhesive sheet, method for producing same, and image display device | |
JP2012062454A (en) | Pressure-sensitive adhesive sheet | |
US11319462B2 (en) | Pressure sensitive adhesive sheet, method for manufacturing thereof, and pressure sensitive adhesive film | |
CN109476977B (en) | Pressure-sensitive adhesive, pressure-sensitive adhesive film, pressure-sensitive adhesive tape, and film substrate | |
JP2014224220A (en) | Coat layer composition | |
WO2012005221A1 (en) | Method for producing multilayer sheet, and multilayer sheet | |
WO2020184155A1 (en) | Pressure-sensitive adhesive sheet, production method therefor, and image display device | |
JP5625218B2 (en) | Composite film and manufacturing method thereof | |
JPWO2011024925A1 (en) | Adhesive tape or sheet substrate, and adhesive tape or sheet | |
JP2015160866A (en) | Film having self-repairing property and production method of the same, and adhesive sheet using the film | |
JP2013060547A (en) | Method for manufacturing composite film, and composite film | |
JP2013060546A (en) | Method for manufacturing composite film, and composite film | |
TW201404848A (en) | Composition for transparent adhesive/pressure-sensitive adhesive sheet, process for producing same, and transparent adhesive/pressure-sensitive adhesive sheet | |
WO2013038968A1 (en) | Method for producing composite film, and composite film | |
JP2015160867A (en) | Film having self-repairing property and production method of the same, and adhesive sheet using the film | |
JP2020147739A (en) | Pressure sensitive adhesive sheet, manufacturing method thereof, and picture display unit | |
WO2016027908A1 (en) | Surface protective film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12831001 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12831001 Country of ref document: EP Kind code of ref document: A1 |