WO2013036591A1 - Appareil et système pour stockage de grains - Google Patents
Appareil et système pour stockage de grains Download PDFInfo
- Publication number
- WO2013036591A1 WO2013036591A1 PCT/US2012/053894 US2012053894W WO2013036591A1 WO 2013036591 A1 WO2013036591 A1 WO 2013036591A1 US 2012053894 W US2012053894 W US 2012053894W WO 2013036591 A1 WO2013036591 A1 WO 2013036591A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- panels
- frame
- storage apparatus
- scalable
- roofing
- Prior art date
Links
- 238000003860 storage Methods 0.000 title claims abstract description 190
- 238000004320 controlled atmosphere Methods 0.000 claims abstract description 13
- 235000013305 food Nutrition 0.000 claims abstract description 13
- 238000012806 monitoring device Methods 0.000 claims abstract description 8
- 238000005057 refrigeration Methods 0.000 claims abstract description 8
- 239000004567 concrete Substances 0.000 claims abstract description 7
- 238000013022 venting Methods 0.000 claims abstract description 6
- 239000004606 Fillers/Extenders Substances 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 27
- 239000011152 fibreglass Substances 0.000 claims description 8
- 239000006260 foam Substances 0.000 claims description 8
- 239000011810 insulating material Substances 0.000 claims description 8
- 239000003973 paint Substances 0.000 claims description 6
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 5
- 210000003298 dental enamel Anatomy 0.000 claims description 4
- 238000010248 power generation Methods 0.000 claims description 4
- 238000005273 aeration Methods 0.000 claims description 3
- 238000005399 mechanical ventilation Methods 0.000 claims description 3
- 239000010426 asphalt Substances 0.000 claims description 2
- 235000013339 cereals Nutrition 0.000 description 37
- 238000000034 method Methods 0.000 description 18
- 229910000831 Steel Inorganic materials 0.000 description 17
- 239000007789 gas Substances 0.000 description 17
- 239000010959 steel Substances 0.000 description 17
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 16
- 238000012544 monitoring process Methods 0.000 description 15
- 238000013461 design Methods 0.000 description 12
- 238000009423 ventilation Methods 0.000 description 12
- 229910002092 carbon dioxide Inorganic materials 0.000 description 9
- 239000001569 carbon dioxide Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000005553 drilling Methods 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 5
- 238000005192 partition Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 241000209140 Triticum Species 0.000 description 4
- 235000021307 Triticum Nutrition 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000003566 sealing material Substances 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000010485 coping Effects 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 235000012055 fruits and vegetables Nutrition 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 231100001261 hazardous Toxicity 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 206010061217 Infestation Diseases 0.000 description 1
- 241001236644 Lavinia Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002079 cooperative effect Effects 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 239000011494 foam glass Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- YOBAEOGBNPPUQV-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe].[Fe] YOBAEOGBNPPUQV-UHFFFAOYSA-N 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H5/00—Buildings or groups of buildings for industrial or agricultural purposes
- E04H5/08—Buildings or groups of buildings for agricultural purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D88/00—Large containers
- B65D88/74—Large containers having means for heating, cooling, aerating or other conditioning of contents
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/343—Structures characterised by movable, separable, or collapsible parts, e.g. for transport
- E04B1/34315—Structures characterised by movable, separable, or collapsible parts, e.g. for transport characterised by separable parts
- E04B1/34331—Structures characterised by movable, separable, or collapsible parts, e.g. for transport characterised by separable parts mainly constituted by three-dimensional elements
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/343—Structures characterised by movable, separable, or collapsible parts, e.g. for transport
- E04B1/34336—Structures movable as a whole, e.g. mobile home structures
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/343—Structures characterised by movable, separable, or collapsible parts, e.g. for transport
- E04B1/344—Structures characterised by movable, separable, or collapsible parts, e.g. for transport with hinged parts
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H1/00—Buildings or groups of buildings for dwelling or office purposes; General layout, e.g. modular co-ordination or staggered storeys
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H7/00—Construction or assembling of bulk storage containers employing civil engineering techniques in situ or off the site
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H7/00—Construction or assembling of bulk storage containers employing civil engineering techniques in situ or off the site
- E04H7/22—Containers for fluent solids, e.g. silos, bunkers; Supports therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/51—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture specially adapted for storing agricultural or horticultural products
Definitions
- the present invention relates to an apparatus and system for food storage.
- An exemplary embodiment is a modular grain storage apparatus that is fixed.
- the storage apparatus comprises a scalable frame; a plurality of scalable side panels, each side panel securely attachable to other side panels, roofing panels, and the frame; and a plurality of scalable roofing panels that are securely attachable to other roofing panels, the side panels, and the frame.
- the mobile storage apparatus comprises a scalable frame; plurality of hole-vented scalable floor panels, securely attachable to the frame; a plurality of wheels, securely attachable to the floor panels; a plurality of scalable side panels, each side panel securely attachable to the frame, one or more floor panels and securely attachable to one or more other side panels; and a plurality of roofing panels, each roofing panel securely attachable to one or more scalable side panels and the frame.
- Figure 1A depicts a stationary modular storage apparatus according to an exemplary embodiment of the invention.
- Figure IB depicts a side view of the stationary modular storage apparatus shown in Figure 1A, according to an exemplary embodiment of the invention.
