WO2013036611A1 - Processes and intermediates for making a jak inhibitor - Google Patents

Processes and intermediates for making a jak inhibitor Download PDF

Info

Publication number
WO2013036611A1
WO2013036611A1 PCT/US2012/053921 US2012053921W WO2013036611A1 WO 2013036611 A1 WO2013036611 A1 WO 2013036611A1 US 2012053921 W US2012053921 W US 2012053921W WO 2013036611 A1 WO2013036611 A1 WO 2013036611A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
salt
mixture
acid
Prior art date
Application number
PCT/US2012/053921
Other languages
French (fr)
Inventor
Jiacheng Zhou
Pingli Liu
Ganfeng Cao
Yongzhong Wu
Original Assignee
Incyte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to UAA201403501A priority Critical patent/UA111854C2/en
Priority to AU2012304650A priority patent/AU2012304650B2/en
Priority to PL12770334T priority patent/PL2753621T3/en
Priority to IN2177DEN2014 priority patent/IN2014DN02177A/en
Priority to SI201230444A priority patent/SI2753621T1/en
Priority to CA2847728A priority patent/CA2847728C/en
Priority to CN201280046561.4A priority patent/CN104024256B/en
Priority to EP12770334.6A priority patent/EP2753621B1/en
Priority to SG11201400414XA priority patent/SG11201400414XA/en
Priority to BR112014005174-7A priority patent/BR112014005174B1/en
Priority to KR1020147008415A priority patent/KR102002277B1/en
Priority to RS20160065A priority patent/RS54615B1/en
Application filed by Incyte Corporation filed Critical Incyte Corporation
Priority to ES12770334.6T priority patent/ES2564133T3/en
Priority to JP2014529844A priority patent/JP5977354B2/en
Priority to MX2014002681A priority patent/MX339715B/en
Priority to DK12770334.6T priority patent/DK2753621T3/en
Priority to EA201490575A priority patent/EA026122B1/en
Priority to MEP-2016-43A priority patent/ME02458B/en
Priority to NZ622295A priority patent/NZ622295B2/en
Publication of WO2013036611A1 publication Critical patent/WO2013036611A1/en
Priority to IL231389A priority patent/IL231389A/en
Priority to ZA2014/02163A priority patent/ZA201402163B/en
Priority to HK14112995.4A priority patent/HK1199445A1/en
Priority to SM201600060T priority patent/SMT201600060B/en
Priority to HRP20160241TT priority patent/HRP20160241T1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • C07D491/113Spiro-condensed systems with two or more oxygen atoms as ring hetero atoms in the oxygen-containing ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • This invention relates to processes and intermediates for making ⁇ l- ⁇ l-[3- fluoro-2-(trifluoromethyl)isonicotinoyl]piperidin-4-yl ⁇ -3-[4-(7H-pyrrolo[2,3- d]pyrimidin-4-yl)-l H-pyrazol-l -yl]azetidin-3-yl ⁇ acetonitrile, useful in the treatment of diseases related to the activity of Janus kinases (JAK) including inflammatory disorders, autoimmune disorders, cancer, and other diseases.
  • JK Janus kinases
  • Protein kinases regulate diverse biological processes including cell growth, survival, differentiation, organ formation, morphogenesis, neovascularization, tissue repair, and regeneration, among others. Protein kinases also play specialized roles in a host of human diseases including cancer. Cytokines, low-molecular weight polypeptides or glycoproteins, regulate many pathways involved in the host inflammatory response to sepsis. Cytokines influence cell differentiation, proliferation and activation, and can modulate both pro-inflammatory and anti- inflammatory responses to allow the host to react appropriately to pathogens.
  • JAKs Janus kinase family
  • JAK2 Janus kinase- 1
  • JAK2 JAK3
  • TYK2 protein-tyrosine kinase 2
  • Cytokine-stimulated immune and inflammatory responses contribute to pathogenesis of diseases: pathologies such as severe combined immunodeficiency (SCID) arise from suppression of the immune system, while a hyperactive or inappropriate immune/inflammatory response contributes to the pathology of autoimmune diseases (e.g., asthma, systemic lupus erythematosus, thyroiditis, myocarditis), and illnesses such as scleroderma and osteoarthritis (Ortmann, R. A., T. Cheng, et al. (2000) Arthritis Res 2(1 ): 16-32).
  • SCID severe combined immunodeficiency
  • JAKs Deficiencies in expression of JAKs are associated with many disease states. For example, Jakl -/- mice are runted at birth, fail to nurse, and die perinatally (Rodig, S. J., M. A. Meraz, et al. (1998) Cell 93(3): 373-83). Jak2-/- mouse embryos are anemic and die around day 12.5 postcoitum due to the absence of definitive erythropoiesis.
  • the JAK/STAT pathway and in particular all four JAKs, are believed to play a role in the pathogenesis of asthmatic response, chronic obstructive pulmonary disease, bronchitis, and other related inflammatory diseases of the lower respiratory tract.
  • Multiple cytokines that signal through JAKs have been linked to inflammatory diseases/conditions of the upper respiratory tract, such as those affecting the nose and sinuses (e.g., rhinitis and sinusitis) whether classically allergic reactions or not.
  • the JAK/STAT pathway has also been implicated in inflammatory diseases/conditions of the eye and chronic allergic responses.
  • Activation of JAK/STAT in cancers may occur by cytokine stimulation (e.g. IL-6 or GM-CSF) or by a reduction in the endogenous suppressors of JAK signaling such as SOCS (suppressor or cytokine signaling) or PIAS (protein inhibitor of activated STAT) (Boudny, V., and Kovarik, J., Neoplasm. 49:349-355, 2002).
  • cytokine stimulation e.g. IL-6 or GM-CSF
  • SOCS suppressor or cytokine signaling
  • PIAS protein inhibitor of activated STAT
  • JAK2 tyrosine kinase can be beneficial for patients with myeloproliferative disorders, e.g., polycythemia vera (PV), essential thrombocythemia (ET), myeloid metaplasia with myelofibrosis (MMM) (Levin, et al., Cancer Cell, vol. 7, 2005: 387- 397).
  • PV polycythemia vera
  • ET essential thrombocythemia
  • MMM myeloid metaplasia with myelofibrosis
  • Inhibition of the JAK2V617F kinase decreases proliferation of hematopoietic cells, suggesting JAK2 as a potential target for pharmacologic inhibition in patients with PV, ET, and MMM.
  • Inhibition of the JAKs may benefit patients suffering from skin immune disorders such as psoriasis, and skin sensitization.
  • JAKl plays a central role in a number of cytokine and growth factor signaling pathways that, when dysregulated, can result in or contribute to disease states. For example, IL-6 levels are elevated in rheumatoid arthritis, a disease in which it has been suggested to have detrimental effects (Fonesca, J.E. et al., Autoimmunity Reviews, 8:538-42, 2009). Because IL-6 signals, at least in part, through JAKl , antagonizing IL-6 directly or indirectly through JAKl inhibition is expected to provide clinical benefit (Guschin, D., N., et al Embo J 14: 1421, 1995; Smolen, J. S., et al. Lancet 371 :987, 2008).
  • JAKl is mutated resulting in constitutive undesirable tumor cell growth and survival (Mullighan CG, Proc Natl Acad Sci U S A.106:9414-8, 2009; Flex E., et al.J Exp Med. 205:751-8, 2008).
  • JAKl inhibition In other autoimmune diseases and cancers elevated systemic levels of inflammatory cytokines that activate JAK 1 may also contribute to the disease and/or associated symptoms. Therefore, patients with such diseases may benefit from JAKl inhibition.
  • Selective inhibitors of JAKl may be efficacious while avoiding unnecessary and potentially undesirable effects of inhibiting other JAK kinases.
  • JAKl erythropoietin
  • Tpo thrombopoietin
  • Epo is a key growth factor for red blood cells production; hence a paucity of Epo-dependent signaling can result in reduced numbers of red blood cells and anemia (Kaushansky K, NEJM 354:2034-45, 2006).
  • Tpo another example of a JAK2-dependent growth factor, plays a central role in controlling the proliferation and maturation of megakaryocytes - the cells from which platelets are produced (Kaushansky K, NEJM 354:2034-45, 2006). As such, reduced Tpo signaling would decrease megakaryocyte numbers (megakaryocytopenia) and lower circulating platelet counts (thrombocytopenia). This can result in undesirable and/or uncontrollable bleeding.
  • JAK3 and Tyk2 Reduced inhibition of other JAKs, such as JAK3 and Tyk2 may also be desirable as humans lacking functional version of these kinases have been shown to suffer from numerous maladies such as severe-combined immunodeficiency or hyperimmunoglobulin E syndrome (Minegishi, Y, et al.
  • JAK 1 inhibitor with reduced affinity for other JAKs would have significant advantages over a less-selective inhibitor with respect to reduced side effects involving immune suppression, anemia and thrombocytopenia.
  • JAK inhibitors are described in U.S. Serial No. 13/043,986, filed March 9, 201 1 , which is incorporated herein by reference in its entirety, including ⁇ l - ⁇ l -[3- fluoro-2-(trifluoromethyl)isonicotinoyl]piperidin-4-yl ⁇ -3-[4-(7H-pyrrolo[2,3- d]pyrimidin-4-yl)-l H-pyrazol- l -yl]azetidin-3-yl ⁇ acetonitrile, which is depicted below as Formula I.
  • the present invention provides, inter alia, processes and intermediates for making the compound of Formula I.
  • the present invention provides processes of making a compound of Formula II:
  • the present invention also provides processes of making a compound of Formula IV:
  • the present invention proc compound of Formula V:
  • the present invention provides a process of making a compound of Formula
  • the compounds of Formula III and IV are preferably used as free bases and the compound of Formula II is produced preferably as a free base.
  • free base means the non-salt form of the compound.
  • the reaction of compound III and compound IV is carried out in the presence of a tertiary amine (e.g., triethylamine).
  • a tertiary amine e.g., triethylamine
  • the temperature of the reaction is ⁇ 30 °C.
  • the reaction is carried out in a suitable solvent.
  • the suitable solvent is dichloromethane.
  • P 1 protecting groups include, but are not limited to the protecting groups for amines delineated in Wuts and Greene, Protective Groups in Organic Synthesis, 4th ed., John Wiley & Sons: New Jersey, pages 696-887 (and, in particular, pages 872-887) (2007), which is incorporated herein by reference in its entirety.
  • P 1 is benzyloxycarbonyl (Cbz), 2,2,2-trichloroethoxycarbonyl (Troc), 2-(trimethylsilyl)ethoxycarbonyl (Teoc), 2-(4- trifluoromethylphenylsulfonyl)ethoxycarbonyl (Tsc), t-butoxycarbonyl (BOC), 1 - adamantyloxycarbonyl (Adoc), 2-adamantylcarbonyl (2-Adoc), 2,4-dimethylpent-3- yloxycarbonyl (Doc), cyclohexyloxycarbonyl (Hoc), l , l -dimethyl-2,2,2- trichloroethoxycarbonyl (TcBOC), vinyl, 2-chloroethyl, 2-phenylsulfonylethyl, ally 1, benzyl, 2-nitrobenzyl, 4-nitrobenzyl, diphenyl-4-pyridyl
  • P 1 is -CH 2 OCH2CH 2 Si(CH3)3.
  • the reducing agent can be any reducing agent suitable for use in reductive amination, including various borohydride and borane reducing agents, such as those in Ellen W. Baxter and Allen B. Reitz, Reductive Aminations of Carbonyl
  • Non-limiting classes of appropriate reducing agents include borohydride, cyanoborohydride, tri(Ci.4 acyl)oxyborohydride (e.g., triacetoxyborohydride derivatives), 9-borobicyclo[3.3.1 ]nonane hydride, tri(Ci-4 alkyl)borohydride, and disopinocampteylcyanoborohydride derivatives, amino boranes, borane-pyridine complex, and alkylamine boranes.
  • borohydride cyanoborohydride
  • tri(Ci.4 acyl)oxyborohydride e.g., triacetoxyborohydride derivatives
  • 9-borobicyclo[3.3.1 ]nonane hydride e.g., tri(Ci-4 alkyl)borohydride
  • disopinocampteylcyanoborohydride derivatives amino boranes, borane-pyridine complex, and alkylamine boranes.
  • Non-limiting examples of appropriate reducing agents include sodium cyanoborohydride, sodium triacetoxyborohydride, sodium cyano-9-borobicyclo[3.3.1 ]nonane hydride, tetrabutylammonium cyanoborohydride, cyanoborohydride on a solid support, tetramethylammonium triacetoxyborohydride, sodium triacetoxyborohydride, lithium triethylborohydride, lithium tri(sec- butyl)borohydride, sodium disopinocampteylcyanoborohydride, catechol borane, borane tetrahydrofuran, sodium borohydride, potassium borohydride, lithium borohydride, palladium in the presence of hydrogen gas, 5-ethyl-2-methylpyridine borane (PEMB), 2-picoline borane or polymer-supported triacetoxyborohydride.
  • cyanoborohydride is used in combination with a titanium (IV) additive, dehydrating agent, or a zinc halide additive.
  • the reducing agent is a tetra(Ci-4 alkyl)ammonium cyanoborohydride or triacetoxyborohydride, an alkali metal cyanoborohydride or triacetoxyborohydride, or an alkaline earth
  • a titanium (IV) additive is a Lewis acid containing a titanium (IV) metal (e.g., titanium tetrachloride, titanium isopropoxide, titanium ethoxide, and the like).
  • the process further comprisies deprotecting a compound of Formula II or said salt thereof, to form a" compound of Formula I:
  • the compound of Formula I is initially produced as a free base from the free base form of the compound of Formula II.
  • the deprotecting involves reacting the compound of Formula II with a suitable deprotecting agent.
  • the deprotecting comprises treating with boron trifluoride etherate, followed by treating with aqueous ammonium hydroxide.
  • the deprotection is carried out in a suitable solvent at a temperature of ⁇ 30 °C, ⁇ 20 °C, ⁇ 10 °C, or ⁇ 5 °C.
  • the suitable solvent is acetonitrile.
  • the process of deprotecting the compound of Formula II to form the compound of Formula I further comprises reacting the compound of Formula I with adipic acid to form the adipate salt.
  • the process further comprises:
  • Treatment of the compound of Formula II to remove the P 1 group can be accomplished by methods known in the art for the removal of particular protecting groups for amines, such as those in Wuts and Greene, Protective Groups in Organic Synthesis, 4th ed., John Wiley & Sons: New Jersey, pages 696-887 (and, in particular, pages 872-887) (2007), which is incorporated herein by reference in its entirety.
  • the P 1 group is removed by treating with fluoride ion (e.g., treating with tetrabutylammonium fluoride), hydrochloric acid, pyridinium p- toluenesulfonic acid (PPTS), or a Lewis acid (e.g., lithium tetrafluoroborate)).
  • the treating comprises treating with lithium tetrafluoroborate, followed by treating with ammonium hydroxide (e.g., when P 1 is 2- (trimethylsilyl)ethoxymethyl).
  • the treating comprises treating with base (e.g., P 1 is N-pivaloyloxymethyl).
  • the base is an alkali metal hydroxide.
  • the base is sodium hydroxide.
  • the treating comprises treating with sodium hydroxide or ammonia in a solvent such as methanol or water.
  • the compound of Formula IV, or a salt thereof is produced by a process comprising deprotecting a compound of Formula V:
  • the compound of Formula V is used preferably as a free base and the compound of Formula IV is produced preferably as a free base.
  • the deprotecting comprises reacting with aqueous acid.
  • the acid is hydrochloric acid.
  • an excess of aqueous acid is used relative to the compound of Formula V. In some embodiments, an excess of 5, 6, 7, 8, 9, or 10 equivalents of aqueous acid is used relative to the compound of Formula V. In some embodiments, an excess of 6, 7, 8, 9, or 10 equivalents or more of aqueous acid is used relative to the compound of Formula V. In some embodiments, an excess of 7, 8, 9, or 10 equivalents or more of aqueous acid is used relative to ⁇ compound of Formula V. In some embodiments, an excess of 8, 9, or 10 equivalents or more of aqueous acid is used relative to the compound of Formula V. In some embodiments, an excess of 9 or 10 equivalents or more of aqueous acid is used relative to the compound of Formula V. In some embodiments, an excess of 9 equivalents or more of aqueous acid is used relative to the compound of Formula V. In some embodiments, an excess of 9 equivalents or more of aqueous acid is used relative to the compound of Formula V. In some embodiments, an excess of 9 equivalents or more of
  • the deprotection is carried out in acetonitrile solvent at a temperature of ⁇ 30 °C, ⁇ 20 °C, ⁇ 10 °C, or ⁇ 5 °C.
  • deprotecting conditions include, but are not limited to, those in Wuts and Greene, Protective Groups in Organic Synthesis, 4th ed., John Wiley & Sons: New Jersey, pages 696-887 (and, in particular, pages 872-887) (2007), which is incorporated herein by reference in its entirety.
  • the compound of Formula V is produced by a process comprising reacting a compound of Formula VI: VI
  • Appropriate coupling agents are any of the well-known coupling agents for coupling an amine to an acid to form an amine.
  • Non-limiting examples include carbodiimides (e.g., ⁇ , ⁇ '-dicyclohexylcarbodiimide (DCC), ⁇ , ⁇ '- diisopropylcarbodiimide (D1C), l-ethyl-3-(3-dimethylaminopropyl, or
  • EDC hydrochloride dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride
  • EDC carbodiimide
  • CDI ⁇ , ⁇ -carbonyldiimidazole
  • phosphonium-based coupling agents e.g., benzotriazol-l-yloxy-tris(dimethylamino)-phosphonium hexafluorophosphate (BOP), (benzotriazol-l-yloxy)tripyrrolidinophosphonium hexafluorophosphate (P BOP), (7-azabenzotriazol- 1 -y loxy )-tris- pyrrolidinophosphonium hexafluorophosphate (PyAOP),
  • BOP benzotriazol-l-yloxy-
  • bromotripyrrolidinophosphonium hexafluorophosphate PyBrOP
  • bis(2-oxo-3- oxazolidinyl)phosphinic chloride BOP-C1
  • aminium-based reagents e.g., O- (benzotriazol-l-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HBTU), O- (benzotriazol-l-yl)- ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethyluronium tetrafluoroborate (TBTU), 3- (diethylphosphoryloxy)-l,2,3-benzotriazin-4(3H)-one (DEPBT), 0-(7- azabenzotriazol-l -yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU), 0-(6-chloro
  • TATU uronium-based reagents
  • TNTU uronium-based reagents
  • TNTU uronium-based reagents
  • TNTU uronium-based reagents
  • TNTU uronium-based reagents
  • TNTU uronium-based reagents
  • TNTU uronium-based reagents
  • TNTU uronium-based reagents
  • TNTU uronium-based reagents
  • TNTU uronium-based reagents
  • TNTU uronium-based reagents
  • TNTU uronium-based reagents
  • TNTU uronium-based reagents
  • TNTU uronium-based reagents
  • TNTU uronium-based reagents
  • TNTU uronium-based reagents
  • TNTU uronium-based reagents
  • the coupling agent is benzotriazol-l-yloxy-tris(dimethylamino)- phosphonium hexafluorophosphate (BOP).
  • the compounds of Formulas V, VI, and VII are, preferably, in their non-salt forms.
  • the reaction of the compound of Formula VI and VII is carried out in the presence of a tertiary amine (e.g., triethylamine).
  • a tertiary amine e.g., triethylamine
  • the reaction is carried out in dimethylformamide (DMF) at a temperature of ⁇ 30 °C, ⁇ 20 °C, or ⁇ 15 °C.
  • DMF dimethylformamide
  • the coupling agent is present in > 1.05, > 1.1 , or > 1.2 equivalents relative to the compound of Formula VI.
  • the compound of Formula V is a free base.
  • spectroscopic means such as nuclear magnetic resonance spectroscopy (e.g., ⁇ or 13 C), infrared spectroscopy, or spectrophotometry (e.g., UV-visible); or by chromatography such as high performance liquid chromatograpy (HPLC) or thin layer chromatography (TLC) or other related techniques.
  • HPLC high performance liquid chromatograpy
  • TLC thin layer chromatography
  • reacting is used as known in the art and generally refers to the bringing together of chemical reagents in such a manner so as to allow their interaction at the molecular level to achieve a chemical or physical transformation.
  • the reacting involves two reagents, wherein one or more equivalents of second reagent are used with respect to the first reagent.
  • the reacting steps of the processes described herein can be conducted for a time and under conditions suitable for preparing the identified product.
  • Preparation of compounds can involve the protection and deprotection of various chemical groups.
  • the need for protection and deprotection, and the selection of appropriate protecting groups can be readily determined by one skilled in the art.
  • the chemistry of protecting groups can be found, for example, in Greene, et al., Protective Groups in Organic Synthesis, 4d. Ed., Wiley & Sons, 2007, which is incorporated herein by reference in its entirety. Adjustments to the protecting groups and formation and cleavage methods described herein may be adjusted as necessary in light of the various substituents.
  • Suitable solvents can be substantially nonreactive with the starting materials
  • reaction reactants
  • reactants the intermediates, or products at the temperatures at which the reactions are carried out, e.g., temperatures which can range from the solvent's freezing temperature to the solvent's boiling temperature.
  • a given reaction can be carried out in one solvent or a mixture of more than one solvent.
  • suitable solvents for a particular reaction step can be selected.
  • reactions can be carried out in the absence of solvent, such as when at least one of the reagents is a liquid or gas.
  • Suitable solvents can include halogenated solvents such as carbon tetrachloride, bromodichloromethane, dibromochloromethane, bromoform, chloroform, bromochloromethane, dibromomethane, butyl chloride, dichloromethane, tetrachloroethylene, trichloroethylene, 1 , 1,1 -trichloroethane, 1 , 1 ,2-trichloroethane, 1 , 1-dichloroethane, 2-chloropropane, ⁇ , ⁇ , ⁇ -trifluorotoluene, 1 ,2-dichloroethane, 1 ,2- dibromoethane, hexafluorobenzene, 1 ,2,4-trichlorobenzene, 1 ,2-dichlorobenzene, chlorobenzene, fluorobenzene, mixtures thereof and the like.
  • halogenated solvents such as carbon te
  • Suitable ether solvents include: dimethoxymethane, tetrahydrofuran, 1 ,3- dioxane, 1 ,4-dioxane, furan, diethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, anisole, t-butyl methyl ether, mixtures thereof and the like.
  • Suitable protic solvents can include, by way of example and without limitation, water, methanol, ethanol, 2-nitroethanol, 2-fluoroethanol, 2,2,2- trifluoroethanol, ethylene glycol, 1 -propanol, 2-propanol, 2-methoxyethanol, 1 - butanol, 2-butanol, i-butyl alcohol, t-butyl alcohol, 2-ethoxyethanol, diethylene glycol, 1-, 2-, or 3- pentanol, neo-pentyl alcohol, t-pentyl alcohol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, cyclohexanol, benzyl alcohol, phenol, or glycerol.
  • Suitable aprotic solvents can include, by way of example and without limitation, tetrahydrofuran (THF), ⁇ , ⁇ -dimethylformamide (DMF), N,N- dimethylacetamide (DMA), l ,3-dimethyl-3,4,5,6-tetrahydro-2(l H)-pyrimidinone (DMPU), l ,3-dimethyl-2-imidazolidinone (DMI), N-methylpyrrolidinone (NMP), formamide, N-methylacetamide, N-methylformamide, acetonitrile, dimethyl sulfoxide, propionitrile, ethyl formate, methyl acetate, hexachloroacetone, acetone, ethyl methyl ketone, ethyl acetate, sulfolane, N,N-dimethylpropionamide, tetramethylurea, nitromethane, nitrobenzene, or hexamethylphosphor
  • Suitable hydrocarbon solvents include benzene, cyclohexane, pentane, hexane, toluene, cycloheptane, methylcyclohexane, heptane, ethylbenzene, m-, o-, or p- xylene, octane, indane, nonane, or naphthalene.
  • reaction temperatures will depend on, for example, the melting and boiling points of the reagents and solvent, if present; the thermodynamics of the reaction (e.g., vigorously exothermic reactions may need to be carried out at reduced temperatures); and the kinetics of the reaction (e.g., a high activation energy barrier may need elevated temperatures).
  • Elevated temperature refers to temperatures above room temperature (about 22 °C).
  • reaction of the processes described herein can be carried out in air or under an inert atmosphere.
  • reactions containing reagents or products that are substantially reactive with air can be carried out using air-sensitive synthetic techniques that are well known to the skilled artisan.
  • preparation of compounds can involve the addition of acids or bases to affect, for example, catalysis of a desired reaction or formation of salt forms such as acid addition salts.
  • Example acids can be inorganic or organic acids.
  • Inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, and nitric acid.
  • Organic acids include formic acid, acetic acid, propionic acid, butanoic acid, benzoic acid, 4-nitrobenzoic acid, methanesulfonic acid, p-toluenesulfonic acid,
  • benzenesulfonic acid tartaric acid, trifluoroacetic acid, propiolic acid, butyric acid, 2- butynoic acid, vinyl acetic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid and decanoic acid.
  • Example bases include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, and potassium carbonate.
  • Some example strong bases include, but are not limited to, hydroxide, alkoxides, metal amides, metal hydrides, metal dialkylamides and arylamines, wherein; alkoxides include lithium, sodium and potassium salts of methyl, ethyl and t-butyl oxides; metal amides include sodium amide, potassium amide and lithium amide; metal hydrides include sodium hydride, potassium hydride and lithium hydride; and metal dialkylamides include sodium and potassium salts of methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, trimethylsilyl and cyclohexyl substituted amides.
  • the intermediates and products may also include salts of the compounds disclosed herein.
  • salt refers to a salt formed by the addition of an acceptable acid or base to a compound disclosed herein.
  • the salts are pharmaceutically acceptable salts.
  • pharmaceutically acceptable refers to a substance that is acceptable for use in pharmaceutical applications from a toxicological perspective and does not adversely interact with the active ingredient.
  • Pharmaceutically acceptable salts include, but are not limited to, those derived from organic and inorganic acids such as, but not limited to, acetic, lactic, citric, cinnamic, tartaric, succinic, fumaric, maleic, malonic, mandelic, malic, oxalic, propionic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, glycolic, pyruvic, methanesulfonic, ethanesulfonic, toluenesulfonic, salicylic, benzoic, and similarly known acceptable acids. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, Pa., 1985, p.
  • the usual isolation and purification operations such as concentration, filtration, extraction, solid-phase extraction, recrystallization, chromatography, and the like may be used, to isolate the desired products.
  • the compounds of the invention, and salts thereof are substantially isolated.
  • substantially isolated is meant that the compound is at least partially or substantially separated from the environment in which it was formed or detected.
  • Partial separation can include, for example, a composition enriched in the compound of the invention.
  • Substantial separation can include compositions containing at least about 50%, at least about 60%, at least about 70%, at least about
  • JAK JAK inhibitors
  • JAK inhibitors are useful in treating various JAK-associated diseases or disorders.
  • JAK-associated diseases include diseases involving the immune system including, for example, organ transplant rejection (e.g. , allograft rejection and graft versus host disease).
  • JAK-associated diseases include autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, juvenile arthritis, psoriatic arthritis, type 1 diabetes, lupus, psoriasis, inflammatory bowel disease, ulcerative colitis, Crohn's disease, myasthenia gravis, immunoglobulin nephropathies, myocarditis, autoimmune thyroid disorders, chronic obstructive pulmonary disease (COPD), and the like.
  • the autoimmune disease is an autoimmune bullous skin disorder such as pemphigus vulgaris (PV) or bullous pemphigoid (BP).
  • JAK-associated diseases include allergic conditions such as asthma, food allergies, eszematous dermatitis, contact dermatitis, atopic dermatitis (atropic eczema), and rhinitis.
  • JAK-associated diseases include viral diseases such as Epstein Barr Virus (EBV), Hepatitis B, Hepatitis C, HIV, HTLV 1 , Varicella-Zoster Virus (VZV) and Human Papilloma Virus (HPV).
  • EBV Epstein Barr Virus
  • Hepatitis B Hepatitis C
  • HIV HTLV 1
  • VZV Varicella-Zoster Virus
  • HPV Human Papilloma Virus
  • JAK-associated disease examples include diseases associated with cartilage turnover, for example, gouty arthritis, septic or infectious arthritis, reactive arthritis, reflex sympathetic dystrophy, algodystrophy, Tietze syndrome, costal athropathy, osteoarthritis deformans endemica, Mseleni disease, Handigodu disease, degeneration resulting from fibromyalgia, systemic lupus erythematosus, scleroderma, or ankylosing spondylitis.
  • diseases associated with cartilage turnover for example, gouty arthritis, septic or infectious arthritis, reactive arthritis, reflex sympathetic dystrophy, algodystrophy, Tietze syndrome, costal athropathy, osteoarthritis deformans endemica, Mseleni disease, Handigodu disease, degeneration resulting from fibromyalgia, systemic lupus erythematosus, scleroderma, or ankylosing spondylitis.
  • JAK-associated disease examples include congenital cartilage malformations, including hereditary chrondrolysis, chrondrodysplasias, and pseudochrondrodysplasias (e.g., microtia, enotia, and metaphyseal
  • JAK-associated diseases or conditions include skin disorders such as psoriasis (for example, psoriasis vulgaris), atopic dermatitis, skin rash, skin irritation, skin sensitization (e.g., contact dermatitis or allergic contact dermatitis).
