WO2013038498A1 - Vehicle and method for controlling vehicle - Google Patents

Vehicle and method for controlling vehicle Download PDF

Info

Publication number
WO2013038498A1
WO2013038498A1 PCT/JP2011/070843 JP2011070843W WO2013038498A1 WO 2013038498 A1 WO2013038498 A1 WO 2013038498A1 JP 2011070843 W JP2011070843 W JP 2011070843W WO 2013038498 A1 WO2013038498 A1 WO 2013038498A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
efficiency
rotating electrical
regenerative
electrical machine
Prior art date
Application number
PCT/JP2011/070843
Other languages
French (fr)
Japanese (ja)
Inventor
上條 祐輔
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/070843 priority Critical patent/WO2013038498A1/en
Publication of WO2013038498A1 publication Critical patent/WO2013038498A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/02Dynamic electric resistor braking
    • B60L7/06Dynamic electric resistor braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/403Torque distribution between front and rear axle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a vehicle and a vehicle control method, and more particularly to driving force control of a four-wheel drive vehicle in which front and rear wheels can be driven by an electric motor.
  • a vehicle that is mounted with a power storage device (for example, a secondary battery or a capacitor) and travels by using a driving force generated from electric power stored in the power storage device as an environment-friendly vehicle.
  • a power storage device for example, a secondary battery or a capacitor
  • Such vehicles include, for example, electric vehicles, hybrid vehicles, fuel cell vehicles, and the like.
  • a rotating electric machine which receives electric power from the power storage device to generate a driving force for traveling and generates electric power by regenerative braking during braking to store electric energy in the power storage device ( There is a case where a motor driving device including a motor generator is mounted.
  • front wheels and rear wheels are driven by a rotating electric machine.
  • driving to front wheels and rear wheels is considered in consideration of efficiency and drivability. Power distribution is required.
  • Patent Document 1 discloses that a fuel efficiency priority mode is selected in a four-wheel drive vehicle in which either a front wheel or a rear wheel is driven by two motors that can be driven independently on the left and right. A configuration is disclosed in which the drive torque distribution to each motor is determined so that the overall efficiency of all the motors that drive the front and rear wheels is the highest.
  • Patent Document 2 discloses that a hybrid vehicle capable of switching between two-wheel drive and four-wheel drive is operated by a user to perform EV travel using only a rotating electric machine as a power source.
  • the EV switch to be turned on is set, the area for performing the four-wheel drive is reduced and the frequency of operation by the two-wheel drive is increased as compared with the case where the EV switch is off. As a result, power consumption is suppressed and the travel distance in EV travel can be extended.
  • regenerative operation using front and rear wheel drive motors tends to stabilize the behavior of the vehicle, but is not necessarily optimal from the standpoint of overall efficiency.
  • the regenerative efficiency is made as high as possible, it is possible to recover a large amount of electric power generated in the regenerative operation and to increase the travel distance using the motor.
  • the present invention has been made to solve such a problem, and an object thereof is a traveling mode in which efficiency is prioritized in a four-wheel drive vehicle in which front and rear wheels can be driven by a plurality of motors. It is to improve the regeneration efficiency when is selected.
  • a vehicle according to the present invention is a vehicle capable of traveling using electric power, and includes a first rotating electrical machine for driving front wheels, a second rotating electrical machine for driving rear wheels, and first and first rotating electrical machines. And a control device for controlling the two rotating electric machines.
  • the regeneration operation is performed when the efficiency priority mode is selected by the user, the torque is preferentially distributed to the rotating electrical machine having the high regeneration efficiency among the first and second rotating electrical machines.
  • the control device distributes more torque to each of the first and second rotating electrical machines than when the efficiency priority mode is selected. Torque is distributed at a predetermined rate according to the driving situation so as to be even.
  • the control device applies a torque exceeding the predetermined torque among the required regenerative torques to the other side. To the rotating electric machine.
  • the vehicle further includes a first inverter for driving the first rotating electrical machine and a second inverter for driving the second rotating electrical machine.
  • the control device shuts down the inverter corresponding to the other rotating electrical machine when all of the required regenerative torque can be distributed to the rotating electrical machine having a high regeneration efficiency.
  • the rotary electric machine with high regeneration efficiency is the first rotary electric machine.
  • the control device is configured such that the regenerative power by the rotating electrical machine having a high regenerative efficiency does not exceed the reference power Is distributed to the rotating electrical machine with high regeneration efficiency, and the remaining torque of the required regenerative torque is distributed to the other rotating electrical machine.
  • the vehicle further includes an engine that operates in cooperation with the first rotating electric machine to drive the front wheels.
  • the vehicle further includes a switch for the user to select the efficiency priority mode.
  • a vehicle control method is a control method for a vehicle including a first rotating electrical machine for driving front wheels and a second rotating electrical machine for driving rear wheels. Determining whether or not the efficiency priority mode is selected, and calculating the regeneration efficiency of the first and second rotating electrical machines when performing the regenerative operation when the efficiency priority mode is selected. Prepare. Then, in the control method, when performing the regenerative operation when the efficiency priority mode is selected, the step of preferentially distributing the torque to the rotating electrical machine having high regeneration efficiency among the first and second rotating electrical machines. When the regeneration operation is performed when the efficiency priority mode is not selected, the torque distribution to each of the first and second rotating electrical machines is more even than when the efficiency priority mode is selected. And a step of distributing torque at a predetermined ratio according to the driving situation.
  • FIG. 1 is an overall block diagram of a vehicle according to an embodiment. It is a figure for demonstrating the detail of the drive circuit of the rotary electric machine in FIG. It is a figure for demonstrating the outline
  • this Embodiment it is a functional block diagram for demonstrating the driving force control at the time of the regeneration operation
  • this Embodiment it is a flowchart for demonstrating the detail of the driving force control process at the time of the regeneration operation
  • FIG. 1 is an overall block diagram of vehicle 100 according to the present embodiment.
  • the vehicle 100 is a hybrid vehicle including an engine and a rotating electric machine will be described as an example.
  • the configuration of the vehicle 100 is as follows. It is not limited to hybrid vehicles.
  • the configuration of the vehicle 100 includes, in addition to the hybrid vehicle as shown in FIG. 1, an electric vehicle not equipped with an engine, a fuel cell vehicle equipped with a fuel cell, and the like.
  • vehicle 100 includes a power storage device 110, a converter 120, inverters 130, 135, and 136, motor generators 140, 145, and 146 that are rotating electrical machines, a power split mechanism 150, and an internal combustion engine.
  • An engine 160, drive shafts 170 and 175, front wheels 190 and rear wheels 195, a switch 180, an ECU 300 as a control device, and speed reduction mechanisms RD1 and RD2 are provided.
  • the power storage device 110 is a power storage element configured to be chargeable / dischargeable.
  • the power storage device 110 includes, for example, a secondary battery such as a lithium ion battery, a nickel metal hydride battery, or a lead storage battery, or a power storage element such as an electric double layer capacitor.
  • Converter 120 is controlled by control signal PWC from ECU 300, and converts the DC voltage supplied from power storage device 110 into a predetermined voltage. Converter 120 then supplies the converted DC voltage to inverters 130, 135, and 136. In the case of the regenerative operation, converter 120 converts the electric power generated by motor generators 140, 145, and 146 into a voltage suitable for charging power storage device 110.
  • inverters 130, 135, and 136 are connected in parallel to the converter 120.
  • Inverter 130 and inverter 135 are controlled by control signals PWI1 and PWI2 from ECU 300, respectively, to drive motor generator 140 and motor generator 145.
  • Inverter 136 is controlled by control signal PWIR from ECU 300 to drive motor generator 146.
  • inverters 130, 135, and 136 are also referred to as “INV1”, “INV2”, and “INVR”, respectively, and motor generators 140, 145, and 146 are referred to as “MG1”, “MG2”, and “MGR”, respectively. Also called.
  • Motor generators 140, 145, and 146 are AC rotating electric machines, for example, permanent magnet type synchronous motors having a rotor in which permanent magnets are embedded.
  • the motor generators 140 and 145 are coupled to each other by a power split mechanism 150 that typically includes a planetary gear.
  • engine 160 is also coupled to motor generators 140 and 145 by power split mechanism 150.
  • Motor generators 140 and 145 and engine 160 are cooperatively controlled by ECU 300, and the driving force from motor generators 140 and 145 and the driving force from engine 160 are transmitted to front wheels 190 via reduction mechanism RD1 and driving shaft 170. Is transmitted to. Furthermore, motor generators 140 and 145 can generate electric power by rotation of engine 160 or rotation of front wheels 190, and can use this generated electric power to charge power storage device 110.
  • motor generator 145 is used exclusively as an electric motor for driving front wheels 190
  • motor generator 140 is used exclusively as a generator driven by engine 160.
  • Motor generator 140 is used to crank the crankshaft of engine 160 when engine 160 is started.
  • the output shaft of the motor generator 146 is connected to the rear wheel 195 via the speed reduction mechanism RD2 and the drive shaft 175, and drives the rear wheel 195.
  • the vehicle 100 is a so-called four-wheel drive vehicle that can travel by driving the front wheels 190 and the rear wheels 195 as described above.
  • FIG. 1 shows an example of a configuration in which two front-wheel motor generators and one rear-wheel motor generator are provided, but the front wheels and the rear wheels are each driven by a separate motor generator.
  • the number of motor generators is not limited to this as long as it is configured.
  • the front-wheel drive system and the rear-wheel drive system shown in FIG. 1 are interchanged, the front-wheel drive system (motor generators 140, 145 and engine 160) drives the rear wheels 195, and the rear-wheel drive system ( The motor generator 146) may drive the front wheels 190.
  • a configuration may be adopted in which separate motor generators are provided on the left and right drive wheels.
  • the switch 180 is a switch that is operated by the user to select a travel mode in which efficiency is emphasized for the purpose of energy saving (hereinafter also referred to as “fuel economy priority mode”).
  • Switch 180 outputs selection signal ECO to ECU 300. Specifically, when the fuel efficiency priority mode is selected, the selection signal ECO is set to ON and output, and when the fuel efficiency priority mode is not selected, the selection signal ECO is set to OFF and output. .
  • the “fuel efficiency priority mode” in the present embodiment corresponds to the “efficiency priority mode” in the present invention.
  • ECU 300 includes a CPU (Central Processing Unit), a storage device, and an input / output buffer (not shown in FIG. 1).
  • the ECU 300 inputs a signal from each sensor and outputs a control signal to each device. 100 and each device are controlled. Note that these controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuit).
  • ECU 300 calculates the SOC of power storage device 110 based on detected values of voltage VB and current IB from a voltage sensor and a current sensor (both not shown) provided in power storage device 110. ECU 300 controls engine 160 using control signal DRV.
  • one control device is provided as the ECU 300, but for each function, such as a control device for the converter 120, the inverters 130, 135, and 136, a control device for the power storage device 110, and the like. Or it is good also as a structure which provides a separate control apparatus for every control object apparatus.
  • power storage device 110 is connected to converter 120 through power lines PL1 and NL1.
  • the relay included in system main relay (SMR) 115 has one end connected to the positive terminal and the negative terminal of power storage device 110, and the other end connected to power lines PL1 and NL1. SMR 115 switches between power supply and cutoff between power storage device 110 and converter 120 based on control signal SE ⁇ b> 1 from ECU 300.
  • Converter 120 includes a reactor L1, switching elements Q1 and Q2, and diodes D1 and D2.
  • Switching elements Q1, Q2 are connected in series between power lines PL2 and NL1. Switching elements Q1, Q2 are controlled by a switching control signal PWC from ECU 300.
  • an IGBT Insulated Gate Bipolar Transistor
  • a power MOS Metal Oxide Semiconductor
  • a power bipolar transistor or the like
  • Anti-parallel diodes D1 and D2 are arranged for switching elements Q1 and Q2.
  • Reactor L1 is connected between a connection node of switching elements Q1, Q2 and power line PL1. That is, converter 120 forms a so-called chopper circuit.
  • the converter 120 is basically controlled so that the switching elements Q1 and Q2 are turned on and off in a complementary manner within each switching period.
  • converter 120 converts DC voltage VL supplied from power storage device 110 into DC voltage VH (this DC voltage corresponding to the input voltage to inverters 130, 135, and 136 is hereinafter also referred to as “system voltage”).
  • Boost the pressure. This boosting operation is performed by supplying the electromagnetic energy accumulated in reactor L1 during the ON period of switching element Q2 to power line PL2 via switching element Q1 and antiparallel diode D1.
  • converter 120 steps down DC voltage VH to DC voltage VL during the step-down operation.
  • This step-down operation is performed by supplying the electromagnetic energy stored in reactor L1 during the ON period of switching element Q1 to power line NL1 via switching element Q2 and antiparallel diode D2.
  • Capacitor C1 is provided between power lines PL1 and NL1, and reduces voltage fluctuation between power lines PL1 and NL1.
  • Voltage sensor 215 detects voltage VL applied to capacitor C1 and outputs the detected value to ECU 300.
  • the capacitor C2 is provided between the power lines PL2 and NL1, and reduces voltage fluctuation between the power lines PL2 and NL1.
  • Voltage sensor 210 detects voltage VH applied to capacitor C2 and outputs the detected value to ECU 300.
  • the inverter 130 includes a U-phase upper and lower arm 131, a V-phase upper and lower arm 132, and a W-phase upper and lower arm 133 provided in parallel between the power lines PL2 and NL1.
  • Each phase upper and lower arm includes a switching element connected in series between power lines PL2 and NL1.
  • U-phase upper and lower arms 131 include switching elements Q3 and Q4
  • V-phase upper and lower arms 132 include switching elements Q5 and Q6
  • W-phase upper and lower arms 133 include switching elements Q7 and Q8.
  • Antiparallel diodes D3 to D8 are connected to switching elements Q3 to Q8, respectively. Switching elements Q3-Q8 are controlled by a control signal PWI1 from ECU 300.
  • the motor generator 140 is typically a three-phase permanent magnet type synchronous motor, and one end of three coils in the U, V, and W phases is commonly connected to a neutral point. Further, the other end of each phase coil is connected to a connection node of two switching elements in each phase upper and lower arms 131 to 133.
  • the motor generator 140 is provided with a speed sensor 200 for detecting the rotational speed of the motor generator 140.
  • Speed sensor 200 detects rotational speed NMG1 of motor generator 140 and outputs the detected value to ECU 300.
  • a rotation angle sensor (not shown) for detecting the rotation angle of motor generator 140 may be provided.
  • ECU 300 is detected by the rotation angle sensor.
  • a rotation speed NMG1 is calculated by calculation based on the rotation angle ⁇ 1.
  • the inverter 135 for driving the motor generator 145 and the inverter 136 for driving the motor generator 146 are connected to the power lines PL2 and NL1 in parallel with the inverter 130.
  • all of the inverters 130, 135, and 136 are connected in parallel to the converter 120.
  • the converter 120 is You may make it connect directly to electric power lines PL1 and NL1 without going through.
  • the motor generators 145 and 146 are also provided with rotational speed sensors 205 and 206, respectively.
  • Rotational speed sensors 205 and 206 output detected rotational speeds NMG2 and NMGR to ECU 300, respectively.
  • ECU 300 receives a required torque TR determined based on an operation of an accelerator pedal (not shown) by a user, etc., and motor generators 140, 145, 146 and an engine based on the traveling state, traveling mode, SOC, and the like of vehicle 100. 160 driving torque is determined. ECU 300 generates control signals PWC, PWI1, PWI2, PWIR, DRV according to the determined driving torque, and drives motor generators 140, 145, 146 and engine 160.
  • the driving force that preferentially distributes the regenerative torque to the motor generator with high regenerative efficiency to improve the energy efficiency. Take control.
  • FIG. 3 is a diagram for explaining an outline of the driving force control in the present embodiment.
  • FIG. 3 is a graph showing an example of the relationship between the rotational speed and torque of the motor generator and the efficiency.
  • the motor generator can take an operating point within a range surrounded by the coordinate axis and the curve W10.
  • the horizontal axis of FIG. 3 shows the rotation speed of the motor generator, and the vertical axis shows the regenerative torque.
  • the broken contour lines in FIG. 3 indicate the regeneration efficiency of the motor generator.
  • the regeneration efficiency increases in the direction of arrows AR1, AR2, AR3. That is, in FIG. 3, the regeneration efficiency is highest in the region inside the contour line indicated by DM1.
  • the regenerative torque is preferentially distributed to a motor generator (for example, front wheel) with high regenerative efficiency. All of the regenerative torque to be distributed to the motor generator on the front wheel side is distributed. Then, the operating point of the motor generator on the front wheel side is a point P20 in FIG. 3, and the regeneration efficiency of the motor generator on the front wheel side is improved, and the efficiency is improved as a whole.
  • a motor generator for example, front wheel
  • FIG. 4 is a functional block diagram for explaining the driving force control during the regenerative operation performed by the ECU 300 in the present embodiment.
  • Each functional block described in the block diagram illustrated in FIG. 4 is realized by hardware or software processing by ECU 300.
  • ECU 300 includes an efficiency calculation unit 310, a torque setting unit 320, a storage unit 330, and a drive control unit 340.
  • the efficiency calculation unit 310 receives the requested torque TR from the user and the rotational speeds NMG1, NMG2, NMGR of the motor generators 140, 145, 146. Based on these pieces of information, the efficiency calculation unit 310 uses the map as shown in FIG. 3 stored in the storage unit 330 to distribute the drive torque to the motor generators 140, 145, and 146 during the regenerative operation, The regeneration efficiency EFF_Fr by the drive system of the front wheels 190 and the regeneration efficiency EFF_Rr by the drive system of the rear wheels 195 in the case of each distribution pattern are calculated. Then, the efficiency calculation unit 310 outputs the calculated regeneration efficiencies EFF_Fr and EFF_Rr to the torque setting unit 320.
  • the torque setting unit 320 receives the regeneration efficiency EFF_Fr, EFF_Rr from the efficiency calculation unit 310. Torque setting unit 320 receives selection signal ECO from switch 180 and signal RGE indicating a regenerative operation from a host ECU (not shown).
  • the torque setting unit 320 determines torque distribution to the motor generators 140, 145, 146 and the engine during the regenerative operation based on whether the fuel efficiency priority mode is set by the selection signal ECO. When the fuel efficiency priority mode is set, the torque setting unit 320 determines a torque distribution pattern that preferentially distributes torque to those with high efficiency based on the regeneration efficiency EFF_Fr, EFF_Rr. Then, torque command values TMG1, TMG2, and TMGR corresponding to the determined pattern are calculated using the map stored in storage unit 330.
  • torque setting unit 320 also calculates torque command value TE distributed to engine 160 and boost target voltage command value VR of converter 120. Then, torque command values TMG1, TMG2, and TMGR for each motor generator, torque command value TE for engine 160, and boost target voltage command value VR for converter 120 are output to drive control unit 340.
  • the drive control unit 340 receives each command value from the torque setting unit, the rotational speeds NMG1, NMG2, NMR of each motor generator from the speed sensor 200, and the detection value VH from the voltage sensor 210.
  • the drive control unit 340 calculates control signals PWC, PWI1, PWI2, PWR, and DRV based on these pieces of information.
  • Drive control unit 340 drives converter 120, inverters 130, 135, 136, and engine 160 using these control signals.
  • FIG. 5 is a flowchart for explaining the details of the driving force control process during the regenerative operation executed by the ECU 300 in the present embodiment.
  • Each step in the flowchart shown in FIG. 5 is realized by executing a program stored in advance in ECU 300 at a predetermined cycle. Alternatively, for some steps, it is also possible to construct dedicated hardware (electronic circuit) and realize processing.
  • step S 100 determines in step (hereinafter, step is abbreviated as S) 100 whether or not a regenerative operation is currently being performed based on signal RGE.
  • ECU 300 calculates regenerative efficiencies EFF_Fr and EFF_Rr for each torque distribution pattern to the drive systems for the front wheels and the rear wheels. To do.
  • the regeneration operation by the rotation of the drive wheels is performed by the motor generator 145 (MG2), so the regeneration efficiency EFF_Fr of the front wheels is substantially equal to the efficiency of MG2.
  • the reduction ratios GR1 and GR2 by the reduction mechanisms RD1 and RD2 are also taken into consideration.
  • the motor generator 145 (MG2) has a higher rated output than the motor generator 146 (MGR) on the rear wheel side.
  • MGR motor generator 146
  • the motor generator 145 (MG2) performs the regeneration operation preferentially.
  • the ECU 300 uses the rear wheel side motor generator 146 (MGR) for the remaining regenerative torque. Control to generate by regenerative operation.
  • the reference power is not limited even if the efficiency of the front wheel side motor generator 145 (MG2) is not the optimum operating point.
  • the torque distribution to the motor generator 145 (MG2) on the front wheel side may be determined so as not to exceed.
  • ECU 300 calculates a torque distribution pattern that increases the regenerative efficiency of the entire motor generator based on the calculated regenerative efficiencies EFF_Fr and EFF_Rr.
  • ECU 300 determines whether or not the distribution ratio of the regeneration torque on the front wheel side is 100% based on the torque distribution result set in S130.
  • ECU 300 controls the inverter so as to perform a regenerative operation using only motor generator 145 on the front wheel side.
  • the regenerative torque distribution in S170 for example, the braking force generated by the front wheel side motor generator 145 and the rear wheel side motor generator 146 is more even than that in the fuel efficiency priority mode.
  • a method of allocating the regenerative torque to both the front wheels and the rear wheels at a predetermined ratio according to the driving situation is conceivable.
  • the regenerative torque to be distributed is not limited to the case where the ratio of the front wheels and the rear wheels is completely equal, such as 50:50, and the regenerative torque distributed to the front wheels and the rear wheels than in the fuel efficiency priority mode. If the difference is small, for example, a distribution such as 40:60 or 70:30 is included.
  • ECU 300 controls the inverter according to the torque distribution set in S170.
  • Regenerative torque may be distributed to both the front wheels and the rear wheels so as to ensure running stability.
  • a plurality of motor generators Torque distribution is performed to increase the regeneration efficiency.
  • the regenerative torque is preferentially distributed to the motor generator on the front wheel side with high regenerative efficiency.
  • the inverter that drives the motor generator on the rear wheel side is shut off.
  • 100 vehicle 110 power storage device, 115 SMR, 120 converter, 130, 135, 136 inverter, 131 U-phase upper and lower arms, 132 V-phase upper and lower arms, 133 W-phase upper and lower arms, 140, 145, 146 motor generator, 150 power split mechanism , 160 engine, 170, 175 drive shaft, 180 switch, 190 front wheel, 195 rear wheel, 200, 205, 206 speed sensor, 210, 215 voltage sensor, 300 ECU, 310 efficiency calculation unit, 320 torque setting unit, 330 storage unit 340 drive control unit, C1, C2 capacitor, D1 to D8 diode, L1 reactor, NL1, PL1, PL2 power line, Q1 to Q8 switching element, RD1, RD2 reduction mechanism.