- Figure 1C depicts a front view of the stationary modular storage apparatus shown in Figure 1A, according to an exemplary embodiment of the invention.
- Figure ID depicts a front view of a stationary modular storage apparatus that has been modified for increased width and height, using one or more extenders, according to an exemplary embodiment of the invention.
- Figure IE depicts a front view of a stationary modular storage apparatus that has been modified for increased width and height, using a raised foundation, according to an exemplary embodiment of the invention.
- Figure IF depicts multiple views of a "c-channel” extender, according to an exemplary embodiment of the invention.
- Figure 1G depicts multiple views of a "wide-flange” extender, according to an exemplary embodiment of the invention.
- Figure 2 depicts an interior view of the stationary modular storage apparatus shown in Figure 1 A, according to an exemplary embodiment.
- Figure 3 depicts an interior view of a stationary modular storage apparatus that is modified for refrigerated storage, according to an exemplary embodiment of the invention.
- Figure 4 depicts an interior view of a stationary modular storage apparatus that is modified for grain storage, according to an exemplary embodiment of the invention.
- Figure 5 depicts an alternate view of the stationary modular storage apparatus shown in Figure 4, according to an exemplary embodiment of the invention.
- Figure 6 depicts a method for constructing a modular storage apparatus, according to an exemplary embodiment of the invention.
- Figure 7 depicts an interior view of a stationary modular storage apparatus that is modified for controlled atmosphere storage, according to an exemplary embodiment of the invention.
- Figure 8 depicts a mobile modular storage apparatus according to an exemplary embodiment of the invention.
- FIG. 1 depicts various functionality and features associated with exemplary embodiments. While a single illustrative block, sub-system, device, or component is shown, these illustrative blocks, sub-systems, devices, or components may be multiplied for various applications or different application environments. In addition, the blocks, sub-systems, devices, or components may be further combined into a consolidated unit. Further, while a particular structure or type of block, sub-system, device, or component is shown, this structure is meant to be exemplary and non-limiting, as other structure may be able to be substituted to perform the functions described.
- Exemplary embodiments of the invention relate to grain storage structures or units which have a variety of features.
- the grain storage structures may have independent power sources and rely upon alternative energy sources.
- the structures may provide both long term and short term storage.
- the structures may be fixed or may be mobile.
- the structures may be constructed in a manner that places an economy on its material usage such that the structure is modular and cost effective to manufacture yet provides a high strength to weight ratio.
- the structures may incorporate a variety of security features.
- the structures are of a lower profile than existing structures providing less susceptibility to weather and other environmental hazards, including human hazards.
- the structures may incorporate one or more sensors.
- the sensors may be both internal and external sensors. These sensors may be capable of monitoring a variety of conditions.
- the sensors may monitor temperature, humidity, weight of the contents, gases, access to the structure, power status, and location of the structure.
- the sensors may be configured such that a single sensor monitors a particular condition. Alternatively, a sensor may monitor a plurality of conditions.
- the sensors may be locally and/or remotely monitored.
- the structures may incorporate a ventilation system preventing build-up of a moisture or harmful or dangerous gases.
- the ventilation system may be two-way to both ventilate the structure and be used to admit outside air into the structure to regulate the internal atmospheric conditions of the structure.
- the structures may accommodate grain and/or foodstuffs in a variety of storage conditions.
- the structure may accommodate bulk, bagged, crated, and box storage of grain.
- the structure may also accommodate canned or similarly contained foodstuffs.
- the structure may be configured to USAID standards, capable of storing 1496 MT of one type of grain per module.
- the structure may have multiple such modules.
- the structures may be equipped with dual roll-up doors and access doors positioned on either side of the warehouse to enable first-in-first-out (FIFO) and last-in-first-out (LIFO) circulation of stored contents [0029]
- the structures may further be reconfigurable to other configurations, including but not limited to, refrigerated storage, controlled atmosphere storage, and shelved storage for foodstuffs.
- refrigerated storage controlled atmosphere storage
- shelved storage for foodstuffs may be used for storage of a variety of foodstuffs, such as, for example, produce.
- other material, apart from foodstuffs may be stored therein. It should be appreciated that appropriate modifications may be required to accommodate storage of other materials besides grain.
- Exemplary embodiments include two storage concepts: commercial warehousing that may be fixed, and mobile storage units that may be mobile.
- the commercial warehousing facility may be the larger of the two embodiments. These units may be designed with the intent of providing short and long term centralized storage options for grain and other food stockpiles.
- the design is warehouse-like in appearance and modular in concept. The design is configured to be prefabricated and assembled with minimum effort. Aeration floor panels may be set on top of a formed concrete trench or on top of a flat concrete floor that may serve as the foundation.
- Side panels are fasted to the foundation and to roof panels using internal pin locking hinges, allowing for security and customized scale. Each panel is produced with a number of standard and optional features according to end-user preferences, and then assembled on-site.
- Transparent panels may be placed around the tops of the side walls of the building to allow for sunlight, while reducing the chance of water leakage and improving roof load stability.
- the possible features of these panels and the available additional mechanisms are listed below. These are meant to be exemplary, non-limiting examples as it should be appreciated that other features are possible.
- the mobile storage units are designed with the intent of providing retail sized, transportable, closed containers for use on farms and smaller cooperatives for safe, secure grain and food storage.