  • skin disorders such as psoriasis (for example, psoriasis vulgaris), atopic dermatitis, skin rash, skin irritation, skin sensitization (e.g., contact dermatitis or allergic contact dermatitis).
  • certain substances including some pharmaceuticals when topically applied can cause skin sensitization.
  • coadministration or sequential administration of at least one JAK inhibitor of the invention together with the agent causing unwanted sensitization can be helpful in treating such unwanted sensitization or dermatitis.
  • the skin disorder is treated by topical administration of at least one JAK inhibitor of the invention.
  • JAK-associated diseases or conditions include those characterized by solid tumors (e.g., prostate cancer, renal cancer, hepatic cancer, pancreatic cancer, gastric cancer, breast cancer, lung cancer, cancers of the head and neck, thyroid cancer, glioblastoma, Kaposi's sarcoma, Castleman's disease, uterine leiomyosarcoma, melanoma etc.), hematological cancers (e.g., lymphoma, leukemia such as acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML) or multiple myeloma), and skin cancer such as cutaneous T-cell lymphoma (CTCL) and cutaneous B-cell lymphoma.
  • CTCLs include Sezary syndrome and mycosis fungoides.
  • Other examples of JA -associated diseases or conditions include pulmonary arterial hypertension.
  • the cancer is associated with inflammatory bowel disease.
  • the inflammatory bowel disease is ulcerative colitis.
  • the inflammatory bowel disease is Crohn's disease.
  • the inflammation-associated cancer is colitis- associated cancer.
  • the inflammation-associated cancer is colon cancer or colorectal cancer.
  • the cancer is gastric cancer, gastrointestinal carcinoid tumor, gastrointestinal stromal tumor (GIST),
  • adenocarcinoma small intestine cancer, or rectal cancer.
  • JAK-associated diseases can further include those characterized by expression of: JAK2 mutants such as those having at least one mutation in the pseudo-kinase domain ⁇ e.g., JAK2V617F); JAK2 mutants having at least one mutation outside of the pseudo-kinase domain; JAK 1 mutants; JAK3 mutants; erythropoietin receptor (EPOR) mutants; or deregulated expression of CRLF2.
  • JAK2 mutants such as those having at least one mutation in the pseudo-kinase domain ⁇ e.g., JAK2V617F
  • JAK2 mutants having at least one mutation outside of the pseudo-kinase domain JAK 1 mutants
  • JAK3 mutants JAK3 mutants
  • EPOR erythropoietin receptor
  • JAK-associated diseases can further include myeloproliferative disorders (MPDs) such as polycythemia vera (PV), essential thrombocythemia (ET), myelofibrosis with myeloid metaplasia (MMM), primary myelofibrosis (PMF), chronic myelogenous leukemia (CML), chronic myelomonocytic leukemia (CMML), hypereosinophilic syndrome (HES), systemic mast cell disease (SMCD), and the like.
  • MPDs myeloproliferative disorders
  • PV polycythemia vera
  • ET essential thrombocythemia
  • MMM myelofibrosis with myeloid metaplasia
  • PMF primary myelofibrosis
  • CML chronic myelogenous leukemia
  • CMML chronic myelomonocytic leukemia
  • HES hypereosinophilic syndrome
  • SMCD systemic mast cell disease
  • the myeloproliferative disorder is myelofibrosis (e.g., primary myelofibrosis (PMF) or post polycythemia vera/essential thrombocythemia myelofibrosis (Post-PV Post-ET MF)).
  • the myeloproliferative disorder is post- essential thrombocythemia myelofibrosis (Post-ET MF).
  • the myeloproliferative disorder is post polycythemia vera myelofibrosis (Post-PV MF).
  • JAK-associated diseases or conditions include ameliorating the dermatological side effects of other pharmaceuticals by administration of the compound of the invention.
  • numerous pharmaceutical agents result in unwanted allergic reactions which can manifest as acneiform rash or related dermatitis.
  • Example pharmaceutical agents that have such undesirable side effects include anti-cancer drugs such as gefitinib, cetuximab, erlotinib, and the like.
  • the compounds of the invention can be administered systemically or topically (e.g., localized to the vicinity of the dermatitis) in combination with (e.g., simultaneously or sequentially) the pharmaceutical agent having the undesirable dermatological side effect.
  • the compound of the invention can be administered topically together with one or more other pharmaceuticals, where the other pharmaceuticals when topically applied in the absence of a compound of the invention cause contact dermatitis, allergic contact sensitization, or similar skin disorder.
  • compositions of the invention include topical formulations containing the compound of the invention and a further pharmaceutical agent which can cause dermatitis, skin disorders, or related side effects.
  • JAK-associated diseases include inflammation and inflammatory diseases.
  • Example inflammatory diseases include sarcoidosis, inflammatory diseases of the eye (e.g., ulceris, uveitis, scleritis, conjunctivitis, or related disease),
  • the inflammation disease of the eye is blepharitis.
  • JAK-associated diseases include ischemia reperfusion injuries or a disease or condition related to an inflammatory ischemic event such as stroke or cardiac arrest, endotoxin-driven disease state (e.g., complications after bypass surgery or chronic endotoxin states contributing to chronic cardiac failure), anorexia, cachexia, fatigue such as that resulting from or associated with cancer, restenosis, sclerodermitis, fibrosis, conditions associated with hypoxia or astrogliosis such as, for example, diabetic retinopathy, cancer, or neurodegeneration, and other inflammatory diseases such as systemic inflammatory response syndrome (SIRS) and septic shock.
  • SIRS systemic inflammatory response syndrome
  • JAK-associated diseases include gout and increased prostate size due to, e.g., benign prostatic hypertrophy or benign prostatic hyperplasia, as well as bone resorption diseases such as osteoporosis or osteoarthritis, bone resorption diseases associated with: hormonal imbalance and/or hormonal therapy, autoimmune disease (e.g. osseous sarcoidosis), or cancer (e.g. myeloma).
  • benign prostatic hypertrophy or benign prostatic hyperplasia as well as bone resorption diseases such as osteoporosis or osteoarthritis, bone resorption diseases associated with: hormonal imbalance and/or hormonal therapy, autoimmune disease (e.g. osseous sarcoidosis), or cancer (e.g. myeloma).
  • autoimmune disease e.g. osseous sarcoidosis
  • cancer e.g. myeloma
  • dry eye disorder is intended to encompass the disease states summarized in a recent official report of the Dry Eye Workshop (DEWS), which defined dry eye as "a multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbance, and tear film instability with potential damage to the ocular surface. It is accompanied by increased osmolarity of the tear film and inflammation of the ocular surface.”
  • DEWS Dry Eye Workshop
  • the dry eye disorder is selected from aqueous tear-deficient dry eye (ADDE) or evaporative dry eye disorder, or appropriate combinations thereof.
  • the dry eye disorder is Sjogren syndrome dry eye (SSDE).
  • the dry eye disorder is non-Sjogren syndrome dry eye (NSSDE).
  • JAK-associated diseases include conjunctivitis, uveitis (including chronic uveitis), chorioditis, retinitis, cyclitis, sclieritis, episcleritis, or ulceris.
  • Other JAK-associated diseases include respiratory dysfunction or failure associated wth viral infection, such as influenza and SARS.
  • Trimethylsilylethoxymethyl chloride (2, SEM-C1, 763 mL, 4.31 mol, 1.1 equiv) was then added slowly via an addition funnel at a rate that the internal reaction temperature did not exceed 5 °C. The reaction mixture was then stirred at 0 - 5 °C for 30 minutes. When the reaction was deemed complete determined by TLC and HPLC, the reaction mixture was quenched by water (1 L). The mixture was then diluted with water (12 L) and methyl tert-b ty] ether (MTBE) (8 L). The two layers were separated and the aqueous layer was extracted with MTBE (8 L). The combined organic layers were washed with water (2 x 4 L) and brine (4 L) and solvent switched to 1-butanol.
  • MTBE methyl tert-b ty] ether
  • the resulting reaction mixture was degassed three timed backfilling with nitrogen each time before being treated with tetrakis(triphenylphosphine)palladium(0) (Pd(PPli3)4, 46 g, 0.040 mol, 0.003 equiv) at room temperature.
  • the resulting reaction mixture was heated to gentle reflux (about 90 °C) for 1 - 4 hours.
  • the reaction mixture was gradually cooled down to room temperature before being filtered through a Ceiite bed.
  • the Ceiite bed was washed with ethyl acetate (2 x 2 L) before the filtrates and washing solution were combined.
  • reaction mixture was treated with a 30% aqueous sodium hydroxide (NaOH) solution (4 L, 50.42 mol, 3.78 equiv) at room temperature.
  • NaOH sodium hydroxide
  • the resulting reaction mixture was stirred at room temperature for 1 - 2 hours.
  • the solids were collected by filtration and washed with water (2 x 5 L).
  • the wet cake was charged back to the reactor with acetonitrile (21.6' L), and resulting suspension was heated to gentle reflux for 1 - 2 hours.
  • the clear solution was then gradually cooled down to room temperature with stirring, and solids were precipitated out from the solution with cooling.
  • the mixture was stirred at room temperature for an additional 1 - 2 hours.
  • terr-butyl 3-hydroxyazetidine-l - carboxylate (10, 357 g, 393.2 g theoretical, 90.8% yield) as colorless oil, which solidified upon standing at room temperature in vacuum.
  • 'iTNMR (CDCI3, 300 MHz), ⁇ 4.56 (m 1 H), 4.13 (m, 2H), 3.81 (m, 2H), 1.43 (s, 9H) ppm.
  • the resulting reaction mixture was stirred for 3 hours at - 10 °C and a solution of l -/er/-butoxycarbonyl-3-azetidinone (11, 600 g, 3.50 mol) in anhydrous tetrahydrofuran (THF, 2 L) was added over 2 h keeping the internal temperature below - 5 °C.
  • the reaction mixture was stirred at - 5 to - 10 °C over 1 hour and then slowly warmed up to room temperature and stirred at room temperature for overnight.
  • the reaction mixture was then diluted with water (4.5 L) and saturated aqueous sodium chloride solution (NaCl, 4.5 L) and extracted with ethyl acetate (EtOAc, 2 x 9 L).
  • Triethylamine (Et 3 N, 4 L, 28.67 mol, 2.00 equiv) was then added over 1 hour. The temperature was kept between 5 °C and 10 °C during the additions. The dark brown solution thus obtained was stirred for 12 hours at 20 °C and then chilled to 10 °C. With vigorous stirring, 18 L of saturated sodium bicarbonate solution and 36 L of water were sequentially added and the temperature was kept under 15 °C. The precipitation (filter cake) thus obtained was collected by filtration. The aqueous phase was then saturated with 12 kg of solid sodium chloride and extracted with EtOAc (2 x 18 L). The combined organic layer was washed with saturated sodium bicarbonate solution (18 L), and water (2 x 18 L) in sequence.
  • the filter cake from the previous filtration was dissolved back in the organic phase.
  • the dark brown solution thus obtained was washed twice with 18 L of water each and then concentrated under reduced pressure (40 - 50 °C, 30 mm Hg) to give 5.0 kg of the crude product as viscous brown oil.
  • the crude product 17 obtained above was dissolved in EtOH (8.15 L) at 50 °C. Water (16.3 L) was added over 30 minutes. The brown solution was seeded, cooled to 20 °C over 3 hours with stirring and stirred at 20 °C for 12 h.
  • the resulting reaction mixture was then warmed to room temperature and an additional amount of 6.0 N aqueous hydrochloric acid (HCl, 1050 mL, 6.30 mol, 21.0 equiv) was slowly introduced to the reaction mixture at room temperature in 8 hours via the addition funnel.
  • the reaction mixture was then cooled to 0 °C before being treated with 30% aqueous sodium hydroxide (NaOH, 860 mL, 8.57 mmol, 28.6 equiv) while the internal temperature was kept at below 10 °C.
  • the resulting reaction mixture was subsequently warmed to room temperature prior to addition of solid sodium bicarbonate (NaHC0 3 , 85.0 g, 1.01 mol, 3.37 equiv) in 1 hour.
  • the crude product obtained above was dissolved in methyl teri-butyl ether (MTBE, 22 L) at 60 °C in a 50 L reactor equipped with a mechanic stirrer, a thermometer, an addition funnel and a septum. Hexanes (22 L) was added over 1 hour at 60 °C. The solution was then seeded, cooled to 20 °C over 3 hours and stirred at 20 °C for 12 hours. The precipitation was collected by filtration. The resultant cake was washed with a mixture of MTBE and hexane (1 : 15, 3 L) and dried in a vacuum oven for 10 hours at 50 °C to provide the compound 19 (6.83 kg, 13.42 mol, 94.0%) as a white powder.
  • MTBE methyl teri-butyl ether
  • the aqueous phase was extracted with dichloromethane (29 L).
  • the combined organic phase was sequentially washed with 0.1 N aqueous hydrochloric acid solution (16 L), 4% aqueous sodium bicarbonate solution (16 L), 8% aqueous sodium chloride solution (2 x 16 L).
  • the resultant organic phase was partially concentrated and filtered.
  • the filtrate was subjected to solvent exchange by gradually adding acetonitrile (65 L) under vacuum.
  • the white solids were collected by filtration, washed with acetonitrile (10 L) and dried at 40 - 50 °C in a vacuum oven with nitrogen purge to afford compound 21 (4.26 kg, 6.23 mol, 92.9%).
  • reaction mixture After stirring at 20 ⁇ 5 °C for 18 hours, the reaction mixture was cooled to 0 - 5 °C and an additional amount of BF3 OE12 (0.34 mL, 2.70 mmol, 0.2 equiv) was introduced to the reaction mixture at below 5.0 °C. The resulting reaction mixture was warmed to 20 ⁇ 5 °C, and kept stirring at room temperature for an additional 5 hours. The reaction mixture was then cooled to 0 - 5 °C before water (12.17 mL, 0.676 mol, 50 equiv) was added. The internal temperature was kept at below 5.0 °C during addition of water. The resultant mixture was warmed to 20 ⁇ 5 °C and kept stirring at room temperature for 2 hours.
  • BF3 OE12 0.34 mL, 2.70 mmol, 0.2 equiv
  • reaction mixture was then cooled to 0 - 5 °C and aqueous ammonium hydroxide (NH4OH, 5 N, 121.7 mmol, 9.0 equiv) was added. During addition of aqueous ammonium hydroxide solution, the internal temperature was kept at below 5.0 °C. The resulting reaction mixture was warmed to 20 ⁇ 5 °C and stirred at room temperature for 20 hours. Once the SEM-deprotection was deemed complete, the reaction mixture was filtered, and the solids were washed with EtOAc (9.25 mL). The filtrates were combined and diluted with EtOAc (74 mL). The diluted organic solution was washed with 13% aqueous sodium chloride solution (46.2 mL).
  • the organic phase was then diluted with EtOAc (55.5 mL) before being concentrated to a minimum volume under reduced pressure.
  • EtOAc 120 mL was added to the residue, and the resulting solution was stirred at 20 ⁇ 5 °C for 30 minutes.
  • the solution was then washed with 7% aqueous sodium bicarbonate solution (2 x 46 mL) and 13% aqueous sodium bicarbonate solution (46 mL).
  • the resultant organic phase was diluted with EtOAc (46 mL) and treated with water (64 mL) at 50 ⁇ 5 °C for 30 minutes. The mixture was cooled to 20 ⁇ 5 °C and the two phases were separated.
  • the resulting white turbid was heated to 55 - 60 °C to provide a clear solution.
  • the resultant solution was filtered through an in-line filter to another 100 L reactor.
  • Heptane (23.8 L) was filtered through an in-line filter to a separated 50 L reactor.
  • the filtered heptane was then charged to the acetone solution in the 100 L reactor at a rate while the internal temperature was kept at 55 - 60 °C.
  • the reaction mixture in the 100 L reactor was then cooled to 20 ⁇ 5 °C and stirred at 20 ⁇ 5 °C for 16 hours.
  • the white precipitates were collected by filtration and the cake was washed with heptane (2 x 5.1 L) and dried on the filter under nitrogen with a pulling vacuum.
  • the compound of Formula I herein was tested for inhibitory activity of JAK targets according to the following in vitro assay described in Park et ai, Analytical Biochemistry 1999, 269, 94-104.
  • the catalytic domains of human JA 1 (a.a. 837- 1 142) and JAK2 (a.a. 828-1 132) with an N-terminal His tag were expressed using baculovirus in insect cells and purified.
  • the catalytic activity of JAK1 and JAK.2 was assayed by measuring the phosphorylation of a biotinylated peptide.
  • phosphorylated peptide was detected by homogenous time resolved fluorescence (HTRF).
  • IC50S of compounds were measured for each kinase in the 40 microL reactions that contain the enzyme, ATP and 500 nM peptide in 50 mM Tris (pH 7.8) buffer with 100 mM NaCl, 5 mM DTT, and 0.1 mg/mL (0.01 %) BSA.
  • ATP concentration in the reactions was 1 mM.
  • Reactions were carried out at room temperature for 1 hr and then stopped with 20 ⁇ L ⁇ 45 mM EDTA, 300 nM SA-APC, 6 nM Eu-Py20 in assay buffer (Perkin Elmer, Boston, MA).
  • Binding to the Europium labeled antibody took place for 40 minutes and HTRF signal was measured on a Fusion plate reader (Perkin Elmer, Boston, MA).
  • the compound of Example 1 and the adipic acid salt had an IC50 at JA 1 of ⁇ 5 nM (measured at 1 mM ATP) with a JAK2/JAK1 ratio of > 10 (measured at 1 mM ATP).
  • Cancer cell lines dependent on cytokines and hence JAK/STAT signal transduction, for growth can be plated at 6000 cells per well (96 well plate format) in RPMI 1640, 10% FBS, and 1 nG/mL of appropriate cytokine.
  • Compounds can be added to the cells in DMSO/media (final concentration 0.2% DMSO) and incubated for 72 hours at 37 °C, 5% C0 2 .
  • the effect of compound on cell viability is assessed using the CellTiter-Glo Luminescent Cell Viability Assay (Promega) followed by TopCount (Perkin Elmer, Boston, MA) quantitation. Potential off-target effects of compounds are measured in parallel using a non-JAK driven cell line with the same assay readout. All experiments are typically performed in duplicate.
  • the above cell lines can also be used to examine the effects of compounds on phosphorylation of JA kinases or potential downstream substrates such as STAT proteins, Akt, Shp2, or Erk. These experiments can be performed following an overnight cytokine starvation, followed by a brief preincubation with compound (2 hours or less) and cytokine stimulation of approximately 1 hour or less. Proteins are then extracted from cells and analyzed by techniques familiar to those schooled in the art including Western blotting or ELISAs using antibodies that can differentiate between phosphorylated and total protein. These experiments can utilize normal or cancer cells to investigate the activity of compounds on tumor cell survival biology or on mediators of inflammatory disease.
  • cytokines such as IL-6, IL-12, IL-23, or IFN can be used to stimulate JA activation resulting in phosphorylation of STAT protein(s) and potentially in transcriptional profiles (assessed by array or qPCR technology) or production and/or secretion of proteins, such as IL- 17.
  • the ability of compounds to inhibit these cytokine mediated effects can be measured using techniques common to those schooled in the art.
  • Endpoints include the effects of compounds on cell survival, proliferation, and phosphorylated JAK, STAT, Akt, or Erk proteins.
  • PBMCs Peripheral blood mononuclear cells
  • Freshly isolated human T-cells can be maintained in culture medium (RPMI 1640 supplemented with 10% fetal bovine serum, 100 U/ml penicillin, 100 ⁇ g/ml streptomycin) at a density of 2 x 10 6 cells/ml at 37 °C for up to 2 days.
  • T-cells are first treated with Phytohemagglutinin (PHA) at a final concentration of 10 ⁇ g/mL for 72h. After washing once with PBS, 6000 cells/well are plated in 96-well plates and treated with compounds at different concentrations in the culture medium in the presence of 100 U/mL human IL-2 (ProSpec-Tany TechnoGene; Rehovot, Israel). The plates are incubated at 37 °C for 72h and the proliferation index is assessed using CellTiter-Glo Luminescent reagents following the manufactory suggested protocol (Promega; Madison, Wl).
  • Example C In vivo anti-tumor efficacy
  • Compounds herein can be evaluated in human tumor xenograft models in immune compromised mice.
  • a tumorigenic variant of the ⁇ -6 plasmacytoma cell line can be used to inoculate SC1D mice subcutaneously (Burger, R., et al. Hematol J. 2:42-53, 2001 ).
  • Tumor bearing animals can then be randomized into drug or vehicle treatment groups and different doses of compounds can be administered by any number of the usual routes including oral, i.p., or continuous infusion using implantable pumps. Tumor growth is followed over time using calipers.
  • tumor samples can be harvested at any time after the initiation of treatment for analysis as described above (Example B) to evaluate compound effects on JA activity and downstream signaling pathways.
  • selectivity of the compound(s) can be assessed using xenograft tumor models that are driven by other know kinases (e.g. Bcr-Abl) such as the K562 tumor model.
  • Bcr-Abl know kina
  • the murine skin contact delayed-type hypersensitivity (DTH) response is considered to be a valid model of clinical contact dermatitis, and other T-lymphocyte mediated immune disorders of the skin, such as psoriasis (Immunol Today. 1998 Jan; 19(l ):37-44).
  • Murine DTH shares multiple characteristics with psoriasis, including the immune infiltrate, the accompanying increase in inflammatory cytokines, and keratinocyte hyperproliferation.
  • many classes of agents that are efficacious in treating psoriasis in the clinic are also effective inhibitors of the DTH response in mice (Agents Actions. 1993 Jan;38( l -2): 1 16-21 ).
  • mice are sensitized with a topical application, to their shaved abdomen with the antigen 2,4,dinitro-fluorobenzene (DNFB).
  • DNFB 2,4,dinitro-fluorobenzene
  • ears are measured for thickness using an engineer's micrometer. This measurement is recorded and used as a baseline.
  • Both of the animals' ears are then challenged by a topical application of DNFB in a total of 20 (10 ⁇ L ⁇ on the internal pinna and 10 ⁇ - on the external pinna) at a concentration of 0.2%. Twenty-four to seventy-two hours after the challenge, ears are measured again.
  • Treatment with the test compounds is given throughout the sensitization and challenge phases (day -1 to day 7) or prior to and throughout the challenge phase (usually afternoon of day 4 to day 7).
  • Treatment of the test compounds (in different concentration) is administered either systemicaily or topically (topical application of the treatment to the ears). Efficacies of the test compounds are indicated by a reduction in ear swelling comparing to the situation without the treatment. Compounds causing a reduction of 20% or more were considered efficacious. In some experiments, the mice are challenged but not sensitized (negative control).
  • the inhibitive effect (inhibiting activation of the JAK-STAT pathways) of the test compounds can be confirmed by immunohistochemical analysis.
  • Activation of the JAK-STAT pathway(s) results in the formation and translocation of functional transcription factors.
  • the influx of immune cells and the increased proliferation of keratinocytes should also provide unique expression profile changes in the ear that can be investigated and quantified.
  • Formalin fixed and paraffin embedded ear sections (harvested after the challenge phase in the DTH model) are subjected to immunohistochemical analysis using an antibody that specifically interacts with phosphorylated STAT3 (clone 58E12, Cell Signaling Technologies).
  • test compounds a clinically efficacious treatment for psoriasis
  • dexamethasone a clinically efficacious treatment for psoriasis
  • Test compounds and the dexamethasone can produce similar transcriptional changes both qualitatively and quantitatively, and both the test compounds and dexamethasone can reduce the number of infiltrating cells.
  • Both systemicaily and topical administration of the test compounds can produce inhibitive effects, i.e., reduction in the number of infiltrating cells and inhibition of the transcriptional changes.
  • Example E In vivo anti-inflammatory activity
  • rodent models of arthritis can be used to evaluate the therapeutic potential of compounds dosed preventatively or therapeutically.
  • These models include but are not limited to mouse or rat collagen-induced arthritis, rat adjuvant-induced arthritis, and collagen antibody- induced arthritis.
  • Autoimmune diseases including, but not limited to, multiple sclerosis, type I-diabetes mellitus, uveoretinitis, thyroditis, myasthenia gravis, immunoglobulin nephropathies, myocarditis, airway sensitization (asthma), lupus, or colitis may also be used to evaluate the therapeutic potential of compounds herein.
  • These models are well established in the research community and are familiar to those schooled in the art (Current Protocols in Immunology, Vol 3., Coligan, J.E. et al, Wiley Press.; Methods in Molecular Biology: Vol. 225, Inflammation Protocols., Winyard, P.G. and Willoughby, D.A., Humana Press, 2003.).
  • Example F Animal Models for the Treatment of Dry Eye, Uveitis, and
  • Agents may be evaluated in one or more preclinical models of dry eye known to those schooled in the art including, but not limited to, the rabbit concanavalin A (ConA) lacrimal gland model, the scopolamine mouse model (subcutaneous or transdermal), the Botulinumn mouse lacrimal gland model, or any of a number of spontaneous rodent auto-immune models that result in ocular gland dysfunction (e.g., the rabbit concanavalin A (ConA) lacrimal gland model, the scopolamine mouse model (subcutaneous or transdermal), the Botulinumn mouse lacrimal gland model, or any of a number of spontaneous rodent auto-immune models that result in ocular gland dysfunction (e.g.
  • ConA rabbit concanavalin A
  • scopolamine mouse model subcutaneous or transdermal
  • Botulinumn mouse lacrimal gland model or any of a number of spontaneous rodent auto-immune models that result in ocular gland dysfunction
  • NOD-SCID NOD-SCID, MRL/lpr, or NZB/NZW
  • Barabino et al. Experimental Eye Research 2004, 79, 613-621 and Schrader et al., Developmental Opthalmology, Karger 2008, 41 , 298-312, each of which is incorporated herein by reference in its entirety).
  • Endpoints in these models may include histopathology of the ocular glands and eye (cornea, etc.) and possibly the classic Schirmer test or modified versions thereof (Barabino et al.) which measure tear production. Activity may be assessed by dosing via multiple routes of administration (e.g. systemic or topical) which may begin prior to or after measurable disease exists.
  • routes of administration e.g. systemic or topical
  • Agents may be evaluated in one or more preclinical models of uveitis known to those schooled in the art. These include, but are not limited to, models of experimental autoimmune uveitis (EAU) and endotoxin induced uveitis (EIU). EAU experiements may be performed in the rabbit, rat, or mouse and may involve passive or activate immunization. For instance, any of a number or retinal antigens may be used to sensitize animals to a relevant immunogen after which animals may be challenged ocuarly with the same antigen.
  • the EIU model is more acute and involves local or systemic administration of lipopolysaccaride at sublethal doses.
  • Endpoints for both the EIU and EAU models may include fundoscopic exam, histopathology amongst others. These models are reviewed by Smith et al. (Immunology and Cell Biology 1998, 76, 497-512, which is incorporated herein by reference in its entirety). Activity is assessed by dosing via multiple routes of administration (e.g. systemic or topical) which may begin prior to or after measurable disease exists. Some models listed above may also develop scleritis/episcleritis, chorioditis, cyclitis, or ulceris and are therefore useful in investigating the potential activity of compounds for the therapeutic treatment of these diseases.
  • routes of administration e.g. systemic or topical
  • Agents may also be evaluated in one or more preclinical models of conjunctivitis known those schooled in the art. These include, but are not limited to, rodent models utilizing guinea-pig, rat, or mouse.
  • the guinea-pig models include those utilizing active or passive immunization and/or immune challenge protocols with antigens such as ovalbumin or ragweed (reviewed in Groneberg, D.A., et al., Allergy 2003, 58, 1 101-1 1 13, which is incorporated herein by reference in its entirety).
  • Rat and mouse models are similar in general design to those in the guinea- pig (also reviewed by Groneberg). Activity may be assessed by dosing via multiple routes of administration (e.g.
  • Example G In vivo protection of bone
  • Compounds may be evaluated in various preclinical models of osteopenia, osteoporosis, or bone resorption known to those schooled in the art.
  • ovariectomized rodents may be used to evaluate the ability of compounds to affect signs and markers of bone remodeling and/or density (W.S.S. Jee and W. Yao, J Musculoskel. Nueron. Interact., 2001 , 1 (3), 193-207, which is incorporated herein by reference in its entirety).
  • bone density and architecture may be evaluated in control or compound treated rodents in models of therapy (e.g. glucocorticoid) induced osteopenia (Yao, et al.

