WO2013037229A1 - 基站选址方法及装置 - Google Patents

基站选址方法及装置 Download PDF

Info

Publication number
WO2013037229A1
WO2013037229A1 PCT/CN2012/077692 CN2012077692W WO2013037229A1 WO 2013037229 A1 WO2013037229 A1 WO 2013037229A1 CN 2012077692 W CN2012077692 W CN 2012077692W WO 2013037229 A1 WO2013037229 A1 WO 2013037229A1
Authority
WO
WIPO (PCT)
Prior art keywords
site
station
neighboring
sites
network topology
Prior art date
Application number
PCT/CN2012/077692
Other languages
English (en)
French (fr)
Inventor
朱永军
尹建华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013037229A1 publication Critical patent/WO2013037229A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a base station location method and apparatus.
  • the working content of wireless network planning is to set corresponding engineering parameters and radio resource parameters according to the characteristics of pre-planned wireless networks and network planning requirements, and under the premise of satisfying certain signal coverage, system capacity and service quality requirements. , to minimize the engineering cost of the network.
  • Network planning work includes requirements analysis, propagation model testing, business forecasting, scale estimation, site exploration screening, network topology design, site parameter design, simulation adjustment, and so on.
  • the network topology design refers to selecting a suitable site to form a reasonable network topology according to the cellular principle and the designed station spacing.
  • the present invention provides a method and a device for locating a base station, so as to solve the problem that the rationality of the network topology formed by the location of the artificial base station in the prior art is difficult to be guaranteed.
  • the present invention provides a base station location method, including: Step 1: acquiring a site set according to the input site information, and setting a base station location condition; Step 2, specifying an initial site from the site set, and storing the initial site to the selected set; Step 3: Select a qualified site from the remaining sites in the site set to store the candidate set according to the base station selection condition. Step 4: traverse the candidate centralized site, and sequentially combine the candidate centralized site with the selected centralized site to calculate the network topology. Factor, and store the site of the best network topology factor to the selected set, repeat steps 2-4 until the candidate set is empty.
  • the method further comprises: rejecting the unqualified station from the remaining stations of the site set according to the base station selection condition.
  • the method further includes: Step 5: traversing the selected set of sites, checking, according to the restriction condition, whether there is a neighboring site capable of replacing the current site, if it is determined that the presence exists a neighboring site, the neighboring site is replaced with the neighboring site in the selected set, and the network topology factor is calculated, and the network topology factor is replaced with the current site and the selected current site
  • the network topology factors calculated by the centralized neighboring station combination are compared. If the replaced network topology factor is better, the neighboring site is replaced with the current site and added to the selected set. Otherwise, no replacement is performed.
  • the method further includes: checking whether the candidate set is empty, if not, performing step 4, if empty, selecting a station in the remote area to join the The selected set is followed by step 3. If there is no station in the selected remote area, step 5 is performed.
  • the site information includes: a station latitude and longitude, a station height of the station, a station priority, and a site feature type; the base station location conditions include: design station spacing, adjusted design station spacing, and station spacing Filter upper limit, station spacing lower filter limit, design station height, station height limit, and station height lower limit.
  • the invention also provides a base station location device, comprising: a setting module, configured to acquire a site set according to the input site information, and set a base station location condition; an initial site acquisition module, configured to specify an initial site from the site collection, The initial site is stored in the selected set; the candidate set site selection module is configured to select the qualified site storage from the remaining sites of the site set to the candidate set according to the base station selection condition; the selected site acquisition module is set as the site of the candidate set.
  • the site in the candidate set is sequentially combined with the neighboring sites in the selected set to calculate the network topology factor, and the site of the optimal network topology factor is stored in the selected set; the calling module is set to be executed after the selected site obtaining module performs the operation.
  • the apparatus further comprises: a culling module, configured to reject the unqualified station from the remaining stations of the set of sites according to the base station selection condition.
  • the device further includes: a selected optimization module, configured to traverse the selected set of sites, check whether there is a neighboring site capable of replacing the current site according to the constraint condition, and if it is determined that the neighboring site exists, And replacing the current site with the neighboring site to calculate a network topology factor, and comparing the network topology factor with the current site and the selected centralized phase before the replacement The network topology factors calculated by the neighboring site combination are compared.
  • the candidate set site selection module is further configured to: check whether the candidate set is empty, if not empty, invoke the selected site acquisition module, if it is empty, select a site in the remote area The selected set is added, and if there is no site in the selected remote area, the selected optimization module is invoked.
  • the site information includes: a station latitude and longitude, a station height of the station, a station priority, and a site feature type; the base station location conditions include: design station spacing, adjusted design station spacing, and station spacing Filter upper limit, station spacing lower filter limit, design station height, station height limit, and station height lower limit.
  • FIG. 1 is a schematic diagram of a positional relationship of a station according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an angle between a station connection angle and an ideal cellular shape according to an embodiment of the present invention
  • FIG. 3 is a base station according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a detailed process of a method for locating a base station according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a station 1 of an embodiment of the present invention
  • FIG. 6 is an example of an embodiment of the present invention
  • 1 is a schematic diagram of a station 2
  • FIG. 7 is a schematic diagram 3 of a station 1 of an embodiment of the present invention
  • FIG. 8 is a schematic diagram 4 of a station 1 of an embodiment 1 of the present invention
  • 9 is a schematic diagram 5 of a station 1 of an embodiment of the present invention
  • FIG. 10 is a schematic diagram 6 of a station 1 of an embodiment of the present invention
  • FIG. 10 is a schematic diagram 6 of a station 1 of an embodiment of the present invention
  • FIG. 11 is a schematic diagram of a station 1 of an example 1 of the embodiment of the present invention
  • FIG. 13 is a schematic diagram of a station of an example 1 of an embodiment of the present invention
  • FIG. 14 is a schematic structural diagram of a base station location selection apparatus according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to solve the problem that the plausibility of the network topology formed by the location of the artificial base station in the prior art is difficult to be ensured, the embodiment of the present invention provides a method and a device for locating a base station. The network topology is designed. In the existing candidate sites, the optimal cell structure is automatically selected according to the designed station spacing range.
  • Priority Determine whether the site is preferentially selected according to the situation of each site. For example, the site of the 23G co-site is preferentially selected, or the site of some hotspots. It should be noted that the highest priority is a mandatory station, which can be set when the initial site is input.
  • Candidate Set A collection of sites that are not in the selected set but are available for selection in a certain iteration.
  • the station spacing screening upper limit refers to the set maximum station spacing, which cannot be exceeded when selecting the adjacent station spacing; the station spacing screening lower limit means The minimum station spacing set should not be less than the distance when selecting the adjacent station.
  • Adjusted design station spacing ⁇ ' Pre-define the radius of the design cell at a certain station height, adjust the radius of the above design cell according to the actual height of each station, and calculate the new between the two sites at the above site. Design station spacing.
  • Neighboring station The distance between the station and the station at the station is adjusted to the adjacent station between the upper and lower limits. Specifically, in the estimation of the size, the maximum allowable path loss is generally calculated from the transmitted power and the received signal strength, and then the cell radius is calculated according to the propagation model. The propagation model is affected by the station height, so the cell radius, as well as the station spacing, also changes with the station height.
  • the base station location condition includes a cell radius of a certain design station height. For example, the cell station spacing at a station height of 25 m is 0.4 km, but for a station with a station height of 21 m, Calculate the new station spacing.
  • FIG. 7 is a schematic diagram of the positional relationship of the station according to the embodiment of the present invention, as shown in FIG.
  • a3 is the angle between the three-point three-point connection.
  • Figure 2 is a schematic diagram of the angle between the station connection angle and the ideal honeycomb shape ⁇ 2 ⁇ according to the embodiment of the present invention, as shown in Figure 2, H a2 , the minimum difference between a3 and the ideal honeycomb (0, , 3 , ⁇ , where Site A is a mandatory site, Site B, Site C Site D is a candidate site. an average value, ⁇ ( ⁇ ) is the average variance is calculated.