- the mobile storage unit may borrow from technologies created for the commercial warehousing facilities, but given its application, is designed to be more economic (and therefore, less sophisticated) in nature. Rectangular in design, this unit may be pod-like in appearance.
- the mobile storage unit may utilize the same rust resistant panel design and internal hinge locking devices to create a rectangular storage unit.
- the unit also may have a raised, hole vented floor. Reflective paint and insulation are also available.
- the unit can be accessed from either a side opening or top hatch, both of which have locking options.
- the unit may also include exhaust vents for passive moisture and warm air venting.
- the unit is mobile, but also can be placed on the ground and be pin secured.
- the unit has wheels that can lock in place in order to prevent theft.
- Trailer hitches may be attached to the unit, which also have lockable casings to prevent theft.
- the unit may have dimensions that allow for cargo-ship and train transportation, or have features that allow them to double as freight containers.
- Mobile storage units may be constructed so as to allow for direct use and integration into the commercial warehousing facilities.
- FIG. 1 A depicts a stationary modular storage apparatus 100 according to an exemplary embodiment of the invention.
- Storage apparatus 100 may comprise a scalable frame 101a (shown in Figure 2).
- the frame may comprise a plurality of beam-like elements.
- the beam-like elements may have a uniform length.
- the beam-like elements may have different lengths, depending on where they are located in the frame.
- the beam-like elements may have a cross-section that resembles an "I" shape.
- the beam-like elements may have a cross-section that resembles a "C" shape.
- Other cross-sectional shapes are contemplated, depending on the design preferences for the stationary modular storage apparatus.
- the frame may be arranged to provide support for side panels 103a and roofing panels 105a.
- the frame may be constructed to a height sufficient to withstand inclement weather conditions.
- the frame may be made of steel.
- the plurality of beam-like elements may be joined using bolts, such as high-strength A325 type bolts.
- the frame may be securely attachable to a foundation.
- the foundation may be concrete, asphalt, or other earthen.
- the foundation may be trenched.
- the foundation may act as a barrier to burrowing vermin.
- the frame may be securely attached to the foundation using anchor bolts 102b (shown in Figure 3).
- the frame may be made of first-run steel. Red-oxide primer may be baked onto the frame.
- the steel may be hot-galvanized and/or zinc protected.
- the frame may conform to American Society for Testing and Materials (ASTM) A529, A572, Al 11, or A1011.
- ASTM American Society for Testing and Materials
- the steel may have a minimum yield strength of 350 MPa.
- the steel may be hot rolled or cold formed.
- Storage apparatus 100 may further comprise a plurality of scalable floor panels 102 (shown in Figure 2). At least one of the floor panels may be aerated. In the stationary embodiment depicted in Figures 1A-1C, the floor panels 102 may be securely attachable to the foundation. The floor panels may be recessed.
- Storage apparatus 100 may further comprise a plurality of scalable side panels 103a.
- the side panels may be securely attachable to each other and/or one or more roofing panels 105a using, for example, internal pin locking hinges.
- the side panels may be securely attachable to the frame 101a using, for example, self-drilling screws.
- the side panels may be ribbed (shown as 103b in Figure 1A).
- the side panels may be recessed.
- the side panels may be treated with insulating material, such as fiberglass, polystyrene, or foam. At least one of the side panels may be made of translucent material to allow for natural lighting.
- At least one of the side panels may include one or more openings, such as a roll-up door 104a (shown in Figure 1C).
- Roll-up door 104a may include a chain hoist.
- the opening may include a pedestrian access door 104b.
- the opening may include a security apparatus 104c, such as a padlock, keypad, motion sensor, or hand scanner, as is well known in the art.
- Figure 2 depicts an interior view of an exemplary embodiment of the stationary modular storage apparatus 100 shown in Figures 1A-1C.
- Figure 2 includes a view of the frame elements 101a and floor panels 102.
- storage apparatus 100 may further comprise a plurality of scalable roofing panels 105a.
- the roofing panels may be securely attachable to each other and/or one or more of the scalable side panels 103a using, for example, internal pin locking hinges.
- the roofing panels may be securely attachable to the frame 101a using, for example, self-drilling screws.
- the roofing panels may be treated with an insulating material, such as fiberglass or foam.
- the roofing panels may be sloped (as shown in Figure 1C). At least one of the roofing panels may include a rain capture feature.
- At least one of the roofing panels may be made of translucent material, as depicted by 105b. The translucent material may act as a skylight to allow natural lighting of the interior of storage apparatus 100.
- Storage apparatus 100 may be assembled using simple wrenches, drills and screw drivers. Storage apparatus 100 may be assembled without the need for welding. Floor panels, side panels, and roofing panels all may be easily loaded onto trucks and transported to the building site where the storage apparatus is assembled.
- Storage apparatus 100 may include one or more racks 206, configured to store items, such as bags of grain.
- the racks 206 may be configured to accommodate bulk, bagged, crated, and/or box storage.
- Figure ID depicts a modular stationary storage apparatus that has been adapted for increased storage using one or more scalable extenders 101c that may be attached to frame 101a at the base where the frame is connected to the ground or the foundation.
- the width and height of the modular storage apparatus depicted in Figure ID has been increased as compared to the modular storage apparatus depicted in Figures 1A-1C.
- Extender 101c is shown in a cutaway view of the front of a modular storage apparatus.
- the scalable extenders 10 lc may be of a sufficient length to allow frame elements 101a to have a uniform length LI, as shown in Figure ID.