Abstract

This invention relates to processes and intermediates for making {1-{1-[3-fluoro-2-(trifluoromethyl)isonicotinoyl]piperidin-4-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]azetidin-3-yl}acetonitrile, useful in the treatment of diseases related to the activity of Janus kinases (JAK) including inflammatory disorders, autoimmune disorders, cancer, and other diseases.

Description

PROCESSES AND INTERMEDIATES FOR MAKING A JAK
INHD3ITOR
This application claims the benefit of priority of U.S. Provisional Application 61 /531 ,896, filed September 7, 201 1 , which is incorporated herein by reference in its entirety.
TECHNICAL FIELD
This invention relates to processes and intermediates for making { l-{ l-[3- fluoro-2-(trifluoromethyl)isonicotinoyl]piperidin-4-yl}-3-[4-(7H-pyrrolo[2,3- d]pyrimidin-4-yl)-l H-pyrazol-l -yl]azetidin-3-yl}acetonitrile, useful in the treatment of diseases related to the activity of Janus kinases (JAK) including inflammatory disorders, autoimmune disorders, cancer, and other diseases.
BACKGROUND
Protein kinases (PKs) regulate diverse biological processes including cell growth, survival, differentiation, organ formation, morphogenesis, neovascularization, tissue repair, and regeneration, among others. Protein kinases also play specialized roles in a host of human diseases including cancer. Cytokines, low-molecular weight polypeptides or glycoproteins, regulate many pathways involved in the host inflammatory response to sepsis. Cytokines influence cell differentiation, proliferation and activation, and can modulate both pro-inflammatory and anti- inflammatory responses to allow the host to react appropriately to pathogens.
Signaling of a wide range of cytokines involves the Janus kinase family (JAKs) of protein tyrosine kinases and Signal Transducers and Activators of Transcription (STATs). There are four known mammalian JAKs: JAK1 (Janus kinase- 1), JAK2, JAK3 (also known as Janus kinase, leukocyte; JAKL; and L-JAK), and TYK2 (protein-tyrosine kinase 2).
Cytokine-stimulated immune and inflammatory responses contribute to pathogenesis of diseases: pathologies such as severe combined immunodeficiency (SCID) arise from suppression of the immune system, while a hyperactive or inappropriate immune/inflammatory response contributes to the pathology of autoimmune diseases (e.g., asthma, systemic lupus erythematosus, thyroiditis, myocarditis), and illnesses such as scleroderma and osteoarthritis (Ortmann, R. A., T. Cheng, et al. (2000) Arthritis Res 2(1 ): 16-32).
Deficiencies in expression of JAKs are associated with many disease states. For example, Jakl -/- mice are runted at birth, fail to nurse, and die perinatally (Rodig, S. J., M. A. Meraz, et al. (1998) Cell 93(3): 373-83). Jak2-/- mouse embryos are anemic and die around day 12.5 postcoitum due to the absence of definitive erythropoiesis.
The JAK/STAT pathway, and in particular all four JAKs, are believed to play a role in the pathogenesis of asthmatic response, chronic obstructive pulmonary disease, bronchitis, and other related inflammatory diseases of the lower respiratory tract. Multiple cytokines that signal through JAKs have been linked to inflammatory diseases/conditions of the upper respiratory tract, such as those affecting the nose and sinuses (e.g., rhinitis and sinusitis) whether classically allergic reactions or not. The JAK/STAT pathway has also been implicated in inflammatory diseases/conditions of the eye and chronic allergic responses.
Activation of JAK/STAT in cancers may occur by cytokine stimulation (e.g. IL-6 or GM-CSF) or by a reduction in the endogenous suppressors of JAK signaling such as SOCS (suppressor or cytokine signaling) or PIAS (protein inhibitor of activated STAT) (Boudny, V., and Kovarik, J., Neoplasm. 49:349-355, 2002).
Activation of STAT signaling, as well as other pathways downstream of JAKs (e.g., Akt), has been correlated with poor prognosis in many cancer types (Bowman, T., et al. Oncogene 19:2474-2488, 2000). Elevated levels of circulating cytokines that signal through JAK/STAT play a causal role in cachexia and/or chronic fatigue. As such, JAK inhibition may be beneficial to cancer patients for reasons that extend beyond potential anti-tumor activity.
JAK2 tyrosine kinase can be beneficial for patients with myeloproliferative disorders, e.g., polycythemia vera (PV), essential thrombocythemia (ET), myeloid metaplasia with myelofibrosis (MMM) (Levin, et al., Cancer Cell, vol. 7, 2005: 387- 397). Inhibition of the JAK2V617F kinase decreases proliferation of hematopoietic cells, suggesting JAK2 as a potential target for pharmacologic inhibition in patients with PV, ET, and MMM. Inhibition of the JAKs may benefit patients suffering from skin immune disorders such as psoriasis, and skin sensitization. The maintenance of psoriasis is believed to depend on a number of inflammatory cytokines in addition to various chemokines and growth factors (JCI, 1 13: 1664-1675), many of which signal through JAKs (Adv Pharmacol. 2000;47: 1 13-74).
JAKl plays a central role in a number of cytokine and growth factor signaling pathways that, when dysregulated, can result in or contribute to disease states. For example, IL-6 levels are elevated in rheumatoid arthritis, a disease in which it has been suggested to have detrimental effects (Fonesca, J.E. et al., Autoimmunity Reviews, 8:538-42, 2009). Because IL-6 signals, at least in part, through JAKl , antagonizing IL-6 directly or indirectly through JAKl inhibition is expected to provide clinical benefit (Guschin, D., N., et al Embo J 14: 1421, 1995; Smolen, J. S., et al. Lancet 371 :987, 2008). Moreover, in some cancers JAKl is mutated resulting in constitutive undesirable tumor cell growth and survival (Mullighan CG, Proc Natl Acad Sci U S A.106:9414-8, 2009; Flex E., et al.J Exp Med. 205:751-8, 2008). In other autoimmune diseases and cancers elevated systemic levels of inflammatory cytokines that activate JAK 1 may also contribute to the disease and/or associated symptoms. Therefore, patients with such diseases may benefit from JAKl inhibition. Selective inhibitors of JAKl may be efficacious while avoiding unnecessary and potentially undesirable effects of inhibiting other JAK kinases.
Selective inhibitors of JAKl , relative to other JAK kinases, may have multiple therapeutic advantages over less selective inhibitors. With respect to selectivity against JAK2, a number of important cytokines and growth factors signal through JAK2 including, for example, erythropoietin (Epo) and thrombopoietin (Tpo) (Parganas E, et al. Cell. 93:385-95, 1998). Epo is a key growth factor for red blood cells production; hence a paucity of Epo-dependent signaling can result in reduced numbers of red blood cells and anemia (Kaushansky K, NEJM 354:2034-45, 2006). Tpo, another example of a JAK2-dependent growth factor, plays a central role in controlling the proliferation and maturation of megakaryocytes - the cells from which platelets are produced (Kaushansky K, NEJM 354:2034-45, 2006). As such, reduced Tpo signaling would decrease megakaryocyte numbers (megakaryocytopenia) and lower circulating platelet counts (thrombocytopenia). This can result in undesirable and/or uncontrollable bleeding. Reduced inhibition of other JAKs, such as JAK3 and Tyk2, may also be desirable as humans lacking functional version of these kinases have been shown to suffer from numerous maladies such as severe-combined immunodeficiency or hyperimmunoglobulin E syndrome (Minegishi, Y, et al.
Immunity 25:745-55, 2006; Macchi P, et al. Nature. 377:65-8, 1995). Therefore a JAK 1 inhibitor with reduced affinity for other JAKs would have significant advantages over a less-selective inhibitor with respect to reduced side effects involving immune suppression, anemia and thrombocytopenia.
Due to the usefulness of JAK inhibitors, there is a need for development of new processes for making JAK inhibitors. This invention is directed towards this need and others.
SUMMARY
JAK inhibitors are described in U.S. Serial No. 13/043,986, filed March 9, 201 1 , which is incorporated herein by reference in its entirety, including { l -{ l -[3- fluoro-2-(trifluoromethyl)isonicotinoyl]piperidin-4-yl}-3-[4-(7H-pyrrolo[2,3- d]pyrimidin-4-yl)-l H-pyrazol- l -yl]azetidin-3-yl }acetonitrile, which is depicted below as Formula I.
Figure imgf000005_0001
1
The present invention provides, inter alia, processes and intermediates for making the compound of Formula I. In particular, the present invention provides processes of making a compound of Formula II:
Figure imgf000006_0001
or a salt thereof, comprising reacting a compound of Formula III:
a salt thereof, with a compound
Figure imgf000006_0002
or a salt thereof, in the presence of a reducing agent to form the compound of Formula II or said salt thereof, provided said reducing agent is not sodium cyanoborodeutende; wherein P1 is a protecting group.
The present invention also provides processes of making a compound of Formula IV:
Figure imgf000007_0001
IV
or a salt thereof, comprising depro compound of Formula V:
Figure imgf000007_0002
V
or a salt thereof, to form a compound of Formula IV, or said salt thereof.
The present invention proc compound of Formula V:
Figure imgf000007_0003
or a salt thereof, comprising reacti of Formula VI:
Figure imgf000007_0004
VI
or a salt thereof, with a compound of Formula VII:
Figure imgf000007_0005
VII in the presence of a coupling agent to form the compound of Formula V, or said salt thereof.
The present invention furth pound of Formula V:
Figure imgf000008_0001
or a salt thereof.
DETAILED DESCRIPTION
The present invention provides a process of making a compound of Formula
Figure imgf000008_0002
II
or a salt thereof, comprising reacting a compound of Formula III:
Figure imgf000008_0003
III
or a salt thereof, with a compound
Figure imgf000009_0001
or a salt thereof, in the presence of a reducing agent to form the compound of Formula II, or said salt thereof, provided said reducing agent is not sodium
cyanoborodeuteride; wherein P1 is a protecting group.
In some embodiments, the compounds of Formula III and IV are preferably used as free bases and the compound of Formula II is produced preferably as a free base. As used herein, "free base" means the non-salt form of the compound.
In some embodiments, the reaction of compound III and compound IV is carried out in the presence of a tertiary amine (e.g., triethylamine). In some embodiments, the temperature of the reaction is < 30 °C. In some embodiments, the reaction is carried out in a suitable solvent. In some embodiments, the suitable solvent is dichloromethane.
Appropriate P1 protecting groups include, but are not limited to the protecting groups for amines delineated in Wuts and Greene, Protective Groups in Organic Synthesis, 4th ed., John Wiley & Sons: New Jersey, pages 696-887 (and, in particular, pages 872-887) (2007), which is incorporated herein by reference in its entirety. In some embodiments, P1 is benzyloxycarbonyl (Cbz), 2,2,2-trichloroethoxycarbonyl (Troc), 2-(trimethylsilyl)ethoxycarbonyl (Teoc), 2-(4- trifluoromethylphenylsulfonyl)ethoxycarbonyl (Tsc), t-butoxycarbonyl (BOC), 1 - adamantyloxycarbonyl (Adoc), 2-adamantylcarbonyl (2-Adoc), 2,4-dimethylpent-3- yloxycarbonyl (Doc), cyclohexyloxycarbonyl (Hoc), l , l -dimethyl-2,2,2- trichloroethoxycarbonyl (TcBOC), vinyl, 2-chloroethyl, 2-phenylsulfonylethyl, ally 1, benzyl, 2-nitrobenzyl, 4-nitrobenzyl, diphenyl-4-pyridylmethyl, Ν',Ν'- dimethylhydrazinyl, methoxymethyl, t-butoxymethyl (Bum), benzyloxymethyl (BOM), 2-tetrahydropyranyl (THP), tri(d.4 alkyl)silyl (e.g., tri(isopropyl)silyl), 1 , 1 - diethoxymethyl, -CH20CH2CH2Si(CH3)3 (SEM) or N-pivaloyloxymethyl (POM). In some embodiments, P1 is -CH2OCH2CH2Si(CH3)3.
The reducing agent can be any reducing agent suitable for use in reductive amination, including various borohydride and borane reducing agents, such as those in Ellen W. Baxter and Allen B. Reitz, Reductive Aminations of Carbonyl
Compounds with Borohydride and Borane Reducing Agents, Organic Reactions, Chapter 1 , pages 1 -57 (Wiley, 2002), which is incorporated herein by reference in its entirety. Non-limiting classes of appropriate reducing agents include borohydride, cyanoborohydride, tri(Ci.4 acyl)oxyborohydride (e.g., triacetoxyborohydride derivatives), 9-borobicyclo[3.3.1 ]nonane hydride, tri(Ci-4 alkyl)borohydride, and disopinocampteylcyanoborohydride derivatives, amino boranes, borane-pyridine complex, and alkylamine boranes. Non-limiting examples of appropriate reducing agents include sodium cyanoborohydride, sodium triacetoxyborohydride, sodium cyano-9-borobicyclo[3.3.1 ]nonane hydride, tetrabutylammonium cyanoborohydride, cyanoborohydride on a solid support, tetramethylammonium triacetoxyborohydride, sodium triacetoxyborohydride, lithium triethylborohydride, lithium tri(sec- butyl)borohydride, sodium disopinocampteylcyanoborohydride, catechol borane, borane tetrahydrofuran, sodium borohydride, potassium borohydride, lithium borohydride, palladium in the presence of hydrogen gas, 5-ethyl-2-methylpyridine borane (PEMB), 2-picoline borane or polymer-supported triacetoxyborohydride. In some embodiments, any of the aforementioned, and preferably sodium
cyanoborohydride, is used in combination with a titanium (IV) additive, dehydrating agent, or a zinc halide additive. In some embodiments, the reducing agent is a tetra(Ci-4 alkyl)ammonium cyanoborohydride or triacetoxyborohydride, an alkali metal cyanoborohydride or triacetoxyborohydride, or an alkaline earth
cyanoborohydride or triacetoxyborohydride. In some embodiments, the reducing agent is an alkali metal cyanoborohydride. In some embodiments, the reducing agent is selected from sodium cyanoborohydride and sodium triacetoxyborohydride. In some embodiments, the reducing agent is sodium triacetoxyborohydride. As used herein, a titanium (IV) additive is a Lewis acid containing a titanium (IV) metal (e.g., titanium tetrachloride, titanium isopropoxide, titanium ethoxide, and the like). In some embodiments, the process further comprisies deprotecting a compound of Formula II or said salt thereof, to form a" compound of Formula I:
Figure imgf000011_0001
I
or a salt thereof.
In some embodiments, the compound of Formula I is initially produced as a free base from the free base form of the compound of Formula II.
In some embodiments, the deprotecting involves reacting the compound of Formula II with a suitable deprotecting agent. In some embodiments, the deprotecting comprises treating with boron trifluoride etherate, followed by treating with aqueous ammonium hydroxide. In some embodiments, the deprotection is carried out in a suitable solvent at a temperature of < 30 °C, < 20 °C, < 10 °C, or < 5 °C. In some embodiments, the suitable solvent is acetonitrile.
In some embodiments, the process of deprotecting the compound of Formula II to form the compound of Formula I, further comprises reacting the compound of Formula I with adipic acid to form the adipate salt.
In some embodiments, the process further comprises:
(a) heating the compound of Formula I in methanol at reflux to form a mixture;
(b) after (a), adding methyl isobutyl ketone to the mixture;
(c) after (b), removing a portion of solvent by distillation at an internal temperature of 40 °C to 50 °C to form a concentrated mixture;
(d) after (c), adding methanol to the concentrated mixture to form a diluted mixture; (e) after (d), heating the diluted mixture at reflux to form a mixture;
(f) after (e), adding methyl isobutyl ketone to the mixture;
(g) after (f), removing a portion of solvent by distillation at an internal temperature of 40 °C to 50 °C to form a concentrated mixture;
(h) after (g), adding adipic acid and methanol to the concentrated mixture;
(i) after (h), heating the mixture at reflux; and
(j) after (i), removing a portion of solvent by distillation at an internal temperature of 40 °C to 50 °C to form a concentrated mixture;
(k) after (j), adding heptane to the mixture; and
(1) after (k), stirring the mixture at room temperature to form the adipic acid salt of the compound of Formula I.
Treatment of the compound of Formula II to remove the P1 group can be accomplished by methods known in the art for the removal of particular protecting groups for amines, such as those in Wuts and Greene, Protective Groups in Organic Synthesis, 4th ed., John Wiley & Sons: New Jersey, pages 696-887 (and, in particular, pages 872-887) (2007), which is incorporated herein by reference in its entirety. For example, in some embodiments, the P1 group is removed by treating with fluoride ion (e.g., treating with tetrabutylammonium fluoride), hydrochloric acid, pyridinium p- toluenesulfonic acid (PPTS), or a Lewis acid (e.g., lithium tetrafluoroborate)). In some embodiments, the treating comprises treating with lithium tetrafluoroborate, followed by treating with ammonium hydroxide (e.g., when P1 is 2- (trimethylsilyl)ethoxymethyl). In some embodiments, the treating comprises treating with base (e.g., P1 is N-pivaloyloxymethyl). In some embodiments, the base is an alkali metal hydroxide. In some embodiments, the base is sodium hydroxide. In some embodiments, the treating comprises treating with sodium hydroxide or ammonia in a solvent such as methanol or water.
In some embodiments, the compound of Formula IV, or a salt thereof, is produced by a process comprising deprotecting a compound of Formula V:
Figure imgf000013_0001
V
or a salt thereof.
In some embodiments, the compound of Formula V is used preferably as a free base and the compound of Formula IV is produced preferably as a free base.
In some embodiments, the deprotecting comprises reacting with aqueous acid.
In some embodiments, the acid is hydrochloric acid.
In some embodiments, an excess of aqueous acid is used relative to the compound of Formula V. In some embodiments, an excess of 5, 6, 7, 8, 9, or 10 equivalents of aqueous acid is used relative to the compound of Formula V. In some embodiments, an excess of 6, 7, 8, 9, or 10 equivalents or more of aqueous acid is used relative to the compound of Formula V. In some embodiments, an excess of 7, 8, 9, or 10 equivalents or more of aqueous acid is used relative to φε compound of Formula V. In some embodiments, an excess of 8, 9, or 10 equivalents or more of aqueous acid is used relative to the compound of Formula V. In some embodiments, an excess of 9 or 10 equivalents or more of aqueous acid is used relative to the compound of Formula V. In some embodiments, an excess of 9 equivalents or more of aqueous acid is used relative to the compound of Formula V. In some
embodiments, the deprotection is carried out in acetonitrile solvent at a temperature of < 30 °C, < 20 °C, < 10 °C, or < 5 °C.
Other appropriate deprotecting conditions include, but are not limited to, those in Wuts and Greene, Protective Groups in Organic Synthesis, 4th ed., John Wiley & Sons: New Jersey, pages 696-887 (and, in particular, pages 872-887) (2007), which is incorporated herein by reference in its entirety.
In some embodiments, the compound of Formula V is produced by a process comprising reacting a compound of Formula VI:
Figure imgf000013_0002
VI
a salt thereof, with a compound of Formula
Figure imgf000014_0001
or a salt thereof, in the presence of a coupling agent.
Appropriate coupling agents are any of the well-known coupling agents for coupling an amine to an acid to form an amine. Non-limiting examples include carbodiimides (e.g., Ν,Ν'-dicyclohexylcarbodiimide (DCC), Ν,Ν'- diisopropylcarbodiimide (D1C), l-ethyl-3-(3-dimethylaminopropyl, or
dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC hydrochloride)) carbodiimide (EDC), or Ι ,Γ-carbonyldiimidazole (CDI)), a carbodiimide regent in the presence of 1-hydroxybenzotriazole (HOBt) or hydrate thereof, phosphonium-based coupling agents (e.g., benzotriazol-l-yloxy-tris(dimethylamino)-phosphonium hexafluorophosphate (BOP), (benzotriazol-l-yloxy)tripyrrolidinophosphonium hexafluorophosphate (P BOP), (7-azabenzotriazol- 1 -y loxy )-tris- pyrrolidinophosphonium hexafluorophosphate (PyAOP),
bromotripyrrolidinophosphonium hexafluorophosphate (PyBrOP), bis(2-oxo-3- oxazolidinyl)phosphinic chloride (BOP-C1)), aminium-based reagents (e.g., O- (benzotriazol-l-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HBTU), O- (benzotriazol-l-yl)- Ν,Ν,Ν',Ν'-tetramethyluronium tetrafluoroborate (TBTU), 3- (diethylphosphoryloxy)-l,2,3-benzotriazin-4(3H)-one (DEPBT), 0-(7- azabenzotriazol-l -yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU), 0-(6-chlorobenzotriazol-l-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HCTU), and 0-(7-azabenzotriazol- 1 -yl)-N,N,N',N'-tetramethy luronium
tetrafluoroborate (TATU)), uronium-based reagents (0-(5-norbornene-2,3- dicarboximido)-N,N,N',N'-tetramethyluronium tetrafluoroborate (TNTU), and 0-(N- succinimidyl)-l ,l ,3,3-tetramethyluronium tetrafluoroborate (TSTU), 0-(3,4-dihydro- 4-oxo-l ,2,3-benzotriazine-3-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate (TDBTU)), 0-(l ,2-dihydro-2-oxo-l-pyridyl-N,N,N',N'-tetramethyluronium tetrafluoroborate (TPTU), or 0-[(ethoxycarbonyl)cyano-methyleneamino]-N,N,N',N'- tetramethyluronium tertafluoroborate (TOTU)), other regents including, but not limited to, 3-(diethylphosphoryloxy)-l ,2,3-benzotriazin-4(3H)-one (DEPBT), carbonyldiimidazole (CDI), Ν,Ν,Ν',Ν'-tertamethylchloroformamidium
hexafluorophosphate (TCFH), or propylphosphonic anhydride solution. In some embodiments, the coupling agent is benzotriazol-l-yloxy-tris(dimethylamino)- phosphonium hexafluorophosphate (BOP).
In some embodiments, the compounds of Formulas V, VI, and VII are, preferably, in their non-salt forms.
In some embodiments, the reaction of the compound of Formula VI and VII is carried out in the presence of a tertiary amine (e.g., triethylamine). In some embodiments, the reaction is carried out in dimethylformamide (DMF) at a temperature of < 30 °C, < 20 °C, or < 15 °C. In some embodiments, the coupling agent is present in > 1.05, > 1.1 , or > 1.2 equivalents relative to the compound of Formula VI.
The present invention also und of Formula V:
Figure imgf000015_0001
or a salt thereof, which is a useful intermediate in the processes described above.
In some embodiments, the compound of Formula V is a free base.
The processes described herein can be monitored according to any suitable method known in the art. For example, product formation can be monitored by spectroscopic means, such as nuclear magnetic resonance spectroscopy (e.g., Ή or 13C), infrared spectroscopy, or spectrophotometry (e.g., UV-visible); or by chromatography such as high performance liquid chromatograpy (HPLC) or thin layer chromatography (TLC) or other related techniques.
As used herein, the term "reacting" is used as known in the art and generally refers to the bringing together of chemical reagents in such a manner so as to allow their interaction at the molecular level to achieve a chemical or physical transformation. In some embodiments, the reacting involves two reagents, wherein one or more equivalents of second reagent are used with respect to the first reagent. The reacting steps of the processes described herein can be conducted for a time and under conditions suitable for preparing the identified product.
Preparation of compounds can involve the protection and deprotection of various chemical groups. The need for protection and deprotection, and the selection of appropriate protecting groups can be readily determined by one skilled in the art. The chemistry of protecting groups can be found, for example, in Greene, et al., Protective Groups in Organic Synthesis, 4d. Ed., Wiley & Sons, 2007, which is incorporated herein by reference in its entirety. Adjustments to the protecting groups and formation and cleavage methods described herein may be adjusted as necessary in light of the various substituents.
The reactions of the processes described herein can be carried out in suitable solvents which can be readily selected by one of skill in the art of organic synthesis. Suitable solvents can be substantially nonreactive with the starting materials
(reactants), the intermediates, or products at the temperatures at which the reactions are carried out, e.g., temperatures which can range from the solvent's freezing temperature to the solvent's boiling temperature. A given reaction can be carried out in one solvent or a mixture of more than one solvent. Depending on the particular reaction step, suitable solvents for a particular reaction step can be selected. In some embodiments, reactions can be carried out in the absence of solvent, such as when at least one of the reagents is a liquid or gas.
Suitable solvents can include halogenated solvents such as carbon tetrachloride, bromodichloromethane, dibromochloromethane, bromoform, chloroform, bromochloromethane, dibromomethane, butyl chloride, dichloromethane, tetrachloroethylene, trichloroethylene, 1 , 1,1 -trichloroethane, 1 , 1 ,2-trichloroethane, 1 , 1-dichloroethane, 2-chloropropane, α,α,α-trifluorotoluene, 1 ,2-dichloroethane, 1 ,2- dibromoethane, hexafluorobenzene, 1 ,2,4-trichlorobenzene, 1 ,2-dichlorobenzene, chlorobenzene, fluorobenzene, mixtures thereof and the like.
Suitable ether solvents include: dimethoxymethane, tetrahydrofuran, 1 ,3- dioxane, 1 ,4-dioxane, furan, diethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, anisole, t-butyl methyl ether, mixtures thereof and the like.
Suitable protic solvents can include, by way of example and without limitation, water, methanol, ethanol, 2-nitroethanol, 2-fluoroethanol, 2,2,2- trifluoroethanol, ethylene glycol, 1 -propanol, 2-propanol, 2-methoxyethanol, 1 - butanol, 2-butanol, i-butyl alcohol, t-butyl alcohol, 2-ethoxyethanol, diethylene glycol, 1-, 2-, or 3- pentanol, neo-pentyl alcohol, t-pentyl alcohol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, cyclohexanol, benzyl alcohol, phenol, or glycerol.
Suitable aprotic solvents can include, by way of example and without limitation, tetrahydrofuran (THF), Ν,Ν-dimethylformamide (DMF), N,N- dimethylacetamide (DMA), l ,3-dimethyl-3,4,5,6-tetrahydro-2(l H)-pyrimidinone (DMPU), l ,3-dimethyl-2-imidazolidinone (DMI), N-methylpyrrolidinone (NMP), formamide, N-methylacetamide, N-methylformamide, acetonitrile, dimethyl sulfoxide, propionitrile, ethyl formate, methyl acetate, hexachloroacetone, acetone, ethyl methyl ketone, ethyl acetate, sulfolane, N,N-dimethylpropionamide, tetramethylurea, nitromethane, nitrobenzene, or hexamethylphosphoramide.
Suitable hydrocarbon solvents include benzene, cyclohexane, pentane, hexane, toluene, cycloheptane, methylcyclohexane, heptane, ethylbenzene, m-, o-, or p- xylene, octane, indane, nonane, or naphthalene.
The reactions of the processes described herein can be carried out at appropriate temperatures which can be readily determined by the skilled artisan. Reaction temperatures will depend on, for example, the melting and boiling points of the reagents and solvent, if present; the thermodynamics of the reaction (e.g., vigorously exothermic reactions may need to be carried out at reduced temperatures); and the kinetics of the reaction (e.g., a high activation energy barrier may need elevated temperatures). "Elevated temperature" refers to temperatures above room temperature (about 22 °C).
The reactions of the processes described herein can be carried out in air or under an inert atmosphere. Typically, reactions containing reagents or products that are substantially reactive with air can be carried out using air-sensitive synthetic techniques that are well known to the skilled artisan. In some embodiments, preparation of compounds can involve the addition of acids or bases to affect, for example, catalysis of a desired reaction or formation of salt forms such as acid addition salts.
Example acids can be inorganic or organic acids. Inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, and nitric acid. Organic acids include formic acid, acetic acid, propionic acid, butanoic acid, benzoic acid, 4-nitrobenzoic acid, methanesulfonic acid, p-toluenesulfonic acid,
benzenesulfonic acid, tartaric acid, trifluoroacetic acid, propiolic acid, butyric acid, 2- butynoic acid, vinyl acetic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid and decanoic acid.
Example bases include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, and potassium carbonate. Some example strong bases include, but are not limited to, hydroxide, alkoxides, metal amides, metal hydrides, metal dialkylamides and arylamines, wherein; alkoxides include lithium, sodium and potassium salts of methyl, ethyl and t-butyl oxides; metal amides include sodium amide, potassium amide and lithium amide; metal hydrides include sodium hydride, potassium hydride and lithium hydride; and metal dialkylamides include sodium and potassium salts of methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, trimethylsilyl and cyclohexyl substituted amides.
The intermediates and products may also include salts of the compounds disclosed herein. As used herein, the term "salt" refers to a salt formed by the addition of an acceptable acid or base to a compound disclosed herein. In some embodiments, the salts are pharmaceutically acceptable salts. As used herein, the phrase "pharmaceutically acceptable" refers to a substance that is acceptable for use in pharmaceutical applications from a toxicological perspective and does not adversely interact with the active ingredient. Pharmaceutically acceptable salts, including mono- and bi- salts, include, but are not limited to, those derived from organic and inorganic acids such as, but not limited to, acetic, lactic, citric, cinnamic, tartaric, succinic, fumaric, maleic, malonic, mandelic, malic, oxalic, propionic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, glycolic, pyruvic, methanesulfonic, ethanesulfonic, toluenesulfonic, salicylic, benzoic, and similarly known acceptable acids. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, Pa., 1985, p.
1418 and Journal of Pharmaceutical Science, 66, 2 (1977), each of which is incorporated herein by reference in their entireties.
Upon carrying out preparation of compounds according to the processes described herein, the usual isolation and purification operations such as concentration, filtration, extraction, solid-phase extraction, recrystallization, chromatography, and the like may be used, to isolate the desired products.
In some embodiments, the compounds of the invention, and salts thereof, are substantially isolated. By "substantially isolated" is meant that the compound is at least partially or substantially separated from the environment in which it was formed or detected. Partial separation can include, for example, a composition enriched in the compound of the invention. Substantial separation can include compositions containing at least about 50%, at least about 60%, at least about 70%, at least about
80%, at least about 90%, at least about 95%, at least about 97%, or at least about 99% by weight of the compound of the invention, or a salt thereof. Methods for isolating compounds and their salts are routine in the art.