  • the network topology may be coated factor D, ⁇ ° ⁇ ⁇ a diff Wo mouth ⁇ ( ⁇ ) Case 2, when the number of visits to the site when the two: a computing network topology need to be only factor, but also artificially set than one scenario network
  • the number of sites is greater than 2, it is generally a collection of candidate sites and multiple selected sites.
  • the number of sites is 2, it is a collection of candidate sites and a selected site, so site selection
  • a base station location method includes the following steps. Processing: Step 301: Acquire a site set according to the input site information, and set a base station location condition; where the site information includes: a site latitude and longitude, a station height, a site priority, and a site feature type; Conditions include: design station spacing, adjusted design station spacing, station spacing screening ceiling, station spacing screening lower limit, design station height, station height limit, and station height lower limit. Step 302: Specify an initial site from the site set, and store the initial site to the selected set.
  • Step 303 Select a qualified site to be stored in the candidate set from the remaining sites of the site set according to the base station selection condition. After performing step 303, check whether the candidate set is empty. If not, perform step 304. If it is empty, Then, the site in the remote area is selected to join the selected set, and then step 303 is performed. Preferably, if there is no station in the remote area, step 305 is performed.
  • Step 304 The sites in the candidate set are successively combined, and the sites in the candidate set are sequentially combined with the neighboring sites in the selected set to calculate a network topology factor, and the site of the optimal network topology factor is deleted from the candidate set and stored in the selected set. Steps 302-304 are repeated until the candidate set checked after step 303 is empty.
  • the method further includes step 305, searching through the selected sites, checking whether there is a neighboring site capable of replacing the current site according to the restriction condition, and if it is determined that the neighboring site exists, replacing the neighboring site with the current site Calculate the network topology factor in combination with the neighboring sites in the selected set, and compare the network topology factor with the network topology factor calculated by combining the current site before the replacement with the neighboring site in the selected set, if the replaced network topology factor More preferably, the neighboring site is replaced with the current site and added to the selected set, otherwise, no replacement is performed.
  • Step 401 Input Site information and screening conditions, wherein the screening conditions specifically include: site latitude, longitude, height, and priority (for example, the old site needs to be prioritized). If other information has an impact on site selection, it can be considered on the basis of the following operational procedures.
  • Step 402 Select one or several initial sites (or mandatory sites) to join the selected set, where the initial site may be selected as the designated site, or an initial site may be automatically selected; Step 403, according to the set filtering conditions, The site outside the collection is added to the candidate set; step 404, it is checked whether the candidate set is empty, if not, then the process proceeds to step 406, otherwise, the process proceeds to step 405; Step 405, the site screening in a region After the completion, there may be a long-distance site that is not added to the candidate set because it is far larger than the design station spacing. In this case, a site that selects a long-distance zone needs to join the selected set.
  • step 402 If there is a site in the remote zone, step 402 is performed;
  • the remote site performs step 408;
  • Step 406 traverses the site of the candidate set, and sequentially combines it with the selected site to calculate a network topology factor;
  • Step 407 joins all the candidate sets, the site with the best topology factor Selection, and go to the steps
  • Step 408 Optimize and adjust the sites in the selected set to traverse all the sites in the selected set. It should be noted that the following steps may be performed according to actual conditions. For example, if the selection needs to be completed quickly, the steps may not be performed. 408-Step 411; Step 409, checking whether there is a replaceable neighboring station, and the neighboring station is defined as replacing the currently selected centralized check site (assumed to be site i), and still satisfying the stations in the selected set for the station height and priority Restriction conditions such as level and screening station spacing; if there is a replaceable neighbor station, step 410 is performed; otherwise, step 411 is performed; step 410, if there is a suitable neighbor station (assumed to be site j), then computing station j is replaced The topology factor of the selected set after site i is compared with the topological factor before the replacement.
  • Example 1 Step A input site information, Table 1 is a site information parameter table, as shown in Table 1, including parameters such as site latitude and longitude, station height, priority, and feature type. Table 1
  • Table 2 lists the parameters of the planning information and constraints, as shown in Table 2, including the design station spacing 7 ⁇ , the station spacing screening upper limit, the station spacing screening lower limit, the design station height, and the station. High lower limit, and high upper limit; Table 2
  • Step B the selected A19 site is added to the selected set.
  • FIG. 5 is a schematic diagram 1 of the site of the embodiment 1 of the embodiment of the present invention. As shown in FIG. 5, the selected A19 site is added to the selected set.
  • Step C1 according to the above input information and restriction conditions, perform the following operations: 1. Calculate the adjustment design station spacing between two stations. 2. According to the station spacing, the upper and lower limits are selected to obtain the neighboring stations of all stations, which is 0.4 ⁇ 0.6km in this example. 3.
  • Step C2 select the appropriate site to join the candidate set according to the feature type, priority, and station height. 1. Select the sites in each item type to select. In this example, only the dense city is used, and no site is excluded. 2. Starting from the highest priority site, the priority in this example is only one level. 6 is a schematic diagram 2 of a station 1 of an embodiment of the present invention. As shown in FIG. 6, from a neighboring station of A19, A6, A7, A15, and A22 are selected as candidate sets; Step D, it is checked whether the candidate set is empty. If it is not empty, go to step F, otherwise go to the next step. In this example, the candidate set is not empty, go to the step?
  • Step F Traversing the sites of the candidate set, and sequentially combining them with the neighboring sites in the selected set to calculate a network topology factor.
  • the network topology factors of each site in the candidate set are calculated as shown in Table 3: Table 3
  • FIG. 7 is a schematic diagram 3 of the station of the embodiment 1 of the embodiment of the present invention, as shown in FIG. Select the A7 point with the smallest topology factor to join the selected set. Here iteratively moves to step C to find the next suitable site to join the selected set.
  • Step C2 (second time):
  • FIG. 8 is a schematic diagram 4 of a station of Example 1 of the embodiment of the present invention. As shown in FIG. 8, a candidate set is selected according to the above selected site, wherein network topology factors of each site in the candidate set are selected. The calculation is shown in Table 4: Table 4
  • FIG. 9 is a schematic diagram 5 of a station of Example 1 of the embodiment of the present invention.
  • A22 with the smallest topology factor is selected to join the selected set.
  • the above data is analyzed. Only A22 and the two sites in the selected set are Neighbors (A7 and A19), so that only A22 has a topological factor less than 1, and is selected.
  • 10 is a schematic diagram 6 of a station 1 of an embodiment of the present invention.
  • the selected stations that are sequentially added are A24, A15, A6, A2, A23, Al, A17, A13. , A5, A4, A20, A25, A28, A27.
  • Step E After the site screening in one area is completed, there may be a long-distance site that is not added to the candidate set because it is larger than the design station spacing. In this case, a site that selects a long-distance area needs to join the selected set. If there is a long-distance site, Then go to step A; if there is no long-distance site, go to step H. If the result of the inspection in this example is no, the process proceeds to step H.
  • Step H-Step J The following is an optimization of the site in the selected set. This step can be performed according to the actual situation. (If the selection is required to be completed quickly, the selection may be omitted.)
  • FIG. 11 is an example of the embodiment of the present invention.
  • Find A15 has a replaceable neighboring site A12
  • the priority of the A24 in the example 1 is changed from 2 to 1, and the steps in the example 1 are re-executed, and the selection is performed because A21 has a higher priority than A24, so even though A24 has a better topology factor, it is still A21 instead of A24, and the final site is shown in Figure 13.
  • the embodiment of the present invention solves the problem that the network topology formed by the artificial base station location in the prior art is reasonable by setting the initial site and automatically selecting the site corresponding to the initial site from the set of all sites according to the site selection condition of the base station.
  • FIG. 14 is a schematic structural diagram of a base station location selection apparatus according to an embodiment of the present invention.
  • a base station location selection apparatus includes: The setting module 140, the initial site obtaining module 141, the candidate set site selecting module 142, the selected site acquiring module 143, and the calling module 144, the respective modules of the embodiments of the present invention are described in detail below.
  • the setting module 140 is configured to acquire a site set according to the input site information, and set a base station location condition.
  • the site information includes: a site latitude and longitude, a station height, a site priority, and a site feature.