- Frame elements 101a are shown on the outside of the modular storage apparatus in Figure ID, but they may be located behind side panels 103a.
- Extenders 101c may be made of the same material as frame 101a. Extenders 101c may be made of steel. The extenders may be joined to the frame or other extenders using bolts, such as high-strength A325 type 1 bolts. The extenders may be securely attachable to the foundation using, for example, anchor bolts. While Figure ID depicts extender 101c connecting frame 101a to the foundation, extenders 101c may additionally or alternatively be placed at other locations along the frame. For example, extender 101c may be connected to frame element 101a at the point where frame element 101a adjoins one or more roofing panels. Extenders 101c may also be securely attachable to side panels, roof panels, and floor panels, using, for example, self-drilling screws.
- Figure IF depicts an exemplary embodiment of extender 101c, from multiple perspectives.
- extender 101c may have a "c-channel” shape.
- C- channel extender 101c is shown with two holes at each end to allow attachment to one or more frame elements 101a.
- the cross-sectional shape of extender 101c may be adapted to conform to the shape of the adjoining frame element 101a, depending on the design needs.
- Figure 1G depicts another exemplary embodiment of extender 101c.
- extender 101c may have an "I" shape, or wide-flange design.
- extender 101c is shown with four holes at each end to allow attachment to one or more frame elements 101a.
- the cross-sectional shape of extender 101c may be adapted to conform to the shape of the adjoining frame element 101a, depending on the design needs.
- the term "scalable" is defined to include the concept that the size of an element may be increased or decreased, depending on the design requirements for the modular storage apparatus.
- the scalable frame elements and/or panels may be manufactured to a certain size to meet design requirements of the modular storage apparatus.
- the scalable frame elements and/or panels may be configured such that the size may be altered during the assembly process of the modular storage apparatus.
- the height, width, and/or length of a modular storage apparatus may be adjusted using one or more extenders.
- An extender may be attached to a frame element to increase the length of the frame element. This allows the frame elements to be scaled to provide a desired framework for different sized floor panels, roofing panels, and/or side panels.
- the scalable frame elements and/or panels may also be designed to be interchangeable.
- At least a portion of the modular storage apparatus shown in Figure ID may rest on an elevated base lOld.
- the elevated platform lOld may be made of masonry or reinforced concrete.
- the frame elements 101a may be connected using one or more cable elements 101b.
- Cable elements 101b may act as a brace for frame 101a.
- the exemplary stationary storage apparatus depicted in Figures 1A-1C and Figure 2 may be 40 meters long, 15 meters wide, and 5 meters tall when fully assembled.
- the combination of the frame 101a and the roofing panels 105a may have live load capacity of 600 N/m .
- the frame 101a and roofing panels 105a may have a snow load capacity of 200 N/m .
- the combination of the frame 101a, side panels 103a, and roofing panels 105a may be able to resist a wind load of up to 150 km/hr. Because the roofing panels, floor panels, and side panels are modular and scalable, other dimensions are possible.
- a storage apparatus that is 40m x 15m x 5m has a gross volume of 3,000 m 3 .
- Storage apparatus having exemplary dimensions of 40m x 15m x 5m may hold 1,800 MT of wheat.
- the floor panels 102, side panels 103a, and roofing panels 105a may be made of a durable material.
- the material may be steel, such as 26 gauge steel that is hot rolled or cold formed.
- the steel may have a 350 MPa yield standard.
- the panels may be coated with a rust-resistant material.
- the floor panels, roofing panels, and side panels may be treated with a coating on either side to prevent deterioration.
- the floor panels, roofing panels, and side panels may be treated with a solar reflective substrate, such as paint or enamel.
- the floor panels, roofing panels, and side panels may be treated with flame-retardant materials.
- the storage apparatus 100 having exemplary dimensions of 40m x 15m x 5m uses significantly less steel than conventional storage structures.
- An assembled storage apparatus according to the present invention may be only 35% of the weight of a conventional structure.
- the materials needed to construct the exemplary embodiment described above may cost 50% less than those used to build a conventional storage structure.
- Stationary storage apparatus 100 may include one or more power generation devices or systems.
- the power generation devices or systems may include, without limitation, solar panels, wind turbines, and/or fuel-powered generators.
- the solar panels may be integrated with one or more of the roofing panels 105a.
- the solar panels may be attached to the one or more roofing panels using a mount racking system, as is well known in the art.
- Storage apparatus 100 may be configured to connect to traditional power grids via power lines.
- Storage apparatus 100 may be powered by one or more diesel generators.
- Storage apparatus 100 may include one or more interior lights and/or exterior lights. The lights may be attached to one or more roofing panels and/or one or more side panels.
- Storage apparatus 100 may be adapted to include one or more office space kits (not shown).
- An exemplary office space kit may be 8m x 6m to accommodate 600 kg/m 2 of load.
- the office space kit may comprise one or more wall units, doors, and windows.
- the office space kit may be made of 26 gauge steel panels.
- Storage apparatus 100 may be adapted to include one or more partition walls 103c (depicted in Figure 7).
- Partition walls 103c may be configured for applications in dry goods storage, refrigerated storage, and/or controlled atmosphere storage.
- One or more partition walls may be used to separate different types of stored goods.
- the one or more partition walls may be made of 26 gauge Galvalume steel.