Abstract

A vehicle (100) is provided with a motor generator (140) for driving a front wheel (190), a motor generator (146) for driving a rear wheel (195), and an ECU (300) for controlling the motor generators (140, 146). When performing a regeneration operation during an efficiency priority mode selected by a user, the ECU (300) preferentially allocates regeneration torque to the motor generator having higher regeneration efficiency. Thereby, the total regeneration efficiency for the motor generators (140, 146) is increased.

Description

車両および車両の制御方法Vehicle and vehicle control method
 本発明は、車両および車両の制御方法に関し、より特定的には、前後輪を電動機で駆動可能な四輪駆動式車両の駆動力制御に関する。 The present invention relates to a vehicle and a vehicle control method, and more particularly to driving force control of a four-wheel drive vehicle in which front and rear wheels can be driven by an electric motor.
 近年、環境に配慮した車両として、蓄電装置(たとえば二次電池やキャパシタなど)を搭載し、蓄電装置に蓄えられた電力から生じる駆動力を用いて走行する車両が注目されている。このような車両には、たとえば電気自動車、ハイブリッド自動車、燃料電池車などが含まれる。 2. Description of the Related Art In recent years, attention has been paid to a vehicle that is mounted with a power storage device (for example, a secondary battery or a capacitor) and travels by using a driving force generated from electric power stored in the power storage device as an environment-friendly vehicle. Such vehicles include, for example, electric vehicles, hybrid vehicles, fuel cell vehicles, and the like.
 これらの車両においては、発進時や加速時に蓄電装置から電力を受けて走行のための駆動力を発生するとともに、制動時に回生制動によって発電を行なって蓄電装置に電気エネルギを蓄えるための回転電機(モータジェネレータ)を備えるモータ駆動装置が搭載される場合がある。 In these vehicles, when starting or accelerating, a rotating electric machine (which receives electric power from the power storage device to generate a driving force for traveling and generates electric power by regenerative braking during braking to store electric energy in the power storage device ( There is a case where a motor driving device including a motor generator is mounted.
 また、四輪駆動式車両においても、前輪および後輪を回転電機によって駆動する車両が開発されており、このような車両においては、効率およびドライバビリティを考慮して、前輪および後輪への駆動力配分が必要とされる。 Also, four-wheel drive vehicles have been developed in which front wheels and rear wheels are driven by a rotating electric machine. In such vehicles, driving to front wheels and rear wheels is considered in consideration of efficiency and drivability. Power distribution is required.
 特開2007-313982号公報(特許文献1)は、前輪または後輪のいずれかが、左右独立に駆動可能な2つのモータで駆動される四輪駆動式車両において、燃費優先モードが選択されているときには、前後輪を駆動するすべてのモータの全体効率が最も高くなるように、各モータへの駆動トルク配分を決定する構成を開示する。 Japanese Patent Laid-Open No. 2007-313982 (Patent Document 1) discloses that a fuel efficiency priority mode is selected in a four-wheel drive vehicle in which either a front wheel or a rear wheel is driven by two motors that can be driven independently on the left and right. A configuration is disclosed in which the drive torque distribution to each motor is determined so that the overall efficiency of all the motors that drive the front and rear wheels is the highest.
 また、特開2007-168690号公報(特許文献2)は、二輪駆動と四輪駆動とを切換えることが可能なハイブリッド車両において、回転電機のみを動力源とするEV走行を行なうようにユーザによって操作されるEVスイッチがオンに設定されているときには、EVスイッチがオフの場合に比べて、四輪駆動を行なう領域を縮小して二輪駆動で動作する頻度を拡大する。これによって、電力消費が抑制されてEV走行での走行距離を延ばすことができる。 Japanese Patent Laid-Open No. 2007-168690 (Patent Document 2) discloses that a hybrid vehicle capable of switching between two-wheel drive and four-wheel drive is operated by a user to perform EV travel using only a rotating electric machine as a power source. When the EV switch to be turned on is set, the area for performing the four-wheel drive is reduced and the frequency of operation by the two-wheel drive is increased as compared with the case where the EV switch is off. As a result, power consumption is suppressed and the travel distance in EV travel can be extended.
特開2007-313982号公報JP 2007-313982 A 特開2007-168690号公報JP 2007-168690 A
 このような、前後輪をモータにより駆動可能な四輪駆動式車両において、減速時の回生動作を行なう場合、回生効率および走行安定性(ドライバビリティ)を考慮して、各モータへの駆動力を配分することが重要である。 In such a four-wheel drive vehicle in which front and rear wheels can be driven by motors, when performing regenerative operation during deceleration, the driving force to each motor is taken into account in consideration of regenerative efficiency and running stability (drivability). It is important to allocate.
 一般的には、前後輪の駆動モータを使用して回生動作を行なうほうが、車両の挙動としては安定する傾向にあるが、総合的な効率の面からは必ずしも最適であるとは限らない。 Generally, regenerative operation using front and rear wheel drive motors tends to stabilize the behavior of the vehicle, but is not necessarily optimal from the standpoint of overall efficiency.
 回生効率ができるだけ高くなるようにした場合、回生動作における発電電力を多く回収することができ、モータを用いた走行距離を拡大できる可能性がある。 If the regenerative efficiency is made as high as possible, it is possible to recover a large amount of electric power generated in the regenerative operation and to increase the travel distance using the motor.
 本発明は、このような課題を解決するためになされたものであって、その目的は、前後輪を複数のモータで駆動することが可能な四輪駆動式車両において、効率を優先する走行モードが選択されている場合の回生効率を向上させることである。 The present invention has been made to solve such a problem, and an object thereof is a traveling mode in which efficiency is prioritized in a four-wheel drive vehicle in which front and rear wheels can be driven by a plurality of motors. It is to improve the regeneration efficiency when is selected.
 本発明による車両は、電力を用いて走行が可能な車両であって、前輪を駆動するための第1の回転電機と、後輪を駆動するための第2の回転電機と、第1および第2の回転電機を制御するための制御装置とを備える。ユーザにより効率優先モードが選択されている場合に回生動作を行なうときには、第1および第2の回転電機のうちで回生効率の高い回転電機に対して優先的にトルクを配分する。また、制御装置は、効率優先モードが選択されていない場合に回生動作を行なうときには、効率優先モードが選択されているときに比べて第1および第2の回転電機の各々へのトルク配分がより均等になるように、運転状況に応じて予め定められた割合でトルクを配分する。 A vehicle according to the present invention is a vehicle capable of traveling using electric power, and includes a first rotating electrical machine for driving front wheels, a second rotating electrical machine for driving rear wheels, and first and first rotating electrical machines. And a control device for controlling the two rotating electric machines. When the regeneration operation is performed when the efficiency priority mode is selected by the user, the torque is preferentially distributed to the rotating electrical machine having the high regeneration efficiency among the first and second rotating electrical machines. Further, when performing the regenerative operation when the efficiency priority mode is not selected, the control device distributes more torque to each of the first and second rotating electrical machines than when the efficiency priority mode is selected. Torque is distributed at a predetermined rate according to the driving situation so as to be even.
 好ましくは、制御装置は、回生効率の高い回転電機に配分されるトルクが所定トルクを上回るような回生トルクが要求された場合は、要求される回生トルクのうちの所定トルクを超過したトルクを他方の回転電機に配分する。 Preferably, when the regenerative torque is requested such that the torque distributed to the rotating electrical machine having high regenerative efficiency exceeds the predetermined torque, the control device applies a torque exceeding the predetermined torque among the required regenerative torques to the other side. To the rotating electric machine.
 好ましくは、車両は、第1の回転電機を駆動するための第1のインバータと、第2の回転電機を駆動するための第2のインバータとをさらに備える。制御装置は、要求される回生トルクのすべてを回生効率の高い回転電機に配分できる場合は、他方の回転電機に対応するインバータをシャットダウンする。 Preferably, the vehicle further includes a first inverter for driving the first rotating electrical machine and a second inverter for driving the second rotating electrical machine. The control device shuts down the inverter corresponding to the other rotating electrical machine when all of the required regenerative torque can be distributed to the rotating electrical machine having a high regeneration efficiency.
 好ましくは、回生効率の高い回転電機は、第1の回転電機である。
 好ましくは、制御装置は、回生効率の高い回転電機に配分されるトルクによって発電される回生電力が基準電力を上回る場合は、回生効率の高い回転電機による回生電力が基準電力を超過しないようなトルクを回生効率の高い回転電機に配分するとともに、要求される回生トルクのうちの残余のトルクを他方の回転電機に配分する。
Preferably, the rotary electric machine with high regeneration efficiency is the first rotary electric machine.
Preferably, when the regenerative power generated by the torque distributed to the rotating electrical machine having a high regenerative efficiency exceeds the reference power, the control device is configured such that the regenerative power by the rotating electrical machine having a high regenerative efficiency does not exceed the reference power Is distributed to the rotating electrical machine with high regeneration efficiency, and the remaining torque of the required regenerative torque is distributed to the other rotating electrical machine.
 好ましくは、車両は、第1の回転電機と協調的に動作して、前輪を駆動するためのエンジンをさらに備える。 Preferably, the vehicle further includes an engine that operates in cooperation with the first rotating electric machine to drive the front wheels.
 好ましくは、車両は、ユーザが効率優先モードを選択するためのスイッチをさらに備える。 Preferably, the vehicle further includes a switch for the user to select the efficiency priority mode.
 本発明による車両の制御方法は、前輪を駆動するための第1の回転電機と、後輪を駆動するための第2の回転電機とを含む車両についての制御方法である、制御方法は、ユーザにより効率優先モードが選択されているか否かを判定するステップと、効率優先モードが選択されている場合に回生動作を行なうときの、第1および第2の回転電機の回生効率を演算するステップと備える。そして、制御方法は、効率優先モードが選択されている場合に回生動作を行なうときには、第1および第2の回転電機のうちで回生効率の高い回転電機に対して優先的にトルクを配分するステップと、効率優先モードが選択されていない場合に回生動作を行なうときには、効率優先モードが選択されているときに比べて第1および第2の回転電機の各々へのトルク配分がより均等になるように、運転状況に応じて予め定められた割合でトルクを配分するステップとをさらに備える。 A vehicle control method according to the present invention is a control method for a vehicle including a first rotating electrical machine for driving front wheels and a second rotating electrical machine for driving rear wheels. Determining whether or not the efficiency priority mode is selected, and calculating the regeneration efficiency of the first and second rotating electrical machines when performing the regenerative operation when the efficiency priority mode is selected. Prepare. Then, in the control method, when performing the regenerative operation when the efficiency priority mode is selected, the step of preferentially distributing the torque to the rotating electrical machine having high regeneration efficiency among the first and second rotating electrical machines. When the regeneration operation is performed when the efficiency priority mode is not selected, the torque distribution to each of the first and second rotating electrical machines is more even than when the efficiency priority mode is selected. And a step of distributing torque at a predetermined ratio according to the driving situation.