Uses
The compound of Formula I, { l -{ l -[3-fluoro-2- (trifluoromethyl)isonicotinoyl]piperidin-4-yl}-3-[4-(7H-pynOlo[2,3-d]pyrimidin-4- yl)-l H-pyrazol-l -yl]azetidin-3-yl}acetonitrile, is an inhibitor of JAK (e.g., JA 1 , JA 2). JAK inhibitors are useful in treating various JAK-associated diseases or disorders. Examples of JAK-associated diseases include diseases involving the immune system including, for example, organ transplant rejection (e.g. , allograft rejection and graft versus host disease). Further examples of JAK-associated diseases include autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, juvenile arthritis, psoriatic arthritis, type 1 diabetes, lupus, psoriasis, inflammatory bowel disease, ulcerative colitis, Crohn's disease, myasthenia gravis, immunoglobulin nephropathies, myocarditis, autoimmune thyroid disorders, chronic obstructive pulmonary disease (COPD), and the like. In some embodiments, the autoimmune disease is an autoimmune bullous skin disorder such as pemphigus vulgaris (PV) or bullous pemphigoid (BP). Further examples of JAK-associated diseases include allergic conditions such as asthma, food allergies, eszematous dermatitis, contact dermatitis, atopic dermatitis (atropic eczema), and rhinitis. Further examples of JAK-associated diseases include viral diseases such as Epstein Barr Virus (EBV), Hepatitis B, Hepatitis C, HIV, HTLV 1 , Varicella-Zoster Virus (VZV) and Human Papilloma Virus (HPV).
Further examples of JAK-associated disease include diseases associated with cartilage turnover, for example, gouty arthritis, septic or infectious arthritis, reactive arthritis, reflex sympathetic dystrophy, algodystrophy, Tietze syndrome, costal athropathy, osteoarthritis deformans endemica, Mseleni disease, Handigodu disease, degeneration resulting from fibromyalgia, systemic lupus erythematosus, scleroderma, or ankylosing spondylitis.
Further examples of JAK-associated disease include congenital cartilage malformations, including hereditary chrondrolysis, chrondrodysplasias, and pseudochrondrodysplasias (e.g., microtia, enotia, and metaphyseal
chrondrodysplasia).
Further examples of JAK-associated diseases or conditions include skin disorders such as psoriasis (for example, psoriasis vulgaris), atopic dermatitis, skin rash, skin irritation, skin sensitization (e.g., contact dermatitis or allergic contact dermatitis). For example, certain substances including some pharmaceuticals when topically applied can cause skin sensitization. In some embodiments, coadministration or sequential administration of at least one JAK inhibitor of the invention together with the agent causing unwanted sensitization can be helpful in treating such unwanted sensitization or dermatitis. In some embodiments, the skin disorder is treated by topical administration of at least one JAK inhibitor of the invention.
Further examples of JAK-associated diseases or conditions include those characterized by solid tumors (e.g., prostate cancer, renal cancer, hepatic cancer, pancreatic cancer, gastric cancer, breast cancer, lung cancer, cancers of the head and neck, thyroid cancer, glioblastoma, Kaposi's sarcoma, Castleman's disease, uterine leiomyosarcoma, melanoma etc.), hematological cancers (e.g., lymphoma, leukemia such as acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML) or multiple myeloma), and skin cancer such as cutaneous T-cell lymphoma (CTCL) and cutaneous B-cell lymphoma. Example CTCLs include Sezary syndrome and mycosis fungoides. Other examples of JA -associated diseases or conditions include pulmonary arterial hypertension.
Other examples of JAK-associated diseases or conditions include
inflammation-associated cancers. In some embodiments, the cancer is associated with inflammatory bowel disease. In some embodiments, the inflammatory bowel disease is ulcerative colitis. In some embodiments, the inflammatory bowel disease is Crohn's disease. In some embodiments, the inflammation-associated cancer is colitis- associated cancer. In some embodiments, the inflammation-associated cancer is colon cancer or colorectal cancer. In some embodiments, the cancer is gastric cancer, gastrointestinal carcinoid tumor, gastrointestinal stromal tumor (GIST),
adenocarcinoma, small intestine cancer, or rectal cancer.
JAK-associated diseases can further include those characterized by expression of: JAK2 mutants such as those having at least one mutation in the pseudo-kinase domain {e.g., JAK2V617F); JAK2 mutants having at least one mutation outside of the pseudo-kinase domain; JAK 1 mutants; JAK3 mutants; erythropoietin receptor (EPOR) mutants; or deregulated expression of CRLF2.
JAK-associated diseases can further include myeloproliferative disorders (MPDs) such as polycythemia vera (PV), essential thrombocythemia (ET), myelofibrosis with myeloid metaplasia (MMM), primary myelofibrosis (PMF), chronic myelogenous leukemia (CML), chronic myelomonocytic leukemia (CMML), hypereosinophilic syndrome (HES), systemic mast cell disease (SMCD), and the like. In some embodiments, the myeloproliferative disorder is myelofibrosis (e.g., primary myelofibrosis (PMF) or post polycythemia vera/essential thrombocythemia myelofibrosis (Post-PV Post-ET MF)). In some embodiments, the myeloproliferative disorder is post- essential thrombocythemia myelofibrosis (Post-ET MF). In some embodiments, the myeloproliferative disorder is post polycythemia vera myelofibrosis (Post-PV MF).
Other examples of JAK-associated diseases or conditions include ameliorating the dermatological side effects of other pharmaceuticals by administration of the compound of the invention. For example, numerous pharmaceutical agents result in unwanted allergic reactions which can manifest as acneiform rash or related dermatitis. Example pharmaceutical agents that have such undesirable side effects include anti-cancer drugs such as gefitinib, cetuximab, erlotinib, and the like. The compounds of the invention can be administered systemically or topically (e.g., localized to the vicinity of the dermatitis) in combination with (e.g., simultaneously or sequentially) the pharmaceutical agent having the undesirable dermatological side effect. In some embodiments, the compound of the invention can be administered topically together with one or more other pharmaceuticals, where the other pharmaceuticals when topically applied in the absence of a compound of the invention cause contact dermatitis, allergic contact sensitization, or similar skin disorder.
Accordingly, compositions of the invention include topical formulations containing the compound of the invention and a further pharmaceutical agent which can cause dermatitis, skin disorders, or related side effects.
Further JAK-associated diseases include inflammation and inflammatory diseases. Example inflammatory diseases include sarcoidosis, inflammatory diseases of the eye (e.g., iritis, uveitis, scleritis, conjunctivitis, or related disease),
inflammatory diseases of the respiratory tract (e.g., the upper respiratory tract including the nose and sinuses such as rhinitis or sinusitis or the lower respiratory tract including bronchitis, chronic obstructive pulmonary disease, and the like), inflammatory myopathy such as myocarditis, and other inflammatory diseases. In some embodiments, the inflammation disease of the eye is blepharitis.
Further JAK-associated diseases include ischemia reperfusion injuries or a disease or condition related to an inflammatory ischemic event such as stroke or cardiac arrest, endotoxin-driven disease state (e.g., complications after bypass surgery or chronic endotoxin states contributing to chronic cardiac failure), anorexia, cachexia, fatigue such as that resulting from or associated with cancer, restenosis, sclerodermitis, fibrosis, conditions associated with hypoxia or astrogliosis such as, for example, diabetic retinopathy, cancer, or neurodegeneration, and other inflammatory diseases such as systemic inflammatory response syndrome (SIRS) and septic shock.
Other JAK-associated diseases include gout and increased prostate size due to, e.g., benign prostatic hypertrophy or benign prostatic hyperplasia, as well as bone resorption diseases such as osteoporosis or osteoarthritis, bone resorption diseases associated with: hormonal imbalance and/or hormonal therapy, autoimmune disease (e.g. osseous sarcoidosis), or cancer (e.g. myeloma).
Further JA -associated diseases include a dry eye disorder. As used herein, "dry eye disorder" is intended to encompass the disease states summarized in a recent official report of the Dry Eye Workshop (DEWS), which defined dry eye as "a multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbance, and tear film instability with potential damage to the ocular surface. It is accompanied by increased osmolarity of the tear film and inflammation of the ocular surface." Lemp, "The Definition and Classification of Dry Eye Disease: Report of the Definition and Classification Subcommittee of the
International Dry Eye Workshop", The Ocular Surface, 5(2), 75-92 April 2007, which is incorporated herein by reference in its entirety. In some embodiments, the dry eye disorder is selected from aqueous tear-deficient dry eye (ADDE) or evaporative dry eye disorder, or appropriate combinations thereof. In some embodiments, the dry eye disorder is Sjogren syndrome dry eye (SSDE). In some embodiments, the dry eye disorder is non-Sjogren syndrome dry eye (NSSDE).
Further JAK-associated diseases include conjunctivitis, uveitis (including chronic uveitis), chorioditis, retinitis, cyclitis, sclieritis, episcleritis, or iritis. Other JAK-associated diseases include respiratory dysfunction or failure associated wth viral infection, such as influenza and SARS.
Examples
The invention will be described in greater detail by way of specific examples. The following examples are offered for illustrative purposes, and are not intended to limit the invention in any manner. Those of skill in the art will readily recognize a variety of noncritical parameters which can be changed or modified to yield essentially the same results.
Example 1. Synthesis of 4-(lH-pyrazol-4-yl)-7-((2- (trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-rf]pyrimidine (5)
Figure imgf000024_0001
C6H_CIN3 C12HleCIN3OSi C13H23BN203
Mol. Wt: 266.14
Figure imgf000024_0002
CissHjsNsOijSi C16H21N5OSi
Mol. Wt.: 387.55 Mol. Wt.: 315.45
Step 1. 4-Chlow-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidine (3)
To a flask equipped with a nitrogen inlet, an addition funnel, a thermowell, and the mechanical stirrer was added 4-chloro-7H-pyirolo[2,3-c/]pyrirnidine (1, 600 g, 3.91 mol) and N,N-dimethylacetimide (DMAC, 9.6 L) at room temperature. The mixture was cooled to 0 - 5 °C in an ice/brine bath before solid sodium hydride (NaH, 60 wt%, 174 g, 4.35 mol, 1.1 equiv) was added in portions at 0 - 5 °C. The reaction mixture turned into a dark solution after 15 minutes. Trimethylsilylethoxymethyl chloride (2, SEM-C1, 763 mL, 4.31 mol, 1.1 equiv) was then added slowly via an addition funnel at a rate that the internal reaction temperature did not exceed 5 °C. The reaction mixture was then stirred at 0 - 5 °C for 30 minutes. When the reaction was deemed complete determined by TLC and HPLC, the reaction mixture was quenched by water (1 L). The mixture was then diluted with water (12 L) and methyl tert-b ty] ether (MTBE) (8 L). The two layers were separated and the aqueous layer was extracted with MTBE (8 L). The combined organic layers were washed with water (2 x 4 L) and brine (4 L) and solvent switched to 1-butanol. The solution of crude product (3) in 1 -butanol was used in the subsequent Suzuki coupling reaction without further purification. Alternatively, the organic solution of the crude product (3) in MTBE was dried over sodium sulfate (Na2SC>4). The solvents were removed under reduced pressure. The residue was then dissolved in heptane (2 L), filtered and loaded onto a silica gel (S1O2, 3.5 Kg) column eluting with heptane (6 L), 95% heptane/ethyl acetate (12 L), 90% heptane/ethyl acetate (10 L), and finally 80% heptane/ethyl acetate (10 L). The fractions containing the pure desired product were combined and concentrated under reduced pressure to give 4-chloro-7-((2-
(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-i/]pyrimidine (3, 987 g, 1 109.8 g theoretical, 88.9% yield) as a pale yellow oil which partially solidified to an oily solid on standing at room temperature. For 3: Ή NMR (DMSO-af6, 300 MHz) δ 8.67 (s, 1 H), 7.87 (d, 1 H, J = 3.8 Hz), 6.71 (d, 1 H, J= 3.6 Hz), 5.63 (s, 2H), 3.50 (t, 2H, J= 7.9 Hz), 0.80 (t, 2H, J= 8.1 Hz), 1.24 (s, 9H) ppm; 13C NMR (DMSO-cfe, 100 MHz) δ 151.3, 150.8, 150.7, 131.5, 1 16.9, 99.3, 72.9, 65.8, 17.1 , -1 .48 ppm;
C,2H,8ClN3OSi (MW 283.83), LCMS (EI) m/e 284/286 (M+ + H).
Step 2. 4-(lH-Pyrazol-4-yl)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrwlo[2,3- d] pyrimidine (5)
To a reactor equipped with the overhead stirrer, a condenser, a thermowell, ' and a nitrogen inlet was charged water (¾0, 9.0 L), solid potassium carbonate (K2C03, 4461 g, 32.28 mol, 2.42 equiv), 4-chloro-7-((2-
(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-cT]pyrimidine (3, 3597 g, 12.67 mol), 1 -( 1 -ethoxyethyl)-4-(4,4,5,5-tetramethyl- 1 ,3,2-dioxaborolan-2-y I)- 1 H-pyrazole (4, 3550 g, 13.34 mol, 1.05 equiv), and 1-butanol (27 L) at room temperature. The resulting reaction mixture was degassed three timed backfilling with nitrogen each time before being treated with tetrakis(triphenylphosphine)palladium(0) (Pd(PPli3)4, 46 g, 0.040 mol, 0.003 equiv) at room temperature. The resulting reaction mixture was heated to gentle reflux (about 90 °C) for 1 - 4 hours. When the reaction was deemed complete determined by HPLC, the reaction mixture was gradually cooled down to room temperature before being filtered through a Ceiite bed. The Ceiite bed was washed with ethyl acetate (2 x 2 L) before the filtrates and washing solution were combined. The two layers were separated, and the aqueous layer was extracted with ethyl acetate (12 L). The combined organic layers were concentrated under reduced pressure to remove solvents, and the crude 4-(l-(l-ethoxyethyl)-lH-pyrazol-4-yl)-7- ((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-c/]pynmidine (6) was directly charged back to the reactor with tetrahydrofuran (THF, 4.2 L) for the subsequent acid- promoted de-protection reaction without further purification.
To a suspension of crude 4-(l -(l -ethoxyethyl)-lH-pyrazol-4-yl)-7-((2- (trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-c/]pyrimidine (6), made as described above, in tetrahydrofuran (THF, 4.2 L) in the reactor was charged water (Η20, 20.8 L), and a 10% aqueous HC1 solution (16.2 L, 45.89 mol, 3.44 equiv) at room temperature. The resulting reaction mixture was stirred at 16 - 30 °C for 2 - 5 hours. When the reaction was deemed complete by HPLC analysis, the reaction mixture was treated with a 30% aqueous sodium hydroxide (NaOH) solution (4 L, 50.42 mol, 3.78 equiv) at room temperature. The resulting reaction mixture was stirred at room temperature for 1 - 2 hours. The solids were collected by filtration and washed with water (2 x 5 L). The wet cake was charged back to the reactor with acetonitrile (21.6' L), and resulting suspension was heated to gentle reflux for 1 - 2 hours. The clear solution was then gradually cooled down to room temperature with stirring, and solids were precipitated out from the solution with cooling. The mixture was stirred at room temperature for an additional 1 - 2 hours. The solids were collected by filtration, washed with acetonitrile (2 x 3.5 L), and dried in oven under reduced pressure at 45 - 55 °C to constant weight to afford 4-( 1 H-pyrazol-4-yl)-7-((2- (trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-i/]pyrimidine (5, 3281.7 g, 3996.8 g theoretical, 82.1 % yield) as white crystalline solids (99.5 area% by HPLC). For 5: Ή NMR (DMSO-i/6, 400 MHz) δ 13.41 (br. s, 1 H), 8.74 (s, 1 H), 8.67 (br. s, 1 H), 8.35 (br. s, 1 H), 7.72 (d, l H, J= 3.7 Hz), 7.10 (d, 1 H, J= 3.7 Hz), 5.61 (s, 2H), 3.51 (t, 2H, J= 8.2 Hz), 0.81 (t, 2H, J= 8.2 Hz), 0.13 (s, 9H) ppm; C15H2iN5OSi (MW, 315.45), LCMS (El) mle 316 (M+ + H).
Example 2. terf-Butyl 3-(cyanomethylene)azetidine-l-carboxylate (13)
Figure imgf000027_0001
C13H13N C5H5CIO C16H18CINO
Mol. Wt: 183.25 Mol. Wt: 92.52 Mol. Wt: 275.77
Figure imgf000027_0002
'BuOK/THF C10H14N2O2
Mol. Wt: 194.23
Step 1. 1 -Benzhydrylazetidin-3-ol hydrochloride (9)
A solution of diphenylmethanamine (7, 2737 g, 15.0 mol, 1.04 equiv) in methanol (MeOH, 6 L) was treated with 2-(chloromethyl)oxirane (8, 1330 g, 14.5 mol) from an addition funnel at room temperature. During the initial addition a slight endotherm was noticed. The resulting reaction mixture was stirred at room temperature for 3 days before being warmed to reflux for an additional 3 days. When TLC showed that the reaction was deemed complete, the reaction mixture was first cooled down to room temperature and then to 0 - 5 °C in an ice bath. The solids were collected by filtration and washed with acetone (4 L) to give the first crop of the crude desired product (9, 1516 g). The filtrate was concentrated under reduced pressure and the resulting semisolid was diluted with acetone (1 L). This solid was then collected by filtration to give the second crop of the crude desired product (9, 221 g). The crude product, l -benzhydrylazetidin-3-ol hydrochloride (9, 1737 g, 3998.7 g theoretical, 43.4 % yield), was found to be sufficiently pure to be used in the subsequent reaction without further purification. For 9: 'H MR (DMSO-C/6, 300 MHz), δ 12.28 (br. d, 1 H), 7.7 (m, 5H), 7.49 (m, 5H), 6.38 (d, 1H), 4.72 (br. s, 1 H), 4.46 (m, 1 H), 4.12 (m, 2H), 3.85 (m, 2H) ppm; C,6H,8ClNO (free base of 9, Ci6Hi7NO MW, 239.31 ), LCMS (EI) m/e 240 (M+ +. H). Step 2. tert-Butyl 3-hydroxyazetidine-l -carboxylate (10)
A suspension of l-benzhydrylazetidin-3-ol hydrochloride (9, 625 g, 2.27 mol) in a 10 % solution of aqueous sodium carbonate (Na2C03, 5 L) and dichloromethane (CH2CI2, 5 L) was stirred at room temperature until all solids were dissolved. The two layers were separated, and the aqueous layer was extracted with dichloromethane (CH2CI2, 2 L). The combined organics extracts were dried over sodium sulfate
(Na2SC>4) and concentrated under reduced pressure. This resulting crude free base of 9 was then dissolved in THF (6 L) and the solution was placed into a large Parr bomb. Di-teri-butyl dicarbonate (BOC20, 545 g, 2.5 mol, 1.1 equiv) and 20 % palladium (Pd) on carbon (125 g, 50 % wet) were added to the Parr bomb. The vessel was charged to 30 psi with hydrogen gas (¾) and stirred under steady hydrogen atmosphere (vessel was recharged three times to maintain the pressure at 30 psi) at room temperature for 18 h. When HPLC showed that the reaction was complete (when no more hydrogen was taken up), the reaction mixture was filtered through a Celite pad and the Celite pad was washed with THF (4 L). The filtrates were concentrated under reduced pressure to remove the solvent and the residue was loaded onto a Biotage 150 column with a minimum amount of dichloromethane (CH2CI2). The column was eluted with 20 - 50 % ethyl acetate in heptane and the fractions containing the pure desired product (10) were collected and combined. The solvents were removed under reduced pressure to afford terr-butyl 3-hydroxyazetidine-l - carboxylate (10, 357 g, 393.2 g theoretical, 90.8% yield) as colorless oil, which solidified upon standing at room temperature in vacuum. For 10: 'iTNMR (CDCI3, 300 MHz), δ 4.56 (m 1 H), 4.13 (m, 2H), 3.81 (m, 2H), 1.43 (s, 9H) ppm.
Step 3. tert-Butyl 3-oxoazetidine-l -carboxylate (11)
A solution of tert-b ty\ 3-hydroxyazetidine-l -carboxylate (10, 50 g, 289 mmol) in ethyl acetate (400 mL) was cooled to 0 °C. The resulting solution was then treated with solid TEMPO (0.5 g, 3.2 mmol, 0.01 1 equiv) and a solution of potassium bromide ( Br, 3.9 g, 33.2 mmol, 0.1 15 equiv) in water (60 mL) at 0 - 5 °C. While keeping the reaction temperature between 0 - 5 °C a solution of saturated aqueous sodium bicarbonate (NaHCCb, 450 mL) and an aqueous sodium hypochlorite solution ( aCIO, 10 - 13 % available chlorine, 450 mL) were added. Once the solution of sodium hypochlorite was added, the color of the reaction mixture was changed immediately. When additional amount of sodium hypochlorite solution was added, the color of the reaction mixture was gradually faded. When TLC showed that all of the starting material was consumed, the color of the reaction mixture was no longer changed. The reaction mixture was then diluted with ethyl acetate (EtOAc, 500 mL) and two layers were separated. The organic layer was washed with water (500 mL) and the saturated aqueous sodium chloride solution (500 mL) and dried over sodium sulfate ( a2SC>4). The solvent was then removed under reduced pressure to give the crude product, /erf-butyl 3-oxoazetidine-l-carboxylate (11, 48 g, 49.47 g theoretical, 97% yield), which was found to be sufficiently pure and was used directly in the subsequent reaction without further purification. For crude 11: 'HNMR (CDCI3, 300 MHz), δ 4.65 (s, 4H), 1.42 (s, 9H) ppm. Step 4. tert-Butyl 3-(cyanomethylene)azetidine-l-carboxylate (13)
Diethyl cyanomethyl phosphate (12, 745 g, 4.20 mol, 1.20 equiv) and anhydrous tetrahydrofuran (THF, 9 L) was added to a four-neck flask equipped with a thermowell, an addition funnel and the nitrogen protection tube at room temperature. The solution was copied with an ice-methanol bath to - 14 °C and a l .O M solution of potassium teri-butoxide (f-BuO ) in anhydrous tetrahydrofuran (THF, 3.85 L, 3.85 mol, 1.1 equiv) was added over 20 minutes keeping the reaction temperature below - 5 °C. The resulting reaction mixture was stirred for 3 hours at - 10 °C and a solution of l -/er/-butoxycarbonyl-3-azetidinone (11, 600 g, 3.50 mol) in anhydrous tetrahydrofuran (THF, 2 L) was added over 2 h keeping the internal temperature below - 5 °C. The reaction mixture was stirred at - 5 to - 10 °C over 1 hour and then slowly warmed up to room temperature and stirred at room temperature for overnight. The reaction mixture was then diluted with water (4.5 L) and saturated aqueous sodium chloride solution (NaCl, 4.5 L) and extracted with ethyl acetate (EtOAc, 2 x 9 L). The combined organic layers were washed with brine (6 L) and dried over anhydrous sodium sulfate (Na2S04). The organic solvent was removed under reduced pressure and the residue was diluted with dichloromethane (CH2CI2, 4 L) before being absorbed onto silica gel (S1O2, 1.5 Kg). The crude product, which was absorbed on silica gel, was purified by flash column chromatography (Si02, 3.5 Kg, 0 - 25% EtOAc/hexanes gradient elution) to afford terf-butyl 3-(cyanomethylene)azetidine-l - carboxylate (13, 414.7 g, 679.8 g theoretical, 61 % yield) as white solid. For 13: Ή NMR (CDC , 300MHz), 6 5.40 (m, 1H), 4.70 (m, 2H), 4.61 (m, 2H), 1.46 (s, 9H) ppm; C,oH, N202 (MW, 194.23), LCMS (EI) mle 217 (M+ + Na).
Example 3. (3-Fluoro-2-(trifluoromethyl)pyridin-4-yl)(l,4-dioxa-8- a
Figure imgf000030_0001
Step 1. 1 ,4-Dioxa-8-azaspiro[4.5]decane (15)
To a 30 L reactor equipped with a mechanic stirrer, an addition funnel and a septum was charged sodium hydroxide (NaOH, 1.4 kg, 35 mol) and water (7 L, 3.13 kg, 17.43 mol). To the solution thus obtained was added l ,4-dioxa-8- azaspiro[4.5]decane hydrochloric acid (14, 3.13 kg, 17.43 mol). The mixture was stirred at 25 °C for 30 minutes. Then the solution was saturated with sodium chloride (1.3 kg) and extracted with 2-methyl-tetrahydrofuran (3 x 7 L). The combined organic layer was dried with anhydrous sodium sulfate (1.3 kg), filtered and concentrated under reduced pressure (70 mmHg) at 50 °C. The yellow oil thus obtained was distilled under reduced pressure (80 mmHg, bp: 1 15 °C to 120 °C) to give compound 15 (2.34 kg, 16.36 mol, 93.8%) as a clear oil, which was used directly in the subsequent coupling reaction.
Step 2. (3-Fluoro-2-(trifluoromethyl)pyridin-4-yl) (1, 4-dioxa-8-azaspiro[ 4, 5]decan-8- yl)methanone (17)
To a dried 100 L reactor equipped with a mechanic stirrer, an addition funnel, a thermometer and a vacuum outlet were placed 3-fluoro-2- (trifluoromethyl)isonicotinic acid (16, 3.0 kg, 14.35 mol), benzotriazol-1- yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP reagent, 7.6 kg, 17.2 mol, 1.20 equiv) in dimethy lformamide (DMF, 18 L). To the resulting solution was added l ,4-dioxa-8-azaspiro[4.5]decane (15, 2.34 kg, 16.36 mol, 1.14 equiv) with stirring over 20 minutes. Triethylamine (Et3N, 4 L, 28.67 mol, 2.00 equiv) was then added over 1 hour. The temperature was kept between 5 °C and 10 °C during the additions. The dark brown solution thus obtained was stirred for 12 hours at 20 °C and then chilled to 10 °C. With vigorous stirring, 18 L of saturated sodium bicarbonate solution and 36 L of water were sequentially added and the temperature was kept under 15 °C. The precipitation (filter cake) thus obtained was collected by filtration. The aqueous phase was then saturated with 12 kg of solid sodium chloride and extracted with EtOAc (2 x 18 L). The combined organic layer was washed with saturated sodium bicarbonate solution (18 L), and water (2 x 18 L) in sequence. The filter cake from the previous filtration was dissolved back in the organic phase. The dark brown solution thus obtained was washed twice with 18 L of water each and then concentrated under reduced pressure (40 - 50 °C, 30 mm Hg) to give 5.0 kg of the crude product as viscous brown oil. The crude product 17 obtained above was dissolved in EtOH (8.15 L) at 50 °C. Water (16.3 L) was added over 30 minutes. The brown solution was seeded, cooled to 20 °C over 3 hours with stirring and stirred at 20 °C for 12 h. The precipitate formed was filtered, washed with a mixture of EtOH and water (EtOH : H20 = 1 : 20, 2 L) and dried under reduced pressure (50 mmHg) at 60 °C for 24 hours to afford (3-fluoro-2-(trifluoromethyl)pyridin-4-yl)(l ,4-dioxa-8- azaspiro[4,5]decan-8-yl)methanone (17, 3.98 kg, 1 1.92 mol, 83.1%) as a white powder. For 17: Ή NMR (300 MHz, (CD3)2SO) δ 8.64 (d, 3JHH = 4.68 Hz, 1 H, NCH in pyridine), 7.92 (dd, 3JHH = 4.68 Hz, 4JHF = 4.68 Hz, 1 H, NCCH in pyridine), 3.87- 3.91 (m, 4 H, OCH2CH20), 3.70 (br s, 2 H, one of NCH2 in piperidine rine, one of another NCH2 in piperidine ring, both in axial position), 3.26 (t, HH = 5.86 Hz, 2 H, one of NCH2 in piperidine rine, one of another NCH2 in piperidine ring, both in equatorial position), 1.67 (d, HH = 5.86 Hz, 2 H, one of NCCH2 in piperidine ring, one of another NCCH2 in piperidine ring, both in equatorial position), 1.58 (br s, 2 H, one of NCCH2 in piperidine ring, one of another NCCH2 in piperidine ring, both in axial position) ppm; ,3C NMR (75 MHz, (CD3)2SO) δ 161.03 (N-C=0), 151.16 (d, 'JCF = 266.03 Hz, C-F), 146.85 (d, VCF = 4.32 Hz, NCH in pyridine), 135.24 (d, 2JCF = 1 1.51 Hz, C-C=0), 135.02 (quartet, VCF = 34.57 Hz, NCCF3), 128.24 (d, VCF = 7.48 Hz, NCCH in pyridine), 1 19.43 (dxquartet, 'JcF = 274.38 Hz, VCF = 4.89 Hz, CF3), 106.74 (OCO), 64.60 (OCCO), 45.34 (NC in piperidine ring), 39.62(NC in piperidine ring), 34.79(NCC in piperidine ring), 34.10 (NCC in piperidine ring) ppm; 19F NMR (282 MHz, (CD3)2SO) δ -64.69 (d, VFF = 15.85 Hz, F3C), -129.26 (dx quartet, 4JFF = 15.85 Hz, 4JFH = 3.96 Hz, FC) ppm; CuHnF^C (MW, 334.27), LCMS (EI) m/e 335.1 (M+ + H). Example 4. (3-Fluoro-2-(trifluoromethyI)pyridin-4-yl) (l,4-dioxa-8- azaspiro|4,5]decan-
Figure imgf000032_0001
17 18
CMH14F4N20, C12H10F4N2O2 Mol. Wt: 334.27 Mol. Wt: 290.21
In a 5 L 4-necked round bottom flask equipped with a mechanical stirrer, a thermocouple, an addition funnel and a nitrogen inlet was placed (3-fluoro-2- (trifluoromethyl)pyridin-4-yl)(l ,4-dioxa-8-azaspiro[4,5]decan-8-yl)methanone (17, 100 g, 0.299 mol) in acetonitrile (ACN, 400 mL) at room temperature. The resultant solution was cooled to below 10 °C. To the reaction mixture was added 6.0 N aqueous hydrochloric acid (HCl, 450 mL, 2.70 mol, 9.0 equiv), while the internal temperature was kept below 10 °C. The resulting reaction mixture was then warmed to room temperature and an additional amount of 6.0 N aqueous hydrochloric acid (HCl, 1050 mL, 6.30 mol, 21.0 equiv) was slowly introduced to the reaction mixture at room temperature in 8 hours via the addition funnel. The reaction mixture was then cooled to 0 °C before being treated with 30% aqueous sodium hydroxide (NaOH, 860 mL, 8.57 mmol, 28.6 equiv) while the internal temperature was kept at below 10 °C. The resulting reaction mixture was subsequently warmed to room temperature prior to addition of solid sodium bicarbonate (NaHC03, 85.0 g, 1.01 mol, 3.37 equiv) in 1 hour. The mixture was then extracted with EtOAc (2 x 1.2 L), and the combined organic phase was washed with 16% aqueous sodium chloride solution (2 x 800 mL) and concentrated to approximately 1.0 L by vacuum distillation. Heptane (2.1 L) was added to the residue, and the resulting mixture was concentrated to 1.0 L by vacuum distillation. To the concentrated mixture was added heptane (2.1 L). The resulting white slurry was then concentrated to 1.0 L by vacuum distillation. To the white slurry was then added methyl fert-butyl ether (MTBE, 1.94 L). The white turbid was heated to 40 °C to obtain a clear solution. The resulting solution was concentrated to about 1.0 L by vacuum distillation. The mixture was stirred at room temperature for 1 hour. The white precipitate was collected by filtration with pulling vacuum. The filter cake was washed with heptane (400 mL) and dried on the filter under nitrogen with pulling vacuum to provide compound 18 (78.3 g, 90.1%) as an off-white solid. For 18: Ή NMR (300 MHz, (CD3)2SO) δ 8.68 (d, 3JHH = 4.69 Hz, 1 H, NCH in pyridine), 7.97 (dd, 3JHH = 4.69 Hz, VHF = 4.69 Hz, 1 H, NCCH in pyridine), 3.92 (br s, 2 H, one of NCH2 in piperidine rine, one of another NC¾ in piperidine ring, both in axial position), 3.54 (t, VHH = 6.15 Hz, 2 H, one of NCH2 in piperidine rine, one of another NCH2 in piperidine ring, both in equatorial position), 2.48 (t, HH = 6.44 Hz, 2 H, NCCH2), 2.34 (t, HH = 6.15 Hz, 2 H, NCCH2) ppm; 13C NMR (75 MHz, (CD3)2SO) δ 207.17 (C=0), 161.66 (N-C=0), 151.26 (d, 'JCF = 266.89 Hz, C-F), 146.90 (d, CF = 6.05 Hz, NCH in pyridine), 135.56 (C-C=0), 134.78 -135.56 (m, NCCF3), 128.27 (d, VCF = 7.19 Hz, NCCH in pyridine), 1 19.52 (d* quartet, VCF = 274.38 Hz, VCF = 4.89 Hz, CF3), 45.10 (NC in piperidine ring) ppm, one carbon
(NCC in piperidine ring) missing due to overlap with (CD3)2SO; 19F NMR (282 MHz, (CD3)2SO) δ -64.58 (d, VFF = 15.85 Hz, F3C), -128.90 (dxquartet, VFF =1 5.85 Hz, FH = 4.05 Hz, FC) ppm;
Figure imgf000033_0001
(MW, 290.21 ), LCMS (EI) m/e 291.1 (M+ + H).
Example 5. 3-[4-(7-{[2-(Trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3- rf]pyrimidin-4-yl)-lH-pyrazol-l-yl]azetidin-3-yl}acetonitrile dihydrochloride (20)
Figure imgf000034_0001
Mol. Wt: 315.45 Mol. W 509.68 Mol. Wt: 482.28
Step 1. tert-But l 3-(cyanomethyl)-3-(4-(7-((2-(trimethylsilyl)ethoxy)methyl)-7H- pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)azetidine-l-carboxylate (19)
