WO2013036012A2 - 복합 냉동기 - Google Patents

복합 냉동기 Download PDF

Info

Publication number
WO2013036012A2
WO2013036012A2 PCT/KR2012/007071 KR2012007071W WO2013036012A2 WO 2013036012 A2 WO2013036012 A2 WO 2013036012A2 KR 2012007071 W KR2012007071 W KR 2012007071W WO 2013036012 A2 WO2013036012 A2 WO 2013036012A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
condenser
conduit
cooling water
Prior art date
Application number
PCT/KR2012/007071
Other languages
English (en)
French (fr)
Other versions
WO2013036012A3 (ko
Inventor
진주환
Original Assignee
Jin Ju-Hwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jin Ju-Hwan filed Critical Jin Ju-Hwan
Publication of WO2013036012A2 publication Critical patent/WO2013036012A2/ko
Publication of WO2013036012A3 publication Critical patent/WO2013036012A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B33/00Boilers; Analysers; Rectifiers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant

Definitions

  • the present invention relates to a complex refrigerator, and more particularly, to an improvement in performance and energy saving of a combined refrigerator combining an absorption chiller and a vapor compression refrigerator.
  • a refrigerator is classified into an absorption refrigerator and a vapor compression refrigerator, and the absorption refrigerator requires separate energy by using steam or liquefied natural gas as a heat source of the regenerator, and in particular, when steam is used as a heat source.
  • the steam boiler must be installed, so if the steam boiler is installed separately, the structure is complicated and the equipment cost is high.
  • waste heat recovery is not good, there is a problem in terms of energy use is unreasonable and low grade coefficient.
  • Patent document 1 discloses a refrigerator used as a heat source of the refrigerator.
  • the refrigerator of Patent Document 1 includes a regenerator for evaporating refrigerant vapor, a condenser for condensing refrigerant vapor evaporated in the regenerator, and an evaporator for cooling brine (cold water) by spraying refrigerant liquid condensed in the condenser on an evaporation heat exchanger.
  • An absorption chiller comprising an absorber configured to absorb refrigerant vapor vaporized from the evaporator; And a compressor, a condenser, an expansion valve, and a vapor compression refrigerator in which condensers are connected in sequence with a conduit.
  • the condenser of the vapor compression refrigerator is installed in a regenerator to condense the high temperature / high pressure refrigerant vapor compressed by the compressor.
  • the coefficient of performance of the absorption refrigerator is increased and energy can be saved.
  • the steam compression refrigerator of Patent Document 1 has the advantage of increasing the coefficient of performance of the absorption refrigerator and saving energy by using the condensation heat of the condenser as a heat source of the absorption refrigerator, but condensing the refrigerant vapor of the absorption refrigerator.
  • it is necessary to dispose of the heat of the cooling water for cooling the medium concentration solution, and to improve the efficiency of the evaporative heat exchanger and the vapor compression freezer installed in the evaporator of the absorption chiller when the absorption chiller and the steam compression chiller are operated simultaneously. Since the cold water supply pipe and the cold water discharge pipe of the evaporator are separately formed, the cold water supply and discharge piping structures of the evaporator heat exchanger and the evaporator have complicated problems.
  • the present invention has completed the present invention by a lot of research and development for the above improvements and problems.
  • Another object of the present invention is to provide a combined refrigerator to generate a heating fluid and a cooling fluid at the same time during operation of the steam compression freezer only.
  • the present invention provides a condenser (13) having a regenerator (11) for evaporating refrigerant vapor, a coolant pipe (14 ') for condensing the refrigerant vapor evaporated from the regenerator (11),
  • the evaporator 15 for spraying the refrigerant liquid condensed in the condenser 13 to the evaporation heat exchanger 16 to cool the cold water, and the refrigerant water vaporized in the evaporator 15 to absorb the cooling water pipe 14
  • An absorption chiller (10) comprising an absorber (17) provided and condensing means (18) connecting the cooling water pipes (14) and (14 ') to the cooling water circulation conduit (20); And a compressor (41), a condenser (42), a receiver (43), an expansion valve (44), and a vapor compression refrigerator (40) in which the evaporator (45) is connected in sequence to the refrigerant conduit (46).
  • the condenser 42 is installed in the regenerator 11, a second condenser 47 is installed between the condenser 42 and the receiver 43 of the refrigerant conduit 46, and the cooling water circulation conduit 20 is provided.
  • the heat-exchanging heat exchanger 52 is installed in the cooling water circulation bypass conduit 51 by connecting the cooling water circulation bypass conduit 51 to the cooling water pipe 14 'outlet and the inlet of the cooling water pipe 14.
  • a second refrigerant conduit 53 having a second expansion valve 54 connected between the gas 43 and the suction portion of the compressor 41 of the refrigerant conduit 46 to the second refrigerant conduit 53.
  • An endothermic heat exchanger 55 is installed to maintain a heat exchange relationship with the heat dissipation heat exchanger 52, and a cold water heat exchanger 56 is installed in the evaporator 45 to exchange heat with the cold water heat exchanger 56.
  • the hayeoseo will connect the cold water circulation conduit 58 to a cold water supply pipe (57a) and a cold water discharge pipe (57b) of 16.
  • the present invention is a condenser (13) provided with a regenerator (11) for evaporating refrigerant vapor, a coolant pipe (14 ') for condensing the refrigerant vapor evaporated from the regenerator (11), and condensation in the condenser (13)
  • the evaporator 15 for spraying the coolant liquid to the evaporation heat exchanger 16 to cool the cold water, the absorber 17 for absorbing the refrigerant vapor vaporized in the evaporator 15 and installing the cooling water pipe 14;
  • An absorption chiller (10) consisting of condensation means (18) connecting the cooling water pipes (14, 14 ') to the cooling water circulation conduit (20); And a compressor (41), a condenser (42), a receiver (43), an expansion valve (44), and a vapor compression refrigerator (40) connecting the evaporator (45) with a refrigerant conduit (46).
  • cooling water circulation bypass conduit 51 is connected to the cooling water pipe 14 'outlet of the cooling water circulation conduit 20 and the inlet of the cooling water pipe 14 to circulate the cooling water.
  • the heat dissipation heat exchanger 52 is installed in the bypass conduit 51, and the second expansion valve 54 is provided between the receiver 43 and the suction part of the compressor 41 of the refrigerant conduit 46.
  • a cold water circulation conduit 58 is connected to the cold water supply pipe 57a and the cold water discharge pipe 57b of the cold water heat exchanger 56 and the evaporative heat exchanger 16, and the condenser
  • a second condenser 47 is installed between the receiver 42 and the receiver 43 so that the heat exchanger 48 for heating is maintained in the second condenser 47 so as to maintain a heat exchange relationship.
  • the cooling means 70 is connected between the suction portions of the compressor 41 of the refrigerant conduit 46.
  • the present invention includes an absorption chiller and a vapor compression chiller, and installs a condenser of the vapor compression chiller in a regenerator of the absorption chiller, and simultaneously operates both chillers to heat the condensation of the condenser as a heat source of the absorption chiller.
  • the present invention improves the performance (grade factor) and improves the reliability of the compressor by improving the evaporation of the refrigerant liquid of the vapor compression freezer by utilizing the waste heat of the cooling water which has been conventionally disposed.
  • the cold water heat exchanger installed in the evaporator is connected to the cold water supply pipe and the cold water discharge pipe by a cold water circulation conduit to simplify the cold water supply and discharge piping structure, thereby reducing the installation cost.
  • the present invention is to improve the convenience by adding a heating means and a cooling means to the steam compression freezer to generate a heating fluid and a cooling fluid at the same time when operating only the steam compression freezer.
  • FIG. 1 is a configuration diagram of a first embodiment of the present invention
  • FIG. 2 is a block diagram of a second embodiment of the present invention.
  • a first embodiment of the present invention includes an absorption chiller 10 and a vapor compression refrigerator 40, and the absorption chiller 10 evaporates refrigerant vapor.
  • a regenerator (generator) 11 to be installed a condenser 13 provided with a cooling water pipe 14 ', an evaporator 15 provided with a heat exchanger 16 for evaporation, and an absorber 17 provided with a cooling water pipe 14.
  • the refrigerant vapor is evaporated by a heat source in the regenerator 11, the refrigerant vapor is supplied to the condenser 13, the cooling water cooled in the cooling tower 19 is supplied to the cooling water pipe 14 ′, and condensed.
  • the evaporator 15 is introduced into the evaporator 15 through the evaporator 15, and the evaporation heat exchanger 16 is installed in the evaporator 15 by the refrigerant pump 22 via the conduit 26 via the refrigerant spray device 27.
  • the refrigerant vapor evaporated in the evaporator 15 is introduced into the absorber 17 and the intermediate concentration solution is sprayed from the regenerator 11 through the conduit 28 through the solution heat exchanger 21 via the gas sprayer 29.
  • the solution is cooled by the cooling water supplied to the cooling water pipe 14 as the temperature is increased by the latent heat of the refrigerant vapor.
  • the solution of the dilute concentration absorbing the refrigerant vapor is supplied to the regenerator 11 through the conduit 30 by the solution pump 23, the solution spraying device 29 in the regenerator 11 in the solution heat exchanger 21 It is preheated by the concentrated solution sprayed on, and then enters the regenerator 11 to form a cycle of reheating.
  • the above technical means is well known.
  • the steam compression refrigerator (40) is provided with a compressor (41), a condenser (42), a receiver (43), an expansion valve (44), an evaporator (45), and the like, and the refrigerant conduit (46).
  • a compressor 41
  • a condenser 42
  • a receiver 43