- the storage apparatus described in the present invention may also be adapted to store perishable goods, such as fruit and vegetables.
- Figure 3 depicts a stationary storage apparatus 300 adapted for refrigerated storage that includes one or more refrigeration units 310.
- Stationary storage apparatus 300 may include all of the components of stationary storage apparatus 100 as depicted in Figures 1A-1E and Figure 2. Refrigeration unit 310 may be adapted for storing perishable goods. As will be understood by those skilled in the art, storage apparatus 300 may be compartmentalized to allow storage of both dry goods and perishable goods, as depicted in Figure 3.
- Figure 7 depicts a stationary storage apparatus 700 adapted for controlled atmosphere storage.
- Controlled atmosphere storage refers to the monitoring and adjustment of oxygen (0 2 ) and carbon dioxide (C0 2 ) levels within a storage apparatus. As stored perishables respire due to metabolic activity, the levels of oxygen and carbon dioxide inside storage apparatus 700 will change. Controlled atmosphere storage may allow storage apparatus 700 to reduce the respiration rate of stored fruits and vegetables by 50% compared to refrigerated storage at the same temperature.
- Storage apparatus 700 may be adapted with one or more devices that may alter the levels of carbon dioxide and oxygen inside the storage apparatus.
- Storage apparatus 700 may be adapted to include one or more scrubbers 710 to remove excess carbon dioxide.
- a scrubber may be, for example, a lime room adapted to absorb excess carbon dioxide.
- Storage apparatus 700 may be adapted to include ventilation units to add oxygen.
- Storage apparatus 700 may include one or more nitrogen displacement units to reduce oxygen levels inside storage apparatus 700.
- Storage apparatus 700 may include one or more nitrogen storage tanks and/or air compressors.
- Storage apparatus 700 may include sealing materials 707 to create gas-tight storage.
- the joints between side panels, floor panels, and roof panels may be fitted with gas-tight tape or painted with flexible plastic paint.
- One or more side panels may be adapted to include a pressure/vacuum relief valve to maintain a desired pressure level inside the storage apparatus.
- side panels 103a may be treated with sealing material 307 or 707 to seal gaps between the side panels and the foundation.
- the sealing material may be, for example, caulk or foam strips.
- the sealing material may prevent essential gases from seeping out of the storage apparatus to aid in the preservation of perishable goods.
- FIG. 4-5 depict a stationary storage apparatus 400 that has been adapted for dry storage of grains, such as wheat, rice, corn, textile products and/or animal feed.
- Stationary storage apparatus 400 may include all the features of storage apparatus 100, as depicted in Figures 1A-1C and Figure 2.
- Storage apparatus 400 may include one or more conveyer systems (not shown).
- a conveyer may be attached to frame 101a.
- the conveyer may be configured to efficiently load and unload stored grain.
- Stationary storage apparatus 400 may include one or more sensors 408a.
- the sensors 408a may be humidity sensors. Humidity sensors may be configured to detect atmospheric moisture within a storage unit.
- the sensors 408a may be gas sensors. Gas sensors used in controlled atmosphere storages may be configured to detect the levels of gases within storage apparatus 400. Gas sensors 408a may also be configured to monitor humidity levels.
- Stationary storage apparatus 400 may include one or more temperature and or/moisture monitors 408b. Temperature monitors may include one or more thermostats. Moisture levels and temperature affect grain deterioration. Temperature and gas monitors help detect grain temperature that may lead to mold growth, spoilage, sprouting, and insect infestation.
- Stationary storage apparatus 400 may also include one or more ventilation systems. Ventilation systems may be configured to work in tandem with gas, humidity and temperature sensors to aerate the interior of storage apparatus 400 and prevent the buildup of harmful gases and/or moisture levels. Ventilation systems may be a combination of passive and mechanical venting devices.
- a passive ventilation device may include one or more louvres 409a, or ridge vents. The ridge vents 409a may be included in the side panels 103a.
- a mechanical ventilation device may include one or more fans 409b.
- Temperature sensors 408b, gas sensors 408a, and ventilation systems may also be included in the refrigerated modular storage apparatus 300 and the controlled atmosphere modular storage apparatus 700.
- Monitoring devices in modular storage apparatus 300, 400, and/or 700 may be electronically connected to a network- enabled computer system for automated food storage monitoring and control ("the monitoring and control system").
- the monitoring devices may gather monitoring data and relay the data to the monitoring and control system, which may be located on-site, or remotely connected to the monitoring devices via one or more networks.
- the monitoring and control system may be configured to analyze the monitoring data to determine if one or more of the temperature levels, gas levels, and humidity levels have exceeded a threshold level. If a threshold level is exceeded, the monitoring and control system may display an alert to one or more users.
- the monitoring and control system may also be operably connected to the ventilation system to allow a user to activate one or more ventilation devices in response to the alert.
- the monitoring and control system may also be configured to automatically activate one or more ventilation devices to in response to an alert. Activating the ventilation system may involve expelling excess gases from the storage apparatus.
- Monitoring devices in refrigerated storage apparatus 300 and controlled atmosphere storage apparatus 700 may be connected to the monitoring and control system described above.