In a dried 30 L reactor equipped with a mechanic stirrer, a thermometer, an addition funnel and a vacuum outlet were placed 4-(lH-pyrazol-4-yl)-7-((2-
(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-i/]pyrimidine (5, 4.50 kg, 14.28 mol), terf-butyl 3-(cyanomethylene)azetidine-l -carboxylate (13, 3.12 kg, 16.08 mol, 1.126 equiv) in acetonitrile (9 L) at 20 ± 5 °C. To the resultant pink suspension was added l ,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 225 mL, 1.48 mol, 0.10 equiv) over 40 minutes. The batch temperature was kept between 10 °C and 20 °C during addition. The brown solution obtained was stirred at 20 °C for 3 hours. After the reaction was complete, water (18 L) was added with stirring over 80 minutes at 20 °C. The mixture was seeded and the seeded mixture was stirred at room temperature for 12 hours. The solids were collected by filtration and the filter cake was washed with a mixture of acetonitrile and water (1 : 2, 9 L) and dried in a vacuum oven with nitrogen purge for 12 hours at 60 °C to provide the crude product (19, 7.34 kg) as a light yellow powder. The crude product obtained above was dissolved in methyl teri-butyl ether (MTBE, 22 L) at 60 °C in a 50 L reactor equipped with a mechanic stirrer, a thermometer, an addition funnel and a septum. Hexanes (22 L) was added over 1 hour at 60 °C. The solution was then seeded, cooled to 20 °C over 3 hours and stirred at 20 °C for 12 hours. The precipitation was collected by filtration. The resultant cake was washed with a mixture of MTBE and hexane (1 : 15, 3 L) and dried in a vacuum oven for 10 hours at 50 °C to provide the compound 19 (6.83 kg, 13.42 mol, 94.0%) as a white powder. For 19: Ή NMR (400 MHz, CDCI3) δ 8.87 (s, 1 H), 8.46 (d, J = 0.6 Hz, 1 H), 8.36 (d, J= 0.7 Hz, 1 H), 7.44 (d, J= 3.7 Hz, 1 H), 6.82 (d, J = 3.7 Hz, I H), 5.69 (s, 2H), 4.57 (d, J= 9.6 Hz, 2Η), 4.32 (d, J= 9.5 Hz, 2H), 3.59 - 3.49 (m, 2H), 3.35 (s, 2H), 1.49 (s, 9H), 0.96 - 0.87 (m, 2H), -0.03 - -0.10 (s, 9H) ppm; 13C NMR (101 MHz, CDC13) δ 157.22, 153.67, 153.24, 151.62, 142.13, 130.16, 129.67, 124.47, 1 16.72, 1 15.79, 102.12, 82.54, 74.23, 68.01, 60.25, 58.23, 29.65, 29.52, 19.15, -0.26 ppm; C25H35N7O3S1 (MW, 509.68), LCMS (EI) mle 510.1 (M+ + H).
Step 2. 3-[4-(7-{[2-(Trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)- lH-pyrazol-l-yl]azetidin-3-yl}acetonitrile dihydrochloride (20)
In a 2 L 4-necked round bottom flask equipped with a mechanical stirrer, a thermocouple, an addition funnel and a nitrogen inlet was added compound 19 (55.0 g, 0.108 mol) and methanol (MeOH, 440 mL) at 20 ± 5 °C. The resulting white turbid was stirred for 20 minutes at room temperature to provide a light yellow solution. A solution of hydrochloric acid (HC1) in isopropanol (5.25 M, 165 mL, 0.866 mol, 8.02 equiv) was then added to the reaction mixture via the addition funnel in 5 minutes. The resulting reaction mixture was then heated to 40 °C by a heating mantle. After 2 hours at 40 °C, water (165 mL, 9.17 mol, 84.8 equiv) was added to the reaction mixture via the addition funnel to provide a light green solution at 40 °C. Methyl tert- butyl ether (MTBE, 440 mL) was added to the resulting mixture via the addition funnel at 40 °C. The resulting mixture was slowly cooled to 10 °C. The solids were collected by filtration and washed with MTBE (2 x 220 mL). The white solids were dried in the filter under nitrogen with a pulling vacuum for 18 hours to afford compound 20 (52.2 g, KF water content 5.42%, yield 94.9%). For 20: Ή NMR (400 MHz, (CD3)2SO) δ 10.39 (brs, I H), 10.16 (brs, IH), 9.61 (s, IH), 9.12 (s, I H), 9.02 (s, I H), 8.27 - 8.21 (d, J= 3.8 Hz, I H), 7.72 - 7.66 (d, J= 3.8 Hz, I H), 5.82 (s, 2H), 4.88 - 4.77 (m, 2H), 4.53 - 4.44 (m, 2H), 4.12 (s, 2H), 3.69 - 3.60 (m, 2H), 0.98 - 0.89 (m, 2H), 0.01 (s, 9H) ppm; 13C NMR (101 MHz, (CD3)2SO) δ 151.25, 146.45, 145.09, 140.75, 133.38, 132.44, 1 16.20, 1 16.09, 1 12.79, 102.88, 73.07, 66.14, 59.16, 53.69, 26.44, 17.15, -1.36 ppm; C2oH29Cl2N7OSi (free base of 20, C20H27N7OSi, MW 409.56), LCMS (EI) mle 410.2 (M+ + H). Example 6. 2-(l-(l-(3-Fluoro-2-(trifluoromethyl)isonicotinoyl)piperidin-4-yl)-3- (4-(7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-rf]pyrimidin-4-yl)-lH- pyrazo
Figure imgf000036_0001
In a 100 L dried reactor equipped with a mechanical stirrer, a thermocouple, a condenser, and a nitrogen inlet was added (20, 3.24 kg, 6.71 5 mol) and
dichloromethane (32 L) at 20 ± 5 °C. The mixture was stirred at room temperature for 10 minutes before being treated with triethylamine (TEA, 1.36 kg, 13.44 mol, 2.00 equiv) at an addition rate which keeping the internal temperature at 15 -30 °C.
Compound 18 (2.01 kg, 6.926 mol, 1.03 equiv) was then added to the reactor at room temperature. After 10 minutes, sodium triacetoxyborohydride (NaBH(OAc)3, 2.28 kg, 10.75 mol, 1.60 equiv) was added portion wise to the reactor in 1 hour while the internal temperature was kept at 15 - 30 °C. The resulting. reaction mixture was stirred at 15 - 30 °C for an additional one hour. Once the reductive amination reaction is deemed complete, the reaction mixture was treated with a 4% aqueous sodium bicarbonate solution ( aHCCh, 32 L) to adjust the pH to 7 - 8. After stirring for 30 minutes at room temperature, the two phases were separated. The aqueous phase was extracted with dichloromethane (29 L). The combined organic phase was sequentially washed with 0.1 N aqueous hydrochloric acid solution (16 L), 4% aqueous sodium bicarbonate solution (16 L), 8% aqueous sodium chloride solution (2 x 16 L). The resultant organic phase was partially concentrated and filtered. The filtrate was subjected to solvent exchange by gradually adding acetonitrile (65 L) under vacuum. The white solids were collected by filtration, washed with acetonitrile (10 L) and dried at 40 - 50 °C in a vacuum oven with nitrogen purge to afford compound 21 (4.26 kg, 6.23 mol, 92.9%). For 21: Ή NMR (500 MHz, (CD3)2SO) δ 8.84 (s, 1 H), 8.76 (s, 1H), 8.66 (d, J =4.7 Hz, 1H), 8.43 (s, 1H), 7.90 (t, J= 4.7 Hz, 1H), 7.78 (d, .7=3.7 Hz, 1H), 7.17 (d,J= 3.7 Hz, 1H),5.63 (s, 2H), 4.07 (dt,J= 11.1, 4.9 Hz, 1H), 3.75 (d, J= 7.8 Hz, 2H), 3.57 (dd, J= 10.2, 7.8 Hz, 2H), 3.55 (s, 2h), 3.52 (dd, J= 8.5, 7.4 Hz,2H), 3.41 (dq,J= 13.3,4.3 Hz, 1H), 3.26 (t, J= 10.0 Hz, 1H), 3.07 (ddd, J = 13.1,9.4,3.2 Hz, 1H), 2.56 (dt,J=8.5, 4.7 Hz, 1H), 1.81-1.73 (m, 1H), 1.63 (m, 1H), 1.29 (m, 1H), 1.21 (m, 1H), 0.82 (dd,J= 8.5, 7.4 Hz, 2H), -0.12 (s, 9H) ppm; l3CNMR(101 MHz, (CD3)2SO) δ 161.68,(154.91, 152.27), 153.08, 152.69, 151.53, 147.69, 140.96, (136.19, 136.02), (136.48, 136.36, 136.13, 136.0, 135.78, 135.66, 135.43, 135.32), 131.43, 130.84, 129.03,(126.17, 123.42, 120.69), 117.99, 122.77, 118.78, 114.71, 102.02, 73.73, 67.04, 62.86, 61.88, 58.51, 45.63, 30.03, 29.30, 28.60, 18.52, 0.00 ppm; C32H37F4N9O2S1 (MW, 683.77), LCMS (EI) mle 684.2 (M+ + H).
Example 7. 2-(3-(4-(7H-P rrolo[2,3-rflpyrimidin-4-yl)-lH-pyrazol-l-yl)-l-(l-(3- fluoro-2-(trifluoromethyl)isonicotinoyl)piperidin-4-yl)azetidin-3-yl)acetonitrile
(22)
Figure imgf000037_0001
21 22
C32H37F4N902Si C26H23F4N9O
Mol. Wt: 683.77 Mol. Wt: 553.51
To a 250 mL 4-necked round bottom flask equipped with a mechanical stirrer, a thermocouple, an addition funnel and a nitrogen inlet was added compound 21 (9.25 g, 13.52 mmol, F water content 3.50%) and acetonitrile (74 mL) at 20 ± 5 °C. The resulting white slurry was cooled to below 5 °C. Boron trifluoride diethyl etherate (BF3-OEt2, 6.46 mL, 51.37 mmol, 3.80 equiv) was then added at a rate while the internal temperature was kept at.below 5.0 °C. The reaction mixture was then warmed to 20 ± 5 °C. After stirring at 20 ± 5 °C for 18 hours, the reaction mixture was cooled to 0 - 5 °C and an additional amount of BF3 OE12 (0.34 mL, 2.70 mmol, 0.2 equiv) was introduced to the reaction mixture at below 5.0 °C. The resulting reaction mixture was warmed to 20 ± 5 °C, and kept stirring at room temperature for an additional 5 hours. The reaction mixture was then cooled to 0 - 5 °C before water (12.17 mL, 0.676 mol, 50 equiv) was added. The internal temperature was kept at below 5.0 °C during addition of water. The resultant mixture was warmed to 20 ± 5 °C and kept stirring at room temperature for 2 hours. The reaction mixture was then cooled to 0 - 5 °C and aqueous ammonium hydroxide (NH4OH, 5 N, 121.7 mmol, 9.0 equiv) was added. During addition of aqueous ammonium hydroxide solution, the internal temperature was kept at below 5.0 °C. The resulting reaction mixture was warmed to 20 ± 5 °C and stirred at room temperature for 20 hours. Once the SEM-deprotection was deemed complete, the reaction mixture was filtered, and the solids were washed with EtOAc (9.25 mL). The filtrates were combined and diluted with EtOAc (74 mL). The diluted organic solution was washed with 13% aqueous sodium chloride solution (46.2 mL). The organic phase was then diluted with EtOAc (55.5 mL) before being concentrated to a minimum volume under reduced pressure. EtOAc (120 mL) was added to the residue, and the resulting solution was stirred at 20 ± 5 °C for 30 minutes. The solution was then washed with 7% aqueous sodium bicarbonate solution (2 x 46 mL) and 13% aqueous sodium bicarbonate solution (46 mL). The resultant organic phase was diluted with EtOAc (46 mL) and treated with water (64 mL) at 50 ± 5 °C for 30 minutes. The mixture was cooled to 20 ± 5 °C and the two phases were separated. The organic phase was treated with water (64 mL) at 50 ± 5 °C for 30 minutes for the second time. The mixture was cooled to 20 ± 5 °C and the two phases were separated. The resultant organic phase was concentrated to afford crude compound 22 (free base), which was further purified by column chromatography
(S1O2, 330 g, gradient elution with 0 - 10% of MeOH in EtOAc) to afford analytically pure free base (22, 7.00 g, 93.5 %) as an off-white solid. For 22: Ή NMR (400 MHz, (CD3)2SO)812.17 (d, J = 2.8 Hz, 1H), 8.85 (s, 1H), 8.70 (m, 2H), 8.45 (s, 1H), 7.93 (t, .7=4.7 Hz, 1H), 7.63 (dd, J= 3.6, 2.3 Hz, 1H), 7.09 (dd,J=3.6, 1.7 Hz, 1H), 4.10 (m, 1H), 3.78 (d,J=7.9Hz, 2H), 3.61 (t,J=7.9 Hz, 1H), 3.58 (s, 2H), 3.46 (m, 1H), 3.28 (t,J= 10.5 Hz, 1H),3.09 (ddd,J= 13.2, 9.5,3.1 Hz, 1H), 2.58 (m, 1H), 1.83- 1.75 (m, 1H), 1.70 - 1.63 (m, 1H), 1.35-1.21 (m, 2H) ppm; l3C NMR (101 MHz, (CD3)2SO)5160.28,(153.51, 150.86), 152.20, 150.94, 149.62, (146.30, 146.25), 139.48,(134.78, 134.61), (135.04, 134.92, 134.72, 134.60, 134.38, 134.26, 134.03, 133.92), 129.22, 127.62, 126.84, 121.99, 122.04,(124.77, 122.02, 119.19, 116.52), 117.39, 113.00, 99.99, 61.47, 60.49, 57.05, 44.23, 28.62, 27.88, 27.19 ppm;
C26H23F4 9O (MW, 553.51), LCMS (EI)m/e 554.1 (M+ + H).
Example 8. 2-(3-(4-(7H-Pyrrolo[2,3-i/]pyrimidin-4-yl)-lH-pyrazol-l-yl)-l-(l-(3- fluoro-2-(trifluoromethyl)isonicotinoyl)piperidin-4-yl)azetidin-3-yl)acetonitrile a
Figure imgf000039_0001
C26H23F4 9O crude salt
Mol. Wt: 553.51 CazH^NgOs
Mol. Wt: 699.66
Stepl. 2-(3-(4-(7H-Pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)-l-(l-(3-fluoro-2' (trifluoromethyl)isonicotinoyl)piperidin-4-yl)azetidin-3-yl)acetonitrile adipate crude salt (24)
The process of making compound 22 in Example 7 was followed, except that the final organic phase was concentrated by vacuum distillation to the minimum volume to afford crude compound 22, which was not isolated but was directly used in subsequent adipate salt formation process. To the concentrated residue which containing crude compound 22 was added methanol (200 mL) at room temperature. The mixture was the concentrated by vacuum distillation to a minimum volume. The residue was then added methanol (75 mL) and the resulting solution was heated to reflux for 2 hours. Methyl isobutyl ketone (MIB , 75 mL) was added to the solution and the resulting mixture was distilled under vacuum to about 30 mL while the internal temperature was kept at 40 - 50 °C. Methanol (75 mL) was added and the resulting mixture was heated to reflux for 2 hours. To the solution was added MIBK (75 mL). The mixture was distilled again under vacuum to about 30 mL while the internal temperature was kept at 40 - 50 °C. To the solution was added a solution of adipic acid (23, 2.15 g, 14.77 mmol) in methanol (75 mL). The resultant solution was then heated to reflux for 2 hours. MIBK (75 mL) was added. The mixture was distilled under vacuum to about 60 mL while the internal temperature was kept at 40 - 50 °C. Heating was stopped and heptane (52.5 mL) was added over 1 - 2 hours. The resultant mixture was stirred at 20 ± 5 °C for 3 - 4 hours. The white precipitates were collected by filtration, and the filter cake was washed with heptane (2 x 15 mL). The solid was dried on the filter under nitrogen with a pulling vacuum at 20 ± 5 °C for 12 hours to provide compound 24 (crude adipate salt, 8.98 g, 12.84 mmol., 95.0%). For 24: Ή NMR (400 MHz, (CD3)2SO) δ 12.16 (s, 1 H), 12.05 (brs, 2H), 8.85 (s, 1 H), 8.72 (s, 1H), 8.69 (d, 7 = 4.7 Hz, 1H), 8.45 (s, 1 H), 7.93 (t, 7= 4.7 Hz, 1 H), 7.63 (dd, J= 3.6, 2.3 Hz, 1 H), 7.09 (dd, 7= 3.6, 1.7 Hz, 1H), 8 4.1 1 (dt, 7= 1 1.0, 4.4 Hz, 1 H), 3.77 (d, 7= 7.8 Hz, 2H), 3.60 (t, 7= 7.8 Hz, 2H), 3.58 (s, 2H), 3.44 (dt, 7= 14.4, 4.6 Hz, 1 H), 3.28 (t, 7= 10.4 Hz, 1 H), 3.09 (ddd, 7= 13.2, 9.6, 3.2 Hz, 1 H), 2.58 (tt, 7 = 8.6, 3.5 Hz, 1 H), 2.28 - 2.17 (m, 4H), 1.83 - 1.74 (m, 1 H), 1.67 (d, 7= 1 1.0 Hz, 1 H), 1.59 - 1.46 (m, 4H), 1.37 - 1.21 (m, 2H) ppm; ,3C NMR (101 MHz, (CD3)2SO) δ 174.38, 160.29, (153.52, 150.87), 152.20, 150.94, 149.63, (146.30, 146.25), 139.48, (134.79, 134.62), (135.08, 134.97, 134.74, 134.62, 134.38, 134.28, 134.04, 133.93), 129.21 , 127.62, 126.84, 122.05, (124.75, 122.02, 1 19.29, 1 16.54), 1 17.39, 1 13.01 , 99.99, 61.47, 60.50, 57.06, 44.24, 33.42, 30.70, 28.63, 27.89, 27.20, 24.07 ppm; C32H33F4N9O5 (Mol. Wt: 699.66; 24: C26H23F N9O, MW 553.51 ), LCMS (EI) mle 554.0 (M+ + H). Step 2. 2-(3-(4-(7H-Pyrrolo[2,3-d]pyrimidin-4-yl)-lH^yrazol-l-yl)-l-(l-(3-fluoro-2- (trifluoromethyl)isonicotinoyl)piperidin-4-yl)azetidin-3-yl)acetonitrile adipate (25) In a 100 L dried reactor equipped with a mechanical stirrer, a thermocouple, an addition funnel and a nitrogen inlet was added compound 24 (3.40 kg, 4.86 mol) and acetone (23.8 L). The resulting white turbid was heated to 55 - 60 °C to provide a clear solution. The resultant solution was filtered through an in-line filter to another 100 L reactor. Heptane (23.8 L) was filtered through an in-line filter to a separated 50 L reactor. The filtered heptane was then charged to the acetone solution in the 100 L reactor at a rate while the internal temperature was kept at 55 - 60 °C. The reaction mixture in the 100 L reactor was then cooled to 20 ± 5 °C and stirred at 20 ± 5 °C for 16 hours. The white precipitates were collected by filtration and the cake was washed with heptane (2 x 5.1 L) and dried on the filter under nitrogen with a pulling vacuum. The solid was further dried in a vacuum oven at 55 - 65 °C with nitrogen purge to provide compound 25 (3.1 1 kg, 92.2%) as white to off-white powder. For 25: Ή NMR (400 MHz, (CD3)2SO) δ 12.16 (s, 1 H), 12.05 (brs, 2H), 8.85 (s, 1 H), 8.72 (s, 1H), 8.69 (d, J = 4.7 Hz, 1 H), 8.45 (s, 1 H), 7.93 (t, J= 4.7 Hz, 1H), 7.63 (dd, J = 3.6, 2.3 Hz, 1 H), 7.09 (dd, J = 3.6, 1.7 Hz, 1 H), δ 4.1 1 (dt, J= 1 1.0, 4.4 Hz, l H), 3.77 (d, J= 7.8 Hz, 2H), 3.60 (t, J= 7.8 Hz, 2H), 3.58 (s, 2H), 3.44 (dt, J= 14.4, 4.6 Hz, 1 H), 3.28 (t, J= 10.4 Hz, 1H), 3.09 (ddd, J= 13.2, 9.6, 3.2 Hz, 1H), 2.58 (tt, J= 8.6, 3.5 Hz, 1 H), 2.28 - 2.17 (m, 4H), 1.83 - 1.74 (m, 1 H), 1.67 (d, J= 1 1.0 Hz, 1 H), 1.59 - 1.46 (m, 4H), 1.37 - 1.21 (m, 2H) ppm; 13C NMR (101 MHz, (CD3)2SO) δ 174.38, 160.29, (153.52, 150.87), 152.20, 150.94, 149.63, (146.30, 146.25), 139.48, (134.79, 134.62), (135.08, 134.97, 134.74, 134.62, 134.38, 134.28, 134.04, 133.93), 129.21 , 127.62, 126.84, 122.05, (124.75, 122.02, 1 19.29, 1 16.54), 1 17.39, 1 13.01 , 99.99, 61.47, 60.50, 57.06, 44.24, 33.42, 30.70, 28.63, 27.89, 27.20, 24.07 ppm;
C32H33F4 905( Mol. Wt: 699.66; free base: C26H23F4 9O (MW, 553.51 ), LCMS (EI) mle 554.0 (M+ + H).
Example A: In vitro JAK Kinase Assay
The compound of Formula I herein was tested for inhibitory activity of JAK targets according to the following in vitro assay described in Park et ai, Analytical Biochemistry 1999, 269, 94-104. The catalytic domains of human JA 1 (a.a. 837- 1 142) and JAK2 (a.a. 828-1 132) with an N-terminal His tag were expressed using baculovirus in insect cells and purified. The catalytic activity of JAK1 and JAK.2 was assayed by measuring the phosphorylation of a biotinylated peptide. The
phosphorylated peptide was detected by homogenous time resolved fluorescence (HTRF). IC50S of compounds were measured for each kinase in the 40 microL reactions that contain the enzyme, ATP and 500 nM peptide in 50 mM Tris (pH 7.8) buffer with 100 mM NaCl, 5 mM DTT, and 0.1 mg/mL (0.01 %) BSA. For the 1 mM IC50 measurements, ATP concentration in the reactions was 1 mM. Reactions were carried out at room temperature for 1 hr and then stopped with 20 μL· 45 mM EDTA, 300 nM SA-APC, 6 nM Eu-Py20 in assay buffer (Perkin Elmer, Boston, MA).
Binding to the Europium labeled antibody took place for 40 minutes and HTRF signal was measured on a Fusion plate reader (Perkin Elmer, Boston, MA). The compound of Example 1 and the adipic acid salt had an IC50 at JA 1 of < 5 nM (measured at 1 mM ATP) with a JAK2/JAK1 ratio of > 10 (measured at 1 mM ATP).
Example B: Cellular Assays
Cancer cell lines dependent on cytokines and hence JAK/STAT signal transduction, for growth, can be plated at 6000 cells per well (96 well plate format) in RPMI 1640, 10% FBS, and 1 nG/mL of appropriate cytokine. Compounds can be added to the cells in DMSO/media (final concentration 0.2% DMSO) and incubated for 72 hours at 37 °C, 5% C02. The effect of compound on cell viability is assessed using the CellTiter-Glo Luminescent Cell Viability Assay (Promega) followed by TopCount (Perkin Elmer, Boston, MA) quantitation. Potential off-target effects of compounds are measured in parallel using a non-JAK driven cell line with the same assay readout. All experiments are typically performed in duplicate.
The above cell lines can also be used to examine the effects of compounds on phosphorylation of JA kinases or potential downstream substrates such as STAT proteins, Akt, Shp2, or Erk. These experiments can be performed following an overnight cytokine starvation, followed by a brief preincubation with compound (2 hours or less) and cytokine stimulation of approximately 1 hour or less. Proteins are then extracted from cells and analyzed by techniques familiar to those schooled in the art including Western blotting or ELISAs using antibodies that can differentiate between phosphorylated and total protein. These experiments can utilize normal or cancer cells to investigate the activity of compounds on tumor cell survival biology or on mediators of inflammatory disease. For example, with regards to the latter, cytokines such as IL-6, IL-12, IL-23, or IFN can be used to stimulate JA activation resulting in phosphorylation of STAT protein(s) and potentially in transcriptional profiles (assessed by array or qPCR technology) or production and/or secretion of proteins, such as IL- 17. The ability of compounds to inhibit these cytokine mediated effects can be measured using techniques common to those schooled in the art.
Compounds herein can also be tested in cellular models designed to evaluate their potency and activity against mutant JAKs, for example, the JA 2V617F mutation found in myeloid proliferative disorders. These experiments often utilize cytokine dependent cells of hematological lineage (e.g. BaF/3) into which the wild- type or mutant JAK kinases are ectopically expressed (James, C, et al. Nature
434: 1 144-1 148; Staerk, J., et al. JBC 280:41893-41899). Endpoints include the effects of compounds on cell survival, proliferation, and phosphorylated JAK, STAT, Akt, or Erk proteins.
Certain compounds herein can be evaluated for their activity inhibiting T-cell proliferation. Such as assay can be considered a second cytokine (i.e. JAK) driven proliferation assay and also a simplistic assay of immune suppression or inhibition of immune activation. The following is a brief outline of how such experiments can be performed. Peripheral blood mononuclear cells (PBMCs) are prepared from human whole blood samples using Ficoll Hypaque separation method and T-cells (fraction 2000) can be obtained from PBMCs by elutriation. Freshly isolated human T-cells can be maintained in culture medium (RPMI 1640 supplemented with 10% fetal bovine serum, 100 U/ml penicillin, 100 μg/ml streptomycin) at a density of 2 x 106 cells/ml at 37 °C for up to 2 days. For IL-2 stimulated cell proliferation analysis, T-cells are first treated with Phytohemagglutinin (PHA) at a final concentration of 10 μg/mL for 72h. After washing once with PBS, 6000 cells/well are plated in 96-well plates and treated with compounds at different concentrations in the culture medium in the presence of 100 U/mL human IL-2 (ProSpec-Tany TechnoGene; Rehovot, Israel). The plates are incubated at 37 °C for 72h and the proliferation index is assessed using CellTiter-Glo Luminescent reagents following the manufactory suggested protocol (Promega; Madison, Wl).
Example C: In vivo anti-tumor efficacy
Compounds herein can be evaluated in human tumor xenograft models in immune compromised mice. For example, a tumorigenic variant of the ΓΝΑ-6 plasmacytoma cell line can be used to inoculate SC1D mice subcutaneously (Burger, R., et al. Hematol J. 2:42-53, 2001 ). Tumor bearing animals can then be randomized into drug or vehicle treatment groups and different doses of compounds can be administered by any number of the usual routes including oral, i.p., or continuous infusion using implantable pumps. Tumor growth is followed over time using calipers. Further, tumor samples can be harvested at any time after the initiation of treatment for analysis as described above (Example B) to evaluate compound effects on JA activity and downstream signaling pathways. In addition, selectivity of the compound(s) can be assessed using xenograft tumor models that are driven by other know kinases (e.g. Bcr-Abl) such as the K562 tumor model.
Example D: Murine Skin Contact Delayed Hypersensitivity Response Test
Compounds herein can also be tested for their efficacies (of inhibiting JAK targets) in the T-cell driven murine delayed hypersensitivity test model. The murine skin contact delayed-type hypersensitivity (DTH) response is considered to be a valid model of clinical contact dermatitis, and other T-lymphocyte mediated immune disorders of the skin, such as psoriasis (Immunol Today. 1998 Jan; 19(l ):37-44). Murine DTH shares multiple characteristics with psoriasis, including the immune infiltrate, the accompanying increase in inflammatory cytokines, and keratinocyte hyperproliferation. Furthermore, many classes of agents that are efficacious in treating psoriasis in the clinic are also effective inhibitors of the DTH response in mice (Agents Actions. 1993 Jan;38( l -2): 1 16-21 ).
On Day 0 and 1 , Balb/c mice are sensitized with a topical application, to their shaved abdomen with the antigen 2,4,dinitro-fluorobenzene (DNFB). On day 5, ears are measured for thickness using an engineer's micrometer. This measurement is recorded and used as a baseline. Both of the animals' ears are then challenged by a topical application of DNFB in a total of 20 (10 μL· on the internal pinna and 10 μΐ- on the external pinna) at a concentration of 0.2%. Twenty-four to seventy-two hours after the challenge, ears are measured again. Treatment with the test compounds is given throughout the sensitization and challenge phases (day -1 to day 7) or prior to and throughout the challenge phase (usually afternoon of day 4 to day 7). Treatment of the test compounds (in different concentration) is administered either systemicaily or topically (topical application of the treatment to the ears). Efficacies of the test compounds are indicated by a reduction in ear swelling comparing to the situation without the treatment. Compounds causing a reduction of 20% or more were considered efficacious. In some experiments, the mice are challenged but not sensitized (negative control).
The inhibitive effect (inhibiting activation of the JAK-STAT pathways) of the test compounds can be confirmed by immunohistochemical analysis. Activation of the JAK-STAT pathway(s) results in the formation and translocation of functional transcription factors. Further, the influx of immune cells and the increased proliferation of keratinocytes should also provide unique expression profile changes in the ear that can be investigated and quantified. Formalin fixed and paraffin embedded ear sections (harvested after the challenge phase in the DTH model) are subjected to immunohistochemical analysis using an antibody that specifically interacts with phosphorylated STAT3 (clone 58E12, Cell Signaling Technologies). The mouse ears are treated with test compounds, vehicle, or dexamethasone (a clinically efficacious treatment for psoriasis), or without any treatment, in the DTH model for comparisons. Test compounds and the dexamethasone can produce similar transcriptional changes both qualitatively and quantitatively, and both the test compounds and dexamethasone can reduce the number of infiltrating cells. Both systemicaily and topical administration of the test compounds can produce inhibitive effects, i.e., reduction in the number of infiltrating cells and inhibition of the transcriptional changes. Example E: In vivo anti-inflammatory activity
Compounds herein can be evaluated in rodent or non-rodent models designed to replicate a single or complex inflammation response. For instance, rodent models of arthritis can be used to evaluate the therapeutic potential of compounds dosed preventatively or therapeutically. These models include but are not limited to mouse or rat collagen-induced arthritis, rat adjuvant-induced arthritis, and collagen antibody- induced arthritis. Autoimmune diseases including, but not limited to, multiple sclerosis, type I-diabetes mellitus, uveoretinitis, thyroditis, myasthenia gravis, immunoglobulin nephropathies, myocarditis, airway sensitization (asthma), lupus, or colitis may also be used to evaluate the therapeutic potential of compounds herein. These models are well established in the research community and are familiar to those schooled in the art (Current Protocols in Immunology, Vol 3., Coligan, J.E. et al, Wiley Press.; Methods in Molecular Biology: Vol. 225, Inflammation Protocols., Winyard, P.G. and Willoughby, D.A., Humana Press, 2003.).
Example F: Animal Models for the Treatment of Dry Eye, Uveitis, and
Conjunctivitis
Agents may be evaluated in one or more preclinical models of dry eye known to those schooled in the art including, but not limited to, the rabbit concanavalin A (ConA) lacrimal gland model, the scopolamine mouse model (subcutaneous or transdermal), the Botulinumn mouse lacrimal gland model, or any of a number of spontaneous rodent auto-immune models that result in ocular gland dysfunction (e.g. NOD-SCID, MRL/lpr, or NZB/NZW) (Barabino et al., Experimental Eye Research 2004, 79, 613-621 and Schrader et al., Developmental Opthalmology, Karger 2008, 41 , 298-312, each of which is incorporated herein by reference in its entirety).
Endpoints in these models may include histopathology of the ocular glands and eye (cornea, etc.) and possibly the classic Schirmer test or modified versions thereof (Barabino et al.) which measure tear production. Activity may be assessed by dosing via multiple routes of administration (e.g. systemic or topical) which may begin prior to or after measurable disease exists.
Agents may be evaluated in one or more preclinical models of uveitis known to those schooled in the art. These include, but are not limited to, models of experimental autoimmune uveitis (EAU) and endotoxin induced uveitis (EIU). EAU experiements may be performed in the rabbit, rat, or mouse and may involve passive or activate immunization. For instance, any of a number or retinal antigens may be used to sensitize animals to a relevant immunogen after which animals may be challenged ocuarly with the same antigen. The EIU model is more acute and involves local or systemic administration of lipopolysaccaride at sublethal doses. Endpoints for both the EIU and EAU models may include fundoscopic exam, histopathology amongst others. These models are reviewed by Smith et al. (Immunology and Cell Biology 1998, 76, 497-512, which is incorporated herein by reference in its entirety). Activity is assessed by dosing via multiple routes of administration (e.g. systemic or topical) which may begin prior to or after measurable disease exists. Some models listed above may also develop scleritis/episcleritis, chorioditis, cyclitis, or iritis and are therefore useful in investigating the potential activity of compounds for the therapeutic treatment of these diseases.
Agents may also be evaluated in one or more preclinical models of conjunctivitis known those schooled in the art. These include, but are not limited to, rodent models utilizing guinea-pig, rat, or mouse. The guinea-pig models include those utilizing active or passive immunization and/or immune challenge protocols with antigens such as ovalbumin or ragweed (reviewed in Groneberg, D.A., et al., Allergy 2003, 58, 1 101-1 1 13, which is incorporated herein by reference in its entirety). Rat and mouse models are similar in general design to those in the guinea- pig (also reviewed by Groneberg). Activity may be assessed by dosing via multiple routes of administration (e.g. systemic or topical) which may begin prior to or after measurable disease exists. Endpoints for such studies may include, for example, histological, immunological, biochemical, or molecular analysis of ocular tissues such as the conjunctiva. Example G: In vivo protection of bone
Compounds may be evaluated in various preclinical models of osteopenia, osteoporosis, or bone resorption known to those schooled in the art. For example, ovariectomized rodents may be used to evaluate the ability of compounds to affect signs and markers of bone remodeling and/or density (W.S.S. Jee and W. Yao, J Musculoskel. Nueron. Interact., 2001 , 1 (3), 193-207, which is incorporated herein by reference in its entirety). Alternatively, bone density and architecture may be evaluated in control or compound treated rodents in models of therapy (e.g. glucocorticoid) induced osteopenia (Yao, et al. Arthritis and Rheumatism, 2008, 58(6), 3485-3497; and id. 58(1 1 ), 1674-1686, both of which are incorporated herein by reference in its entirety). In addition, the effects of compounds on bone resorption and density may be evaluable in . the rodent models of arthritis discussed above (Example E). Endpoints for all these models may vary but often include histological and radiological assessments as well as immunohisotology and appropriate biochemical markers of bone remodeling.
A number of embodiments of the invention have been described.
Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.