  • an expansion valve 44
  • an evaporator 45
  • the refrigerant conduit 46
  • the high temperature and high pressure refrigerant liquid is expanded by the expansion valve 44 to become a low temperature and low pressure refrigerant liquid, and then evaporated in the evaporator 45 to be sucked into the compressor 41 to form a cycle.
  • the high-temperature / high-pressure refrigerant vapor compressed by the compressor 41 passes through the condenser 42 built in the regenerator 11 and heat-exchanges with a dilute concentration solution in the regenerator 11.
  • the refrigerant vapor of high pressure condenses and at the same time a solution of dilute concentration is heated by the heat of condensation to evaporate the refrigerant vapor, that is, the heat of condensation of the refrigerant vapor of high temperature and high pressure condensed in the condenser 42 of the vapor compression refrigerator 40. It is to be used as a heat source of the absorption chiller (10).
  • a second condenser 47 is installed between the condenser 42 and the receiver 43 of the refrigerant conduit 46, and the heat exchanger for heating is provided in the second condenser 47.
  • the condenser 42 has a high temperature and high pressure due to a decrease in the load of the absorption chiller 10 or a high outside air temperature.
  • the first embodiment of the present invention is provided with a bypass conduit 49 between the inlet and the outlet of the condenser 42 of the refrigerant conduit 46, the inlet side of the condenser 42 and the bypass conduit 49
  • the valves 49a and 49b are provided at the same time to open the valve 49a and close the valve 49b during simultaneous operation of the absorption chiller 10 and the vapor compression refrigerator 40.
  • the first embodiment of the present invention connects the cooling water circulation bypass conduit 51 to the cooling water pipe 14 'outlet of the cooling water circulation conduit 20 and the inlet of the cooling water pipe 14 to the cooling water circulation bypass conduit.
  • a second refrigerant conduit provided with a heat dissipation heat exchanger 52 at 51 and a second expansion valve 54 provided between the receiver 43 and the suction portion of the compressor 41 of the refrigerant conduit 46;
  • An endothermic heat exchanger (evaporator) 55 is connected to the second refrigerant conduit 53 to maintain a heat exchange relationship with the heat dissipation heat exchanger 52, thereby condensing the refrigerant vapor in the condenser 13.
  • the evaporation of the liquid was made favorable.
  • the first embodiment of the present invention is provided with a cold water heat exchanger 56 between the side of the evaporator 45 or between the heat transfer tubes of the evaporator 45, the cold water heat exchanger 56 and the evaporation heat exchanger
  • Cold water to be supplied to the cold water supply pipe (57a) by connecting the cold water circulation conduit (58) to the cold water (cold water to be cooled) supply pipe (57a) and cold water (cooled) discharge pipe (57b) of the (16) °C) is supplied together to the evaporation heat exchanger 16 and the cold water heat exchanger 56 at the same time to produce the cold water (typically 7 °C) and then joined in the cold water discharge pipe (57b) for use in the necessary applications
  • the cold water supply pipe 57a, the cold water discharge pipe 57b, and the cold water heat exchanger 56 are connected to the cold water circulation conduit 58, the cold water supply and discharge pipe structure can be simplified.
  • the regenerator 11 is connected to the outlet side of the condenser 42 of the refrigerant conduit 46 by the solution pump 23 in the absorber 17 via the solution heat exchanger 18.
  • the coefficient of absorption of the absorption type refrigerator 10 is increased and the refrigerant liquid is supercooled.
  • the coefficient of performance of the food refrigerator 40 is also increased.
  • Reference numerals 61a and 61b are valves installed in the cooling water circulation bypass conduit 51 and the cooling water circulation conduit 20, and selectively open and close when using waste heat retained by the cooling water and when not in use, and 62a and 62b are cold water supply pipes.
  • the valves provided at 57a and the cold water circulation conduit 58 are opened when the absorption chiller 10 and the vapor compression refrigerator 40 are operated at the same time.
  • reference numeral 63 denotes a valve installed at the outlet of the receiver 43 of the second refrigerant conduit 53, and opens and closes with a valve 61a provided at the cooling water circulation bypass conduit 51, where 64 is a refrigerant.
  • the valve is provided on the outlet side of the receiver 43 of the conduit 46.
  • each of the freezing capacity of the absorption type refrigerator 10 and the vapor compression type refrigerator 40 is an absorption type depending on the cooling load or the amount of heat released from the condenser 42 and the capacity of the regenerator 11.
  • the refrigerator 10 and the vapor compression freezer 40 are formed with the same capacity (capacity) or one of which is larger or smaller than the other.
  • valve 49a provided at the inlet side of the condenser 42 of the refrigerant conduit 46 is opened, and the valve 49b provided at the bypass conduit 49 is closed.
  • the condenser 42 of the vapor compression refrigerator 40 is regenerated ( 11) while condensing by heat exchange with the solution of the dilute concentration in the solution, by heating the evaporation of the dilute solution in the regenerator 11 of the absorption chiller 10 by the heat of condensation to generate a refrigerant vapor, the evaporator (15) of the absorption chiller 10 Cold water is simultaneously generated by the heat exchanger for evaporation (16) and the cold water heat exchanger (56) installed in the evaporator (45) of the vapor compression freezer (40). These will be used in applications such as air-conditioning together.
  • the conventional vapor compression refrigerator 40 Heat can be used as a heat source of the regenerator 11, so that energy consumption is not required when operating the absorption chiller 10, and energy is not installed and a conventional steam boiler is not installed. It is possible to greatly reduce the equipment cost, and to increase the coefficient of performance of the absorption chiller (10).
  • the refrigerant solution condensed by heating the solution of the thin concentration in the condenser 42 in the regenerator 11 is heated through the solution heat exchanger 21 to heat the solution of the thin concentration supplied to the regenerator 11. After condensing in the two condenser 47 is gathered in the receiver 43.
  • a portion of the refrigerant liquid collected in the receiver 43 is expanded in the expansion valve 44 and then evaporated in the evaporator 45, thereby cooling the cold water to be cooled through the cold water heat exchanger 56 by the evaporation heat.
  • the cooling liquid generated in the evaporation heat exchanger 16 is used for cooling and the like, and a part of the refrigerant liquid collected in the receiver 43 is connected to the second expansion valve 54 via the second refrigerant conduit 53.
  • cooling tower 19 is shown in FIG. 1, the function does not have to be installed as the heat dissipation heat exchanger 52 performs the present invention, and in this case, the present invention may additionally install a vapor compression refrigerator in the existing absorption chiller. It is recommended that the installed cooling towers are not removed for reserve.
  • Cooling means 70 is additionally installed between the suction portion of the compressor 41 and the refrigerant conduit 46.
  • the cooling means 70 connects the third refrigerant conduit 71 between the receiver 43 and the suction portion of the compressor 41 of the refrigerant conduit 46 and connects the third refrigerant conduit 71 to the third refrigerant conduit 71.
  • the expansion valve 72 and the second evaporator 73 are installed, and the evaporation promoting heat exchanger 74 is installed between the side surface of the second evaporator 73 or the heat transfer tube of the second evaporator 73. .
  • the evaporation-promoting heat exchanger (74) is a function of promoting the evaporation of the refrigerant liquid in the second evaporator (73). In the region where the air temperature does not fall below the dew point temperature, the evaporation is good by only the heat source. You do not have to do.
  • the heat medium used in the evaporation-promoting heat exchanger 74 can be selected from river water, sea water, ground water collected, solar heat collecting device, fluid collected in rainwater, waste water, and hot spring water.
  • Reference numeral 75 is a valve provided on the outlet side of the receiver 43 of the third refrigerant conduit 71.
  • the simultaneous operation of the absorption type refrigerator 10 and the vapor compression refrigerator 40 is operated in the same manner as in the first embodiment, and when only the steam compression refrigerator 40 is operated, a valve is used.
  • the compressor 49 is opened and the compressor 41 is opened, the high temperature / high pressure refrigerant vapor compressed by the compressor 41 is condensed in the second condenser 47 while the heat exchanger for heating The fluid flowing through the 48) is heated to generate a heating fluid (air or hot water) and used for drying, heating, or hot water supply, and the refrigerant liquid condensed in the second condenser 47 is transferred to the receiver 43.
  • the third refrigerant conduit 71 Gathered and then flows to the third refrigerant conduit 71 to expand in the second expansion valve 72 and to cool the fluid by the heat of evaporation in the second evaporator 73 to generate a cooling fluid (air or cold water) to use for the necessary use It is.
  • a cooling fluid air or cold water
  • the atmospheric temperature is above the dew point temperature when the refrigerant liquid is evaporated in the second evaporator 73, only the air heat source is evaporated.
  • the refrigerant liquid is insufficient to evaporate in the second evaporator 73.
  • the thermal coefficient supplied to the evaporation heat exchanger 74 promotes the evaporation of the refrigerant liquid, so that the coefficient of performance can be maintained satisfactorily.
  • the combination of the single-effect absorption chiller and the vapor compression freezer has been illustrated and described, but the present invention is not limited thereto, and the combination of the well-known dual-effect absorption chiller and the steam compression freezer can be performed.
  • only one solution heat exchanger 21 is shown, but it is also possible to install a high-temperature and low-temperature solution heat exchanger, respectively, as described above when two solution heat exchangers are installed, the outlet side of the condenser 42 is a hot solution. Via a heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