- the system may be configured to activate controlled atmosphere storage devices in response to certain levels of oxygen and/or carbon dioxide that are detected by the monitoring devices. For example, if a threshold level of carbon dioxide is exceeded inside storage apparatus 700, the monitoring and control system may automatically activate one or more scrubbers to reduce the carbon dioxide levels inside storage apparatus 700 to an acceptable level that maximizes preservation of perishables, such as fruit and vegetables.
- Grain storage apparatus 400 refrigerated storage apparatus 300, controlled
- atmosphere storage apparatus 700, and storage apparatus 100 may include one or more security devices, such as camera 407a (shown in Figure 4). Other security devices may include alarms and/or motions sensors.
- the one or more security devices may be connected to the network-enabled computer system. The security devices may alert the monitoring and control system when the storage apparatus has been breached or compromised. The alert may be an alarm. Security devices, such as surveillance cameras, may also be placed on the exterior of storage apparatus 400.
- Other security devices may include one or more magnetic tags that may be attached to bags of grain or storage containers.
- the tags may be configured to trigger an alarm if they are improperly removed from the storage apparatus.
- Bags of grain or perishable goods may be affixed with Universal Product Code (UPC) computerized bar code labels for documenting time of entry into and exit from storage apparatus 400.
- UPC Universal Product Code
- a network-enabled computer system and/or device may include, but is not limited to: any computer device, or communications device including, e.g. , a server, a network appliance, a personal computer (PC), a workstation, a mobile device, a phone, a smartphone, a handheld PC, a personal digital assistant (PDA), a thin client, a fat client, an Internet browser, or other device.
- the network- enabled computer systems may execute one or more software applications to, for example, receive data as input from an entity accessing the network-enabled computer system, process received data, transmit data over a network, and receive data over a network.
- a network may be one or more of a wireless network, a wired network or any combination of wireless network and wired network.
- the network may include one or more of a fiber optics network, a passive optical network, a cable network, an Internet network, a satellite network, a wireless LAN, a Global System for Mobile Communication (“GSM”), a Personal Communication Service (“PCS”), a Personal Area Network (“PAN”), D-AMPS, Wi-Fi, Fixed Wireless Data, IEEE 802.11b, 802.15.1, 802.11 ⁇ and 802. l lg or any other wired or wireless network for transmitting and receiving a data signal.
- GSM Global System for Mobile Communication
- PCS Personal Communication Service
- PAN Personal Area Network
- D-AMPS D-AMPS
- Wi-Fi Fixed Wireless Data
- IEEE 802.11b 802.15.1
- 802.11 ⁇ and 802. l lg any other wired or wireless network for transmitting and receiving a data signal.
- FIG. 5 depicts a view of grain storage apparatus 400 (roofing panels 105a not shown) that includes bulk grain 515.
- the grain may be stored on palleted stacks.
- the grain may be stored on racks.
- the grain may be stored in bags.
- Storage apparatus 100, 300, 400, and/or 700 may include one or more conveyor systems for loading and unloading stored materials.
- the conveyor system may be portable or it may be permanently affixed to the frame.
- Storage apparatus 100, 300, 400, and/or 700 may include one or more dividers for storing different types of grain.
- Storage apparatus 100, 300, 400, and/or 700 may include one or more hydraulic docks lifts.
- the method 600 may fasten the roofing panels and side panels to each other.
- the scalable panels may be securely attached to each other using, for example, internal pin locking hinges.
- FIG. 8 depicts an exemplary embodiment of a mobile modular storage apparatus 800.
- Mobile storage apparatus 800 may comprise a scalable frame 801.
- the frame may comprise a plurality of beam-like elements.
- the mobile storage apparatus may comprise a plurality of scalable floor panels 802, securely attachable to the frame.
- At least one of the floor panels may be aerated.
- the floor panels may be recessed.
- At least one of the floor panels may be securely attachable to one or more wheels 806.
- the wheels may be lockable to prevent theft.
- the wheels 806 may be detachable from the floor panels.
- the floor panels may be raised.
- the floor panels may include at least one false bottom discharge 808.
- At least one of the side panels may include one or more openings, such as a cargo door 804.
- the opening may include a security apparatus, such as a padlock, keypad, motion sensor, or hand scanner, as is well known in the art.
- Mobile storage apparatus 800 may further comprise a plurality of scalable roofing panels 805a.
- the roofing panels may be securely attachable to each other and/or one or more of the scalable side panels 803a using, for example, internal pin locking hinges.
- the roofing panels may be securely attachable to the frame.
- the roofing panels may be treated with an insulating material, such as fiberglass or foam.
- the roofing panels may include one or more openings, such as a roof-access door, a hatched opening, or a hopper inlet 805b.
- Mobile storage apparatus 800 may also include one or more exhaust units 809, such as passive vents or active fans for moisture and warm air venting.
- Mobile storage apparatus may be configured for refrigerated storage using one or more refrigeration units 810a.
- the refrigeration units 810a may be installed on the side of the mobile storage unit.
- the refrigeration units may be detachable.
- Mobile storage apparatus may include one or more detachable dryers 810b.
- the mobile storage apparatus may include an attached trailer hitch 811, which may have lockable casings to prevent theft.
- Trailer hitch 811 may be detachable.
- the mobile storage apparatus may have dimensions that allow for cargo-ship and train transportation, or have features that allow them to double as freight containers.
- Mobile storage units may be constructed so as to allow for direct use and integration into a larger, stationary storage apparatus.