 本発明によれば、前後輪を複数のモータで駆動することが可能な四輪駆動式車両において、効率を優先する走行モードが選択されている場合の回生効率を向上させることができる。 According to the present invention, in a four-wheel drive vehicle in which front and rear wheels can be driven by a plurality of motors, it is possible to improve the regeneration efficiency when a travel mode giving priority to efficiency is selected.
本実施の形態に従う車両の全体ブロック図である。1 is an overall block diagram of a vehicle according to an embodiment. 図1における回転電機の駆動回路の詳細を説明するための図である。It is a figure for demonstrating the detail of the drive circuit of the rotary electric machine in FIG. 本実施の形態における駆動力制御の概要を説明するための図である。It is a figure for demonstrating the outline | summary of the driving force control in this Embodiment. 本実施の形態において、ECUで実行される回生動作時の駆動力制御を説明するための機能ブロック図である。In this Embodiment, it is a functional block diagram for demonstrating the driving force control at the time of the regeneration operation | movement performed by ECU. 本実施の形態において、ECUで実行される回生動作時の駆動力制御処理の詳細を説明するためのフローチャートである。In this Embodiment, it is a flowchart for demonstrating the detail of the driving force control process at the time of the regeneration operation | movement performed by ECU.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 図1は、本実施の形態に従う車両100の全体ブロック図である。なお、図1においては、車両100が、エンジンおよび回転電機を備えるハイブリッド車両である場合を例として説明するが、前輪および後輪が個別の回転電機により駆動可能であれば、車両100の構成はハイブリッド車両には限定されない。車両100の構成としては、図1のようなハイブリッド車両の他に、エンジンを搭載しない電気自動車や、燃料電池を搭載する燃料電池車などが含まれる。 FIG. 1 is an overall block diagram of vehicle 100 according to the present embodiment. In FIG. 1, the case where the vehicle 100 is a hybrid vehicle including an engine and a rotating electric machine will be described as an example. However, if the front wheels and the rear wheels can be driven by individual rotating electric machines, the configuration of the vehicle 100 is as follows. It is not limited to hybrid vehicles. The configuration of the vehicle 100 includes, in addition to the hybrid vehicle as shown in FIG. 1, an electric vehicle not equipped with an engine, a fuel cell vehicle equipped with a fuel cell, and the like.
 図1を参照して、車両100は、蓄電装置110と、コンバータ120と、インバータ130,135,136と、回転電機であるモータジェネレータ140,145,146と、動力分割機構150と、内燃機関であるエンジン160と、駆動軸170,175と、前輪190および後輪195と、スイッチ180と、制御装置であるECU300と、減速機構RD1,RD2とを備える。 Referring to FIG. 1, vehicle 100 includes a power storage device 110, a converter 120, inverters 130, 135, and 136, motor generators 140, 145, and 146 that are rotating electrical machines, a power split mechanism 150, and an internal combustion engine. An engine 160, drive shafts 170 and 175, front wheels 190 and rear wheels 195, a switch 180, an ECU 300 as a control device, and speed reduction mechanisms RD1 and RD2 are provided.
 蓄電装置110は、充放電可能に構成された電力貯蔵要素である。蓄電装置110は、たとえば、リチウムイオン電池、ニッケル水素電池または鉛蓄電池などの二次電池、あるいは電気二重層キャパシタなどの蓄電素子を含んで構成される。 The power storage device 110 is a power storage element configured to be chargeable / dischargeable. The power storage device 110 includes, for example, a secondary battery such as a lithium ion battery, a nickel metal hydride battery, or a lead storage battery, or a power storage element such as an electric double layer capacitor.
 コンバータ120は、ECU300からの制御信号PWCによって制御され、蓄電装置110から供給される直流電圧を所定の電圧に変換する。そして、コンバータ120は、変換された直流電圧をインバータ130,135,136へ供給する。また、コンバータ120は、回生動作の場合には、モータジェネレータ140,145,146で発電された電力を、蓄電装置110に充電に適した電圧に変換する。 Converter 120 is controlled by control signal PWC from ECU 300, and converts the DC voltage supplied from power storage device 110 into a predetermined voltage. Converter 120 then supplies the converted DC voltage to inverters 130, 135, and 136. In the case of the regenerative operation, converter 120 converts the electric power generated by motor generators 140, 145, and 146 into a voltage suitable for charging power storage device 110.
 インバータ130,135,136は、コンバータ120に対して並列に接続される。インバータ130およびインバータ135は、それぞれECU300からの制御信号PWI1,PWI2によって制御され、モータジェネレータ140およびモータジェネレータ145を駆動する。また、インバータ136は、ECU300からの制御信号PWIRにより制御されて、モータジェネレータ146を駆動する。なお、以降の説明においては、インバータ130,135,136をそれぞれ「INV1」,「INV2」,「INVR」とも称し、モータジェネレータ140,145,146をそれぞれ「MG1」,「MG2」,「MGR」とも称する。 The inverters 130, 135, and 136 are connected in parallel to the converter 120. Inverter 130 and inverter 135 are controlled by control signals PWI1 and PWI2 from ECU 300, respectively, to drive motor generator 140 and motor generator 145. Inverter 136 is controlled by control signal PWIR from ECU 300 to drive motor generator 146. In the following description, inverters 130, 135, and 136 are also referred to as “INV1”, “INV2”, and “INVR”, respectively, and motor generators 140, 145, and 146 are referred to as “MG1”, “MG2”, and “MGR”, respectively. Also called.
 モータジェネレータ140,145,146は交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える永久磁石型同期電動機である。 Motor generators 140, 145, and 146 are AC rotating electric machines, for example, permanent magnet type synchronous motors having a rotor in which permanent magnets are embedded.
 モータジェネレータ140,145は、代表的にはプラネタリギヤを含んで構成される動力分割機構150により互いに結合される。また、図1に示すようなハイブリッド車両においては、エンジン160も、動力分割機構150によりモータジェネレータ140,145と結合される。 The motor generators 140 and 145 are coupled to each other by a power split mechanism 150 that typically includes a planetary gear. In the hybrid vehicle as shown in FIG. 1, engine 160 is also coupled to motor generators 140 and 145 by power split mechanism 150.
 そして、モータジェネレータ140,145およびエンジン160は、ECU300により協調的に制御され、モータジェネレータ140,145からの駆動力およびエンジン160からの駆動力が、減速機構RD1および駆動軸170を介して前輪190に伝達される。さらに、モータジェネレータ140,145は、エンジン160の回転または前輪190の回転により発電が可能であり、この発電電力を用いて蓄電装置110を充電することができる。 Motor generators 140 and 145 and engine 160 are cooperatively controlled by ECU 300, and the driving force from motor generators 140 and 145 and the driving force from engine 160 are transmitted to front wheels 190 via reduction mechanism RD1 and driving shaft 170. Is transmitted to. Furthermore, motor generators 140 and 145 can generate electric power by rotation of engine 160 or rotation of front wheels 190, and can use this generated electric power to charge power storage device 110.
 なお、本実施の形態においては、モータジェネレータ145(MG2)を専ら前輪190を駆動するための電動機として用い、モータジェネレータ140(MG1)を専らエンジン160により駆動される発電機として用いるものとする。また、モータジェネレータ140(MG1)は、エンジン160を始動する際には、エンジン160のクランク軸をクランキングするために用いられる。 In the present embodiment, motor generator 145 (MG2) is used exclusively as an electric motor for driving front wheels 190, and motor generator 140 (MG1) is used exclusively as a generator driven by engine 160. Motor generator 140 (MG1) is used to crank the crankshaft of engine 160 when engine 160 is started.
 モータジェネレータ146(MGR)の出力軸は、減速機構RD2および駆動軸175を介して、後輪195に接続され、後輪195を駆動する。車両100は、このように、前輪190および後輪195が駆動されて走行が可能な、いわゆる四輪駆動式の車両である。 The output shaft of the motor generator 146 (MGR) is connected to the rear wheel 195 via the speed reduction mechanism RD2 and the drive shaft 175, and drives the rear wheel 195. The vehicle 100 is a so-called four-wheel drive vehicle that can travel by driving the front wheels 190 and the rear wheels 195 as described above.
 なお、図1においては、前輪用のモータジェネレータが2つ設けられ、後輪用のモータジェネレータが1つ設けられる構成が例として示されるが、前輪および後輪が、それぞれ個別のモータジェネレータで駆動される構成であれば、モータジェネレータの数はこれに限定されない。たとえば、図1の前輪用の駆動系と後輪用の駆動系とを入れ替え、前輪用の駆動系(モータジェネレータ140,145およびエンジン160)で後輪195駆動し、後輪用の駆動系(モータジェネレータ146)で前輪190を駆動するようにしてもよい。あるいは、前輪用の駆動系においてモータジェネレータが、1つあるいは3つ以上の場合であってもよい。さらには、後輪用の駆動系において、左右の駆動輪に個別のモータジェネレータが設けられる構成としてもよい。 FIG. 1 shows an example of a configuration in which two front-wheel motor generators and one rear-wheel motor generator are provided, but the front wheels and the rear wheels are each driven by a separate motor generator. The number of motor generators is not limited to this as long as it is configured. For example, the front-wheel drive system and the rear-wheel drive system shown in FIG. 1 are interchanged, the front-wheel drive system ( motor generators 140, 145 and engine 160) drives the rear wheels 195, and the rear-wheel drive system ( The motor generator 146) may drive the front wheels 190. Alternatively, there may be one or more motor generators in the front wheel drive system. Furthermore, in the drive system for the rear wheels, a configuration may be adopted in which separate motor generators are provided on the left and right drive wheels.
 スイッチ180は、ユーザにより操作されて、省エネを目的として効率を重視した走行モード(以下、「燃費優先モード」とも称する。)を選択するためのスイッチである。スイッチ180は、選択信号ECOをECU300に出力する。具体的には、燃費優先モードが選択されている場合には選択信号ECOをオンに設定して出力し、燃費優先モードが選択されていない場合には選択信号ECOをオフに設定して出力する。なお、本実施の形態における「燃費優先モード」が、本発明における「効率優先モード」に対応する。 The switch 180 is a switch that is operated by the user to select a travel mode in which efficiency is emphasized for the purpose of energy saving (hereinafter also referred to as “fuel economy priority mode”). Switch 180 outputs selection signal ECO to ECU 300. Specifically, when the fuel efficiency priority mode is selected, the selection signal ECO is set to ON and output, and when the fuel efficiency priority mode is not selected, the selection signal ECO is set to OFF and output. . The “fuel efficiency priority mode” in the present embodiment corresponds to the “efficiency priority mode” in the present invention.
 ECU300は、いずれも図1には図示しないがCPU(Central Processing Unit)、記憶装置および入出力バッファを含み、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、車両100および各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 ECU 300 includes a CPU (Central Processing Unit), a storage device, and an input / output buffer (not shown in FIG. 1). The ECU 300 inputs a signal from each sensor and outputs a control signal to each device. 100 and each device are controlled. Note that these controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuit).
 ECU300は、蓄電装置110に備えられる電圧センサ,電流センサ(いずれも図示せず)からの電圧VBおよび電流IBの検出値に基づいて、蓄電装置110のSOCを演算する。また、ECU300は、制御信号DRVを用いて、エンジン160を制御する。 ECU 300 calculates the SOC of power storage device 110 based on detected values of voltage VB and current IB from a voltage sensor and a current sensor (both not shown) provided in power storage device 110. ECU 300 controls engine 160 using control signal DRV.