본 발명은 복합 냉동기에 관한 것이며, 상세하게는 흡수식 냉동기와 증기압축식 냉동기를 결합한 복합 냉동기의 성능향상 및 에너지 절감에 관한 것이다. 본 발명은 재생기(11)와, 냉각수관(14')을 설치한 응축기(13)와, 증발기(15)와, 냉각수관(14)을 설치한 흡수기(17)와, 상기 냉각수관(14)(14')을 냉각수 순환도관(20)으로 연결한 응축수단(18)으로 구성한 흡수식 냉동기(10)와; 압축기(41), 응축기(42), 수액기(43), 팽창밸브(44), 증발기(45)를 냉매도관(46)으로 연결한 증기압축식 냉동기(40);를 구비하고, 상기 응축기(42)를 재생기(11)에 내장 설치하며, 상기 냉매도관(46)의 응축기(42)와 수액기(43) 사이에 제2 응축기(47)를 설치하며, 상기 냉각수 순환도관(20)의 냉각수관(14')출구와 냉각수관(14)의 입구에 냉각수 순환 바이패스도관(51)을 연결하여 방열 열교환기(52)를 설치하고, 상기 수액기(43)와 냉매도관(46)의 압축기(41)의 흡입부 사이에 제2 팽창밸브(54)를 부설한 제2 냉매도관(53)을 연결하여 상기 제2 냉매도관(53)에 상기 방열 열교환기(52)와 열교환 관계를 유지하는 흡열 열교환기(55)를 설치하며, 상기 증발기(45)에 냉수용 열교환기(56)를 설치하여 증발용 열교환기(16)와 냉수 순환도관(58)을 연결하여서 된 것이다.

Description

복합 냉동기
본 발명은 복합 냉동기에 관한 것이며, 상세하게는 흡수식 냉동기와 증기압축식 냉동기를 결합한 복합 냉동기의 성능향상 및 에너지 절감에 관한 것이다.
주지하는 바와 같이 냉동기는 흡수식 냉동기와 증기압축식 냉동기로 대별되며, 상기 흡수식 냉동기는 재생기의 열원으로서 증기 또는 액화천연가스를 사용함으로써 별도의 에너지가 소요되고, 특히 열원으로서 증기를 사용할 경우에는 별도의 증기보일러를 설치하여야 할 경우가 많음으로 증기보일러를 별도로 설치할 경우 구조가 복잡하고 설비비가 많이 소요되는 것이다. 또한 폐열의 회수가 양호하지 못함으로 에너지이용 측면에서 불합리하고 성적계수가 낮은 문제점이 있는 것이다.
한편 증기압축식 냉동기는 응축기에서 고온·고압의 냉매증기를 응축할 때 그 응축열을 폐기함으로 특히 공냉식 응축기를 채용할 경우 그 응축기는 통상적으로 도로변에 설치하여 고온의 응축열을 도로 측으로 방출함으로써 통행인에 불쾌감을 주고 대기온도를 상승시키는 문제점이 발생하고 있다.
상기한 흡수식 냉동기와 증기압축식 냉동기의 문제점을 시정하기 위하여 흡수식 냉동기와 증기압축식 냉동기를 결합하여서, 증기압축식 냉동기의 응축기를 흡수식 냉동기의 재생기 내에 내장하여 증기압축식 냉동기의 응축기의 응축열을 흡수식 냉동기의 열원으로 이용한 냉동기가 특허문헌 1에 개시되어 있다.
상기 특허문헌 1의 냉동기는 냉매증기를 증발하는 재생기와, 상기 재생기에서 증발된 냉매증기를 응축하는 응축기와, 상기 응축기에서 응축된 냉매액을 증발용 열교환기에 살포하여 브라인(냉수)을 냉각하는 증발기와, 상기 증발기에서 기화된 냉매증기를 흡수하는 흡수기로 구성한 흡수식 냉동기와; 압축기, 응축기, 팽창밸브, 증발기를 도관으로 순서대로 연결한 증기압축식 냉동기;를 구비하고, 상기 증기압축식 냉동기의 응축기를 재생기에 내장 설치하여 압축기에서 압축된 고온ㆍ고압의 냉매증기가 응축될 때 그 응축열을 흡수식 냉동기의 열원으로 이용토록 함으로써 흡수식 냉동기의 성적계수를 증대하고, 에너지를 절감할 수 있도록 한 것이다.
〔특허문헌1〕 KR 10-0634843 B1
그러나 상기한 특허문헌 1의 증기압축식 냉동기는 그 응축기의 응축열을 흡수식 냉동기의 열원으로 이용함으로써 흡수식 냉동기의 성적계수를 증대하고 에너지를 절감할 수 있는 장점은 있으나, 흡수식 냉동기의 냉매증기를 응축하고, 중간 농도의 용액을 냉각하는 냉각수의 보유열을 폐기함으로써 열효율의 개선이 요망되고, 또한 흡수식 냉동기와 증기압축식 냉동기를 동시 운전할때 흡수식 냉동기의 증발기에 설치한 증발용 열교환기와 증기압축식 냉동기의 증발기의 냉수공급관과 냉수배출관을 각각 별도로 형성하였음으로 증발용 열교환기와 증발기의 냉수공급 및 배출 배관구조가 복잡한 문제점 등이 있게 되는 것이다.
본 발명은 상기한 개선 및 문제점 등에 대하여 많은 연구개발을 하여 본 발명을 완성하였다.
본 발명은 흡수식 냉동기의 응축수의 폐열을 회수하고, 흡수식 냉동기 및 증기압축식 냉동기의 냉수공급 및 배출 배관구조를 단순화한 복합 냉동기를 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은 증기압축식 냉동기만의 운전시 가열유체 및 냉각유체를 동시에 생성할 수 있도록 한 복합 냉동기를 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위하여, 본 발명은 냉매증기를 증발하는 재생기(11)와, 상기 재생기(11)에서 증발된 냉매증기를 응축하는 냉각수관(14')을 설치한 응축기(13)와, 상기 응축기(13)에서 응축된 냉매액을 증발용 열교환기(16)에 살포하여 냉수를 냉각하는 증발기(15)와, 상기 증발기(15)에서 기화된 냉매증기를 흡수하며 냉각수관(14)을 설치한 흡수기(17)와, 상기 냉각수관(14)(14')을 냉각수 순환도관(20)으로 연결한 응축수단(18)으로 구성한 흡수식 냉동기(10)와; 압축기 (41), 응축기(42), 수액기(43), 팽창밸브(44), 증발기(45)를 냉매도관(46)으로 순서대로 연결한 증기압축식 냉동기(40);를 구비하고, 상기 응축기(42)를 재생기(11)에 내장 설치하며, 상기 냉매도관(46)의 응축기(42)와 수액기(43) 사이에 제2 응축기(47)를 설치하며, 상기 냉각수 순환도관(20)의 냉각수관(14')출구와 냉각수관(14)의 입구에 냉각수 순환 바이패스도관(51)을 연결하여 상기 냉각수 순환 바이패스도관(51)에 방열 열교환기(52)를 설치하고, 상기 수액기(43)와 냉매도관(46)의 압축기(41)의 흡입부 사이에 제2 팽창밸브(54)를 부설한 제2 냉매도관(53)을 연결하여 상기 제2 냉매도관(53)에 상기 방열 열교환기(52)와 열교환 관계를 유지하는 흡열 열교환기(55)를 설치하며, 상기 증발기(45)에 냉수용 열교환기(56)를 설치하여 상기 냉수용 열교환기(56)와 증발용 열교환기(16)의 냉수공급관(57a) 및 냉수배출관(57b)에 냉수 순환도관(58)을 연결하여서 된 것이다.
또한 본 발명은 냉매증기를 증발하는 재생기(11)와, 상기 재생기(11)에서 증발된 냉매증기를 응축하는 냉각수관(14')을 설치한 응축기(13)와, 상기 응축기(13)에서 응축된 냉매액을 증발용 열교환기(16)에 살포하여 냉수를 냉각하는 증발기(15)와, 상기 증발기(15)에서 기화된 냉매증기를 흡수하며 냉각수관(14)을 설치한 흡수기(17)와, 상기 냉각수관(14)(14')을 냉각수 순환도관(20)으로 연결한 응축수단(18)으로 구성한 흡수식 냉동기(10)와; 압축기 (41), 응축기(42), 수액기(43), 팽창밸브(44), 증발기(45)를 냉매도관(46)으로 연결한 증기압축식 냉동기(40);를 구비하고, 상기 응축기(42)를 재생기(11)에 내장 설치하며, 상기 냉각수 순환도관(20)의 냉각수관(14')출구와 냉각수관(14)의 입구에 냉각수 순환 바이패스도관(51)을 연결하여 상기 냉각수 순환 바이패스도관(51)에 방열 열교환기(52)를 설치하고, 상기 수액기(43)와 냉매도관(46)의 압축기(41)의 흡입부 사이에 제2 팽창밸브(54)를 부설한 제2 냉매도관(53)을 연결하여 상기 제2 냉매도관(53)에 상기 방열 열교환기(52)와 열교환 관계를 유지하는 흡열 열교환기(55)를 설치하며, 상기 증발기(45)에 냉수용 열교환기(56)를 설치하여 상기 냉수용 열교환기(56)와 증발용 열교환기(16)의 냉수공급관(57a) 및 냉수배출관(57b)에 냉수 순환도관(58)을 연결하며, 상기 응축기(42)와 수액기(43) 사이에 제2 응축기(47)를 설치하여 상기 제2 응축기(47)에 가열용 열교환기(48)를 열교환관계를 유지하도록 설치하고, 상기 수액기(43)와 냉매도관(46)의 압축기(41)의 흡입부 사이에 냉각수단(70)을 연결하여서 된 것이다.
이상과 같이 본 발명은 흡수식 냉동기와 증기압축식 냉동기를 구비하고, 상기 증기압축식 냉동기의 응축기를 흡수식 냉동기의 재생기에 내장 설치하여서, 양 냉동기를 동시에 운전하면서 상기 응축기의 응축열을 흡수식 냉동기의 열원으로 이용함으로써 흡수식 냉동기의 운전시에 별도의 에너지를 소요하지 않기 때문에 에너지를 절감하고 설비비를 대폭 절감하며, 흡수식 냉동기의 성적계수를 증대할 수 있는 것이다.
그리고 본 발명은 종래 폐기하던 냉각수의 폐열을 활용하여 증기압축식 냉동기의 냉매액의 증발을 양호하게 함으로써 성능(성적계수)을 향상함과 아울러 압축기의 신뢰성을 향상할 수 있는 것이다.
그리고 증발기에 설치되는 냉수용 열교환기를 냉수 공급관 및 냉수 배출관에 냉수 순환도관으로 연결하여 냉수공급 및 배출 배관구조를 단순화함으로써 설치비용을 절감할 수 있는 것이다.
또한 본 발명은 증기압축식 냉동기에 가열수단 및 냉각수단을 추가함으로써 증기압축식 냉동기만을 운전할 때 가열유체와 냉각유체를 동시에 생성할 수 있음으로 편의성이 향상되는 것이다.
도1은 본 발명의 제1 실시예의 구성도
도2는 본 발명의 제2 실시예의 구성도
도 1은 본 발명의 제1 실시예의 구성도로서, 본 발명의 제1 실시예는 흡수식 냉동기(10)와 증기압축식 냉동기(40)를 구비하며, 상기 흡수식 냉동기(10)는 냉매증기를 증발하는 재생기(발생기)(11), 냉각수관(14')을 설치한 응축기(13), 증발용 열교환기 (16)를 설치한 증발기(15), 냉각수관(14)을 설치한 흡수기(17), 상기 냉각수관(14)(14')을 냉각수 순환도관(20)으로 연결한 응축수단(18), 용액 열교환기 (21), 냉매펌프(22), 용액펌프(23) 등을 구비하여서, 재생기(11) 내에서 열원에 의하여 냉매증기를 증발시키고, 상기 냉매증기를 응축기(13)에 공급하여 냉각탑(19)에서 냉각된 냉각수를 냉각수관(14')으로 공급하여 응축한 후 냉매액 도관(25)을 통하여 증발기(15)에 유입하고, 냉매펌프(22)에 의하여 도관(26)을 경유 냉매분무장치(27)에서 증발기(15)에 설치한 증발용 열교환기(16)에 살포함으로써 그 냉매액이 증발될 때의 기화열에 의하여 증발용 열교환기(16)에 공급되는 물을 냉각하여 냉수를 생성하는 싸이클을 형성하며, 상기 냉각된 냉수는 냉방 등의 용도로 사용하는 것이다.
그리고 증발기(15)에서 증발된 냉매증기는 흡수기(17)에 유입되어 재생기(11)에서 도관(28)을 통하여 용액 열교환기(21)를 경유 용액분무장치(29)에서 살포되는 중간 농도의 용액에 흡수되며, 이때 그 용액은 냉매증기의 잠열에 의하여 온도가 상승됨으로 냉각수관(14)으로 공급되는 냉각수에 의하여 냉각시키는 것이다. 한편 냉매증기를 흡수한 묽은 농도의 용액은 용액펌프(23)에 의하여 도관(30)을 통하여 재생기(11)에 공급될 때 용액 열교환기(21)에서 재생기(11)에서 용액분무장치(29)에 살포되는 진한 농도의 용액에 의하여 예열된 후 재생기(11)에 유입되어 재가열되는 싸이클을 형성하는 것이며, 상기한 기술수단은 주지된 것이다.
상기 증기압축식 냉동기(40)는 주지된 바와 같이 압축기(41), 응축기(42), 수액기(43), 팽창밸브(44), 증발기(45) 등을 구비하여 이들을 냉매도관(46)으로 순서대로 연결하여서, 상기 응축기(42)를 상기 흡수식 냉동기(10)의 재생기(11)에 내장 설치하여 압축기(41)에서 압축된 고온ㆍ고압의 냉매증기를 응축기(42)에서 응축시키고, 상기 응축된 고온ㆍ고압의 냉매액은 팽창밸브(44)에서 팽창되어 저온ㆍ저압의 냉매액으로 된 후 증발기(45)에서 증발되어 압축기(41)에 흡입되어 재압축되는 싸이클을 형성하는 것이다.
상기와 같은 싸이클을 형성할 때 압축기(41)에서 압축된 고온ㆍ고압의 냉매증기가 재생기(11)에 내장된 응축기(42)를 통과하면서 재생기(11) 내의 묽은 농도의 용액과 열교환함으로써 고온ㆍ고압의 냉매증기는 응축됨과 동시에 그 응축열에 의하여 묽은 농도의 용액이 가열되어 냉매증기가 증발되며, 즉 증기압축식 냉동기(40)의 응축기(42)에서 응축되는 고온ㆍ고압의 냉매증기의 응축열을 흡수식 냉동기(10)의 열원으로 이용토록 한 것이다.
또한 본 발명의 제1 실시예는 상기 냉매도관(46)의 응축기(42)와 수액기(43) 사이에 제2 응축기(47)를 설치하고, 상기 제2 응축기(47)에 가열용 열교환기(48)를 설치 즉 상기 응축기(42)와 수액기(43) 사이에 가열수단을 설치하여서, 흡수식 냉동기(10)의 부하가 감소되거나 외기온도가 높은 이유 등에 의하여 응축기(42)에서 고온ㆍ고압의 냉매증기의 응축이 불완전할 때 재응축하거나, 흡수식 및 증기압축식 냉동기(10)(40)의 정상운전시 응축기(42)에서 고온ㆍ고압의 냉매증기의 응축이 양호할 때 과냉각함으로써 증기압축식 냉동기(40)의 성적계수를 증대하고, 또한 제2 응축기(47)의 응축열에 의하여 급탕용 온수도 생성할 수 있는 것이다.
또한 본 발명의 제1 실시예는 상기 냉매도관(46)의 응축기(42)의 입구와 출구사이에 바이패스도관(49)을 설치하여 상기 응축기(42)의 입구 측과 바이패스도관(49)에 밸브(49a)(49b)를 설치하여서, 흡수식 냉동기(10)와 증기압축식 냉동기(40)의 동시 운전시에 밸브(49a)를 개방하고 밸브(49b)는 폐쇄하는 것이다.
그리고 본 발명의 제1 실시예는 상기 냉각수 순환도관(20)의 냉각수관(14') 출구와 냉각수관(14)의 입구에 냉각수 순환 바이패스도관(51)을 연결하여 상기 냉각수 순환 바이패스도관(51)에 방열 열교환기(52)를 설치하고, 상기 수액기(43)와 냉매도관(46)의 압축기(41)의 흡입부 사이에 제2 팽창밸브(54)를 부설한 제2 냉매도관(53)을 연결하여 상기 제2 냉매도관(53)에 상기 방열 열교환기(52)와 열교환관계를 유지하는 흡열 열교환기(증발기)(55)를 설치하여서, 응축기(13)에서 냉매증기를 응축한 냉각수를 냉각탑(19)으로 보내지 않고 냉각수 순환 바이패스도관(51)으로 순환시켜 냉각수가 보유한 폐열(통상 37℃)을 방열 열교환기(52)에서 방열시켜 흡열 열교환기(54)를 경유하는 냉매액의 증발을 양호하게 한 것이다.
또한 본 발명의 제1 실시예는 상기 증발기(45)의 측면 또는 증발기(45)의 전열관의 사이사이에 냉수용 열교환기(56)를 설치하고, 상기 냉수용 열교환기(56)와 증발용 열교환기(16)의 냉수(냉각하려는 냉수)공급관(57a) 및 냉수(냉각된)배출관(57b)에 냉수 순환도관(58)을 연결하여서, 냉수공급관(57a)으로 공급되는 냉각하려는 냉수(통상 12℃)를 증발용 열교환기(16)와 냉수용 열교환기(56)에 동시에 함께 공급하여 각각 냉수(통상 7℃)를 생성한 후 냉수배출관(57b)에서 합류시켜 필요한 용도에 사용하며, 상기와 같이 냉수공급관(57a) 및 냉수배출관(57b)과 냉수용 열교환기(56)를 냉수 순환도관(58)으로 연결하면 냉수공급 및 배출 배관구조를 단순화할 수 있는 것이다.
그리고 본 발명의 제1 실시예는 상기 냉매도관(46)의 응축기(42)의 출구 측을 상기 용액 열교환기(18)를 경유시켜 흡수기(17)에서 용액펌프(23)에 의하여 재생기(11)에 공급되는 묽은 농도의 용액을 재생기(11)에서 용액분무장치(29)에 살포되는 진한 농도의 용액과 함께 예열함으로써 흡수식 냉동기(10)의 성적계수를 증대함과 아울러 냉매액을 과냉각함으로 증기압축식 냉동기(40)의 성적계수도 증대시키는 것이다.
미설명부호 61a, 61b는 냉각수 순환 바이패스도관(51) 및 냉각수 순환도관(20)에 설치된 밸브로서, 냉각수가 보유한 폐열을 이용할 때와 이용하지 않을 때 선택적으로 개폐하고, 62a, 62b는 냉수공급관(57a)과 냉수 순환도관(58)에 설치된 밸브로서, 흡수식 냉동기(10)와 증기압축식 냉동기(40)를 동시운전할 때에 모두 개방하는 것이다.
그리고 미설명 부호 63은 제2 냉매도관(53)의 수액기(43) 출구 측에 설치한 밸브로서, 냉각수 순환 바이패스도관(51)에 설치한 밸브(61a)와 함께 개폐하며, 64는 냉매도관(46)의 수액기(43) 출구 측에 설치한 밸브이다.
이상과 같은 본 발명의 제1 실시예는 흡수식 냉동기(10)와 증기압축식 냉동기(40)의 각각의 냉동능력은 냉방부하 또는 응축기(42)의 방출열량과 재생기(11)의 용량에 따라 흡수식 냉동기(10)와 증기압축식 냉동기(40)를 동일 능력(용량)으로 형성하거나 어느 하나를 다른 하나보다 크거나 작게 형성하는 것이다.
이상과 같은 본 발명의 제1 실시예는 냉매도관(46)의 응축기(42)의 입구 측에 설치한 밸브(49a)는 개방하고, 바이패스도관(49)에 설치한 밸브(49b)는 폐쇄하며, 제2 냉매도관(53) 및 냉매도관(46)의 수액기(43) 출구 측의 밸브(63)(64)와 냉수공급관(57a)과 냉수배출관(57b)에 설치한 밸브(62a)(62b) 및 냉각수 순환 바이패스도관(51)에 설치한 밸브(61a)를 개방하여 양 냉동기(10)(40)를 동시에 운전하면, 증기압축식 냉동기(40)의 응축기(42)가 재생기(11) 내의 묽은 농도의 용액과 열교환하여 응축되면서 그 응축열에 의하여 흡수식 냉동기(10)의 재생기(11)내의 묽은 농도의 용액을 가열 증발하여 냉매증기를 생성하고, 흡수식 냉동기(10)의 증발기(15)에 설치한 증발용 열교환기(16)와 증기압축식 냉동기(40)의 증발기(45)에 설치한 냉수용 열교환기(56)에서 동시에 냉수가 생성됨으로 이들을 함께 냉방 등의 용도로 사용하는 것이다.
상기와 같이 증기압축식 냉동기(40)의 응축기(42)를 흡수식 냉동기(10)의 재생기(11)에 내장 설치하여 양 냉동기(10)(40)를 동시에 운전하면, 종래 증기압축식 냉동기(40)에서 폐기하던 응축기(42)의 응축열을 재생기(11)의 열원으로 이용할 수 있기 때문에 흡수식 냉동기(10)의 운전시 별도의 에너지를 소요하지 않음으로 에너지를 절감하고, 종래의 증기보일러를 설치하지 않아도 됨으로 설비비를 대폭 절감할 수 있으며, 흡수식 냉동기(10)의 성적계수를 증대할 수 있는 것이다.
또한 응축기(42)의 응축열을 도로측으로 방출하지 않기 때문에 통행인에 불쾌감을 주지 않으며, 대기온도의 상승도 방지할 수 있는 것이다.
그리고 상기와 같이 재생기(11) 내의 응축기(42)에서 묽은 농도의 용액을 가열하여 응축된 냉매액은 용액 열교환기(21)를 경유하면서 재생기(11)에 공급되는 묽은 농도의 용액을 가열하고 제2응축기(47)에서 재응축된 후 수액기(43)에 모이는 것이다.
상기와 같이 수액기(43)에 모인 냉매액의 일부는 팽창밸브(44)에서 팽창된 후 증발기(45)에서 증발되면서 그 증발열에 의하여 냉수용 열교환기(56)를 흐르는 냉각하려는 냉수를 냉각하여 상기 증발용 열교환기(16)에서 생성된 냉수와 함께 냉방 등의 용도로 사용되고, 수액기(43)에 모인 일부의 냉매액은 제2 냉매도관(53)을 경유하여 제2 팽창밸브(54)에서 팽창된 후 흡열 열교환기(55)를 경유하며, 한편 응축기(13)에 설치한 냉각수관(14')에서 냉매증기를 응축하면서 온도가 높아진 냉각수는 냉각탑(19)에 공급되지 않고 냉각수 순환 바이패스도관(51)으로 흐르면서 방열 열교환기(52)에서 방열되면서 냉각됨과 아울러 상기 흡열 열교환기(55)를 경유하는 냉매액을 증발시켜 압축기(41)에 건포화 또는 과열증기가 흡입되도록 한 것이다. 상기와 같이 냉각수가 보유한 폐열을 압축기(41)에 흡입되는 습포화증기를 가열하는 용도로 재활용함으로써 증기압축식 냉동기의 성적계수를 향상함과 동시에 압축기(41)의 신뢰성을 향상할 수 있는 것이다.
상기한 도 1에는 냉각탑(19)을 도시하였으나 그 기능을 방열 열교환기(52)가 수행함으로 설치하지 않아도 좋으며, 본 발명은 기존 흡수식 냉동기에 증기압축식 냉동기를 추가설치할 수도 있기 때문에 이 경우에는 기존 설치한 냉각탑은 예비용으로 철거하지 않은 상태를 유지하는 것이 좋다.
도 2는 본 발명의 제2 실시예의 구성도로서, 상기 제1 실시예와 동일한 구성요소는 동일한 부호를 부여하고 구체적인 설명은 생략하며, 상기 제1 실시예와 차이되는 점은 수액기(43)와 냉매도관(46)의 압축기(41)의 흡입부 사이에 냉각수단(70)을 추가 설치한 것이다.
상기 냉각수단(70)은 상기 수액기(43)와 냉매도관(46)의 압축기(41)의 흡입부 사이에 제3 냉매도관(71)을 연결하고, 상기 제3 냉매도관(71)에 제3 팽창밸브(72)와 제2 증발기(73)를 설치하며, 상기 제2 증발기(73)의 측면 또는 제2 증발기(73)의 전열관의 사이사이에 증발촉진 열교환기(74)를 설치한 것이다.
상기 증발촉진 열교환기(74)는 제2 증발기(73)에서 냉매액을 증발시킬때 그 촉진기능을 하는 것인바, 대기온도가 노점온도 이하로 하강하지 않는 지역에서는 공기열원만으로도 증발이 양호함으로써 설치하지 않아도 된다.
상기 증발촉진 열교환기(74)에 사용되는 열매체로서는 강물, 바닷물, 채수된 지하수, 태양열 집열장치로서 집열한 유체, 우수, 폐수, 온천수 중에서 선택하여 사용할 수 있는 것이다.
미설명부호 75는 제3 냉매도관(71)의 수액기(43) 출구 측에 설치한 밸브이다.
이상과 같은 본 발명의 제2 실시예는 흡수식 냉동기(10)와 증기압축식 냉동기(40)의 동시운전은 상기 제1 실시예와 동일하게 운전하고, 증기압축식 냉동기(40)만을 운전할 때에는 밸브(49b),(75)를 개방하고, 압축기(41)를 구동하면 압축기(41)에서 압축된 고온·고압의 냉매증기는 제2 응축기(47)에서 응축되면서 그 응축열에 의하여 가열용 열교환기(48)를 흐르는 유체를 가열하여 가열유체(공기 또는 온수)를 생성하여서 필요한 용도 예 건조, 난방 또는 급탕용 등으로 사용하고, 제2 응축기(47)에서 응축된 냉매액은 수액기(43)에 모였다가 제3 냉매도관(71)으로 흐르면서 제2 팽창밸브(72)에서 팽창되고 제2 증발기(73)에서 그 증발열에 의하여 유체를 냉각하여 냉각유체(공기 또는 냉수)를 생성하여 필요한 용도에 사용하는 것이다. 그리고 제2 증발기(73)에서 냉매액이 증발될 때 대기온도가 노점온도 이상일 경우에는 공기열원만으로 증발시키고, 대기온도가 노점온도 이하여서 제2 증발기(73)에서 냉매액의 증발이 불충분할 경우에는 증발촉진 열교환기(74)에 공급되는 열매체에 의하여 냉매액의 증발을 촉진함으로써 성적계수를 양호하게 유지할 수 있는 것이다.
상기한 실시예에서는 일중효용 흡수식 냉동기와, 증기압축식 냉동기를 결합한 것에 대하여 도시하고 설명하였으나, 이것에 한하지 않고 주지된 이중효용 흡수식 냉동기와, 증기압축식 냉동기를 결합한 것에 대하여서도 실시할 수 있음은 물론이고, 또한 용액 열교환기(21)도 1개만 도시하였으나, 고온 및 저온 용액 열교환기를 각각 설치하여도 좋은바, 상기와 같이 용액 열교환기를 2개를 설치할 경우 응축기(42)의 출구 측은 고온 용액 열교환기를 경유하는 것이다.

Claims (6)

  1. 냉매증기를 증발하는 재생기(11)와, 상기 재생기(11)에서 증발된 냉매증기를 응축하는 냉각수관(14')을 설치한 응축기(13)와, 상기 응축기(13)에서 응축된 냉매액을 증발용 열교환기(16)에 살포하여 냉수를 냉각하는 증발기(15)와, 상기 증발기(15)에서 기화된 냉매증기를 흡수하며 냉각수관(14)을 설치한 흡수기(17)와, 상기 냉각수관(14)(14')을 냉각수 순환도관(20)으로 연결한 응축수단(18)으로 구성한 흡수식 냉동기(10)와; 압축기 (41), 응축기(42), 수액기(43), 팽창밸브(44), 증발기(45)를 냉매도관(46)으로 연결한 증기압축식 냉동기(40);를 구비하고, 상기 응축기(42)를 재생기(11)에 내장 설치하며, 상기 냉매도관(46)의 응축기(42)와 수액기(43) 사이에 제2 응축기(47)를 설치하며, 상기 냉각수 순환도관(20)의 냉각수관(14')출구와 냉각수관(14)의 입구에 냉각수 순환 바이패스도관(51)을 연결하여 상기 냉각수 순환 바이패스도관(51)에 방열 열교환기(52)를 설치하고, 상기 수액기(43)와 냉매도관(46)의 압축기(41)의 흡입부 사이에 제2 팽창밸브(54)를 부설한 제2 냉매도관(53)을 연결하여 상기 제2 냉매도관(53)에 상기 방열 열교환기(52)와 열교환 관계를 유지하는 흡열 열교환기(55)를 설치하며, 상기 증발기(45)에 냉수용 열교환기(56)를 설치하여 상기 냉수용 열교환기(56)와 증발용 열교환기(16)의 냉수공급관(57a) 및 냉수배출관(57b)에 냉수 순환도관(58)을 연결하여서 된 복합 냉동기.
  2. 냉매증기를 증발하는 재생기(11)와, 상기 재생기(11)에서 증발된 냉매증기를 응축하는 냉각수관(14')을 설치한 응축기(13)와, 상기 응축기(13)에서 응축된 냉매액을 증발용 열교환기(16)에 살포하여 냉수를 냉각하는 증발기(15)와, 상기 증발기(15)에서 기화된 냉매증기를 흡수하며 냉각수관(14)을 설치한 흡수기(17)와, 상기 냉각수관(14)(14')을 냉각수 순환도관(20)으로 연결한 응축수단(18)으로 구성한 흡수식 냉동기(10)와; 압축기 (41), 응축기(42), 수액기(43), 팽창밸브(44), 증발기(45)를 도관(46)으로 연결한 증기압축식 냉동기;(40)를 구비하고, 상기 응축기(42)를 재생기(11)에 내장 설치하며, 상기 냉각수 순환도관(20)의 냉각수관(14')출구와 냉각수관(14)의 입구에 냉각수 순환 바이패스도관(51)을 연결하여 상기 냉각수 순환 바이패스도관(51)에 방열 열교환기(52)를 설치하고, 상기 수액기(43)와 냉매도관(46)의 압축기(41)의 흡입부 사이에 제2 팽창밸브(54)를 부설한 제2 냉매도관(53)을 연결하여 상기 제2 냉매도관(53)에 상기 방열 열교환기(52)와 열교환 관계를 유지하는 흡열 열교환기(55)를 설치하며, 상기 증발기(45)에 냉수용 열교환기(56)를 설치하여 상기 냉수용 열교환기(56)와 증발용 열교환기(16)의 냉수공급관(57a) 및 냉수배출관(57b)에 냉수 순환도관(58)을 연결하며, 상기 응축기(42)와 수액기(43) 사이에 제2 응축기(47)를 설치하여 상기 제2 응축기(47)에 가열용 열교환기(48)를 열교환관계를 유지하도록 설치하고, 상기 수액기(43)와 냉매도관(46)의 압축기(41)의 흡입부 사이에 냉각수단(70)을 연결하여서 된 복합 냉동기.
  3. 제1항에 있어서, 제2 응축기(47)에 가열용 열교환기(48)를 열교환관계를 유지하도록 설치한 복합 냉동기.
  4. 제1항 또는 제2항에 있어서, 응축기(42)의 출구 측을 용액 열교환기(21)를 경유시킨 복합 냉동기.
  5. 제2항에 있어서, 냉각수단(70)은 수액기(43)와 압축기(41)의 흡입부 사이에 제3 냉매도관(71)을 연결하며, 상기 제3 냉매도관(71)에 제3 팽창밸브(72)와 제2 증발기(73)를 설치하여서 된 복합 냉동기.
  6. 제5항에 있어서, 제2 증발기(73)에 증발촉진 열교환기(74)를 설치하여서 된 복합 냉동기.
PCT/KR2012/007071 2011-09-07 2012-09-04 복합 냉동기 WO2013036012A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0090450 2011-09-07
KR1020110090450A KR101218547B1 (ko) 2011-09-07 2011-09-07 복합 냉동기

Publications (2)

Publication Number Publication Date
WO2013036012A2 true WO2013036012A2 (ko) 2013-03-14
WO2013036012A3 WO2013036012A3 (ko) 2013-05-02

Family

ID=47832692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007071 WO2013036012A2 (ko) 2011-09-07 2012-09-04 복합 냉동기

Country Status (2)

Country Link
KR (1) KR101218547B1 (ko)
WO (1) WO2013036012A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110567190A (zh) * 2019-09-10 2019-12-13 华北电力大学 一种蒸汽压缩型吸收式热泵

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101634345B1 (ko) * 2015-10-01 2016-06-28 김종웅 압축식 냉동기의 폐열을 이용한 흡수식 냉방장치
KR102192076B1 (ko) * 2019-12-19 2020-12-16 비케이이엔지 주식회사 폐열을 이용한 냉수생산시스템
IT202200011213A1 (it) * 2022-05-27 2023-11-27 Paolo Spadini Impianto frigorifero combinato

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920008443A (ko) * 1990-10-31 1992-05-28 강진구 흡수식 냉매싸이클을 이용한 증기 압축식 냉동장치
JP2006017350A (ja) * 2004-06-04 2006-01-19 Sanyo Electric Co Ltd 冷凍装置
KR100634842B1 (ko) * 2004-02-18 2006-10-17 진금수 냉동기
JP2010243079A (ja) * 2009-04-07 2010-10-28 Daikin Ind Ltd 冷凍装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100634843B1 (ko) * 2004-02-18 2006-10-17 진금수 냉동기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920008443A (ko) * 1990-10-31 1992-05-28 강진구 흡수식 냉매싸이클을 이용한 증기 압축식 냉동장치
KR100634842B1 (ko) * 2004-02-18 2006-10-17 진금수 냉동기
JP2006017350A (ja) * 2004-06-04 2006-01-19 Sanyo Electric Co Ltd 冷凍装置
JP2010243079A (ja) * 2009-04-07 2010-10-28 Daikin Ind Ltd 冷凍装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110567190A (zh) * 2019-09-10 2019-12-13 华北电力大学 一种蒸汽压缩型吸收式热泵
CN110567190B (zh) * 2019-09-10 2023-09-29 华北电力大学 一种蒸汽压缩型吸收式热泵

Also Published As

Publication number Publication date
WO2013036012A3 (ko) 2013-05-02
KR101218547B1 (ko) 2013-01-09

Similar Documents

Publication Publication Date Title
CN107014015B (zh) 热回收型蒸发冷凝式冷水机组
CN104964477B (zh) 一种多级板式蒸发吸收式制冷装置和方法
CN103900289B (zh) 固体除湿预防空气源热泵热水器结霜的系统及方法
CN104374117B (zh) 冷水机组及控制方法
CN108444146A (zh) 一种基于溴化锂-水的船用空调系统及制冷方法
CN101650095A (zh) 一种多级吸收式制冷/热泵机组
WO2013036012A2 (ko) 복합 냉동기
CN110030765B (zh) 一种干燥供暖供冷复合系统
CN204329397U (zh) 冷水机组
CN109724289B (zh) 多效再生无霜热泵系统装置及方法
CN206669949U (zh) 热回收型蒸发冷凝式冷水机组
KR102257601B1 (ko) 판형 열교환기에서 냉매 응축열과 브라인을 열교환시킨 에너지 절감형 냉동 및 제상 시스템
GB2455579A (en) Heat pump comprising an inverter drive compressor
KR100983092B1 (ko) 히트펌프를 이용한 냉난방 에너지 절감 장치
CN109442804B (zh) 一种深度冷凝乏汽的双级压缩热泵循环系统
CN208108536U (zh) 一种低温余热回收型溴化锂吸收式冷热水系统
JPH0953864A (ja) エンジン式冷房装置
CN101995112B (zh) 一种高效gax吸收式制冷装置
CN210089182U (zh) 吸收式过冷制冷系统
KR100634843B1 (ko) 냉동기
KR100634842B1 (ko) 냉동기
CN106679224B (zh) 复叠式溶液串联双效溴化锂吸收式制冷热泵机组
JP2008020094A (ja) 吸収式ヒートポンプ装置
CN105258391A (zh) 闪蒸工质泵低热源热泵
JP2004301345A (ja) アンモニア吸収冷凍機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830000

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830000

Country of ref document: EP

Kind code of ref document: A2