Claims

WHAT IS CLAIMED IS:
1. A process, comprising reacting a compound of Formula 111:
Figure imgf000049_0001
111
or a salt thereof, with a compound
Figure imgf000049_0002
in the presence of a reducing agent to form a compound of Formula II:
Figure imgf000049_0003
II
or a salt thereof, provided said reducing agent is not sodium cyanoborodeuteride; wherein P1 is a protecting group.
2. The process of claim 1 , wherein said protecting group is
Figure imgf000050_0001
3. The process of any one of claims 1 to 2, wherein said reducing agent is selected from sodium cyanoborohydride and sodium triacetoxyborohydride.
4. The process of any one of claims 1 to 2, wherein said reducing agent is sodium triacetoxyborohydride.
5. The process of any one of claims 1 to 4, wherein the compounds of Formula II, III, and IV are each a free base.
The process of any one of claims 1 to 5, further comprising deprotecting mpound of Formula II, or said salt thereof, to form a compound of Formula I:
Figure imgf000050_0002
I
or a salt thereof.
7. The process of claim 6, wherein said deprotecting comprises treating with boron trifluoride etherate, followed by treating with aqueous ammonium hydroxide.
8. The process of any one of claims 6 to 7, wherein said process further comprises reacting the compound of Formula I with adipic acid to form the adipate salt.
9. The process of any one of claims 6 to 8, wherein the compounds of Formula I, II, III, and IV are each a free base.
10. The process of any one of claims 6 to 7, wherein said process further comprises:
(a) heating the compound of Formula I in methanol at reflux to form a mixture;
(b) after (a), adding methyl isobutyl ketone to the mixture;
(c) after (b), removing a portion of solvent by distillation at an internal temperature of 40 °C to 50 °C to form a concentrated mixture;
(d) after (c), adding methanol to the concentrated mixture to form a diluted mixture;
(e) after (d), heating the diluted mixture at reflux to form a mixture;
(f) after (e), adding methyl isobutyl ketone to the mixture;
(g) after (f), removing a portion of solvent by distillation at an internal temperature of 40 °C to 50 °C to form a concentrated mixture;
(h) after (g), adding adipic acid and methanol to the concentrated mixture;
(i) after (h), heating the mixture at reflux; and
(j) after (i), removing a portion of solvent by distillation at an internal temperature of 40 °C to 50 °C to form a concentrated mixture;
(k) after (j), adding heptane to the mixture; and
(1) after (k), stirring the mixture at room temperature to form the adipic acid salt of the compound of Formula I.
1 1. The process of any one of claims 6 to 10, wherein the compound of Formula IV, or a salt thereof, is produced by a process comprising deprotecting a compound of Formula V:
Figure imgf000052_0001
12. The process of claim 1 1 , wherein said deprotecting comprises reacting with aqueous acid.
13. The process of claim 12, wherein said acid is hydrochloric acid.
14. The process of any one of claims 11 to 13, wherein the compounds of Formula I, II, III, IV, and V are each a free base.
15. The process of any one of claims 11 to 14, wherein said compound of Formula V, or a salt thereof, is produced by a process comprising reacting a compound of Formula VI:
Figure imgf000052_0002
VI
with a compound of Formula VII:
Figure imgf000052_0003
in the presence of a coupling agent.
16. The process of claim 15, wherein the coupling agent is benzotriazol-l -yloxy- tris(dimethylamino)-phosphonium hexafluorophosphate (BOP).
17. A process of making a compound of Formula IV:
Figure imgf000053_0001
IV
or a salt thereof, comprising depro compound of Formula V:
Figure imgf000053_0002
V
or a salt thereof, to form a compound of Formula IV, or said salt thereof.
18. The process of claim 17, wherein said deprotecting comprises reacting with aqueous acid.
19. The process of claim 18, wherein said acid is hydrochloric acid.
20. The process of any one of claims 17 to 19, wherein the compounds of Formula IV and V are each a free base.
21. A process of making a compound of Formula V:
Figure imgf000053_0003
V or a salt thereof, comprising reacti Formula VI:
Figure imgf000054_0001
VI
or a salt thereof, with a compound of Formula VII:
Figure imgf000054_0002
VII
or a salt thereof, in the presence of a coupling agent to form the compound of Formula V, or said salt thereof.
22. The process of claim 21 , wherein the coupling agent is benzotriazol- l -yloxy- tris(dimethylamino)-phosphonium hexafluorophosphate (BOP).
23. A compound of Formula
Figure imgf000054_0003
V
or a salt thereof.
PCT/US2012/053921 2011-09-07 2012-09-06 Processes and intermediates for making a jak inhibitor WO2013036611A1 (en)

Priority Applications (24)

Application Number Priority Date Filing Date Title
UAA201403501A UA111854C2 (en) 2011-09-07 2012-06-09 METHODS AND INTERMEDIATE COMPOUNDS FOR JAK INHIBITORS
JP2014529844A JP5977354B2 (en) 2011-09-07 2012-09-06 Methods and intermediates for making JAK inhibitors
ES12770334.6T ES2564133T3 (en) 2011-09-07 2012-09-06 Procedures and intermediaries to manufacture a JAK inhibitor
SI201230444A SI2753621T1 (en) 2011-09-07 2012-09-06 Processes and intermediates for making a jak inhibitor
PL12770334T PL2753621T3 (en) 2011-09-07 2012-09-06 Processes and intermediates for making a jak inhibitor
CN201280046561.4A CN104024256B (en) 2011-09-07 2012-09-06 For the preparation of method and the intermediate of JAK inhibitor
EP12770334.6A EP2753621B1 (en) 2011-09-07 2012-09-06 Processes and intermediates for making a jak inhibitor
MX2014002681A MX339715B (en) 2011-09-07 2012-09-06 Processes and intermediates for making a jak inhibitor.
BR112014005174-7A BR112014005174B1 (en) 2011-09-07 2012-09-06 Processes and Intermediates for Making a Jak Inhibitor
KR1020147008415A KR102002277B1 (en) 2011-09-07 2012-09-06 Processes and intermediates for making a jak inhibitor
RS20160065A RS54615B1 (en) 2011-09-07 2012-09-06 Processes and intermediates for making a jak inhibitor
AU2012304650A AU2012304650B2 (en) 2011-09-07 2012-09-06 Processes and intermediates for making a JAK inhibitor
IN2177DEN2014 IN2014DN02177A (en) 2011-09-07 2012-09-06
CA2847728A CA2847728C (en) 2011-09-07 2012-09-06 Processes and intermediates for making a jak inhibitor
SG11201400414XA SG11201400414XA (en) 2011-09-07 2012-09-06 Processes and intermediates for making a jak inhibitor
DK12770334.6T DK2753621T3 (en) 2011-09-07 2012-09-06 METHODS AND INTERMEDIATES FOR THE MANUFACTURE OF A JAK INHIBITOR
EA201490575A EA026122B1 (en) 2011-09-07 2012-09-06 Processes and intermediates for making jak inhibitors
MEP-2016-43A ME02458B (en) 2011-09-07 2012-09-06 Processes and intermediates for making a jak inhibitor
NZ622295A NZ622295B2 (en) 2011-09-07 2012-09-06 Processes and intermediates for making a jak inhibitor
IL231389A IL231389A (en) 2011-09-07 2014-03-06 Processes and intermediates for making {1-{1-[3-fluoro-2-(trifluoromethyl)isonicotinoyl]piperidin-4-yl}-3-[4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h-pyrazol-1-yl]azetidin-3-yl}acetonitrile and pharmaceutically acceptable salts thereof
ZA2014/02163A ZA201402163B (en) 2011-09-07 2014-03-24 Processes and intermediates for making a jak inhibitor
HK14112995.4A HK1199445A1 (en) 2011-09-07 2014-12-26 Processes and intermediates for making a jak inhibitor jak
SM201600060T SMT201600060B (en) 2011-09-07 2016-02-25 PROCEDURES AND INTERMEDIATES FOR THE PRODUCTION OF A JAK INHIBITOR
HRP20160241TT HRP20160241T1 (en) 2011-09-07 2016-03-08 Processes and intermediates for making a jak inhibitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161531896P 2011-09-07 2011-09-07
US61/531,896 2011-09-07

Publications (1)

Publication Number Publication Date
WO2013036611A1 true WO2013036611A1 (en) 2013-03-14

Family

ID=47010724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/053921 WO2013036611A1 (en) 2011-09-07 2012-09-06 Processes and intermediates for making a jak inhibitor

Country Status (35)

Country Link
US (2) US9487521B2 (en)
EP (1) EP2753621B1 (en)
JP (2) JP5977354B2 (en)
KR (1) KR102002277B1 (en)
CN (1) CN104024256B (en)
AR (2) AR087794A1 (en)
AU (1) AU2012304650B2 (en)
BR (1) BR112014005174B1 (en)
CA (1) CA2847728C (en)
CL (1) CL2014000534A1 (en)
CO (1) CO6910194A2 (en)
CR (1) CR20140120A (en)
CY (1) CY1117276T1 (en)
DK (1) DK2753621T3 (en)
EA (1) EA026122B1 (en)
ES (1) ES2564133T3 (en)
HK (1) HK1199445A1 (en)
HR (1) HRP20160241T1 (en)
HU (1) HUE026497T2 (en)
IL (1) IL231389A (en)
IN (1) IN2014DN02177A (en)
ME (1) ME02458B (en)
MX (1) MX339715B (en)
MY (1) MY169617A (en)
PE (1) PE20142360A1 (en)
PL (1) PL2753621T3 (en)
PT (1) PT2753621E (en)
RS (1) RS54615B1 (en)
SG (1) SG11201400414XA (en)
SI (1) SI2753621T1 (en)
SM (1) SMT201600060B (en)
TW (1) TWI577690B (en)
UA (1) UA111854C2 (en)
WO (1) WO2013036611A1 (en)
ZA (1) ZA201402163B (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691807B2 (en) 2011-06-20 2014-04-08 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
WO2014146249A1 (en) * 2013-03-19 2014-09-25 Merck Sharp & Dohme Corp. Geminally substituted cyanoethylpyrazolo pyridones as janus kinase inhibitors
CN104230974A (en) * 2014-07-30 2014-12-24 天津市斯芬克司药物研发有限公司 Pyrrole-pyridine compound and preparation method thereof
US8933086B2 (en) 2005-12-13 2015-01-13 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-B]pyridines and pyrrolo[2,3-B]pyrimidines as Janus kinase inhibitors
US8933085B2 (en) 2010-11-19 2015-01-13 Incyte Corporation Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors
US8987443B2 (en) 2013-03-06 2015-03-24 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US9034884B2 (en) 2010-11-19 2015-05-19 Incyte Corporation Heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines as JAK inhibitors
US9193733B2 (en) 2012-05-18 2015-11-24 Incyte Holdings Corporation Piperidinylcyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors
US9216984B2 (en) 2009-05-22 2015-12-22 Incyte Corporation 3-[4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl]octane—or heptane-nitrile as JAK inhibitors
US9249145B2 (en) 2009-09-01 2016-02-02 Incyte Holdings Corporation Heterocyclic derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors
WO2016061751A1 (en) * 2014-10-22 2016-04-28 Merck Sharp & Dohme Corp. Ethyl n-boc piperidinyl pyrazolo pyridones as janus kinase inhibitors
US9334274B2 (en) 2009-05-22 2016-05-10 Incyte Holdings Corporation N-(hetero)aryl-pyrrolidine derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines and pyrrol-3-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors
US9359358B2 (en) 2011-08-18 2016-06-07 Incyte Holdings Corporation Cyclohexyl azetidine derivatives as JAK inhibitors
US9464088B2 (en) 2010-03-10 2016-10-11 Incyte Holdings Corporation Piperidin-4-yl azetidine derivatives as JAK1 inhibitors
US9498467B2 (en) 2014-05-30 2016-11-22 Incyte Corporation Treatment of chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML) by inhibitors of JAK1
WO2016196244A1 (en) 2015-05-29 2016-12-08 Incyte Corporation Pyridineamine compounds useful as pim kinase inhibitors
US9550765B2 (en) 2013-01-15 2017-01-24 Incyte Holdings Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as Pim kinase inhibitors
WO2017044730A1 (en) 2015-09-09 2017-03-16 Incyte Corporation Salts of a pim kinase inhibitor
WO2017059251A1 (en) 2015-10-02 2017-04-06 Incyte Corporation Heterocyclic compounds useful as pim kinase inhibitors
US9655854B2 (en) 2013-08-07 2017-05-23 Incyte Corporation Sustained release dosage forms for a JAK1 inhibitor
US9676750B2 (en) 2013-01-14 2017-06-13 Incyte Corporation Bicyclic aromatic carboxamide compounds useful as pim kinase inhibitors
CN106905322A (en) * 2016-01-26 2017-06-30 杭州华东医药集团新药研究院有限公司 Pyrrolopyrimidine penta azacyclo derivative and its application
US9718834B2 (en) 2011-09-07 2017-08-01 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US9822124B2 (en) 2014-07-14 2017-11-21 Incyte Corporation Bicyclic heteroaromatic carboxamide compounds useful as Pim kinase inhibitors
US9890162B2 (en) 2014-07-14 2018-02-13 Incyte Corporation Bicyclic aromatic carboxamide compounds useful as pim kinase inhibitors
CN107698569A (en) * 2013-05-17 2018-02-16 因赛特公司 Connection pyrazole derivatives as JAK inhibitor
US10000507B2 (en) 2013-08-23 2018-06-19 Incyte Corporation Furo- and thieno-pyridine carboxamide compounds useful as pim kinase inhibitors
US10166191B2 (en) 2012-11-15 2019-01-01 Incyte Corporation Sustained-release dosage forms of ruxolitinib
WO2019152374A1 (en) * 2018-01-30 2019-08-08 Incyte Corporation Processes for preparing (1 -(3-fluoro-2-(trifluoromethyl)isonicotinyl)piperidine-4-one)
US10596161B2 (en) 2017-12-08 2020-03-24 Incyte Corporation Low dose combination therapy for treatment of myeloproliferative neoplasms
US10758543B2 (en) 2010-05-21 2020-09-01 Incyte Corporation Topical formulation for a JAK inhibitor
US11213528B2 (en) 2007-06-13 2022-01-04 Incyte Holdings Corporation Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US11304949B2 (en) 2018-03-30 2022-04-19 Incyte Corporation Treatment of hidradenitis suppurativa using JAK inhibitors
US11685731B2 (en) 2020-06-02 2023-06-27 Incyte Corporation Processes of preparing a JAK1 inhibitor
US11833155B2 (en) 2020-06-03 2023-12-05 Incyte Corporation Combination therapy for treatment of myeloproliferative neoplasms
US11833152B2 (en) 2018-02-16 2023-12-05 Incyte Corporation JAK1 pathway inhibitors for the treatment of cytokine-related disorders
US11957661B2 (en) 2020-12-08 2024-04-16 Incyte Corporation JAK1 pathway inhibitors for the treatment of vitiligo

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2008001709A1 (en) 2007-06-13 2008-11-03 Incyte Corp Compounds derived from pyrrolo [2,3-b] pyrimidine, jak kinase modulators; pharmaceutical composition; and use in the treatment of diseases such as cancer, psoriasis, rheumatoid arthritis, among others.
JOP20190230A1 (en) 2009-01-15 2017-06-16 Incyte Corp Processes for preparing jak inhibitors and related intermediate compounds
WO2012112847A1 (en) 2011-02-18 2012-08-23 Novartis Pharma Ag mTOR/JAK INHIBITOR COMBINATION THERAPY
EP2741747A1 (en) 2011-08-10 2014-06-18 Novartis Pharma AG JAK P13K/mTOR COMBINATION THERAPY
SG10201703533VA (en) 2012-11-01 2017-06-29 Incyte Corp Tricyclic fused thiophene derivatives as jak inhibitors
KR20220066179A (en) 2014-04-08 2022-05-23 인사이트 코포레이션 Treatment of b-cell malignancies by a combination jak and pi3k inhibitor
AU2015253192B2 (en) 2014-04-30 2019-05-16 Incyte Holdings Corporation Processes of preparing a JAK1 inhibitor and new forms thereto
PL233595B1 (en) * 2017-05-12 2019-11-29 Celon Pharma Spolka Akcyjna Derivatives of pyrazolo[1,5-a]pyrimidine as inhibitors of kinase JAK
US11584961B2 (en) 2018-03-30 2023-02-21 Incyte Corporation Biomarkers for inflammatory skin disease
MX2020010815A (en) 2018-04-13 2020-12-11 Incyte Corp Biomarkers for graft-versus-host disease.
WO2019233434A1 (en) * 2018-06-06 2019-12-12 杭州澳津生物医药技术有限公司 Pyrazolopyrimidine derivative, use thereof and pharmaceutical composition
JP2021535176A (en) * 2018-09-04 2021-12-16 セラヴァンス バイオファーマ アール&ディー アイピー, エルエルシー Process for preparing JAK inhibitors and their intermediates
US11324749B2 (en) 2018-10-31 2022-05-10 Incyte Corporation Combination therapy for treatment of hematological diseases
CN113692278A (en) 2018-12-19 2021-11-23 因赛特公司 JAK1 pathway inhibitors for the treatment of gastrointestinal diseases
KR20210137087A (en) 2019-03-05 2021-11-17 인사이트 코포레이션 JAK1 pathway inhibitors for the treatment of chronic lung allograft dysfunction
TW202102222A (en) 2019-03-19 2021-01-16 美商英塞特公司 Biomarkers for vitiligo
US20210123931A1 (en) 2019-10-10 2021-04-29 Incyte Corporation Biomarkers for graft-versus-host disease
US20210123930A1 (en) 2019-10-10 2021-04-29 Incyte Corporation Biomarkers for graft-versus-host disease
JP2023506118A (en) 2019-10-16 2023-02-15 インサイト・コーポレイション Use of JAK1 inhibitors for the treatment of cutaneous lupus erythematosus and lichen planus (LP)
CN110683978A (en) * 2019-10-30 2020-01-14 西安医学院 Preparation method of 3-nitrile methylene azetidine-1-tert-butyl carbonate
KR20220107213A (en) 2019-11-22 2022-08-02 인사이트 코포레이션 Combination therapy comprising an ALK2 inhibitor and a JAK2 inhibitor
CN110950797A (en) * 2019-12-06 2020-04-03 丽水绿氟科技有限公司 Preparation method of 2-trifluoromethyl-3-fluoro-4-picolinic acid and derivatives thereof
EP4200278A1 (en) 2020-08-18 2023-06-28 Incyte Corporation Process and intermediates for preparing a jak1 inhibitor
CR20230129A (en) 2020-08-18 2023-07-13 Incyte Corp Process and intermediates for preparing a jak inhibitor
CN114437079A (en) * 2020-10-30 2022-05-06 杭州邦顺制药有限公司 Crystal form of pyrrole pyrimidine five-membered nitrogen heterocyclic compound
KR20230128472A (en) 2020-12-04 2023-09-05 인사이트 코포레이션 JAK Inhibitors Containing Vitamin D Analogs for Treatment of Skin Diseases
KR20230157307A (en) 2021-01-11 2023-11-16 인사이트 코포레이션 Combination therapy involving JAK pathway inhibitors and ROCK inhibitors
US20240058343A1 (en) 2022-08-05 2024-02-22 Incyte Corporation Treatment of urticaria using jak inhibitors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070191364A1 (en) * 2004-07-29 2007-08-16 Sanofi-Aventis Aminopiperidine derivatives, preparation thereof and therapeutic use thereof
US20090233903A1 (en) * 2008-03-11 2009-09-17 Incyte Corporation Azetidine and cyclobutane derivatives as jak inhibitors
US20110224190A1 (en) * 2010-03-10 2011-09-15 Taisheng Huang Piperidin-4-yl azetidine derivatives as jak1 inhibitors