 なお、図1においては、ECU300として1つの制御装置を設ける構成としているが、たとえば、コンバータ120やインバータ130,135,136用の制御装置や蓄電装置110用の制御装置などのように、機能ごとまたは制御対象機器ごとに個別の制御装置を設ける構成としてもよい。 In FIG. 1, one control device is provided as the ECU 300, but for each function, such as a control device for the converter 120, the inverters 130, 135, and 136, a control device for the power storage device 110, and the like. Or it is good also as a structure which provides a separate control apparatus for every control object apparatus.
 次に、図2を用いて、図1におけるモータジェネレータ140,145,146の駆動回路の詳細を説明する。 Next, details of the drive circuit of the motor generators 140, 145 and 146 in FIG. 1 will be described with reference to FIG.
 図1および図2を参照して、蓄電装置110は電力線PL1,NL1によってコンバータ120に接続される。 Referring to FIGS. 1 and 2, power storage device 110 is connected to converter 120 through power lines PL1 and NL1.
 システムメインリレー(SMR)115に含まれるリレーは、その一方端が蓄電装置110の正極端子および負極端子に接続され、他方端が電力線PL1,NL1に接続される。SMR115は、ECU300からの制御信号SE1に基づいて、蓄電装置110とコンバータ120との間での電力の供給と遮断とを切換える。 The relay included in system main relay (SMR) 115 has one end connected to the positive terminal and the negative terminal of power storage device 110, and the other end connected to power lines PL1 and NL1. SMR 115 switches between power supply and cutoff between power storage device 110 and converter 120 based on control signal SE <b> 1 from ECU 300.
 コンバータ120は、リアクトルL1と、スイッチング素子Q1,Q2と、ダイオードD1,D2とを含む。スイッチング素子Q1,Q2は、電力線PL2およびNL1との間に直列に接続される。スイッチング素子Q1,Q2は、ECU300からのスイッチング制御信号PWCによって制御される。 Converter 120 includes a reactor L1, switching elements Q1 and Q2, and diodes D1 and D2. Switching elements Q1, Q2 are connected in series between power lines PL2 and NL1. Switching elements Q1, Q2 are controlled by a switching control signal PWC from ECU 300.
 本実施の形態においては、スイッチング素子として、たとえば、IGBT(Insulated Gate Bipolar Transistor)、電力用MOS(Metal Oxide Semiconductor)トランジスタあるいは、電力用バイポーラトランジスタ等を用いることができる。スイッチング素子Q1,Q2に対しては、逆並列ダイオードD1,D2が配置される。リアクトルL1は、スイッチング素子Q1,Q2の接続ノードと電力線PL1との間に接続される。すなわち、コンバータ120は、いわゆるチョッパ回路を形成する。 In the present embodiment, for example, an IGBT (Insulated Gate Bipolar Transistor), a power MOS (Metal Oxide Semiconductor) transistor, a power bipolar transistor, or the like can be used as the switching element. Anti-parallel diodes D1 and D2 are arranged for switching elements Q1 and Q2. Reactor L1 is connected between a connection node of switching elements Q1, Q2 and power line PL1. That is, converter 120 forms a so-called chopper circuit.
 コンバータ120は、基本的には、各スイッチング周期内でスイッチング素子Q1,Q2が相補的かつ交互にオン・オフするように制御される。コンバータ120は、昇圧動作時には、蓄電装置110から供給された直流電圧VLを直流電圧VH(インバータ130,135,136への入力電圧に相当するこの直流電圧を、以下「システム電圧」とも称する)に昇圧する。この昇圧動作は、スイッチング素子Q2のオン期間にリアクトルL1に蓄積された電磁エネルギを、スイッチング素子Q1および逆並列ダイオードD1を介して、電力線PL2へ供給することにより行なわれる。 The converter 120 is basically controlled so that the switching elements Q1 and Q2 are turned on and off in a complementary manner within each switching period. During the step-up operation, converter 120 converts DC voltage VL supplied from power storage device 110 into DC voltage VH (this DC voltage corresponding to the input voltage to inverters 130, 135, and 136 is hereinafter also referred to as “system voltage”). Boost the pressure. This boosting operation is performed by supplying the electromagnetic energy accumulated in reactor L1 during the ON period of switching element Q2 to power line PL2 via switching element Q1 and antiparallel diode D1.
 また、コンバータ120は、降圧動作時には、直流電圧VHを直流電圧VLに降圧する。この降圧動作は、スイッチング素子Q1のオン期間にリアクトルL1に蓄積された電磁エネルギを、スイッチング素子Q2および逆並列ダイオードD2を介して、電力線NL1へ供給することにより行なわれる。これらの昇圧動作および降圧動作における電圧変換比(VHおよびVLの比)は、上記スイッチング周期におけるスイッチング素子Q1,Q2のオン期間比(デューティ比)により制御される。なお、スイッチング素子Q1をオンに、スイッチング素子Q2をオフにそれぞれ固定すれば、VH=VL(電圧変換比=1.0)とすることもできる。 Further, converter 120 steps down DC voltage VH to DC voltage VL during the step-down operation. This step-down operation is performed by supplying the electromagnetic energy stored in reactor L1 during the ON period of switching element Q1 to power line NL1 via switching element Q2 and antiparallel diode D2. The voltage conversion ratio (the ratio of VH and VL) in these step-up and step-down operations is controlled by the on-period ratio (duty ratio) of the switching elements Q1 and Q2 in the switching period. Note that VH = VL (voltage conversion ratio = 1.0) can be obtained by switching the switching element Q1 on and fixing the switching element Q2 off.
 コンデンサC1は、電力線PL1,NL1の間に設けられ、電力線PL1,NL1間の電圧変動を減少させる。電圧センサ215は、コンデンサC1にかかる電圧VLを検出し、その検出値をECU300へ出力する。 Capacitor C1 is provided between power lines PL1 and NL1, and reduces voltage fluctuation between power lines PL1 and NL1. Voltage sensor 215 detects voltage VL applied to capacitor C1 and outputs the detected value to ECU 300.
 また、コンデンサC2は、電力線PL2,NL1の間に設けられ、電力線PL2,NL1間の電圧変動を減少させる。電圧センサ210は、コンデンサC2にかかる電圧VHを検出し、その検出値をECU300へ出力する。 The capacitor C2 is provided between the power lines PL2 and NL1, and reduces voltage fluctuation between the power lines PL2 and NL1. Voltage sensor 210 detects voltage VH applied to capacitor C2 and outputs the detected value to ECU 300.
 インバータ130は、電力線PL2,NL1との間に並列に設けられる、U相上下アーム131と、V相上下アーム132と、W相上下アーム133とを含んで構成される。各相上下アームは、電力線PL2およびNL1との間に直列接続されたスイッチング素子を含む。たとえば、U相上下アーム131はスイッチング素子Q3,Q4を含み、V相上下アーム132はスイッチング素子Q5,Q6を含み、W相上下アーム133はスイッチング素子Q7,Q8を含む。また、スイッチング素子Q3~Q8に対して、逆並列ダイオードD3~D8がそれぞれ接続される。スイッチング素子Q3~Q8は、ECU300からの制御信号PWI1によって制御される。 The inverter 130 includes a U-phase upper and lower arm 131, a V-phase upper and lower arm 132, and a W-phase upper and lower arm 133 provided in parallel between the power lines PL2 and NL1. Each phase upper and lower arm includes a switching element connected in series between power lines PL2 and NL1. For example, U-phase upper and lower arms 131 include switching elements Q3 and Q4, V-phase upper and lower arms 132 include switching elements Q5 and Q6, and W-phase upper and lower arms 133 include switching elements Q7 and Q8. Antiparallel diodes D3 to D8 are connected to switching elements Q3 to Q8, respectively. Switching elements Q3-Q8 are controlled by a control signal PWI1 from ECU 300.
 モータジェネレータ140は、代表的には3相の永久磁石型同期電動機であり、U,V,W相における3つのコイルの一方端が中性点に共通に接続される。さらに、各相コイルの他方端は、各相上下アーム131~133における2つのスイッチング素子の接続ノードに接続される。 The motor generator 140 is typically a three-phase permanent magnet type synchronous motor, and one end of three coils in the U, V, and W phases is commonly connected to a neutral point. Further, the other end of each phase coil is connected to a connection node of two switching elements in each phase upper and lower arms 131 to 133.
 モータジェネレータ140には、モータジェネレータ140の回転速度を検出するための速度センサ200が設けられる。速度センサ200は、モータジェネレータ140の回転速度NMG1を検出し、その検出値をECU300へ出力する。なお、速度センサ200に代えて、モータジェネレータ140の回転角を検出するための回転角センサ(図示せず)が設けられてもよく、その場合には、ECU300は、回転角センサで検出された回転角θ1に基づいて回転速度NMG1を演算により算出する。 The motor generator 140 is provided with a speed sensor 200 for detecting the rotational speed of the motor generator 140. Speed sensor 200 detects rotational speed NMG1 of motor generator 140 and outputs the detected value to ECU 300. Instead of speed sensor 200, a rotation angle sensor (not shown) for detecting the rotation angle of motor generator 140 may be provided. In this case, ECU 300 is detected by the rotation angle sensor. A rotation speed NMG1 is calculated by calculation based on the rotation angle θ1.
 モータジェネレータ145を駆動するためのインバータ135、およびモータジェネレータ146を駆動するためのインバータ136は、インバータ130と並列に、電力線PL2,NL1に接続される。 The inverter 135 for driving the motor generator 145 and the inverter 136 for driving the motor generator 146 are connected to the power lines PL2 and NL1 in parallel with the inverter 130.
 インバータ135,136の詳細構成は、インバータ130の構成を同様であるので、その詳細は記載されておらず、それらの詳細な説明は繰り返さない。 Since the detailed configuration of the inverters 135 and 136 is the same as that of the inverter 130, the details thereof are not described, and the detailed description thereof will not be repeated.
 なお、図2においては、インバータ130,135,136のいずれもが、コンバータ120に対して並列となるように接続された構成としているが、たとえば、後輪側のインバータ136については、コンバータ120を介さずに、電力線PL1,NL1に直接接続されるようにしてもよい。 In FIG. 2, all of the inverters 130, 135, and 136 are connected in parallel to the converter 120. For example, for the rear-wheel inverter 136, the converter 120 is You may make it connect directly to electric power lines PL1 and NL1 without going through.
 モータジェネレータ145,146にも、回転速度センサ205,206がそれぞれ設けられる。回転速度センサ205,206は、検出した回転速度NMG2,NMGRをそれぞれECU300へ出力する。 The motor generators 145 and 146 are also provided with rotational speed sensors 205 and 206, respectively. Rotational speed sensors 205 and 206 output detected rotational speeds NMG2 and NMGR to ECU 300, respectively.
 ECU300は、ユーザによるアクセルペダル(図示せず)の操作などに基づいて定められる要求トルクTRを受け、車両100の走行状態、走行モード、SOCなどに基づいて、モータジェネレータ140,145,146およびエンジン160の駆動トルクを決定する。そして、ECU300は、決定された駆動トルクに従って、制御信号PWC,PWI1,PWI2、PWIR,DRVを生成し、モータジェネレータ140,145,146およびエンジン160を駆動する。 ECU 300 receives a required torque TR determined based on an operation of an accelerator pedal (not shown) by a user, etc., and motor generators 140, 145, 146 and an engine based on the traveling state, traveling mode, SOC, and the like of vehicle 100. 160 driving torque is determined. ECU 300 generates control signals PWC, PWI1, PWI2, PWIR, DRV according to the determined driving torque, and drives motor generators 140, 145, 146 and engine 160.
 このような四輪駆動式車両において、減速時の回生動作を行なう場合には、ドライバビリティを重視して、前輪および後輪の双方により回生制動を行なうことが一般的である。 In such a four-wheel drive vehicle, when performing a regenerative operation at the time of deceleration, it is common to perform regenerative braking with both front wheels and rear wheels with emphasis on drivability.
 前輪または後輪のいずれかのみを駆動する二輪駆動(前輪駆動,後輪駆動)の場合には、車両急減速時に駆動輪がロックしたような場合に操舵性や車両安定性が低下したり、旋回走行時にオーバーステアやアンダーステアによって旋回性が低下したりする傾向がある。これに対して、四輪駆動においては、前輪および後輪の双方に駆動力(回生制動力)を配分することにより、前輪駆動および後輪駆動の中間的な特性を示すため、二輪駆動における操舵性や旋回性の低下が抑制されて、相対的に車両安定性が向上する。 In the case of two-wheel drive (front wheel drive, rear wheel drive) that drives only the front wheel or the rear wheel, if the drive wheel is locked during the sudden deceleration of the vehicle, the steering performance and the vehicle stability are reduced. There is a tendency for turning performance to deteriorate due to oversteer or understeer during turning. On the other hand, in four-wheel drive, steering force in two-wheel drive is used to show intermediate characteristics between front-wheel drive and rear-wheel drive by distributing drive force (regenerative braking force) to both front and rear wheels. As a result, the vehicle stability is relatively improved.