  • Base station location conditions include: design station spacing, adjusted design station spacing, station spacing screening upper limit, station spacing screening lower limit, design station height, station height upper limit, and station height lower limit.
  • the initial site obtaining module 141 is configured to specify an initial site from the site set, and store the initial site to the selected set; the candidate set site selecting module 142 is coupled to the setting module 140 and the initial site obtaining module 141, and is configured to select from the base station selection condition.
  • the candidate site selection module 142 is further configured to: check whether the candidate set is empty, if not empty, call the selected site acquisition module 143, if If it is empty, the site in the remote area is selected to join the selected set. If there is no site in the remote area, the selected set optimization module is called.
  • the selected site acquisition module 143 is coupled to the initial site acquisition module 141 and the candidate set site selection module 142, and is set as a site that traverses the candidate set, and sequentially combines the sites in the candidate set with the adjacent sites in the selected set to calculate the network topology factor.
  • the apparatus further includes: a culling module, configured to remove the unqualified station from the remaining stations of the site set according to the base station selection condition.
  • the selected optimization module is set to the sites in the selected set, and checks whether there is a neighboring site that can replace the current site according to the restriction condition.
  • Step 401 Enter site information and screening conditions, where the screening conditions specifically include: site latitude and longitude, altitude, and Priority (for example, the old site needs to be prioritized).
  • Step 402 Select one or several initial sites (or mandatory sites) to join the selected set, where the initial site may be selected as the designated site, or an initial site may be automatically selected;
  • Step 403 according to the set filtering conditions, The site outside the collection is added to the candidate set;
  • step 404 it is checked whether the candidate set is empty, if not, then the process proceeds to step 406, otherwise, the process proceeds to step 405;
  • Step 405 the site screening in a region After the completion, there may be a long-distance site that is not added to the candidate set because it is far larger than the design station spacing.
  • step 402 If there is a site in the remote zone, step 402 is performed; The remote site performs step 408; Step 406, traverses the site of the candidate set, and sequentially combines it with the selected site to calculate a network topology factor; Step 407, joins all the candidate sets, the site with the best topology factor Selection, and go to the steps
  • Step 408 Optimize and adjust the sites in the selected set to traverse all the sites in the selected set. It should be noted that the following steps may be performed according to actual conditions. For example, if the selection needs to be completed quickly, the steps may not be performed. 408-Step 411; Step 409, checking whether there is a replaceable neighboring station, and the neighboring station is defined as replacing the currently selected centralized check site (assumed to be site i), and still satisfying the stations in the selected set for the station height and priority Restriction conditions such as level and screening station spacing; if there is a replaceable neighbor station, step 410 is performed; otherwise, step 411 is performed; step 410, if there is a suitable neighbor station (assumed to be site j), then computing station j is replaced The topology factor of the selected set after site i is compared with the topological factor before the replacement.
  • Example 1 Step A input site information, Table 1 is a site information parameter table, as shown in Table 1, including parameters such as site latitude and longitude, station height, priority, and feature type. Table 1
  • Table 2 is a parameter table information and planning restrictions, as shown, including the design station spacing as shown in Table 27 ⁇ , screening station spacing limit, the screening station spacing Lower limit, design station height, station height lower limit, and station height limit; Table 2
  • Step B the selected A19 site is added to the selected set.
  • FIG. 5 is a schematic diagram 1 of the site of the embodiment 1 of the embodiment of the present invention. As shown in FIG. 5, the selected A19 site is added to the selected set.
  • Step C1 according to the above input information and restriction conditions, perform the following operations: 1. Calculate the adjustment design station spacing between two stations. 2. According to the station spacing, the upper and lower limits are selected to obtain the neighboring stations of all stations, which is 0.4 ⁇ 0.6km in this example. 3.
  • Step C2 select the appropriate site to join the candidate set according to the feature type, priority, and station height. 1. Select the sites in each item type to select. In this example, only the dense city is used, and no site is excluded. 2. Starting from the highest priority site, the priority in this example is only one level. 6 is a schematic diagram 2 of a station 1 of an embodiment of the present invention. As shown in FIG. 6, from a neighboring station of A19, A6, A7, A15, and A22 are selected as candidate sets; Step D, it is checked whether the candidate set is empty. If it is not empty, go to step F, otherwise go to the next step. In this example, the candidate set is not empty, go to step!
  • Step F Traversing the sites of the candidate set, and sequentially combining them with the neighboring sites in the selected set to calculate a network topology factor.
  • the network topology factors of each site in the candidate set are calculated as shown in Table 3: table 3
  • FIG. 7 is a schematic diagram 3 of the station of the embodiment 1 of the embodiment of the present invention, as shown in FIG. Select the A7 point with the smallest topology factor to join the selected set. Here iteratively moves to step C to find the next suitable site to join the selected set.
  • Step C2 (second time):
  • FIG. 8 is a schematic diagram 4 of a station of Example 1 of the embodiment of the present invention. As shown in FIG. 8, a candidate set is selected according to the above selected site, wherein network topology factors of each site in the candidate set are selected. The calculation is shown in Table 4: Table 4
  • FIG. 9 is a schematic diagram 5 of a station of Example 1 of the embodiment of the present invention.
  • A22 with the smallest topology factor is selected to join the selected set.
  • the above data is analyzed. Only A22 and the two sites in the selected set are Neighbors (A7 and A19), so that only A22 has a topological factor less than 1, and is selected.
  • 10 is a schematic diagram 6 of a station 1 of an embodiment of the present invention.
  • the selected stations that are sequentially added are A24, A15, A6, A2, A23, Al, A17, A13. , A5, A4, A20, A25, A28, A27.
  • Step E After the site screening in one area is completed, there may be a long-distance site that is not added to the candidate set because it is larger than the design station spacing. In this case, a site that selects a long-distance area needs to join the selected set. If there is a long-distance site, Then go to step A; if there is no long-distance site, go to step H. If the result of the inspection in this example is no, the process proceeds to step H.
  • Step H-Step J The following is an optimization of the site in the selected set. This step can be performed according to the actual situation. (If the selection is required to be completed quickly, the selection may be omitted.)
  • FIG. 11 is an example of the embodiment of the present invention.
  • A10 is replaced by A19 to join the selected set; it is found that A22 has a replaceable neighboring station A14;
  • Find A15 has a replaceable neighboring site A12
  • A25 has a replaceable neighboring station A26; first calculate the topological factor of A25 and neighboring stations in the selected set, which is 100 (that is, it is not a neighboring station with any other selected set); then replace A25 with A26. Calculate the topological factor, which is 0.011. Since 0.011 ⁇ 100, replace A26 with A25 and add the selected set. For the effect of optimizing the adjustment, take the last step above as an example. When selecting the site in the previous iteration, select A20. The result is shown in Fig. 12. At this time, for the selected set, although A25 and A26 are not neighbors, the distance of A25 is closer, so A25 is preferred.
  • Example 2 is different from the example 1.
  • the priority of the A24 in the example 1 is changed from 2 to 1, and the steps in the example 1 are re-executed, and the selection is performed because A21 has more than A24 High priority, so although the A24 has a better topology factor, it is still A21, not A24 is selected, and the final site is shown in Figure 13.
  • the embodiment of the present invention solves the problem that the network topology formed by the artificial base station location in the prior art is reasonable by setting the initial site and automatically selecting the site corresponding to the initial site from the set of all sites according to the site selection condition of the base station.
  • the technical solution of the embodiment of the present invention is not dependent on the simulation data, and the calculation amount is small, which can provide reference for the network topology design in all scenarios. While the preferred embodiments of the present invention have been disclosed for purposes of illustration, those skilled in the art will recognize that various modifications, additions and substitutions are possible, and the scope of the invention should not be limited to the embodiments described above.
  • Industrial Applicability The base station location scheme provided by the embodiments of the present invention ensures the rationality of the network topology structure, facilitates subsequent network design, and the base station location scheme does not depend on simulation data, and the amount of operations is small, and can be used for all
  • the network topology design in the scenario provides reference, simple implementation, fast site selection, automatic selection to find the optimal cellular structure, and strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种基站选址方法及装置。该方法包括:步骤1,根据输入的站点信息获取站点集合,并设置基站选址条件;步骤2,从站点集合中指定初始站点,将初始站点存储到已选集;步骤3,根据基站选择条件从站点集合剩余的站点中选择合格站点存储到候选集;步骤4,历遍候选集中的站点,依次将候选集中的站点与已选集中的相邻站点组合计算网络拓扑因子,并将最佳网络拓扑因子的站点存储到已选集,重复执行步骤2-4,直到候选集为空。借助于本发明的技术方案,能够为所有场景下的网络拓扑设计提供参考。