- Mobile storage apparatus 800 may be assembled using simple wrenches, drills and screw drivers. Mobile storage apparatus 800 may be assembled without the need for welding. Floor panels, side panels, and roofing panels all may be easily loaded onto trucks and transported to the building site where the storage apparatus is assembled.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Storage Of Harvested Produce (AREA)
Abstract
L'invention porte sur un appareil de stockage d'aliments modulaire pour stocker des produits secs et/ou des produits périssables. L'appareil de stockage d'aliments peut être fixe ou mobile. L'appareil comprend un bâti pouvant être changé de taille. Une pluralité de panneaux latéraux pouvant être changés de taille sont fermement fixés au bâti. Une pluralité de panneaux de toiture pouvant être changés de taille sont fermement fixés au bâti et aux panneaux latéraux. L'appareil de stockage d'aliments peut être stationnaire et fixé à une fondation en béton. L'appareil peut être modifié avec des dispositifs de contrôle et des dispositifs d'évacuation pour le stockage de produits secs. L'appareil peut être modifié pour le stockage de produits périssables à l'aide d'une réfrigération ou d'un environnement à atmosphère régulée.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/343,576 US20140230346A1 (en) | 2011-09-09 | 2012-09-06 | Apparatus and System for Grain Storage |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161532779P | 2011-09-09 | 2011-09-09 | |
US61/532,779 | 2011-09-09 | ||
US201261608424P | 2012-03-08 | 2012-03-08 | |
US61/608,424 | 2012-03-08 | ||
US201261636216P | 2012-04-20 | 2012-04-20 | |
US61/636,216 | 2012-04-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013036591A1 true WO2013036591A1 (fr) | 2013-03-14 |
Family
ID=47832542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/053894 WO2013036591A1 (fr) | 2011-09-09 | 2012-09-06 | Appareil et système pour stockage de grains |
Country Status (2)
Country | Link |
---|---|
US (1) | US20140230346A1 (fr) |
WO (1) | WO2013036591A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112040785A (zh) * | 2018-05-07 | 2020-12-04 | 开利公司 | 货运集装箱的气氛控制 |
WO2021146372A1 (fr) * | 2020-01-14 | 2021-07-22 | Pulse Grids, Llc | Abri à énergie solaire pour produire et stocker de l'énergie et/ou de l'eau |
AU2022100124B4 (en) * | 2021-08-25 | 2023-05-11 | Wazza Investments Pty Ltd | A shed |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2852538C (fr) * | 2013-05-20 | 2020-09-15 | Rush Company, Inc. | Systeme de rideau retractable |
GB2565127A (en) * | 2017-08-03 | 2019-02-06 | Thermo King Corp | Atmosphere control for cargo storage spaces |
KR20200051253A (ko) | 2018-11-05 | 2020-05-13 | 삼성전자주식회사 | 가전 기기 및 그 제어 방법 |
US10900228B2 (en) * | 2018-11-06 | 2021-01-26 | Ntt Ltd Japan Corporation | Data center |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US785521A (en) * | 1903-05-08 | 1905-03-21 | Robert Cornelius Roach | Storehouse for grain or the like. |
US3172740A (en) * | 1965-03-09 | Portable horizontal silo and feed dryer | ||
US3927498A (en) * | 1972-12-08 | 1975-12-23 | Sylvette Kirnisky | Device for building construction |
US4074482A (en) * | 1976-01-09 | 1978-02-21 | Klahr Carl N | Radiation reflecting building |
US4306490A (en) * | 1979-09-24 | 1981-12-22 | Continental Agri-Services, Inc. | Fan mount for grain drying and storage bin |
US5896718A (en) * | 1996-11-25 | 1999-04-27 | Westgarth; Peter | Collapsible panel and modular enclosure and partition system |
US5966956A (en) * | 1996-11-20 | 1999-10-19 | Shelter Technologies, Inc. | Portable refrigerated storage unit |
US5971494A (en) * | 1996-06-27 | 1999-10-26 | Farris; Gary C. | Dual use trailer with hopper bottom |
US6862847B2 (en) * | 1997-07-02 | 2005-03-08 | William H. Bigelow | Force-resistant portable building |
US7135035B1 (en) * | 2003-05-27 | 2006-11-14 | Dimmick Walter F | Thermodynamic resonance enclosure |
US7243857B2 (en) * | 2001-08-10 | 2007-07-17 | Cerys Systems Inc. | Grain aeration systems and techniques |
US7581357B2 (en) * | 2005-08-30 | 2009-09-01 | Suncast Corporation | Plastic expandable utility shed |
US20110047891A1 (en) * | 2009-07-28 | 2011-03-03 | Andretich Micah F | Sustainable, mobile, expandable structure |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1981417A (en) * | 1932-10-10 | 1934-11-20 | James Mfg Co | Method and apparatus for storing and dispensing feed |
US3556055A (en) * | 1969-03-21 | 1971-01-19 | Caleb M Wenger | Building for animals |
US4245828A (en) * | 1978-05-08 | 1981-01-20 | Blackhawk Systems, Inc. | Apparatus for fabrication of metal buildings |
WO1984002254A1 (fr) * | 1982-12-08 | 1984-06-21 | Joseph Charles Bugeja | Structure de logement pour animaux |