 しかしながら、前輪および後輪の双方に回生制動力を配分することは、エネルギ効率の面からは必ずしも最適とは言えない場合がある。モータジェネレータによる駆動力(制動力)を用いるハイブリッド車両や電気自動車においては、回生制動によって発電した電力を蓄電装置に蓄えて、その発電電力を利用してさらに走行をすることでエネルギ効率を高めている。そのため、走行時のエネルギ効率を向上させて、電力で走行可能な距離をできるだけ拡大するためには、回生制動時の発電効率(回生効率)を向上させることが方策の一つとなる。 However, it may not always be optimal from the viewpoint of energy efficiency to distribute the regenerative braking force to both the front and rear wheels. In hybrid vehicles and electric vehicles that use a driving force (braking force) generated by a motor generator, the power generated by regenerative braking is stored in a power storage device, and the generated power is used to further drive to increase energy efficiency. Yes. Therefore, in order to improve the energy efficiency at the time of traveling and to increase the distance that can be traveled by electric power as much as possible, it is one of the measures to improve the power generation efficiency (regenerative efficiency) at the time of regenerative braking.
 そこで、本実施の形態においては、燃費優先モードが選択されている場合に、回生動作を行なうときに、回生効率の高いモータジェネレータに優先的に回生トルクを配分してエネルギ効率を向上させる駆動力制御を行なう。 Therefore, in the present embodiment, when the fuel efficiency priority mode is selected, when performing the regenerative operation, the driving force that preferentially distributes the regenerative torque to the motor generator with high regenerative efficiency to improve the energy efficiency. Take control.
 図3は、本実施の形態における駆動力制御の概要を説明するための図である。図3は、モータジェネレータの回転速度およびトルクと、効率との関係の一例を示すグラフであり、モータジェネレータは座標軸と曲線W10とで囲まれた範囲内の動作ポイントを取り得る。 FIG. 3 is a diagram for explaining an outline of the driving force control in the present embodiment. FIG. 3 is a graph showing an example of the relationship between the rotational speed and torque of the motor generator and the efficiency. The motor generator can take an operating point within a range surrounded by the coordinate axis and the curve W10.
 図3を参照して、図3の横軸にはモータジェネレータの回転速度が示され、縦軸には回生トルクが示される。図3中の破線の等高線は、モータジェネレータの回生効率を示したものであり、図3においては、矢印AR1,AR2,AR3の方向に向かって回生効率が高くなる。すなわち、図3では、DM1で示される等高線内部の領域において回生効率が最も高くなる。 Referring to FIG. 3, the horizontal axis of FIG. 3 shows the rotation speed of the motor generator, and the vertical axis shows the regenerative torque. The broken contour lines in FIG. 3 indicate the regeneration efficiency of the motor generator. In FIG. 3, the regeneration efficiency increases in the direction of arrows AR1, AR2, AR3. That is, in FIG. 3, the regeneration efficiency is highest in the region inside the contour line indicated by DM1.
 ここで、説明を容易にするために、前輪および後輪の減速比が同じであり、かつ前輪用および後輪用モータジェネレータがいずれも図3のような特性を有するものと仮定する。このとき、本実施の形態の駆動力制御を適用しない場合に回転速度がNmであるときの前輪および後輪の動作ポイントが、それぞれ図3中の点P11および点P10であったとする。この場合には、前輪および後輪のモータジェネレータのいずれも、回生効率が最適となる動作ポイントではない。 Here, for ease of explanation, it is assumed that the reduction ratios of the front wheels and the rear wheels are the same, and both the front-wheel and rear-wheel motor generators have the characteristics shown in FIG. At this time, when the driving force control of the present embodiment is not applied, the operation points of the front wheels and the rear wheels when the rotational speed is Nm are point P11 and point P10 in FIG. 3, respectively. In this case, neither the front-wheel nor the rear-wheel motor generator is an operating point at which the regeneration efficiency is optimal.
 これに対して、本実施の形態を適用した場合には、回生効率の高いモータジェネレータ(たとえば、前輪)に優先的に回生トルクが配分されるので、図3においては、後輪側のモータジェネレータに配分されるべき回生トルクがすべて前輪側のモータジェネレータに配分される。そうすると、前輪側のモータジェネレータの動作ポイントが図3中の点P20となり、前輪側のモータジェネレータの回生効率が向上し、全体としても効率が向上することになる。 On the other hand, when the present embodiment is applied, the regenerative torque is preferentially distributed to a motor generator (for example, front wheel) with high regenerative efficiency. All of the regenerative torque to be distributed to the motor generator on the front wheel side is distributed. Then, the operating point of the motor generator on the front wheel side is a point P20 in FIG. 3, and the regeneration efficiency of the motor generator on the front wheel side is improved, and the efficiency is improved as a whole.
 図4は、本実施の形態において、ECU300で実行される回生動作時の駆動力制御を説明するための機能ブロック図である。図4で説明されるブロック図に記載された各機能ブロックは、ECU300によるハードウェア的あるいはソフトウェア的な処理によって実現される。 FIG. 4 is a functional block diagram for explaining the driving force control during the regenerative operation performed by the ECU 300 in the present embodiment. Each functional block described in the block diagram illustrated in FIG. 4 is realized by hardware or software processing by ECU 300.
 図1および図4を参照して、ECU300は、効率演算部310と、トルク設定部320と、記憶部330と、駆動制御部340とを含む。 1 and 4, ECU 300 includes an efficiency calculation unit 310, a torque setting unit 320, a storage unit 330, and a drive control unit 340.
 効率演算部310は、ユーザからの要求トルクTRと、モータジェネレータ140,145,146の回転速度NMG1,NMG2,NMGRを受ける。効率演算部310は、これらの情報に基づいて、記憶部330に記憶された図3のようなマップを用いて、回生動作時のモータジェネレータ140,145,146への駆動トルクの配分パターンと、その各配分パターンの場合における前輪190の駆動系による回生効率EFF_Fr、および後輪195の駆動系による回生効率EFF_Rrを演算する。そして、効率演算部310は、演算された回生効率EFF_Fr,EFF_Rrをトルク設定部320へ出力する。 The efficiency calculation unit 310 receives the requested torque TR from the user and the rotational speeds NMG1, NMG2, NMGR of the motor generators 140, 145, 146. Based on these pieces of information, the efficiency calculation unit 310 uses the map as shown in FIG. 3 stored in the storage unit 330 to distribute the drive torque to the motor generators 140, 145, and 146 during the regenerative operation, The regeneration efficiency EFF_Fr by the drive system of the front wheels 190 and the regeneration efficiency EFF_Rr by the drive system of the rear wheels 195 in the case of each distribution pattern are calculated. Then, the efficiency calculation unit 310 outputs the calculated regeneration efficiencies EFF_Fr and EFF_Rr to the torque setting unit 320.
 トルク設定部320は、効率演算部310からの回生効率EFF_Fr,EFF_Rrを受ける。また、トルク設定部320は、スイッチ180からの選択信号ECO、および上位ECU(図示せず)からの回生動作を示す信号RGEを受ける。 The torque setting unit 320 receives the regeneration efficiency EFF_Fr, EFF_Rr from the efficiency calculation unit 310. Torque setting unit 320 receives selection signal ECO from switch 180 and signal RGE indicating a regenerative operation from a host ECU (not shown).
 トルク設定部320は、選択信号ECOによって、燃費優先モードが設定されているか否かに基づいて、回生動作時のモータジェネレータ140,145,146およびエンジンへのトルク配分を決定する。燃費優先モードが設定されている場合には、トルク設定部320は、回生効率EFF_Fr,EFF_Rrに基づいて、効率の高いものに優先的にトルクが配分されるようなトルク配分パターンを決定する。そして、記憶部330に記憶されたマップを用いて、決定されたパターンに対応するトルク指令値TMG1,TMG2,TMGRを算出する。 The torque setting unit 320 determines torque distribution to the motor generators 140, 145, 146 and the engine during the regenerative operation based on whether the fuel efficiency priority mode is set by the selection signal ECO. When the fuel efficiency priority mode is set, the torque setting unit 320 determines a torque distribution pattern that preferentially distributes torque to those with high efficiency based on the regeneration efficiency EFF_Fr, EFF_Rr. Then, torque command values TMG1, TMG2, and TMGR corresponding to the determined pattern are calculated using the map stored in storage unit 330.
 一方、燃費優先モードが設定されていない場合には、前輪190および後輪195の駆動トルクがほぼ均等となるように、運転状況に応じて、モータジェネレータ140,145,146およびエンジンへのトルク配分を決定する。 On the other hand, when the fuel efficiency priority mode is not set, torque distribution to motor generators 140, 145, 146 and the engine is performed in accordance with the driving conditions so that the driving torques of front wheel 190 and rear wheel 195 are substantially equal. To decide.
 このとき、トルク設定部320は、エンジン160に配分されるトルク指令値TE、およびコンバータ120の昇圧目標電圧指令値VRも演算する。そして、各モータジェネレータへのトルク指令値TMG1,TMG2,TMGR、エンジン160のトルク指令値TE、およびコンバータ120の昇圧目標電圧指令値VRを駆動制御部340へ出力する。 At this time, torque setting unit 320 also calculates torque command value TE distributed to engine 160 and boost target voltage command value VR of converter 120. Then, torque command values TMG1, TMG2, and TMGR for each motor generator, torque command value TE for engine 160, and boost target voltage command value VR for converter 120 are output to drive control unit 340.
 駆動制御部340は、トルク設定部からの各指令値と、速度センサ200からの各モータジェネレータの回転速度NMG1,NMG2,NMRと、電圧センサ210からの検出値VHとを受ける。駆動制御部340は、これらの情報に基づいて、制御信号PWC,PWI1,PWI2,PWR,DRVを算出する。そして、駆動制御部340は、これらの制御信号を用いて、コンバータ120、インバータ130,135,136、およびエンジン160を駆動する。 The drive control unit 340 receives each command value from the torque setting unit, the rotational speeds NMG1, NMG2, NMR of each motor generator from the speed sensor 200, and the detection value VH from the voltage sensor 210. The drive control unit 340 calculates control signals PWC, PWI1, PWI2, PWR, and DRV based on these pieces of information. Drive control unit 340 drives converter 120, inverters 130, 135, 136, and engine 160 using these control signals.
 図5は、本実施の形態において、ECU300で実行される回生動作時の駆動力制御処理の詳細を説明するためのフローチャートである。図5に示されるフローチャート中の各ステップについては、ECU300に予め格納されたプログラムを所定周期で実行することによって実現される。あるいは、一部のステップについては、専用のハードウェア(電子回路)を構築して処理を実現することも可能である。 FIG. 5 is a flowchart for explaining the details of the driving force control process during the regenerative operation executed by the ECU 300 in the present embodiment. Each step in the flowchart shown in FIG. 5 is realized by executing a program stored in advance in ECU 300 at a predetermined cycle. Alternatively, for some steps, it is also possible to construct dedicated hardware (electronic circuit) and realize processing.
 図1および図5を参照して、ECU300は、ステップ(以下、ステップをSと略す。)100にて、信号RGEに基づいて、現在回生動作中であるか否かを判定する。 Referring to FIGS. 1 and 5, ECU 300 determines in step (hereinafter, step is abbreviated as S) 100 whether or not a regenerative operation is currently being performed based on signal RGE.
 回生動作中でない場合(S100にてNO)は、当該処理は実行されないので、ECU300は処理を終了する。 If the regenerative operation is not being performed (NO in S100), the process is not executed, and ECU 300 ends the process.
 回生動作中である場合(S100にてYES)は、処理がS110に進められて、ECU300は、次に、スイッチ180からの選択信号ECOに基づいて、燃費優先モードが選択されているか否かを判定する。 If the regenerative operation is being performed (YES in S100), the process proceeds to S110, and ECU 300 next determines whether or not the fuel efficiency priority mode is selected based on selection signal ECO from switch 180. judge.