Description

基站选址方法及装置 技术领域 本发明涉及移动通讯领域, 特别是涉及一种基站选址方法及装置。 背景技术 无线网络规划的工作内容是根据预规划的无线网络的特性以及网络规划的需求, 设定相应的工程参数和无线资源参数, 并在满足一定信号覆盖、 系统容量和业务质量 要求的前提下, 使网络的工程成本最低。 网络规划工作包括需求分析, 传播模型测试, 业务预测, 规模估算, 站址勘查筛 选, 网络拓扑结构设计, 站点参数设计, 仿真调整等。 在现有技术中, 网络拓扑设计是指按照蜂窝原则和设计的站间距, 选择合适的站 址形成合理的网络拓扑结构。 在实际工程中, 基站选址大多依赖于工程师的经验来进行勘查, 所形成的网络拓 扑结构设计结果的合理性很难得到保证, 从而给后续的网络设计带来风险。 发明内容 本发明提供一种基站选址方法及装置, 以解决现有技术中人工基站选址所形成的 网络拓扑结构的合理性很难得到保证的问题。 本发明提供一种基站选址方法, 包括: 步骤 1, 根据输入的站点信息获取站点集合, 并设置基站选址条件; 步骤 2, 从站点集合中指定初始站点, 将初始站点存储到已选集; 步骤 3, 根据基站选择条件从站点集合剩余的站点中选择合格站点存储到候选集; 步骤 4, 历遍候选集中的站点, 依次将候选集中的站点与已选集中的相邻站点组 合计算网络拓扑因子,并将最佳网络拓扑因子的站点存储到已选集,重复执行步骤 2-4, 直到候选集为空。 优选地, 执行所述步骤 3之前, 所述方法还包括: 根据所述基站选择条件从所述 站点集合剩余的站点中剔除不合格的站点。 优选地, 执行所述步骤 4之后, 所述方法还包括: 步骤 5, 历遍所述已选集中的 站点, 根据所述限制条件检查是否有能够替换当前站点的邻站点, 如果确定存在所述 邻站点, 则将所述邻站点替换所述当前站点后与所述已选集中的相邻站点组合计算网 络拓扑因子, 并将所述网络拓扑因子与替换前所述当前站点与所述已选集中的相邻站 点组合所计算出的网络拓扑因子进行比较, 如果替换后的网络拓扑因子更佳, 则将所 述邻站点替换所述当前站点并加入所述已选集, 否则, 不进行替换。 优选地, 执行所述步骤 3之后, 所述方法还包括: 检查所述候选集是否为空, 如 果不为空, 则执行步骤 4, 如果为空, 则选择远距离区域中的站点加入所述已选集, 随后执行步骤 3, 如果所述选择远距离区域中没有站点, 则执行步骤 5。 优选地, 所述站点信息包括: 站点经纬度、 站点的站高、 站点的优先级、 以及站 点的地物类型; 所述基站选址条件包括: 设计站间距、 调整后的设计站间距、 站间距 筛选上限、 站间距筛选下限、 设计站高、 站高上限、 以及站高下限。 本发明还提供了一种基站选址装置, 包括: 设置模块, 设置为根据输入的站点信息获取站点集合, 并设置基站选址条件; 初始站点获取模块, 设置为从站点集合中指定初始站点, 将初始站点存储到已选 集; 候选集站点选择模块, 设置为根据基站选择条件从站点集合剩余的站点中选择合 格站点存储到候选集; 已选集站点获取模块, 设置为历遍候选集中的站点, 依次将候选集中的站点与已 选集中的相邻站点组合计算网络拓扑因子, 并将最佳网络拓扑因子的站点存储到已选 集; 调用模块, 设置为在已选集站点获取模块执行完操作后, 依次调用初始站点获取 模块、 候选集站点选择模块、 以及已选集站点获取模块, 直到候选集为空。 优选地, 所述装置还包括: 剔除模块, 设置为根据所述基站选择条件从所述站点 集合剩余的站点中剔除不合格的站点。 优选地, 所述装置还包括: 已选集优化模块, 设置为历遍所述已选集中的站点, 根据所述限制条件检查是否有能够替换当前站点的邻站点,如果确定存在所述邻站点, 则将所述邻站点替换所述当前站点后与所述已选集中的相邻站点组合计算网络拓扑因 子, 并将所述网络拓扑因子与替换前所述当前站点与所述已选集中的相邻站点组合所 计算出的网络拓扑因子进行比较, 如果替换后的网络拓扑因子更佳, 则将所述邻站点 替换所述当前站点并加入所述已选集, 否则, 不进行替换。 优选地, 所述候选集站点选择模块还设置为: 检查所述候选集是否为空, 如果不 为空, 则调用所述已选集站点获取模块, 如果为空, 则选择远距离区域中的站点加入 所述已选集, 如果所述选择远距离区域中没有站点, 则调用所述已选集优化模块。 优选地, 所述站点信息包括: 站点经纬度、 站点的站高、 站点的优先级、 以及站 点的地物类型; 所述基站选址条件包括: 设计站间距、 调整后的设计站间距、 站间距 筛选上限、 站间距筛选下限、 设计站高、 站高上限、 以及站高下限。 本发明有益效果如下: 通过设置初始站点, 并自动根据基站选址条件从所有站点的集合中选择与该初始 站点相适应的站点, 解决了现有技术中人工基站选址所形成的网络拓扑结构的合理性 很难得到保证的问题, 本发明实施例的技术方案不依赖于仿真数据, 运算量很少, 能 够为所有场景下的网络拓扑设计提供参考。 附图说明 图 1是本发明实施例的站点位置关系的示意图; 图 2是本发明实施例的站点连线夹角与理想蜂窝状下的夹角的示意图; 图 3是本发明实施例的基站选址方法的流程图; 图 4是本发明实施例的基站选址方法的详细处理的流程图; 图 5是本发明实施例的实例 1的站点示意图 1 ; 图 6是本发明实施例的实例 1的站点示意图 2; 图 7是本发明实施例的实例 1的站点示意图 3 ; 图 8是本发明实施例的实例 1的站点示意图 4; 图 9是本发明实施例的实例 1的站点示意图 5 ; 图 10是本发明实施例的实例 1的站点示意图 6; 图 11是本发明实施例的实例 1的站点示意图 7; 图 12是本发明实施例的实例 1的站点示意图 8 ; 图 13是本发明实施例的实例 1的站点示意图 9; 图 14是本发明实施例的基站选址装置的结构示意图。 具体实施方式 为了解决现有技术中人工基站选址所形成的网络拓扑结构的合理性很难得到保证 的问题, 本发明实施例提供了一种基站选址方法及装置, 本发明实施例主要针对网络 拓扑进行设计, 在已有的候选站点中, 根据设计的站间距范围, 自动选择寻找最优的 蜂窝结构。 在对本发明实施例的技术方案进行详细的说明之前, 首先对后续设计的几 个概念进行解释, 具体地:
1、 优先级: 根据各站点的情况确定该站点是否被优选选择的优先级, 例如, 优先 选择 23G共站的站点, 或者, 某些热点区域的站点等。 需要说明的是, 最高优先级的 为必选站, 可以在输入初始站点时设定。
2、 已选集: 被选中的站点的集合。
3、 候选集: 不在已选集中, 但在某次迭代中可供选择的站点的集合。
4、 设计站间距: 根据无线网络规模估算结果得到的站间距, 其中, 站间距筛选上 限是指设置的最大站间距, 在选择邻站时站间距时不能超过该距离; 站间距筛选下限 是指设置的最小站间距, 在选择邻站时站间距时不能小于该距离。
5、 调整后的设计站间距 ^^^': 预先定义某几个站高下的设计小区半径, 根据每 个站点的实际高度来调整上述设计小区半径, 并计算上述站点两两站点间的新的设计 站间距。
6、邻站: 与某站点的站间距在上面调整后的设计站间距筛选上下限之间的邻近站 点。 具体地, 在规模估算中, 一般是从发射功率, 接收信号强度计算出可允许最大路 径损耗, 然后再根据传播模型计算出小区半径。 传播模型受到站高的影响, 因此小区 半径, 以及站间距也随着站高而改变。 在本发明实施例中, 基站选址条件中包括了某 个设计站高下的小区半径, 例如, 在 25m站高下的小区站间距为 0.4km, 但对于站高 为 21m的站点, 则需要计算新的站间距。
7、 网络拓扑因子 。: 用于衡量站点的分布与理想的蜂窝结构符合程度的因子, 影响7" 。的因素包括: 站间距、 以及站点间夹角等。 具体地, 情况一, 当考察站点数大于 2个时: 网络拓扑因子的计算要综合考虑各 站间之间站间距和各站点连线夹角的影响。 具体地, 令 ^ ι Ά )为" \ 的实际距离, ΡΖ^ι Ά )为 和" ^的设计站间距, 单位 都为 km, 为两者差值, D 为多个站点间的 均值, 为均方差。 图 1是本发明实施例的站点位置关系的示意图, 如图 1所示, al、 a2、 a3为三个 站点三点连线间的夹角。 图 2是本发明实施例的站点连线夹角与理想蜂窝状下的夹角 π 2π 的示意图, 如图 2所示, H a2、 a3与理想蜂窝状下的夹角 (0, , 3 ,^的最小 差值, 其中, Site A为必选站点, Site B、 Site C Site D为候选集站点。 为所求夹 角差值的平均值, σ(α )为均方差。 则网络拓扑因子的计算项可包括 Dσ°^Κ adiff 禾口 σ(α )。 情况二, 当考察站点数为 2个时: 网络拓扑因子的计算只需要根据 进行, 而 且需要人为设定比上一种场景中的网络拓扑因子更大。 当考察站点数大于 2时, 一般 是一个候选站点与多个已选站点的集合, 当考察站点数为 2时, 是一个候选站点与一 个已选站点的集合, 所以站点选择优先与多个已选站点相邻的候选站点。 以下结合附图以及实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描 述的具体实施例仅仅用以解释本发明, 并不限定本发明。 方法实施例 根据本发明的实施例, 提供了一种基站选址方法, 图 3是本发明实施例的基站选 址方法的流程图, 如图 3所示, 根据本发明实施例的基站选址方法包括如下处理: 步骤 301, 根据输入的站点信息获取站点集合, 并设置基站选址条件; 其中, 站 点信息包括: 站点经纬度、 站点的站高、 站点的优先级、 以及站点的地物类型; 基站 选址条件包括: 设计站间距、 调整后的设计站间距、 站间距筛选上限、 站间距筛选下 限、 设计站高、 站高上限、 以及站高下限。 步骤 302, 从站点集合中指定初始站点, 将初始站点存储到已选集; 优选地, 执行步骤 303之前, 需要根据基站选择条件从站点集合剩余的站点中剔 除不合格的站点。 步骤 303, 根据基站选择条件从站点集合剩余的站点中选择合格站点存储到候选 集; 在执行步骤 303之后, 需要检查候选集是否为空, 如果不为空, 则执行步骤 304, 如果为空, 则选择远距离区域中的站点加入已选集, 随后执行步骤 303, 优选地, 如 果选择远距离区域中没有站点, 则执行步骤 305。 步骤 304, 历遍候选集中的站点, 依次将候选集中的站点与已选集中的相邻站点 组合计算网络拓扑因子, 将最佳网络拓扑因子的站点从候选集删除并存储到已选集。 重复执行步骤 302-304, 直到步骤 303之后检查的候选集为空。 优选地, 在执行步骤 304之后, 还包括步骤 305, 历遍已选集中的站点, 根据限 制条件检查是否有能够替换当前站点的邻站点, 如果确定存在邻站点, 则将邻站点替 换当前站点后与已选集中的相邻站点组合计算网络拓扑因子, 并将网络拓扑因子与替 换前当前站点与已选集中的相邻站点组合所计算出的网络拓扑因子进行比较, 如果替 换后的网络拓扑因子更佳, 则将邻站点替换当前站点并加入已选集, 否则, 不进行替 换。 以下结合附图, 对本发明实施例的上述技术方案进行详细说明, 图 4是本发明实 施例的基站选址方法的详细处理的流程图, 如图 4所示, 包括如下处理: 步骤 401, 输入站点信息及筛选条件, 其中, 筛选条件具体包括: 站点经纬度、 高度、 以及优先级 (例如, 利旧站点需优先考虑)。 如有其他信息对站点选择有影响, 可在下面操作流程的基础上, 加入考虑。 步骤 402, 选定一个或几个初始站点 (或必选站点) 加入已选集, 其中, 选择初 始站点可以认为指定, 也可以自动选定一个初始站点; 步骤 403, 根据设置的筛选条件来选择已选集外的站点, 并将该站点加入到候选 集; 步骤 404, 检查候选集是否为空, 如不为空, 则转入步骤 406, 否则转入步骤 405; 步骤 405, 在一片区域的站点筛选完毕后, 可能有远距离的站点因为远大于设计 站间距而未加入候选集, 此时需要一个选择远距离区域的站点加入已选集, 如果存在 远距离区域的站点, 则执行步骤 402; 如没有远距离站点, 则执行步骤 408; 步骤 406, 遍历候选集的站点, 依次将其与已选集中的站点组合计算网络拓扑因 子; 步骤 407, 将所有候选集中, 具备最佳拓扑因子的站点加入已选集, 并转入步骤
403; 步骤 408, 对已选集中的站点进行优化调整, 遍历已选集中所有站点; 需要说明 的是, 下述步骤可根据实际情况选择是否进行, 例如, 如果需要快速完成选择, 则可 不执行步骤 408-步骤 411 ; 步骤 409, 检查是否有可替换的邻站, 邻站的定义为替换当前已选集中检查的站 点(假设为站点 i)后, 依然满足已选集中各站点对于站高、优先级和筛选站间距等的 限制条件; 如果存在可替换的邻站, 则执行步骤 410, 否则, 执行步骤 411 ; 步骤 410, 如有合适的邻站(假设为站点 j ), 则计算站点 j替换站点 i后的已选集 的拓扑因子, 并与未替换前的拓扑因子进行比较, 如果拓扑因子更佳, 则将站点 j替 换站点 i并加入已选集。 步骤 411, 待已选集遍历完毕。 从上述处理可以看出, 与现有技术相比较, 本发明实施例不依赖于仿真数据, 运 算量很少, 能够为所有场景下的网络设计提供参考, 例如, 初始时的候选勘查站点的 选择, 无仿真资源或数据时的网络拓扑结构设计, 要求快速进行站点选择调整时的场 景等, 本发明实施例能够在实际工程中广泛的应用。 以下结合附图, 对本发明实施例上述技术方案进行举例说明。 实例 1 步骤 A, 输入站点信息, 表 1为站点信息参数表, 如表 1所示, 包括站点经纬度、 站高、 优先级、 以及地物类型等参数。 表 1
Figure imgf000010_0001
随后, 需要输入规划信息和限制条件, 表 2为规划信息和限制条件的参数表, 如 表 2所示, 包括设计站间距7^、 站间距筛选上限、 站间距筛选下限、 设计站高、 站高 下限、 以及站高上限; 表 2
Figure imgf000011_0001
需要说明的是, 这里的限制条件可以根据需要进行添加。 在本实例中, 仅展示 个地物类型 Dense Urban里的例子, 其他类型的参数设置可能不同, 但过程相同。 步骤 B, 选定 A19站点加入已选集, 图 5是本发明实施例的实例 1的站点示意图 1, 如图 5所示, 选定 A19站点加入已选集。 步骤 Cl, 根据上述的输入信息和限制条件, 进行如下操作: 1、 计算所有站点两 两之间的调整设计站间距。 2、根据站间距筛选上下限求得所有站点的邻站, 本实例中 为 0.4~0.6km。 3、 根据站高限制排除掉 A3站点 (43m>40m站高上限); 步骤 C2, 按照地物类型、 优先级、 和站高来选择合适的站点加入候选集。 1、 依 次选择各地物类型内的站点进行选择,本实例内只有 dense urban,没有站点排除在外; 2、 从最高优先级的站点开始, 本例中优先级只有一级。 图 6是本发明实施例的实例 1 的站点示意图 2, 如图 6所示, 从 A19的邻站中, 选择 A6、 A7、 A15、 A22选为候选 集; 步骤 D, 检查候选集是否为空, 如不为空, 则转入步骤 F, 否则转下一步, 本实 例中, 候选集不为空, 转入步骤?。 步骤 F, 遍历候选集的站点, 依次将其与已选集中的相邻站点组合计算网络拓扑 因子。 本实例中, 候选集中各站点的网络拓扑因子计算如表 3所示: 表 3
Figure imgf000011_0002
显然, 因为已选集中只有一个站, 所以上面的值是按照上述计算网络拓扑因子的 情况二来计算的, 图 7是本发明实施例的实例 1的站点示意图 3, 如图 7所示, 从中 选择拓扑因子最小的 A7点加入已选集。 这里迭代转入步骤 C, 寻找下一个适合的站点加入已选集。 步骤 C2 (第二次): 图 8是本发明实施例的实例 1的站点示意图 4, 如图 8所示, 根据上面的已选集站点, 选择候选集, 其中, 候选集中各站点的网络拓扑因子计算如 表 4所示: 表 4
Figure imgf000012_0001
图 9是本发明实施例的实例 1的站点示意图 5, 如图 9所示, 选择拓扑因子最小 的 A22加入已选集, 具体地, 分析上面的数据, 只有 A22与已选集中的两个站点是邻 站 (A7和 A19), 这样只有 A22的拓扑因子小于 1, 并且被选中。 图 10是本发明实施例的实例 1的站点示意图 6, 如图 10所示, 按照上述的计算 方法, 依次加入的已选集的站点为 A24、 A15、 A6、 A2、 A23、 Al、 A17、 A13、 A5、 A4、 A20、 A25、 A28、 A27。 步骤 E, 在一片区域的站点筛选完毕后, 可能有远距离的站点因为大于设计站间 距而未加入候选集, 此时需要一个选择远距离区域的站点加入已选集, 如果存在远距 离的站点, 则转入步骤 A; 如没有远距离站点, 则转入步骤 H。 本实例的检查结果为 没有, 则转入步骤 H。 步骤 H-步骤 J: 下面开始对已选集中的站点进行优化调整, 此步骤可根据实际情 况选择是否进行 (如需要快速完成选择, 可不选择), 具体包括: 图 11是本发明实施例的实例 1的站点示意图 7, 如图 11所示, 在本实例中: 查找到 A19有可替换的邻近站点 A10。如果 A19定为必选站,则不必进行这一步; 首先计算 A19与已选集中的邻站组成的拓扑因子, 为 0.075; 然后将 A19替换为 A10, 计算拓扑因子, 为 0.069; 由于 0.069<0.075, 因此将 A10替换为 A19加入已选集; 查找到 A22有可替换的邻近站点 A14; 首先计算 A22与已选集中的邻站组成的拓扑因子, 为 0.056; 然后将 A22替换为 A14, 计算拓扑因子, 为 0.067;
由于 0.056<0.067, 因此保持 A22在已选集中。
查找到 A24有可替换的邻近站点 A21 ;
首先计算 A24与已选集中的邻站组成的拓扑因子, 为 0.093 ; 然后将 A24替换为 A21,计算拓扑因子, 为 0.107;
由于 0.093<0.107, 因此保持 A24在已选集中;
查找到 A15有可替换的邻近站点 A12;
首先计算 A15与已选集中的邻站组成的拓扑因子, 为 0.077; 然后将 A15替换为 A12,计算拓扑因子, 为 1.009;
由于 0.077<1.009, 因此保持 A15在已选集中;
查找到 A2有可替换的邻近站点 A16;
首先计算 A2与已选集中的邻站组成的拓扑因子, 为 0.072; 然后将 A2替换为 A16, 计算拓扑因子, 为 0.091 ;
由于 0.072<0.091,因此保持 A2在已选集中;
查找到 A23有可替换的邻近站点 A3 ;
首先计算 A23与已选集中的邻站组成的拓扑因子, 为 0.062; 然后将 A23替换为 A3,计算拓扑因子, 为 1.044;
由于 0.062<1.044, 因此保持 A23在已选集中。
查找到 A5有可替换的邻近站点 A8;
首先计算 A5与已选集中的邻站组成的拓扑因子, 为 1.00007; 然后将 A5替换为 A8,计算拓扑因子, 为 1.016;
由于 1.00007<1.016, 因此保持 A5在已选集中; 查找到 A4有可替换的邻近站点 A18; 首先计算 A4与已选集中的邻站组成的拓扑因子, 为 0.06; 然后将 A4替换为 A18, 计算拓扑因子, 为 0.086; 由于 0.06<0.086, 因此保持 A4在已选集中。 查找到 A25有可替换的邻近站点 A26; 首先计算 A25与已选集中的邻站组成的拓扑因子, 为 100 (即与任何其他已选集 中的站点都不是邻站); 然后将 A25替换为 A26, 计算拓扑因子, 为 0.011 ; 由于 0.011<100, 因此将 A26替换为 A25加入已选集; 对于优化调整的效果, 以上面最后一步为例说明, 在前面的迭代选择站点时, 选 择了 A20后的结果如附图 12所示。 此时对于已选集来说, 虽然 A25、 A26都不是邻 站, 但 A25的距离更近, 因此优先选择了 A25。 在选择了 A27、 A28后, A26与 A27、 A28是邻站, 因此这时 A26显然是比 A25 更好的选择。 在优化调整中, 程序将 A26替换为了 A25。 可以根据需要进一步调整, 直到网络规模稳定。 但当站点规模较大时, 这个调整 可能会花费较长的时间, 因此这部分的操作可选, 并且可以设定迭代次数。 实例 2 与实例 1不同的是, 在实例 2中, 为说明优先级的作用, 将实例 1中的 A24的优 先级从 2改为 1, 并重新执行实例 1中的步骤, 进行重新选择, 因为 A21有比 A24更 高的优先级, 因此尽管 A24拥有更佳的拓扑因子, 最后仍然是 A21, 而不是 A24被选 中, 得到最后的站点如附图 13所示。 本发明实施例通过设置初始站点, 并自动根据基站选址条件从所有站点的集合中 选择与该初始站点相适应的站点, 解决了现有技术中人工基站选址所形成的网络拓扑 结构的合理性很难得到保证的问题, 本发明实施例的技术方案不依赖于仿真数据, 运 算量很少, 能够为所有场景下的网络拓扑设计提供参考。 装置实施例 根据本发明的实施例,提供了一种基站选址装置, 图 14是本发明实施例的基站选 址装置的结构示意图, 如图 14所示, 根据本发明实施例的基站选址装置包括: 设置模 块 140、初始站点获取模块 141、候选集站点选择模块 142、 已选集站点获取模块 143、 以及调用模块 144, 以下对本发明实施例的各个模块进行详细的说明。 具体地, 设置模块 140, 设置为根据输入的站点信息获取站点集合, 并设置基站 选址条件; 优选地, 站点信息包括: 站点经纬度、 站点的站高、 站点的优先级、 以及 站点的地物类型; 基站选址条件包括: 设计站间距、 调整后的设计站间距、 站间距筛 选上限、 站间距筛选下限、 设计站高、 站高上限、 以及站高下限。 初始站点获取模块 141, 设置为从站点集合中指定初始站点, 将初始站点存储到 已选集; 候选集站点选择模块 142,耦合至设置模块 140和初始站点获取模块 141, 设置为 根据基站选择条件从站点集合剩余的站点中选择合格站点存储到候选集; 优选地, 候选集站点选择模块 142还设置为: 检查候选集是否为空, 如果不为空, 则调用已选集站点获取模块 143, 如果为空, 则选择远距离区域中的站点加入已选集, 如果选择远距离区域中没有站点, 则调用已选集优化模块。 已选集站点获取模块 143, 耦合至初始站点获取模块 141和候选集站点选择模块 142, 设置为历遍候选集中的站点, 依次将候选集中的站点与已选集中的相邻站点组合 计算网络拓扑因子, 并将最佳网络拓扑因子的站点从候选集删除并存储到已选集; 调用模块 144,耦合至初始站点获取模块 141、候选集站点选择模块 142和已选集 站点获取模块 143, 设置为在已选集站点获取模块 143执行完操作后, 依次调用初始 站点获取模块 141、 候选集站点选择模块 142、 以及已选集站点获取模块 143, 直到候 选集为空。 优选地, 上述装置还包括: 剔除模块, 设置为根据基站选择条件从站点集合剩余 的站点中剔除不合格的站点。 已选集优化模块, 设置为历遍已选集中的站点, 根据限制条件检查是否有能够替 换当前站点的邻站点, 如果确定存在邻站点, 则将邻站点替换当前站点后与已选集中 的相邻站点组合计算网络拓扑因子, 并将网络拓扑因子与替换前当前站点与已选集中 的相邻站点组合所计算出的网络拓扑因子进行比较,如果替换后的网络拓扑因子更佳, 则将邻站点替换当前站点并加入已选集, 否则, 不进行替换。 以下结合附图, 对本发明实施例的上述技术方案进行详细说明, 如图 4所示, 包 括如下处理: 步骤 401, 输入站点信息及筛选条件, 其中, 筛选条件具体包括: 站点经纬度、 高度、 以及优先级 (例如, 利旧站点需优先考虑)。 如有其他信息对站点选择有影响, 可在下面操作流程的基础上, 加入考虑。 步骤 402, 选定一个或几个初始站点 (或必选站点) 加入已选集, 其中, 选择初 始站点可以认为指定, 也可以自动选定一个初始站点; 步骤 403, 根据设置的筛选条件来选择已选集外的站点, 并将该站点加入到候选 集; 步骤 404, 检查候选集是否为空, 如不为空, 则转入步骤 406, 否则转入步骤 405; 步骤 405, 在一片区域的站点筛选完毕后, 可能有远距离的站点因为远大于设计 站间距而未加入候选集, 此时需要一个选择远距离区域的站点加入已选集, 如果存在 远距离区域的站点, 则执行步骤 402; 如没有远距离站点, 则执行步骤 408; 步骤 406, 遍历候选集的站点, 依次将其与已选集中的站点组合计算网络拓扑因 子; 步骤 407, 将所有候选集中, 具备最佳拓扑因子的站点加入已选集, 并转入步骤
403; 步骤 408, 对已选集中的站点进行优化调整, 遍历已选集中所有站点; 需要说明 的是, 下述步骤可根据实际情况选择是否进行, 例如, 如果需要快速完成选择, 则可 不执行步骤 408-步骤 411 ; 步骤 409, 检查是否有可替换的邻站, 邻站的定义为替换当前已选集中检查的站 点(假设为站点 i)后, 依然满足已选集中各站点对于站高、优先级和筛选站间距等的 限制条件; 如果存在可替换的邻站, 则执行步骤 410, 否则, 执行步骤 411 ; 步骤 410, 如有合适的邻站(假设为站点 j ), 则计算站点 j替换站点 i后的已选集 的拓扑因子, 并与未替换前的拓扑因子进行比较, 如果拓扑因子更佳, 则将站点 j替 换站点 i并加入已选集。 步骤 411, 待已选集遍历完毕。 从上述处理可以看出, 与现有技术相比较, 本发明实施例不依赖于仿真数据, 运 算量很少, 能够为所有场景下的网络设计提供参考, 例如, 初始时的候选勘查站点的 选择, 无仿真资源或数据时的网络拓扑结构设计, 要求快速进行站点选择调整时的场 景等, 本发明实施例能够在实际工程中广泛的应用。 以下结合附图, 对本发明实施例上述技术方案进行举例说明。 实例 1 步骤 A, 输入站点信息, 表 1为站点信息参数表, 如表 1所示, 包括站点经纬度、 站高、 优先级、 以及地物类型等参数。 表 1
Figure imgf000017_0001
A28 80.2346 13.0575 2 25 Dense Urban 随后, 需要输入规划信息和限制条件, 表 2为规划信息和限制条件的参数表, 如 表 2所示, 包括设计站间距7^、 站间距筛选上限、 站间距筛选下限、 设计站高、 站高 下限、 以及站高上限; 表 2
Figure imgf000018_0001
需要说明的是, 这里的限制条件可以根据需要进行添加。 在本实例中, 仅展示 个地物类型 Dense Urban里的例子, 其他类型的参数设置可能不同, 但过程相同。 步骤 B, 选定 A19站点加入已选集, 图 5是本发明实施例的实例 1的站点示意图 1, 如图 5所示, 选定 A19站点加入已选集。 步骤 Cl, 根据上述的输入信息和限制条件, 进行如下操作: 1、 计算所有站点两 两之间的调整设计站间距。 2、根据站间距筛选上下限求得所有站点的邻站, 本实例中 为 0.4~0.6km。 3、 根据站高限制排除掉 A3站点 (43m>40m站高上限); 步骤 C2, 按照地物类型、 优先级、 和站高来选择合适的站点加入候选集。 1、 依 次选择各地物类型内的站点进行选择,本实例内只有 dense urban,没有站点排除在外; 2、 从最高优先级的站点开始, 本例中优先级只有一级。 图 6是本发明实施例的实例 1 的站点示意图 2, 如图 6所示, 从 A19的邻站中, 选择 A6、 A7、 A15、 A22选为候选 集; 步骤 D, 检查候选集是否为空, 如不为空, 则转入步骤 F, 否则转下一步, 本实 例中, 候选集不为空, 转入步骤!^。 步骤 F, 遍历候选集的站点, 依次将其与已选集中的相邻站点组合计算网络拓扑 因子。 本实例中, 候选集中各站点的网络拓扑因子计算如表 3所示: 表 3
Figure imgf000019_0001
显然, 因为已选集中只有一个站, 所以上面的值是按照上述计算网络拓扑因子的 情况二来计算的, 图 7是本发明实施例的实例 1的站点示意图 3, 如图 7所示, 从中 选择拓扑因子最小的 A7点加入已选集。 这里迭代转入步骤 C, 寻找下一个适合的站点加入已选集。 步骤 C2 (第二次): 图 8是本发明实施例的实例 1的站点示意图 4, 如图 8所示, 根据上面的已选集站点, 选择候选集, 其中, 候选集中各站点的网络拓扑因子计算如 表 4所示: 表 4
Figure imgf000019_0002
图 9是本发明实施例的实例 1的站点示意图 5, 如图 9所示, 选择拓扑因子最小 的 A22加入已选集, 具体地, 分析上面的数据, 只有 A22与已选集中的两个站点是邻 站 (A7和 A19), 这样只有 A22的拓扑因子小于 1, 并且被选中。 图 10是本发明实施例的实例 1的站点示意图 6, 如图 10所示, 按照上述的计算 方法, 依次加入的已选集的站点为 A24、 A15、 A6、 A2、 A23、 Al、 A17、 A13、 A5、 A4、 A20、 A25、 A28、 A27。 步骤 E, 在一片区域的站点筛选完毕后, 可能有远距离的站点因为大于设计站间 距而未加入候选集, 此时需要一个选择远距离区域的站点加入已选集, 如果存在远距 离的站点, 则转入步骤 A; 如没有远距离站点, 则转入步骤 H。 本实例的检查结果为 没有, 则转入步骤 H。 步骤 H-步骤 J: 下面开始对已选集中的站点进行优化调整, 此步骤可根据实际情 况选择是否进行 (如需要快速完成选择, 可不选择), 具体包括: 图 11是本发明实施例的实例 1的站点示意图 7, 如图 11所示, 在本实例中: 查找到 A19有可替换的邻近站点 A10。如果 A19定为必选站,则不必进行这一步; 首先计算 A19与已选集中的邻站组成的拓扑因子, 为 0.075 ; 然后将 A19替换为 A10, 计算拓扑因子, 为 0.069;
由于 0.069<0.075, 因此将 A10替换为 A19加入已选集; 查找到 A22有可替换的邻近站点 A14;
首先计算 A22与已选集中的邻站组成的拓扑因子, 为 0.056; 然后将 A22替换为 A14, 计算拓扑因子, 为 0.067;
由于 0.056<0.067, 因此保持 A22在已选集中。
查找到 A24有可替换的邻近站点 A21 ;
首先计算 A24与已选集中的邻站组成的拓扑因子, 为 0.093 ; 然后将 A24替换为 A21,计算拓扑因子, 为 0.107;
由于 0.093<0.107, 因此保持 A24在已选集中;
查找到 A15有可替换的邻近站点 A12;
首先计算 A15与已选集中的邻站组成的拓扑因子, 为 0.077; 然后将 A15替换为 A12,计算拓扑因子, 为 1.009;
由于 0.077<1.009, 因此保持 A15在已选集中;
查找到 A2有可替换的邻近站点 A16;
首先计算 A2与已选集中的邻站组成的拓扑因子, 为 0.072; 然后将 A2替换为 A16, 计算拓扑因子, 为 0.091 ;
由于 0.072<0.091,因此保持 A2在已选集中;
查找到 A23有可替换的邻近站点 A3 ;
首先计算 A23与已选集中的邻站组成的拓扑因子, 为 0.062; 然后将 A23替换为 A3,计算拓扑因子, 为 1.044; 由于 0.062<1.044, 因此保持 A23在已选集中。 查找到 A5有可替换的邻近站点 A8; 首先计算 A5与已选集中的邻站组成的拓扑因子, 为 1.00007; 然后将 A5替换为 A8,计算拓扑因子, 为 1.016; 由于 1.00007<1.016, 因此保持 A5在已选集中; 查找到 A4有可替换的邻近站点 A18; 首先计算 A4与已选集中的邻站组成的拓扑因子, 为 0.06; 然后将 A4替换为 A18, 计算拓扑因子, 为 0.086; 由于 0.06<0.086, 因此保持 A4在已选集中。 查找到 A25有可替换的邻近站点 A26; 首先计算 A25与已选集中的邻站组成的拓扑因子, 为 100 (即与任何其他已选集 中的站点都不是邻站); 然后将 A25替换为 A26, 计算拓扑因子, 为 0.011 ; 由于 0.011<100, 因此将 A26替换为 A25加入已选集; 对于优化调整的效果, 以上面最后一步为例说明, 在前面的迭代选择站点时, 选 择了 A20后的结果如附图 12所示。 此时对于已选集来说, 虽然 A25、 A26都不是邻 站, 但 A25的距离更近, 因此优先选择了 A25。 在选择了 A27、 A28后, A26与 A27、 A28是邻站, 因此这时 A26显然是比 A25 更好的选择。 在优化调整中, 程序将 A26替换为了 A25。 可以根据需要进一步调整, 直到网络规模稳定。 但当站点规模较大时, 这个调整 可能会花费较长的时间, 因此这部分的操作可选, 并且可以设定迭代次数。 实例 2 与实例 1不同的是, 在实例 2中, 为说明优先级的作用, 将实例 1中的 A24的优 先级从 2改为 1, 并重新执行实例 1中的步骤, 进行重新选择, 因为 A21有比 A24更 高的优先级, 因此尽管 A24拥有更佳的拓扑因子, 最后仍然是 A21, 而不是 A24被选 中, 得到最后的站点如附图 13所示。 本发明实施例通过设置初始站点, 并自动根据基站选址条件从所有站点的集合中 选择与该初始站点相适应的站点, 解决了现有技术中人工基站选址所形成的网络拓扑 结构的合理性很难得到保证的问题, 本发明实施例的技术方案不依赖于仿真数据, 运 算量很少, 能够为所有场景下的网络拓扑设计提供参考。 尽管为示例目的, 已经公开了本发明的优选实施例, 本领域的技术人员将意识到 各种改进、 增加和取代也是可能的, 因此, 本发明的范围应当不限于上述实施例。 工业实用性 本发明实施例提供的基站选址方案, 保证了网络拓扑结构的合理性, 方便了后续 的网络设计, 且该基站选址方案不依赖于仿真数据, 运算量很少, 能够为所有场景下 的网络拓扑设计提供参考, 实现简单, 选址速度快, 能够自动选择寻找最优的蜂窝结 构, 具有较强的工业实用性。

Claims

权 利 要 求 书 、 一种基站选址方法, 包括:
步骤 1, 根据输入的站点信息获取站点集合, 并设置基站选址条件; 步骤 2, 从所述站点集合中指定初始站点, 将所述初始站点存储到已选集; 步骤 3, 根据所述基站选择条件从所述站点集合剩余的站点中选择合格站 点存储到候选集;
步骤 4, 历遍所述候选集中的站点, 依次将所述候选集中的站点与所述已 选集中的相邻站点组合计算网络拓扑因子, 并将最佳网络拓扑因子的站点存储 到所述已选集, 重复执行步骤 2-4, 直到所述候选集为空。 、 如权利要求 1所述的方法, 其中, 执行所述步骤 3之前, 所述方法还包括: 根据所述基站选择条件从所述站点集合剩余的站点中剔除不合格的站点。 、 如权利要求 1所述的方法, 其中, 执行所述步骤 4之后, 所述方法还包括: 步骤 5, 历遍所述已选集中的站点, 根据所述限制条件检查是否有能够替 换当前站点的邻站点, 如果确定存在所述邻站点, 则将所述邻站点替换所述当 前站点后与所述已选集中的相邻站点组合计算网络拓扑因子, 并将所述网络拓 扑因子与替换前所述当前站点与所述已选集中的相邻站点组合所计算出的网络 拓扑因子进行比较, 如果替换后的网络拓扑因子更佳, 则将所述邻站点替换所 述当前站点并加入所述已选集, 否则, 不进行替换。 、 如权利要求 3所述的方法, 其中, 执行所述步骤 3之后, 所述方法还包括: 检查所述候选集是否为空, 如果不为空, 则执行步骤 4, 如果为空, 则选 择远距离区域中的站点加入所述已选集, 随后执行步骤 3, 如果所述选择远距 离区域中没有站点, 则执行步骤 5。 、 如权利要求 1至 4中任一项所述的方法, 其中, 所述站点信息包括: 站点经纬度、 站点的站高、 站点的优先级、 以及站点 的地物类型; 所述基站选址条件包括: 设计站间距、 调整后的设计站间距、 站间距筛选 上限、 站间距筛选下限、 设计站高、 站高上限、 以及站高下限。 、 一种基站选址装置, 包括:
设置模块, 设置为根据输入的站点信息获取站点集合, 并设置基站选址条 件;
初始站点获取模块, 设置为从所述站点集合中指定初始站点, 将所述初始 站点存储到已选集;
候选集站点选择模块, 设置为根据所述基站选择条件从所述站点集合剩余 的站点中选择合格站点存储到候选集;
已选集站点获取模块, 设置为历遍所述候选集中的站点, 依次将所述候选 集中的站点与所述已选集中的相邻站点组合计算网络拓扑因子, 并将最佳网络 拓扑因子的站点存储到所述已选集;
调用模块, 设置为在所述已选集站点获取模块执行完操作后, 依次调用所 述初始站点获取模块、 所述候选集站点选择模块、 以及所述已选集站点获取模 块, 直到所述候选集为空。 、 如权利要求 6所述的装置, 还包括: 剔除模块, 设置为根据所述基站选择条件从所述站点集合剩余的站点中剔 除不合格的站点。 、 如权利要求 6所述的装置, 还包括: 已选集优化模块, 设置为历遍所述已选集中的站点, 根据所述限制条件检 查是否有能够替换当前站点的邻站点, 如果确定存在所述邻站点, 则将所述邻 站点替换所述当前站点后与所述已选集中的相邻站点组合计算网络拓扑因子, 并将所述网络拓扑因子与替换前所述当前站点与所述已选集中的相邻站点组合 所计算出的网络拓扑因子进行比较, 如果替换后的网络拓扑因子更佳, 则将所 述邻站点替换所述当前站点并加入所述已选集, 否则, 不进行替换。 、 如权利要求 8所述的装置, 其中, 所述候选集站点选择模块还设置为: 检查所 述候选集是否为空, 如果不为空, 则调用所述已选集站点获取模块, 如果为空, 则选择远距离区域中的站点加入所述已选集, 如果所述选择远距离区域中没有 站点, 则调用所述已选集优化模块。 0、 如权利要求 6至 9中任一项所述的装置, 其中, 所述站点信息包括: 站点经纬度、 站点的站高、 站点的优先级、 以及站点 的地物类型; 所述基站选址条件包括: 设计站间距、 调整后的设计站间距、 站间距筛选 上限、 站间距筛选下限、 设计站高、 站高上限、 以及站高下限。
PCT/CN2012/077692 2011-09-15 2012-06-28 基站选址方法及装置 WO2013037229A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110273135.1 2011-09-15
CN201110273135.1A CN103002458B (zh) 2011-09-15 2011-09-15 基站选址方法及装置

Publications (1)

Publication Number Publication Date
WO2013037229A1 true WO2013037229A1 (zh) 2013-03-21

Family

ID=47882582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077692 WO2013037229A1 (zh) 2011-09-15 2012-06-28 基站选址方法及装置

Country Status (2)

Country Link
CN (1) CN103002458B (zh)
WO (1) WO2013037229A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103269490B (zh) * 2013-05-28 2015-12-23 大连海事大学 一种无线混合蜂窝网络基站选址与规模测算方法
CN111898221B (zh) * 2019-05-06 2023-10-13 华为技术服务有限公司 选址方法、装置及计算机可读存储介质
CN110972152B (zh) * 2019-12-18 2021-04-27 武汉大学 一种考虑信号阻隔效应的城市空间5g基站选址优化方法
CN114252888A (zh) * 2020-09-23 2022-03-29 苏州宝时得电动工具有限公司 自主机器人、基站选址方法、装置和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101150836A (zh) * 2007-11-06 2008-03-26 中国移动通信集团江苏有限公司 无线精确规划模测系统及方法
CN101998415A (zh) * 2010-10-29 2011-03-30 北京邮电大学 Td-lte系统干扰自避免的基站选址方法
CN102137405A (zh) * 2010-06-01 2011-07-27 华为技术有限公司 一种构造网络拓扑结构的方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998409B (zh) * 2009-08-31 2013-07-31 大唐移动通信设备有限公司 3g站点位置的确定方法和设备
JP5512468B2 (ja) * 2010-09-01 2014-06-04 ソフトバンクモバイル株式会社 アンテナシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101150836A (zh) * 2007-11-06 2008-03-26 中国移动通信集团江苏有限公司 无线精确规划模测系统及方法
CN102137405A (zh) * 2010-06-01 2011-07-27 华为技术有限公司 一种构造网络拓扑结构的方法及装置
CN101998415A (zh) * 2010-10-29 2011-03-30 北京邮电大学 Td-lte系统干扰自避免的基站选址方法

Also Published As

Publication number Publication date
CN103002458B (zh) 2017-12-08
CN103002458A (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
CN105933294B (zh) 网络用户定位方法、装置及终端
WO2017185664A1 (zh) 一种终端定位方法及网络设备
CN102377462B (zh) 一种交互式选择辅助小区的方法和系统
WO2013037229A1 (zh) 基站选址方法及装置
CN110087189A (zh) 一种无人机基站部署位置的确定方法及装置
CN109257287A (zh) 一种最短路径确定方法及控制器
US8467309B2 (en) Packet based location provisioning in wireless networks
CN109699033B (zh) 面向成本和负载均衡的LoRa电力物联网基站部署方法及装置
CN108306699A (zh) 一种基于增益预估的天馈优化方法
WO2011050721A1 (zh) 一种无线局域网接入点部署方案的获得方法及系统
CN104144425A (zh) 无线通信系统中的网络管理装置、方法和装置
CN103491544A (zh) 共享站点的选取方法及装置
WO2013006922A1 (en) Method, device and system for determining topology of a wireless communication network
CN102970163A (zh) 电力通信骨干网节点升级方法及系统
CN104254095A (zh) 一种引起大面积基站退服的传输故障定位方法及装置
CN114745791A (zh) 一种电力业务切片编排和资源配置方法及装置
CN101938769B (zh) 一种无线通讯网络优化数据的处理方法及系统
CN103117953B (zh) 一种QoS配置方法和设备
EP4026300A1 (en) System and method to reinforce fogging for latency critical iot applications in 5g
CN102036336B (zh) 一种认知路由协议与实现方法
CN113759311B (zh) 一种定位方法、装置及存储介质
CN101267403B (zh) 一种无线自组织网络路由稳定性的度量系统及其方法
Muthukaruppan et al. AMI based communication scheme for decentralized volt/VAR control
CN102972049B (zh) 通信装置
WO2019104483A1 (zh) 一种路由节点选择方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832282

Country of ref document: EP

Kind code of ref document: A1