Family Cites Families (278)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985589A (en) 1957-05-22 1961-05-23 Universal Oil Prod Co Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets
US3832460A (en) 1971-03-19 1974-08-27 C Kosti Anesthetic-vasoconstrictor-antihistamine composition for the treatment of hypertrophied oral tissue
DE3036390A1 (en) 1980-09-26 1982-05-13 Troponwerke GmbH & Co KG, 5000 Köln Antiinflammatory intermediate 7H-pyrrolo-(2,3-D)-pyrimidine derivs. - prepd. by dealkylation of 7-phenyl:ethyl derivs. by reaction with hydrochloric, phosphoric or poly:phosphoric acid
DE3220113A1 (en) 1982-05-28 1983-12-01 Basf Ag, 6700 Ludwigshafen DIFLUORMETHOXIPHENYLTHIOPHOSPHORSAEUREESTER
US4402832A (en) 1982-08-12 1983-09-06 Uop Inc. High efficiency continuous separation process
US4548990A (en) 1983-08-15 1985-10-22 Ciba-Geigy Corporation Crosslinked, porous polymers for controlled drug delivery
US4498991A (en) 1984-06-18 1985-02-12 Uop Inc. Serial flow continuous separation process
NL8403224A (en) 1984-10-24 1986-05-16 Oce Andeno Bv DIOXAPHOSPHORINANS, THEIR PREPARATION AND THE USE FOR SPLITTING OF OPTICALLY ACTIVE COMPOUNDS.
CA1306260C (en) 1985-10-18 1992-08-11 Shionogi & Co., Ltd. Condensed imidazopyridine derivatives
JPH0710876Y2 (en) 1989-08-31 1995-03-15 石垣機工株式会社 Cleaning device for dehydration cylinder in screw press
AU645504B2 (en) 1989-10-11 1994-01-20 Teijin Limited Bicyclic pyrimidine derivative, method of producing the same, and pharmaceutical preparation containing the same as active ingredient
IT1258781B (en) 1992-01-16 1996-02-29 Zambon Spa OPHTHALMIC PHARMACEUTICAL COMPOSITION CONTAINING N-ACETYLCISTEIN AND POLYVINYL ALCOHOL
US5521184A (en) 1992-04-03 1996-05-28 Ciba-Geigy Corporation Pyrimidine derivatives and processes for the preparation thereof
FR2695126B1 (en) 1992-08-27 1994-11-10 Sanofi Elf Thienyl or pyrrolyl carboxylic acid derivatives, their preparation and medicaments containing them.
AU671491B2 (en) 1992-12-18 1996-08-29 F. Hoffmann-La Roche Ag N-oxycarbonyl substituted 5'-deoxy-5-fluorcytidines
JPH0710876A (en) 1993-06-24 1995-01-13 Teijin Ltd Pyrrolo(2,3-d)pyrimidine having cyclic amino group at 4-position
EP0727217A3 (en) 1995-02-10 1997-01-15 Suntory Ltd Pharmaceutical composition containing god-type ellagitannin as active ingredient
US5856326A (en) 1995-03-29 1999-01-05 Merck & Co., Inc. Inhibitors of farnesyl-protein transferase
IL117580A0 (en) 1995-03-29 1996-07-23 Merck & Co Inc Inhibitors of farnesyl-protein transferase and pharmaceutical compositions containing them
IT1276462B1 (en) * 1995-07-03 1997-10-31 Rotta Research Lab ACID AROMATIC DIAMIDES WITH ANTIGASTRINIC ACTIVITY, PROCEDURE FOR THEIR PREPARATION AND THEIR PHARMACEUTICAL USE
CN1105113C (en) 1995-07-05 2003-04-09 纳幕尔杜邦公司 Fungicidal pyrimidinones
SI9620103A (en) 1995-07-06 1998-10-31 Novartis Ag Pyrrolopyrimidines and processes for the preparation thereof
NZ319673A (en) * 1995-10-17 2000-06-23 Astra Pharma Prod Quinazoline compounds for inflammatory disorders such rheumatoid arthritis or osteoarthritis
US5630943A (en) 1995-11-30 1997-05-20 Merck Patent Gesellschaft Mit Beschrankter Haftung Discontinuous countercurrent chromatographic process and apparatus
GB9604361D0 (en) 1996-02-29 1996-05-01 Pharmacia Spa 4-Substituted pyrrolopyrimidine compounds as tyrosine kinase inhibitors
JP2000504023A (en) 1996-04-03 2000-04-04 メルク エンド カンパニー インコーポレーテッド Cancer treatment methods
AU2802297A (en) 1996-04-18 1997-11-07 Merck & Co., Inc. A method of treating cancer
US5795909A (en) 1996-05-22 1998-08-18 Neuromedica, Inc. DHA-pharmaceutical agent conjugates of taxanes
JP2000508335A (en) 1996-05-30 2000-07-04 メルク エンド カンパニー インコーポレーテッド How to treat cancer
US6624138B1 (en) 2001-09-27 2003-09-23 Gp Medical Drug-loaded biological material chemically treated with genipin
WO1998044797A1 (en) 1997-04-07 1998-10-15 Merck & Co., Inc. A method of treating cancer
US6060038A (en) 1997-05-15 2000-05-09 Merck & Co., Inc. Radiolabeled farnesyl-protein transferase inhibitors
US6063284A (en) 1997-05-15 2000-05-16 Em Industries, Inc. Single column closed-loop recycling with periodic intra-profile injection
JP2001513502A (en) 1997-08-11 2001-09-04 ベーリンガー インゲルハイム ファーマシューティカルズ インコーポレイテッド 5,6-Heteroaryldipyrido [2,3-b: 3 ', 2'-f] azepines and their use in the prevention and treatment of HIV infection
US6075056A (en) 1997-10-03 2000-06-13 Penederm, Inc. Antifungal/steroid topical compositions
US6232320B1 (en) 1998-06-04 2001-05-15 Abbott Laboratories Cell adhesion-inhibiting antiinflammatory compounds
SK18542000A3 (en) 1998-06-04 2001-12-03 Abbott Laboratories Cell adhesion-inhibiting anti-inflammatory compounds
ID26698A (en) 1998-06-19 2001-02-01 Pfizer Prod Inc PIROLO COMPOUNDS [2,3-d] PYRIMIDINE
PA8474101A1 (en) 1998-06-19 2000-09-29 Pfizer Prod Inc PYROLEUM [2,3-D] PIRIMIDINE COMPOUNDS
ATE459616T1 (en) 1998-08-11 2010-03-15 Novartis Ag ISOCHINOLINE DERIVATIVES WITH ANGIOGENESIS-INHIBITING EFFECT
JP2000119271A (en) 1998-08-12 2000-04-25 Hokuriku Seiyaku Co Ltd 1h-imidazopyridine derivative
CA2343148C (en) 1998-09-10 2005-11-15 Nycomed Danmark A/S Quick release pharmaceutical compositions of drug substances
US6413419B1 (en) 1998-10-29 2002-07-02 Institut Francais Du Petrole Process and device for separation with variable-length chromatographic
US6375839B1 (en) 1998-10-29 2002-04-23 Institut Francais Du Petrole Process and device for separation with variable-length chromatographic zones
FR2785196B1 (en) 1998-10-29 2000-12-15 Inst Francais Du Petrole METHOD AND DEVICE FOR SEPARATION WITH VARIABLE LENGTH CHROMATOGRAPHIC AREAS
US6133031A (en) 1999-08-19 2000-10-17 Isis Pharmaceuticals Inc. Antisense inhibition of focal adhesion kinase expression
WO2000051614A1 (en) 1999-03-03 2000-09-08 Merck & Co., Inc. Inhibitors of prenyl-protein transferases
GB9905075D0 (en) 1999-03-06 1999-04-28 Zeneca Ltd Chemical compounds
US6217895B1 (en) 1999-03-22 2001-04-17 Control Delivery Systems Method for treating and/or preventing retinal diseases with sustained release corticosteroids
US6239113B1 (en) 1999-03-31 2001-05-29 Insite Vision, Incorporated Topical treatment or prevention of ocular infections
AU3565999A (en) 1999-04-16 2000-11-02 Coelacanth Chemical Corporation Synthesis of azetidine derivatives
US6921763B2 (en) 1999-09-17 2005-07-26 Abbott Laboratories Pyrazolopyrimidines as therapeutic agents
CA2387535A1 (en) 1999-10-13 2001-04-19 Banyu Pharmaceutical Co., Ltd. Substituted imidazolidinone derivatives
DK1235830T3 (en) 1999-12-10 2004-03-29 Pfizer Prod Inc Pyrrolo [2,3-d] pyrimidine compounds as protein kinase inhibitors
CN1615873A (en) 1999-12-24 2005-05-18 阿文蒂斯药物有限公司 Azaindoles compound
GB0004890D0 (en) 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
US7235551B2 (en) 2000-03-02 2007-06-26 Smithkline Beecham Corporation 1,5-disubstituted-3,4-dihydro-1h-pyrimido[4,5-d]pyrimidin-2-one compounds and their use in treating csbp/p38 kinase mediated diseases
DK1142566T3 (en) 2000-04-07 2004-02-09 Medidom Lab Ophthalmological formulations based on cyclosporine, hyaluronic acid and polysorbate
WO2001081345A1 (en) 2000-04-20 2001-11-01 Mitsubishi Pharma Corporation Aromatic amide compounds
JP4954426B2 (en) 2000-06-16 2012-06-13 キュリス,インコーポレイテッド Angiogenesis regulating composition and use
US7498304B2 (en) 2000-06-16 2009-03-03 Curis, Inc. Angiogenesis-modulating compositions and uses
US6335342B1 (en) 2000-06-19 2002-01-01 Pharmacia & Upjohn S.P.A. Azaindole derivatives, process for their preparation, and their use as antitumor agents
ATE465756T1 (en) 2000-06-23 2010-05-15 Mitsubishi Tanabe Pharma Corp ANTITUMOR EFFECT AMPLIFIER
EE200200711A (en) 2000-06-26 2004-06-15 Pfizer Products Inc. Pyrrolo [2,3-d] pyrimidine compounds as immunosuppressive agents
CN1321628C (en) 2000-06-28 2007-06-20 史密斯克莱·比奇曼公司 Wet milling process
AU2001278790A1 (en) 2000-08-22 2002-03-04 Hokuriku Seiyaku Co. Ltd 1h-imidazopyridine derivatives
MXPA03005001A (en) 2000-12-05 2003-09-05 Vertex Pharma Inhibitors of c-jun n-terminal kinases (jnk) and other protein kinases.
GB0100622D0 (en) 2001-01-10 2001-02-21 Vernalis Res Ltd Chemical compounds V111
JP2004520347A (en) 2001-01-15 2004-07-08 グラクソ グループ リミテッド Arylpiperidine and piperazine derivatives as inducers of LDL-receptor expression
EP1363702A4 (en) 2001-01-30 2007-08-22 Cytopia Pty Ltd Methods of inhibiting kinases
JP4316893B2 (en) 2001-05-16 2009-08-19 バーテックス ファーマシューティカルズ インコーポレイテッド Inhibitors of Src and other protein kinases
US7301023B2 (en) 2001-05-31 2007-11-27 Pfizer Inc. Chiral salt resolution
GB0115393D0 (en) 2001-06-23 2001-08-15 Aventis Pharma Ltd Chemical compounds
US6852727B2 (en) 2001-08-01 2005-02-08 Merck & Co., Inc. Benzimisazo[4,5-f]isoquinolinone derivatives
DE60230890D1 (en) 2001-09-19 2009-03-05 Aventis Pharma Sa INDOLICINE AS KINASEPROTEINHEMMER
US6429231B1 (en) 2001-09-24 2002-08-06 Bradley Pharmaceuticals, Inc. Compositions containing antimicrobials and urea for the treatment of dermatological disorders and methods for their use
IL161156A0 (en) 2001-10-30 2004-08-31 Novartis Ag Staurosporine derivatives as inhibitors of flt3 receptor tyrosine kinase activity
JP2003155285A (en) 2001-11-19 2003-05-27 Toray Ind Inc Cyclic nitrogen-containing derivative
AU2002224131A1 (en) 2001-11-30 2003-06-17 Teijin Limited Process for producing 5-(3-cyanophenyl)-3-formylbenzoic acid compound
GT200200234A (en) 2001-12-06 2003-06-27 NEW CRYSTAL COMPOUNDS
US6995144B2 (en) 2002-03-14 2006-02-07 Eisai Co., Ltd. Nitrogen containing heterocyclic compounds and medicines containing the same
TW200403058A (en) 2002-04-19 2004-03-01 Bristol Myers Squibb Co Heterocyclo inhibitors of potassium channel function
US7304061B2 (en) 2002-04-26 2007-12-04 Vertex Pharmaceuticals Incorporated Heterocyclic inhibitors of ERK2 and uses thereof
CA2483084A1 (en) 2002-05-02 2003-11-13 Merck & Co., Inc. Tyrosine kinase inhibitors
CA2484632C (en) 2002-05-07 2012-12-11 Control Delivery Systems, Inc. Processes for forming a drug delivery device
CA2486183C (en) 2002-05-23 2012-01-10 Cytopia Pty Ltd. Protein kinase inhibitors
PE20040522A1 (en) 2002-05-29 2004-09-28 Novartis Ag DIARYLUREA DERIVATIVES DEPENDENT ON PROTEIN KINASE
US7385018B2 (en) 2002-06-26 2008-06-10 Idemitsu Kosan Co., Ltd. Hydrogenated copolymer, process for producing the same, and hot-melt adhesive composition containing the same
GB0215676D0 (en) 2002-07-05 2002-08-14 Novartis Ag Organic compounds
GB0215844D0 (en) 2002-07-09 2002-08-14 Novartis Ag Organic compounds
WO2004007472A1 (en) 2002-07-10 2004-01-22 Ono Pharmaceutical Co., Ltd. Ccr4 antagonist and medicinal use thereof
JP2006502183A (en) 2002-09-20 2006-01-19 アルコン,インコーポレイテッド Use of cytokine synthesis inhibitors for the treatment of dry eye disorders
US20040204404A1 (en) 2002-09-30 2004-10-14 Robert Zelle Human N-type calcium channel blockers
CA2506773A1 (en) 2002-11-04 2004-05-21 Vertex Pharmaceuticals Incorporated Heteroaryl-pyramidine derivatives as jak inhibitors
AR042052A1 (en) 2002-11-15 2005-06-08 Vertex Pharma USEFUL DIAMINOTRIAZOLS AS INHIBITORS OF PROTEINQUINASES
US20040099204A1 (en) 2002-11-25 2004-05-27 Nestor John J. Sheet, page, line, position marker
EP1572213A1 (en) 2002-11-26 2005-09-14 Pfizer Products Inc. Method of treatment of transplant rejection
UA80767C2 (en) 2002-12-20 2007-10-25 Pfizer Prod Inc Pyrimidine derivatives for the treatment of abnormal cell growth
TWI335819B (en) 2002-12-24 2011-01-11 Alcon Inc Use of oculosurface selective glucocorticoid in the treatment of dry eye
TW200418806A (en) 2003-01-13 2004-10-01 Fujisawa Pharmaceutical Co HDAC inhibitor
US7167750B2 (en) 2003-02-03 2007-01-23 Enteromedics, Inc. Obesity treatment with electrically induced vagal down regulation
US7407962B2 (en) 2003-02-07 2008-08-05 Vertex Pharmaceuticals Incorporated Heteroaryl compounds useful as inhibitors or protein kinases
GB0305929D0 (en) 2003-03-14 2003-04-23 Novartis Ag Organic compounds
US7547794B2 (en) 2003-04-03 2009-06-16 Vertex Pharmaceuticals Incorporated Compositions useful as inhibitors of protein kinases
SE0301372D0 (en) 2003-05-09 2003-05-09 Astrazeneca Ab Novel compounds
SE0301373D0 (en) 2003-05-09 2003-05-09 Astrazeneca Ab Novel compounds
FR2857454B1 (en) 2003-07-08 2006-08-11 Aventis Pasteur DOSAGE OF TECHIC ACIDS OF BACTERIA GRAM +
US20050043346A1 (en) 2003-08-08 2005-02-24 Pharmacia Italia S.P.A. Pyridylpyrrole derivatives active as kinase inhibitors
WO2005020921A2 (en) 2003-08-29 2005-03-10 Exelixis, Inc. C-kit modulators and methods of use
EP1678147B1 (en) 2003-09-15 2012-08-08 Lead Discovery Center GmbH Pharmaceutically active 4,6-disubstituted aminopyrimidine derivatives as modulators of protein kinases
PE20050952A1 (en) 2003-09-24 2005-12-19 Novartis Ag DERIVATIVES OF ISOQUINOLINE AS INHIBITORS OF B-RAF
EP1679074B1 (en) 2003-10-24 2010-12-08 Santen Pharmaceutical Co., Ltd. Therapeutic agent for keratoconjunctive disorder
MY141220A (en) 2003-11-17 2010-03-31 Astrazeneca Ab Pyrazole derivatives as inhibitors of receptor tyrosine kinases
BRPI0416909A (en) 2003-11-25 2007-01-16 Pfizer Prod Inc atherosclerosis treatment method
CA2549485A1 (en) 2003-12-17 2005-07-07 Pfizer Products Inc. Pyrrolo [2,3-d] pyrimidine compounds for treating transplant rejection
EP1696920B8 (en) 2003-12-19 2015-05-06 Plexxikon Inc. Compounds and methods for development of ret modulators
CA2550189A1 (en) 2003-12-19 2005-07-21 Schering Corporation Thiadiazoles as cxc- and cc- chemokine receptor ligands
CA2548374C (en) 2003-12-23 2014-05-27 Astex Therapeutics Limited Pyrazole derivatives as protein kinase modulators
US20050165029A1 (en) 2004-01-13 2005-07-28 Ambit Biosciences Corporation Pyrrolopyrimidine derivatives and analogs and their use in the treatment and prevention of diseases
US20050277629A1 (en) 2004-03-18 2005-12-15 The Brigham And Women's Hospital, Inc. Methods for the treatment of synucleinopathies (Lansbury)
PL2332940T3 (en) 2004-03-30 2013-03-29 Vertex Pharma Azaindoles useful as inhibitors of JAK and other protein kinases
WO2005117909A2 (en) 2004-04-23 2005-12-15 Exelixis, Inc. Kinase modulators and methods of use
US20060106020A1 (en) 2004-04-28 2006-05-18 Rodgers James D Tetracyclic inhibitors of Janus kinases
US7558717B2 (en) 2004-04-28 2009-07-07 Vertex Pharmaceuticals Incorporated Crystal structure of human JAK3 kinase domain complex and binding pockets thereof
JP2007536310A (en) 2004-05-03 2007-12-13 ノバルティス アクチエンゲゼルシャフト Combination comprising S1P receptor agonist and JAK3 kinase inhibitor
WO2005110410A2 (en) 2004-05-14 2005-11-24 Abbott Laboratories Kinase inhibitors as therapeutic agents
PE20060426A1 (en) 2004-06-02 2006-06-28 Schering Corp TARTARIC ACID DERIVATIVES AS INHIBITORS OF MMPs, ADAMs, TACE AND TNF-alpha
TW200610762A (en) 2004-06-10 2006-04-01 Irm Llc Compounds and compositions as protein kinase inhibitors
JP5315611B2 (en) 2004-06-23 2013-10-16 小野薬品工業株式会社 Compound having S1P receptor binding ability and use thereof
EP1765819B1 (en) 2004-06-30 2014-03-12 Vertex Pharmaceuticals Inc. Azaindoles useful as inhibitors of protein kinases
US7138423B2 (en) 2004-07-20 2006-11-21 Bristol-Myers Squibb Company Arylpyrrolidine derivatives as NK-1 /SSRI antagonists
WO2006013114A1 (en) 2004-08-06 2006-02-09 Develogen Aktiengesellschaft Use of a timp-2 secreted protein product for preventing and treating pancreatic diseases and/or obesity and/or metabolic syndrome
WO2006022459A1 (en) 2004-08-23 2006-03-02 Mogam Biotechnology Institute Primer and probe for detection of sars coronavirus, kit comprising the primer and/or the probe, and detection method thereof
US20070054916A1 (en) 2004-10-01 2007-03-08 Amgen Inc. Aryl nitrogen-containing bicyclic compounds and methods of use
CA2582985A1 (en) 2004-10-13 2006-04-20 Jin-Jun Liu Disubstituted pyrazolobenzodiazepines useful as inhibitors for cdk2 and angiogesis, and for the treatment of breast, colon, lung and prostate cancer
UY29177A1 (en) 2004-10-25 2006-05-31 Astex Therapeutics Ltd SUBSTITUTED DERIVATIVES OF PURINA, PURINONA AND DEAZAPURINA, COMPOSITIONS THAT CONTAIN METHODS FOR THEIR PREPARATION AND ITS USES
MY179032A (en) 2004-10-25 2020-10-26 Cancer Research Tech Ltd Ortho-condensed pyridine and pyrimidine derivatives (e.g.purines) as protein kinase inhibitors
US7528138B2 (en) 2004-11-04 2009-05-05 Vertex Pharmaceuticals Incorporated Pyrazolo[1,5-a]pyrimidines useful as inhibitors of protein kinases
AU2005309019A1 (en) 2004-11-24 2006-06-01 Novartis Ag Combinations of JAK inhibitors and at least one of Bcr-Abl, Flt-3, FAK or RAF kinase inhibitors
US7517870B2 (en) 2004-12-03 2009-04-14 Fondazione Telethon Use of compounds that interfere with the hedgehog signaling pathway for the manufacture of a medicament for preventing, inhibiting, and/or reversing ocular diseases related with ocular neovascularization
US20060128803A1 (en) 2004-12-14 2006-06-15 Alcon, Inc. Method of treating dry eye disorders using 13(S)-HODE and its analogs
WO2006067445A2 (en) 2004-12-22 2006-06-29 Astrazeneca Ab Csf-1r kinase inhibitors
AR054416A1 (en) 2004-12-22 2007-06-27 Incyte Corp PIRROLO [2,3-B] PIRIDIN-4-IL-AMINAS AND PIRROLO [2,3-B] PIRIMIDIN-4-IL-AMINAS AS INHIBITORS OF THE JANUS KINASES. PHARMACEUTICAL COMPOSITIONS.
US20090124635A1 (en) 2005-01-20 2009-05-14 Pfizer Inc. Chemical compounds
KR20070104641A (en) 2005-02-03 2007-10-26 버텍스 파마슈티칼스 인코포레이티드 Pyrrolopyrimidines useful as inhibitors of protein kinase
WO2007044050A2 (en) 2005-02-04 2007-04-19 Bristol-Myers Squibb Company 1h-imidazo[4,5-d]thieno[3,2-b]pyridine based tricyclic compounds and pharmaceutical compositions comprising same
BRPI0608513A2 (en) 2005-03-15 2010-01-05 Irm Llc compounds and compositions as protein kinase inhibitors
BRPI0610514A2 (en) 2005-04-05 2016-11-16 Pharmacopeia Inc compound, pharmaceutical composition, and method of treating a disorder
GB0510139D0 (en) 2005-05-18 2005-06-22 Addex Pharmaceuticals Sa Novel compounds B1
MX2007014619A (en) 2005-05-20 2009-02-13 Vertex Pharma Pyrrolopyridines useful as inhibitors of protein kinase.
GB0510390D0 (en) 2005-05-20 2005-06-29 Novartis Ag Organic compounds
WO2006133426A2 (en) 2005-06-08 2006-12-14 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the jak pathway
WO2006136823A1 (en) 2005-06-21 2006-12-28 Astex Therapeutics Limited Heterocyclic containing amines as kinase b inhibitors
CN102603581B (en) 2005-06-22 2015-06-24 普莱希科公司 Pyrrolo[2,3-b] pyridine derivatives as protein kinase inhibitors
CN102127078A (en) 2005-07-14 2011-07-20 安斯泰来制药株式会社 Heterocyclic janus kinase 3 inhibitors
FR2889662B1 (en) 2005-08-11 2011-01-14 Galderma Res & Dev OIL-IN-WATER EMULSION FOR TOPICAL APPLICATION IN DERMATOLOGY
US20070049591A1 (en) 2005-08-25 2007-03-01 Kalypsys, Inc. Inhibitors of MAPK/Erk Kinase
EP1926735A1 (en) 2005-09-22 2008-06-04 Incyte Corporation Tetracyclic inhibitors of janus kinases
AU2006297351A1 (en) 2005-09-30 2007-04-12 Vertex Pharmaceuticals Incorporated Deazapurines useful as inhibitors of janus kinases
WO2007044894A2 (en) 2005-10-11 2007-04-19 Chembridge Research Laboratories, Inc. Cell-free protein expression systems and methods of use thereof
EP1937664B1 (en) 2005-10-14 2011-06-15 Sumitomo Chemical Company, Limited Hydrazide compound and pesticidal use of the same
BRPI0618011A2 (en) 2005-10-28 2011-08-16 Astrazeneca Ab compound or a pharmaceutically acceptable salt thereof, process for the preparation thereof, pharmaceutical composition, use of a compound or a pharmaceutically acceptable salt thereof, and methods for producing an antiproliferative effect and a pro-apoptotic effect in an animal warm-blooded to treat disease and to produce a jak inhibiting effect on a warm-blooded animal
DK1951684T3 (en) 2005-11-01 2016-10-24 Targegen Inc BIARYLMETAPYRIMIDIN kinase inhibitors
WO2007062459A1 (en) 2005-11-29 2007-06-07 Cytopia Research Pty Ltd Selective kinase inhibitors based on pyridine scaffold
US20130137681A1 (en) 2005-12-13 2013-05-30 Incyte Corporation HETEROARYL SUBSTITUTED PYRROLO[2,3-b]PYRIDINES AND PYRROLO[2,3-b]PYRIMIDINES AS JANUS KINASE INHIBITORS
MY162590A (en) 2005-12-13 2017-06-30 Incyte Holdings Corp Heteroaryl substituted pyrrolo[2,3-b] pyridines and pyrrolo[2,3-b] pyrimidines as janus kinase inhibitors
JP2009521504A (en) 2005-12-22 2009-06-04 スミスクライン・ビーチャム・コーポレイション Akt activity inhibitor
KR20080083680A (en) 2005-12-23 2008-09-18 스미스클라인 비참 코포레이션 Azaindole inhibitors of aurora kinases
BRPI0706537A2 (en) 2006-01-17 2011-03-29 Vertex Pharma azaindoles useful as janus kinases inhibitors
EP1979353A2 (en) 2006-01-19 2008-10-15 OSI Pharmaceuticals, Inc. Fused heterobicyclic kinase inhibitors
JP2009525350A (en) 2006-02-01 2009-07-09 スミスクライン ビーチャム コーポレーション Pyrrolo [2,3, B] pyridine derivatives useful as RAF kinase inhibitors
US7745477B2 (en) 2006-02-07 2010-06-29 Hoffman-La Roche Inc. Heteroaryl and benzyl amide compounds
EP1995246A4 (en) 2006-03-10 2010-11-17 Ono Pharmaceutical Co Nitrogenated heterocyclic derivative, and pharmaceutical agent comprising the derivative as active ingredient
WO2007116866A1 (en) 2006-04-03 2007-10-18 Astellas Pharma Inc. Hetero compound
MX2008012860A (en) 2006-04-05 2009-01-07 Vertex Pharma Deazapurines useful as inhibitors of janus kinases.
WO2007116313A2 (en) 2006-04-12 2007-10-18 Pfizer Limited Pyrrolidine derivatives as modulators of chemokine ccr5 receptors
WO2007129195A2 (en) 2006-05-04 2007-11-15 Pfizer Products Inc. 4-pyrimidine-5-amino-pyrazole compounds
WO2007135461A2 (en) 2006-05-18 2007-11-29 Bayer Healthcare Ag Pharmaceutical compositions comprising implitapide and methods of using same
US7691811B2 (en) 2006-05-25 2010-04-06 Bodor Nicholas S Transporter-enhanced corticosteroid activity and methods and compositions for treating dry eye
TWI398252B (en) 2006-05-26 2013-06-11 Novartis Ag Pyrrolopyrimidine compounds and their uses
US20080021217A1 (en) 2006-07-20 2008-01-24 Allen Borchardt Heterocyclic inhibitors of rho kinase
WO2008013622A2 (en) 2006-07-27 2008-01-31 E. I. Du Pont De Nemours And Company Fungicidal azocyclic amides
WO2008016123A1 (en) 2006-08-03 2008-02-07 Takeda Pharmaceutical Company Limited GSK-3β INHIBITOR
CA2660560A1 (en) 2006-08-16 2008-02-21 Boehringer Ingelheim International Gmbh Pyrazine compounds, their use and methods of preparation
WO2008028937A1 (en) 2006-09-08 2008-03-13 Novartis Ag N-biaryl (hetero) arylsulphonamide derivatives useful in the treatment of diseases mediated by lymphocytes interactions
WO2008035376A2 (en) 2006-09-19 2008-03-27 Council Of Scientific & Industrial Research A novel bio-erodible insert for ophthalmic applications and a process for the preparation thereof
AR063141A1 (en) 2006-10-04 2008-12-30 Pharmacopeia Inc DERIVATIVES OF 2- (BENZIMIDAZOLIL) PURINA 8- REPLACED FOR IMMUNOSUPPRESSION
AR063142A1 (en) 2006-10-04 2008-12-30 Pharmacopeia Inc DERIVATIVES OF 2- (BENCIMIDAZOLIL) PURINE AND PURINONES 6-USEFUL SUBSTITUTES AS IMMUNOSUPPRESSORS, AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM.
US20120225057A1 (en) 2006-10-11 2012-09-06 Deciphera Pharmaceuticals, Llc Methods and compositions for the treatment of myeloproliferative diseases and other proliferative diseases
NZ576234A (en) 2006-11-06 2011-06-30 Supergen Inc Imidazo[1,2-b]pyridazine and pyrazolo[1,5-a]pyrimidine derivatives and their use as protein kinase inhibitors
US20080119496A1 (en) 2006-11-16 2008-05-22 Pharmacopeia Drug Discovery, Inc. 7-Substituted Purine Derivatives for Immunosuppression
JP5572388B2 (en) 2006-11-22 2014-08-13 インサイト・コーポレイション Imidazotriazines and imidazopyrimidines as kinase inhibitors
WO2008067119A2 (en) 2006-11-27 2008-06-05 Smithkline Beecham Corporation Novel compounds
SG177221A1 (en) 2006-12-15 2012-01-30 Abbott Lab Novel oxadiazole compounds
AU2007338792B2 (en) 2006-12-20 2012-05-31 Amgen Inc. Substituted heterocycles and methods of use
CA2672903C (en) 2006-12-20 2012-10-23 Amgen Inc. Heterocyclic compounds and their use in treating inflammation, angiogenesis and cancer
US8513270B2 (en) 2006-12-22 2013-08-20 Incyte Corporation Substituted heterocycles as Janus kinase inhibitors
CA2667072C (en) 2006-12-22 2015-11-24 Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. Gel useful for the delivery of ophthalmic drugs
KR20080062876A (en) 2006-12-29 2008-07-03 주식회사 대웅제약 Novel antifungal triazole derivatives
WO2008082839A2 (en) 2006-12-29 2008-07-10 Abbott Laboratories Pim kinase inhibitors as cancer chemotherapeutics
WO2008082840A1 (en) 2006-12-29 2008-07-10 Abbott Laboratories Pim kinase inhibitors as cancer chemotherapeutics
BRPI0808523A2 (en) 2007-03-01 2014-08-19 Novartis Vaccines & Diagnostic PIM KINASE INHIBITORS AND METHODS OF USE
BRPI0809998B8 (en) 2007-04-03 2021-05-25 Array Biopharma Inc imidazo[1,2-a]pyridine compound as receptor tyrosine kinase inhibitors, their uses, their preparation processes and pharmaceutical compositions
GB0709031D0 (en) 2007-05-10 2007-06-20 Sareum Ltd Pharmaceutical compounds
EP2155689B1 (en) 2007-05-31 2015-07-08 Boehringer Ingelheim International GmbH Ccr2 receptor antagonists and uses thereof
GB0710528D0 (en) 2007-06-01 2007-07-11 Glaxo Group Ltd Novel compounds
EP3495369B1 (en) 2007-06-13 2021-10-27 Incyte Holdings Corporation Use of salts of the janus kinase inhibitor (r)-3-(4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h- pyrazol-1-yl)-3- cyclopentylpropanenitrile
CL2008001709A1 (en) 2007-06-13 2008-11-03 Incyte Corp Compounds derived from pyrrolo [2,3-b] pyrimidine, jak kinase modulators; pharmaceutical composition; and use in the treatment of diseases such as cancer, psoriasis, rheumatoid arthritis, among others.
KR20120115413A (en) 2007-07-11 2012-10-17 화이자 인코포레이티드 Pharmaceutical compositions and methods of treating dry eye disorders
AP2010005167A0 (en) 2007-08-01 2010-02-28 Pfizer Pyrazole compounds and their use as RAF inhibitors
WO2009049028A1 (en) 2007-10-09 2009-04-16 Targegen Inc. Pyrrolopyrimidine compounds and their use as janus kinase modulators
CA2743756A1 (en) 2007-11-15 2009-05-22 Musc Foundation For Research Development Inhibitors of pim protein kinases, compositions, and methods for treating cancer
CA2704599C (en) 2007-11-16 2015-05-12 Incyte Corporation 4-pyrazolyl-n-arylpyrimidin-2-amines and 4-pyrazolyl-n-heteroarylpyrimidin-2-amines as janus kinase inhibitors
GB0723815D0 (en) 2007-12-05 2008-01-16 Glaxo Group Ltd Compounds
CA2711384C (en) 2008-01-18 2016-07-26 Institute Of Organic Chemistry And Biochemistry As Cr, V.V.I. Cytostatic 7-deazapurine nucleosides
EA019309B1 (en) 2008-02-04 2014-02-28 Меркьюри Терапьютикс, Инк. Ampk (amp-activated protein kinase) modulators
UY31679A1 (en) 2008-03-03 2009-09-30 PIM KINASE INHIBITORS AND METHODS FOR USE
JP5384611B2 (en) 2008-03-21 2014-01-08 ノバルティス アーゲー Novel heterocyclic compounds and their use
US8344144B2 (en) 2008-06-18 2013-01-01 Merck Sharp & Dohme Corp. Inhibitors of Janus kinases
BRPI0914630A2 (en) 2008-06-26 2019-09-24 Anterios Inc dermal release
TWI461423B (en) 2008-07-02 2014-11-21 Astrazeneca Ab Thiazolidinedione compounds useful in the treatment of pim kinase related conditions and diseases
FR2933409B1 (en) 2008-07-03 2010-08-27 Centre Nat Rech Scient NEW PYRROLO ° 2,3-a! CARBAZOLES AND THEIR USE AS INHIBITORS OF PIM KINASES
TWI496779B (en) 2008-08-19 2015-08-21 Array Biopharma Inc Triazolopyridine compounds as pim kinase inhibitors
WO2010022081A1 (en) 2008-08-19 2010-02-25 Array Biopharma Inc. Triazolopyridine compounds as pim kinase inhibitors
JP4884570B2 (en) 2008-08-20 2012-02-29 ファイザー・インク Pyrrolo [2,3-d] pyrimidine compound
BRPI0918846A2 (en) 2008-09-02 2019-09-24 Novartis Ag heterocyclic kinase inhibitors
PT2344474E (en) 2008-09-02 2015-12-28 Novartis Ag Picolinamide derivatives as kinase inhibitors
EP2342190A1 (en) 2008-09-02 2011-07-13 Novartis AG Bicyclic kinase inhibitors
CL2009001884A1 (en) 2008-10-02 2010-05-14 Incyte Holdings Corp Use of 3-cyclopentyl-3- [4- (7h-pyrrolo [2,3-d] pyrimidin-4-yl) -1h-pyrazol-1-yl) propanonitrile, janus kinase inhibitor, and use of a composition that understands it for the treatment of dry eye.
JOP20190230A1 (en) 2009-01-15 2017-06-16 Incyte Corp Processes for preparing jak inhibitors and related intermediate compounds
EP2210890A1 (en) 2009-01-19 2010-07-28 Almirall, S.A. Oxadiazole derivatives as S1P1 receptor agonists
US8263601B2 (en) 2009-02-27 2012-09-11 Concert Pharmaceuticals, Inc. Deuterium substituted xanthine derivatives
MX2011012262A (en) 2009-05-22 2012-01-25 Incyte Corp 3-[4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h-pyrazol-1-yl]octane- or heptane-nitrile as jak inhibitors.
EA025520B1 (en) 2009-05-22 2017-01-30 Инсайт Холдингс Корпорейшн N-(HETERO)ARYL-PYRROLIDINE DERIVATIVES OF PYRAZOL-4-YL-PYRROLO[2,3-d]PYRIMIDINES AND PYRROL-3-YL-PYRROLO[2,3-d]PYRIMIDINES AS JANUS KINASE INHIBITORS
UA110324C2 (en) 2009-07-02 2015-12-25 Genentech Inc Jak inhibitory compounds based on pyrazolo pyrimidine
CA2767079A1 (en) 2009-07-08 2011-01-13 Leo Pharma A/S Heterocyclic compounds as jak receptor and protein tyrosine kinase inhibitors
US20120157500A1 (en) 2009-08-24 2012-06-21 Weikang Tao Jak inhibition blocks rna interference associated toxicities
TW201111385A (en) 2009-08-27 2011-04-01 Biocryst Pharm Inc Heterocyclic compounds as janus kinase inhibitors
TW201113285A (en) 2009-09-01 2011-04-16 Incyte Corp Heterocyclic derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors
JP5567136B2 (en) 2009-09-08 2014-08-06 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト 4-Substituted pyridin-3-yl-carboxamide compounds and methods of use
EP2305660A1 (en) 2009-09-25 2011-04-06 Almirall, S.A. New thiadiazole derivatives
PT2486041E (en) 2009-10-09 2013-11-14 Incyte Corp Hydroxyl, keto, and glucuronide derivatives of 3-(4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h-pyrazol-1-yl)-3-cyclopentylpropanenitrile
MX2012004020A (en) 2009-10-20 2012-05-08 Cellzome Ltd Heterocyclyl pyrazolopyrimidine analogues as jak inhibitors.
EP2332917B1 (en) 2009-11-11 2012-08-01 Sygnis Bioscience GmbH & Co. KG Compounds for PIM kinase inhibition and for treating malignancy
CN102740888B (en) 2009-11-24 2016-10-12 奥尔德生物制药公司 IL-6 antibody and application thereof
EP2506852A4 (en) 2009-12-04 2013-06-19 Univ Texas Interferon therapies in combination with blockade of stat3 activation
CN102712640A (en) 2010-01-12 2012-10-03 弗·哈夫曼-拉罗切有限公司 Tricyclic heterocyclic compounds, compositions and methods of use thereof
SA111320200B1 (en) 2010-02-17 2014-02-16 ديبيوفارم اس ايه Bicyclic Compounds and their Uses as Dual C-SRC / JAK Inhibitors
EA023444B1 (en) 2010-02-18 2016-06-30 Инсайт Холдингс Корпорейшн Cyclobutane and methylcyclobutane derivatives, composition based thereon and methods of use thereof
KR20130094710A (en) 2010-04-14 2013-08-26 어레이 바이오파마 인크. 5,7-substituted-imidazo[1,2-c]pyrimidines as inhibitors of jak kinases
EP2390252A1 (en) 2010-05-19 2011-11-30 Almirall, S.A. New pyrazole derivatives
SG10201910912TA (en) 2010-05-21 2020-01-30 Incyte Corp Topical Formulation for a JAK Inhibitor
US8637529B2 (en) 2010-06-11 2014-01-28 AbbYie Inc. Pyrazolo[3,4-d]pyrimidine compounds
US9351943B2 (en) 2010-07-01 2016-05-31 Matthew T. McLeay Anti-fibroblastic fluorochemical emulsion therapies
US20130237493A1 (en) 2010-09-30 2013-09-12 Portola Pharmaceuticals, Inc. Combination therapy of 4-(cyclopropylamino)-2-(4-(4-(ethylsulfonyl)piperazin-1-yl)phenylamino)pyrimidine-5-carboxamide and fludarabine
US9034884B2 (en) 2010-11-19 2015-05-19 Incyte Corporation Heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines as JAK inhibitors
BR112013012502A2 (en) 2010-11-19 2019-03-06 Incyte Corporation substituted cyclobutyl pyrrolopyridine and derivative pyrrolopyrimidine derivatives as jak inhibitors
CN103370068A (en) 2010-12-03 2013-10-23 Ym生物科学澳大利亚私人有限公司 Treatment of JAK2-mediated conditions
WO2012112847A1 (en) 2011-02-18 2012-08-23 Novartis Pharma Ag mTOR/JAK INHIBITOR COMBINATION THERAPY
MY165963A (en) 2011-06-20 2018-05-18 Incyte Holdings Corp Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as jak inhibitors
WO2013007768A1 (en) 2011-07-13 2013-01-17 F. Hoffmann-La Roche Ag Tricyclic heterocyclic compounds, compositions and methods of use thereof as jak inhibitors
WO2013007765A1 (en) 2011-07-13 2013-01-17 F. Hoffmann-La Roche Ag Fused tricyclic compounds for use as inhibitors of janus kinases
EP2741747A1 (en) 2011-08-10 2014-06-18 Novartis Pharma AG JAK P13K/mTOR COMBINATION THERAPY
TW201313721A (en) 2011-08-18 2013-04-01 Incyte Corp Cyclohexyl azetidine derivatives as JAK inhibitors
UA111854C2 (en) * 2011-09-07 2016-06-24 Інсайт Холдінгс Корпорейшн METHODS AND INTERMEDIATE COMPOUNDS FOR JAK INHIBITORS
US9193733B2 (en) 2012-05-18 2015-11-24 Incyte Holdings Corporation Piperidinylcyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors
US10155987B2 (en) 2012-06-12 2018-12-18 Dana-Farber Cancer Institute, Inc. Methods of predicting resistance to JAK inhibitor therapy
JP2015526520A (en) 2012-08-31 2015-09-10 プリンシピア バイオファーマ インコーポレイテッド Benzimidazole derivatives as ITK inhibitors
SG10201703533VA (en) 2012-11-01 2017-06-29 Incyte Corp Tricyclic fused thiophene derivatives as jak inhibitors
SG11201503695XA (en) 2012-11-15 2015-06-29 Incyte Corp Sustained-release dosage forms of ruxolitinib
EA030705B1 (en) 2013-03-06 2018-09-28 Инсайт Холдингс Корпорейшн Processes and intermediates for making a jak inhibitor
PE20160126A1 (en) 2013-05-17 2016-02-24 Incyte Corp DERIVATIVES OF BIPIRAZOLE AS JAK INHIBITORS
ES2792549T3 (en) 2013-08-07 2020-11-11 Incyte Corp Sustained-release dosage forms for a JAK1 inhibitor
CN105555313A (en) 2013-08-20 2016-05-04 因赛特公司 Survival benefit in patients with solid tumors with elevated c-reactive protein levels
CN106456773A (en) 2014-02-28 2017-02-22 因赛特公司 Jak1 inhibitors for the treatment of myelodysplastic syndromes
KR20220066179A (en) 2014-04-08 2022-05-23 인사이트 코포레이션 Treatment of b-cell malignancies by a combination jak and pi3k inhibitor
AU2015253192B2 (en) 2014-04-30 2019-05-16 Incyte Holdings Corporation Processes of preparing a JAK1 inhibitor and new forms thereto
WO2015184305A1 (en) 2014-05-30 2015-12-03 Incyte Corporation TREATMENT OF CHRONIC NEUTROPHILIC LEUKEMIA (CNL) AND ATYPICAL CHRONIC MYELOID LEUKEMIA (aCML) BY INHIBITORS OF JAK1

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070191364A1 (en) * 2004-07-29 2007-08-16 Sanofi-Aventis Aminopiperidine derivatives, preparation thereof and therapeutic use thereof
US20090233903A1 (en) * 2008-03-11 2009-09-17 Incyte Corporation Azetidine and cyclobutane derivatives as jak inhibitors
US20110224190A1 (en) * 2010-03-10 2011-09-15 Taisheng Huang Piperidin-4-yl azetidine derivatives as jak1 inhibitors

Non-Patent Citations (37)

* Cited by examiner, † Cited by third party
Title
"Remington's Pharmaceutical Sciences, 17th ed.,", 1985, MACK PUBLISHING COMPANY, pages: 1418
"The Definition and Classification of Dry Eye Disease: Report of the Definition and Classification Subcommittee of the International Dry Eye Workshop", THE OCULAR SURFACE, vol. 5, no. 2, April 2007 (2007-04-01), pages 75 - 92
ADV PHARMACOL., vol. 47, 2000, pages 113 - 74
AGENTS ACTIONS, vol. 38, no. 1-2, January 1993 (1993-01-01), pages 116 - 21
BARABINO ET AL., EXPERIMENTAL EYE RESEARCH, vol. 79, 2004, pages 613 - 621
BOUDNY, V.; KOVARIK, J., NEOPLASM., vol. 49, 2002, pages 349 - 355
BOWMAN, T. ET AL., ONCOGENE, vol. 19, 2000, pages 2474 - 2488
BURGER, R. ET AL., HEMATOL J., vol. 2, 2001, pages 42 - 53
COLIGAN, J.E. ET AL.: "Current Protocols in Immunology", vol. 3, WILEY PRESS
ELLEN W. BAXTER; ALLEN B. REITZ: "Organic Reactions", 2002, WILEY, article "Reductive Aminations of Carbonyl Compounds with Borohydride and Borane Reducing Agents", pages: 1 - 57
FLEX E. ET AL., J EXP MED., vol. 205, 2008, pages 751 - 8
FONESCA, J.E. ET AL., AUTOIMMUNITY REVIEWS, vol. 8, 2009, pages 538 - 42
GREENE ET AL.: "Protective Groups in Organic Synthesis, 4th ed.,", 2007, WILEY & SONS
GRONEBERG, D.A. ET AL., ALLERGY, vol. 58, 2003, pages 1101 - 1113
GUSCHIN, D., N. ET AL., EMBO J, vol. 14, 1995, pages 1421
IMMUNOL TODAY, vol. 19, no. 1, January 1998 (1998-01-01), pages 37 - 44
JAMES, C. ET AL., NATURE, vol. 434, pages 1144 - 1148
JCI, vol. 113, pages 1664 - 1675
JOURNAL OF PHARMACEUTICAL SCIENCE, vol. 66, 1977, pages 2
KAUSHANSKY K, NEJM, vol. 354, 2006, pages 2034 - 45
LEVIN ET AL., CANCER CELL, vol. 7, 2005, pages 387 - 397
MACCHI P ET AL., NATURE, vol. 377, 1995, pages 65 - 8
MINEGISHI, Y ET AL., IMMUNITY, vol. 25, 2006, pages 745 - 55
MULLIGHAN CG, PROC NATL ACAD SCI U S A., vol. 106, 2009, pages 9414 - 8
ORTMANN, R. A.; T. CHENG ET AL., ARTHRITIS RES, vol. 2, no. 1, 2000, pages 16 - 32
PARGANAS E ET AL., CELL, vol. 93, 1998, pages 385 - 95
PARK ET AL., ANALYTICAL BIOCHEMISTRY, vol. 269, 1999, pages 94 - 104
RODIG, S. J.; M. A. MERAZ ET AL., CELL, vol. 93, no. 3, 1998, pages 373 - 83
SCHRADER ET AL.: "Developmental Opthalmology", vol. 41, 2008, KARGER, pages: 298 - 312
SMITH ET AL., MMUNOLOGY AND CELL BIOLOGY, vol. 76, 1998, pages 497 - 512
SMOLEN, J. S. ET AL., LANCET, vol. 371, 2008, pages 987
STAERK, J. ET AL., JBC, vol. 280, pages 41893 - 41899
TING ET AL.: "The synthesis of substituted bipiperidine amide compounds as CCR3 antagonists", BIOORG. MED. CHEM. LETT., vol. 15, no. 5, 1 March 2005 (2005-03-01), pages 1375 - 1378, XP025314524, ISSN: 0960-894X, [retrieved on 20050301], DOI: 10.1016/J.BMCL.2005.01.016 *
W.S.S. JEE; W. YAO; J MUSCULOSKEL, NUERON. INTERACT., vol. 1, no. 3, 2001, pages 193 - 207
WINYARD, P.G.; WILLOUGHBY, D.A.: "Methods in Molecular Biology: Vol. 225, Inflammation Protocols.", 2003, HUMANA PRESS
WUTS; GREENE: "Protective Groups in Organic Synthesis, 4th ed.,", 2007, JOHN WILEY & SONS, pages: 696 - 887
YAO ET AL., ARTHRITIS AND RHEUMATISM, vol. 58, no. 6, 2008, pages 3485 - 3497

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10639310B2 (en) 2005-12-13 2020-05-05 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
US9814722B2 (en) 2005-12-13 2017-11-14 Incyte Holdings Corporation Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as janus kinase inhibitors
US9974790B2 (en) 2005-12-13 2018-05-22 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as janus kinase inhibitors
US8933086B2 (en) 2005-12-13 2015-01-13 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-B]pyridines and pyrrolo[2,3-B]pyrimidines as Janus kinase inhibitors
US9662335B2 (en) 2005-12-13 2017-05-30 Incyte Holdings Corporation Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as janus kinase inhibitors
US8946245B2 (en) 2005-12-13 2015-02-03 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
US11331320B2 (en) 2005-12-13 2022-05-17 Incyte Holdings Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
US10398699B2 (en) 2005-12-13 2019-09-03 Incyte Holdings Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as janus kinase inhibitors
US9079912B2 (en) 2005-12-13 2015-07-14 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as Janus kinase inhibitors
US11744832B2 (en) 2005-12-13 2023-09-05 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
US9206187B2 (en) 2005-12-13 2015-12-08 Incyte Holdings Corporation Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as Janus kinase
US11213528B2 (en) 2007-06-13 2022-01-04 Incyte Holdings Corporation Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US9623029B2 (en) 2009-05-22 2017-04-18 Incyte Holdings Corporation 3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]octane- or heptane-nitrile as JAK inhibitors
US9216984B2 (en) 2009-05-22 2015-12-22 Incyte Corporation 3-[4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl]octane—or heptane-nitrile as JAK inhibitors
US9334274B2 (en) 2009-05-22 2016-05-10 Incyte Holdings Corporation N-(hetero)aryl-pyrrolidine derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines and pyrrol-3-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors
US9249145B2 (en) 2009-09-01 2016-02-02 Incyte Holdings Corporation Heterocyclic derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors
US10695337B2 (en) 2010-03-10 2020-06-30 Incyte Holdings Corporation Piperidin-4-yl azetidine derivatives as JAK1 inhibitors
US9999619B2 (en) 2010-03-10 2018-06-19 Incyte Holdings Corporation Piperidin-4-yl azetidine derivatives as JAK1 inhibitors
US9464088B2 (en) 2010-03-10 2016-10-11 Incyte Holdings Corporation Piperidin-4-yl azetidine derivatives as JAK1 inhibitors
US11285140B2 (en) 2010-03-10 2022-03-29 Incyte Corporation Piperidin-4-yl azetidine derivatives as JAK1 inhibitors
US11219624B2 (en) 2010-05-21 2022-01-11 Incyte Holdings Corporation Topical formulation for a JAK inhibitor
US10869870B2 (en) 2010-05-21 2020-12-22 Incyte Corporation Topical formulation for a JAK inhibitor
US11571425B2 (en) 2010-05-21 2023-02-07 Incyte Corporation Topical formulation for a JAK inhibitor
US10758543B2 (en) 2010-05-21 2020-09-01 Incyte Corporation Topical formulation for a JAK inhibitor
US11590136B2 (en) 2010-05-21 2023-02-28 Incyte Corporation Topical formulation for a JAK inhibitor
US10640506B2 (en) 2010-11-19 2020-05-05 Incyte Holdings Corporation Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidines derivatives as JAK inhibitors
US9034884B2 (en) 2010-11-19 2015-05-19 Incyte Corporation Heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines as JAK inhibitors
US8933085B2 (en) 2010-11-19 2015-01-13 Incyte Corporation Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors
US11214573B2 (en) 2011-06-20 2022-01-04 Incyte Holdings Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
US9023840B2 (en) 2011-06-20 2015-05-05 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
US9611269B2 (en) 2011-06-20 2017-04-04 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
US8691807B2 (en) 2011-06-20 2014-04-08 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
US10513522B2 (en) 2011-06-20 2019-12-24 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
US9359358B2 (en) 2011-08-18 2016-06-07 Incyte Holdings Corporation Cyclohexyl azetidine derivatives as JAK inhibitors
US9718834B2 (en) 2011-09-07 2017-08-01 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US9193733B2 (en) 2012-05-18 2015-11-24 Incyte Holdings Corporation Piperidinylcyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors
US11576864B2 (en) 2012-11-15 2023-02-14 Incyte Corporation Sustained-release dosage forms of ruxolitinib
US10166191B2 (en) 2012-11-15 2019-01-01 Incyte Corporation Sustained-release dosage forms of ruxolitinib
US11337927B2 (en) 2012-11-15 2022-05-24 Incyte Holdings Corporation Sustained-release dosage forms of ruxolitinib
US10874616B2 (en) 2012-11-15 2020-12-29 Incyte Corporation Sustained-release dosage forms of ruxolitinib
US11896717B2 (en) 2012-11-15 2024-02-13 Incyte Holdings Corporation Sustained-release dosage forms of ruxolitinib
US11576865B2 (en) 2012-11-15 2023-02-14 Incyte Corporation Sustained-release dosage forms of ruxolitinib
US9676750B2 (en) 2013-01-14 2017-06-13 Incyte Corporation Bicyclic aromatic carboxamide compounds useful as pim kinase inhibitors
US10517858B2 (en) 2013-01-15 2019-12-31 Incyte Holdings Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as PIM kinase inhibitors
US10265307B2 (en) 2013-01-15 2019-04-23 Incyte Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as Pim kinase inhibitors
US9550765B2 (en) 2013-01-15 2017-01-24 Incyte Holdings Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as Pim kinase inhibitors
US11229631B2 (en) 2013-01-15 2022-01-25 Incyte Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as Pim kinase inhibitors
US9849120B2 (en) 2013-01-15 2017-12-26 Incyte Holdings Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as Pim kinase inhibitors
US10828290B2 (en) 2013-01-15 2020-11-10 Incyte Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as pim kinase inhibitors
US9221845B2 (en) 2013-03-06 2015-12-29 Incyte Holdings Corporation Processes and intermediates for making a JAK inhibitor
US9714233B2 (en) 2013-03-06 2017-07-25 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US8987443B2 (en) 2013-03-06 2015-03-24 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US9957264B2 (en) 2013-03-19 2018-05-01 Merck Sharp & Dohme Corp. Geminally substituted cyanoethylpyrazolo pyridones as Janus kinase inhibitors
RU2664533C2 (en) * 2013-03-19 2018-08-20 Мерк Шарп И Доум Корп. Geminally substituted cyanoethylpyrazolo pyridones as janus kinase inhibitors
WO2014146249A1 (en) * 2013-03-19 2014-09-25 Merck Sharp & Dohme Corp. Geminally substituted cyanoethylpyrazolo pyridones as janus kinase inhibitors
US11591318B2 (en) 2013-05-17 2023-02-28 Incyte Corporation Bipyrazole derivatives as JAK inhibitors
US11001571B2 (en) 2013-05-17 2021-05-11 Incyte Corporation Bipyrazole derivatives as JAK inhibitors
US11905275B2 (en) 2013-05-17 2024-02-20 Incyte Corporation Bipyrazole derivatives as JAK inhibitors
CN107698569A (en) * 2013-05-17 2018-02-16 因赛特公司 Connection pyrazole derivatives as JAK inhibitor
US9655854B2 (en) 2013-08-07 2017-05-23 Incyte Corporation Sustained release dosage forms for a JAK1 inhibitor
US10561616B2 (en) 2013-08-07 2020-02-18 Incyte Corporation Sustained release dosage forms for a JAK1 inhibitor
US11045421B2 (en) 2013-08-07 2021-06-29 Incyte Corporation Sustained release dosage forms for a JAK1 inhibitor
US10000507B2 (en) 2013-08-23 2018-06-19 Incyte Corporation Furo- and thieno-pyridine carboxamide compounds useful as pim kinase inhibitors
US9498467B2 (en) 2014-05-30 2016-11-22 Incyte Corporation Treatment of chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML) by inhibitors of JAK1
US9822124B2 (en) 2014-07-14 2017-11-21 Incyte Corporation Bicyclic heteroaromatic carboxamide compounds useful as Pim kinase inhibitors
US9890162B2 (en) 2014-07-14 2018-02-13 Incyte Corporation Bicyclic aromatic carboxamide compounds useful as pim kinase inhibitors
CN104230974B (en) * 2014-07-30 2017-02-08 斯芬克司药物研发(天津)股份有限公司 Pyrrole-pyridine compound and preparation method thereof
CN104230974A (en) * 2014-07-30 2014-12-24 天津市斯芬克司药物研发有限公司 Pyrrole-pyridine compound and preparation method thereof
US10072025B2 (en) 2014-10-22 2018-09-11 Merck Sharp & Dohme Corp. Ethyl N-boc piperidinyl pyrazolo pyridones as Janus kinase inhibitors
WO2016061751A1 (en) * 2014-10-22 2016-04-28 Merck Sharp & Dohme Corp. Ethyl n-boc piperidinyl pyrazolo pyridones as janus kinase inhibitors
WO2016196244A1 (en) 2015-05-29 2016-12-08 Incyte Corporation Pyridineamine compounds useful as pim kinase inhibitors
US9540347B2 (en) 2015-05-29 2017-01-10 Incyte Corporation Pyridineamine compounds useful as Pim kinase inhibitors
US9802918B2 (en) 2015-05-29 2017-10-31 Incyte Corporation Pyridineamine compounds useful as Pim kinase inhibitors
US10336728B2 (en) 2015-09-09 2019-07-02 Incyte Corporation Salts of a Pim kinase inhibitor
US11066387B2 (en) 2015-09-09 2021-07-20 Incyte Corporation Salts of a Pim kinase inhibitor
US9862705B2 (en) 2015-09-09 2018-01-09 Incyte Corporation Salts of a pim kinase inhibitor
US11505540B2 (en) 2015-09-09 2022-11-22 Incyte Corporation Salts of a Pim kinase inhibitor
WO2017044730A1 (en) 2015-09-09 2017-03-16 Incyte Corporation Salts of a pim kinase inhibitor
US10450296B2 (en) 2015-10-02 2019-10-22 Incyte Corporation Heterocyclic compounds useful as Pim kinase inhibitors
US11053215B2 (en) 2015-10-02 2021-07-06 Incyte Corporation Heterocyclic compounds useful as Pim kinase inhibitors
US9920032B2 (en) 2015-10-02 2018-03-20 Incyte Corporation Heterocyclic compounds useful as pim kinase inhibitors
WO2017059251A1 (en) 2015-10-02 2017-04-06 Incyte Corporation Heterocyclic compounds useful as pim kinase inhibitors
CN106905322A (en) * 2016-01-26 2017-06-30 杭州华东医药集团新药研究院有限公司 Pyrrolopyrimidine penta azacyclo derivative and its application
US11278541B2 (en) 2017-12-08 2022-03-22 Incyte Corporation Low dose combination therapy for treatment of myeloproliferative neoplasms
US10596161B2 (en) 2017-12-08 2020-03-24 Incyte Corporation Low dose combination therapy for treatment of myeloproliferative neoplasms
EP4086245A1 (en) * 2018-01-30 2022-11-09 Incyte Corporation Processes for preparing intermediates for the synthesis of a jak inhibitor
IL276302B1 (en) * 2018-01-30 2023-07-01 Incyte Corp Processes for preparing (1 -(3-fluoro-2-(trifluoromethyl)isonicotinyl)piperidine-4-one)
WO2019152374A1 (en) * 2018-01-30 2019-08-08 Incyte Corporation Processes for preparing (1 -(3-fluoro-2-(trifluoromethyl)isonicotinyl)piperidine-4-one)
US10899736B2 (en) 2018-01-30 2021-01-26 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US11833152B2 (en) 2018-02-16 2023-12-05 Incyte Corporation JAK1 pathway inhibitors for the treatment of cytokine-related disorders
US11304949B2 (en) 2018-03-30 2022-04-19 Incyte Corporation Treatment of hidradenitis suppurativa using JAK inhibitors
US11685731B2 (en) 2020-06-02 2023-06-27 Incyte Corporation Processes of preparing a JAK1 inhibitor
US11833155B2 (en) 2020-06-03 2023-12-05 Incyte Corporation Combination therapy for treatment of myeloproliferative neoplasms
US11957661B2 (en) 2020-12-08 2024-04-16 Incyte Corporation JAK1 pathway inhibitors for the treatment of vitiligo

Also Published As

Publication number Publication date
CA2847728A1 (en) 2013-03-14
AU2012304650B2 (en) 2017-03-09
HK1199445A1 (en) 2015-07-03
PL2753621T3 (en) 2016-07-29
US20130060026A1 (en) 2013-03-07
CR20140120A (en) 2014-05-15
KR20140072878A (en) 2014-06-13
PE20142360A1 (en) 2015-01-10
EA201490575A1 (en) 2014-07-30
SI2753621T1 (en) 2016-05-31
TW201317246A (en) 2013-05-01
BR112014005174A2 (en) 2017-04-18
EP2753621A1 (en) 2014-07-16
JP5977354B2 (en) 2016-08-24
JP2017014226A (en) 2017-01-19
CN104024256A (en) 2014-09-03
JP2014526466A (en) 2014-10-06
KR102002277B1 (en) 2019-07-23
RS54615B1 (en) 2016-08-31
US9487521B2 (en) 2016-11-08
BR112014005174B1 (en) 2022-03-29
AR087794A1 (en) 2014-04-16
EA026122B1 (en) 2017-03-31
SG11201400414XA (en) 2014-04-28
ES2564133T3 (en) 2016-03-18
ZA201402163B (en) 2014-11-26
MY169617A (en) 2019-04-23
US20170015674A1 (en) 2017-01-19
ME02458B (en) 2017-02-20
AU2012304650A1 (en) 2014-03-27
DK2753621T3 (en) 2016-01-25
CO6910194A2 (en) 2014-03-31
SMT201600060B (en) 2016-04-29
US9718834B2 (en) 2017-08-01
EP2753621B1 (en) 2015-12-09
IL231389A (en) 2016-11-30
TWI577690B (en) 2017-04-11
PT2753621E (en) 2016-03-31
UA111854C2 (en) 2016-06-24
CY1117276T1 (en) 2017-04-26
MX339715B (en) 2016-06-07
IN2014DN02177A (en) 2015-05-15
HUE026497T2 (en) 2016-06-28
CL2014000534A1 (en) 2014-08-22
IL231389A0 (en) 2014-04-30
AR116431A2 (en) 2021-05-05
HRP20160241T1 (en) 2016-04-08
CN104024256B (en) 2016-02-10
MX2014002681A (en) 2014-04-25
CA2847728C (en) 2019-10-29
NZ622295A (en) 2015-07-31

Similar Documents

Publication Publication Date Title
US9718834B2 (en) Processes and intermediates for making a JAK inhibitor
US9714233B2 (en) Processes and intermediates for making a JAK inhibitor
EP3746429B1 (en) Processes for preparing (1-(3-fluoro-2-(trifluoromethyl)isonicotinyl)piperidine-4-one)
NZ622295B2 (en) Processes and intermediates for making a jak inhibitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12770334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2847728

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014529844

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 231389

Country of ref document: IL

Ref document number: 000311-2014

Country of ref document: PE

Ref document number: MX/A/2014/002681

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12014500521

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: CR2014-000120

Country of ref document: CR

WWE Wipo information: entry into national phase

Ref document number: 14056851

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 2012304650

Country of ref document: AU

Date of ref document: 20120906

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147008415

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012770334

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: A201403501

Country of ref document: UA

Ref document number: 201490575

Country of ref document: EA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014005174

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: P-2016/0065

Country of ref document: RS

ENP Entry into the national phase

Ref document number: 112014005174

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140306