US4726154A (en) * | 1985-12-02 | 1988-02-23 | Port-A-Stall | Animal housing system |
US4841693A (en) * | 1988-07-26 | 1989-06-27 | Unr, Inc. | Particulate material storage structure |
CA2025676C (fr) * | 1990-06-18 | 1993-06-29 | Daniel B. Hansen | Enveloppe thermodynamique pour dispositif d'entreposage d'aliments |
US5713172A (en) * | 1995-11-03 | 1998-02-03 | Tegland; Howard Lynn | Storage floor air vent and method of its use |
US5789007A (en) * | 1996-04-24 | 1998-08-04 | Cool Care, Ltd. | Method and apparatus for controlled ripening of fresh produce |
US6336299B1 (en) * | 2000-08-21 | 2002-01-08 | Steven D. Wixom | Food storage building floor and method of constructing the same |
-
2012
- 2012-09-06 US US14/343,576 patent/US20140230346A1/en not_active Abandoned
- 2012-09-06 WO PCT/US2012/053894 patent/WO2013036591A1/fr active Application Filing
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3172740A (en) * | 1965-03-09 | Portable horizontal silo and feed dryer | ||
US785521A (en) * | 1903-05-08 | 1905-03-21 | Robert Cornelius Roach | Storehouse for grain or the like. |
US3927498A (en) * | 1972-12-08 | 1975-12-23 | Sylvette Kirnisky | Device for building construction |
US4074482A (en) * | 1976-01-09 | 1978-02-21 | Klahr Carl N | Radiation reflecting building |
US4306490A (en) * | 1979-09-24 | 1981-12-22 | Continental Agri-Services, Inc. | Fan mount for grain drying and storage bin |
US5971494A (en) * | 1996-06-27 | 1999-10-26 | Farris; Gary C. | Dual use trailer with hopper bottom |
US5966956A (en) * | 1996-11-20 | 1999-10-19 | Shelter Technologies, Inc. | Portable refrigerated storage unit |
US5896718A (en) * | 1996-11-25 | 1999-04-27 | Westgarth; Peter | Collapsible panel and modular enclosure and partition system |
US6862847B2 (en) * | 1997-07-02 | 2005-03-08 | William H. Bigelow | Force-resistant portable building |
US7243857B2 (en) * | 2001-08-10 | 2007-07-17 | Cerys Systems Inc. | Grain aeration systems and techniques |
US7135035B1 (en) * | 2003-05-27 | 2006-11-14 | Dimmick Walter F | Thermodynamic resonance enclosure |
US7581357B2 (en) * | 2005-08-30 | 2009-09-01 | Suncast Corporation | Plastic expandable utility shed |
US20110047891A1 (en) * | 2009-07-28 | 2011-03-03 | Andretich Micah F | Sustainable, mobile, expandable structure |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112040785A (zh) * | 2018-05-07 | 2020-12-04 | 开利公司 | 货运集装箱的气氛控制 |
WO2021146372A1 (fr) * | 2020-01-14 | 2021-07-22 | Pulse Grids, Llc | Abri à énergie solaire pour produire et stocker de l'énergie et/ou de l'eau |
AU2022100124B4 (en) * | 2021-08-25 | 2023-05-11 | Wazza Investments Pty Ltd | A shed |
AU2021221824B2 (en) * | 2021-08-25 | 2024-04-18 | Wazza Investments Pty Ltd | A shed |
Also Published As
Publication number | Publication date |
---|---|
US20140230346A1 (en) | 2014-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140230346A1 (en) | Apparatus and System for Grain Storage | |
US20200401999A1 (en) | Package Receiving Station | |
US8484929B1 (en) | Construction of modular underground storage facilities | |
EP3119704B1 (fr) | Unité mobile évolutive permettant un stockage et une distribution régulés d'un produit | |
US10633877B2 (en) | System and method of manufacturing transportable buildings | |
US5724774A (en) | Modular building assembly and method of assembling the same | |
EP2256065A1 (fr) | Récipient de transport à isolation thermique | |
US20090293524A1 (en) | Method and Apparatus for Protecting Temperature Sensitive Products | |
CN105848533A (zh) | 用于无人机递送的着陆垫 | |
US11326829B2 (en) | Portable refrigerated cabinet | |
US8978319B2 (en) | System and method for modular housing | |
EP3685490A1 (fr) | Appareil de production d'électricité | |
US11655098B2 (en) | Multipurpose relocatable structure and lifting systems and methods | |
EP0742886B1 (fr) | Systeme de transport refrigere de palettes | |
RU84421U1 (ru) | Сборно-разборное утепленное сооружение | |
CN112208957A (zh) | 一种带有自发电装置的成品粮智能储运一体化集装箱 | |
US9622575B2 (en) | Storage cabinet having a locking bar and method for securing the same | |
US20070245676A1 (en) | Easily deployable and quick-to-assemble housing unit and method of transporting and assembling same | |
CA3202740A1 (fr) | Systeme logistique modulaire | |
WO2011003414A1 (fr) | Conteneur logistique, tel qu'un conteneur d'expédition, et procédé pour charger et décharger celui-ci | |
KR102128516B1 (ko) | 이동식 저온저장고 | |
CN208294166U (zh) | 一种谷果蔬储藏库 | |
EP2428463A1 (fr) | Récipient réfrigéré | |
US20130233755A1 (en) | Transportation shipping container | |
US20180282995A1 (en) | Dock housing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12830537 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14343576 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12830537 Country of ref document: EP Kind code of ref document: A1 |