 燃費優先モードが選択されている場合(S110にてYES)は、処理がS120に進められて、ECU300は、前輪および後輪の駆動系への各トルク配分パターンについての回生効率EFF_Fr,EFF_Rrを演算する。なお、図1の構成においては、前輪用の駆動系において、駆動輪の回転による回生動作はモータジェネレータ145(MG2)によって行なわれるので、前輪の回生効率EFF_Frは、実質的にはMG2の効率となる。また、回生効率の演算においては、減速機構RD1,RD2による減速比GR1,GR2も考慮される。 If the fuel efficiency priority mode is selected (YES in S110), the process proceeds to S120, and ECU 300 calculates regenerative efficiencies EFF_Fr and EFF_Rr for each torque distribution pattern to the drive systems for the front wheels and the rear wheels. To do. In the configuration of FIG. 1, in the drive system for the front wheels, the regeneration operation by the rotation of the drive wheels is performed by the motor generator 145 (MG2), so the regeneration efficiency EFF_Fr of the front wheels is substantially equal to the efficiency of MG2. Become. Further, in the calculation of the regeneration efficiency, the reduction ratios GR1 and GR2 by the reduction mechanisms RD1 and RD2 are also taken into consideration.
 図1のような、前輪の駆動系によって主要な駆動力が生成される構成では、後輪側のモータジェネレータ146(MGR)に比べてモータジェネレータ145(MG2)のほうが、定格出力が大きく設定されることが多く、また、減速時には後輪に比べて前輪側への荷重が多くなるため、トータルの回生効率を高くするには、前輪側のモータジェネレータ145(MG2)の効率が高くなる動作ポイントとなるように、優先的にモータジェネレータ145(MG2)で回生動作をすることが好ましい。そして、モータジェネレータ145(MG2)が最適動作ポイントとなってもなお回生トルクが必要である場合には、ECU300は、残余の回生トルクについては、後輪側のモータジェネレータ146(MGR)を用いた回生動作により発生するように制御する。 In the configuration in which the main driving force is generated by the front wheel drive system as shown in FIG. 1, the motor generator 145 (MG2) has a higher rated output than the motor generator 146 (MGR) on the rear wheel side. In addition, since the load on the front wheels is larger than that on the rear wheels when decelerating, the operating point at which the efficiency of the motor generator 145 (MG2) on the front wheels is increased to increase the total regeneration efficiency. Therefore, it is preferable that the motor generator 145 (MG2) performs the regeneration operation preferentially. When the motor generator 145 (MG2) becomes the optimum operating point and the regenerative torque is still necessary, the ECU 300 uses the rear wheel side motor generator 146 (MGR) for the remaining regenerative torque. Control to generate by regenerative operation.
 なお、前輪側のモータジェネレータ145(MG2)による発電電力が所定の基準電力を上回るような場合には、前輪側のモータジェネレータ145(MG2)の効率が最適な動作ポイントではなくとも、上記基準電力を上回らないように前輪側のモータジェネレータ145(MG2)へのトルク配分が決定されるようにしてもよい。 In the case where the power generated by the front wheel side motor generator 145 (MG2) exceeds a predetermined reference power, the reference power is not limited even if the efficiency of the front wheel side motor generator 145 (MG2) is not the optimum operating point. The torque distribution to the motor generator 145 (MG2) on the front wheel side may be determined so as not to exceed.
 そして、ECU300は、S130にて、演算された回生効率EFF_Fr,EFF_Rrに基づいて、モータジェネレータ全体の回生効率が高くなるようなトルク配分パターンを演算する。 Then, in S130, ECU 300 calculates a torque distribution pattern that increases the regenerative efficiency of the entire motor generator based on the calculated regenerative efficiencies EFF_Fr and EFF_Rr.
 トルク配分の結果、前輪側のモータジェネレータ145のみで回生動作を行なうような配分がなされる場合がある。この場合、後輪側のモータジェネレータ146では結果的に回生動作が行なわれないことになる。このとき、モータジェネレータ146(MGR)については、ゼロトルク制御を行なうことも可能であるが、インバータ136を完全にシャットダウンすることも可能である。インバータをシャットダウンすることにより、ゼロトルク制御のためのスイッチング制御に用いられる電力を節約することができ、効率をさらに高めることが可能となるのでより好適である。 As a result of torque distribution, there may be a distribution in which regenerative operation is performed only by the motor generator 145 on the front wheel side. In this case, as a result, the regenerative operation is not performed in the motor generator 146 on the rear wheel side. At this time, it is possible to perform zero torque control for motor generator 146 (MGR), but it is also possible to completely shut down inverter 136. By shutting down the inverter, power used for switching control for zero torque control can be saved, and the efficiency can be further increased, which is more preferable.
 そのため、ECU300は、S140にて、S130で設定されたトルク配分結果に基づいて、前輪側の回生トルクの配分割合が100%であるか否かを判定する。 Therefore, in S140, ECU 300 determines whether or not the distribution ratio of the regeneration torque on the front wheel side is 100% based on the torque distribution result set in S130.
 前輪側の回生トルクの配分割合が100%である場合(S140にてYES)は、処理がS150に進められ、ECU300は、後輪用のインバータ136(INVR)を遮断し、処理をS160に進める。そして、ECU300は、前輪側のモータジェネレータ145のみを用いた回生動作を行なうように、インバータを制御する。 If the distribution ratio of the regeneration torque on the front wheel side is 100% (YES in S140), the process proceeds to S150, ECU 300 shuts off rear wheel inverter 136 (INVR), and the process proceeds to S160. . ECU 300 controls the inverter so as to perform a regenerative operation using only motor generator 145 on the front wheel side.
 前輪側の回生トルクの配分割合が100%ではない場合(S140にてNO)は、S150の処理がスキップされて、ECU300は、S160にて、S130で設定されたトルク配分に従ってインバータを制御する。 When the distribution ratio of the regeneration torque on the front wheel side is not 100% (NO in S140), the process of S150 is skipped, and ECU 300 controls the inverter in S160 according to the torque distribution set in S130.
 一方、S110にて、燃費優先モードが選択されていない場合(S110にてNO)は、処理がS170に進められ、ECU300は、走行安定性(ドライバビリティ)を優先した回生トルク配分を行なう。 On the other hand, if the fuel economy priority mode is not selected in S110 (NO in S110), the process proceeds to S170, and ECU 300 performs regenerative torque distribution giving priority to running stability (drivability).
 上述のように、前輪側に優先的に回生トルクを配分した場合には、操舵輪である前輪に大きな制動力がかかるため、前輪のロックが起こりやすくなったり、旋回時のアンダーステアが大きくなったりして、ドライバビリティとしては悪化するおそれがある。そのため、S170における回生トルク配分としては、たとえば、燃費優先モードのときに比べて、前輪側のモータジェネレータ145および後輪側のモータジェネレータ146で発生される制動力がより均等方向になるように、運転状況に応じて予め定められた割合で前輪と後輪の双方へ回生トルクを配分する手法が考えられる。この場合、配分される回生トルクは、前輪および後輪の割合が50:50のように完全に均等である場合に限られず、燃費優先モードのときよりも前輪および後輪へ配分される回生トルクの差が小さくなれば、たとえば、40:60あるいは70:30のような配分とすることも含まれる。 As described above, when the regenerative torque is preferentially distributed to the front wheels, a large braking force is applied to the front wheels, which are the steered wheels, so that the front wheels are likely to be locked, and understeer during turning is increased. As a result, drivability may deteriorate. Therefore, as the regenerative torque distribution in S170, for example, the braking force generated by the front wheel side motor generator 145 and the rear wheel side motor generator 146 is more even than that in the fuel efficiency priority mode. A method of allocating the regenerative torque to both the front wheels and the rear wheels at a predetermined ratio according to the driving situation is conceivable. In this case, the regenerative torque to be distributed is not limited to the case where the ratio of the front wheels and the rear wheels is completely equal, such as 50:50, and the regenerative torque distributed to the front wheels and the rear wheels than in the fuel efficiency priority mode. If the difference is small, for example, a distribution such as 40:60 or 70:30 is included.
 そして、ECU300は、S160にて、S170で設定されたトルク配分に従ってインバータを制御する。 Then, in S160, ECU 300 controls the inverter according to the torque distribution set in S170.
 なお、図5には示されていないが、たとえば、急減速時などで、ドライバビリティが損なわれる状態となる可能性が高い場合には、燃費優先モードが選択されている場合であっても、走行安定性を確保するように前輪および後輪の双方に回生トルクを配分するようにしてもよい。 Although not shown in FIG. 5, for example, when there is a high possibility that the drivability is deteriorated due to sudden deceleration, for example, even when the fuel efficiency priority mode is selected, Regenerative torque may be distributed to both the front wheels and the rear wheels so as to ensure running stability.
 以上のような処理に従って制御を行なうことによって、前輪および後輪が複数の異なるモータジェネレータにより駆動される車両において、燃費優先モードが選択されている場合に回生動作を行なうときには、複数のモータジェネレータの回生効率が高くなるようなトルク配分が行なわれる。具体的には、回生効率の高い前輪側のモータジェネレータに優先的に回生トルクが配分される。さらに、前輪側のモータジェネレータのみに回生トルクが配分される場合には、後輪側のモータジェネレータを駆動するインバータが遮断される。このようにすることによって、燃費優先モードが選択されている場合には、効率よく回生動作を行なうことによってできるだけ多くの発電電力を受容し、電力を用いた走行距離を拡大することが可能となる。 By performing control according to the above-described processing, in a vehicle in which front wheels and rear wheels are driven by a plurality of different motor generators, when performing a regenerative operation when the fuel efficiency priority mode is selected, a plurality of motor generators Torque distribution is performed to increase the regeneration efficiency. Specifically, the regenerative torque is preferentially distributed to the motor generator on the front wheel side with high regenerative efficiency. Further, when the regenerative torque is distributed only to the motor generator on the front wheel side, the inverter that drives the motor generator on the rear wheel side is shut off. By doing so, when the fuel efficiency priority mode is selected, it is possible to receive as much generated power as possible by efficiently performing the regenerative operation, and to increase the travel distance using the power. .
 一方で、燃費優先モードが選択されていない場合には、ドライバビリティを優先したトルク配分とすることができ、走行安定性を確保することができる。 On the other hand, when the fuel efficiency priority mode is not selected, torque distribution can be performed with priority given to drivability, and driving stability can be ensured.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 100 車両、110 蓄電装置、115 SMR、120 コンバータ、130,135,136 インバータ、131 U相上下アーム、132 V相上下アーム、133 W相上下アーム、140,145,146 モータジェネレータ、150 動力分割機構、160 エンジン、170,175 駆動軸、180 スイッチ、190 前輪、195 後輪、200,205,206 速度センサ、210,215 電圧センサ、300 ECU、310 効率演算部、320 トルク設定部、330 記憶部、340 駆動制御部、C1,C2 コンデンサ、D1~D8 ダイオード、L1 リアクトル、NL1,PL1,PL2 電力線、Q1~Q8 スイッチング素子、RD1,RD2 減速機構。 100 vehicle, 110 power storage device, 115 SMR, 120 converter, 130, 135, 136 inverter, 131 U-phase upper and lower arms, 132 V-phase upper and lower arms, 133 W-phase upper and lower arms, 140, 145, 146 motor generator, 150 power split mechanism , 160 engine, 170, 175 drive shaft, 180 switch, 190 front wheel, 195 rear wheel, 200, 205, 206 speed sensor, 210, 215 voltage sensor, 300 ECU, 310 efficiency calculation unit, 320 torque setting unit, 330 storage unit 340 drive control unit, C1, C2 capacitor, D1 to D8 diode, L1 reactor, NL1, PL1, PL2 power line, Q1 to Q8 switching element, RD1, RD2 reduction mechanism.

