WO2013037122A1 - 快速"超真空击密"软地基固结方法 - Google Patents

快速"超真空击密"软地基固结方法 Download PDF

Info

Publication number
WO2013037122A1
WO2013037122A1 PCT/CN2011/079722 CN2011079722W WO2013037122A1 WO 2013037122 A1 WO2013037122 A1 WO 2013037122A1 CN 2011079722 W CN2011079722 W CN 2011079722W WO 2013037122 A1 WO2013037122 A1 WO 2013037122A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
soil
ultra
soft
soft foundation
Prior art date
Application number
PCT/CN2011/079722
Other languages
English (en)
French (fr)
Inventor
徐望
Original Assignee
上海港湾软地基处理工程(集团)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海港湾软地基处理工程(集团)有限公司 filed Critical 上海港湾软地基处理工程(集团)有限公司
Priority to PCT/CN2011/079722 priority Critical patent/WO2013037122A1/zh
Publication of WO2013037122A1 publication Critical patent/WO2013037122A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/046Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil

Definitions

  • the present invention relates to a soft foundation consolidation method, and more particularly to a fast "ultra-vacuum compaction" soft foundation consolidation method. Background technique
  • the soft soil foundation generally has high water content, poor permeability, low carrying capacity, difficult access by humans and humans, and no roads, workshops, etc. can be built without improvement of foundations. Therefore, the soft soil foundation must be improved by the foundation before the upper building construction, otherwise it will bring about the negative consequences of building settlement, cracks and fractures.
  • Pile foundation method For example: cement soil pile, lime pile, gravel pile and sand pile.
  • the main disadvantages of these methods are: large amount of materials, the use of non-environmental products with high carbon emissions such as cement, high cost and long construction period.
  • Drainage consolidation method There are mainly vacuum preloading method, stacking preloading method and vacuum combined stacking method.
  • the main disadvantages of these methods are: long construction period, generally 5 ⁇ 12 months, high cost, using a large number of heaps Earth, not environmentally friendly.
  • the object of the present invention is to provide a rapid "ultra-vacuum compaction" soft foundation consolidation method for treating soft soil foundations having a plurality of soil layers having different properties and not being directly strong, so as to provide a low cost and construction period. Short, quality controllable and purely physical construction environmentally friendly method for fast consolidation of saturated soft soil.
  • the present invention provides a rapid "ultra-vacuum compaction" soft ground consolidation method, which comprises organically combining a vacuum well point vacuuming with an appropriate energy strong enthalpy, and vacuuming a vacuum well point to form a soil body.
  • the negative pressure and the strong energy are superimposed on the positive pressure of the excess pore water pressure generated by the soil to form an ultra-vacuum to the pore water contained in the soil, thereby accelerating the discharge of pore water in the soil and reaching the moisture content of the soft soil.
  • the method includes the following steps:
  • First step According to the number of different soil layers of the treated soft soil foundation, several sets of rectangular lengths of different vacuum tubes are inserted vertically on the soft foundation, and the lower end of the layered vacuum tube is inserted into the corresponding soil layer of the soft foundation.
  • the upper end of the vacuum tube is connected to the water collecting main pipe, and the water collecting main pipe is connected to the vacuum pumping device;
  • Step 2 Start the vacuum pumping equipment, vacuum the vacuum tube, and form a negative pressure around the soil;
  • Step 3 Remove one or more sets of vacuum tubes, keep the remaining vacuum tubes and continue vacuuming, and remove the vacuum tube area to at least meet the requirements. ⁇ The need for equipment to enter a tough job;
  • Step 4 Start the powerful equipment into the construction area, and carry out the “fit energy” to the area where the vacuum tube is removed, so that the excess pore water pressure is positive pressure, and the negative pressure formed by vacuuming is superimposed on the soil.
  • the pore water of the body forms an ultra-vacuum, which accelerates the discharge of pore water contained in the soil, so that the water content in the soft soil is not easily discharged;
  • Step 5 To evacuate the excess pore water pressure by more than 80%, repeat the construction steps from the first step to the fourth step until the water content of the treated soil is reduced and the bearing capacity meets the design requirements.
  • the number of soil layers with different properties of the treated soft soil foundation is 1 to 10 layers.
  • the vacuum tube is inserted into the treated soft foundation in a rectangular or triangular manner, the length of which is adapted to the depth of the corresponding soil layer to be treated.
  • the number of days from which the vacuum pumping device is activated for vacuuming is 1 to 15 days.
  • the vacuum tube to be removed is one or more sets of vacuum tubes inserted into one or more layers of soil, preferably by means of a whole layer of extraction, that is, the entire group of vacuum tubes inserted into a layer or a whole group of several layers is removed. Vacuum tube.
  • the energy range of the "suitable energy” is controlled to be 500 to 4000 kN ⁇ m, and the number of shots is 1 to 40 strokes.
  • the "appropriate energy" is generated by a strong pore water pressure value of 5 to 80 kPa, and the vacuum generating negative pressure value is 0 to 95 kPa.
  • the present invention has the following advantages:
  • the present invention adopts vertical insertion of a plurality of sets of vacuum tubes of different lengths and lengths, and the vacuum tubes are connected to the structure of the vacuum pumping equipment through the water collecting main pipe, and can be used for processing soft soil foundations having a plurality of soil layers having different properties and not being directly strong.
  • the "fit" energy of the present invention is controlled to increase the pore water pressure of the soft foundation to "positive pressure", which forms a relatively “high vacuum” environment in the soft foundation.
  • the vacuum pumping device performs vacuuming, which can dissipate the pore water pressure in the soft foundation, so that the water in the soft foundation can be discharged more easily, thereby providing a low cost, short construction period and good quality. Controlled and purely physical construction of environmentally friendly methods for fast consolidation of saturated soft foundations.
  • Figure 1 is a schematic view of the construction of the embodiment 1.
  • Figure 2 is a schematic view of the construction of the embodiment 2.
  • FIG. 3 is a schematic view of the construction of the embodiment 3. detailed description
  • the term "ultra-vacuum” means that the vacuum pressure at the vacuum well point is superimposed on the negative pressure formed by the soil and the positive pressure of the appropriate energy energy on the excess pore water pressure generated by the soil, thereby being in the soil.
  • the pore water contained forms a pressure that exceeds one standard atmospheric pressure.
  • a coastal development zone is newly filled to form a land area.
  • the geological condition is that the surface layer is 3 ⁇ 4m, which is filled with saturated clay silt layer 1, with water content of more than 60%, in liquefied state, bearing capacity. Very low, man and machine can not walk on it, under the saturated sticky silt layer 1 below the clay layer 5, the bearing capacity is about 8T / m 2 .
  • the number of soil layers with different properties of the treated soft foundation is 2 layers.
  • the bearing capacity after treatment needs to reach 12t/m 2 and the rebound modulus is greater than 30MPa.
  • First step a plurality of rectangular first vacuum tubes 2 having a length of 4 m are inserted into the saturated clay soil layer 1 , and a plurality of first vacuum tubes 2 are arranged in a rectangular shape, and a plurality of first vacuum tubes 2 are arranged.
  • the row spacing is 5m
  • the pipe distance of the first vacuum tube 2 of each row is 4m
  • the depth of the first vacuum tube 2 is 4m
  • the upper end of the first vacuum tube 2 is connected to the water collecting main pipe 3
  • the water collecting main pipe 3 is connected to the vacuum pumping device. 4;
  • a plurality of second vacuum tubes 6 having a rectangular length of 6 m are inserted into the clay layer 5, a plurality of second vacuum tubes 6 are arranged in a rectangular shape, and a plurality of second vacuum tubes 6 are arranged in a row of 2.5 m, and each row of second vacuum tubes
  • the pipe pitch of 6 is 4 m
  • the buried depth of the second vacuum pipe 6 is 6 m
  • the upper end of the second vacuum pipe 6 is connected to the water collecting main pipe 3
  • the water collecting main pipe 3 is connected to the vacuum pumping device 4.
  • Step 2 Start the vacuum pumping device 4. Vacuum all the vacuum tubes 2 and 6 for 5 to 7 days to form a negative pressure around the soil.
  • Step 3 Remove the first vacuum tube 2, keep the second vacuum tube 6 and continue to evacuate for 2 to 3 days.
  • the fourth step start the powerful equipment into the construction area, and carry out the "fit energy" for the area where the first vacuum tube 2 is removed.
  • the strong energy is 900kN*m, and the strong ⁇ distance is 4 X 4m, each strong ⁇ The number of clicks is 2 hits.
  • Step 5 Insert the first vacuum tube 2 that was removed in the third step.
  • Step 6 Start the vacuum pumping device 4, and vacuum all the vacuum tubes 2 and 6 for 5 to 7 days.
  • Step 7 Unplug the second vacuum tube 6. Leave the first vacuum tube 2 and continue to evacuate for 2 to 3 days.
  • Step 8 Start the powerful equipment into the construction area, and apply the “fit energy” to the area where the second vacuum tube 6 is removed.
  • the strong energy is 1300kN*m, and the strong ⁇ distance is 4 X 4m. Click the number of snipers for 3 to 5 hits.
  • Step 9 Insert the second vacuum tube 6 removed in the seventh step.
  • Step 10 Start the vacuum pumping equipment 4, vacuum all the vacuum tubes 2, 6 5 ⁇ 7 days.
  • the eleventh step The first vacuum tube 2 and the second vacuum tube 6 are removed, and a full energy of 500 kN*m is applied.
  • the surface layer is newly filled with silt, 8.
  • the thickness is more than 6m and the water content is 45%.
  • the number of soil layers with different properties of the treated soft foundation is 1 layer.
  • the first step a plurality of rectangular third vacuum tubes 7 are inserted into the soft foundation, and a plurality of third vacuum tubes 7 are arranged in a rectangular or triangular shape, and the third vacuum tubes 7 have a row spacing of 4 m.
  • the row distance of the third vacuum tube 7 of each row is 3.5 m
  • the depth of the third vacuum tube 7 is 6 m
  • the upper end of the third vacuum tube 7 is connected to the water collecting main pipe 3
  • the water collecting main pipe 3 is connected to the vacuum pumping device 4.
  • Step 2 Start the vacuum pumping device 4, and evacuate the third vacuum tube 7 for 7 days.
  • Step 3 Remove the third vacuum tube from the partition, and retain the remaining third vacuum tube. 7 Continue to evacuate for 2 to 3 days.
  • the fourth step start the powerful equipment into the construction area, and carry out the "fit energy" for the area where the third vacuum tube 7 is removed, the strong energy is 1800kN*m, and the strong ⁇ distance is 4 X 6m, each strong ⁇ Click on the number of snipers for 3 to 4 hits.
  • Step 5 Insert the third vacuum tube 7 removed in the third step.
  • Step 6 Start the vacuum pumping device 4, and vacuum the third vacuum tube 7 for 5 to 7 days to reduce the pore water pressure.
  • Step 7 Pull out the third vacuum tube 7 that has not been removed in the third step of the step, and keep the remaining third vacuum tube 7 and continue to evacuate for 2 to 3 days.
  • Step 8 Start the powerful equipment into the construction area, and apply the “fit energy” to the area where the vacuum tube is removed.
  • the strong energy is 2200kN*m, and the strong ⁇ distance is 4 ⁇ 6m. The number is 5 ⁇ 7 hits.
  • Step 9 Insert the third vacuum tube 7 removed in the seventh step.
  • Step 10 Start the vacuum pumping device 4. Vacuum the third vacuum tube 7 for 5 to 7 days to reduce the pore water pressure.
  • the eleventh step the third vacuum tube is removed from the two rows, and the remaining third vacuum tube is retained. The vacuum is continued for 2 to 3 days.
  • Step 12 Start the powerful equipment into the construction area, and apply the “fit energy” to the area where the third vacuum tube 7 is removed.
  • the strong energy is 2500kN*m, and the strong ⁇ distance is 3 X 3m.
  • the number of sniper snips is 5 ⁇ 7.
  • the thirteenth step The entire site is full, the powerful energy of the full ⁇ is 800 ⁇ 1000kN*m, the number of slams of each strong point is 1 ⁇ 2 hits, and the hammer marks overlap each other by 1/4 hammer diameter.
  • the soft foundation of a road is reinforced.
  • the surface of the soft foundation is silty clay 9, with a thickness of about 2 m and a water content of 50%.
  • the number of soil layers with different properties of the treated soft foundation is 2 layers.
  • the first step a plurality of rectangular fourth vacuum tubes 11 are inserted into the silty clay 9, a plurality of fourth vacuum tubes 11 are arranged in a rectangular shape, and a plurality of fourth vacuum tubes 11 have a row spacing of 3.5. m, the row of the fourth vacuum tube 11 of each row is 4.5m, the depth of the fourth vacuum tube 11 is 2m, the upper end of the fourth vacuum tube 11 is connected to the water collecting main pipe 3, and the water collecting main pipe 3 is connected to the vacuum pumping device 4;
  • a plurality of rectangular fifth vacuum tubes 12 are inserted into the silt soil layer 10, a plurality of fifth vacuum tubes 12 are arranged in a rectangular shape, and a plurality of fifth vacuum tubes 12 have a row spacing of 3.5 m, and each of the fifth vacuum tubes 12 is arranged.
  • the pipe pitch is 2.5 m
  • the buried depth of the fifth vacuum pipe 12 is 7 m
  • the upper end of the fifth vacuum pipe 12 is connected to the water collecting main pipe 3
  • the water collecting main pipe 3 is connected to the vacuum pumping device 4.
  • Step 2 Start the vacuum pumping device 4, and evacuate all the vacuum tubes 11, 12 for 10 to 12 days.
  • the third step the fourth vacuum tube 11 is removed, and the fifth vacuum tube 12 is left to continue to evacuate for 5 to 7 days.
  • Step 4 Start the powerful equipment into the construction area, and carry out the “fit” energy for the area where the fourth vacuum tube 11 is removed.
  • the strong energy is 2500kN*m, and the number of slams for each strong point is 35 ⁇ 40.
  • Step 5 Insert the fourth vacuum tube 11.
  • Step 6 Start the vacuum pumping device 4. Vacuum all the vacuum tubes 11, 12 for 12 to 15 days to reduce the pore water pressure.
  • Step 7 Pull out the fifth vacuum tube 12, keep the fourth vacuum tube 11 and continue to vacuum for 5 to 7 days.
  • Step 8 Start the powerful equipment into the construction area, and carry out the “fit” energy for the area where the fifth vacuum tube 12 is removed.
  • the strong energy is 4000kN*m, and the number of slams for each strong point is 1 ⁇ 5.

Abstract

一种快速"超真空击密"软地基固结方法,包括将真空井点抽真空与适能量强夯进行有机结合,将真空井点抽真空对土体形成的负压与适能量强夯对土体产生的超孔隙水压力的正压相叠加,以对土体中所含的孔隙水形成超真空,从而加速土体孔隙水的排出,降低软土含水量。该方法造价低、工期短、质量可控、施工环保。

Description

快速 "超真空击密"软地基固结方法
技术领域
本发明涉及一种软地基固结方法, 特别是涉及一种快速 "超真空击密"软地基固 结方法。 背景技术
沿江、沿海和沿湖地区存在大量的软土地基,软土地基一般含水量高,渗透性差, 承载力低, 人机难以进入, 不经过地基改良, 无法进行道路、 厂房等建设。 所以软土 地基必须经过地基改良方可进行上部建筑施工, 否则会带来建筑物沉降、裂缝和断裂 等不良后果。
目前国内外常见的地基改良方法有以下几类:
1、 桩基法: 例如: 水泥土桩, 石灰桩, 碎石桩和砂桩等方法。 这些方法的主要 缺点是: 材料用量大, 使用了水泥等高碳排放的不环保产品, 造价高且施工工期长。
2、 排水固结法: 主要有真空预压法、 堆载预压法和真空联合堆载法, 这些方法 的主要缺点是: 工期长, 一般为 5〜12个月, 造价高, 使用大量堆土, 不环保。
3、 强夯法: 按现有规范, 强夯法对于饱和软弱土不适用, 主要缺点是: 在施工 过程中易形成 "弹簧土", 承载力反而有所降低。 发明内容
本发明的目的在于提供一种快速 "超真空击密"软地基固结方法, 用于处理存在 若干个不同性质且不宜直接强夯的土层的软地基, 以达到提供一种造价低、 工期短、 质量可控且纯物理施工环保的快速固结饱和软土的方法。
为了达到上述目的, 本发明提供一种快速 "超真空击密 "软地基固结方法, 包括 将真空井点抽真空与适能量强夯进行有机结合,将真空井点抽真空对土体形成的负压 与适能量强夯对土体产生的超孔隙水压力的正压相叠加,以对土体中所含的孔隙水形 成超真空, 从而加速土体孔隙水的排出, 达到软土含水量的降低。
具体的, 所述方法包括以下步骤:
第一步: 根据被处理深度软地基不同性质土层的数量, 在软地基上竖向分层插入 若干组矩形的长短不同的真空管, 分层的真空管的下端插到软地基的对应的土层中, 真空管的上端连接至集水总管, 集水总管再连接至真空抽水设备; 第二步: 启动真空抽水设备, 对真空管进行抽真空, 对土体周围形成负压力; 第三步: 拔除一组或多组真空管, 保留其余真空管继续抽真空, 拔除真空管的区 域应至少满足强夯设备进入强夯作业的需求;
第四步: 开动强夯设备进入施工区域, 对拔除真空管的区域进行"适能量"强夯, 使土体产生超孔隙水压力为正压力, 以与抽真空形成的负压相叠加,对土体的孔隙水 形成超真空, 加速土体中所含孔隙水的排出, 使软土中不易排出含水量降低;
第五步: 待抽真空将超孔隙水压力消散 80%以上, 重复第一步至第四步的施工步 骤, 直至被处理土体的含水量降低, 承载力达到设计要求。
所述的被处理深度软地基不同性质土层的数量为 1〜10层。
根据本发明, 所述真空管以矩形或三角形的方式插入被处理的软地基中, 其长度 与需处理对应土层的深度相适配。
根据本发明的优选实施例, 启动真空抽水设备进行抽真空的天数为 1〜15天。 根据本发明, 拔除的真空管是插入某一层或多层土层的一组或多组真空管, 优选 采用整层拔除的方式, 即拔除插入某一层的整组真空管或某几层的整组真空管。
根据本发明, 所述 "适能量"强夯的能量范围控制在 500〜4000kN · m, 击数为 1〜40击。
根据一个优选实施例, 所述 "适能量"强夯产生的超孔隙水压力值为 5〜80kPa, 所述抽真空产生的负压力值为 0〜95 kPa o
与现有技术相比, 本发明具有以下的优势:
1 ) 本发明采用竖向插入若干组长短不同的真空管, 真空管通过集水总管连接真 空抽水设备的结构,能够用于处理存在若干个不同性质且不宜直接强夯的土层的软地 基。
2) 本发明抽真空后进行的 "适能量"强夯控制软地基的孔隙水压力升高为 "正 压力", 该 "正压力"使软地基内形成一个相对 "高真空"环境。 在 "高真空"环境 下, 真空抽水设备进行抽真空, 能够使软地基中的孔隙水压力消散, 使软地基内的水 能够更容易地排出, 从而提供一种造价低、工期短、质量可控且纯物理施工环保的快 速固结饱和软地基的方法。 附图说明
图 1实施例 1的施工示意图。 图 2实施例 2的施工示意图。
图 3实施例 3的施工示意图。 具体实施方式
以下结合具体实施例, 对本发明做进一步说明。 应理解, 以下实施例仅用于说明 本发明而非用于限定本发明的范围。
本发明的上下文中, 术语 "超真空"是指真空井点抽真空对土体形成的负压与适 能量强夯对土体产生的超孔隙水压力的正压相叠加,从而对土体中所含的孔隙水形成 能超过一个标准大气压的压力。 实施例 1
如图 1所示, 某海边开发区新吹填形成陆域, 其地质情况为, 表层 3〜4m为吹填 饱和粘质粉土层 1, 含水量 60%以上, 处于液化状态, 承载力极低, 人机都不能在上 面行走, 吹填饱和粘质粉土层 1下面为粘土层 5, 承载力约为 8T/m2。 被处理深度软 地基不同性质土层的数量为 2层。
根据设计要求, 处理后承载力需达到 12t/m2, 回弹模量大于 30MPa。
现采用快速 "超真空击密"软地基固结方法, 其具体操作步骤如下:
第一步: 若干根长为 4m的矩形的第一真空管 2的下端插入吹填饱和粘质粉土层 1中, 若干根第一真空管 2的排布成矩形, 若干根第一真空管 2的排距为 5m, 每排 第一真空管 2的管距为 4m,第一真空管 2的埋深为 4m,第一真空管 2的上端连接至 集水总管 3, 集水总管 3再连接至真空抽水设备 4;
若干根长为 6m的矩形的第二真空管 6的下端插入粘土层 5中, 若干根第二真空 管 6的排布成矩形, 若干根第二真空管 6的排距为 2.5m, 每排第二真空管 6的管距 为 4m, 第二真空管 6的埋深为 6m, 第二真空管 6的上端连接至集水总管 3, 集水总 管 3再连接至真空抽水设备 4。
第二步: 启动真空抽水设备 4, 对所有真空管 2、 6进行抽真空 5〜7天, 对土体 周围形成负压力。
第三步: 拔除第一真空管 2, 保留第二真空管 6继续抽真空 2〜3天。
第四步:开动强夯设备进入施工区域,对拔除第一真空管 2的区域进行"适能量" 强夯, 强夯能量为 900kN*m, 强夯的夯距为 4 X 4m, 每个强夯点夯击数为 2击。
第五步: 插入第三步中拔除的第一真空管 2。 第六步: 启动真空抽水设备 4, 对所有真空管 2、 6抽真空 5〜7天。
第七步: 拔除第二真空管 6, 保留第一真空管 2继续抽真空 2〜3天。
第八步:开动强夯设备进入施工区域,对拔除第二真空管 6的区域进行"适能量" 强夯, 强夯能量为 1300kN*m, 强夯的夯距为 4 X 4m, 每个强夯点夯击数为 3〜5击。
第九步: 插入第七步中拔除的第二真空管 6。
第十步: 启动真空抽水设备 4, 对所有真空管 2、 6抽真空 5〜7天。
第十一步: 拔除第一真空管 2和第二真空管 6, 且进行强夯能量为 500 kN*m的 满夯。
处理后经检测, 地基承载力从几乎为零提高到 15t/m2, 回弹模量为 37MPa。满足 设计要求。
由于采用快速 "超真空击密"软地基固结方法, 50万平方米面积的场地在 2个 月内处理完, 满足了工期要求, 相比常规方法, 节约造价 1/3。 实施例 2
某一大型堆场 100万平方米的软地基上, 表层为新近吹填粉土 8, 厚度大于 6m, 含水量 45%。 被处理深度软地基不同性质土层的数量为 1层。
设计要求: 承载力 fak=150kPa, 现场无土方。 通过计算, 采用真空预压等排水法 难以达到要求, 桩基法造价每平方超千元, 成本太高。
现采用快速 "超真空击密"软地基固结方法, 其具体操作步骤如下:
如图 2所示, 第一步: 若干根矩形的第三真空管 7的下端插入在软地基中, 若干 根第三真空管 7排布成矩形或者三角形, 若干根第三真空管 7的排距为 4m, 每排第 三真空管 7的管距为 3.5m, 第三真空管 7的埋深为 6m, 第三真空管 7的上端连接至 集水总管 3, 集水总管 3再连接至真空抽水设备 4。
第二步: 启动真空抽水设备 4, 对第三真空管 7进行抽真空 7天。
第三步: 隔排拔除第三真空管 7, 保留其余第三真空管 7继续抽真空 2〜3天。 第四步:开动强夯设备进入施工区域,对拔除第三真空管 7的区域进行"适能量" 强夯, 强夯能量为 1800kN*m, 强夯的夯距为 4 X 6m, 每个强夯点夯击数为 3〜4击。
第五步: 插入第三步中拔除的第三真空管 7。
第六步: 启动真空抽水设备 4, 对第三真空管 7抽真空 5〜7天, 以降低孔隙水压 力。 第七步: 拔除在步骤第三步中未拔除的第三真空管 7, 保留其余第三真空管 7继 续抽真空 2〜3天。
第八步: 开动强夯设备进入施工区域,对拔除真空管的区域进行"适能量"强夯, 强夯能量为 2200kN*m, 强夯的夯距为 4 X 6m, 每个强夯点夯击数为 5〜7击。
第九步: 插入第七步中拔除的第三真空管 7。
第十步: 启动真空抽水设备 4, 对第三真空管 7抽真空 5〜7天, 以降低孔隙水压 力。
第十一步:隔两排拔除第三真空管 7,保留其余第三真空管 Ί继续抽真空 2〜3天。 第十二步: 开动强夯设备进入施工区域, 对拔除第三真空管 7的区域进行"适能 量"强夯, 强夯能量为 2500kN*m, 强夯的夯距为 3 X 3m, 每个强夯点夯击数为 5〜7 击。
第十三步: 全场地满夯, 满夯的强夯能量为 800〜1000kN*m, 每个强夯点夯击数 为 1〜2击, 锤印相互搭接 1/4锤径。
处理后经检测, 地基承载力提高到 18t/m2, 满足设计要求。 实施例 3
某一道路的软地基加固,软地基的表层为粉质粘土 9,厚度约为 2m,含水量 50%, 软地基的第二层为淤泥质土层 10,厚约 10〜13m,含水量 70%,原承载力 fak=20〜30kPa。 被处理深度软地基不同性质土层的数量为 2层。
设计要求: 承载力 fak=80kPa。
现采用快速 "超真空击密"软地基固结方法, 其具体操作步骤如下:
如图 3所示, 第一步: 若干根矩形的第四真空管 11的下端插入粉质粘土 9中, 若干根第四真空管 11 的排布成矩形, 若干根第四真空管 11的排距为 3.5m, 每排第 四真空管 11的管距为 4.5m, 第四真空管 11的埋深为 2m, 第四真空管 11的上端连 接至集水总管 3, 集水总管 3再连接至真空抽水设备 4;
若干根矩形的第五真空管 12的下端插入淤泥质土层 10中, 若干根第五真空管 12的排布成矩形, 若干根第五真空管 12的排距为 3.5m, 每排第五真空管 12的管距 为 2.5m, 第五真空管 12的埋深为 7m, 第五真空管 12的上端连接至集水总管 3, 集 水总管 3再连接至真空抽水设备 4。
第二步: 启动真空抽水设备 4, 对所有的真空管 11、 12进行抽真空 10〜12天。 第三步: 拔除第四真空管 11, 保留第五真空管 12继续抽真空 5〜7天。
第四步: 开动强夯设备进入施工区域, 对拔除第四真空管 11 的区域进行 "适能 量"强夯, 强夯能量为 2500kN*m, 每个强夯点夯击数为 35〜40击。
第五步: 插入第四真空管 11。
第六步: 启动真空抽水设备 4, 对所有的真空管 11、 12进行抽真空 12〜15天, 以降低孔隙水压力。
第七步: 拔除第五真空管 12, 保留第四真空管 11继续抽真空 5〜7天。
第八步: 开动强夯设备进入施工区域, 对拔除第五真空管 12的区域进行 "适能 量"强夯, 强夯能量为 4000kN*m, 每个强夯点夯击数为 1〜5击。
处理后经检测, 地基承载力提高到 80kpa。 满足设计要求。

Claims

权利要求书
1、 一种快速 "超真空击密"软地基固结方法, 其特征在于, 包括将真空井点 抽真空与适能量强夯进行有机结合, 将真空井点抽真空对土体形成的负压与适能 量强夯对土体产生的超孔隙水压力的正压相叠加, 以对土体中所含的孔隙水形成 超真空, 从而加速土体孔隙水的排出, 达到软土含水量的降低。
2、 根据权利要求 1所述的快速 "超真空击密"软地基固结方法, 其特征是, 所述方法包括以下步骤:
第一步: 根据被处理深度软地基不同性质土层的数量, 在软地基上竖向分层 插入若干组矩形的长短不同的真空管, 分层的真空管的下端插到软地基的对应的 土层中, 真空管的上端连接至集水总管, 集水总管再连接至真空抽水设备;
第二步: 启动真空抽水设备, 对真空管进行抽真空, 对土体周围形成负压力; 第三步: 拔除一组或多组真空管, 保留其余真空管继续抽真空, 拔除真空管 的区域应至少满足强夯设备进入强夯作业的需求;
第四步: 开动强夯设备进入施工区域, 对拔除真空管的区域进行 "适能量" 强夯, 使土体产生超孔隙水压力为正压力, 以与抽真空形成的负压相叠加, 对土 体的孔隙水形成超真空, 加速土体中所含孔隙水的排出, 使软土中不易排出含水 量降低;
第五步: 待抽真空将超孔隙水压力消散 80%以上, 重复第一步至第四步的施 工步骤, 直至被处理土体的含水量降低, 承载力达到设计要求。
3、 根据权利要求 2所述的快速 "超真空击密"软地基固结方法, 其特征是, 被处理深度软地基不同性质土层的数量为 1〜10层。
4、 根据权利要求 2所述的快速 "超真空击密"软地基固结方法, 其特征是, 所述真空管以矩形或三角形的方式插入被处理的软地基中, 其长度与需处理对应 土层的深度相适配。
5、 根据权利要求 2所述的快速 "超真空击密"软地基固结方法, 其特征是, 所述启动真空抽水设备进行抽真空的天数为 1〜15天。
6、 根据权利要求 2所述的快速 "超真空击密"软地基固结方法, 其特征是, 所述拔除的真空管是插入某一层或多层土层的一组或多组真空管。
7、 根据权利要求 2所述的快速 "超真空击密"软地基固结方法, 其特征是, 所述 "适能量"强夯的能量范围控制在 500〜4000kN · m, 击数为 1〜40击。
8、 根据权利要求 2所述的快速 "超真空击密"软地基固结方法, 其特征是, 所述 "适能量"强夯产生的超孔隙水压力值为 5〜80kPa, 所述抽真空产生的负压 力值为 0〜95 kPao
PCT/CN2011/079722 2011-09-16 2011-09-16 快速"超真空击密"软地基固结方法 WO2013037122A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/079722 WO2013037122A1 (zh) 2011-09-16 2011-09-16 快速"超真空击密"软地基固结方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/079722 WO2013037122A1 (zh) 2011-09-16 2011-09-16 快速"超真空击密"软地基固结方法

Publications (1)

Publication Number Publication Date
WO2013037122A1 true WO2013037122A1 (zh) 2013-03-21

Family

ID=47882541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079722 WO2013037122A1 (zh) 2011-09-16 2011-09-16 快速"超真空击密"软地基固结方法

Country Status (1)

Country Link
WO (1) WO2013037122A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106958239A (zh) * 2016-01-11 2017-07-18 上海杰欧地基建筑科技有限公司 降水联合轻夯软土地基加固方法
CN111827247A (zh) * 2019-04-15 2020-10-27 江苏澄工科技有限公司 一种软弱地基的加固方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1609345A (zh) * 2004-11-25 2005-04-27 徐士龙 高真空变能量交叉击密软地基处理的方法
CN1624250A (zh) * 2004-11-25 2005-06-08 徐士龙 新型高真空变能量交叉击密软地基处理的方法
KR20100059209A (ko) * 2008-11-26 2010-06-04 (주)지구환경전문가그룹 연약지반 성토시 강제 배수 및 동시 보강을 위한 연약지반 배수구조
CN101845811A (zh) * 2009-03-25 2010-09-29 上海港湾软地基处理工程(集团)有限公司 一种改进的高真空击密软地基处理方法
KR20110026550A (ko) * 2009-09-08 2011-03-16 지에스건설 주식회사 연약지반의 간극수를 배출하기 위한 양방향 석션드레인 압밀공법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1609345A (zh) * 2004-11-25 2005-04-27 徐士龙 高真空变能量交叉击密软地基处理的方法
CN1624250A (zh) * 2004-11-25 2005-06-08 徐士龙 新型高真空变能量交叉击密软地基处理的方法
KR20100059209A (ko) * 2008-11-26 2010-06-04 (주)지구환경전문가그룹 연약지반 성토시 강제 배수 및 동시 보강을 위한 연약지반 배수구조
CN101845811A (zh) * 2009-03-25 2010-09-29 上海港湾软地基处理工程(集团)有限公司 一种改进的高真空击密软地基处理方法
KR20110026550A (ko) * 2009-09-08 2011-03-16 지에스건설 주식회사 연약지반의 간극수를 배출하기 위한 양방향 석션드레인 압밀공법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106958239A (zh) * 2016-01-11 2017-07-18 上海杰欧地基建筑科技有限公司 降水联合轻夯软土地基加固方法
CN111827247A (zh) * 2019-04-15 2020-10-27 江苏澄工科技有限公司 一种软弱地基的加固方法

Similar Documents

Publication Publication Date Title
CN102011391B (zh) 一种软弱地基的加固处理方法
WO2010108433A1 (zh) 一种改进的高真空击密软地基处理方法
WO2008064550A1 (fr) Procédé d'informations combiné avec une consolidation dynamique et un drainage sous vide pour le renforcement d'un terrain au sol meuble
CN100359100C (zh) 快速“高真空击密、桩基”复合软地基处理方法
CN104358267A (zh) 污染场地原位水土快速修复的真空管井降水及回灌方法
CN102220755A (zh) 超压真空降水联合强夯地基处理方法
CN104652413B (zh) 一种新型的滩涂淤泥路基处理方法
TW201144531A (en) Soft foundation treatment method
CN104711967A (zh) 一种碎石桩联合真空预压处理软弱地基的方法
WO2021072941A1 (zh) 一种滨海淤泥软土地基二次强夯碎石置换加固方法
CN100535256C (zh) 强夯半置换施工工艺
CN105200973A (zh) 一种软弱地基综合处理方法
CN101666099B (zh) 基于筒型基础负压技术的逐层地基加固方法
CN102767174A (zh) 动静排水振击法
WO2013037122A1 (zh) 快速"超真空击密"软地基固结方法
CN108978625A (zh) 一种砂桩联合高真空击密法软基处理施工工法
CN206052761U (zh) 一种海上风电场单桩基础
CN108277794A (zh) 一种吹填软土地基真空动力固结复合排水系统
CN102677681A (zh) 大型土方快速回填分层处理方法
CN106869153A (zh) 一种井点降水快速处理软地基的方法
CN208472692U (zh) 一种用于坝面接管法的测斜管保护装置
CN101130953B (zh) 一种软土地基深层真空振击处理方法
CN208293556U (zh) 一种吹填软土地基真空动力固结复合排水系统
CN103758109B (zh) 用于欠固结土的排水旋喷桩地基的设置及处理方法
CN100532729C (zh) 浅层振夯击密与深层爆炸挤密联合高真空井点降水地基处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872489

Country of ref document: EP

Kind code of ref document: A1