Claims (8)

  1.  電力を用いて走行が可能な車両であって、
     前輪(190)を駆動するための第1の回転電機(145)と、
     後輪(195)を駆動するための第2の回転電機(146)と、
     前記第1および第2の回転電機(145,146)を制御するための制御装置(300)とを備え、
     前記制御装置(300)は、ユーザにより効率優先モードが選択されている場合に回生動作を行なうときには、前記第1および第2の回転電機(145,146)のうちで回生効率の高い回転電機に対して優先的にトルクを配分し、前記効率優先モードが選択されていない場合に回生動作を行なうときには、前記効率優先モードが選択されているときに比べて前記第1および第2の回転電機(145,146)の各々へのトルク配分がより均等になるように、運転状況に応じて予め定められた割合でトルクを配分する、車両。
    A vehicle that can run using electric power,
    A first rotating electrical machine (145) for driving the front wheels (190);
    A second rotating electrical machine (146) for driving the rear wheels (195);
    A control device (300) for controlling the first and second rotating electric machines (145, 146),
    When performing the regenerative operation when the efficiency priority mode is selected by the user, the control device (300) is selected as a rotating electric machine having a high regenerative efficiency among the first and second rotating electric machines (145, 146). On the other hand, when the torque is preferentially distributed and the regenerative operation is performed when the efficiency priority mode is not selected, the first and second rotating electrical machines (when compared with the case where the efficiency priority mode is selected) 145, 146) a vehicle that distributes torque at a predetermined rate according to the driving situation so that the torque distribution to each of 145, 146) becomes more even.
  2.  前記制御装置(300)は、前記回生効率の高い回転電機に配分されるトルクが所定トルクを上回るような回生トルクが要求された場合は、要求される前記回生トルクのうちの前記所定トルクを超過したトルクを他方の回転電機に配分する、請求項1に記載の車両。 The control device (300) exceeds the predetermined torque of the required regenerative torque when a regenerative torque is required such that a torque distributed to the rotating electrical machine having high regenerative efficiency exceeds a predetermined torque. The vehicle according to claim 1, wherein the generated torque is distributed to the other rotating electrical machine.
  3.  前記第1の回転電機(145)を駆動するための第1のインバータ(135)と、
     前記第2の回転電機(146)を駆動するための第2のインバータ(136)とをさらに備え、
     前記制御装置(300)は、要求される回生トルクのすべてを前記回生効率の高い回転電機に配分できる場合は、他方の回転電機に対応するインバータをシャットダウンする、請求項1に記載の車両。
    A first inverter (135) for driving the first rotating electrical machine (145);
    A second inverter (136) for driving the second rotating electrical machine (146),
    The vehicle according to claim 1, wherein the control device (300) shuts down an inverter corresponding to the other rotating electrical machine when all of the required regenerative torque can be distributed to the rotating electrical machine having a high regeneration efficiency.
  4.  前記回生効率の高い回転電機は、前記第1の回転電機(145)である、請求項1に記載の車両。 The vehicle according to claim 1, wherein the rotating electric machine with high regeneration efficiency is the first rotating electric machine (145).
  5.  前記制御装置(300)は、前記回生効率の高い回転電機に配分されるトルクによって発電される回生電力が基準電力を上回る場合は、前記回生効率の高い回転電機による回生電力が前記基準電力を超過しないようなトルクを前記回生効率の高い回転電機に配分するとともに、要求される回生トルクのうちの残余のトルクを他方の回転電機に配分する、請求項1に記載の車両。 When the regenerative power generated by the torque distributed to the rotating electrical machine with high regeneration efficiency exceeds the reference power, the regenerative power by the rotating electrical machine with high regeneration efficiency exceeds the reference power. 2. The vehicle according to claim 1, wherein a torque that does not occur is distributed to the rotating electrical machine having a high regeneration efficiency, and a remaining torque of the required regenerative torque is distributed to the other rotating electrical machine.
  6.  前記第1の回転電機(145)と協調的に動作して、前記前輪(190)を駆動するためのエンジン(160)をさらに備える、請求項1に記載の車両。 The vehicle according to claim 1, further comprising an engine (160) that operates in cooperation with the first rotating electrical machine (145) to drive the front wheels (190).
  7.  ユーザが前記効率優先モードを選択するためのスイッチ(180)をさらに備える、請求項1に記載の車両。 The vehicle according to claim 1, further comprising a switch (180) for a user to select the efficiency priority mode.
  8.  前輪(190)を駆動するための第1の回転電機(145)と、後輪(195)を駆動するための第2の回転電機(146)とを含む車両の制御方法であって、
     ユーザにより効率優先モードが選択されているか否かを判定するステップと、
     前記効率優先モードが選択されている場合に回生動作を行なうときの、前記第1および第2の回転電機(145,146)の回生効率を演算するステップと、
     前記効率優先モードが選択されている場合に回生動作を行なうときには、前記第1および第2の回転電機(145,146)のうちで回生効率の高い回転電機に対して優先的にトルクを配分するステップと、
     前記効率優先モードが選択されていない場合に回生動作を行なうときには、前記効率優先モードが選択されているときに比べて前記第1および第2の回転電機(145,146)の各々へのトルク配分がより均等になるように、運転状況に応じて予め定められた割合でトルクを配分するステップとを備える、車両の制御方法。
    A vehicle control method including a first rotating electrical machine (145) for driving a front wheel (190) and a second rotating electrical machine (146) for driving a rear wheel (195),
    Determining whether an efficiency priority mode is selected by the user;
    Calculating the regeneration efficiency of the first and second rotating electrical machines (145, 146) when performing the regeneration operation when the efficiency priority mode is selected;
    When performing the regenerative operation when the efficiency priority mode is selected, the torque is preferentially distributed to the rotary electric machine having the high regeneration efficiency among the first and second rotary electric machines (145, 146). Steps,
    When performing the regenerative operation when the efficiency priority mode is not selected, torque is distributed to each of the first and second rotating electric machines (145, 146) compared to when the efficiency priority mode is selected. And a step of distributing torque at a predetermined rate according to the driving situation so that is more even.
PCT/JP2011/070843 2011-09-13 2011-09-13 Vehicle and method for controlling vehicle WO2013038498A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/070843 WO2013038498A1 (en) 2011-09-13 2011-09-13 Vehicle and method for controlling vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/070843 WO2013038498A1 (en) 2011-09-13 2011-09-13 Vehicle and method for controlling vehicle

Publications (1)

Publication Number Publication Date
WO2013038498A1 true WO2013038498A1 (en) 2013-03-21

Family

ID=47882761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070843 WO2013038498A1 (en) 2011-09-13 2011-09-13 Vehicle and method for controlling vehicle

Country Status (1)

Country Link
WO (1) WO2013038498A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3118078A1 (en) * 2015-07-13 2017-01-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Controlling apparatus for vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151633A (en) * 2003-11-12 2005-06-09 Honda Motor Co Ltd Hybrid vehicle
JP2009255622A (en) * 2008-04-11 2009-11-05 Toyota Motor Corp Braking system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151633A (en) * 2003-11-12 2005-06-09 Honda Motor Co Ltd Hybrid vehicle
JP2009255622A (en) * 2008-04-11 2009-11-05 Toyota Motor Corp Braking system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3118078A1 (en) * 2015-07-13 2017-01-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Controlling apparatus for vehicle
US9694711B2 (en) 2015-07-13 2017-07-04 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Controlling apparatus for vehicle

Similar Documents

Publication Publication Date Title
JP4211806B2 (en) Vehicle drive system and vehicle equipped with the same
JP4211831B2 (en) HYBRID VEHICLE, HYBRID VEHICLE CONTROL METHOD, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING PROGRAM FOR CAUSING COMPUTER TO EXECUTE THE CONTROL METHOD
JP4337797B2 (en) Power control device and electric vehicle
JP5626469B2 (en) Vehicle drive apparatus and vehicle drive method
WO2012029170A1 (en) Electric-powered vehicle and control method therefor
JP2009113706A (en) Hybrid vehicle
JP2007099223A (en) Hybrid vehicle
JP2008296619A (en) Hybrid vehicle, control method thereof, and computer readable recording medium with program for making computer execute the method recorded thereon
WO2013051152A1 (en) Voltage conversion device control device and method
JP5729475B2 (en) Vehicle and vehicle control method
JP2011166990A (en) Power supply system
WO2010140212A1 (en) Control device for voltage conversion device, vehicle in which the same is installed, and control method for voltage conversion device
JP5747988B2 (en) Vehicle, vehicle control method and control device
JP2012110189A (en) Electric system for motor-driven vehicle and control method therefor
JP2010114987A (en) Electric motor driver and electric vehicle equipped with the same
JP2007325474A (en) Vehicle drive system and vehicle
WO2013038498A1 (en) Vehicle and method for controlling vehicle
WO2013061414A1 (en) Vehicle and method for controlling vehicle
JP2014139038A (en) Vehicle
JP5780117B2 (en) Automobile
JP2013090410A (en) Electric vehicle
JP5757231B2 (en) vehicle
JP5018548B2 (en) Hybrid vehicle and control method thereof
JP6701861B2 (en) Hybrid vehicle
JP2016100965A (en) Electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP